
Package ‘fastplyr’
October 4, 2024

Title Fast Alternatives to 'tidyverse' Functions

Version 0.2.0

Description A full set of fast data manipulation tools with a tidy
front-end and a fast back-end using 'collapse' and 'cheapr'.

License MIT + file LICENSE

BugReports https://github.com/NicChr/fastplyr/issues

Depends R (>= 3.6.1)

Imports cheapr (>= 0.9.8), collapse (>= 2.0.0), dplyr (>= 1.1.0),
magrittr, rlang, stringr, tidyselect, vctrs (>= 0.6.0)

Suggests nycflights13, testthat (>= 3.0.0), tidyr

LinkingTo cpp11

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation yes

Author Nick Christofides [aut, cre] (<https://orcid.org/0000-0002-9743-7342>)

Maintainer Nick Christofides <nick.christofides.r@gmail.com>

Repository CRAN

Date/Publication 2024-10-04 09:40:05 UTC

Contents
fastplyr-package . 2
desc . 3
f_arrange . 3
f_bind_rows . 4
f_consecutive_id . 4
f_count . 5
f_distinct . 6
f_duplicates . 7

1

https://github.com/NicChr/fastplyr/issues
https://orcid.org/0000-0002-9743-7342

2 fastplyr-package

f_expand . 8
f_filter . 9
f_group_by . 10
f_left_join . 11
f_select . 13
f_slice . 14
f_summarise . 16
group_by_order_default . 18
group_id . 18
new_tbl . 20
tidy_quantiles . 21

Index 23

fastplyr-package fastplyr: Fast Alternatives to ’tidyverse’ Functions

Description

fastplyr is a tidy front-end using a faster and more efficient back-end based on two packages, col-
lapse and cheapr.

fastplyr includes dplyr and tidyr alternatives that behave like their tidyverse equivalents but are more
efficient.

Similar in spirit to the excellent tidytable package, fastplyr also offers a tidy front-end that is fast
and easy to use. Unlike tidytable, fastplyr verbs are interchangeable with dplyr verbs.

You can learn more about the tidyverse, collapse and cheapr using the links below.

tidyverse

collapse

cheapr

Author(s)

Maintainer: Nick Christofides <nick.christofides.r@gmail.com> (ORCID)

See Also

Useful links:

• Report bugs at https://github.com/NicChr/fastplyr/issues

https://www.tidyverse.org/learn/
https://sebkrantz.github.io/collapse/articles/collapse_intro.html
https://github.com/NicChr/cheapr
https://orcid.org/0000-0002-9743-7342
https://github.com/NicChr/fastplyr/issues

desc 3

desc Helpers to sort variables in ascending or descending order

Description

An alternative to dplyr::desc() which is much faster for character vectors and factors.

Usage

desc(x)

Arguments

x Vector.

Value

A numeric vector that can be ordered in ascending or descending order.
Useful in dplyr::arrange() or f_arrange().

f_arrange A collapse version of dplyr::arrange()

Description

This is a fast and near-identical alternative to dplyr::arrange() using the collapse package.

desc() is like dplyr::desc() but works faster when called directly on vectors.

Usage

f_arrange(data, ..., .by = NULL, .by_group = FALSE, .cols = NULL)

Arguments

data A data frame.
... Variables to arrange by.
.by (Optional). A selection of columns to group by for this operation. Columns are

specified using tidyselect.
.by_group If TRUE the sorting will be first done by the group variables.
.cols (Optional) alternative to ... that accepts a named character vector or numeric

vector. If speed is an expensive resource, it is recommended to use this.

Value

A sorted data.frame.

4 f_consecutive_id

f_bind_rows Bind data frame rows and columns

Description

Faster bind rows and columns.

Usage

f_bind_rows(..., .fill = TRUE)

f_bind_cols(..., .repair_names = TRUE, .recycle = TRUE, .sep = "...")

Arguments

... Data frames to bind.

.fill Should missing columns be filled with NA? Default is TRUE.

.repair_names Should duplicate column names be made unique? Default is TRUE.

.recycle Should inputs be recycled to a common row size? Default is TRUE.

.sep Separator to use for creating unique column names.

Value

f_bind_rows() performs a union of the data frames specified via ... and joins the rows of all the
data frames, without removing duplicates.

f_bind_cols() joins the columns, creating unique column names if there are any duplicates by
default.

f_consecutive_id Consecutive IDs

Description

f_consecutive_id(), an alternative to dplyr::consecutive_id() creates an integer vector with
values in the range [1, n + 1) where n is the length of the vector or number of rows of the data
frame. The ID increments every time x[i] != x[i - 1] thus giving information on when there is a
change in value.

Usage

f_consecutive_id(x)

Arguments

x A vector or data frame.

f_count 5

Details

’ALTREP’ compact sequences are supported as well.

To mimic dplyr::consecutive_id() where multiple variables are selected, just use dplyr::pick().

f_consecutive_id has a smaller overhead and thus should be faster when called many times, e.g.
when using a grouped_df with many groups.

Value

An integer vector of consecutive run IDs in the range [1, n + 1).

f_count A fast replacement to dplyr::count()

Description

Near-identical alternative to dplyr::count().

Usage

f_count(
data,
...,
wt = NULL,
sort = FALSE,
order = df_group_by_order_default(data),
name = NULL,
.by = NULL,
.cols = NULL

)

f_add_count(
data,
...,
wt = NULL,
sort = FALSE,
order = df_group_by_order_default(data),
name = NULL,
.by = NULL,
.cols = NULL

)

Arguments

data A data frame.

... Variables to group by.

wt Frequency weights. Can be NULL or a variable:

6 f_distinct

• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.

order Should the groups be calculated as ordered groups? If FALSE, this will return
the groups in order of first appearance, and in many cases is faster. If TRUE
(the default), the groups are returned in sorted order, exactly the same way as
dplyr::count.

name The name of the new column in the output. If there’s already a column called
n, it will use nn. If there’s a column called n and nn, it’ll use nnn, and so on,
adding ns until it gets a new name.

.by (Optional). A selection of columns to group by for this operation. Columns are
specified using tidy-select.

.cols (Optional) alternative to ... that accepts a named character vector or numeric
vector. If speed is an expensive resource, it is recommended to use this.

Details

This is a fast and near-identical alternative to dplyr::count() using the collapse package. Unlike
collapse::fcount(), this works very similarly to dplyr::count(). The only main difference is
that anything supplied to wt is recycled and added as a data variable. Other than that everything
works exactly as the dplyr equivalent.

f_count() and f_add_count() can be up to >100x faster than the dplyr equivalents.

Value

A data.frame of frequency counts by group.

f_distinct Find distinct rows

Description

Like dplyr::distinct() but faster when lots of groups are involved.

Usage

f_distinct(
data,
...,
.keep_all = FALSE,
sort = FALSE,
order = sort,
.by = NULL,
.cols = NULL

)

f_duplicates 7

Arguments

data A data frame.

... Variables used to find distinct rows.

.keep_all If TRUE then all columns of data frame are kept, default is FALSE.

sort Should result be sorted? Default is FALSE. When order = FALSE this option has
no effect on the result.

order Should the groups be calculated as ordered groups? Setting to TRUE may some-
times offer a speed benefit, but usually this is not the case. The default is FALSE.

.by (Optional). A selection of columns to group by for this operation. Columns are
specified using tidy-select.

.cols (Optional) alternative to ... that accepts a named character vector or numeric
vector. If speed is an expensive resource, it is recommended to use this.

Value

A data.frame of distinct groups.

f_duplicates Find duplicate rows

Description

Find duplicate rows

Usage

f_duplicates(
data,
...,
.keep_all = FALSE,
.both_ways = FALSE,
.add_count = FALSE,
.drop_empty = FALSE,
sort = FALSE,
.by = NULL,
.cols = NULL

)

Arguments

data A data frame.

... Variables used to find duplicate rows.

.keep_all If TRUE then all columns of data frame are kept, default is FALSE.

8 f_expand

.both_ways If TRUE then duplicates and non-duplicate first instances are retained. The de-
fault is FALSE which returns only duplicate rows.
Setting this to TRUE can be particularly useful when examining the differences
between duplicate rows.

.add_count If TRUE then a count column is added to denote the number of duplicates (includ-
ing first non-duplicate instance). The naming convention of this column follows
dplyr::add_count().

.drop_empty If TRUE then empty rows with all NA values are removed. The default is FALSE.

sort Should result be sorted? If FALSE (the default), then rows are returned in the
exact same order as they appear in the data. If TRUE then the duplicate rows are
sorted.

.by (Optional). A selection of columns to group by for this operation. Columns are
specified using tidy-select.

.cols (Optional) alternative to ... that accepts a named character vector or numeric
vector. If speed is an expensive resource, it is recommended to use this.

Details

This function works like dplyr::distinct() in its handling of arguments and data-masking but
returns duplicate rows. In certain situations in can be much faster than data %>% group_by() %>%
filter(n() > 1) when there are many groups.

Value

A data.frame of duplicate rows.

See Also

f_count f_distinct

f_expand Fast versions of tidyr::expand() and tidyr::complete().

Description

Fast versions of tidyr::expand() and tidyr::complete().

Usage

f_expand(data, ..., sort = FALSE, .by = NULL, .cols = NULL)

f_complete(data, ..., sort = FALSE, .by = NULL, .cols = NULL, fill = NA)

crossing(..., sort = FALSE)

nesting(..., sort = FALSE)

f_filter 9

Arguments

data A data frame

... Variables to expand

sort Logical. If TRUE expanded/completed variables are sorted. The default is FALSE.

.by (Optional). A selection of columns to group by for this operation. Columns are
specified using tidy-select.

.cols (Optional) alternative to ... that accepts a named character vector or numeric
vector. If speed is an expensive resource, it is recommended to use this.

fill A named list containing value-name pairs to fill the named implicit missing
values.

Details

crossing and nesting are helpers that are basically identical to tidyr’s crossing and nesting.

Value

A data.frame of expanded groups.

f_filter Alternative to dplyr::filter()

Description

Alternative to dplyr::filter()

Usage

f_filter(data, ..., .by = NULL)

Arguments

data A data frame.

... Expressions used to filter the data frame with.

.by (Optional). A selection of columns to group by for this operation. Columns are
specified using tidy-select.

Value

A filtered data frame.

10 f_group_by

f_group_by ’collapse’ version of dplyr::group_by()

Description

This works the exact same as dplyr::group_by() and typically performs around the same speed
but uses slightly less memory.

Usage

f_group_by(
data,
...,
.add = FALSE,
order = df_group_by_order_default(data),
.by = NULL,
.cols = NULL,
.drop = df_group_by_drop_default(data)

)

group_ordered(data)

Arguments

data data frame.

... Variables to group by.

.add Should groups be added to existing groups? Default is FALSE.

order Should groups be ordered? If FALSE groups will be ordered based on first-
appearance.
Typically, setting order to FALSE is faster.

.by (Optional). A selection of columns to group by for this operation. Columns are
specified using tidyselect.

.cols (Optional) alternative to ... that accepts a named character vector or numeric
vector. If speed is an expensive resource, it is recommended to use this.

.drop Should unused factor levels be dropped? Default is TRUE.

Details

f_group_by() works almost exactly like the ’dplyr’ equivalent. An attribute "ordered" (TRUE or
FALSE) is added to the group data to signify if the groups are sorted or not.

Ordered vs Sorted:
The distinction between ordered and sorted is somewhat subtle. Functions in fastplyr that use a
sort argument generally refer to the top-level dataset being sorted in some way, either by sorting
the group columns like in f_expand() or f_distinct(), or some other columns, like the count
column in f_count().

f_left_join 11

The order argument, when set to TRUE (the default), is used to mean that the group data will
be calculated using a sort-based algorithm, leading to sorted group data. When order is FALSE,
the group data will be returned based on the order-of-first appearance of the groups in the data.
This order-of-first appearance may still naturally be sorted depending on the data. For example,
group_id(1:3, order = T) results in the same group IDs as group_id(1:3, order = F) because
1, 2, and 3 appear in the data in ascending sequence whereas group_id(3:1, order = T) does
not equal group_id(3:1, order = F)

Part of the reason for the distinction is that internally fastplyr can in theory calculate group data
using the sort-based algorithm and still return unsorted groups, though this combination is only
available to the user in limited places like f_distinct(order = TRUE, sort = FALSE).
The other reason is to prevent confusion in the meaning of sort and order so that order always
refers to the algorithm specified, resulting in sorted groups, and sort implies a physical sorting
of the returned data. It’s also worth mentioning that in most functions, sort will implicitly utilise
the sort-based algorithm specified via order = TRUE.

Using the order-of-first appearance algorithm for speed:
In many situations (not all) it can be faster to use the order-of-first appearance algorithm, specified
via order = FALSE.
This can generally be accessed by first calling f_group_by(data, ..., order = FALSE) and then
performing your calculations.
To utilise this algorithm more globally and package-wide, set the ’.fastplyr.order.groups’ option
to FALSE using the code: options(.fastplyr.order.groups = FALSE).

Value

f_group_by() returns a grouped_df that can be used for further for grouped calculations.

group_ordered() returns TRUE if the group data are sorted, i.e if attr(attr(data, "groups"),
"ordered") == TRUE. If sorted, which is usually the default, this leads to summary calculations
like f_summarise() or dplyr::summarise() producing sorted groups. If FALSE they are returned
based on order-of-first appearance in the data.

f_left_join Fast SQL joins

Description

Mostly a wrapper around collapse::join() that behaves more like dplyr’s joins. List columns,
lubridate intervals and vctrs rcrds work here too.

Usage

f_left_join(
x,
y,
by = NULL,
suffix = c(".x", ".y"),

12 f_left_join

multiple = TRUE,
keep = FALSE,
...

)

f_right_join(
x,
y,
by = NULL,
suffix = c(".x", ".y"),
multiple = TRUE,
keep = FALSE,
...

)

f_inner_join(
x,
y,
by = NULL,
suffix = c(".x", ".y"),
multiple = TRUE,
keep = FALSE,
...

)

f_full_join(
x,
y,
by = NULL,
suffix = c(".x", ".y"),
multiple = TRUE,
keep = FALSE,
...

)

f_anti_join(
x,
y,
by = NULL,
suffix = c(".x", ".y"),
multiple = TRUE,
keep = FALSE,
...

)

f_semi_join(
x,
y,

f_select 13

by = NULL,
suffix = c(".x", ".y"),
multiple = TRUE,
keep = FALSE,
...

)

f_cross_join(x, y, suffix = c(".x", ".y"), ...)

f_union_all(x, y, ...)

f_union(x, y, ...)

Arguments

x Left data frame.

y Right data frame.

by character(1) - Columns to join on.

suffix character(2) - Suffix to paste onto common cols between x and y in the joined
output.

multiple logical(1) - Should multiple matches be returned? If FALSE the first match in
y is used. Default is TRUE.

keep logical(1) - Should join columns from both data frames be kept? Default is
FALSE.

... Additional arguments passed to collapse::join().

Value

A joined data frame, joined on the columns specified with by, using an equality join.

f_cross_join() returns all possible combinations between the two data frames.

f_select Fast dplyr::select()/dplyr::rename()

Description

f_select() operates the exact same way as dplyr::select() and can be used naturally with
tidy-select helpers. It uses collapse to perform the actual selecting of variables and is consid-
erably faster than dplyr for selecting exact columns, and even more so when supplying the .cols
argument.

Usage

f_select(data, ..., .cols = NULL)

f_rename(data, ..., .cols = NULL)

14 f_slice

Arguments

data A data frame.

... Variables to select using tidy-select. See ?dplyr::select for more info.

.cols (Optional) faster alternative to ... that accepts a named character vector or nu-
meric vector.
No checks on duplicates column names are done when using .cols.
If speed is an expensive resource, it is recommended to use this.

Value

A data.frame of selected columns.

f_slice Faster dplyr::slice()

Description

When there are lots of groups, the f_slice() functions are much faster.

Usage

f_slice(data, i = 0L, ..., .by = NULL, keep_order = FALSE)

f_slice_head(data, n, prop, .by = NULL, keep_order = FALSE)

f_slice_tail(data, n, prop, .by = NULL, keep_order = FALSE)

f_slice_min(
data,
order_by,
n,
prop,
.by = NULL,
with_ties = TRUE,
na_rm = FALSE,
keep_order = FALSE

)

f_slice_max(
data,
order_by,
n,
prop,
.by = NULL,
with_ties = TRUE,
na_rm = FALSE,

f_slice 15

keep_order = FALSE
)

f_slice_sample(
data,
n,
replace = FALSE,
prop,
.by = NULL,
keep_order = FALSE,
weights = NULL,
seed = NULL

)

Arguments

data A data frame.

i An integer vector of slice locations.
Please see the details below on how i works as it only accepts simple integer
vectors.

... A temporary argument to give the user an error if dots are used.

.by (Optional). A selection of columns to group by for this operation. Columns are
specified using tidy-select.

keep_order Should the sliced data frame be returned in its original order? The default is
FALSE.

n Number of rows.

prop Proportion of rows.

order_by Variables to order by.

with_ties Should ties be kept together? The default is TRUE.

na_rm Should missing values in f_slice_max() and f_slice_min() be removed?
The default is FALSE.

replace Should f_slice_sample() sample with or without replacement? Default is
FALSE, without replacement.

weights Probability weights used in f_slice_sample().

seed Seed number defining RNG state. If supplied, this is only applied locally within
the function and the seed state isn’t retained after sampling. To clarify, what-
ever seed state was in place before the function call, is restored to ensure seed
continuity. If left NULL (the default), then the seed is never modified.

Details

Important note about the i argument in f_slice:
i is first evaluated on an un-grouped basis and then searches for those locations in each group.
Thus if you supply an expression of slice locations that vary by-group, this will not be respected
nor checked. For example,

16 f_summarise

do f_slice(data, 10:20, .by = group)
not f_slice(data, sample(1:10), .by = group).

The former results in slice locations that do not vary by group but the latter will result in different
within-group slice locations which f_slice cannot correctly compute.

To do the the latter type of by-group slicing, use f_filter, e.g.
f_filter(data, row_number() %in% slices, .by = groups) or even faster:
library(cheapr)
f_filter(data, row_number() %in_% slices, .by = groups)

f_slice_sample:
The arguments of f_slice_sample() align more closely with base::sample() and thus by de-
fault re-samples each entire group without replacement.

Value

A data.frame filtered on the specified row indices.

f_summarise Summarise each group down to one row

Description

Like dplyr::summarise() but with some internal optimisations for common statistical functions.

Usage

f_summarise(data, ..., .by = NULL, .optimise = TRUE)

f_summarize(data, ..., .by = NULL, .optimise = TRUE)

Arguments

data A data frame.

... Name-value pairs of summary functions. Expressions with across() are also
accepted.

.by (Optional). A selection of columns to group by for this operation. Columns are
specified using tidy-select.

.optimise (Optionally) turn off optimisations for common statistical functions by setting
to FALSE. Default is TRUE which uses optimisations.

f_summarise 17

Details

f_summarise behaves mostly like dplyr::summarise except that expressions supplied to ... are
evaluated independently.

Optimised statistical functions:
Some functions are internally optimised using ’collapse’ fast statistical functions. This makes
execution on many groups very fast.
For fast quantiles (percentiles) by group, see tidy_quantiles
List of currently optimised functions and their equivalent ’collapse’ function
base::sum -> collapse::fsum
base::prod -> collapse::fprod
base::min -> collapse::fmin
base::max -> collapse::fmax
stats::mean -> collapse::fmean
stats::median -> collapse::fmedian
stats::sd -> collapse::fsd
stats::var -> collapse::fvar
dplyr::first -> collapse::ffirst
dplyr::last -> collapse::flast
dplyr::n_distinct -> collapse::fndistinct

Value

An un-grouped data frame of summaries by group.

See Also

tidy_quantiles

Examples

library(fastplyr)
library(nycflights13)

Number of flights per month, including first and last day
flights %>%

f_group_by(year, month) %>%
f_summarise(first_day = first(day),

last_day = last(day),
num_flights = n())

Fast mean summary using `across()`

flights %>%
f_summarise(
across(where(is.double), mean),
.by = tailnum

)

18 group_id

To ignore or keep NAs, use collapse::set_collapse(na.rm)
collapse::set_collapse(na.rm = FALSE)
flights %>%

f_summarise(
across(where(is.double), mean),
.by = origin

)
collapse::set_collapse(na.rm = TRUE)

group_by_order_default

Default value for ordering of groups

Description

A default value, TRUE or FALSE that controls which algorithm to use for calculating groups. See
f_group_by for more details.

Usage

group_by_order_default(x)

Arguments

x A data frame.

Value

A logical of length 1, either TRUE or FALSE.

group_id Fast group and row IDs

Description

These are tidy-based functions for calculating group IDs and row IDs.

• group_id() returns an integer vector of group IDs the same size as the data.

• row_id() returns an integer vector of row IDs.

The add_ variants add a column of group IDs/row IDs.

group_id 19

Usage

group_id(data, order = TRUE, ascending = TRUE, as_qg = FALSE)

add_group_id(
data,
...,
order = TRUE,
ascending = TRUE,
.by = NULL,
.cols = NULL,
.name = NULL,
as_qg = FALSE

)

S3 method for class 'data.frame'
add_group_id(
data,
...,
order = df_group_by_order_default(data),
ascending = TRUE,
.by = NULL,
.cols = NULL,
.name = NULL,
as_qg = FALSE

)

row_id(data, ascending = TRUE)

S3 method for class 'GRP'
row_id(data, ascending = TRUE)

add_row_id(data, ..., ascending = TRUE, .by = NULL, .cols = NULL, .name = NULL)

S3 method for class 'data.frame'
add_row_id(data, ..., ascending = TRUE, .by = NULL, .cols = NULL, .name = NULL)

Arguments

data A data frame or vector.
order Should the groups be ordered? THE PHYSICAL ORDER OF THE DATA IS

NOT CHANGED.
When order is TRUE (the default) the group IDs will be ordered but not sorted.

If FALSE the order of the group IDs will be based on first appearance.
ascending Should the group order be ascending or descending? The default is TRUE.

For row_id() this determines if the row IDs are increasing or decreasing.
NOTE - When order = FALSE, the ascending argument is ignored. This is
something that will be fixed in a later version.

20 new_tbl

as_qg Should the group IDs be returned as a collapse "qG" class? The default (FALSE)
always returns an integer vector.

... Additional groups using tidy data-masking rules.
To specify groups using tidyselect, simply use the .by argument.

.by Alternative way of supplying groups using tidyselect notation.

.cols (Optional) alternative to ... that accepts a named character vector or numeric
vector. If speed is an expensive resource, it is recommended to use this.

.name Name of the added ID column which should be a character vector of length
1. If .name = NULL (the default), add_group_id() will add a column named
"group_id", and if one already exists, a unique name will be used.

Value

An integer vector.

new_tbl Fast ’tibble’ alternatives

Description

Fast ’tibble’ alternatives

Usage

new_tbl(..., .nrows = NULL, .recycle = TRUE, .name_repair = FALSE)

f_enframe(x, name = "name", value = "value")

f_deframe(x)

as_tbl(x)

Arguments

... Key-value pairs.

.nrows integer(1) (Optional) number of rows.
Commonly used to initialise a 0-column data frame with rows.

.recycle logical(1) Should arguments be recycled? Default is FALSE.

.name_repair logical(1) Should duplicate names be made unique? Default is TRUE.

x A data frame or vector.

name character(1) Name to use for column of names.

value character(1) Name to use for column of values.

tidy_quantiles 21

Details

new_tbl and as_tbl are alternatives to tibble and as_tibble respectively. One of the main
reasons that these do not share the same name prefixed with f_ is because they don’t always return
the same result. For example new_tbl() does not support ’quosures’ and tidy injection.

f_enframe(x) where x is a data.frame converts x into a tibble of column names and list-values.

Value

A tibble or vector.

tidy_quantiles Fast grouped sample quantiles

Description

Fast grouped sample quantiles

Usage

tidy_quantiles(
data,
...,
probs = seq(0, 1, 0.25),
type = 7,
pivot = c("wide", "long"),
na.rm = TRUE,
.by = NULL,
.cols = NULL,
.drop_groups = TRUE

)

Arguments

data A data frame.
... <data-masking> Variables to calculate quantiles for.

probs numeric(n) - Quantile probabilities.

type integer(1) - Quantile type, see ?collapse::fquantile

pivot character(1) - Pivot result wide or long? Default is "wide".

na.rm logical(1) Should NA values be ignored? Default is TRUE.

.by (Optional). A selection of columns to group by for this operation. Columns are
specified using tidy-select.

.cols (Optional) alternative to ... that accepts a named character vector or numeric
vector. If speed is an expensive resource, it is recommended to use this.

.drop_groups logical(1) Should groups be dropped after calculation? Default is TRUE.

22 tidy_quantiles

Value

A data frame of sample quantiles.

Examples

library(fastplyr)
library(dplyr)
groups <- 1 * 2^(0:10)

Normal distributed samples by group using the group value as the mean
and sqrt(groups) as the sd

samples <- tibble(groups) %>%
reframe(x = rnorm(100, mean = groups, sd = sqrt(groups)), .by = groups) %>%
f_group_by(groups)

Fast means and quantiles by group

quantiles <- samples %>%
tidy_quantiles(x)

means <- samples %>%
f_summarise(mean = mean(x))

means %>%
f_left_join(quantiles)

Index

add_group_id (group_id), 18
add_row_id (group_id), 18
as_tbl (new_tbl), 20

crossing (f_expand), 8

desc, 3

f_add_count (f_count), 5
f_anti_join (f_left_join), 11
f_arrange, 3
f_bind_cols (f_bind_rows), 4
f_bind_rows, 4
f_complete (f_expand), 8
f_consecutive_id, 4
f_count, 5, 8
f_cross_join (f_left_join), 11
f_deframe (new_tbl), 20
f_distinct, 6, 8
f_duplicates, 7
f_enframe (new_tbl), 20
f_expand, 8
f_filter, 9
f_full_join (f_left_join), 11
f_group_by, 10, 18
f_inner_join (f_left_join), 11
f_left_join, 11
f_rename (f_select), 13
f_right_join (f_left_join), 11
f_select, 13
f_semi_join (f_left_join), 11
f_slice, 14
f_slice_head (f_slice), 14
f_slice_max (f_slice), 14
f_slice_min (f_slice), 14
f_slice_sample (f_slice), 14
f_slice_tail (f_slice), 14
f_summarise, 16
f_summarize (f_summarise), 16
f_union (f_left_join), 11

f_union_all (f_left_join), 11
fastplyr (fastplyr-package), 2
fastplyr-package, 2

group_by_order_default, 18
group_id, 18
group_ordered (f_group_by), 10

integer, 15

nesting (f_expand), 8
new_tbl, 20

row_id (group_id), 18

tidy_quantiles, 17, 21

23

	fastplyr-package
	desc
	f_arrange
	f_bind_rows
	f_consecutive_id
	f_count
	f_distinct
	f_duplicates
	f_expand
	f_filter
	f_group_by
	f_left_join
	f_select
	f_slice
	f_summarise
	group_by_order_default
	group_id
	new_tbl
	tidy_quantiles
	Index

