Package ‘deepgp’

April 28, 2024

Type Package

Title Bayesian Deep Gaussian Processes using MCMC
Version 1.1.2

Date 2024-04-28

Author Annie S. Booth <annie_booth@ncsu.edu>
Maintainer Annie S. Booth <annie_booth@ncsu.edu>
Depends R (>=3.6)

Description Performs Bayesian posterior inference for deep Gaussian processes
following Sauer, Gramacy, and Higdon (2023, <doi:10.48550/arXiv.2012.08015>). See Sauer
(2023, <http://hdl.handle.net/10919/114845>) for comprehensive methodological
details and <https://bitbucket.org/gramacylab/deepgp-ex/> for a variety of
coding examples. Models are trained through MCMC including elliptical
slice sampling of latent Gaussian layers and Metropolis-Hastings
sampling of kernel hyperparameters. Vecchia-approximation for faster
computation is implemented following Sauer, Cooper, and Gramacy
(2023, <doi:10.48550/arXiv.2204.02904>). Downstream tasks include sequential design
through active learning Cohn/integrated mean squared error
(ALC/IMSE; Sauer, Gramacy, and Higdon, 2023), optimization through
expected improvement (EI; Gra-
macy, Sauer, and Wycoff, 2022 <doi:10.48550/arXiv.2112.07457>),
and contour location through entropy
(Booth, Renganathan, and Gramacy, 2024 <doi:10.48550/arXiv.2308.04420>). Models
extend up to three layers deep; a one layer model is equivalent to typical
Gaussian process regression. Incorporates OpenMP and SNOW parallelization
and utilizes C/C++ under the hood.

License LGPL
Encoding UTF-8
NeedsCompilation yes

Imports grDevices, graphics, stats, doParallel, foreach, parallel,
GpGp, Matrix, Rcpp, mvtnorm, FNN

LinkingTo Rcpp, ReppArmadillo,

Suggests interp, knitr, rmarkdown

https://doi.org/10.48550/arXiv.2012.08015
http://hdl.handle.net/10919/114845
https://bitbucket.org/gramacylab/deepgp-ex/
https://doi.org/10.48550/arXiv.2204.02904
https://doi.org/10.48550/arXiv.2112.07457
https://doi.org/10.48550/arXiv.2308.04420

2 deepgp-package

VignetteBuilder knitr

RoxygenNote 7.2.3

Repository CRAN

Date/Publication 2024-04-28 21:10:06 UTC

R topics documented:

deepgp-package 2
ALC . o e 4
CONLINUE v vt v e bttt e e e e e e e 6
CIPS o v v e e e e e e e e e e e e e 8
fitone_layer 8
fit three_layer 11
fit_two_layer e 15
IMSE . . 19
PlOt . . e e e e 21
predict . . . Lo e e 23
TINSE .« ¢ v v v e e e e e e e e e e e e e e e e 26
SCOTE « & v v v v e 27
SQ_AiSt . . . e e e 27
M . . . 28

Index 30

deepgp-package Package deepgp
Description

Performs Bayesian posterior inference for deep Gaussian processes following Sauer, Gramacy,
and Higdon (2023). See Sauer (2023) for comprehensive methodological details and https://
bitbucket.org/gramacylab/deepgp-ex/ for a variety of coding examples. Models are trained
through MCMC including elliptical slice sampling of latent Gaussian layers and Metropolis-Hastings
sampling of kernel hyperparameters. Vecchia-approximation for faster computation is implemented
following Sauer, Cooper, and Gramacy (2023). Downstream tasks include sequential design through
active learning Cohn/integrated mean squared error (ALC/IMSE; Sauer, Gramacy, and Higdon,
2023), optimization through expected improvement (EI; Gramacy, Sauer, and Wycoff, 2022), and
contour location through entropy (Booth, Renganathan, and Gramacy, 2024). Models extend up to
three layers deep; a one layer model is equivalent to typical Gaussian process regression. Incorpo-
rates OpenMP and SNOW parallelization and utilizes C/C++ under the hood.

https://bitbucket.org/gramacylab/deepgp-ex/
https://bitbucket.org/gramacylab/deepgp-ex/

deepgp-package 3

Important Functions

e fit_one_layer: conducts MCMC sampling of hyperparameters for a one layer GP

» fit_two_layer: conducts MCMC sampling of hyperparameters and hidden layer for a two
layer deep GP

» fit_three_layer: conducts MCMC sampling of hyperparameters and hidden layers for a
three layer deep GP

* continue: collects additional MCMC samples
* trim: cuts off burn-in and optionally thins samples

* predict: calculates posterior mean and variance over a set of input locations (optionally
calculates EI or entropy)

* plot: produces trace plots, hidden layer plots, and posterior predictive plots
* ALC: calculates active learning Cohn over set of input locations using reference grid

* IMSE: calculates integrated mean-squared error over set of input locations

Author(s)

Annie S. Booth <annie_booth@ncsu.edu>

References

Sauer, A. (2023). Deep Gaussian process surrogates for computer experiments. *Ph.D. Dis-
sertation, Department of Statistics, Virginia Polytechnic Institute and State University.* http:
//hdl.handle.net/10919/114845

Sauer, A., Gramacy, R.B., & Higdon, D. (2023). Active learning for deep Gaussian process surro-
gates. *Technometrics, 65,* 4-18. arXiv:2012.08015

Sauer, A., Cooper, A., & Gramacy, R. B. (2023). Vecchia-approximated deep Gaussian processes
for computer experiments. *Journal of Computational and Graphical Statistics,* 1-14. arXiv:2204.02904

Gramacy, R. B., Sauer, A. & Wycoff, N. (2022). Triangulation candidates for Bayesian opti-
mization. *Advances in Neural Information Processing Systems (NeurIPS), 35,* 35933-35945.
arXiv:2112.07457

Booth, A., Renganathan, S. A. & Gramacy, R. B. (2024). Contour location for reliability in air-
foil simulation experiments using deep Gaussian processes. *In Review.* arXiv:2308.04420

Examples

See "fit_one_layer"”, "fit_two_layer"”, "fit_three_layer",

"ALC", or "IMSE" for examples

Many more examples including real-world computer experiments are available at:
https://bitbucket.org/gramacylab/deepgp-ex/

http://hdl.handle.net/10919/114845
http://hdl.handle.net/10919/114845

4 ALC

ALC Active Learning Cohn for Sequential Design

Description

Acts on a gp, dgp2, or dgp3 object. Current version requires squared exponential covariance (cov
= "exp2"). Calculates ALC over the input locations x_new using specified reference grid. If no
reference grid is specified, x_new is used as the reference. Optionally utilizes SNOW parallelization.
User should select the point with the highest ALC to add to the design.

Usage

ALC(object, x_new, ref, cores)

S3 method for class 'gp'

ALC(object, x_new = NULL, ref = NULL, cores = 1)
S3 method for class 'dgp2'
ALC(object, x_new = NULL, ref = NULL, cores = 1)

S3 method for class 'dgp3'
ALC(object, x_new = NULL, ref = NULL, cores = 1)

Arguments
object object of class gp, dgp2, or dgp3
X_new matrix of possible input locations, if object has been run through predict the
previously stored x_new is used
ref optional reference grid for ALC approximation, if ref = NULL then x_new is
used
cores number of cores to utilize in parallel, by default no parallelization is used
Details

Not yet implemented for Vecchia-approximated fits or Matern kernels.

All iterations in the object are used in the calculation, so samples should be burned-in. Thinning
the samples using trim will speed up computation. This function may be used in two ways:

* Option 1: called on an object with only MCMC iterations, in which case x_new must be
specified

* Option 2: called on an object that has been predicted over, in which case the x_new from
predict is used

In Option 2, it is recommended to set store_latent = TRUE for dgp2 and dgp3 objects so latent
mappings do not have to be re-calculated. Through predict, the user may specify a mean mapping
(mean_map = TRUE) or a full sample from the MVN distribution over w_new (mean_map = FALSE).
When the object has not yet been predicted over (Option 1), the mean mapping is used.

ALC 5

SNOW parallelization reduces computation time but requires more memory storage. C code derived
from the "laGP" package (Robert B Gramacy and Furong Sun).

Value
list with elements:

* value: vector of ALC values, indices correspond to x_new

e time: computation time in seconds

References

Sauer, A., Gramacy, R.B., & Higdon, D. (2023). Active learning for deep Gaussian process surro-
gates. *Technometrics, 65,* 4-18. arXiv:2012.08015

Seo, S, M Wallat, T Graepel, and K Obermayer. 2000. Gaussian Process Regression: Active Data
Selection and Test Point Rejection. In Mustererkennung 2000, 2734. New York, NY: SpringerVer-
lag.

Gramacy, RB and F Sun. (2016). 1aGP: Large-Scale Spatial Modeling via Local Approximate
Gaussian Processes in R. Journal of Statistical Software 72 (1), 1-46. doi:10.18637/jss.v072.i101

Examples

f <= function(x) {

if (x <= 0.4) return(-1)

if (x >= 0.6) return(1)

if (x > 0.4 & x < 0.6) return(10*x(x-0.5))
3

x <- seq(0.05, 0.95, length = 7)
y <- sapply(x, f)
x_new <- seq(@, 1, length = 100)

Fit model and calculate ALC

fit <- fit_two_layer(x, y, nmcmc = 100, cov = "exp2")

fit <- trim(fit, 50)

fit <- predict(fit, x_new, cores = 1, store_latent = TRUE)
alc <- ALC(fit)

f <- function(x) {
exp(-10*%x) * (cos(10*pi*x - 1) + sin(1@*pixx - 1)) * 5 - 0.2
3

6 continue

Training data
x <- seq(@, 1, length = 30)
y <= f(x) + rnorm(30, @, 0.05)

Testing data
xx <- seq(@, 1, length = 100)
yy <= f(xx)

plot(xx, yy, type = "1")
points(x, y, col = 2)

Conduct MCMC (can replace fit_two_layer with fit_one_layer/fit_three_layer)
fit <- fit_two_layer(x, y, D = 1, nmcmc = 2000, cov = "exp2")

plot(fit)

fit <- trim(fit, 1000, 2)

Option 1 - calculate ALC from MCMC iterations
alc <- ALC(fit, xx)

Option 2 - calculate ALC after predictions
fit <- predict(fit, xx, cores = 1, store_latent = TRUE)
alc <- ALC(fit)

Visualize fit

plot(fit)

par(new = TRUE) # overlay ALC

plot(xx, alc$value, type = '1l', 1ty = 2,
axes = FALSE, xlab = '', ylab = "'")

Select next design point
x_new <- xx[which.max(alc$value)]

continue Continues MCMC sampling

Description

Acts on a gp, gpvec, dgp2, dgp2vec, dgp3, or dgp3vec object. Continues MCMC sampling of
hyperparameters and hidden layers using settings from the original object. Appends new samples
to existing samples. When vecchia = TRUE, this function provides the option to update Vecchia
ordering/conditioning sets based on latent layer warpings through the specification of re_approx =
TRUE.

Usage

continue(object, new_mcmc, verb, re_approx, ...)

continue

S3 method for class 'gp'

continue(object, new_mcmc = 1000, verb = TRUE, ...)

S3 method for class 'dgp2'

continue(object, new_mcmc = 1000, verb = TRUE, ...)

S3 method for class 'dgp3'

continue(object, new_mcmc = 1000, verb = TRUE, ...)

S3 method for class 'gpvec'

continue(object, new_mcmc = 1000, verb = TRUE, re_approx = FALSE, ...)

S3 method for class 'dgp2vec'

continue(object, new_mcmc = 1000, verb = TRUE, re_approx = FALSE, ...)

S3 method for class 'dgp3vec'

continue(object, new_mcmc = 1000, verb = TRUE, re_approx = FALSE, ...)
Arguments

object object from fit_one_layer, fit_two_layer, or fit_three_layer

new_mcmc number of new MCMC iterations to conduct and append

verb logical indicating whether to print iteration progress

re_approx logical indicating whether to re-randomize the ordering and update Vecchia

nearest-neighbor conditioning sets (only for fits with vecchia = TRUE)
N/A

Details

See fit_one_layer, fit_two_layer, or fit_three_layer for details on MCMC. The resulting
object will have nmemc equal to the previous nmcmc plus new_mcmc. It is recommended to start an
MCMC fit then investigate trace plots to assess burn-in. The primary use of this function is to gather
more MCMC iterations in order to obtain burned-in samples.

Specifying re_approx = TRUE updates random orderings and nearest-neighbor conditioning sets
(only for vecchia = TRUE fits). In one-layer, there is no latent warping but the Vecchia approxima-
tion is still re-randomized and nearest-neighbors are adjusted accordingly. In two- and three-layers,
the latest samples of hidden layers are used to update nearest-neighbors. If you update the Vecchia
approximation, you should later remove previous samples (updating the approximation effectively
starts a new chain). When re_approx = FALSE the previous orderings and conditioning sets are
used (maintaining the continuity of the previous chain).

Value

object of the same class with the new iterations appended

Examples

See "fit_two_layer"” for an example

8 fit_one_layer

crps Calculates CRPS

Description
Calculates continuous ranked probability score (lower CRPS indicate better fits, better uncertainty
quantification).

Usage

crps(y, mu, s2)

Arguments

y response vector

mu predicted mean

s2 predicted point-wise variances
References

Gneiting, T, and AE Raftery. 2007. Strictly Proper Scoring Rules, Prediction, and Estimation.
Journal of the American Statistical Association 102 (477), 359-378.

fit_one_layer MCMC sampling for one layer GP

Description

Conducts MCMC sampling of hyperparameters for a one layer GP. Length scale parameter theta
governs the strength of the correlation and nugget parameter g governs noise. In Matern covariance,
v governs smoothness.

Usage

fit_one_layer(
X7
Y,
nmcmc = 10000,
sep = FALSE,
verb = TRUE,
g.0 = 0.01,
theta_0 = 0.1,

true_g = NULL,
settings = NULL,
cov = c("matern”, "exp2"),

fit_one_layer 9

v = 2.5,

vecchia = FALSE,

m = min(25, length(y) - 1),
ordering = NULL

)
Arguments

X vector or matrix of input locations

y vector of response values

nmcme number of MCMC iterations

sep logical indicating whether to use separable (sep = TRUE) or isotropic (sep =
FALSE) lengthscales

verb logical indicating whether to print iteration progress

g 0 initial value for g

theta_o initial value for theta

true_g if true nugget is known it may be specified here (set to a small value to make fit
deterministic). Note - values that are too small may cause numerical issues in
matrix inversions.

settings hyperparameters for proposals and priors (see details)

cov covariance kernel, either Matern or squared exponential ("exp2")

v Matern smoothness parameter (only used if cov = "matern”)

vecchia logical indicating whether to use Vecchia approximation

m size of Vecchia conditioning sets (only used if vecchia = TRUE)

ordering optional ordering for Vecchia approximation, must correspond to rows of x, de-
faults to random

Details

Utilizes Metropolis Hastings sampling of the length scale and nugget parameters with proposals
and priors controlled by settings. When true_g is set to a specific value, the nugget is not esti-
mated. When vecchia = TRUE, all calculations leverage the Vecchia approximation with specified
conditioning set size m. Vecchia approximation is only implemented for cov = "matern”.

NOTE on OpenMP: The Vecchia implementation relies on OpenMP parallelization for efficient
computation. This function will produce a warning message if the package was installed without
OpenMP (this is the default for CRAN packages installed on Apple machines). To set up OpenMP
parallelization, download the package source code and install using the gcc/g++ compiler.

Proposals for g and theta follow a uniform sliding window scheme, e.g.
g_star <-runif(1, lxg_t/u,u*xg_t/1),

with defaults 1 =1 and u = 2 provided in settings. To adjust these, set settings =1list(l =
new_l, u=new_u). Priors on g and theta follow Gamma distributions with shape parameters
(alpha) and rate parameters (beta) controlled within the settings list object. Defaults are

* settings$alphas$g<-1.5

10 fit_one_layer

* settings$beta$g <-3.9

e settings$alpha$theta<-1.5

* settings$beta$theta<-3.9/1.5
These priors are designed for x scaled to [0, 1] and y scaled to have mean 0 and variance 1. These
may be adjusted using the settings input.

The output object of class gp is designed for use with continue, trim, and predict.

Value

a list of the S3 class gp or gpvec with elements:

* x: copy of input matrix

* y: copy of response vector

* nmcmc: number of MCMC iterations

* settings: copy of proposal/prior settings

* v: copy of Matern smoothness parameter (v = 999 indicates cov = "exp2")
* g: vector of MCMC samples for g

* theta: vector of MCMC samples for theta

* tau2: vector of MLE estimates for tau2 (scale parameter)

* 11: vector of MVN log likelihood for each Gibbs iteration

e time: computation time in seconds

References

Sauer, A. (2023). Deep Gaussian process surrogates for computer experiments. *Ph.D. Disserta-
tion, Department of Statistics, Virginia Polytechnic Institute and State University.*

Sauer, A., Gramacy, R.B., & Higdon, D. (2023). Active learning for deep Gaussian process surro-
gates. *Technometrics, 65,* 4-18. arXiv:2012.08015

Sauer, A., Cooper, A., & Gramacy, R. B. (2023). Vecchia-approximated deep Gaussian processes
for computer experiments. *Journal of Computational and Graphical Statistics,* 1-14. arXiv:2204.02904

Examples

Additional examples including real-world computer experiments are available at:
https://bitbucket.org/gramacylab/deepgp-ex/

G function (https://www.sfu.ca/~ssurjano/gfunc.html)
f <- function(xx, a = (c(1:1length(xx)) - 1) / 2) {
newl <- abs(4 * xx - 2) + a
new2 <- 1 + a
prod <- prod(newl / new2)
return((prod - 1) / 0.86)

fit_three_layer 11

Training data

<-1

<- 20

<- matrix(runif(n * d), ncol = d)
<- apply(x, 1, f)

< X S o #=*

Testing data

n_test <- 100

xx <= matrix(runif(n_test * d), ncol = d)
yy <- apply(xx, 1, f)

plot(xx[order(xx)]1, yy[order(xx)], type = "1")
points(x, y, col = 2)

Example 1: full model (nugget fixed)

fit <- fit_one_layer(x, y, nmcmc = 2000, true_g = 1e-6)
plot(fit)

fit <- trim(fit, 1000, 2)

fit <- predict(fit, xx, cores = 1)

plot(fit)

Example 2: full model (nugget estimated, EI calculated)

fit <- fit_one_layer(x, y, nmcmc = 2000)

plot(fit)

fit <- trim(fit, 1000, 2)

fit <- predict(fit, xx, cores = 1, EI = TRUE)

plot(fit)

par(new = TRUE) # overlay EI

plot(xx[order(xx)], fit$EI[order(xx)]1, type = '1', 1ty = 2,
axes = FALSE, xlab = '', ylab = "")

Example 3: Vecchia approximated model

fit <- fit_one_layer(x, y, nmcmc = 2000, vecchia = TRUE, m = 10)
plot(fit)

fit <- trim(fit, 1000, 2)

fit <- predict(fit, xx, cores = 1)

plot(fit)

fit_three_layer MCMC sampling for three layer deep GP

Description

Conducts MCMC sampling of hyperparameters, hidden layer z, and hidden layer w for a three layer
deep GP. Separate length scale parameters theta_z, theta_w, and theta_y govern the correlation
strength of the inner layer, middle layer, and outer layer respectively. Nugget parameter g governs
noise on the outer layer. In Matern covariance, v governs smoothness.

12 fit_three_layer
Usage
fit_three_layer(
X,
Y,
nmcmc = 10000,
D = ifelse(is.matrix(x), ncol(x), 1),
verb = TRUE,
w_0 = NULL,
z_0 = NULL,
g.0 =0.01,
theta_y_0 = 0.1,
theta_w_0 = 0.1,
theta_z_0 = 0.1,
true_g = NULL,
settings = NULL,
cov = c("matern”, "exp2"),
v = 2.5,
vecchia = FALSE,
m = min(25, length(y) - 1),
ordering = NULL
)
Arguments
X vector or matrix of input locations
y vector of response values
nmcmc number of MCMC iterations
D integer designating dimension of hidden layers, defaults to dimension of x
verb logical indicating whether to print iteration progress
w_0 initial value for hidden layer w (must be matrix of dimension nrow(x) by D or
dimension nrow(x) - 1 by D). Defaults to the identity mapping.
z_0 initial value for hidden layer z (must be matrix of dimension nrow(x) by D or
dimension nrow(x) - 1 by D). Defaults to the identity mapping.
g 0 initial value for g
theta_y_0 initial value for theta_y (length scale of outer layer)
theta_w_0 initial value for theta_w (length scale of middle layer), may be single value or
vector of length D
theta_z_0 initial value for theta_z (length scale of inner layer), may be single value or
vector of length D
true_g if true nugget is known it may be specified here (set to a small value to make fit
deterministic). Note - values that are too small may cause numerical issues in
matrix inversions.
settings hyperparameters for proposals and priors (see details)
cov covariance kernel, either Matern or squared exponential ("exp2")

fit_three_layer 13

v Matern smoothness parameter (only used if cov = "matern”)

vecchia logical indicating whether to use Vecchia approximation

m size of Vecchia conditioning sets (only used if vecchia = TRUE)

ordering optional ordering for Vecchia approximation, must correspond to rows of x, de-

faults to random, is applied to x, w, and z

Details

pmx = TRUE option not yet implemented for three-layer DGP.

Maps inputs x through hidden layer z then hidden layer w to outputs y. Conducts sampling of the
hidden layers using Elliptical Slice sampling. Utilizes Metropolis Hastings sampling of the length
scale and nugget parameters with proposals and priors controlled by settings. When true_g is
set to a specific value, the nugget is not estimated. When vecchia = TRUE, all calculations leverage
the Vecchia approximation with specified conditioning set size m. Vecchia approximation is only
implemented for cov = "matern”.

NOTE on OpenMP: The Vecchia implementation relies on OpenMP parallelization for efficient
computation. This function will produce a warning message if the package was installed without
OpenMP (this is the default for CRAN packages installed on Apple machines). To set up OpenMP
parallelization, download the package source code and install using the gcc/g++ compiler.
Proposals for g, theta_y, theta_w, and theta_z follow a uniform sliding window scheme, e.g.

g _star<-runif(1,1*g_t/u,uxg_t/1),

with defaults 1 =1 and u =2 provided in settings. To adjust these, set settings = 1list(l =
new_l, u=new_u). Priorson g, theta_y, theta_w, and theta_z follow Gamma distributions with
shape parameters (alpha) and rate parameters (beta) controlled within the settings list object.
Defaults are

e settings$alpha$g<-1.5

* settings$beta$g <-3.9

e settings$alpha$theta_z<-1.5

* settings$beta$theta_z<-3.9/4

e settings$alpha$theta_w<-1.5

* settings$beta$theta_w<-3.9/12

e settings$alpha$theta_y <- 1.5

* settings$beta$theta_y<-3.9/6
These priors are designed for x scaled to [0, 1] and y scaled to have mean 0 and variance 1. These
may be adjusted using the settings input.
In the current version, the three-layer does not have any equivalent setting for pmx = TRUE as in
fit_two_layer.

When w_0 = NULL and/or z_0 = NULL, the hidden layers are initialized at x (i.e. the identity map-
ping). The default prior mean of the inner hidden layer z is zero, but may be adjusted to x using
settings = list(z_prior_mean = x). The prior mean of the middle hidden layer w is set at zero is
is not user adjustable. If w_0 and/or z_@ is of dimension nrow(x) - 1 by D, the final row is predicted
using kriging. This is helpful in sequential design when adding a new input location and starting
the MCMC at the place where the previous MCMC left off.

The output object of class dgp3 or dgp3vec is designed for use with continue, trim, and predict.

14 fit_three_layer

Value
a list of the S3 class dgp3 or dgp3vec with elements:

* x: copy of input matrix

* y: copy of response vector

* nmcmc: number of MCMC iterations

* settings: copy of proposal/prior settings

* v: copy of Matern smoothness parameter (v = 999 indicates cov = "exp2")

* g: vector of MCMC samples for g

* theta_y: vector of MCMC samples for theta_y (length scale of outer layer)
* theta_w: matrix of MCMC samples for theta_w (Iength scale of middle layer)
* theta_z: matrix of MCMC samples for theta_z (length scale of inner layer)
* tau2: vector of MLE estimates for tau2 (scale parameter of outer layer)

* w: list of MCMC samples for middle hidden layer w

* z: list of MCMC samples for inner hidden layer z

* 11: vector of MVN log likelihood of the outer layer for reach Gibbs iteration

* time: computation time in seconds

References

Sauer, A. (2023). Deep Gaussian process surrogates for computer experiments. *Ph.D. Disserta-
tion, Department of Statistics, Virginia Polytechnic Institute and State University.*

Sauer, A., Gramacy, R.B., & Higdon, D. (2023). Active learning for deep Gaussian process surro-
gates. *Technometrics, 65,* 4-18. arXiv:2012.08015

Sauer, A., Cooper, A., & Gramacy, R. B. (2023). Vecchia-approximated deep Gaussian processes
for computer experiments. *Journal of Computational and Graphical Statistics,* 1-14. arXiv:2204.02904

Examples

Additional examples including real-world computer experiments are available at:
https://bitbucket.org/gramacylab/deepgp-ex/

G function (https://www.sfu.ca/~ssurjano/gfunc.html)
f <- function(xx, a = (c(1:length(xx)) - 1) / 2) {
newl <- abs(4 * xx - 2) + a
new2 <- 1 + a
prod <- prod(newl / new2)
return((prod - 1) / 0.86)

Training data

<-2

<- 30

<- matrix(runif(n * d), ncol = d)

X 5 o ##

fit_two_layer 15

y <= apply(x, 1, f)

Testing data

n_test <- 100

xx <- matrix(runif(n_test * d), ncol = d)
yy <= apply(xx, 1, f)

i <= interp::interp(xx[, 11, xx[, 21, yy)
image(i, col = heat.colors(128))
contour(i, add = TRUE)

points(x)

Example 1: full model (nugget estimated)
fit <- fit_three_layer(x, y, nmcmc = 2000)
plot(fit)

fit <- trim(fit, 1000, 2)

fit <- predict(fit, xx, cores = 1)
plot(fit)

Example 2: Vecchia approximated model (nugget fixed)

(Vecchia approximation is faster for larger data sizes)

fit <- fit_three_layer(x, y, nmcmc = 2000, vecchia = TRUE,
m = 10, true_g = 1e-6)

plot(fit)

fit <- trim(fit, 1000, 2)

fit <- predict(fit, xx, cores = 1)

plot(fit)

fit_two_layer MCMC sampling for two layer deep GP

Description

Conducts MCMC sampling of hyperparameters and hidden layer w for a two layer deep GP. Separate
length scale parameters theta_w and theta_y govern the correlation strength of the hidden layer
and outer layer respectively. Nugget parameter g governs noise on the outer layer. In Matern
covariance, v governs smoothness.

Usage

fit_two_layer(
X,
Y,
nmcmc = 10000,
D = ifelse(is.matrix(x), ncol(x), 1),
pmx = FALSE,
verb = TRUE,

16

w_0 = NULL,

g0 =0.01,

theta_y_0 = 0.1,

theta_w_0 = 0.1,

true_g = NULL,

settings = NULL,

cov = c("matern”, "exp2"),
v = 2.5

vecchia = FALSE,

fit_two_layer

m = min(25, length(y) - 1),
ordering = NULL

Arguments

X

y

nmcmc

pmx

verb

w_0

g_0
theta_y_0
theta_w_0

true_g

settings
cov

v
vecchia
m

ordering

vector or matrix of input locations

vector of response values

number of MCMC iterations

integer designating dimension of hidden layer, defaults to dimension of x

"prior mean X", logical indicating whether W should have prior mean of X
(TRUE, requires D = ncol (X)) or prior mean zero (FALSE). pmx = TRUE is recom-
mended for higher dimensions. May be numeric, in which case the specified
argument is used as the scale (tau2) in the latent w layer (default is 1). Small
values encourage identity mappings.

logical indicating whether to print iteration progress

initial value for hidden layer w (must be matrix of dimension nrow(x) by D or
dimension nrow(x) - 1 by D). Defaults to the identity mapping.

initial value for g
initial value for theta_y (length scale of outer layer)

initial value for theta_w (length scale of inner layer), may be single value or
vector of length D

if true nugget is known it may be specified here (set to a small value to make fit
deterministic). Note - values that are too small may cause numerical issues in
matrix inversions.

hyperparameters for proposals and priors (see details)

covariance kernel, either Matern or squared exponential ("exp2")
Matern smoothness parameter (only used if cov = "matern”)
logical indicating whether to use Vecchia approximation

size of Vecchia conditioning sets (only used if vecchia = TRUE)

optional ordering for Vecchia approximation, must correspond to rows of x, de-
faults to random, is applied to x and w

fit_two_layer 17

Details

Maps inputs x through hidden layer w to outputs y. Conducts sampling of the hidden layer using
Elliptical Slice sampling. Utilizes Metropolis Hastings sampling of the length scale and nugget
parameters with proposals and priors controlled by settings. When true_g is set to a specific
value, the nugget is not estimated. When vecchia = TRUE, all calculations leverage the Vecchia
approximation with specified conditioning set size m. Vecchia approximation is only implemented
for cov = "matern”.

NOTE on OpenMP: The Vecchia implementation relies on OpenMP parallelization for efficient
computation. This function will produce a warning message if the package was installed without
OpenMP (this is the default for CRAN packages installed on Apple machines). To set up OpenMP
parallelization, download the package source code and install using the gcc/g++ compiler.

Proposals for g, theta_y, and theta_w follow a uniform sliding window scheme, e.g.
g_star<-runif(1,1*g_t/u,uxg_t/1),
with defaults 1 =1 and u =2 provided in settings. To adjust these, set settings =1list(l =
new_l, u=new_u). Priors on g, theta_y, and theta_w follow Gamma distributions with shape
parameters (alpha) and rate parameters (beta) controlled within the settings list object. Defaults
are

e settings$alpha$g<-1.5

* settings$beta$g <-3.9

e settings$alpha$theta_w<-1.5

* settings$beta$theta_w<-3.9/4

e settings$alpha$theta_y<-1.5

e settings$beta$theta_y<-3.9/6
These priors are designed for x scaled to [0, 1] and y scaled to have mean 0 and variance 1. These
may be adjusted using the settings input.

When w_0 = NULL, the hidden layer is initialized at x (i.e. the identity mapping). If w_0 is of
dimension nrow(x) - 1 by D, the final row is predicted using kriging. This is helpful in sequential
design when adding a new input location and starting the MCMC at the place where the previous
MCMC left off.

The output object of class dgp2 or dgp2vec is designed for use with continue, trim, and predict.

Value
a list of the S3 class dgp2 or dgp2vec with elements:

* x: copy of input matrix

* y: copy of response vector

* nmcmc: number of MCMC iterations

* settings: copy of proposal/prior settings

* v: copy of Matern smoothness parameter (v = 999 indicates cov = "exp2")

* g: vector of MCMC samples for g

* theta_y: vector of MCMC samples for theta_y (length scale of outer layer)

18 fit_two_layer

* theta_w: matrix of MCMC samples for theta_w (length scale of inner layer)
* tau2: vector of MLE estimates for tau2 (scale parameter of outer layer)

* w: list of MCMC samples for hidden layer w

* 11: vector of MVN log likelihood of the outer layer for reach Gibbs iteration

* time: computation time in seconds

References

Sauer, A. (2023). Deep Gaussian process surrogates for computer experiments. *Ph.D. Disserta-
tion, Department of Statistics, Virginia Polytechnic Institute and State University.*

Sauer, A., Gramacy, R.B., & Higdon, D. (2023). Active learning for deep Gaussian process surro-
gates. *Technometrics, 65,* 4-18. arXiv:2012.08015

Sauer, A., Cooper, A., & Gramacy, R. B. (2023). Vecchia-approximated deep Gaussian processes
for computer experiments. *Journal of Computational and Graphical Statistics,* 1-14. arXiv:2204.02904

Examples

Additional examples including real-world computer experiments are available at:
https://bitbucket.org/gramacylab/deepgp-ex/

G function (https://www.sfu.ca/~ssurjano/gfunc.html)
f <- function(xx, a = (c(1:length(xx)) - 1) / 2) {
newl <- abs(4 * xx - 2) + a
new2 <- 1 + a
prod <- prod(newl / new2)
return((prod - 1) / 0.86)

3

Training data

d<-1

n <- 20

x <= matrix(runif(n * d), ncol = d)
y <= apply(x, 1, f)

Testing data

n_test <- 100

xx <= matrix(runif(n_test * d), ncol = d)
yy <= apply(xx, 1, f)

plot(xx[order(xx)], yylorder(xx)], type = "1")
points(x, y, col = 2)

Example 1: full model (nugget estimated, using continue)
fit <- fit_two_layer(x, y, nmcmc = 1000)

plot(fit)

fit <- continue(fit, 1000)

plot(fit)

fit <- trim(fit, 1000, 2)

IMSE 19

fit <- predict(fit, xx, cores = 1)
plot(fit, hidden = TRUE)

Example 2: Vecchia approximated model

(Vecchia approximation is faster for larger data sizes)

fit <- fit_two_layer(x, y, nmcmc = 2000, vecchia = TRUE, m = 10)
plot(fit)

fit <- trim(fit, 1000, 2)

fit <- predict(fit, xx, cores = 1)

plot(fit, hidden = TRUE)

Example 3: Vecchia approximated model (re-approximated after burn-in)
fit <- fit_two_layer(x, y, nmcmc = 1000, vecchia = TRUE, m = 10)

fit <- continue(fit, 1000, re_approx = TRUE)

plot(fit)

fit <- trim(fit, 1000, 2)

fit <- predict(fit, xx, cores = 1)

plot(fit, hidden = TRUE)

IMSE Integrated Mean-Squared (prediction) Error for Sequential Design

Description

Acts on a gp, dgp2, or dgp3 object. Current version requires squared exponential covariance (cov =
"exp2"). Calculates IMSE over the input locations x_new. Optionally utilizes SNOW paralleliza-
tion. User should select the point with the lowest IMSE to add to the design.

Usage
IMSE(object, x_new, cores)

S3 method for class 'gp'

IMSE(object, x_new = NULL, cores = 1)

S3 method for class 'dgp2'
IMSE(object, x_new = NULL, cores = 1)

S3 method for class 'dgp3'

IMSE (object, x_new = NULL, cores = 1)
Arguments
object object of class gp, dgp2, or dgp3
X_new matrix of possible input locations, if object has been run through predict the

previously stored x_new is used

cores number of cores to utilize in parallel, by default no parallelization is used

20 IMSE

Details

Not yet implemented for Vecchia-approximated fits or Matern kernels.
All iterations in the object are used in the calculation, so samples should be burned-in. Thinning
the samples using trim will speed up computation. This function may be used in two ways:
e Option 1: called on an object with only MCMC iterations, in which case x_new must be
specified
* Option 2: called on an object that has been predicted over, in which case the x_new from

predict is used

In Option 2, it is recommended to set store_latent = TRUE for dgp2 and dgp3 objects so latent
mappings do not have to be re-calculated. Through predict, the user may specify a mean mapping
(mean_map = TRUE) or a full sample from the MVN distribution over w_new (mean_map = FALSE).
When the object has not yet been predicted over (Option 1), the mean mapping is used.

SNOW parallelization reduces computation time but requires more memory storage.

Value

list with elements:

* value: vector of IMSE values, indices correspond to x_new

* time: computation time in seconds

References

Sauer, A., Gramacy, R.B., & Higdon, D. (2023). Active learning for deep Gaussian process surro-
gates. *Technometrics, 65,* 4-18. arXiv:2012.08015

Binois, M, J Huang, RB Gramacy, and M Ludkovski. 2019. "Replication or Exploration? Sequen-
tial Design for Stochastic Simulation Experiments." Technometrics 61, 7-23. Taylor & Francis.
doi:10.1080/00401706.2018.1469433

Examples

f <- function(x) {

if (x <= 0.4) return(-1)

if (x >= 0.6) return(1)

if (x > 0.4 & x < 0.6) return(10*x(x-0.5))
3

X <- seq(@.05, 0.95, length = 7)
y <= sapply(x, f)
x_new <- seq(@, 1, length = 100)

Fit model and calculate IMSE
fit <- fit_one_layer(x, y, nmcmc = 100, cov = "exp2")

plot

fit <- trim(fit, 50)
fit <- predict(fit, x_new, cores = 1, store_latent = TRUE)
imse <- IMSE(fit)

f <- function(x) {
i <= which(x <= 0.48)
x[i] <= 2 * sin(pi * x[i] * 4) + 0.4 x cos(pi * x[i] * 16)
x[-1] <= 2 * x[-1] - 1
return(x)

H+

Training data
<- seq(@, 1, length = 30)
y <= f(x) + rnorm(30, @, 0.05)

x

Testing data
xx <- seq(@, 1, length = 100)
yy <- f(xx)

plot(xx, yy, type = "1")
points(x, y, col = 2)

Conduct MCMC (can replace fit_three_layer with fit_one_layer/fit_two_layer)
fit <- fit_three_layer(x, y, D = 1, nmcmc = 2000, cov = "exp2")

plot(fit)

fit <- trim(fit, 1000, 2)

Option 1 - calculate IMSE from only MCMC iterations
imse <- IMSE(fit, xx)

Option 2 - calculate IMSE after predictions
fit <- predict(fit, xx, cores = 1, store_latent = TRUE)
imse <- IMSE(fit)

Visualize fit

plot(fit)

par(new = TRUE) # overlay IMSE

plot(xx, imse$value, col = 2, type = '1l', 1ty = 2,
axes = FALSE, xlab = '', ylab =

|
~

Select next design point
x_new <- xx[which.min(imse$value)]

plot Plots object from deepgp package

22 plot

Description

Acts on a gp, gpvec, dgp2, dgp2vec, dgp3, or dgp3vec object. Generates trace plots for outer log
likelihood, length scale, and nugget hyperparameters. Generates plots of hidden layers for one-
dimensional inputs. Generates plots of the posterior mean and estimated 90% prediction intervals
for one-dimensional inputs; generates heat maps of the posterior mean and point-wise variance for
two-dimensional inputs.

Usage
S3 method for class 'gp'
plot(x, trace = NULL, predict = NULL, ...)
S3 method for class 'gpvec'
plot(x, trace = NULL, predict = NULL, ...)

S3 method for class 'dgp2'

plot(x, trace = NULL, hidden = NULL, predict = NULL, ...)
S3 method for class 'dgp2vec'
plot(x, trace = NULL, hidden = NULL, predict = NULL, ...)
S3 method for class 'dgp3'
plot(x, trace = NULL, hidden = NULL, predict = NULL, ...)
S3 method for class 'dgp3vec'
plot(x, trace = NULL, hidden = NULL, predict = NULL, ...)
Arguments
X object of class gp, gpvec, dgp2, dgp2vec, dgp3, or dgp3vec
trace logical indicating whether to generate trace plots (default is TRUE if the object
has not been through predict)
predict logical indicating whether to generate posterior predictive plot (default is TRUE
if the object has been through predict)
e N/A
hidden logical indicating whether to generate plots of hidden layers (two or three layer
only, default is FALSE)
Details

Trace plots are useful in assessing burn-in. Hidden layer plots are colored on a gradient - red lines
represent earlier iterations and yellow lines represent later iterations - to help assess burn-in of the
hidden layers. These plots are meant to help in model fitting and visualization.

Examples

See "fit_one_layer"”, "fit_two_layer”, or "fit_three_layer”
for an example

predict

23

predict

Predict posterior mean and variance/covariance

Description

Acts on a gp, dgp2, or dgp3 object. Calculates posterior mean and variance/covariance over spec-
ified input locations. Optionally calculates expected improvement (EI) or entropy over candidate

inputs. Optionally utilizes SNOW parallelization.

Usage

S3 method for class 'gp'
predict(

)

object,

X_new,

lite = TRUE,
return_all = FALSE,
EI = FALSE,
entropy_limit = NULL,
cores = 1,

S3 method for class 'dgp2'
predict(

object,

X_new,

lite = TRUE,
store_latent = FALSE,
mean_map = TRUE,
return_all = FALSE,

EI = FALSE,

entropy_limit = NULL,

cores = 1,
)
S3 method for class 'dgp3'
predict(

object,

X_new,

lite = TRUE,

store_latent = FALSE,
mean_map = TRUE,
return_all = FALSE,

24

EI = FALSE,
entropy_limit = NULL,
cores = 1,

)

S3 method for class 'gpvec'
predict(

object,

X_hew,

m = object$m,

ordering_new = NULL,

lite = TRUE,
return_all = FALSE,
EI = FALSE,
entropy_limit = NULL,
cores = 1,

)

S3 method for class 'dgp2vec'
predict(
object,
X_new,
m = object$m,
ordering_new = NULL,
lite = TRUE,
store_latent = FALSE,
mean_map = TRUE,
return_all = FALSE,
EI = FALSE,
entropy_limit = NULL,
cores =1,

)

S3 method for class 'dgp3vec'
predict(
object,
X_new,
m = object$m,
ordering_new = NULL,
lite = TRUE,
store_latent = FALSE,
mean_map = TRUE,
return_all = FALSE,
EI = FALSE,
entropy_limit = NULL,

predict

predict

cores = 1,

Arguments

object

X_new
lite

return_all

EI

entropy_limit

cores

store_latent

mean_map

ordering_new

Details

25

object from fit_one_layer, fit_two_layer, or fit_three_layer with burn-
in already removed

matrix of predictive input locations

logical indicating whether to calculate only point-wise variances (1ite = TRUE)
or full covariance (1ite = FALSE)

logical indicating whether to return mean and point-wise variance prediction for
ALL samples (only available for 1ite = TRUE)

logical indicating whether to calculate expected improvement (for minimizing
the response)

optional limit state for entropy calculations (separating passes and failures), de-
fault value of NULL bypasses entropy calculations

number of cores to utilize in parallel

N/A

logical indicating whether to store and return mapped values of latent layers
(two or three layer models only)

logical indicating whether to map hidden layers using conditional mean (mean_map
=TRUE) or using a random sample from the full MVN distribution (two or
three layer models only), mean_map = FALSE is not yet implemented for fits with
vecchia = TRUE

size of Vecchia conditioning sets (only for fits with vecchia = TRUE), defaults
to the m used for MCMC

optional ordering for Vecchia approximation, must correspond to rows of x_new,
defaults to random, is applied to all layers in deeper models

All iterations in the object are used for prediction, so samples should be burned-in. Thinning the
samples using trim will speed up computation. Posterior moments are calculated using conditional
expectation and variance. As a default, only point-wise variance is calculated. Full covariance may
be calculated using 1ite = FALSE.

Expected improvement is calculated with the goal of minimizing the response. See Chapter 7 of
Gramacy (2020) for details. Entropy is calculated based on two classes separated by the specified
limit. See Sauer (2023, Chapter 3) for details.

SNOW parallelization reduces computation time but requires more memory storage.

Value

object of the same class with the following additional elements:

* x_new: copy of predictive input locations

26 rmse

* mean: predicted posterior mean, indices correspond to x_new locations

* s2: predicted point-wise variances, indices correspond to x_new locations (only returned when
lite = TRUE)

* mean_all: predicted posterior mean for each sample (column indices), only returned when
return_all = TRUE

* s2_all predicted point-wise variances for each sample (column indices), only returned when
return-all = TRUE

» Sigma: predicted posterior covariance, indices correspond to x_new locations (only returned
when lite = FALSE)

» EI: vector of expected improvement values, indices correspond to x_new locations (only re-
turned when EI = TRUE)

* entropy: vector of entropy values, indices correspond to x_new locations (only returned when
entropy_limit is numeric)

e w_new: list of hidden layer mappings (only returned when store_latent = TRUE), list in-
dex corresponds to iteration and row index corresponds to x_new location (two or three layer
models only)

e z_new: list of hidden layer mappings (only returned when store_latent = TRUE), list index
corresponds to iteration and row index corresponds to x_new location (three layer models
only)

Computation time is added to the computation time of the existing object.

References
Sauer, A. (2023). Deep Gaussian process surrogates for computer experiments. *Ph.D. Disserta-

tion, Department of Statistics, Virginia Polytechnic Institute and State University.*

Sauer, A., Gramacy, R.B., & Higdon, D. (2023). Active learning for deep Gaussian process surro-
gates. *Technometrics, 65,* 4-18. arXiv:2012.08015

Sauer, A., Cooper, A., & Gramacy, R. B. (2023). Vecchia-approximated deep Gaussian processes
for computer experiments. *Journal of Computational and Graphical Statistics,* 1-14. arXiv:2204.02904

Examples

See "fit_one_layer"”, "fit_two_layer”, or "fit_three_layer"
for an example

rmse Calculates RMSE

Description

Calculates root mean square error (lower RMSE indicate better fits).

score 27

Usage

rmse(y, mu)

Arguments
y response vector
mu predicted mean
score Calculates score
Description

Calculates score, proportional to the multivariate normal log likelihood. Higher scores indicate
better fits. Only applicable to noisy data. Requires full covariance matrix (e.g. predict with lite
= FALSE).

Usage

score(y, mu, sigma)

Arguments
y response vector
mu predicted mean
sigma predicted covariance
References

Gneiting, T, and AE Raftery. 2007. Strictly Proper Scoring Rules, Prediction, and Estimation.
Journal of the American Statistical Association 102 (477), 359-378.

sq_dist Calculates squared pairwise distances

Description

Calculates squared pairwise euclidean distances using C.

Usage
sq_dist(X1, X2 = NULL)

28 trim

Arguments
X1 matrix of input locations
X2 matrix of second input locations (if NULL, distance is calculated between X1 and
itself)
Details

C code derived from the "laGP" package (Robert B Gramacy and Furong Sun).

Value

symmetric matrix of squared euclidean distances

References

Gramacy, RB and F Sun. (2016). laGP: Large-Scale Spatial Modeling via Local Approximate
Gaussian Processes in R. Journal of Statistical Software 72 (1), 1-46. doi:10.18637/jss.v072.101

Examples

x <- seq(@, 1, length = 10)
d2 <- sq_dist(x)

trim Trim/Thin MCMC iterations

Description

Acts on a gp, gpvec, dgp2, dgp2vec, dgp3vec, or dgp3 object. Removes the specified number of
MCMC iterations (starting at the first iteration). After these samples are removed, the remaining
samples are optionally thinned.

Usage
trim(object, burn, thin)

S3 method for class 'gp'
trim(object, burn, thin = 1)

S3 method for class 'gpvec'
trim(object, burn, thin = 1)

S3 method for class 'dgp2'
trim(object, burn, thin = 1)

S3 method for class 'dgp2vec'

trim 29

trim(object, burn, thin = 1)

S3 method for class 'dgp3'
trim(object, burn, thin = 1)

S3 method for class 'dgp3vec'
trim(object, burn, thin = 1)

Arguments
object object from fit_one_layer, fit_two_layer, or fit_three_layer
burn integer specifying number of iterations to cut off as burn-in
thin integer specifying amount of thinning (thin =1 keeps all iterations, thin =2
keeps every other iteration, thin = 10 keeps every tenth iteration, etc.)
Details

The resulting object will have nmcme equal to the previous nmeme minus burn divided by thin. Itis
recommended to start an MCMC fit then investigate trace plots to assess burn-in. Once burn-in has
been achieved, use this function to remove the starting iterations. Thinning reduces the size of the
resulting object while accounting for the high correlation between consecutive iterations.

Value

object of the same class with the selected iterations removed

Examples

See "fit_one_layer”, "fit_two_layer”, or "fit_three_layer"
for an example

Index

ALC, 3,4

continue, 3,6
crps, 8

deepgp-package, 2
fit_one_layer, 3,8
fit_three_layer, 3,11
fit_two_layer, 3, 15
IMSE, 3, 19

plot, 3, 21
predict, 3, 23

rmse, 26

score, 27
sq_dist, 27

trim, 3, 28

30

	deepgp-package
	ALC
	continue
	crps
	fit_one_layer
	fit_three_layer
	fit_two_layer
	IMSE
	plot
	predict
	rmse
	score
	sq_dist
	trim
	Index

