GNU Generic Security Service Library

GSS-API Library for the GNU system
for version 1.0.0, 25 March 2010

Simon Josefsson

This manual is last updated 25 March 2010 for version 1.0.0 of GNU GSS.
Copyright (©) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Simon Josefsson.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Table of Contents

1

Introduction................... L. 1
1.1 Getting Started 1
1.2 Featuresoooiii 1
1.3 GSS-APIL Overviewoouiiiiii e 1
1.4 Supported Platforms......... ... o 2
1.5 Commercial SUpport ...ttt e 4
1.6 Downloading and Installing........... o i i 4
1.7 Bug Reportso 5
1.8 Contributingo 5
1.9 Planned Features........ ... 6

Preparation 7
2.1 Header.o e 7
2.2 Initialization ... 7
2.3 Version Check....... ... 7
2.4 Building the source......... ... 8
2.5 Out of Memory handlingc . i i 8

Standard GSS API............................. 9
3.1 Simple Data Types.oouiiii e 9

3. 1.1 Integer tyPesS ..o 9
3.1.2 String and similar data........... oL 9
3.1.2.1 Opaque data typescooiiiiiiiii i 9
3.1.2.2 Character strings.........cooiiiiiiiiiiiiiiiennn.. 9

3.1.3 Object Identifiers...........cco i, 10
3.1.4 Object Identifier Sets.........coiiiiiiiiiiiii i 10
3.2 Complex Data Types. .. .ot 10
3.2.1 Credentials. ... 11
3.2.2 CombeXtS . vttt e 11
3.2.3 Authentication tokens............. i 11
3.2.4 Interprocess tokens........... ..o, 11
3.2.5 Names . ..ooi i 12
3.2.6 Channel Bindings ... 13
3.3 Optional Parameters.......... ... i 15
3.4 Error Handling......... ... i 15
3.4.1 GSSstatus codes.......coviiiiiiii 15
3.4.2 Mechanism-specific status codes 18
3.5 Credential Management i, 18
3.6 Context-Level Routines o i 24
3.7 Per-Message Routines.......... ... i, 41
3.8 Name Manipulation........... ... i i 45
3.9 Miscellaneous Routines. ..., 50

3.10 SASL GS2 ROUtINeS. . .o e ettt e 54

4 Extended GSS API............................ 55
5 Acknowledgements............................ 57
Appendix A Criticism of GSS.................. 58
Appendix B Copying Information............. 60

B.1 GNU Free Documentation License 60

B.2 GNU General Public License.................coooiiiiiia.. 67
Concept Index............. 79

API Index 80

ii

Chapter 1: Introduction 1

1 Introduction

GSS is an implementation of the Generic Security Service Application Program Interface
(GSS-API). GSS-API is used by network servers to provide security services, e.g., to au-
thenticate SMTP/IMAP clients against SMTP/IMAP servers. GSS consists of a library
and a manual.

GSS is developed for the GNU/Linux system, but runs on over 20 platforms includ-
ing most major Unix platforms and Windows, and many kind of devices including iPAQ
handhelds and S/390 mainframes.

GSS is a GNU project, and is licensed under the GNU General Public License version 3
or later.

1.1 Getting Started

This manual documents the GSS programming interface. All functions and data types
provided by the library are explained.

The reader is assumed to possess basic familiarity with GSS-API and network program-
ming in C or C++. For general GSS-API information, and some programming examples,
there is a guide available online at http://docs.sun.com/db/doc/816-1331.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

1.2 Features
GSS might have a couple of advantages over other libraries doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
General Public License version 3 or later.

It’s thread-safe
No global variables are used and multiple library handles and session handles
may be used in parallell.

It’s internationalized
It handles non-ASCII names and user visible strings used in the library (e.g.,
error messages) can be translated into the users’ language.

It’s portable
It should work on all Unix like operating systems, including Windows.

1.3 GSS-API Overview

This section describes GSS-API from a protocol point of view.

The Generic Security Service Application Programming Interface provides security ser-
vices to calling applications. It allows a communicating application to authenticate the user

http://docs.sun.com/db/doc/816-1331

Chapter 1: Introduction 2

associated with another application, to delegate rights to another application, and to apply
security services such as confidentiality and integrity on a per-message basis.

There are four stages to using the GSS-API:

1. The application acquires a set of credentials with which it may prove its identity to
other processes. The application’s credentials vouch for its global identity, which may
or may not be related to any local username under which it may be running.

2. A pair of communicating applications establish a joint security context using their
credentials. The security context is a pair of GSS-API data structures that contain
shared state information, which is required in order that per-message security services
may be provided. Examples of state that might be shared between applications as part
of a security context are cryptographic keys, and message sequence numbers. As part
of the establishment of a security context, the context initiator is authenticated to the
responder, and may require that the responder is authenticated in turn. The initiator
may optionally give the responder the right to initiate further security contexts, acting
as an agent or delegate of the initiator. This transfer of rights is termed delegation,
and is achieved by creating a set of credentials, similar to those used by the initiating
application, but which may be used by the responder.

To establish and maintain the shared information that makes up the security context,
certain GSS-API calls will return a token data structure, which is an opaque data
type that may contain cryptographically protected data. The caller of such a GSS-API
routine is responsible for transferring the token to the peer application, encapsulated
if necessary in an application- application protocol. On receipt of such a token, the
peer application should pass it to a corresponding GSS-API routine which will decode
the token and extract the information, updating the security context state information
accordingly.

3. Per-message services are invoked to apply either: integrity and data origin authenti-
cation, or confidentiality, integrity and data origin authentication to application data,
which are treated by GSS-API as arbitrary octet-strings. An application transmit-
ting a message that it wishes to protect will call the appropriate GSS-API routine
(gss_get_mic or gss_wrap) to apply protection, specifying the appropriate security con-
text, and send the resulting token to the receiving application. The receiver will pass
the received token (and, in the case of data protected by gss_get_mic, the accompanying
message-data) to the corresponding decoding routine (gss_verify_mic or gss_unwrap)
to remove the protection and validate the data.

4. At the completion of a communications session (which may extend across several trans-
port connections), each application calls a GSS-API routine to delete the security con-
text. Multiple contexts may also be used (either successively or simultaneously) within
a single communications association, at the option of the applications.

1.4 Supported Platforms

GSS has at some point in time been tested on the following platforms.
1. Debian GNU/Linux 3.0 (Woody)

GCC 2.95.4 and GNU Make. This is the main development platform. alphaev67-
unknown-linux-gnu, alphaev6-unknown-linux-gnu, arm-unknown-linux-gnu,
hppa-unknown-linux-gnu, hppa64-unknown-linux-gnu, i686-pc-linux-gnu,

Chapter 1: Introduction 3

10.

11.

12.

13.

14.

15.

16.

17.

ia64-unknown-linux-gnu, m68k-unknown-linux-gnu, mips-unknown-linux-gnu,
mipsel-unknown-linux—-gnu, powerpc-unknown-linux-gnu, s390-ibm-linux-gnu,
sparc-unknown-linux-gnu.

Debian GNU /Linux 2.1

GCC 2.95.1 and GNU Make. armv4l-unknown-linux-gnu.

Tru64 UNIX

Tru64 UNIX C compiler and Tru64 Make. alphaev67-dec-osf5.1, alphaev68-dec-
osf5.1.

SuSE Linux 7.1

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu.

SuSE Linux 7.2a

GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.

RedHat Linux 7.2

GCC 296 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu, ia64-unknown-linux-gnu.

RedHat Linux 8.0

GCC 3.2 and GNU Make. 1686-pc-linux-gnu.

RedHat Advanced Server 2.1

GCC 2.96 and GNU Make. i686-pc-linux-gnu.

Slackware Linux 8.0.01

GCC 2.95.3 and GNU Make. i686-pc-linux-gnu.

Mandrake Linux 9.0

GCC 3.2 and GNU Make. i686-pc-linux-gnu.

IRIX 6.5

MIPS C compiler, IRIX Make. mips-sgi-irix6.5.

AIX 4.3.2

IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0.

Microsoft Windows 2000 (Cygwin)

GCC 3.2, GNU make. 1686-pc-cygwin.

HP-UX 11

HP-UX C compiler and HP Make. ia64-hp-hpux11.22, hppa2.0w-hp-hpux11.11.
SUN Solaris 2.8

Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.

NetBSD 1.6

GCC 2953 and GNU Make. alpha-unknown-netbsdl.6, i386-unknown-
netbsdelfl.6.

OpenBSD 3.1 and 3.2

GCC 2.95.3 and GNU Make. alpha-unknown-openbsd3.1, 1i386-unknown-
openbsd3. 1.

Chapter 1: Introduction 4

18. FreeBSD 4.7

GCC 2954 and GNU Make. alpha-unknown-freebsd4.7, 1i386-unknown-
freebsd4.7.

19. Cross compiled to uClinux/uClibc on Motorola Coldfire.
GCC 3.4 and GNU Make m68k-uclinux-elf.

If you use GSS on, or port GSS to, a new platform please report it to the author.

1.5 Commercial Support
Commercial support is available for users of GNU GSS. The kind of support that can be
purchased may include:

e Implement new features. Such as a new GSS-API mechanism.

e Port GSS to new platforms. This could include porting to an embedded platforms that
may need memory or size optimization.

e Integrating GSS as a security environment in your existing project.

e System design of components related to GSS-API.

If you are interested, please write to:

Simon Josefsson Datakonsult AB
Hagagatan 24

113 47 Stockholm

Sweden

E-mail: simon@josefsson.org

If your company provides support related to GNU GSS and would like to be mentioned
here, contact the author (see Section 1.7 [Bug Reports], page 5).

1.6 Downloading and Installing

The package can be downloaded from several places, including:
ftp://ftp.gnu.org/gnu/gss/
The latest version is stored in a file, e.g., ‘gss-1.0.0.tar.gz’ where the ‘1.0.0’ indicate
the highest version number.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the ‘INSTALL’
file that is part of the distribution archive.

Here is an example terminal session that downloads, configures, builds and installs the
package. You will need a few basic tools, such as ‘sh’, ‘make’ and ‘cc’.

$ wget -q ftp://ftp.gnu.org/gnu/gss/gss-1.0.0.tar.gz
$ tar xfz gss-1.0.0.tar.gz

$ cd gss-1.0.0/

$./configure

$ make

ftp://ftp.gnu.org/gnu/gss/

Chapter 1: Introduction 5

$ make install

After that GSS should be properly installed and ready for use.

1.7 Bug Reports

If you think you have found a bug in GSS, please investigate it and report it.

e Please make sure that the bug is really in GSS, and preferably also check that it hasn’t
already been fixed in the latest version.

e You have to send us a test case that makes it possible for us to reproduce the bug.

e You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-gss@gnu.org’

1.8 Contributing

If you want to submit a patch for inclusion — from solve a typo you discovered, up to adding
support for a new feature — you should submit it as a bug report (see Section 1.7 [Bug
Reports|, page 5). There are some things that you can do to increase the chances for it to
be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the
copyright of your work to the Free Software Foundation. This is to protect the freedom
of the project. If you have not already signed papers, we will send you the necessary
information when you submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines
are common sense. Use it.

For code contributions, a number of style guides will help you:

e Coding Style. Follow the GNU Standards document (see (undefined) [top], page (un-
defined)).

If you normally code using another coding standard, there is no problem, but you
should use ‘indent’ to reformat the code (see (undefined) [top], page (undefined))
before submitting your work.

e Use the unified diff format ‘diff -u’.

Chapter 1: Introduction 6

e Return errors. No reason whatsoever should abort the execution of the library. Even
memory allocation errors, e.g. when malloc return NULL, should work although result
in an error code.

e Design with thread safety in mind. Don’t use global variables. Don’t even write to
per-handle global variables unless the documented behaviour of the function you write
is to write to the per-handle global variable.

e Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

e Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

e Supply a ChangeL.og and NEWS entries, where appropriate.

1.9 Planned Features

This is also known as the “todo list”. If you like to start working on anything, please let
me know so work duplication can be avoided.

e Support non-blocking mode. This would be an API extension. It could work by
forking a process and interface to it, or by using a user-specific daemon. E.g., h =
START (accept_sec_context(...)), FINISHED(h), ret = FINISH(h), ABORT(h).

e Support loadable modules via dlopen, a’la Solaris GSS.

e Port to Cyclone? CCured?

Chapter 2: Preparation 7

2 Preparation

To use GSS, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of
this chapter, it is described how the library is initialized, and how the requirements of the
library are verified.

A faster way to find out how to adapt your application for use with GSS may be to look
at the examples at the end of this manual.

2.1 Header

All standard interfaces (data types and functions) of the official GSS API are defined in
the header file ‘gss/api.h’. The file is taken verbatim from the RFC (after correcting a
few typos) where it is known as ‘gssapi.h’. However, to be able to co-exist gracefully with
other GSS-API implementation, the name ‘gssapi.h’ was changed.

The header file ‘gss.h’ includes ‘gss/api.h’, and declares a few non-standard exten-
sions (by including ‘gss/ext.h’), takes care of including header files related to all supported
mechanisms (e.g., ‘gss/krb5.h’) and finally adds C++ namespace protection of all defini-
tions. Therefore, including ‘gss.h’ in your project is recommended over ‘gss/api.h’. If
using ‘gss.h’ instead of ‘gss/api.h’ causes problems, it should be regarded a bug.

You must include either file in all programs using the library, either directly or through
some other header file, like this:

#include <gss.h>

The name space of GSS is gss_x* for function names, gss_x for data types and GSS_x*
for other symbols. In addition the same name prefixes with one prepended underscore are
reserved for internal use and should never be used by an application.

Each supported GSS mechanism may want to expose mechanism specific functionality,
and can do so through one or more header files under the ‘gss/’ directory. The Kerberos 5
mechanism uses the file ‘gss/krb5.h’, but again, it is included (with C++ namespace fixes)
from ‘gss.h’.

2.2 Initialization

GSS does not need to be initialized before it can be used.

In order to take advantage of the internationalisation features in GSS, e.g. translated
error messages, the application must set the current locale using setlocale () before calling,
e.g., gss_display_status(). This is typically done in main() as in the following example.

#include <gss.h>
#include <locale.h>

setlocale (LC_ALL, "");

2.3 Version Check

It is often desirable to check that the version of GSS used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but

Chapter 2: Preparation 8

due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup. The function is called gss_
check_version() and is described formally in See Chapter 4 [Extended GSS API], page 55.

The normal way to use the function is to put something similar to the following early in
your main():

#include <gss.h>

if (!gss_check_version (GSS_VERSION))
{
printf ("gss_check_version() failed:\n"
"Header file incompatible with shared library.\n");
exit (EXIT_FAILURE);
}

2.4 Building the source

If you want to compile a source file that includes the ‘gss.h’ header file, you must make
sure that the compiler can find it in the directory hierarchy. This is accomplished by adding
the path to the directory in which the header file is located to the compilers include file
search path (via the ‘~I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, GSS uses the external package pkg-config that knows the path to
the include file and other configuration options. The options that need to be added to the
compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
gss. The following example shows how it can be used at the command line:

gcc —c foo.c ‘pkg-config gss --cflags®
Adding the output of ‘pkg-config gss —--cflags’ to the compilers command line will
ensure that the compiler can find the ‘gss.h’ header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘~L’ option). For this, the option ‘--1ibs’ to pkg-config
gss can be used. For convenience, this option also outputs all other options that are
required to link the program with the GSS libarary (for instance, the ‘~1shishi’ option).
The example shows how to link ‘foo.o’ with GSS into a program foo.

gcc -o foo foo.o ‘pkg-config gss --libs®

Of course you can also combine both examples to a single command by specifying both

options to pkg-config:
gcc -o foo foo.c ‘pkg-config gss --cflags --1libs‘

2.5 Out of Memory handling

The GSS API does not have a standard error code for the out of memory error condition.
This library will return GSS_S_FAILURE and set minor_status to ENOMEM.

Chapter 3: Standard GSS API 9

3 Standard GSS API

3.1 Simple Data Types
The following conventions are used by the GSS-API C-language bindings:

3.1.1 Integer types

GSS-API uses the following integer data type:
OM_uint32 32-bit unsigned integer

3.1.2 String and similar data

Many of the GSS-API routines take arguments and return values that describe contiguous
octet-strings. All such data is passed between the GSS-API and the caller using the gss_
buffer_t data type. This data type is a pointer to a buffer descriptor, which consists of a
length field that contains the total number of bytes in the datum, and a value field which
contains a pointer to the actual datum:

typedef struct gss_buffer_desc_struct {
size_t length;
void *value;

} gss_buffer_desc, *gss_buffer_t;

Storage for data returned to the application by a GSS-API routine using the gss_
buffer_t conventions is allocated by the GSS-API routine. The application may free this
storage by invoking the gss_release_buffer routine. Allocation of the gss_buffer_desc
object is always the responsibility of the application; unused gss_buffer_desc objects may
be initialized to the value GSS_C_EMPTY_BUFFER.

3.1.2.1 Opaque data types

Certain multiple-word data items are considered opaque data types at the GSS-API, because
their internal structure has no significance either to the GSS-API or to the caller. Examples
of such opaque data types are the input_token parameter to gss_init_sec_context (which
is opaque to the caller), and the input_message parameter to gss_wrap (which is opaque to
the GSS-API). Opaque data is passed between the GSS-API and the application using the
gss_buffer_t datatype.

3.1.2.2 Character strings

Certain multiple-word data items may be regarded as simple ISO Latin-1 character strings.
Examples are the printable strings passed to gss_import_name via the input_name_buffer
parameter. Some GSS-API routines also return character strings. All such character
strings are passed between the application and the GSS-API implementation using the
gss_buffer_t datatype, which is a pointer to a gss_buffer_desc object.

When a gss_buffer_desc object describes a printable string, the length field of the
gss_buffer_desc should only count printable characters within the string. In particular, a
trailing NUL character should NOT be included in the length count, nor should either the
GSS-API implementation or the application assume the presence of an uncounted trailing
NUL.

Chapter 3: Standard GSS API 10

3.1.3 Object Identifiers

Certain GSS-API procedures take parameters of the type gss_0ID, or Object identifier.
This is a type containing [SO-defined tree- structured values, and is used by the GSS-API
caller to select an underlying security mechanism and to specify namespaces. A value of
type gss_0ID has the following structure:

typedef struct gss_0ID_desc_struct {
OM_uint32 length;
void *elements;

} gss_0ID_desc, *gss_0ID;

The elements field of this structure points to the first byte of an octet string contain-
ing the ASN.1 BER encoding of the value portion of the normal BER TLV encoding of the
gss_0ID. The length field contains the number of bytes in this value. For example, the gss_
0ID value corresponding to iso(1) identified-organization(3) icd-ecma(12) member-
company (2) dec(1011) cryptoAlgorithms(7) DASS(5), meaning the DASS X.509 authen-
tication mechanism, has a length field of 7 and an elements field pointing to seven octets
containing the following octal values: 53,14,2,207,163,7,5. GSS-API implementations should
provide constant gss_0ID values to allow applications to request any supported mechanism,
although applications are encouraged on portability grounds to accept the default mecha-
nism. gss_0ID values should also be provided to allow applications to specify particular
name types (see section 3.10). Applications should treat gss_0ID_desc values returned
by GSS-API routines as read-only. In particular, the application should not attempt to
deallocate them with free().

3.1.4 Object Identifier Sets

Certain GSS-API procedures take parameters of the type gss_0ID_set. This type rep-
resents one or more object identifiers (see [Object Identifiers|, page 10). A gss_0ID_set
object has the following structure:

typedef struct gss_0ID_set_desc_struct {
size_t count;
gss_0ID elements;

} gss_0ID_set_desc, *gss_0ID_set;

The count field contains the number of OIDs within the set. The elements field is a
pointer to an array of gss_0ID_desc objects, each of which describes a single OID. gss_
0ID_set values are used to name the available mechanisms supported by the GSS-API, to
request the use of specific mechanisms, and to indicate which mechanisms a given credential
supports.

All OID sets returned to the application by GSS-API are dynamic objects (the gss_
0ID_set_desc, the "elements" array of the set, and the "elements" array of each member
OID are all dynamically allocated), and this storage must be deallocated by the application
using the gss_release_oid_set routine.

3.2 Complex Data Types

Chapter 3: Standard GSS API 11

3.2.1 Credentials

A credential handle is a caller-opaque atomic datum that identifies a GSS-API credential
data structure. It is represented by the caller- opaque type gss_cred_id_t.

GSS-API credentials can contain mechanism-specific principal authentication data for
multiple mechanisms. A GSS-API credential is composed of a set of credential-elements,
each of which is applicable to a single mechanism. A credential may contain at most one
credential-element for each supported mechanism. A credential-element identifies the data
needed by a single mechanism to authenticate a single principal, and conceptually contains
two credential-references that describe the actual mechanism-specific authentication data,
one to be used by GSS-API for initiating contexts, and one to be used for accepting contexts.
For mechanisms that do not distinguish between acceptor and initiator credentials, both
references would point to the same underlying mechanism-specific authentication data.

Credentials describe a set of mechanism-specific principals, and give their holder the
ability to act as any of those principals. All principal identities asserted by a single GSS-
API credential should belong to the same entity, although enforcement of this property
is an implementation-specific matter. The GSS-API does not make the actual credentials
available to applications; instead a credential handle is used to identify a particular cre-
dential, held internally by GSS-API. The combination of GSS-API credential handle and
mechanism identifies the principal whose identity will be asserted by the credential when
used with that mechanism.

The gss_init_sec_context and gss_accept_sec_context routines allow the value
GSS_C_NO_CREDENTIAL to be specified as their credential handle parameter. This special
credential-handle indicates a desire by the application to act as a default principal.

3.2.2 Contexts

The gss_ctx_id_t data type contains a caller-opaque atomic value that identifies one end
of a GSS-API security context.

The security context holds state information about each end of a peer communication,
including cryptographic state information.

3.2.3 Authentication tokens

A token is a caller-opaque type that GSS-API uses to maintain synchronization between the
context data structures at each end of a GSS-API security context. The token is a crypto-
graphically protected octet-string, generated by the underlying mechanism at one end of a
GSS-API security context for use by the peer mechanism at the other end. Encapsulation (if
required) and transfer of the token are the responsibility of the peer applications. A token
is passed between the GSS-API and the application using the gss_buffer_t conventions.

3.2.4 Interprocess tokens

Certain GSS-API routines are intended to transfer data between processes in multi-process
programs. These routines use a caller-opaque octet-string, generated by the GSS-APT in one
process for use by the GSS-API in another process. The calling application is responsible for
transferring such tokens between processes in an OS-specific manner. Note that, while GSS-
API implementors are encouraged to avoid placing sensitive information within interprocess
tokens, or to cryptographically protect them, many implementations will be unable to

Chapter 3: Standard GSS API 12

avoid placing key material or other sensitive data within them. It is the application’s
responsibility to ensure that interprocess tokens are protected in transit, and transferred
only to processes that are trustworthy. An interprocess token is passed between the GSS-
API and the application using the gss_buffer_t conventions.

3.2.5 Names

A name is used to identify a person or entity. GSS-API authenticates the relationship
between a name and the entity claiming the name.

Since different authentication mechanisms may employ different namespaces for identi-
fying their principals, GSSAPI’s naming support is necessarily complex in multi-mechanism
environments (or even in some single-mechanism environments where the underlying mech-
anism supports multiple namespaces).

Two distinct representations are defined for names:

e An internal form. This is the GSS-API "native" format for names, represented by
the implementation-specific gss_name_t type. It is opaque to GSS-API callers. A
single gss_name_t object may contain multiple names from different namespaces, but
all names should refer to the same entity. An example of such an internal name would
be the name returned from a call to the gss_inquire_cred routine, when applied
to a credential containing credential elements for multiple authentication mechanisms
employing different namespaces. This gss_name_t object will contain a distinct name
for the entity for each authentication mechanism.

For GSS-API implementations supporting multiple namespaces, objects of type gss_
name_t must contain sufficient information to determine the namespace to which each
primitive name belongs.

e Mechanism-specific contiguous octet-string forms. A format capable of containing a
single name (from a single namespace). Contiguous string names are always accompa-
nied by an object identifier specifying the namespace to which the name belongs, and
their format is dependent on the authentication mechanism that employs the name.
Many, but not all, contiguous string names will be printable, and may therefore be
used by GSS-API applications for communication with their users.

Routines (gss_import_name and gss_display_name) are provided to convert names
between contiguous string representations and the internal gss_name_t type. gss_import_
name may support multiple syntaxes for each supported namespace, allowing users the
freedom to choose a preferred name representation. gss_display_name should use an
implementation-chosen printable syntax for each supported name-type.

If an application calls gss_display_name, passing the internal name resulting from a call
to gss_import_name, there is no guarantee the resulting contiguous string name will be the
same as the original imported string name. Nor do name-space identifiers necessarily survive
unchanged after a journey through the internal name-form. An example of this might be
a mechanism that authenticates X.500 names, but provides an algorithmic mapping of
Internet DNS names into X.500. That mechanism’s implementation of gss_import_name
might, when presented with a DNS name, generate an internal name that contained both the
original DNS name and the equivalent X.500 name. Alternatively, it might only store the
X.500 name. In the latter case, gss_display_name would most likely generate a printable
X.500 name, rather than the original DNS name.

Chapter 3: Standard GSS API 13

The process of authentication delivers to the context acceptor an internal name. Since
this name has been authenticated by a single mechanism, it contains only a single name
(even if the internal name presented by the context initiator to gss_init_sec_context
had multiple components). Such names are termed internal mechanism names, or "MN"s
and the names emitted by gss_accept_sec_context are always of this type. Since some
applications may require MNs without wanting to incur the overhead of an authentication
operation, a second function, gss_canonicalize_name, is provided to convert a general
internal name into an MN.

Comparison of internal-form names may be accomplished via the gss_compare_name
routine, which returns true if the two names being compared refer to the same entity. This
removes the need for the application program to understand the syntaxes of the various
printable names that a given GSS-API implementation may support. Since GSS-API as-
sumes that all primitive names contained within a given internal name refer to the same
entity, gss_compare_name can return true if the two names have at least one primitive
name in common. If the implementation embodies knowledge of equivalence relationships
between names taken from different namespaces, this knowledge may also allow successful
comparison of internal names containing no overlapping primitive elements.

When used in large access control lists, the overhead of invoking gss_import_name and
gss_compare_name on each name from the ACL may be prohibitive. As an alternative
way of supporting this case, GSS-API defines a special form of the contiguous string name
which may be compared directly (e.g. with memcmp()). Contiguous names suitable for
comparison are generated by the gss_export_name routine, which requires an MN as input.
Exported names may be re- imported by the gss_import_name routine, and the resulting
internal name will also be an MN. The gss_0ID constant GSS_C_NT_EXPORT_NAME indentifies
the "export name" type, and the value of this constant is given in Appendix A. Structurally,
an exported name object consists of a header containing an OID identifying the mechanism
that authenticated the name, and a trailer containing the name itself, where the syntax of
the trailer is defined by the individual mechanism specification. The precise format of an
export name is defined in the language-independent GSS-API specification [GSSAPI].

Note that the results obtained by using gss_compare_name will in general be different
from those obtained by invoking gss_canonicalize_name and gss_export_name, and then
comparing the exported names. The first series of operation determines whether two (unau-
thenticated) names identify the same principal; the second whether a particular mechanism
would authenticate them as the same principal. These two operations will in general give
the same results only for MNs.

The gss_name_t datatype should be implemented as a pointer type. To allow the com-
piler to aid the application programmer by performing type-checking, the use of (void *) is
discouraged. A pointer to an implementation-defined type is the preferred choice.

Storage is allocated by routines that return gss_name_t values. A procedure, gss_
release_name, is provided to free storage associated with an internal-form name.

3.2.6 Channel Bindings

GSS-API supports the use of user-specified tags to identify a given context to the peer
application. These tags are intended to be used to identify the particular communications
channel that carries the context. Channel bindings are communicated to the GSS-API using
the following structure:

Chapter 3: Standard GSS API 14

typedef struct gss_channel_bindings_struct {

OM_uint32 initiator_addrtype;
gss_buffer_desc initiator_address;
OM_uint32 acceptor_addrtype;

gss_buffer_desc acceptor_address;
gss_buffer_desc application_data;
} *gss_channel_bindings_t;

The initiator_addrtype and acceptor_addrtype fields denote the type of addresses con-
tained in the initiator_address and acceptor_address buffers. The address type should be
one of the following:

GSS_C_AF_UNSPEC Unspecified address type
GSS_C_AF_LOCAL Host-local address type
GSS_C_AF_INET Internet address type (e.g. IP)
GSS_C_AF_IMPLINK ARPAnet IMP address type
GSS_C_AF_PUP pup protocols (eg BSP) address type
GSS_C_AF_CHAQOS MIT CHAOS protocol address type
GSS_C_AF_NS XEROX NS address type

GSS_C_AF_NBS nbs address type

GSS_C_AF_ECMA ECMA address type

GSS_C_AF_DATAKIT datakit protocols address type
GSS_C_AF_CCITT CCITT protocols

GSS_C_AF_SNA IBM SNA address type
GSS_C_AF_DECnet DECnet address type

GSS_C_AF_DLI Direct data link interface address type
GSS_C_AF_LAT LAT address type

GSS_C_AF_HYLINK NSC Hyperchannel address type
GSS_C_AF_APPLETALK AppleTalk address type

GSS_C_AF_BSC BISYNC 2780/3780 address type
GSS_C_AF_DSS Distributed system services address type
GSS_C_AF_0SI 0SI TP4 address type

GSS_C_AF_X25 X.25

GSS_C_AF_NULLADDR No address specified

Note that these symbols name address families rather than specific addressing formats.
For address families that contain several alternative address forms, the initiator_address and
acceptor_address fields must contain sufficient information to determine which address form
is used. When not otherwise specified, addresses should be specified in network byte-order
(that is, native byte-ordering for the address family).

Conceptually, the GSS-API concatenates the initiator_addrtype, initiator_address, ac-
ceptor_addrtype, acceptor_address and application_data to form an octet string. The mech-
anism calculates a MIC over this octet string, and binds the MIC to the context establish-
ment token emitted by gss_init_sec_context. The same bindings are presented by the
context acceptor to gss_accept_sec_context, and a MIC is calculated in the same way.
The calculated MIC is compared with that found in the token, and if the MICs differ,
gss_accept_sec_context will return a GSS_S_BAD_BINDINGS error, and the context will
not be established. Some mechanisms may include the actual channel binding data in the

Chapter 3: Standard GSS API 15

token (rather than just a MIC); applications should therefore not use confidential data as
channel-binding components.

Individual mechanisms may impose additional constraints on addresses and address types
that may appear in channel bindings. For example, a mechanism may verify that the
initiator_address field of the channel bindings presented to gss_init_sec_context contains
the correct network address of the host system. Portable applications should therefore
ensure that they either provide correct information for the address fields, or omit addressing
information, specifying GSS_C_AF_NULLADDR as the address-types.

3.3 Optional Parameters

Various parameters are described as optional. This means that they follow a convention
whereby a default value may be requested. The following conventions are used for omitted
parameters. These conventions apply only to those parameters that are explicitly docu-
mented as optional.

e gss_buffer_t types. Specify GSS_.C_NO_BUFFER as a value. For an input parameter
this signifies that default behavior is requested, while for an output parameter it indi-
cates that the information that would be returned via the parameter is not required
by the application.

e Integer types (input). Individual parameter documentation lists values to be used to
indicate default actions.

e Integer types (output). Specify NULL as the value for the pointer.
e Pointer types. Specify NULL as the value.

e Object IDs. Specify GSS-C_NO_OID as the value.

e Object ID Sets. Specify GSS_.C_NO_OID_SET as the value.

e Channel Bindings. Specify GSS_.C_NO_CHANNEL_BINDINGS to indicate that chan-
nel bindings are not to be used.

3.4 Error Handling

Every GSS-API routine returns two distinct values to report status information to the caller:
GSS status codes and Mechanism status codes.

3.4.1 GSS status codes

GSS-API routines return GSS status codes as their OM_uint32 function value. These codes
indicate errors that are independent of the underlying mechanism(s) used to provide the
security service. The errors that can be indicated via a GSS status code are either generic
API routine errors (errors that are defined in the GSS-API specification) or calling errors
(errors that are specific to these language bindings).

A GSS status code can indicate a single fatal generic API error from the routine and
a single calling error. In addition, supplementary status information may be indicated via
the setting of bits in the supplementary info field of a GSS status code.

These errors are encoded into the 32-bit GSS status code as follows:

Chapter 3: Standard GSS API 16

| Calling Error | Routine Error | Supplementary Info |

Hence if a GSS-API routine returns a GSS status code whose upper 16 bits contain a
non-zero value, the call failed. If the calling error field is non-zero, the invoking application’s
call of the routine was erroneous. Calling errors are defined in table 3-1. If the routine error
field is non-zero, the routine failed for one of the routine- specific reasons listed below in
table 3-2. Whether or not the upper 16 bits indicate a failure or a success, the routine may
indicate additional information by setting bits in the supplementary info field of the status
code. The meaning of individual bits is listed below in table 3-3.

Table 3-1 Calling Errors

Name Value in field Meaning
GSS_S_CALL_INACCESSIBLE_READ 1 A required input parameter
could not be read
GSS_S_CALL_INACCESSIBLE_WRITE 2 A required output parameter
could not be written.
GSS_S_CALL_BAD_STRUCTURE 3 A parameter was malformed

Table 3-2 Routine Errors

Name Value in field Meaning
GSS_S_BAD_MECH 1 An unsupported mechanism
was requested
GSS_S_BAD_NAME 2 An invalid name was
supplied
GSS_S_BAD_NAMETYPE 3 A supplied name was of an
unsupported type
GSS_S_BAD_BINDINGS 4 Incorrect channel bindings
were supplied
GSS_S_BAD_STATUS 5 An invalid status code was
supplied
GSS_S_BAD_MIC GSS_S_BAD_SIG 6 A token had an invalid MIC
GSS_S_NO_CRED 7 No credentials were

supplied, or the
credentials were
unavailable or

inaccessible.
GSS_S_NO_CONTEXT 8 No context has been

established
GSS_S_DEFECTIVE_TOKEN 9 A token was invalid
GSS_S_DEFECTIVE_CREDENTIAL 10 A credential was invalid
GSS_S_CREDENTIALS_EXPIRED 11 The referenced credentials

have expired
GSS_S_CONTEXT_EXPIRED 12 The context has expired

Chapter 3: Standard GSS API 17

GSS_S_FAILURE 13 Miscellaneous failure (see
text)

GSS_S_BAD_QOP 14 The quality-of-protection
requested could not be
provided

GSS_S_UNAUTHORIZED 15 The operation is forbidden
by local security policy

GSS_S_UNAVAILABLE 16 The operation or option is
unavailable

GSS_S_DUPLICATE_ELEMENT 17 The requested credential
element already exists

GSS_S_NAME_NOT_MN 18 The provided name was not a

mechanism name

Table 3-3 Supplementary Status Bits

Name Bit Number Meaning

GSS_S_CONTINUE_NEEDED O (LSB) Returned only by
gss_init_sec_context or
gss_accept_sec_context. The
routine must be called again
to complete its function.
See routine documentation for
detailed description

GSS_S_DUPLICATE_TOKEN 1 The token was a duplicate of
an earlier token

GSS_S_OLD_TOKEN 2 The token’s validity period
has expired

GSS_S_UNSEQ_TOKEN 3 A later token has already been
processed

GSS_S_GAP_TOKEN 4 An expected per-message token

was not received

The routine documentation also uses the name GSS_S_.COMPLETE, which is a zero
value, to indicate an absence of any API errors or supplementary information bits.

All GSS_S_xxx symbols equate to complete OM_uint32 status codes, rather than to
bitfield values. For example, the actual value of the symbol GSS_S_BAD_NAMETYPE (value
3 in the routine error field) is 3<<16. The macros GSS_CALLING_ERROR, GSS_ROUTINE_
ERROR and GSS_SUPPLEMENTARY_INFO are provided, each of which takes a GSS status code
and removes all but the relevant field. For example, the value obtained by applying GSS_
ROUTINE_ERROR to a status code removes the calling errors and supplementary info fields,
leaving only the routine errors field. The values delivered by these macros may be directly
compared with a GSS_S_xxx symbol of the appropriate type. The macro GSS_ERROR is also
provided, which when applied to a GSS status code returns a non-zero value if the status
code indicated a calling or routine error, and a zero value otherwise. All macros defined by
GSS-API evaluate their argument(s) exactly once.

Chapter 3: Standard GSS API 18

A GSS-API implementation may choose to signal calling errors in a platform-specific
manner instead of, or in addition to the routine value; routine errors and supplementary
info should be returned via major status values only.

The GSS major status code GSS_S_FAILURE is used to indicate that the underlying mech-
anism detected an error for which no specific GSS status code is defined. The mechanism-
specific status code will provide more details about the error.

In addition to the explicit major status codes for each API function, the code
GSS_S_FAILURE may be returned by any routine, indicating an implementation-specific
or mechanism-specific error condition, further details of which are reported via the
minor_status parameter.

3.4.2 Mechanism-specific status codes

GSS-API routines return a minor_status parameter, which is used to indicate specialized
errors from the underlying security mechanism. This parameter may contain a single
mechanism-specific error, indicated by a OM_uint32 value.

The minor_status parameter will always be set by a GSS-API routine, even if it returns
a calling error or one of the generic API errors indicated above as fatal, although most
other output parameters may remain unset in such cases. However, output parameters
that are expected to return pointers to storage allocated by a routine must always be set
by the routine, even in the event of an error, although in such cases the GSS-API routine
may elect to set the returned parameter value to NULL to indicate that no storage was
actually allocated. Any length field associated with such pointers (as in a gss_buffer_
desc structure) should also be set to zero in such cases.

3.5 Credential Management

GSS-API Credential-management Routines

Routine Function

gss_acquire_cred Assume a global identity; Obtain
a GSS-API credential handle for
pre-existing credentials.

gss_add_cred Construct credentials
incrementally.

gss_inquire_cred Obtain information about a
credential.

gss_inquire_cred_by_mech Obtain per-mechanism information

about a credential.
gss_release_cred Discard a credential handle.

Chapter 3: Standard GSS API 19

gss_acquire_cred

OM_uint32 gss_acquire_cred (OM_uint32 * minor_status, const [Function]
gss_name_t desired_name, OM_uint32 time_req, const gss-OID_set
desired_mechs, gss_cred_usage_t cred_usage, gss_cred_id_t *
output_cred_handle, gss_.OID_set * actual_mechs, OM_uint32 *
time_rec)

minor_status: (integer, modify) Mechanism specific status code.

desired_name: (gss_name_t, read) Name of principal whose credential should be ac-
quired.

time_req: (Integer, read, optional) Number of seconds that credentials should re-
main valid. Specify GSS_C_INDEFINITE to request that the credentials have the
maximum permitted lifetime.

desired_mechs: (Set of Object IDs, read, optional) Set of underlying security
mechanisms that may be used. GSS_C_NO_OID_SET may be used to obtain an
implementation-specific default.

cred_usage: (gss_cred_usage_t, read) GSS_.C_BOTH - Credentials may be used either
to initiate or accept security contexts. GSS_C_INITIATE - Credentials will only be
used to initiate security contexts. GSS_C_ACCEPT - Credentials will only be used
to accept security contexts.

output_cred_handle: (gss_cred_id_t, modify) The returned credential handle. Re-
sources associated with this credential handle must be released by the application
after use with a call to gss_release_cred().

actual_mechs: (Set of Object IDs, modify, optional) The set of mechanisms for which
the credential is valid. Storage associated with the returned OID-set must be released
by the application after use with a call to gss_release_oid_set(). Specify NULL if not
required.

time_rec: (Integer, modify, optional) Actual number of seconds for which the returned
credentials will remain valid. If the implementation does not support expiration of
credentials, the value GSS_C_INDEFINITE will be returned. Specify NULL if not
required.

Allows an application to acquire a handle for a pre-existing credential by name. GSS-
API implementations must impose a local access-control policy on callers of this
routine to prevent unauthorized callers from acquiring credentials to which they are
not entitled. This routine is not intended to provide a "login to the network" function,
as such a function would involve the creation of new credentials rather than merely
acquiring a handle to existing credentials. Such functions, if required, should be
defined in implementation-specific extensions to the API.

If desired_name is GSS_.C_NO_NAME, the call is interpreted as a request for a cre-
dential handle that will invoke default behavior when passed to gss_init_sec_context|()
(if cred-usage is GSS_C_INITIATE or GSS_C_BOTH) or gss_accept_sec_context() (if
cred_usage is GSS_C_ACCEPT or GSS_C_BOTH).

Mechanisms should honor the desired_mechs parameter, and return a credential that
is suitable to use only with the requested mechanisms. An exception to this is the
case where one underlying credential element can be shared by multiple mechanisms;

Chapter 3: Standard GSS API 20

in this case it is permissible for an implementation to indicate all mechanisms with
which the credential element may be used. If desired_mechs is an empty set, behavior
is undefined.

This routine is expected to be used primarily by context acceptors, since implemen-
tations are likely to provide mechanism-specific ways of obtaining GSS-API initia-
tor credentials from the system login process. Some implementations may therefore
not support the acquisition of GSS_C_INITIATE or GSS_C_BOTH credentials via
gss_acquire_cred for any name other than GSS_C_NO_NAME, or a name produced
by applying either gss_inquire_cred to a valid credential, or gss_inquire_context to an
active context.

If credential acquisition is time-consuming for a mechanism, the mechanism
may choose to delay the actual acquisition until the credential is required (e.g.
by gss_init_sec_context or gss_accept_sec_context). Such mechanism-specific
implementation decisions should be invisible to the calling application; thus a call
of gss_inquire_cred immediately following the call of gss_acquire_cred must return
valid credential data, and may therefore incur the overhead of a deferred credential
acquisition.

Return value:

GSS_S_COMPLETE: Successful completion.

GSS_S_BAD_MECH: Unavailable mechanism requested.

GSS_S_BAD_NAMETYPE: Type contained within desired_name parameter is not sup-
ported.

GSS_S_BAD_NAME: Value supplied for desired_name parameter is ill formed.

GSS_S_CREDENTIALS_EXPIRED: The credentials could not be acquired Because they
have expired.

GSS_S_NO_CRED: No credentials were found for the specified name.
gss_add_cred

OM_uint32 gss_add_cred (OM_uint32 * minor_status, const [Function]
gss_cred_id_t input_cred_handle, const gss_.name_t desired_name, const
gss-OID desired_mech, gss_cred_usage_-t cred_usage, OM_uint32
initiator_time_req, OM_uint32 acceptor_time_req, gss_cred_id_t *
output_cred_handle, gss_OID_set * actual_mechs, OM_uint32 *
initiator_time_rec, OM_uint32 * acceptor_time_rec)

minor_status: (integer, modify) Mechanism specific status code.

input_cred_handle: (gss_cred_id_t, read, optional) The credential to which a
credential-element will be added. If GSS_.C_NO_CREDENTIAL is specified, the
routine will compose the new credential based on default behavior (see text). Note
that, while the credential-handle is not modified by gss_add_cred(), the underlying
credential will be modified if output_credential_handle is NULL.

desired_name: (gss_name_t, read.) Name of principal whose credential should be
acquired.

desired_mech: (Object ID, read) Underlying security mechanism with which the cre-
dential may be used.

Chapter 3: Standard GSS API 21

cred_usage: (gss_cred_usage_t, read) GSS_C_BOTH - Credential may be used either
to initiate or accept security contexts. GSS_C_INITIATE - Credential will only be
used to initiate security contexts. GSS_C_ACCEPT - Credential will only be used to
accept security contexts.

initiator_time_req: (Integer, read, optional) number of seconds that the credential
should remain valid for initiating security contexts. This argument is ignored if the
composed credentials are of type GSS_C_ACCEPT. Specify GSS_C_INDEFINITE to
request that the credentials have the maximum permitted initiator lifetime.

acceptor_time_req: (Integer, read, optional) number of seconds that the credential
should remain valid for accepting security contexts. This argument is ignored if the
composed credentials are of type GSS_C_INITIATE. Specify GSS_C_INDEFINITE
to request that the credentials have the maximum permitted initiator lifetime.

output_cred_handle: (gss_cred_id_t, modify, optional) The returned credential han-
dle, containing the new credential-element and all the credential-elements from in-
put_cred_handle. If a valid pointer to a gss_cred_id_t is supplied for this parameter,
gss_add_cred creates a new credential handle containing all credential-elements from
the input_cred_handle and the newly acquired credential-element; if NULL is spec-
ified for this parameter, the newly acquired credential-element will be added to the
credential identified by input_cred_handle. The resources associated with any creden-
tial handle returned via this parameter must be released by the application after use
with a call to gss_release_cred().

actual_mechs: (Set of Object IDs, modify, optional) The complete set of mechanisms
for which the new credential is valid. Storage for the returned OID-set must be freed
by the application after use with a call to gss_release_oid_set(). Specify NULL if not
required.

initiator_time_rec: (Integer, modify, optional) Actual number of seconds for which
the returned credentials will remain valid for initiating contexts using the specified
mechanism. If the implementation or mechanism does not support expiration of
credentials, the value GSS_C_INDEFINITE will be returned. Specify NULL if not
required

acceptor_time_rec: (Integer, modify, optional) Actual number of seconds for which
the returned credentials will remain valid for accepting security contexts using the
specified mechanism. If the implementation or mechanism does not support expiration
of credentials, the value GSS_.C_INDEFINITE will be returned. Specify NULL if not
required

Adds a credential-element to a credential. The credential-element is identified by the
name of the principal to which it refers. GSS-API implementations must impose a
local access-control policy on callers of this routine to prevent unauthorized callers
from acquiring credential-elements to which they are not entitled. This routine is not
intended to provide a "login to the network" function, as such a function would in-
volve the creation of new mechanism-specific authentication data, rather than merely
acquiring a GSS-API handle to existing data. Such functions, if required, should be
defined in implementation-specific extensions to the API.

If desired_name is GSS_.C_NO_NAME, the call is interpreted as a request to add a cre-
dential element that will invoke default behavior when passed to gss_init_sec_context|()

Chapter 3: Standard GSS API 22

(if cred_usage is GSS_C_INITIATE or GSS_C_BOTH) or gss_accept_sec_context() (if
cred_usage is GSS_C_ACCEPT or GSS_C_BOTH).

This routine is expected to be used primarily by context acceptors, since implemen-
tations are likely to provide mechanism-specific ways of obtaining GSS-API initia-
tor credentials from the system login process. Some implementations may therefore
not support the acquisition of GSS_C_INITIATE or GSS_C_BOTH credentials via
gss_acquire_cred for any name other than GSS_C_NO_NAME, or a name produced
by applying either gss_inquire_cred to a valid credential, or gss_inquire_context to an
active context.

If credential acquisition is time-consuming for a mechanism, the mechanism
may choose to delay the actual acquisition until the credential is required (e.g.
by gss_init_sec_context or gss_accept_sec_context). Such mechanism-specific
implementation decisions should be invisible to the calling application; thus a call
of gss_inquire_cred immediately following the call of gss_add_cred must return valid
credential data, and may therefore incur the overhead of a deferred credential
acquisition.

This routine can be used to either compose a new credential containing all credential-
elements of the original in addition to the newly-acquire credential-element, or to add
the new credential- element to an existing credential. If NULL is specified for the
output_cred_handle parameter argument, the new credential-element will be added
to the credential identified by input_cred_handle; if a valid pointer is specified for the
output_cred_handle parameter, a new credential handle will be created.

If GSS_C_NO_CREDENTTAL is specified as the input_cred_handle, gss_add_cred will
compose a credential (and set the output_cred_handle parameter accordingly) based
on default behavior. That is, the call will have the same effect as if the application
had first made a call to gss_acquire_cred(), specifying the same usage and passing
GSS_C_NO_NAME as the desired_name parameter to obtain an explicit credential
handle embodying default behavior, passed this credential handle to gss_add_cred(),
and finally called gss_release_cred() on the first credential handle.

If GSS_.C_NO_CREDENTTAL is specified as the input_cred_handle parameter, a non-
NULL output_cred_handle must be supplied.

Return value:
GSS_S_COMPLETE: Successful completion.
GSS_S_BAD_MECH: Unavailable mechanism requested.

GSS_S_BAD_NAMETYPE: Type contained within desired_name parameter is not sup-
ported.

GSS_S_BAD_NAME: Value supplied for desired_name parameter is ill-formed.

GSS_S_DUPLICATE_ELEMENT: The credential already contains an element for the re-
quested mechanism with overlapping usage and validity period.

GSS_S_CREDENTIALS_EXPIRED: The required credentials could not be added because
they have expired.

GSS_S_NO_CRED: No credentials were found for the specified name.

Chapter 3: Standard GSS API 23

gss_inquire_cred

OM_uint32 gss_inquire_cred (OM_uint32 * minor_status, const [Function]
gss_cred_id_t cred_handle, gss_name_t * name, OM_uint32 * 1ifetime,
gss_cred_usage_t * cred_usage, gss-OID_set * mechanisms)

minor_status: (integer, modify) Mechanism specific status code.

cred_handle: (gss_cred_id_t, read) A handle that refers to the target credential. Spec-
ify GSS_.C_NO_CREDENTTAL to inquire about the default initiator principal.

name: (gss_name_t, modify, optional) The name whose identity the credential asserts.
Storage associated with this name should be freed by the application after use with
a call to gss_release_name(). Specify NULL if not required.

lifetime: (Integer, modify, optional) The number of seconds for which the creden-
tial will remain valid. If the credential has expired, this parameter will be set
to zero. If the implementation does not support credential expiration, the value
GSS_C_INDEFINITE will be returned. Specify NULL if not required.

cred_usage: (gss_cred_usage_t, modify, optional) How the credential may be used.
One of the following: GSS_C_INITIATE, GSS_C_ACCEPT, GSS_C_BOTH. Specify
NULL if not required.

mechanisms: (gss_OID_set, modify, optional) Set of mechanisms supported by the
credential. Storage associated with this OID set must be freed by the application
after use with a call to gss_release_oid_set(). Specify NULL if not required.

Obtains information about a credential.

Return value:

GSS_S_COMPLETE: Successful completion.

GSS_S_NO_CRED: The referenced credentials could not be accessed.
GSS_S_DEFECTIVE_CREDENTIAL: The referenced credentials were invalid.

GSS_S_CREDENTIALS_EXPIRED: The referenced credentials have expired. If the life-
time parameter was not passed as NULL, it will be set to 0.

gss_inquire_cred_by_mech

OM_uint32 gss_inquire_cred_by_mech (OM_uint32 * [Function]
minor_status, const gss_cred_id_t cred_handle, const gss_OID
mech_type, gss.name_t * name, OM_uint32 * initiator_lifetime,
OM_uint32 * acceptor_lifetime, gss_cred_usage_t * cred_usage)

minor_status: (Integer, modify) Mechanism specific status code.

cred_handle: (gss_cred_id_t, read) A handle that refers to the target credential. Spec-
ify GSS_.C_NO_CREDENTIAL to inquire about the default initiator principal.

mech_type: (gss-OID, read) The mechanism for which information should be re-
turned.

name: (gss-name_t, modify, optional) The name whose identity the credential asserts.
Storage associated with this name must be freed by the application after use with a
call to gss_release_name(). Specify NULL if not required.

Chapter 3: Standard GSS API 24

initiator_lifetime: (Integer, modify, optional) The number of seconds for which the
credential will remain capable of initiating security contexts under the specified mech-
anism. If the credential can no longer be used to initiate contexts, or if the credential
usage for this mechanism is GSS_C_ACCEPT, this parameter will be set to zero.
If the implementation does not support expiration of initiator credentials, the value
GSS_C_INDEFINITE will be returned. Specify NULL if not required.

acceptor_lifetime: (Integer, modify, optional) The number of seconds for which the
credential will remain capable of accepting security contexts under the specified mech-
anism. If the credential can no longer be used to accept contexts, or if the credential
usage for this mechanism is GSS_C_INITIATE, this parameter will be set to zero.
If the implementation does not support expiration of acceptor credentials, the value
GSS_C_INDEFINITE will be returned. Specify NULL if not required.

cred_usage: (gss_cred_usage_t, modify, optional) How the credential may be used with
the specified mechanism. One of the following: GSS_C_INITIATE, GSS_.C_ACCEPT,
GSS_C_BOTH. Specify NULL if not required.

Obtains per-mechanism information about a credential.

Return value:

GSS_S_COMPLETE: Successful completion.

GSS_S_NO_CRED: The referenced credentials could not be accessed.
GSS_S_DEFECTIVE_CREDENTIAL: The referenced credentials were invalid.

GSS_S_CREDENTIALS_EXPIRED: The referenced credentials have expired. If the life-
time parameter was not passed as NULL, it will be set to 0.

gss_release_cred

OM_uint32 gss_release_cred (OM_uint32 * minor_status, [Function]
gss_cred_id_t * cred_handle)
minor_status: (Integer, modify) Mechanism specific status code.

cred_handle: (gss_cred_id_t, modify, optional) Opaque handle identifying credential
to be released. If GSS_C_NO_CREDENTTIAL is supplied, the routine will complete
successfully, but will do nothing.

Informs GSS-API that the specified credential handle is no longer required
by the application, and frees associated resources. The cred_handle is set to
GSS_C_NO_CREDENTTIAL on successful completion of this call.

Return value:
GSS_S_COMPLETE: Successful completion.
GSS_S_NO_CRED: Credentials could not be accessed.

3.6 Context-Level Routines

GSS-API Context-Level Routines

Routine Function

gss_init_sec_context Initiate a security context with

Chapter 3: Standard GSS API 25
a peer application.
gss_accept_sec_context Accept a security context
initiated by a peer application.
gss_delete_sec_context Discard a security context.
gss_process_context_token Process a token on a security
context from a peer application.
gss_context_time Determine for how long a context
will remain valid.
gss_inquire_context Obtain information about a
security context.
gss_wrap_size_limit Determine token-size limit for
gss_wrap on a context.
gss_export_sec_context Transfer a security context to
another process.
gss_import_sec_context Import a transferred context.
gss_init_sec_context
OM_uint32 gss_init_sec_context (OM_uint32 * minor_status, [Function]

const gss_cred_id_t initiator_cred_handle, gss_ctx_id_t *
context_handle, const gss_.name_t target_name, const gss_-OID
mech_type, OM_uint32 req_flags, OM_uint32 time_req, const
gss_channel_bindings_t input_chan_bindings, const gss_-buffer_t
input_token, gss_OID * actual_mech_type, gss_buffer_t output_token,
OM_uint32 * ret_flags, OM_uint32 * time_rec)

minor_status: (integer, modify) Mechanism specific status code.

initiator_cred_handle: (gss_cred_id_t, read, optional) Handle for credentials claimed.
Supply GSS_C_NO_CREDENTIAL to act as a default initiator principal. If no de-
fault initiator is defined, the function will return GSS_S_NO_CRED.

context_handle: (gss_ctx_id_t, read/modify) Context handle for new context. Supply
GSS_C_NO_CONTEXT for first call; use value returned by first call in continua-
tion calls. Resources associated with this context-handle must be released by the
application after use with a call to gss_delete_sec_context().

target_name: (gss_name_t, read) Name of target.

mech_type: (OID, read, optional) Object ID of desired mechanism. Supply
GSS_C_NO_OID to obtain an implementation specific default.

req-flags: (bit-mask, read) Contains various independent flags, each of which requests
that the context support a specific service option. Symbolic names are provided for
each flag, and the symbolic names corresponding to the required flags should be
logically-ORed together to form the bit-mask value. See below for the flags.

time_req: (Integer, read, optional) Desired number of seconds for which context
should remain valid. Supply 0 to request a default validity period.
input_chan_bindings: (channel bindings, read, optional) Application-specified bind-
ings. Allows application to securely bind channel identification information to the
security context. Specify GSS_.C_NO_CHANNEL_BINDINGS if channel bindings
are not used.

Chapter 3: Standard GSS API 26

input_token: (buffer, opaque, read, optional) Token received from peer applica-
tion. Supply GSS_C_NO_BUFFER, or a pointer to a buffer containing the value
GSS_C_EMPTY_BUFFER on initial call.

actual_mech_type: (OID, modify, optional) Actual mechanism used. The OID re-
turned via this parameter will be a pointer to static storage that should be treated as
read-only; In particular the application should not attempt to free it. Specify NULL
if not required.

output_token: (buffer, opaque, modify) Token to be sent to peer application. If the
length field of the returned buffer is zero, no token need be sent to the peer application.
Storage associated with this buffer must be freed by the application after use with a
call to gss_release_buffer().

ret_flags: (bit-mask, modify, optional) Contains various independent flags, each of
which indicates that the context supports a specific service option. Specify NULL
if not required. Symbolic names are provided for each flag, and the symbolic names
corresponding to the required flags should be logically-ANDed with the ret_flags value
to test whether a given option is supported by the context. See below for the flags.

time_rec: (Integer, modify, optional) Number of seconds for which the context will
remain valid. If the implementation does not support context expiration, the value
GSS_C_INDEFINITE will be returned. Specify NULL if not required.

Initiates the establishment of a security context between the application and a
remote peer. Initially, the input_token parameter should be specified either as
GSS_C_NO_BUFFER, or as a pointer to a gss_buffer_desc object whose length
field contains the value zero. The routine may return a output_token which should
be transferred to the peer application, where the peer application will present
it to gss_accept_sec_context. If no token need be sent, gss_init_sec_context will
indicate this by setting the length field of the output_token argument to zero. To
complete the context establishment, one or more reply tokens may be required
from the peer application; if so, gss_init_sec_context will return a status containing
the supplementary information bit GSS_-S_.CONTINUE_NEEDED. In this case,
gss_init_sec_context should be called again when the reply token is received from the
peer application, passing the reply token to gss_init_sec_context via the input_token
parameters.

Portable applications should be constructed to use the token length and return status
to determine whether a token needs to be sent or waited for. Thus a typical portable
caller should always invoke gss_init_sec_context within a loop:

int context_established = O;
gss_ctx_id_t context_hdl = GSS_C_NO_CONTEXT;

input_token->length = 0;

while (!context_established) {
maj_stat = gss_init_sec_context(&min_stat,
cred_hdl,
&context_hdl,
target_name,

Chapter 3: Standard GSS API 27

desired_mech,
desired_services,
desired_time,
input_bindings,
input_token,
&actual_mech,
output_token,
&actual_services,
&actual_time);
if (GSS_ERROR(maj_stat)) {
report_error (maj_stat, min_stat);

};

if (output_token->length != 0) {
send_token_to_peer (output_token) ;
gss_release_buffer(&min_stat, output_token)

3

if (GSS_ERROR(maj_stat)) {

if (context_hdl != GSS_C_NO_CONTEXT)
gss_delete_sec_context (&min_stat,
&context_hdl,
GSS_C_NO_BUFFER) ;
break;

s

if (maj_stat & GSS_S_CONTINUE_NEEDED) {
receive_token_from_peer (input_token) ;
} else {
context_established = 1;
+
};
Whenever the routine returns a major status that includes the value
GSS_S_CONTINUE_NEEDED, the context is not fully established and the following
restrictions apply to the output parameters:

e The value returned via the time_rec parameter is undefined unless the accom-
panying ret_flags parameter contains the bit GSS_.C_.PROT_READY_FLAG, in-
dicating that per-message services may be applied in advance of a successful
completion status, the value returned via the actual_mech_type parameter is
undefined until the routine returns a major status value of GSS_S_COMPLETE.

e The wvalues of the GSS_.C_DELEG_FLAG, GSS_.C_MUTUAL_FLAG,
GSS_C_REPLAY_FLAG, GSS_C_SEQUENCE_FLAG, GSS_C_CONF_FLAG,
GSS_C_INTEG_FLAG and GSS_.C_ANON_FLAG bits returned via the
ret_flags parameter should contain the values that the implementation expects
would be wvalid if context establishment were to succeed. In particular, if
the application has requested a service such as delegation or anonymous

Chapter 3: Standard GSS API 28

authentication via the req_flags argument, and such a service is unavailable
from the underlying mechanism, gss_init_sec_context should generate a token
that will not provide the service, and indicate via the ret_flags argument that
the service will not be supported. The application may choose to abort the
context establishment by calling gss_delete_sec_context (if it cannot continue in
the absence of the service), or it may choose to transmit the token and continue
context establishment (if the service was merely desired but not mandatory).

e The values of the GSS_.C_.PROT_READY_FLAG and GSS_.C_TRANS_FLAG
bits within ret_flags should indicate the actual state at the time
gss_init_sec_context returns, whether or not the context is fully established.

e GSS-API implementations that support per-message protection are encouraged
to set the GSS_.C_.PROT_READY _FLAG in the final ret_flags returned to a
caller (i.e. when accompanied by a GSS_S_COMPLETE status code). However,
applications should not rely on this behavior as the flag was not defined in Ver-
sion 1 of the GSS-API. Instead, applications should determine what per-message
services are available after a successful context establishment according to the
GSS_C_INTEG_FLAG and GSS_C_CONF_FLAG values.

e All other bits within the ret_flags argument should be set to zero.

If the initial call of gss_init_sec_context() fails, the implementation should not create
a context object, and should leave the value of the context_handle parameter set to
GSS_C_NO_CONTEXT to indicate this. In the event of a failure on a subsequent call,
the implementation is permitted to delete the "half-built" security context (in which
case it should set the context_handle parameter to GSS_.C_NO_CONTEXT), but the
preferred behavior is to leave the security context untouched for the application to
delete (using gss_delete_sec_context).

During context establishment, the informational status bits GSS_.S_OLD_TOKEN
and GSS_S_DUPLICATE_TOKEN indicate fatal errors, and GSS-API mechanisms
should always return them in association with a routine error of GSS_S_FAILURE.
This requirement for pairing did not exist in version 1 of the GSS-API specification,
so applications that wish to run over version 1 implementations must special-case
these codes.

The req_flags values:
GSS_C_DELEG_FLAG

e True - Delegate credentials to remote peer.

e False - Don’t delegate.
GSS_C_MUTUAL_FLAG

e True - Request that remote peer authenticate itself.

e False - Authenticate self to remote peer only.

GSS_C_REPLAY_FLAG

e True - Enable replay detection for messages protected with gss_wrap
or gss_get_mic.

e False - Don’t attempt to detect replayed messages.

Chapter 3: Standard GSS API 29

GSS_C_SEQUENCE_FLAG
e True - Enable detection of out-of-sequence protected messages.

e False - Don’t attempt to detect out-of-sequence messages.

GSS_C_CONF_FLAG
e True - Request that confidentiality service be made available (via
gss_wrap).
e False - No per-message confidentiality service is required.

GSS_C_INTEG_FLAG
e True - Request that integrity service be made available (via gss_wrap
or gss_get_mic).
e False - No per-message integrity service is required.
GSS_C_ANON_FLAG
e True - Do not reveal the initiator’s identity to the acceptor.
e False - Authenticate normally.
The ret_flags values:
GSS_C_DELEG_FLAG
e True - Credentials were delegated to the remote peer.
e False - No credentials were delegated.
GSS_C_MUTUAL_FLAG
e True - The remote peer has authenticated itself.
e False - Remote peer has not authenticated itself.
GSS_C_REPLAY_FLAG
e True - replay of protected messages will be detected.
e False - replayed messages will not be detected.
GSS_C_SEQUENCE_FLAG
e True - out-of-sequence protected messages will be detected.

e False - out-of-sequence messages will not be detected.

GSS_C_CONF_FLAG

e True - Confidentiality service may be invoked by calling gss_wrap
routine.

e False - No confidentiality service (via gss_wrap) available. gss_wrap
will provide message encapsulation, data-origin authentication and
integrity services only.

GSS_C_INTEG_FLAG

e True - Integrity service may be invoked by calling either gss_get_mic
or gss_wrap routines.

e False - Per-message integrity service unavailable.

GSS_C_ANON_FLAG

Chapter 3: Standard GSS API 30

e True - The initiator’s identity has not been revealed, and will not be
revealed if any emitted token is passed to the acceptor.

e False - The initiator’s identity has been or will be authenticated
normally.
GSS_C_PROT_READY_FLAG

e True - Protection services (as specified by the states of the
GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available
for use if the accompanying major status return value is either

GSS_S_.COMPLETE or GSS_S_.CONTINUE_NEEDED.

e False - Protection services (as specified by the states of
the GSS_C_CONF_FLAG and GSS_C_.INTEG_FLAG) are
available only if the accompanying major status return value is
GSS_S_.COMPLETE.

GSS_C_TRANS_FLAG
e True - The resultant security context may be transferred to other
processes via a call to gss_export_sec_context|().

e False - The security context is not transferable.

All other bits should be set to zero.

Return value:

GSS_S_COMPLETE: Successful completion.

GSS_S_CONTINUE_NEEDED: Indicates that a token from the peer application is required

to complete the context, and that gss_init_sec_context must be called again with that
token.

GSS_S_DEFECTIVE_TOKEN: Indicates that consistency checks performed on the in-
put_token failed.

GSS_S_DEFECTIVE_CREDENTIAL: Indicates that consistency checks performed on the
credential failed.

GSS_S_NO_CRED: The supplied credentials were not valid for context initiation, or the
credential handle did not reference any credentials.

GSS_S_CREDENTIALS_EXPIRED: The referenced credentials have expired.
GSS_S_BAD_BINDINGS: The input_token contains different channel bindings to those
specified via the input_chan_bindings parameter.

GSS_S_BAD_SIG: The input_token contains an invalid MIC, or a MIC that could not
be verified.

GSS_S_OLD_TOKEN: The input_token was too old. This is a fatal error during context
establishment.

GSS_S_DUPLICATE_TOKEN: The input_token is valid, but is a duplicate of a token
already processed. This is a fatal error during context establishment.
GSS_S_NO_CONTEXT: Indicates that the supplied context handle did not refer to a
valid context.

GSS_S_BAD_NAMETYPE: The provided target_name parameter contained an invalid or
unsupported type of name.

Chapter 3: Standard GSS API 31

GSS_S_BAD_NAME: The provided target_name parameter was ill-formed.

GSS_S_BAD_MECH: The specified mechanism is not supported by the provided creden-
tial, or is unrecognized by the implementation.

gss_accept_sec_context

OM_uint32 gss_accept_sec_context (OM_uint32 * minor_status, [Function]
gss_ctx_id_t * context_handle, const gss_cred_id_t
acceptor_cred_handle, const gss_buffer_t input_token_buffer, const
gss_channel_bindings_t input_chan_bindings, gss_name_t * src_name,
gss-OID * mech_type, gss_buffer_t output_token, OM_uint32 *
ret_flags, OM_uint32 * time_rec, gss_cred_id_t *
delegated_cred_handle)

minor_status: (Integer, modify) Mechanism specific status code.

context_handle: (gss_ctx_id_t, read/modify) Context handle for new context. Supply
GSS_C_NO_CONTEXT for first call; use value returned in subsequent calls. Once
gss_accept_sec_context() has returned a value via this parameter, resources have been
assigned to the corresponding context, and must be freed by the application after use
with a call to gss_delete_sec_context().

acceptor_cred_handle: (gss_cred_id_t, read) Credential handle claimed by context ac-
ceptor. Specify GSS_.C_NO_CREDENTIAL to accept the context as a default prin-
cipal. If GSS_.C_NO_CREDENTTAL is specified, but no default acceptor principal is
defined, GSS_S_NO_CRED will be returned.

input_token_buffer: (buffer, opaque, read) Token obtained from remote application.
input_chan_bindings: (channel bindings, read, optional) Application- specified
bindings. Allows application to securely bind channel identification infor-

mation to the security context. If channel bindings are not used, specify
GSS_C_NO_CHANNEL_BINDINGS.

src_name: (gss_name_t, modify, optional) Authenticated name of context initiator.
After use, this name should be deallocated by passing it to gss_release_name(). If not
required, specify NULL.

mech_type: (Object ID, modify, optional) Security mechanism used. The returned
OID value will be a pointer into static storage, and should be treated as read-only by
the caller (in particular, it does not need to be freed). If not required, specify NULL.

output_token: (buffer, opaque, modify) Token to be passed to peer application. If
the length field of the returned token buffer is 0, then no token need be passed to the
peer application. If a non- zero length field is returned, the associated storage must
be freed after use by the application with a call to gss_release_buffer().

ret_flags: (bit-mask, modify, optional) Contains various independent flags, each of
which indicates that the context supports a specific service option. If not needed,
specify NULL. Symbolic names are provided for each flag, and the symbolic names
corresponding to the required flags should be logically-ANDed with the ret_flags value
to test whether a given option is supported by the context. See below for the flags.

time_rec: (Integer, modify, optional) Number of seconds for which the context will
remain valid. Specify NULL if not required.

Chapter 3: Standard GSS API 32

delegated_cred_handle: (gss_cred_id_t, modify, optional credential) Handle for cre-
dentials received from context initiator. Only valid if deleg_flag in ret_flags is true,
in which case an explicit credential handle (i.e. not GSS_.C_NO_CREDENTIAL) will
be returned; if deleg_flag is false, gss_accept_sec_context() will set this parameter
to GSS_.C_NO_CREDENTIAL. If a credential handle is returned, the associated re-
sources must be released by the application after use with a call to gss_release_cred().
Specify NULL if not required.

Allows a remotely initiated security context between the application and a remote
peer to be established. The routine may return a output_token which should
be transferred to the peer application, where the peer application will present
it to gss_init_sec_context. If no token need be sent, gss_accept_sec_context will
indicate this by setting the length field of the output_token argument to zero. To
complete the context establishment, one or more reply tokens may be required
from the peer application; if so, gss_accept_sec_context will return a status
flag of GSS_S_CONTINUE_NEEDED, in which case it should be called again
when the reply token is received from the peer application, passing the token to
gss_accept_sec_context via the input_token parameters.

Portable applications should be constructed to use the token length and return status
to determine whether a token needs to be sent or waited for. Thus a typical portable
caller should always invoke gss_accept_sec_context within a loop:

gss_ctx_id_t context_hdl = GSS_C_NO_CONTEXT;

do {
receive_token_from_peer (input_token);
maj_stat = gss_accept_sec_context(&min_stat,
&context_hdl,
cred_hdl,
input_token,
input_bindings,
&client_name,
&mech_type,
output_token,
&ret_flags,
&time_rec,
&deleg_cred);
if (GSS_ERROR(maj_stat)) {
report_error (maj_stat, min_stat);
3
if (output_token->length != 0) {
send_token_to_peer (output_token) ;

gss_release_buffer(&min_stat, output_token);
3
if (GSS_ERROR(maj_stat)) {
if (context_hdl != GSS_C_NO_CONTEXT)
gss_delete_sec_context (&min_stat,

Chapter 3: Standard GSS API 33

&context_hdl,
GSS_C_NO_BUFFER) ;
break;
3
} while (maj_stat & GSS_S_CONTINUE_NEEDED) ;

Whenever the routine returns a major status that includes the value

GSS_S_CONTINUE_NEEDED, the context is not fully established and the following

restrictions apply to the output parameters:

The value returned via the time_rec parameter is undefined Unless the accompanying
ret_flags parameter contains the bit GSS_C_PROT_READY_FLAG, indicating that
per-message services may be applied in advance of a successful completion status,
the value returned via the mech_type parameter may be undefined until the routine
returns a major status value of GSS_S_.COMPLETE.

The values of the GSS_C_DELEG_FLAG, GSS_.C_.MUTUAL_FLAG,GSS_C_REPLAY_FLAG,
GSS_C_SEQUENCE_FLAG, GSS_C_CONF_FLAG,GSS_C_INTEG_FLAG and
GSS_C_ANON_FLAG bits returned via the ret_flags parameter should contain the

values that the implementation expects would be valid if context establishment were

to succeed.

The values of the GSS_.C_.PROT_READY_FLAG and GSS_C_TRANS_FLAG bits
within ret_flags should indicate the actual state at the time gss_accept_sec_context
returns, whether or not the context is fully established.

Although this requires that GSS-API implementations set the GSS_C_PROT_READY_FLAG
in the final ret_flags returned to a caller (i.e. when accompanied by a
GSS_S_COMPLETE status code), applications should not rely on this behavior as

the flag was not defined in Version 1 of the GSS-API. Instead, applications should

be prepared to use per-message services after a successful context establishment,
according to the GSS_C_INTEG_FLAG and GSS_C_CONF_FLAG values.

All other bits within the ret_flags argument should be set to zero. While the routine
returns GSS_S_CONTINUE_NEEDED, the values returned via the ret_flags argu-
ment indicate the services that the implementation expects to be available from the
established context.

If the initial call of gss_accept_sec_context() fails, the implementation should not
create a context object, and should leave the value of the context_handle parameter set
to GSS_C_NO_CONTEXT to indicate this. In the event of a failure on a subsequent
call, the implementation is permitted to delete the "half-built" security context (in
which case it should set the context_handle parameter to GSS_.C_.NO_CONTEXT),
but the preferred behavior is to leave the security context (and the context_handle
parameter) untouched for the application to delete (using gss_delete_sec_context).

During context establishment, the informational status bits GSS_.S_OLD_TOKEN
and GSS_S_DUPLICATE_TOKEN indicate fatal errors, and GSS-API mechanisms
should always return them in association with a routine error of GSS_S_FAILURE.
This requirement for pairing did not exist in version 1 of the GSS-API specification,
so applications that wish to run over version 1 implementations must special-case
these codes.

The ret_flags values:

Chapter 3: Standard GSS API 34

GSS_C_DELEG_FLAG

e True - Delegated credentials are available via the dele-
gated_cred_handle parameter.

e False - No credentials were delegated.

GSS_C_MUTUAL_FLAG
e True - Remote peer asked for mutual authentication.

e False - Remote peer did not ask for mutual authentication.

GSS_C_REPLAY_FLAG
e True - replay of protected messages will be detected.

e False - replayed messages will not be detected.

GSS_C_SEQUENCE_FLAG
e True - out-of-sequence protected messages will be detected.

e False - out-of-sequence messages will not be detected.

GSS_C_CONF_FLAG

e True - Confidentiality service may be invoked by calling the gss_wrap
routine.

e False - No confidentiality service (via gss_wrap) available. gss_wrap
will provide message encapsulation, data-origin authentication and
integrity services only.

GSS_C_INTEG_FLAG

e True - Integrity service may be invoked by calling either gss_get_mic
or gss_wrap routines.

e False - Per-message integrity service unavailable.

GSS_C_ANON_FLAG

e True - The initiator does not wish to be authenticated; the src_name
parameter (if requested) contains an anonymous internal name.

e False - The initiator has been authenticated normally.

GSS_C_PROT_READY_FLAG

e True - Protection services (as specified by the states of the
GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available
if the accompanying major status return value is either
GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED.

e False - Protection services (as specified by the states of
the GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are
available only if the accompanying major status return value is

GSS_S_.COMPLETE.
GSS_C_TRANS_FLAG

e True - The resultant security context may be transferred to other
processes via a call to gss_export_sec_context|().

Chapter 3: Standard GSS API 35

e False - The security context is not transferable.

All other bits should be set to zero.

Return value:

GSS_S_CONTINUE_NEEDED: Indicates that a token from the peer application is required
to complete the context, and that gss_accept_sec_context must be called again with
that token.

GSS_S_DEFECTIVE_TOKEN: Indicates that consistency checks performed on the in-
put_token failed.

GSS_S_DEFECTIVE_CREDENTIAL: Indicates that consistency checks performed on the
credential failed.

GSS_S_NO_CRED: The supplied credentials were not valid for context acceptance, or
the credential handle did not reference any credentials.

GSS_S_CREDENTIALS_EXPIRED: The referenced credentials have expired.

GSS_S_BAD_BINDINGS: The input_token contains different channel bindings to those
specified via the input_chan_bindings parameter.

GSS_S_NO_CONTEXT: Indicates that the supplied context handle did not refer to a
valid context.

GSS_S_BAD_SIG: The input_token contains an invalid MIC.

GSS_S_OLD_TOKEN: The input_token was too old. This is a fatal error during context
establishment.

GSS_S_DUPLICATE_TOKEN: The input_token is valid, but is a duplicate of a token
already processed. This is a fatal error during context establishment.

GSS_S_BAD_MECH: The received token specified a mechanism that is not supported by
the implementation or the provided credential.

gss_delete_sec_context

OM_uint32 gss_delete_sec_context (OM_uint32 * minor_status, [Function]
gss_ctx_id_t * context_handle, gss_buffer_t output_token)
minor_status: (Integer, modify) Mechanism specific status code.

context_handle: (gss_ctx_id_t, modify) Context handle identifying context to
delete. After deleting the context, the GSS-API will set this context handle to
GSS_-C_NO_CONTEXT.

output_token: (buffer, opaque, modify, optional) Token to be sent to remote appli-
cation to instruct it to also delete the context. It is recommended that applications
specify GSS_C_NO_BUFFER for this parameter, requesting local deletion only. If a
buffer parameter is provided by the application, the mechanism may return a token
in it; mechanisms that implement only local deletion should set the length field of
this token to zero to indicate to the application that no token is to be sent to the
peer.

Delete a security context. gss_delete_sec_context will delete the local data structures
associated with the specified security context, and may generate an output_token,
which when passed to the peer gss_process_context_token will instruct it to do like-
wise. If no token is required by the mechanism, the GSS-API should set the length

Chapter 3: Standard GSS API 36

field of the output_token (if provided) to zero. No further security services may be
obtained using the context specified by context_handle.

In addition to deleting established security contexts, gss_delete_sec_context must also
be able to delete "half-built" security contexts resulting from an incomplete sequence
of gss_init_sec_context()/gss_accept_sec_context() calls.

The output_token parameter is retained for compatibility with version 1 of the GSS-
API. It is recommended that both peer applications invoke gss_delete_sec_context
passing the value GSS_C_NO_BUFFER for the output_token parameter, indicating
that no token is required, and that gss_delete_sec_context should simply delete
local context data structures. If the application does pass a valid buffer to
gss_delete_sec_context, mechanisms are encouraged to return a zero-length token,
indicating that no peer action is necessary, and that no token should be transferred
by the application.

Return value:
GSS_S_COMPLETE: Successful completion.
GSS_S_NO_CONTEXT: No valid context was supplied.

gss_process_context_token

OM_uint32 gss_process_context_token (OM_uint32 * [Function]
minor_status, const gss_ctx_id_t context_handle, const gss_buffer_t
token_buffer)

minor_status: (Integer, modify) Implementation specific status code.

context_handle: (gss_ctx_id_t, read) Context handle of context on which token is to
be processed

token_buffer: (buffer, opaque, read) Token to process.

Provides a way to pass an asynchronous token to the security service. Most context-
level tokens are emitted and processed synchronously by gss_init_sec_context and
gss_accept_sec_context, and the application is informed as to whether further tokens
are expected by the GSS_.C_CONTINUE_NEEDED major status bit. Occasionally,
a mechanism may need to emit a context-level token at a point when the peer entity
is not expecting a token. For example, the initiator’s final call to gss_init_sec_context
may emit a token and return a status of GSS_S_COMPLETE, but the acceptor’s
call to gss_accept_sec_context may fail. The acceptor’s mechanism may wish to
send a token containing an error indication to the initiator, but the initiator is
not expecting a token at this point, believing that the context is fully established.
Gss_process_context_token provides a way to pass such a token to the mechanism at
any time.

Return value:
GSS_S_COMPLETE: Successful completion.

GSS_S_DEFECTIVE_TOKEN: Indicates that consistency checks performed on the token
failed.

GSS_S_NO_CONTEXT: The context_handle did not refer to a valid context.

Chapter 3: Standard GSS API 37

gss_context_time

OM_uint32 gss_context_time (OM_uint32 * minor_status, const [Function]
gss_ctx_id_t context_handle, OM_uint32 * time_rec)
minor_status: (Integer, modify) Implementation specific status code.

context_handle: (gss_ctx_id_t, read) Identifies the context to be interrogated.

time_rec: (Integer, modify) Number of seconds that the context will remain valid. If
the context has already expired, zero will be returned.

Determines the number of seconds for which the specified context will remain valid.
Return value:

GSS_S_COMPLETE: Successful completion.

GSS_S_CONTEXT_EXPIRED: The context has already expired.

GSS_S_NO_CONTEXT: The context_handle parameter did not identify a valid context

gss_inquire_context

OM_uint32 gss_inquire_context (OM_uint32 * minor_status, const [Function]
gss_ctx_id_t context_handle, gss_name_t * src_name, gss_name_t *
targ_name, OM_uint32 * lifetime_rec, gss-OID * mech_type,
OM_uint32 * ctx_flags, int * locally_initiated, int * open)

minor_status: (Integer, modify) Mechanism specific status code.

context_handle: (gss_ctx_id_t, read) A handle that refers to the security context.

src.name: (gss_name_t, modify, optional) The name of the context initiator. If the
context was established using anonymous authentication, and if the application invok-
ing gss_inquire_context is the context acceptor, an anonymous name will be returned.
Storage associated with this name must be freed by the application after use with a
call to gss_release_name(). Specify NULL if not required.

targ-name: (gss_name_t, modify, optional) The name of the context acceptor. Storage
associated with this name must be freed by the application after use with a call to
gss_release_name(). If the context acceptor did not authenticate itself, and if the
initiator did not specify a target name in its call to gss_init_sec_context(), the value
GSS_C_NO_NAME will be returned. Specify NULL if not required.

lifetime_rec: (Integer, modify, optional) The number of seconds for which the context
will remain valid. If the context has expired, this parameter will be set to zero. If the
implementation does not support context expiration, the value GSS_C_INDEFINITE
will be returned. Specify NULL if not required.

mech_type: (gss-OID, modify, optional) The security mechanism providing the con-
text. The returned OID will be a pointer to static storage that should be treated as
read-only by the application; in particular the application should not attempt to free
it. Specify NULL if not required.

ctx_flags: (bit-mask, modify, optional) Contains various independent flags, each of
which indicates that the context supports (or is expected to support, if ctx_open is
false) a specific service option. If not needed, specify NULL. Symbolic names are
provided for each flag, and the symbolic names corresponding to the required flags

Chapter 3: Standard GSS API 38

should be logically-ANDed with the ret_flags value to test whether a given option is
supported by the context. See below for the flags.

locally_initiated: (Boolean, modify) Non-zero if the invoking application is the context
initiator. Specify NULL if not required.

open: (Boolean, modify) Non-zero if the context is fully established; Zero if a context-
establishment token is expected from the peer application. Specify NULL if not
required.

Obtains information about a security context. The caller must already have obtained
a handle that refers to the context, although the context need not be fully established.

The ctx_flags values:

GSS_C_DELEG_FLAG
e True - Credentials were delegated from the initiator to the acceptor.

e False - No credentials were delegated.

GSS_C_MUTUAL_FLAG
e True - The acceptor was authenticated to the initiator.

e False - The acceptor did not authenticate itself.

GSS_C_REPLAY_FLAG
e True - replay of protected messages will be detected.

e False - replayed messages will not be detected.

GSS_C_SEQUENCE_FLAG
e True - out-of-sequence protected messages will be detected.

e False - out-of-sequence messages will not be detected.

GSS_C_CONF_FLAG

e True - Confidentiality service may be invoked by calling gss_wrap
routine.

e False - No confidentiality service (via gss_wrap) available. gss_wrap
will provide message encapsulation, data-origin authentication and
integrity services only.

GSS_C_INTEG_FLAG

e True - Integrity service may be invoked by calling either gss_get_mic
or gss_wrap routines.

e False - Per-message integrity service unavailable.

GSS_C_ANON_FLAG

e True - The initiator’s identity will not be revealed to the acceptor.
The src_name parameter (if requested) contains an anonymous in-
ternal name.

e False - The initiator has been authenticated normally.

GSS_C_PROT_READY_FLAG

Chapter 3: Standard GSS API 39

e True - Protection services (as specified by the states of the
GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available for
use.

e False - Protection services (as specified by the states of the
GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available
only if the context is fully established (i.e. if the open parameter is
non-zero).

GSS_C_TRANS_FLAG

e True - The resultant security context may be transferred to other
processes via a call to gss_export_sec_context/().

e False - The security context is not transferable.

Return value:
GSS_S_COMPLETE: Successful completion.
GSS_S_NO_CONTEXT: The referenced context could not be accessed.

gss_wrap-_size_limit

OM_uint32 gss_wrap_size_limit (OM_uint32 * minor_status, const [Function]
gss_ctx_id_t context_handle, int conf_req_flag, gss-qop-t qop_req,
OM_uint32 req_output_size, OM_uint32 * max_input_size)

minor_status: (Integer, modify) Mechanism specific status code.
context_handle: (gss_ctx_id_t, read) A handle that refers to the security over which
the messages will be sent.

conf-req_flag: (Boolean, read) Indicates whether gss_wrap will be asked to apply con-
fidentiality protection in addition to integrity protection. See the routine description
for gss_wrap for more details.

qop-req: (gss_qop-t, read) Indicates the level of protection that gss_wrap will be
asked to provide. See the routine description for gss_wrap for more details.

req_output_size: (Integer, read) The desired maximum size for tokens emitted by
gss_wrap.

max_input_size: (Integer, modify) The maximum input message size that may be
presented to gss_wrap in order to guarantee that the emitted token shall be no larger
than req_output_size bytes.

Allows an application to determine the maximum message size that, if presented to
gss_wrap with the same conf_req_flag and qop_req parameters, will result in an output
token containing no more than req_output_size bytes.

This call is intended for use by applications that communicate over protocols that
impose a maximum message size. It enables the application to fragment messages
prior to applying protection.

GSS-API implementations are recommended but not required to detect invalid QOP
values when gss_wrap_size_limit() is called. This routine guarantees only a maximum
message size, not the availability of specific QOP values for message protection.
Successful completion of this call does not guarantee that gss_wrap will be able to
protect a message of length max_input_size bytes, since this ability may depend on

Chapter 3: Standard GSS API 40

the availability of system resources at the time that gss_wrap is called. However,
if the implementation itself imposes an upper limit on the length of messages that
may be processed by gss_wrap, the implementation should not return a value via
max_input_bytes that is greater than this length.

Return value:

GSS_S_COMPLETE: Successful completion.

GSS_S_NO_CONTEXT: The referenced context could not be accessed.
GSS_S_CONTEXT_EXPIRED: The context has expired.

GSS_S_BAD_QOP: The specified QOP is not supported by the mechanism.

gss_export_sec_context

OM_uint32 gss_export_sec_context (OM_uint32 * minor_status, [Function]
gss_ctx_id_t * context_handle, gss_buffer_t interprocess_token)
minor_status: (Integer, modify) Mechanism specific status code.

context_handle: (gss_ctx_id_t, modify) Context handle identifying the context to
transfer.

interprocess_token: (buffer, opaque, modify) Token to be transferred to target process.
Storage associated with this token must be freed by the application after use with a
call to gss_release_buffer().

Provided to support the sharing of work between multiple processes. This routine will
typically be used by the context-acceptor, in an application where a single process
receives incoming connection requests and accepts security contexts over them, then
passes the established context to one or more other processes for message exchange.
gss_export_sec_context() deactivates the security context for the calling process and
creates an interprocess token which, when passed to gss_import_sec_context in another
process, will re-activate the context in the second process. Only a single instantiation
of a given context may be active at any one time; a subsequent attempt by a context
exporter to access the exported security context will fail.

The implementation may constrain the set of processes by which the interprocess
token may be imported, either as a function of local security policy, or as a result
of implementation decisions. For example, some implementations may constrain con-
texts to be passed only between processes that run under the same account, or which
are part of the same process group.

The interprocess token may contain security-sensitive information (for example cryp-
tographic keys). While mechanisms are encouraged to either avoid placing such sensi-
tive information within interprocess tokens, or to encrypt the token before returning it
to the application, in a typical object-library GSS-API implementation this may not
be possible. Thus the application must take care to protect the interprocess token,
and ensure that any process to which the token is transferred is trustworthy.

If creation of the interprocess token is successful, the implementation shall deallo-
cate all process-wide resources associated with the security context, and set the con-
text_handle to GSS_C_NO_CONTEXT. In the event of an error that makes it im-
possible to complete the export of the security context, the implementation must not
return an interprocess token, and should strive to leave the security context referenced

Chapter 3: Standard GSS API 41

by the context_handle parameter untouched. If this is impossible, it is permissible
for the implementation to delete the security context, providing it also sets the con-
text_handle parameter to GSS_.C_NO_CONTEXT.

Return value:

GSS_S_COMPLETE: Successful completion.

GSS_S_CONTEXT_EXPIRED: The context has expired.
GSS_S_NO_CONTEXT: The context was invalid.

GSS_S_UNAVAILABLE: The operation is not supported.

gss_import_sec_context

OM_uint32 gss_import_sec_context (OM_uint32 * minor_status, [Function]
const gss_buffer_.t interprocess_token, gss_ctx_id_t * context_handle)
minor_status: (Integer, modify) Mechanism specific status code.

interprocess_token: (buffer, opaque, modify) Token received from exporting process

context_handle: (gss_ctx_id_t, modify) Context handle of newly reactivated context.
Resources associated with this context handle must be released by the application
after use with a call to gss_delete_sec_context().

Allows a process to import a security context established by another process. A given
interprocess token may be imported only once. See gss_export_sec_context.

Return value:

GSS_S_COMPLETE: Successful completion.

GSS_S_NO_CONTEXT: The token did not contain a valid context reference.
GSS_S_DEFECTIVE_TOKEN: The token was invalid.

GSS_S_UNAVAILABLE: The operation is unavailable.

GSS_S_UNAUTHORIZED: Local policy prevents the import of this context by the current
process.

3.7 Per-Message Routines

GSS-API Per-message Routines

Routine Function

gss_get_mic Calculate a cryptographic message
integrity code (MIC) for a
message; integrity service.

gss_verify_mic Check a MIC against a message;
verify integrity of a received
message.

gss_wrap Attach a MIC to a message, and
optionally encrypt the message
content.
confidentiality service

gss_unwrap Verify a message with attached

Chapter 3: Standard GSS API 42

MIC, and decrypt message content
if necessary.

gss_get_mic

OM_uint32 gss_get_mic (OM_uint32 * minor_status, const [Function]
gss_ctx_id_t context_handle, gss_qop-t qop_req, const gss_buffer_t
message_buffer, gss_buffer_-t message_token)

minor_status: (Integer, modify) Mechanism specific status code.

context_handle: (gss_ctx_id_t, read) Identifies the context on which the message will
be sent.

qop_req: (gss_qop-t, read, optional) Specifies requested quality of protection.
Callers are encouraged, on portability grounds, to accept the default quality of
protection offered by the chosen mechanism, which may be requested by specifying
GSS_C_QOP_DEFAULT for this parameter. If an unsupported protection strength
is requested, gss_get_mic will return a major_status of GSS_S_BAD_QOP.

message_buffer: (buffer, opaque, read) Message to be protected.

message_token: (buffer, opaque, modify) Buffer to receive token. The appli-
cation must free storage associated