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1 Overview

This manual is a detailed description of the MIT/GNU Scheme runtime system. It is
intended to be a reference document for programmers. It does not describe how to run
Scheme or how to interact with it — that is the subject of the MIT/GNU Scheme User’s
Manual.

This chapter summarizes the semantics of Scheme, briefly describes the MIT/GNU
Scheme programming environment, and explains the syntactic and lexical conventions of
the language. Subsequent chapters describe special forms, numerous data abstractions, and
facilities for input and output.

Throughout this manual, we will make frequent references to standard Scheme, which
is the language defined by the document Revised~4 Report on the Algorithmic Language
Scheme, by William Clinger, Jonathan Rees, et al., or by IEEE Std. 1178-1990, IEEE Stan-
dard for the Scheme Programming Language (in fact, several parts of this document are
copied from the Revised Report). MIT/GNU Scheme is an extension of standard Scheme.

These are the significant semantic characteristics of the Scheme language:

Variables are statically scoped
Scheme is a statically scoped programming language, which means that each
use of a variable is associated with a lexically apparent binding of that variable.
Algol is another statically scoped language.

Types are latent
Scheme has latent types as opposed to manifest types, which means that Scheme
associates types with values (or objects) rather than with variables. Other
languages with latent types (also referred to as weakly typed or dynamically
typed languages) include APL, Snobol, and other dialects of Lisp. Languages
with manifest types (sometimes referred to as strongly typed or statically typed
languages) include Algol 60, Pascal, and C.

Objects have unlimited extent
All objects created during a Scheme computation, including procedures and
continuations, have unlimited extent; no Scheme object is ever destroyed. The
system doesn’t run out of memory because the garbage collector reclaims the
storage occupied by an object when the object cannot possibly be needed by
a future computation. Other languages in which most objects have unlimited
extent include APL and other Lisp dialects.

Proper tail recursion
Scheme is properly tail-recursive, which means that iterative computation can
occur in constant space, even if the iterative computation is described by a syn-
tactically recursive procedure. With a tail-recursive implementation, you can
express iteration using the ordinary procedure-call mechanics; special iteration
expressions are provided only for syntactic convenience.

Procedures are objects
Scheme procedures are objects, which means that you can create them dy-
namically, store them in data structures, return them as the results of other
procedures, and so on. Other languages with such procedure objects include
Common Lisp and ML.
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Continuations are explicit
In most other languages, continuations operate behind the scenes. In Scheme,
continuations are objects; you can use continuations for implementing a variety
of advanced control constructs, including non-local exits, backtracking, and
coroutines.

Arguments are passed by value
Arguments to Scheme procedures are passed by value, which means that Scheme
evaluates the argument expressions before the procedure gains control, whether
or not the procedure needs the result of the evaluations. ML, C, and APL
are three other languages that pass arguments by value. In languages such as
SASL and Algol 60, argument expressions are not evaluated unless the values
are needed by the procedure.

Scheme uses a parenthesized-list Polish notation to describe programs and (other) data.
The syntax of Scheme, like that of most Lisp dialects, provides for great expressive power,
largely due to its simplicity. An important consequence of this simplicity is the susceptibility
of Scheme programs and data to uniform treatment by other Scheme programs. As with
other Lisp dialects, the read primitive parses its input; that is, it performs syntactic as well
as lexical decomposition of what it reads.

1.1 Notational Conventions

This section details the notational conventions used throughout the rest of this document.

1.1.1 Errors

When this manual uses the phrase “an error will be signalled,” it means that Scheme will
call error, which normally halts execution of the program and prints an error message.

When this manual uses the phrase “it is an error,” it means that the specified action is
not valid in Scheme, but the system may or may not signal the error. When this manual
says that something “must be,” it means that violating the requirement is an error.

1.1.2 Examples

This manual gives many examples showing the evaluation of expressions. The examples
have a common format that shows the expression being evaluated on the left hand side, an
“arrow” in the middle, and the value of the expression written on the right. For example:
(+12) = 3
Sometimes the arrow and value will be moved under the expression, due to lack of space.

Occasionally we will not care what the value is, in which case both the arrow and the value
are omitted.

If an example shows an evaluation that results in an error, an error message is shown,
prefaced by ° "
(+ 1 ’foo) Illegal datum
An example that shows printed output marks it with 4 ’:
(begin (write ’foo) ’bar)
- foo
= bar
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When this manual indicates that the value returned by some expression is unspecified,
it means that the expression will evaluate to some object without signalling an error, but
that programs should not depend on the value in any way.

1.1.3 Entry Format

Each description of an MIT/GNU Scheme variable, special form, or procedure begins with
one or more header lines in this format:

template [category]
where category specifies the kind of item (“variable”, “special form”, or “procedure”). The
form of template is interpreted depending on category.

Variable Template consists of the variable’s name.

Parameter Template consists of the parameter’s name. See Section 2.3 [Dynamic Binding],
page 18, and Section 10.3 [Parameters|, page 139, for more information.

Special Form
Template starts with the syntactic keyword of the special form, followed by a
description of the special form’s syntax. The description is written using the
following conventions.

Named components are italicized in the printed manual, and uppercase in the
Info file. “Noise” keywords, such as the else keyword in the cond special form,
are set in a fixed width font in the printed manual; in the Info file they are not
distinguished. Parentheses indicate themselves.

A horizontal ellipsis (. ..) is describes repeated components. Specifically,
thing . ..

indicates zero or more occurrences of thing, while
thing thing . ..

indicates one or more occurrences of thing.

Brackets, [ ], enclose optional components.

Several special forms (e.g. lambda) have an internal component consisting of a
series of expressions; usually these expressions are evaluated sequentially un-
der conditions that are specified in the description of the special form. This
sequence of expressions is commonly referred to as the body of the special form.

Procedure Template starts with the name of the variable to which the procedure is bound,
followed by a description of the procedure’s arguments. The arguments are
described using “lambda list” notation (see Section 2.1 [Lambda Expressions],
page 15), except that brackets are used to denote optional arguments, and
ellipses are used to denote “rest” arguments.

The names of the procedure’s arguments are italicized in the printed manual,
and uppercase in the Info file.

When an argument names a Scheme data type, it indicates that the argument
must be that type of data object. For example,
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cdr pair [procedure]
indicates that the standard Scheme procedure cdr takes one argument, which
must be a pair.

Many procedures signal an error when an argument is of the wrong type; usually
this error is a condition of type condition-type:wrong-type-argument.

In addition to the standard data-type names (pair, list, boolean, string, etc.),
the following names as arguments also imply type restrictions:

e object: any object

e thunk: a procedure of no arguments
e x, y: real numbers

e (, n: integers

e k: an exact non-negative integer

Some examples:

list object ... [procedure]
indicates that the standard Scheme procedure list takes zero or more arguments, each of
which may be any Scheme object.

write-char char [output-port] [procedure]
indicates that the standard Scheme procedure write-char must be called with a character,
char, and may also be called with a character and an output port.

1.2 Scheme Concepts

1.2.1 Variable Bindings

Any identifier that is not a syntactic keyword may be used as a variable (see Section 1.3.3
[Identifiers], page 10). A variable may name a location where a value can be stored. A
variable that does so is said to be bound to the location. The value stored in the location
to which a variable is bound is called the variable’s value. (The variable is sometimes said
to name the value or to be bound to the value.)

A variable may be bound but still not have a value; such a variable is said to be unas-
signed. Referencing an unassigned variable is an error. When this error is signalled, it is
a condition of type condition-type:unassigned-variable; sometimes the compiler does
not generate code to signal the error. Unassigned variables are useful only in combination
with side effects (see Section 2.5 [Assignments], page 22).

1.2.2 Environment Concepts

An environment is a set of variable bindings. If an environment has no binding for a variable,
that variable is said to be unbound in that environment. Referencing an unbound variable
signals a condition of type condition-type:unbound-variable.

A new environment can be created by extending an existing environment with a set of
new bindings. Note that “extending an environment” does not modify the environment;
rather, it creates a new environment that contains the new bindings and the old ones. The
new bindings shadow the old ones; that is, if an environment that contains a binding for x
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is extended with a new binding for x, then only the new binding is seen when x is looked
up in the extended environment. Sometimes we say that the original environment is the
parent of the new one, or that the new environment is a child of the old one, or that the
new environment inherits the bindings in the old one.

Procedure calls extend an environment, as do let, let*, letrec, and do expressions.
Internal definitions (see Section 2.4.2 [Internal Definitions], page 22) also extend an envi-
ronment. (Actually, all the constructs that extend environments can be expressed in terms
of procedure calls, so there is really just one fundamental mechanism for environment ex-
tension.) A top-level definition (see Section 2.4.1 [Top-Level Definitions], page 21) may add
a binding to an existing environment.

1.2.3 Initial and Current Environments

MIT/GNU Scheme provides an initial environment that contains all of the variable bind-
ings described in this manual. Most environments are ultimately extensions of this initial
environment. In Scheme, the environment in which your programs execute is actually a
child (extension) of the environment containing the system’s bindings. Thus, system names
are visible to your programs, but your names do not interfere with system programs.

The environment in effect at some point in a program is called the current environment
at that point. In particular, every REP loop has a current environment. (REP stands for
“read-eval-print”; the REP loop is the Scheme program that reads your input, evaluates it,
and prints the result.) The environment of the top-level REP loop (the one you are in when
Scheme starts up) starts as user-initial-environment, although it can be changed by
the ge procedure. When a new REP loop is created, its environment is determined by the
program that creates it.

1.2.4 Static Scoping

Scheme is a statically scoped language with block structure. In this respect, it is like Algol
and Pascal, and unlike most other dialects of Lisp except for Common Lisp.

The fact that Scheme is statically scoped (rather than dynamically bound) means that
the environment that is extended (and becomes current) when a procedure is called is the
environment in which the procedure was created (i.e. in which the procedure’s defining
lambda expression was evaluated), not the environment in which the procedure is called.
Because all the other Scheme binding expressions can be expressed in terms of procedures,
this determines how all bindings behave.

Consider the following definitions, made at the top-level REP loop (in the initial envi-
ronment):

(define x 1)

(define (f x) (g 2))

(define (g y) (+ x y))

(f 5) = 3 :mnot 7

Here £ and g are bound to procedures created in the initial environment. Because Scheme
is statically scoped, the call to g from f extends the initial environment (the one in which
g was created) with a binding of y to 2. In this extended environment, y is 2 and x is 1.
(In a dynamically bound Lisp, the call to g would extend the environment in effect during
the call to £, in which x is bound to 5 by the call to f, and the answer would be 7.)
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Note that with static scoping, you can tell what binding a variable reference refers
to just from looking at the text of the program; the referenced binding cannot depend
on how the program is used. That is, the nesting of environments (their parent-child
relationship) corresponds to the nesting of binding expressions in program text. (Because
of this connection to the text of the program, static scoping is also called lexical scoping.)
For each place where a variable is bound in a program there is a corresponding region
of the program text within which the binding is effective. For example, the region of a
binding established by a lambda expression is the entire body of the lambda expression.
The documentation of each binding expression explains what the region of the bindings it
makes is. A use of a variable (that is, a reference to or assignment of a variable) refers to
the innermost binding of that variable whose region contains the variable use. If there is no
such region, the use refers to the binding of the variable in the global environment (which
is an ancestor of all other environments, and can be thought of as a region in which all your
programs are contained).

1.2.5 True and False

In Scheme, the boolean values true and false are denoted by #t and #f. However, any
Scheme value can be treated as a boolean for the purpose of a conditional test. This
manual uses the word true to refer to any Scheme value that counts as true, and the word
false to refer to any Scheme value that counts as false. In conditional tests, all values count
as true except for #f, which counts as false (see Section 2.7 [Conditionals], page 24).

1.2.6 External Representations

An important concept in Scheme is that of the external representation of an object as
a sequence of characters. For example, an external representation of the integer 28 is the
sequence of characters ‘28’ and an external representation of a list consisting of the integers
8 and 13 is the sequence of characters ‘(8 13)’.

The external representation of an object is not necessarily unique. The integer 28 also
has representations ‘#e28.000’ and ‘#x1c’, and the list in the previous paragraph also has
the representations ‘( 08 13 )’ and ‘(8 . (13 . ()))’.

Many objects have standard external representations, but some, such as procedures
and circular data structures, do not have standard representations (although particular
implementations may define representations for them).

An external representation may be written in a program to obtain the corresponding
object (see Section 2.6 [Quoting], page 23).

External representations can also be used for input and output. The procedure read
parses external representations, and the procedure write generates them. Together, they
provide an elegant and powerful input/output facility.

Note that the sequence of characters ‘(+ 2 6)’ is not an external representation of the
integer 8, even though it is an expression that evaluates to the integer 8; rather, it is an
external representation of a three-element list, the elements of which are the symbol + and
the integers 2 and 6. Scheme’s syntax has the property that any sequence of characters
that is an expression is also the external representation of some object. This can lead to
confusion, since it may not be obvious out of context whether a given sequence of characters
is intended to denote data or program, but it is also a source of power, since it facilitates
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writing programs such as interpreters and compilers that treat programs as data or data as
programs.

1.2.7 Disjointness of Types

Every object satisfies at most one of the following predicates (but see Section 1.2.5 [True
and False], page 8, for an exception):

bit-string? environment? port? symbol?
boolean? null? procedure? vector?
cell? number? promise? weak-pair?
char? pair? string?

condition?

1.2.8 Storage Model

This section describes a model that can be used to understand Scheme’s use of storage.

Variables and objects such as pairs, vectors, and strings implicitly denote locations or
sequences of locations. A string, for example, denotes as many locations as there are
characters in the string. (These locations need not correspond to a full machine word.) A
new value may be stored into one of these locations using the string-set! procedure, but
the string continues to denote the same locations as before.

An object fetched from a location, by a variable reference or by a procedure such as car,
vector-ref, or string-ref, is equivalent in the sense of eqv? to the object last stored in
the location before the fetch.

Every location is marked to show whether it is in use. No variable or object ever refers
to a location that is not in use. Whenever this document speaks of storage being allocated
for a variable or object, what is meant is that an appropriate number of locations are chosen
from the set of locations that are not in use, and the chosen locations are marked to indicate
that they are now in use before the variable or object is made to denote them.

In many systems it is desirable for constants (i.e. the values of literal expressions) to
reside in read-only memory. To express this, it is convenient to imagine that every object
that denotes locations is associated with a flag telling whether that object is mutable or
immutable. The constants and the strings returned by symbol->string are then the im-
mutable objects, while all objects created by other procedures are mutable. It is an error to
attempt to store a new value into a location that is denoted by an immutable object. Note
that the MIT/GNU Scheme compiler takes advantage of this property to share constants,
but that these constants are not immutable. Instead, two constants that are equal? may
be eq? in compiled code.

1.3 Lexical Conventions

This section describes Scheme’s lexical conventions.

1.3.1 Whitespace

Whitespace characters are spaces, newlines, tabs, and page breaks. Whitespace is used to
improve the readability of your programs and to separate tokens from each other, when nec-
essary. (A token is an indivisible lexical unit such as an identifier or number.) Whitespace
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is otherwise insignificant. Whitespace may occur between any two tokens, but not within a
token. Whitespace may also occur inside a string, where it is significant.

1.3.2 Delimiters
All whitespace characters are delimiters. In addition, the following characters act as delim-
iters:

(G

Finally, these next characters act as delimiters, despite the fact that Scheme does not
define any special meaning for them:

L 1 {1}
For example, if the value of the variable name is "max":
(1ist"Hi"name(+ 1 2)) = ("Hi" "max" 3)

1.3.3 Identifiers

An identifier is a sequence of one or more non-delimiter characters. Identifiers are used in
several ways in Scheme programs:

e An identifier can be used as a variable or as a syntactic keyword.

e When an identifier appears as a literal or within a literal, it denotes a symbol.

Scheme accepts most of the identifiers that other programming languages allow.
MIT/GNU Scheme allows all of the identifiers that standard Scheme does, plus many
more.

MIT/GNU Scheme defines a potential identifier to be a sequence of non-delimiter char-
acters that does not begin with either of the characters ‘4’ or *,’. Any such sequence of
characters that is not a syntactically valid number (see Chapter 4 [Numbers], page 61) is
considered to be a valid identifier. Note that, although it is legal for ‘#’ and *,’ to appear

in an identifier (other than in the first character position), it is poor programming practice.

Here are some examples of identifiers:

lambda q
list->vector soup

+ Vi7a

<=7 a34kTMNs

the-word-recursion-has-many-meanings

1.3.4 Uppercase and Lowercase

Scheme doesn’t distinguish uppercase and lowercase forms of a letter except within character
and string constants; in other words, Scheme is case-insensitive. For example, ‘Foo’ is the
same identifier as ‘FO0’, and ‘#x1AB’ is the same number as ‘#X1ab’. But ‘#\a’ and ‘#\A’
are different characters.

1.3.5 Naming Conventions
A predicate is a procedure that always returns a boolean value (#t or #f). By convention,
predicates usually have names that end in ‘7 .

A mutation procedure is a procedure that alters a data structure. By convention, mu-
tation procedures usually have names that end in ‘!’.
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1.3.6 Comments

The beginning of a comment is indicated with a semicolon (;). Scheme ignores everything
on a line in which a semicolon appears, from the semicolon until the end of the line. The
entire comment, including the newline character that terminates it, is treated as whitespace.

An alternative form of comment (sometimes called an extended comment) begins with
the characters ‘#|’ and ends with the characters ‘|#’. This alternative form is an MIT/GNU
Scheme extension. As with ordinary comments, all of the characters in an extended com-
ment, including the leading ‘#|’ and trailing ‘|#’, are treated as whitespace. Comments
of this form may extend over multiple lines, and additionally may be nested (unlike the
comments of the programming language C, which have a similar syntax).

;55 This is a comment about the FACT procedure. Scheme
;55 ignores all of this comment. The FACT procedure computes
;55 the factorial of a non-negative integer.

#|

This is an extended comment.

Such comments are useful for commenting out code fragments.
| #

(define fact

(lambda (n)
(if (= n 0) ;This is another comment:
1 ;Base case: return 1

(x n (fact (- n 1))))))
1.3.7 Additional Notations

The following list describes additional notations used in Scheme. See Chapter 4 [Numbers],
page 61, for a description of the notations used for numbers.

+- . The plus sign, minus sign, and period are used in numbers, and may also occur
in an identifier. A delimited period (not occurring within a number or identifier)
is used in the notation for pairs and to indicate a “rest” parameter in a formal
parameter list (see Section 2.1 [Lambda Expressions|, page 15).

) Parentheses are used for grouping and to notate lists (see Chapter 7 [Lists],
page 111).
" The double quote delimits strings (see Chapter 6 [Strings], page 89).

\ The backslash is used in the syntax for character constants (see Chapter 5
[Characters], page 81) and as an escape character within string constants (see
Chapter 6 [Strings|, page 89).

; The semicolon starts a comment.

’ The single quote indicates literal data; it suppresses evaluation (see Section 2.6
[Quoting], page 23).

‘ The backquote indicates almost-constant data (see Section 2.6 [Quoting],
page 23).
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#t #f

#\

#(
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The comma is used in conjunction with the backquote (see Section 2.6 [Quoting],
page 23).

A comma followed by an at-sign is used in conjunction with the backquote (see
Section 2.6 [Quoting], page 23).

The sharp (or pound) sign has different uses, depending on the character that
immediately follows it:

These character sequences denote the boolean constants (see Section 10.1
[Booleans|, page 135).

This character sequence introduces a character constant (see Chapter 5 [Char-
acters|, page 81).

This character sequence introduces a vector constant (see Chapter 8 [Vectors],
page 127). A close parenthesis, )’, terminates a vector constant.

#e #1 #b #o #d #1 #s #x

#|

H#x

#[

#0

##

These character sequences are used in the notation for numbers (see Chapter 4
[Numbers|, page 61).

This character sequence introduces an extended comment. The comment is
terminated by the sequence ¢ |#’. This notation is an MIT/GNU Scheme exten-
sion.

This character sequence is used to denote a small set of named constants. Cur-
rently there are only two of these, #!optional and #!rest, both of which are
used in the lambda special form to mark certain parameters as being “optional”
or “rest” parameters. This notation is an MIT/GNU Scheme extension.

This character sequence introduces a bit string (see Chapter 9 [Bit Strings],
page 131). This notation is an MIT/GNU Scheme extension.

This character sequence is used to denote objects that do not have a readable
external representation (see Section 14.10 [Custom Output], page 208). A close
bracket, ‘], terminates the object’s notation. This notation is an MIT/GNU
Scheme extension.

This character sequence is a convenient shorthand used to refer to objects by
their hash number (see Section 14.10 [Custom Output|, page 208). This nota-
tion is an MIT/GNU Scheme extension.

These character sequences introduce a notation used to show circular structures
in printed output, or to denote them in input. The notation works much like
that in Common Lisp, and is an MIT/GNU Scheme extension.

1.4 Expressions

A Scheme expression is a construct that returns a value. An expression may be a literal, a
variable reference, a special form, or a procedure call.



Chapter 1: Overview 13

1.4.1 Literal Expressions

Literal constants may be written by using an external representation of the data. In general,
the external representation must be quoted (see Section 2.6 [Quoting], page 23); but some
external representations can be used without quotation.

llabcll :> llabcll
145932 = 145932
#t = #t

#\a = #\a

The external representation of numeric constants, string constants, character constants,
and boolean constants evaluate to the constants themselves. Symbols, pairs, lists, and
vectors require quoting.

1.4.2 Variable References

An expression consisting of an identifier (see Section 1.3.3 [Identifiers|, page 10) is a variable
reference; the identifier is the name of the variable being referenced. The value of the
variable reference is the value stored in the location to which the variable is bound. An
error is signalled if the referenced variable is unbound or unassigned.

(define x 28)

X = 28

1.4.3 Special Form Syntax

(keyword component ...)

A parenthesized expression that starts with a syntactic keyword is a special form. Each
special form has its own syntax, which is described later in the manual.

Note that syntactic keywords and variable bindings share the same namespace. A local
variable binding may shadow a syntactic keyword, and a local syntactic-keyword definition
may shadow a variable binding.

The following list contains all of the syntactic keywords that are defined when MIT/GNU
Scheme is initialized:

access and begin

case cond cons-stream

declare define

define-integrable define-structure define-syntax

delay do er-macro-transformer

fluid-let if lambda

let let* let*-syntax

let-syntax letrec letrec-syntax

local-declare named-lambda non-hygienic-macro-
transformer

or quasiquote quote

rsc-macro-transformer sc-macro-transformer set!

syntax-rules the-environment

1.4.4 Procedure Call Syntax

(operator operand ...)
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A procedure call is written by simply enclosing in parentheses expressions for the proce-
dure to be called (the operator) and the arguments to be passed to it (the operands). The
operator and operand expressions are evaluated and the resulting procedure is passed the
resulting arguments. See Section 2.1 [Lambda Expressions|, page 15, for a more complete
description of this.

Another name for the procedure call expression is combination. This word is more
specific in that it always refers to the expression; “procedure call” sometimes refers to the
process of calling a procedure.

Unlike some other dialects of Lisp, Scheme always evaluates the operator expression
and the operand expressions with the same evaluation rules, and the order of evaluation is
unspecified.

(+ 34) = 7
((if #f = %) 3 4) = 12
A number of procedures are available as the values of variables in the initial environment;

for example, the addition and multiplication procedures in the above examples are the values
of the variables + and *. New procedures are created by evaluating lambda expressions.

If the operator is a syntactic keyword, then the expression is not treated as a procedure
call: it is a special form.
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2 Special Forms

A special form is an expression that follows special evaluation rules. This chapter describes
the basic Scheme special forms.

2.1 Lambda Expressions

lambda formals expression expression . . . [special form)]
A lambda expression evaluates to a procedure. The environment in effect when the
lambda expression is evaluated is remembered as part of the procedure; it is called
the closing environment. When the procedure is later called with some arguments,
the closing environment is extended by binding the variables in the formal parameter
list to fresh locations, and the locations are filled with the arguments according to
rules about to be given. The new environment created by this process is referred to
as the invocation environment.

Once the invocation environment has been constructed, the expressions in the body
of the 1lambda expression are evaluated sequentially in it. This means that the region
of the variables bound by the lambda expression is all of the expressions in the body.
The result of evaluating the last expression in the body is returned as the result of
the procedure call.

Formals, the formal parameter list, is often referred to as a lambda list.

The process of matching up formal parameters with arguments is somewhat involved.
There are three types of parameters, and the matching treats each in sequence:

Required  All of the required parameters are matched against the arguments first.
If there are fewer arguments than required parameters, an error of type
condition-type:wrong-number-of-arguments is signalled; this error is
also signalled if there are more arguments than required parameters and
there are no further parameters.

Optional  Once the required parameters have all been matched, the optional param-
eters are matched against the remaining arguments. If there are fewer ar-
guments than optional parameters, the unmatched parameters are bound
to special objects called default objects. If there are more arguments
than optional parameters, and there are no further parameters, an error
of type condition-type:wrong-number-of-arguments is signalled.

The predicate default-object?, which is true only of default objects,
can be used to determine which optional parameters were supplied, and
which were defaulted.

Rest Finally, if there is a rest parameter (there can only be one), any remaining
arguments are made into a list, and the list is bound to the rest parameter.
(If there are no remaining arguments, the rest parameter is bound to the
empty list.)
In Scheme, unlike some other Lisp implementations, the list to which a
rest parameter is bound is always freshly allocated. It has infinite extent
and may be modified without affecting the procedure’s caller.
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Specially recognized keywords divide the formals parameters into these three classes.
The keywords used here are ‘#!optional’, ‘.’ and ‘#!rest’. Note that only ‘.’ is
defined by standard Scheme — the other keywords are MIT /GNU Scheme extensions.

‘#!'rest’ has the same meaning as ‘.’ in formals.

The use of these keywords is best explained by means of examples. The following
are typical lambda lists, followed by descriptions of which parameters are required,
optional, and rest. We will use ‘#!rest’ in these examples, but anywhere it appears
‘.7 could be used instead.

(abc) a, b, and c are all required. The procedure must be passed exactly three
arguments.

(a b #'!'optional c)
a and b are required, c is optional. The procedure may be passed either
two or three arguments.

(#!optional a b c)
a, b, and c are all optional. The procedure may be passed any number
of arguments between zero and three, inclusive.

a

(#'rest a)
These two examples are equivalent. a is a rest parameter. The procedure
may be passed any number of arguments. Note: this is the only case in
which ‘.’ cannot be used in place of ‘#!rest’.

(a b #'optional c d #!rest e)
a and b are required, ¢ and d are optional, and e is rest. The procedure
may be passed two or more arguments.

Some examples of lambda expressions:

(lambda (x) (+ x x)) = #[compound-procedure 53]
((lambda (x) (+ x x)) 4) = 8

(define reverse-subtract
(lambda (x y)
-y x)))
(reverse-subtract 7 10) = 3

(define foo
(let ((x 4))
(lambda (y) (+ x y))))
(foo 6) = 10

named-lambda formals expression expression . . . [special form)]

The named-lambda special form is similar to lambda, except that the first “required
parameter” in formals is not a parameter but the name of the resulting procedure; thus
formals must have at least one required parameter. This name has no semantic mean-
ing, but is included in the external representation of the procedure, making it useful
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for debugging. In MIT/GNU Scheme, lambda is implemented as named-lambda, with
a special name that means “unnamed”.

(named-lambda (f x) (+ x x)) = #[compound-procedure 53 f]
((named-lambda (f x) (+ x x)) 4) = 8

2.2 Lexical Binding

The three binding constructs let, let*, and letrec, give Scheme block structure. The
syntax of the three constructs is identical, but they differ in the regions they establish for
their variable bindings. In a let expression, the initial values are computed before any
of the variables become bound. In a let* expression, the evaluations and bindings are
sequentially interleaved. And in a letrec expression, all the bindings are in effect while
the initial values are being computed (thus allowing mutually recursive definitions).

let ((variable init) ...) expression expression . . . [special form)]
The inits are evaluated in the current environment (in some unspecified order), the
variables are bound to fresh locations holding the results, the expressions are evalu-
ated sequentially in the extended environment, and the value of the last expression is
returned. Each binding of a variable has the expressions as its region.

MIT/GNU Scheme allows any of the inits to be omitted, in which case the corre-
sponding variables are unassigned.

Note that the following are equivalent:

(let ((variable init) ...) expression expression ...)
((lambda (variable ...) expression expression ...) init ...)

Some examples:

(let ((x 2) (y 30
(x x y)) = 6

(let ((x 2) (y 3))
(let ((foo (lambda (z) (+ x y 2)))
(x 7))
(foo 4))) = 9

See Section 2.9 [Iteration]|, page 28, for information on “named let”.

let* ((variable init) ...) expression expression . . . [special form)]
let* is similar to let, but the bindings are performed sequentially from left to right,
and the region of a binding is that part of the let* expression to the right of the
binding. Thus the second binding is done in an environment in which the first binding
is visible, and so on.

Note that the following are equivalent:

(let* ((variablel init1)
(variable2 init2)

(variableN initQ))
expression
expression ...)
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(let ((variablel init1))
(let ((variable2 init2))

(let ((variableN initN))
expression
expression ...)

co))

An example:

(let ((x 2) (y 3))
(letx ((x 7)

(z (+ x )
(x z x))) = 70
letrec ((variable init) ...) expression expression . . . [special form]

The variables are bound to fresh locations holding unassigned values, the inits are
evaluated in the extended environment (in some unspecified order), each variable is
assigned to the result of the corresponding init, the expressions are evaluated sequen-
tially in the extended environment, and the value of the last expression is returned.
Each binding of a variable has the entire letrec expression as its region, making it
possible to define mutually recursive procedures.

MIT/GNU Scheme allows any of the inits to be omitted, in which case the corre-
sponding variables are unassigned.

(letrec ((even?
(lambda (n)
(if (zero? n)
#t
(0dd? (- n 1))
(odd?
(lambda (n)
(if (zero? n)
#f
(even? (- n 1))))))
(even? 88)) = #t

One restriction on letrec is very important: it shall be possible to evaluated each
init without assigning or referring to the value of any variable. If this restriction
is violated, then it is an error. The restriction is necessary because Scheme passes
arguments by value rather than by name. In the most common uses of letrec, all the
inits are lambda or delay expressions and the restriction is satisfied automatically.

2.3 Dynamic Binding

parameterize ((parameter value) ...) expression expression . . . [special form)]

Note that both parameter and value are expressions. It is an error if the value of any
parameter expression is not a parameter object.
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A parameterize expression is used to change the values of specified parameter objects
during the evaluation of the body expressions.

The parameter and value expressions are evaluated in an unspecified order. The body
is evaluated in a dynamic environment in which each parameter is bound to the con-
verted value—the result of passing value to the conversion procedure specified when
the parameter was created. Then the previous value of parameter is restored without
passing it to the conversion procedure. The value of the parameterize expression is
the value of the last body expression.

The parameterize special form is standardized by SRFI 39 and by R7RS.

Parameter objects can be used to specify configurable settings for a computation without
the need to pass the value to every procedure in the call chain explicitly.

(define radix
(make-parameter
10
(lambda (x)
(if (and (exact-integer? x) (<= 2 x 16))
X
(error "invalid radix")))))

(define (f n) (number->string n (radix)))

(f 12) = "12"
(parameterize ((radix 2))
(f 12)) = "1100"
(f 12) = "12"
(radix 16) Wrong number of arguments
(parameterize ((radix 0))
(f 12)) invalid radix

A dynamic binding changes the value of a parameter (see Section 10.3 [Parameters],
page 139) object temporarily, for a dynamic extent. The set of all dynamic bindings at a
given time is called the dynamic environment. The new values are only accessible to the
thread that constructed the dynamic environment, and any threads created within that
environment.

The extent of a dynamic binding is defined to be the time period during which calling
the parameter returns the new value. Normally this time period begins when the body is
entered and ends when it is exited, a contiguous time period. However Scheme has first-class
continuations by which it is possible to leave the body and reenter it many times. In this
situation, the extent is non-contiguous.

When the body is exited by invoking a continuation, the current dynamic environment
is unwound until it can be re-wound to the environment captured by the continuation.
When the continuation returns, the process is reversed, restoring the original dynamic
environment.

The following example shows the interaction between dynamic binding and continu-
ations. Side effects to the binding that occur both inside and outside of the body are
preserved, even if continuations are used to jump in and out of the body repeatedly.


http://srfi.schemers.org/srfi-39/srfi-39.html
http://r7rs.org/
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(define (complicated-dynamic-parameter)
(let ((variable (make-settable-parameter 1))
(inside-continuation))
(write-line (variable))
(call-with-current-continuation
(lambda (outside-continuation)
(parameterize ((variable 2))
(write-line (variable))
(variable 3)
(call-with-current-continuation
(lambda (k)
(set! inside-continuation k)
(outside-continuation #t)))
(write-line (variable))
(set! inside-continuation #f))))
(write-line (variable))
(if inside-continuation
(begin
(variable 4)
(inside-continuation #£f)))))
Evaluating ‘(complicated-dynamic-binding)’ writes the following on the console
1
2
1
3
4

Commentary: the first two values written are the initial binding of variable and its new
binding inside parameterize’s body. Immediately after they are written, the binding vis-
ible in the body is set to ‘3’, and outside-continuation is invoked, exiting the body.
At this point, ‘1’ is written, demonstrating that the original binding of variable is still
visible outside the body. Then we set variable to ‘4’ and reenter the body by invoking
inside-continuation. At this point, ‘3’ is written, indicating that the binding modified
in the body is still the binding visible in the body. Finally, we exit the body normally, and
write ‘4’, demonstrating that the binding modified outside of the body was also preserved.

2.3.1 Fluid-Let

The fluid-let special form can change the value of any variable for a dynamic extent,
but it is difficult to implement in a multi-processing (SMP) world. It and the cell object
type (see [Cells], page 140) are now deprecated. They are still available and functional in a
uni-processing (non-SMP) world, but will signal an error when used in an SMP world. The
parameterize special form (see [parameterize], page 18) should be used instead.

fluid-let ((variable init) ...) expression expression . . . [special form]
The inits are evaluated in the current environment (in some unspecified order), the
current values of the variables are saved, the results are assigned to the variables, the
expressions are evaluated sequentially in the current environment, the variables are
restored to their original values, and the value of the last expression is returned.
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The syntax of this special form is similar to that of let, but fluid-let temporarily
rebinds existing variables. Unlike let, fluid-let creates no new bindings; instead
it assigns the value of each init to the binding (determined by the rules of lexical
scoping) of its corresponding variable.

MIT/GNU Scheme allows any of the inits to be omitted, in which case the corre-
sponding variables are temporarily unassigned.

An error of type condition-type:unbound-variable is signalled if any of the vari-
ables are unbound. However, because fluid-let operates by means of side effects,
it is valid for any variable to be unassigned when the form is entered.

2.4 Definitions

define variable [expression] [special form]

define formals expression expression . . . [special form)]
Definitions are valid in some but not all contexts where expressions are allowed.
Definitions may only occur at the top level of a program and at the beginning of
a lambda body (that is, the body of a lambda, let, let*, letrec, fluid-let, or
“procedure define” expression). A definition that occurs at the top level of a program
is called a top-level definition, and a definition that occurs at the beginning of a body
is called an internal definition.

In the second form of define (called “procedure define”), the component formals is
identical to the component of the same name in a named-lambda expression. In fact,
these two expressions are equivalent:

(define (namel name2 ...)
expression
expression ...)

(define namel

(named-lambda (namel name2 ...)
expression
expression ...))

2.4.1 Top-Level Definitions
A top-level definition,

(define variable expression)
has essentially the same effect as this assignment expression, if variable is bound:
(set! variable expression)

If variable is not bound, however, define binds variable to a new location in the current
environment before performing the assignment (it is an error to perform a set! on an
unbound variable). If you omit expression, the variable becomes unassigned; an attempt to
reference such a variable is an error.
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(define add3

(lambda (x) (+ x 3))) = unspecified
(add3 3) = 6
(define first car) = unspecified
(first > (1 2)) = 1
(define bar) = unspecified
bar Unassigned variable

2.4.2 Internal Definitions

An internal definition is a definition that occurs at the beginning of a body (that is, the
body of a lambda, let, let*, letrec, fluid-let, or “procedure define” expression),
rather than at the top level of a program. The variable defined by an internal definition is
local to the body. That is, variable is bound rather than assigned, and the region of the
binding is the entire body. For example,

(let ((x 5))
(define foo (lambda (y) (bar x y)))
(define bar (lambda (a b) (+ (*x a b) a)))
(foo (+ x 3))) = 45

A body containing internal definitions can always be converted into a completely equiva-
lent letrec expression. For example, the let expression in the above example is equivalent
to

(let ((x 5))
(letrec ((foo (lambda (y) (bar x y)))
(bar (lambda (a b) (+ (x a b) a))))
(foo (+ x 3))))

2.5 Assignments

set! variable [expression] [special form]
If expression is specified, evaluates expression and stores the resulting value in the
location to which variable is bound. If expression is omitted, variable is altered to be
unassigned; a subsequent reference to such a variable is an error. In either case, the
value of the set! expression is unspecified.

Variable must be bound either in some region enclosing the set! expression, or at
the top level. However, variable is permitted to be unassigned when the set! form

is entered.
(define x 2) = unspecified
(+ x 1) = 3
(set! x 4) = unspecified
(+ x 1) = b5

Variable may be an access expression (see Chapter 13 [Environments|, page 185).
This allows you to assign variables in an arbitrary environment. For example,
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(define x (let ((y 0)) (the-environment)))
(define y ’a)

y = a
(access y x) = 0
(set! (access y x) 1) = unspecified
y = a
(access y x) = 1

2.6 Quoting

This section describes the expressions that are used to modify or prevent the evaluation of
objects.

quote datum [special form)]
(quote datum) evaluates to datum. Datum may be any external representation of a
Scheme object (see Section 1.2.6 [External Representations|, page 8). Use quote to
include literal constants in Scheme code.

(quote a) = a
(quote #(a b c)) = #(a b c)
(quote (+ 1 2)) = (+12)

(quote datum) may be abbreviated as ’datum. The two notations are equivalent in
all respects.

‘a = a

'#(a b c) = #(a b c)
(+ 1 2) = (+12)

> (quote a) = (quote a)
EEPN = (quote a)

Numeric constants, string constants, character constants, and boolean constants eval-
uate to themselves, so they don’t need to be quoted.

)llabC“ j llabcll
llabcll :> llabcll
7145932 = 145932
145932 = 145932
‘H#t = #t
#t = #t
"#\a = #\a
#\a = #\a
quasiquote template [special form)]

“Backquote” or “quasiquote” expressions are useful for constructing a list or vector
structure when most but not all of the desired structure is known in advance. If no
commas appear within the template, the result of evaluating ¢ template is equivalent
(in the sense of equal?) to the result of evaluating ’ template. If a comma appears
within the template, however, the expression following the comma is evaluated (“un-
quoted”) and its result is inserted into the structure instead of the comma and the
expression. If a comma appears followed immediately by an at-sign (@), then the
following expression shall evaluate to a list; the opening and closing parentheses of
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the list are then “stripped away” and the elements of the list are inserted in place of
the comma at-sign expression sequence.

“(list ,(+ 1 2) 4) = (list 3 4)
(let ((name ’a)) ‘(list ,name ’,name)) = (list a ’a)
‘(a ,(+ 1 2) ,0(map abs ’(4 -5 6)) b) = (a3456D0b)

“((foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(comns)))
= ((foo 7) . coms)

‘#(10 5 ,(sqrt 4) ,@(map sqrt ’(16 9)) 8)
= #(10 52 4 3 8)

“,(+ 2 3) = b5

Quasiquote forms may be nested. Substitutions are made only for unquoted compo-
nents appearing at the same nesting level as the outermost backquote. The nesting
level increases by one inside each successive quasiquotation, and decreases by one
inside each unquotation.

‘(a ‘(b ,(+12) ,(foo ,(+13) d) e) f)
= (a ‘(b ,(+12) ,(foo 4 d) e) f)

(let ((namel °’x)
(name2 ’y))
‘(a ‘(b ,,namel ,’,name2 d) e))
= (a ‘(b ,x ,’y d) e)

The notations template and (quasiquote template) are identical in all respects.
,expression is identical to (unquote expression) and ,Q@expression is identical
to (unquote-splicing expression).

(quasiquote (list (unquote (+ 1 2)) 4))
= (list 3 4)

’(quasiquote (list (unquote (+ 1 2)) 4))
= ‘(list ,(+ 1 2) 4)
i.e., (quasiquote (list (unquote (+ 1 2)) 4))

Unpredictable behavior can result if any of the symbols quasiquote, unquote, or
unquote-splicing appear in a template in ways otherwise than as described above.

2.7 Conditionals

The behavior of the conditional expressions is determined by whether objects are true or

false.

The conditional expressions count only #f as false. They count everything else,

including #t, pairs, symbols, numbers, strings, vectors, and procedures as true (but see
Section 1.2.5 [True and False|, page 8).
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In the descriptions that follow, we say that an object has “a true value” or “is true”
when the conditional expressions treat it as true, and we say that an object has “a false
value” or “is false” when the conditional expressions treat it as false.

if predicate consequent |alternative] [special form]
Predicate, consequent, and alternative are expressions. An if expression is evaluated
as follows: first, predicate is evaluated. If it yields a true value, then consequent is
evaluated and its value is returned. Otherwise alternative is evaluated and its value
is returned. If predicate yields a false value and no alternative is specified, then the
result of the expression is unspecified.

An if expression evaluates either consequent or alternative, never both. Programs
should not depend on the value of an if expression that has no alternative.

(if (> 3 2) ’yes ’no) = yes
(if (> 2 3) ’yes ’no) = no
(if (> 32)
(- 32
(+ 3 2)) = 1
cond clause clause . .. [special form)]
Each clause has this form:
(predicate expression ...)
where predicate is any expression. The last clause may be an else clause, which has
the form:
(else expression expression ...)

A cond expression does the following:

1. Evaluates the predicate expressions of successive clauses in order, until one of
the predicates evaluates to a true value.

2. When a predicate evaluates to a true value, cond evaluates the expressions in
the associated clause in left to right order, and returns the result of evaluating
the last expression in the clause as the result of the entire cond expression.

If the selected clause contains only the predicate and no expressions, cond returns
the value of the predicate as the result.

3. If all predicates evaluate to false values, and there is no else clause, the result of
the conditional expression is unspecified; if there is an else clause, cond evaluates
its expressions (left to right) and returns the value of the last one.

(cond ((> 3 2) ’greater)
((< 3 2) ’less)) = greater

(cond ((> 3 3) ’greater)
((< 3 3) ’less)
(else ’equal)) = equal

Normally, programs should not depend on the value of a cond expression that has no
else clause. However, some Scheme programmers prefer to write cond expressions
in which at least one of the predicates is always true. In this style, the final clause is
equivalent to an else clause.
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Scheme supports an alternative clause syntax:
(predicate => recipient)

where recipient is an expression. If predicate evaluates to a true value, then recipient
is evaluated. Its value must be a procedure of one argument; this procedure is then
invoked on the value of the predicate.

(cond ((assv ’b ’((a 1) (b 2))) => cadr)
(else #f)) = 9

case key clause clause . .. [special form)]
Key may be any expression. Each clause has this form:

((object ...) expression expression ...)

No object is evaluated, and all the objects must be distinct. The last clause may be
an else clause, which has the form:

(else expression expression ...)
A case expression does the following:
1. Evaluates key and compares the result with each object.

2. 1If the result of evaluating key is equivalent (in the sense of eqv?; see Chapter 3
[Equivalence Predicates], page 55) to an object, case evaluates the expressions
in the corresponding clause from left to right and returns the result of evaluating
the last expression in the clause as the result of the case expression.

3. If the result of evaluating key is different from every object, and if there’s an
else clause, case evaluates its expressions and returns the result of the last one
as the result of the case expression. If there’s no else clause, case returns an
unspecified result. Programs should not depend on the value of a case expression
that has no else clause.

For example,

(case (x 2 3)
((2 35 7) ’prime)
((1 4 6 89) ’composite)) = composite

(case (car ’(c d))
((a) ’a)
((b) ’b)) = unspecified

(case (car ’(c d))
((a e i o u) ’vowel)
((w y) ’semivowel)
(else ’consonant)) = consonant

and expression . . . [special form]
The expressions are evaluated from left to right, and the value of the first expression
that evaluates to a false value is returned. Any remaining expressions are not evalu-
ated. If all the expressions evaluate to true values, the value of the last expression is
returned. If there are no expressions then #t is returned.



Chapter 2: Special Forms 27

(and (=2 2) G 2 1)) = #t
(and (=2 2) (<2 1)) = #f
(and 1 2 ’¢c *(f g)) = (g
(and) = #t
or expression . . . [special form]

The expressions are evaluated from left to right, and the value of the first expression
that evaluates to a true value is returned. Any remaining expressions are not eval-
uated. If all expressions evaluate to false values, the value of the last expression is
returned. If there are no expressions then #f is returned.

(or (=22) (>2 1)) = #t
(or (=22) (<21)) = #t
(or #f #f #f) = #f
(or (memq ’b ’(a b c)) (/ 3 0)) = (b c)

2.8 Sequencing

The begin special form is used to evaluate expressions in a particular order.

begin expression expression . . . [special form]
The expressions are evaluated sequentially from left to right, and the value of the last
expression is returned. This expression type is used to sequence side effects such as
input and output.

(define x 0)
(begin (set! x 5)
(+ x 1)) = 6

(begin (display "4 plus 1 equals ")
(display (+ 4 1)))
-+ 4 plus 1 equals b5
= unspecified

Often the use of begin is unnecessary, because many special forms already support
sequences of expressions (that is, they have an implicit begin). Some of these special
forms are:

case

cond

define ;“procedure define” only
do

fluid-let

lambda

let

letx*

letrec

named-lambda

The obsolete special form sequence is identical to begin. It should not be used in
new code.
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2.9 Iteration

The iteration expressions are: “named let” and do. They are also binding expressions,
but are more commonly referred to as iteration expressions. Because Scheme is properly
tail-recursive, you don’t need to use these special forms to express iteration; you can simply
use appropriately written “recursive” procedure calls.

let name ((variable init) ...) expression expression . . . [special form)]
MIT/GNU Scheme permits a variant on the syntax of let called “named let” which
provides a more general looping construct than do, and may also be used to express
recursions.

Named let has the same syntax and semantics as ordinary let except that name is
bound within the expressions to a procedure whose formal arguments are the variables
and whose body is the expressions. Thus the execution of the expressions may be
repeated by invoking the procedure named by name.

MIT/GNU Scheme allows any of the inits to be omitted, in which case the corre-
sponding variables are unassigned.

Note: the following expressions are equivalent:

(let name ((variable init) ...)
expression
expression ...)

((Qletrec ((name

(named-lambda (name variable ...)
expression
expression ...)))
name)
init ...)

Here is an example:

(let loop
((numbers (3 -2 1 6 -5))
(nonneg ’())
(neg > 0O))
(cond ((null? numbers)
(1ist nonneg neg))
((>= (car numbers) 0)
(loop (cdr numbers)
(cons (car numbers) nonneg)

neg))

(else

(loop (cdr numbers)
nonneg

(cons (car numbers) neg)))))

= ((6 13) (-5 -2))
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do ((variable init step) ...) (test expression ...) command [special form)]

do is an iteration construct. It specifies a set of variables to be bound, how they are
to be initialized at the start, and how they are to be updated on each iteration. When
a termination condition is met, the loop exits with a specified result value.

do expressions are evaluated as follows: The init expressions are evaluated (in some
unspecified order), the variables are bound to fresh locations, the results of the init
expressions are stored in the bindings of the variables, and then the iteration phase
begins.

Each iteration begins by evaluating test; if the result is false, then the command
expressions are evaluated in order for effect, the step expressions are evaluated in
some unspecified order, the variables are bound to fresh locations, the results of the
steps are stored in the bindings of the variables, and the next iteration begins.

If test evaluates to a true value, then the expressions are evaluated from left to right
and the value of the last expression is returned as the value of the do expression. If no
expressions are present, then the value of the do expression is unspecified in standard
Scheme; in MIT/GNU Scheme, the value of test is returned.

The region of the binding of a variable consists of the entire do expression except
for the inits. It is an error for a variable to appear more than once in the list of do
variables.

A step may be omitted, in which case the effect is the same as if (variable init
variable) had been written instead of (variable init).

(do ((vec (make-vector 5))
Gdo(+in)N
((= i 5) vec)
(vector-set! vec i i)) = #(0 12 3 4)

(let ((x (1357 9)))
(do ((x x (cdr x))
(sum 0 (+ sum (car x))))
((null? x) sum))) = 25

2.10 Structure Definitions

This section provides examples and describes the options and syntax of define-structure,
an MIT/GNU Scheme macro that is very similar to defstruct in Common Lisp. The
differences between them are summarized at the end of this section. For more information,
see Steele’s Common Lisp book.

define-structure (name structure-option . ..) slot-description [special form)]

Each slot-description takes one of the following forms:

slot-name
(slot-name default-init [slot-option value]*)

The fields name and slot-name must both be symbols. The field default-init is an
expression for the initial value of the slot. It is evaluated each time a new instance
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is constructed. If it is not specified, the initial content of the slot is undefined.
Default values are only useful with a BOA constructor with argument list or a keyword
constructor (see below).

Evaluation of a define-structure expression defines a structure descriptor and a
set of procedures to manipulate instances of the structure. These instances are repre-
sented as records by default (see Section 10.4 [Records], page 140) but may alternately
be lists or vectors. The accessors and modifiers are marked with compiler declara-
tions so that calls to them are automatically transformed into appropriate references.
Often, no options are required, so a simple call to define-structure looks like:

(define-structure foo a b c)

This defines a type descriptor rtd:foo, a constructor make-foo, a predicate foo?,
accessors foo-a, foo-b, and foo-c, and modifiers set-foo-a!, set-foo-b!, and
set-foo-c!.

In general, if no options are specified, define-structure defines the following (using
the simple call above as an example):

type descriptor
The name of the type descriptor is "rtd:" followed by the name of
the structure, e.g. ‘rtd:foo’. The type descriptor satisfies the predicate
record-type”?.

constructor
The name of the constructor is "make-" followed by the name of the
structure, e.g. ‘make-foo’. The number of arguments accepted by the
constructor is the same as the number of slots; the arguments are the
initial values for the slots, and the order of the arguments matches the
order of the slot definitions.

predicate  The name of the predicate is the name of the structure followed by "?",
e.g. ‘foo?’. The predicate is a procedure of one argument, which re-
turns #t if its argument is a record of the type defined by this structure
definition, and #f otherwise.

accessors  For each slot, an accessor is defined. The name of the accessor is formed
by appending the name of the structure, a hyphen, and the name of the
slot, e.g. ‘foo-a’. The accessor is a procedure of one argument, which
must be a record of the type defined by this structure definition. The
accessor extracts the contents of the corresponding slot in that record
and returns it.

modifiers  For each slot, a modifier is defined. The name of the modifier is formed by
appending "set-", the name of the accessor, and "!", e.g. ‘set-foo-a!’.
The modifier is a procedure of two arguments, the first of which must
be a record of the type defined by this structure definition, and the sec-
ond of which may be any object. The modifier modifies the contents of
the corresponding slot in that record to be that object, and returns an
unspecified value.

When options are not supplied, (name) may be abbreviated to name. This convention
holds equally for structure-options and slot-options. Hence, these are equivalent:
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(define-structure foo a b c)
(define-structure (foo) (a) b (c))

as are

(define-structure (foo keyword-constructor) a b c)
(define-structure (foo (keyword-constructor)) a b c)

When specified as option values, false and nil are equivalent to #f, and true and
t are equivalent to #t.

Possible slot-options are:

read-only value [slot option]
When given a value other than #f£, this specifies that no modifier should be created
for the slot.

type type-descriptor [slot option]
This is accepted but not presently used.

Possible structure-options are:

predicate [name] [structure option]
This option controls the definition of a predicate procedure for the structure. If name
is not given, the predicate is defined with the default name (see above). If name is
#f, the predicate is not defined at all. Otherwise, name must be a symbol, and the
predicate is defined with that symbol as its name.

copier [name] [structure option]
This option controls the definition of a procedure to copy instances of the struc-
ture. This is a procedure of one argument, a structure instance, that makes a newly
allocated copy of the structure and returns it. If name is not given, the copier is
defined, and the name of the copier is "copy-" followed by the structure name (e.g.
‘copy-foo’). If name is #f, the copier is not defined. Otherwise, name must be a
symbol, and the copier is defined with that symbol as its name.

print-procedure expression [structure option]
Evaluating expression must yield a procedure of two arguments, which is used to
print instances of the structure. The procedure is a print method (see Section 14.10
[Custom Output], page 208).

constructor [name [argument-list|] [structure option]
This option controls the definition of constructor procedures. These constructor pro-
cedures are called “BOA constructors”, for “By Order of Arguments”, because the
arguments to the constructor specify the initial contents of the structure’s slots by
the order in which they are given. This is as opposed to “keyword constructors”, which
specify the initial contents using keywords, and in which the order of arguments is
irrelevant.

If name is not given, a constructor is defined with the default name and arguments (see
above). If name is #£, no constructor is defined; argument-list may not be specified
in this case. Otherwise, name must be a symbol, and a constructor is defined with
that symbol as its name. If name is a symbol, argument-list is optionally allowed;
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if it is omitted, the constructor accepts one argument for each slot in the structure
definition, in the same order in which the slots appear in the definition. Otherwise,
argument-list must be a lambda list (see Section 2.1 [Lambda Expressions|, page 15),
and each of the parameters of the lambda list must be the name of a slot in the
structure. The arguments accepted by the constructor are defined by this lambda
list. Any slot that is not specified by the lambda list is initialized to the default-init
as specified above; likewise for any slot specified as an optional parameter when the
corresponding argument is not supplied.

If the constructor option is specified, the default constructor is not defined. Addi-
tionally, the constructor option may be specified multiple times to define multiple
constructors with different names and argument lists.

(define-structure (foo
(constructor make-foo (#!optional a b)))
(a 6 read-only #t)
(b 9))

keyword-constructor [name] [structure option]

This option controls the definition of keyword constructor procedures. A keyword
constructor is a procedure that accepts arguments that are alternating slot names
and values. If name is omitted, a keyword constructor is defined, and the name of
the constructor is "make-" followed by the name of the structure (e.g. ‘make-foo’).
Otherwise, name must be a symbol, and a keyword constructor is defined with this
symbol as its name.

If the keyword-constructor option is specified, the default constructor is not defined.
Additionally, the keyword-constructor option may be specified multiple times to
define multiple keyword constructors; this is usually not done since such constructors
would all be equivalent.

(define-structure (foo (keyword-constructor make-bar)) a b)
(foo-a (make-bar ’b 20 ’a 19)) = 19

type-descriptor name [structure option]

This option cannot be used with the type or named options.

By default, structures are implemented as records. The name of the structure is
defined to hold the type descriptor of the record defined by the structure. The
type-descriptor option specifies a different name to hold the type descriptor.

(define-structure foo a b)
foo = #[record-type 18]

(define-structure (bar (type-descriptor <bar>)) a b)
bar Unbound variable: bar
<bar> = #[record-type 19]

conc-name [name] [structure option]

By default, the prefix for naming accessors and modifiers is the name of the structure
followed by a hyphen. The conc-name option can be used to specify an alternative.
If name is not given, the prefix is the name of the structure followed by a hyphen (the



Chapter 2: Special Forms 33

type

default). If name is #£, the slot names are used directly, without prefix. Otherwise,
name must a symbol, and that symbol is used as the prefix.
(define-structure (foo (conc-name moby/)) a b)
defines accessors moby/a and moby/b, and modifiers set-moby/a! and set-moby/b!.
(define-structure (foo (conc-name #f)) a b)

defines accessors a and b, and modifiers set-a! and set-b!.

representation-type [structure option]
This option cannot be used with the type-descriptor option.

By default, structures are implemented as records. The type option overrides this
default, allowing the programmer to specify that the structure be implemented using
another data type. The option value representation-type specifies the alternate data
type; it is allowed to be one of the symbols vector or 1ist, and the data type used
is the one corresponding to the symbol.
If this option is given, and the named option is not specified, the representation will
not be tagged, and neither a predicate nor a type descriptor will be defined; also, the
print-procedure option may not be given.

(define-structure (foo (type list)) a b)

(make-foo 1 2) = (1 2)

named [expression] [structure option]

This is valid only in conjunction with the type option and specifies that the structure
instances be tagged to make them identifiable as instances of this structure type. This
option cannot be used with the type-descriptor option.

In the usual case, where expression is not given, the named option causes a type
descriptor and predicate to be defined for the structure (recall that the type option
without named suppresses their definition), and also defines a default print method for
the structure instances (which can be overridden by the print-procedure option). If
the default print method is not wanted then the print-procedure option should be
specified as #f. This causes the structure to be printed in its native representation,
as a list or vector, which includes the type descriptor. The type descriptor is a unique
object, not a record type, that describes the structure instances and is additionally
stored in the structure instances to identify them: if the representation type is vector,
the type descriptor is stored in the zero-th slot of the vector, and if the representation
type is 1list, it is stored as the first element of the list.

(define-structure (foo (type vector) named) a b c)
(vector-ref (make-foo 1 2 3) 0) = #[structure-type 52]

If expression is specified, it is an expression that is evaluated to yield a tag object.
The expression is evaluated once when the structure definition is evaluated (to specify
the print method), and again whenever a predicate or constructor is called. Because
of this, expression is normally a variable reference or a constant. The value yielded by
expression may be any object at all. That object is stored in the structure instances
in the same place that the type descriptor is normally stored, as described above. If
expression is specified, no type descriptor is defined, only a predicate.

(define-structure (foo (type vector) (named ’foo)) a b c)
(vector-ref (make-foo 1 2 3) 0) = foo
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safe-accessors [boolean] [structure option]

This option allows the programmer to have some control over the safety of the slot
accessors (and modifiers) generated by define-structure. If safe-accessors is not
specified, or if boolean is #£, then the accessors are optimized for speed at the expense
of safety; when compiled, the accessors will turn into very fast inline sequences, usually
one to three machine instructions in length. However, if safe-accessors is specified
and boolean is either omitted or #t, then the accessors are optimized for safety, will
check the type and structure of their argument, and will be close-coded.

(define-structure (foo safe-accessors) a b c)

initial-offset offset [structure option]

This is valid only in conjunction with the type option. Offset must be an exact non-
negative integer and specifies the number of slots to leave open at the beginning of
the structure instance before the specified slots are allocated. Specifying an offset of
zero is equivalent to omitting the initial-offset option.

If the named option is specified, the structure tag appears in the first slot, followed
by the “offset” slots, and then the regular slots. Otherwise, the “offset” slots come
first, followed by the regular slots.

(define-structure (foo (type vector) (initial-offset 3))
abc)
(make-foo 1 2 3) = #(0O O O 123

The essential differences between MIT/GNU Scheme’s define-structure and Common

Lisp’s defstruct are:

The default constructor procedure takes positional arguments, in the same order as
specified in the definition of the structure. A keyword constructor may be specified by
giving the option keyword-constructor.

BOA constructors are described using Scheme lambda lists. Since there is nothing
corresponding to &aux in Scheme lambda lists, this functionality is not implemented.

By default, no copier procedure is defined.

The side-effect procedure corresponding to the accessor foo is given the name
set-foo!.

Keywords are ordinary symbols — use foo instead of :foo.

The option values false, nil, true, and t are treated as if the appropriate boolean
constant had been specified instead.

The print-function option is named print-procedure. Its argument is a procedure
of two arguments (the structure instance and a textual output port) rather than three
as in Common Lisp.

By default, named structures are tagged with a unique object of some kind. In Common
Lisp, the structures are tagged with symbols. This depends on the Common Lisp
package system to help generate unique tags; MIT/GNU Scheme has no such way to
generate unique symbols.

The named option may optionally take an argument, which is normally the name of
a variable (any expression may be used, but it is evaluated whenever the tag name is
needed). If used, structure instances will be tagged with that variable’s value. The
variable must be defined when define-structure is evaluated.
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e The type option is restricted to the values vector and list.

e The include option is not implemented.

2.11 Macros

(This section is largely taken from the Revised~4 Report on the Algorithmic Language
Scheme. The section on Syntactic Closures is derived from a document written by Chris
Hanson. The section on Explicit Renaming is derived from a document written by William
Clinger.)

Scheme programs can define and use new derived expression types, called macros.
Program-defined expression types have the syntax

(keyword datum ...)

where keyword is an identifier that uniquely determines the expression type. This identifier
is called the syntactic keyword, or simply keyword, of the macro. The number of the datums,
and their syntax, depends on the expression type.

Each instance of a macro is called a use of the macro. The set of rules that specifies how
a use of a macro is transcribed into a more primitive expression is called the transformer
of the macro.

MIT/GNU Scheme also supports anonymous syntactic keywords. This means that it’s
not necessary to bind a macro transformer to a syntactic keyword before it is used. Instead,
any macro-transformer expression can appear as the first element of a form, and the form
will be expanded by the transformer.

The macro definition facility consists of these parts:

e A set of expressions used to establish that certain identifiers are macro keywords,
associate them with macro transformers, and control the scope within which a macro
is defined.

e A standard high-level pattern language for specifying macro transformers, introduced
by the syntax-rules special form.

e Two non-standard low-level languages for specifying macro transformers, syntactic clo-
sures and explicit renaming.

The syntactic keyword of a macro may shadow variable bindings, and local variable
bindings may shadow keyword bindings. All macros defined using the pattern language are
“hygienic” and “referentially transparent” and thus preserve Scheme’s lexical scoping:

e If a macro transformer inserts a binding for an identifier (variable or keyword), the
identifier will in effect be renamed throughout its scope to avoid conflicts with other
identifiers.

e If a macro transformer inserts a free reference to an identifier, the reference refers to
the binding that was visible where the transformer was specified, regardless of any local
bindings that may surround the use of the macro.

2.11.1 Binding Constructs for Syntactic Keywords

let-syntax, letrec-syntax, let*-syntax and define-syntax are analogous to let,
letrec, let* and define, but they bind syntactic keywords to macro transformers in-
stead of binding variables to locations that contain values.
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Any argument named transformer-spec must be a macro-transformer expression, which
is one of the following:

e A macro transformer defined by the pattern language and denoted by the syntactic
keyword syntax-rules.

e A macro transformer defined by one of the low-level mechanisms and denoted by
one of the syntactic keywords sc-macro-transformer, rsc-macro-transformer, or
er-macro-transformer.

e A syntactic keyword bound in the enclosing environment. This is used to bind another
name to an existing macro transformer.

let-syntax bindings expression expression . . . [special form)]
Bindings should have the form

((keyword transformer-spec) ...)

Each keyword is an identifier, each transformer-spec is a a macro-transformer ex-
pression, and the body is a sequence of one or more expressions. It is an error for a
keyword to appear more than once in the list of keywords being bound.

The expressions are expanded in the syntactic environment obtained by extending the
syntactic environment of the let-syntax expression with macros whose keywords are
the keywords, bound to the specified transformers. Each binding of a keyword has
the expressions as its region.

(let-syntax ((when (syntax-rules ()
((when test stmtl stmt2 ...)
(if test
(begin stmtl
stmt2 ...))))))
(let ((if #t))
(when if (set! if ’now))
if)) = now

(let ((x ’outer))
(let-syntax ((m (syntax-rules () ((m) x))))
(let ((x ’inner))
(m)))) = outer

letrec-syntax bindings expression expression . . . [special form)]
The syntax of letrec-syntax is the same as for let-syntax.

The expressions are expanded in the syntactic environment obtained by extending the
syntactic environment of the letrec-syntax expression with macros whose keywords
are the keywords, bound to the specified transformers. Each binding of a keyword
has the bindings as well as the expressions within its region, so the transformers
can transcribe expressions into uses of the macros introduced by the letrec-syntax
expression.
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(letrec-syntax
((my-or (syntax-rules ()
((my-or) #f)
((my-or e) e)
((my-or el e2 ...)
(let ((temp el))
(if temp
temp
(my-or €2 ...)))))))
(let ((x #f)
(y 7)
(temp 8)
(let odd?)
(if even?))
(my-or x
(let temp)
Gif y)
¥))) = 7

let*-syntax bindings expression expression . . . [special form)]

The syntax of let*-syntax is the same as for let-syntax.

The expressions are expanded in the syntactic environment obtained by extending the
syntactic environment of the letrec-syntax expression with macros whose keywords
are the keywords, bound to the specified transformers. Each binding of a keyword
has the subsequent bindings as well as the expressions within its region. Thus

(let*-syntax

((a (syntax-rules ...))
(b (syntax-rules ...)))

o)

is equivalent to
(let-syntax ((a (syntax-rules ...)))
(let-syntax ((b (syntax-rules ...)))
co))
define-syntax keyword transformer-spec [special form)]

Keyword is an identifier, and transformer-spec is a macro transformer expression.
The syntactic environment is extended by binding the keyword to the specified trans-
former.

The region of the binding introduced by define-syntax is the entire block in which
it appears. However, the keyword may only be used after it has been defined.

MIT/GNU Scheme permits define-syntax to appear both at top level and within
lambda bodies. The Revised~4 Report permits only top-level uses of define-syntax.

When compiling a program, a top-level instance of define-syntax both defines the
syntactic keyword and generates code that will redefine the keyword when the program
is loaded. This means that the same syntax can be used for defining macros that will
be used during compilation and for defining macros to be used at run time.
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Although macros may expand into definitions and syntax definitions in any context
that permits them, it is an error for a definition or syntax definition to shadow a
syntactic keyword whose meaning is needed to determine whether some form in the
group of forms that contains the shadowing definition is in fact a definition, or, for
internal definitions, is needed to determine the boundary between the group and the
expressions that follow the group. For example, the following are errors:

(define define 3)
(begin (define begin list))

(let-syntax
((foo (syntax-rules ()
((foo (proc args ...) body ...)
(define proc
(lambda (args ...)
body ...))))))
(let ((x 3))
(foo (plus x y) (+ x y))
(define foo x)
(plus foo x)))

2.11.2 Pattern Language

MIT/GNU Scheme supports a high-level pattern language for specifying macro transform-

€ers.

This pattern language is defined by the Revised"4 Report and is portable to other

conforming Scheme implementations. To use the pattern language, specify a transformer-
spec as a syntax-rules form:

syntax-rules literals syntax-rule . .. [special form)]

Literals is a list of identifiers and each syntax-rule should be of the form
(pattern template)

The pattern in a syntax-rule is a list pattern that begins with the keyword for the
macro.

A pattern is either an identifier, a constant, or one of the following

(pattern ...)
(pattern pattern ... . pattern)
(pattern ... pattern ellipsis)

and a template is either an identifier, a constant, or one of the following

(element ...)
(element element ... . template)

where an element is a template optionally followed by an ellipsis and an ellipsis is
the identifier ‘...’ (which cannot be used as an identifier in either a template or a
pattern).

An instance of syntax-rules produces a new macro transformer by specifying a
sequence of hygienic rewrite rules. A use of a macro whose keyword is associated with
a transformer specified by syntax-rules is matched against the patterns contained
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in the syntax-rules, beginning with the leftmost syntax-rule. When a match is found,
the macro use is transcribed hygienically according to the template.

An identifier that appears in the pattern of a syntax-rule is a pattern-variable, unless
it is the keyword that begins the pattern, is listed in literals, or is the identifier ‘.. .".
Pattern variables match arbitrary input elements and are used to refer to elements
of the input in the template. It is an error for the same pattern variable to appear
more than once in a pattern.

The keyword at the beginning of the pattern in a syntax-rule is not involved in the
matching and is not considered a pattern variable or literal identifier.

Identifiers that appear in literals are interpreted as literal identifiers to be matched
against corresponding subforms of the input. A subform in the input matches a literal
identifier if and only if it is an identifier and either both its occurrence in the macro
expression and its occurrence in the macro definition have the same lexical binding,
or the two identifiers are equal and both have no lexical binding.

A subpattern followed by ‘. ..’ can match zero or more elements of the input. It is an
error for ‘...’ to appear in literals. Within a pattern the identifier ‘. ..’ must follow
the last element of a nonempty sequence of subpatterns.

More formally, an input form F' matches a pattern P if and only if:
e P is a non-literal identifier; or
e P is a literal identifier and F is an identifier with the same binding; or

e Pisalist (P_1 ... P_n) and F is a list of n forms that match P_1 through P_n,
respectively; or

e P is an improper list (P_1 P_2 ... P_n . P_n+1) and F is a list or improper list
of n or more forms that match P_1 through P_n, respectively, and whose nth
“cdr” matches P_n+1; or

e P is of the form (P_1 ... P_n P_n+1 ellipsis) where ellipsis is the identifier
‘...7 and F is a proper list of at least n forms, the first n of which match P_1
through P_n, respectively, and each remaining element of F' matches P_n+1; or

e P is a datum and F is equal to P in the sense of the equal? procedure.

It is an error to use a macro keyword, within the scope of its binding, in an expression
that does not match any of the patterns.

When a macro use is transcribed according to the template of the matching syntax
rule, pattern variables that occur in the template are replaced by the subforms they
match in the input. Pattern variables that occur in subpatterns followed by one
or more instances of the identifier ‘...’ are allowed only in subtemplates that are
followed by as many instances of ‘...’. They are replaced in the output by all of
the subforms they match in the input, distributed as indicated. It is an error if the
output cannot be built up as specified.

Identifiers that appear in the template but are not pattern variables or the identifier
‘... are inserted into the output as literal identifiers. If a literal identifier is inserted
as a free identifier then it refers to the binding of that identifier within whose scope
the instance of syntax-rules appears. If a literal identifier is inserted as a bound
identifier then it is in effect renamed to prevent inadvertent captures of free identifiers.
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(let ((=> #£))
(cond (#t => ’0k))) = ok

The macro transformer for cond recognizes => as a local variable, and hence an
expression, and not as the top-level identifier =>, which the macro transformer treats
as a syntactic keyword. Thus the example expands into

(let ((=> #£))
(if #t (begin => ’0k)))
instead of

(let ((=> #£))
(let ((temp #t))
(if temp
(’ok temp))))

which would result in an invalid procedure call.

2.11.3 Syntactic Closures

MIT/GNU Scheme’s syntax-transformation engine is an implementation of syntactic clo-
sures, a mechanism invented by Alan Bawden and Jonathan Rees. The main feature of the
syntactic-closures mechanism is its simplicity and its close relationship to the environment
models commonly used with Scheme. Using the mechanism to write macro transformers
is somewhat cumbersome and can be confusing for the newly initiated, but it is easily
mastered.

2.11.3.1 Syntax Terminology

This section defines the concepts and data types used by the syntactic closures facility.

e Forms are the syntactic entities out of which programs are recursively constructed. A
form is any expression, any definition, any syntactic keyword, or any syntactic closure.
The variable name that appears in a set! special form is also a form. Examples of
forms:

17

#t

car

(+ x 4)

(lambda (x) x)
(define pi 3.14159)
if

define

e An alias is an alternate name for a given symbol. It can appear anywhere in a form that
the symbol could be used, and when quoted it is replaced by the symbol; however, it
does not satisfy the predicate symbol?. Macro transformers rarely distinguish symbols
from aliases, referring to both as identifiers. Another name for an alias is synthetic
identifier; this document uses both names.

e A syntactic environment maps identifiers to their meanings. More precisely, it deter-
mines whether an identifier is a syntactic keyword or a variable. If it is a keyword,
the meaning is an interpretation for the form in which that keyword appears. If it
is a variable, the meaning identifies which binding of that variable is referenced. In
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short, syntactic environments contain all of the contextual information necessary for
interpreting the meaning of a particular form.

e A syntactic closure consists of a form, a syntactic environment, and a list of identifiers.
All identifiers in the form take their meaning from the syntactic environment, except
those in the given list. The identifiers in the list are to have their meanings determined
later.

A syntactic closure may be used in any context in which its form could have been used.
Since a syntactic closure is also a form, it may not be used in contexts where a form
would be illegal. For example, a form may not appear as a clause in the cond special
form.

A syntactic closure appearing in a quoted structure is replaced by its form.

2.11.3.2 Transformer Definition

This section describes the special forms for defining syntactic-closures macro transformers,
and the associated procedures for manipulating syntactic closures and syntactic environ-
ments.

sc-macro-transformer expression [special form]
The expression is expanded in the syntactic environment of the sc-macro-
transformer expression, and the expanded expression is evaluated in the
transformer environment to yield a macro transformer as described below. This
macro transformer is bound to a macro keyword by the special form in which the
transformer expression appears (for example, let-syntax).

In the syntactic closures facility, a macro transformer is a procedure that takes two
arguments, a form and a syntactic environment, and returns a new form. The first
argument, the input form, is the form in which the macro keyword occurred. The
second argument, the usage environment, is the syntactic environment in which the
input form occurred. The result of the transformer, the output form, is automatically
closed in the transformer environment, which is the syntactic environment in which
the transformer expression occurred.

For example, here is a definition of a push macro using syntax-rules:

(define-syntax push
(syntax-rules ()
((push item list)
(set! list (cons item list)))))

Here is an equivalent definition using sc-macro-transformer:

(define-syntax push
(sc-macro-transformer
(lambda (exp env)
(let ((item (make-syntactic-closure env ’() (cadr exp)))
(list (make-syntactic-closure env ’() (caddr exp))))
‘(set! ,1list (comns ,item ,1list))))))
In this example, the identifiers set! and cons are closed in the transformer environ-
ment, and thus will not be affected by the meanings of those identifiers in the usage
environment env.
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Some macros may be non-hygienic by design. For example, the following defines a
loop macro that implicitly binds exit to an escape procedure. The binding of exit
is intended to capture free references to exit in the body of the loop, so exit must
be left free when the body is closed:

(define-syntax loop

(sc-macro-transformer
(lambda (exp env)

(let ((body (cdr exp)))
¢(call-with-current-continuation

(lambda (exit)

(let £ O
,0(map (lambda (exp)
(make-syntactic-closure env ’(exit)
exp))
body)
(£3)2)))))
rsc-macro-transformer expression [special form)]

This form is an alternative way to define a syntactic-closures macro transformer. Its
syntax and usage are identical to sc-macro-transformer, except that the roles of the
usage environment and transformer environment are reversed. (Hence RSC stands for
Reversed Syntactic Closures.) In other words, the procedure specified by expression
still accepts two arguments, but its second argument will be the transformer environ-
ment rather than the usage environment, and the returned expression is closed in the
usage environment rather than the transformer environment.

The advantage of this arrangement is that it allows a simpler definition style in some
situations. For example, here is the push macro from above, rewritten in this style:

(define-syntax push
(rsc-macro-transformer
(lambda (exp env)
“(, (make-syntactic-closure env ’() ’SET!)
, (caddr exp)
(, (make-syntactic-closure env ’() ’CONS)
, (cadr exp)
, (caddr exp))))))

In this style only the introduced keywords are closed, while everything else remains
open.

Note that rsc-macro-transformer and sc-macro-transformer are easily
interchangeable. Here is how to emulate rsc-macro-transformer using
sc-macro-transformer. (This technique can be used to effect the opposite
emulation as well.)
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(define-syntax push
(sc-macro-transformer
(lambda (exp usage-env)
(capture-syntactic-environment
(lambda (env)
(make-syntactic-closure usage-env ’ ()
¢ (, (make-syntactic-closure env ’() ’SET!)
, (caddr exp)
(, (make-syntactic-closure env ’() ’CONS)
, (cadr exp)

, (caddr exp)))))))))

To assign meanings to the identifiers in a form, use make-syntactic-closure to close
the form in a syntactic environment.

make-syntactic-closure environment free-names form [procedure]
Environment must be a syntactic environment, free-names must be a list of identi-
fiers, and form must be a form. make-syntactic-closure constructs and returns a
syntactic closure of form in environment, which can be used anywhere that form could
have been used. All the identifiers used in form, except those explicitly excepted by
free-names, obtain their meanings from environment.

Here is an example where free-names is something other than the empty list. It is
instructive to compare the use of free-names in this example with its use in the loop
example above: the examples are similar except for the source of the identifier being
left free.

(define-syntax letl
(sc-macro-transformer
(lambda (exp env)
(let ((id (cadr exp))
(init (caddr exp))
(exp (cadddr exp)))
‘((lambda (,id)
, (make-syntactic-closure env (list id) exp))
, (make-syntactic-closure env ’() init))))))

let1 is a simplified version of let that only binds a single identifier, and whose body
consists of a single expression. When the body expression is syntactically closed in
its original syntactic environment, the identifier that is to be bound by let1 must be
left free, so that it can be properly captured by the lambda in the output form.

In most situations, the free-names argument to make-syntactic-closure is the empty
list. In those cases, the more succinct close-syntax can be used:

close-syntax form environment [procedure]
Environment must be a syntactic environment and form must be a form. Returns a
new syntactic closure of form in environment, with no free names. Entirely equivalent
to

(make-syntactic-closure environment ’() form)
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To obtain a syntactic environment other than the usage environment, use
capture-syntactic-environment.

capture-syntactic-environment procedure [procedure]
capture-syntactic-environment returns a form that will, when transformed, call
procedure on the current syntactic environment. Procedure should compute and
return a new form to be transformed, in that same syntactic environment, in place of
the form.

An example will make this clear. Suppose we wanted to define a simple loop-until
keyword equivalent to

(define-syntax loop-until
(syntax-rules ()
((loop-until id init test return step)
(letrec ((loop
(lambda (id)
(if test return (loop step)))))
(loop init)))))

The following attempt at defining loop-until has a subtle bug:

(define-syntax loop-until
(sc-macro-transformer
(lambda (exp env)
(let ((id (cadr exp))
(init (caddr exp))
(test (cadddr exp))
(return (cadddr (cdr exp)))
(step (cadddr (cddr exp)))
(close
(lambda (exp free)
(make-syntactic-closure env free exp))))
‘(letrec ((loop
(lambda (,id)
(if ,(close test (list id))
,(close return (list id))
(loop ,(close step (list id)))))))
(loop ,(close init >())))))))

This definition appears to take all of the proper precautions to prevent unintended
captures. It carefully closes the subexpressions in their original syntactic environment
and it leaves the id identifier free in the test, return, and step expressions, so that it
will be captured by the binding introduced by the lambda expression. Unfortunately
it uses the identifiers if and loop within that lambda expression, so if the user of
loop-until just happens to use, say, if for the identifier, it will be inadvertently
captured.

The syntactic environment that if and loop want to be exposed to is the one just
outside the lambda expression: before the user’s identifier is added to the syntactic
environment, but after the identifier loop has been added. capture-syntactic-
environment captures exactly that environment as follows:



Chapter 2: Special Forms 45

(define-syntax loop-until
(sc-macro-transformer
(lambda (exp env)
(let ((id (cadr exp))

(init (caddr exp))

(test (cadddr exp))

(return (cadddr (cdr exp)))

(step (cadddr (cddr exp)))

(close

(lambda (exp free)
(make-syntactic-closure env free exp))))
‘(letrec ((loop
, (capture-syntactic-environment
(lambda (env)
¢ (lambda (,id)
(, (make-syntactic-closure env ’() ‘if)

,(close test (1list id))
,(close return (list id))
(, (make-syntactic-closure env ’() ‘loop)
, (close step (list id)))))))))

(loop ,(close init >())))))))

In this case, having captured the desired syntactic environment, it is convenient to
construct syntactic closures of the identifiers if and the loop and use them in the
body of the lambda.

A common use of capture-syntactic-environment is to get the transformer envi-
ronment of a macro transformer:

(sc-macro-transformer

(lambda (exp env)
(capture-syntactic-environment
(lambda (transformer-env)

o))

2.11.3.3 Identifiers

This section describes the procedures that create and manipulate identifiers. The identi-
fier data type extends the syntactic closures facility to be compatible with the high-level
syntax-rules facility.

As discussed earlier, an identifier is either a symbol or an alias. An alias is implemented
as a syntactic closure whose form is an identifier:

(make-syntactic-closure env ’() ’a) = an alias

Aliases are implemented as syntactic closures because they behave just like syntactic closures
most of the time. The difference is that an alias may be bound to a new value (for example
by lambda or let-syntax); other syntactic closures may not be used this way. If an alias is
bound, then within the scope of that binding it is looked up in the syntactic environment
just like any other identifier.
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Aliases are used in the implementation of the high-level facility syntax-rules. A macro
transformer created by syntax-rules uses a template to generate its output form, substi-
tuting subforms of the input form into the template. In a syntactic closures implementation,
all of the symbols in the template are replaced by aliases closed in the transformer envi-
ronment, while the output form itself is closed in the usage environment. This guarantees
that the macro transformation is hygienic, without requiring the transformer to know the
syntactic roles of the substituted input subforms.

identifier? object [procedure]
Returns #t if object is an identifier, otherwise returns #f. Examples:
(identifier? ’a) = #t
(identifier? (make-syntactic-closure env ’() ’a))
= #t
(identifier? "a" = #f
(identifier? #\a) = #f
(identifier? 97) = #f
(identifier? #f) = #f
(identifier? ’(a)) = #f
(identifier? ’#(a)) = #f

The predicate eq? is used to determine if two identifers are “the same”. Thus eq? can
be used to compare identifiers exactly as it would be used to compare symbols. Often,
though, it is useful to know whether two identifiers “mean the same thing”. For example,
the cond macro uses the symbol else to identify the final clause in the conditional. A
macro transformer for cond cannot just look for the symbol else, because the cond form
might be the output of another macro transformer that replaced the symbol else with an
alias. Instead the transformer must look for an identifier that “means the same thing” in
the usage environment as the symbol else means in the transformer environment.

identifier=7 environmentl identifierl environment2 identifier2 [procedure]
Environment] and environment2 must be syntactic environments, and identifier] and
identifier2 must be identifiers. identifier=7 returns #t if the meaning of identifierl
in environment]l is the same as that of identifier2 in environment2, otherwise it returns
#f. Examples:

(let-syntax
((foo
(sc-macro-transformer
(lambda (form env)
(capture-syntactic-environment
(lambda (transformer-env)
(identifier=? transformer-env ’x env ’x)))))))
(1ist (foo)
(let ((x 3))
(f00))))
= (#t #f)
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(let-syntax ((bar foo))
(let-syntax
((foo

(sc-macro-transformer

(lambda (form env)
(capture-syntactic-environment

(lambda (transformer-env)
(identifier=7? transformer-env ’foo
env (cadr form))))))))
(1ist (foo foo)
(foo bar))))
= (#f #t)

Sometimes it is useful to be able to introduce a new identifier that is guaranteed to
be different from any existing identifier, similarly to the way that generate-uninterned-
symbol is used.

make-synthetic-identifier identifier [procedure]
Creates and returns and new synthetic identifier (alias) that is guaranteed to be
different from all existing identifiers. Identifier is any existing identifier, which is
used in deriving the name of the new identifier.

2.11.4 Explicit Renaming

Explicit renaming is an alternative facility for defining macro transformers. In the
MIT/GNU Scheme implementation, explicit-renaming transformers are implemented as an
abstraction layer on top of syntactic closures. An explicit-renaming macro transformer is
defined by an instance of the er-macro-transformer keyword:

er-macro-transformer expression [special form]
The expression is expanded in the syntactic environment of the er-macro-
transformer expression, and the expanded expression is evaluated in the
transformer environment to yield a macro transformer as described below. This
macro transformer is bound to a macro keyword by the special form in which the
transformer expression appears (for example, let-syntax).

In the explicit-renaming facility, a macro transformer is a procedure that takes three
arguments, a form, a renaming procedure, and a comparison predicate, and returns
a new form. The first argument, the input form, is the form in which the macro
keyword occurred.

The second argument to a transformation procedure is a renaming procedure that
takes the representation of an identifier as its argument and returns the representa-
tion of a fresh identifier that occurs nowhere else in the program. For example, the
transformation procedure for a simplified version of the let macro might be written
as
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(lambda (exp rename compare)
(let ((vars (map car (cadr exp)))
(inits (map cadr (cadr exp)))
(body (cddr exp)))
‘((lambda ,vars ,@body)
,0inits)))
This would not be hygienic, however. A hygienic let macro must rename the identifier
lambda to protect it from being captured by a local binding. The renaming effectively
creates an fresh alias for lambda, one that cannot be captured by any subsequent
binding:
(lambda (exp rename compare)
(let ((vars (map car (cadr exp)))
(inits (map cadr (cadr exp)))
(body (cddr exp)))
“((,(rename ’lambda) ,vars ,@body)
,0inits)))

The expression returned by the transformation procedure will be expanded in the
syntactic environment obtained from the syntactic environment of the macro appli-
cation by binding any fresh identifiers generated by the renaming procedure to the
denotations of the original identifiers in the syntactic environment in which the macro
was defined. This means that a renamed identifier will denote the same thing as the
original identifier unless the transformation procedure that renamed the identifier
placed an occurrence of it in a binding position.

The renaming procedure acts as a mathematical function in the sense that the identi-
fiers obtained from any two calls with the same argument will be the same in the sense
of eqv?. It is an error if the renaming procedure is called after the transformation
procedure has returned.

The third argument to a transformation procedure is a comparison predicate that
takes the representations of two identifiers as its arguments and returns true if and
only if they denote the same thing in the syntactic environment that will be used to
expand the transformed macro application. For example, the transformation proce-
dure for a simplified version of the cond macro can be written as

(lambda (exp rename compare)
(let ((clauses (cdr exp)))
(if (null? clauses)
¢(, (rename ’quote) unspecified)
(let*x ((first (car clauses))
(rest (cdr clauses))
(test (car first)))
(cond ((and (identifier? test)
(compare test (rename ’else)))
‘(, (rename ’begin) ,Q@(cdr first)))
(else ‘(,(rename ’if)
,test
(, (rename ’begin) ,@(cdr first))

(cond ,Q@rest))))))))))
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In this example the identifier else is renamed before being passed to the comparison
predicate, so the comparison will be true if and only if the test expression is an
identifier that denotes the same thing in the syntactic environment of the expression
being transformed as else denotes in the syntactic environment in which the cond
macro was defined. If else were not renamed before being passed to the comparison
predicate, then it would match a local variable that happened to be named else, and
the macro would not be hygienic.

Some macros are non-hygienic by design. For example, the following defines a loop
macro that implicitly binds exit to an escape procedure. The binding of exit is
intended to capture free references to exit in the body of the loop, so exit is not
renamed.

(define-syntax loop
(er-macro-transformer
(lambda (x r c)
(let ((body (cdr x)))
‘(,(r ’call-with-current-continuation)
(,(r ’lambda) (exit)
(G, (r ’let) ,(r ’£) O ,@body (,(r ’£)))))))))

Suppose a while macro is implemented using loop, with the intent that exit may
be used to escape from the while loop. The while macro cannot be written as

(define-syntax while
(syntax-rules ()
((while test body ...)
(loop (if (nmot test) (exit #f))
body ...))))

because the reference to exit that is inserted by the while macro is intended to be
captured by the binding of exit that will be inserted by the loop macro. In other
words, this while macro is not hygienic. Like loop, it must be written using the
er-macro-transformer syntax:

(define-syntax while
(er-macro-transformer
(lambda (x r c)
(let ((test (cadr x))
(body (cddr x)))
“(,(r ’loop)
(,(r ’if) (,(r ’not) ,test) (exit #f))
,@body)))))

2.12 SRFI syntax

Several special forms have been introduced to support some of the Scheme Requests for
Implementation (SRFI). Note that MIT/GNU Scheme has for some time supported SRFI
23 (error-reporting mechanism) and SRFI 30 (nested multi-line comments), since these SRFIs
reflect existing practice rather than introducing new functionality.


http://srfi.schemers.org/
http://srfi.schemers.org/
http://srfi.schemers.org/srfi-23/srfi-23.html
http://srfi.schemers.org/srfi-23/srfi-23.html
http://srfi.schemers.org/srfi-30/srfi-30.html
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2.12.1 cond-expand (SRFI 0)

SRFI 0 is a mechanism for portably determining the availability of SRFI features. The
cond-expand special form conditionally expands according to the features available.

cond-expand clause clause dots [special form]

Each clause has the form
(feature-requirement expression ...)
where feature-requirement can have one of the following forms:

feature-identifier

(and feature-requirement ...)
(or feature-requirement ...)
(not feature-requirement)
else

ote that at most one else clause may be present, and it must always be the las
Note that at most 1se cl v be present, and it must always be the last
clause.)

The cond-expand special form tests for the existence of features at macro-expansion
time. It either expands into the body of one of its clauses or signals an error during
syntactic processing. cond-expand expands into the body of the first clause whose
feature-requirement is currently satisfied (an else clause, if present, is selected if none
of the previous clauses is selected).

A feature-requirement has an obvious interpretation as a logical formula, where the
feature-identifier variables have meaning true if the feature corresponding to the
feature-identifier, as specified in the SRFI registry, is in effect at the location of the
cond-expand form, and false otherwise. A feature-requirement is satisfied if its for-
mula is true under this interpretation.

(cond-expand
((and srfi-1 srfi-10)
(write 1))
((or srfi-1 srfi-10)
(write 2))
(else))

(cond-expand
(command-line
(define (program-name) (car (argv)))))

The second example assumes that command-line is an alias for some feature which
gives access to command line arguments. Note that an error will be signaled at
macro-expansion time if this feature is not present.

Note that MIT/GNU Scheme allows cond-expand in any context where a special
form is allowed. This is an extension of the semantics defined by SRFI 0, which only
allows cond-expand at top level.


http://srfi.schemers.org/srfi-0/srfi-0.html
http://srfi.schemers.org/
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2.12.2 receive (SRFI 8)

SRFI 8 defines a convenient syntax to bind an identifier to each of the values of a multiple-
valued expression and then evaluate an expression in the scope of the bindings. As an
instance of this pattern, consider the following excerpt from a ‘quicksort’ procedure:

(call-with-values
(lambda O
(partition (precedes pivot) others))
(lambda (fore aft)
(append (gsort fore) (cons pivot (gsort aft)))))

Here ‘partition’ is a multiple-valued procedure that takes two arguments, a predicate
and a list, and returns two lists, one comprising the list elements that satisfy the predicate,
the other those that do not. The purpose of the expression shown is to partition the list
‘others’, sort each of the sublists, and recombine the results into a sorted list.

For our purposes, the important step is the binding of the identifiers ‘fore’ and ‘aft’ to
the values returned by ‘partition’. Expressing the construction and use of these bindings
with the call-by-values primitive is cumbersome: One must explicitly embed the expres-
sion that provides the values for the bindings in a parameterless procedure, and one must
explicitly embed the expression to be evaluated in the scope of those bindings in another
procedure, writing as its parameters the identifiers that are to be bound to the values
received.

These embeddings are boilerplate, exposing the underlying binding mechanism but not
revealing anything relevant to the particular program in which it occurs. So the use of a syn-
tactic abstraction that exposes only the interesting parts — the identifiers to be bound, the
multiple-valued expression that supplies the values, and the body of the receiving procedure
— makes the code more concise and more readable:

(receive (fore aft) (partition (precedes pivot) others)
(append (gsort fore) (comns pivot (gsort aft))))

The advantages are similar to those of a ‘let’ expression over a procedure call with a
‘lambda’ expression as its operator. In both cases, cleanly separating a “header” in which
the bindings are established from a “body” in which they are used makes it easier to follow
the code.

receive formals expression body [special form)]
Formals and body are defined as for ‘lambda’ (see Section 2.1 [Lambda Expressions],
page 15). Specifically, formals can have the following forms (the use of ‘#!optional’
and ‘#!rest’ is also allowed in formals but is omitted for brevity):

‘(identl1 ... identN)’
The environment in which the ‘receive’ expression is evaluated is ex-
tended by binding identl, . . ., identN to fresh locations. The expression

is evaluated, and its values are stored into those locations. (It is an error
if expression does not have exactly N values.)

‘ident’ The environment in which the ‘receive’ expression is evaluated is ex-
tended by binding ident to a fresh location. The expression is evaluated,
its values are converted into a newly allocated list, and the list is stored
in the location bound to ident.
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‘(ident1 ... identN . identN+1)’
The environment in which the ‘receive’ expression is evaluated is ex-
tended by binding identl, . .., identN+1 to fresh locations. The expres-
sion is evaluated. Its first N values are stored into the locations bound
to identl ... identN. Any remaining values are converted into a newly
allocated list, which is stored into the location bound to identN+1. (It is
an error if expression does not have at least N values.)

In any case, the expressions in body are evaluated sequentially in the extended envi-
ronment. The results of the last expression in the body are the values of the ‘receive’
expression.

2.12.3 and-let* (SRFI 2)

SRFI 2 provides a form that combines ‘and’ and ‘let*’ for a logically short-circuiting se-
quential binding operator.

and-let* (clause ...) body [special form]

Runs through each of the clauses left-to-right, short-circuiting like ‘and’ in that the
first false clause will result in the whole ‘and-1et*’ form returning false. If a body is
supplied, and all of the clauses evaluate true, then the body is evaluated sequentially
as if in a ‘begin’ form, and the value of the ‘and-let*’ expression is the value of the
last body form, evaluated in a tail position with respect to the ‘and-let*’ expression.
If no body is supplied, the value of the last clause, also evaluated in a tail position
with respect to the ‘and-let*’ expression, is used instead.

Each clause should have one of the following forms:
‘identifier’
in which case identifier’s value is tested.

‘(expression)’
in which case the value of expression is tested.

‘(identifier expression)’
in which case expression is evaluated, and, if its value is not false, iden-
tifier is bound to that value for the remainder of the clauses and the
optional body.

Example:

(and-let* ((list (compute-list))
((pair? 1list))
(item (car list))
((integer? item)))
(sqrt item))

2.12.4 define-record-type (SRFI 9)

The ‘define-record-type’ syntax described in SRFI 9 is a slight simplification of one
written for Scheme 48 by Jonathan Rees. Unlike many record-defining special forms, it does
not create any new identifiers. Instead, the names of the record type, predicate, constructor,
and so on are all listed explicitly in the source. This has the following advantages:
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e It can be defined using a simple macro in Scheme implementations that provide a
procedural interface for creating record types.

e It does not restrict users to a particular naming convention.

e Tools like grep and the GNU Emacs tag facility will see the defining occurance of each
identifier.

define-record-type type-name (constructor-name field-tag . . .) [special form)]
predicate-name field-spec . . .
Type-name, contructor-name, field-tag, and predicate-name are identifiers. Field-
spec has one of these two forms:

(field-tag accessor-name)
(field-tag accessor-name modifier-name)

where field-tag, accessor-name, and modifier-name are each identifiers.

define-record-type is generative: each use creates a new record type that is distinct
from all existing types, including other record types and Scheme’s predefined types.
Record-type definitions may only occur at top-level (there are two possible semantics
for “internal” record-type definitions, generative and nongenerative, and no consensus
as to which is better).

An instance of define-record-type is equivalent to the following definitions:

e Type-name is bound to a representation of the record type itself. Operations
on record types, such as defining print methods, reflection, etc. are left to other

SRFIs.
e constructor-name is bound to a procedure that takes as many arguments as
there are field-tags in the (constructor-name ...) subform and returns a new

type-name record. Fields whose tags are listed with constructor-name have the
corresponding argument as their initial value. The initial values of all other fields
are unspecified.

e predicate-name is a predicate that returns #t when given a value returned by
constructor-name and #f for everything else.

e KEach accessor-name is a procedure that takes a record of type type-name and
returns the current value of the corresponding field. It is an error to pass an
accessor a value which is not a record of the appropriate type.

e FEach modifier-name is a procedure that takes a record of type type-name and
a value which becomes the new value of the corresponding field; an unspecified
value is returned. It is an error to pass a modifier a first argument which is not
a record of the appropriate type.

Assigning the value of any of these identifiers has no effect on the behavior of any of
their original values.

The following

(define-record-type :pare
(kons x y)
pare?
(x kar set-kar!)
(y kdr))
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defines ‘kons’ to be a constructor, ‘kar’ and ‘kdr’ to be accessors, ‘set-kar!’ to be a
modifier, and ‘pare?’ to be a predicate for objects of type ‘:pare’.

(pare? (kons 1 2)) = #t
(pare? (cons 1 2)) = #f
(kar (kons 1 2)) =1
(kdr (kons 1 2)) =

(let ((k (kons 1 2)))
(set-kar! k 3)
(kar k))

4
w
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3 Equivalence Predicates

A predicate is a procedure that always returns a boolean value (#t or #f). An equivalence
predicate is the computational analogue of a mathematical equivalence relation (it is sym-
metric, reflexive, and transitive). Of the equivalence predicates described in this section,

eq? is the finest or most discriminating, and equal? is the coarsest. eqv? is slightly less

discriminating than eq?.

eqv? objl obj2 [procedure]
The eqv? procedure defines a useful equivalence relation on objects. Briefly, it returns

#t if objl and obj2 should normally be regarded as the same object.

The
[ ]

eqv? procedure returns #t if:
objl and obj2 are both #t or both #f£.
objl and obj2 are both interned symbols and

(string=7 (symbol->string obj1)
(symbol->string obj2))
= #t

objl and obj2 are both numbers, are numerically equal according to the = pro-
cedure, and are either both exact or both inexact (see Chapter 4 [Numbers],
page 61).

objl and obj2 are both characters and are the same character according to the
char=? procedure (see Chapter 5 [Characters|, page 81).

both objl and obj2 are the empty list.

objl and obj2 are procedures whose location tags are equal.

objl and obj2 are pairs, vectors, strings, bit strings, records, cells, or weak pairs
that denote the same locations in the store.

eqv? procedure returns #f if:

objl and obj2 are of different types.

one of objl and obj2 is #t but the other is #f.

objl and obj2 are symbols but

(string=7 (symbol->string obj1)
(symbol->string obj2))
= #f

one of objl and obj2 is an exact number but the other is an inexact number.
objl and obj2 are numbers for which the = procedure returns #f.

objl and obj2 are characters for which the char=7 procedure returns #f.
one of objl and obj2 is the empty list but the other is not.

objl and obj2 are procedures that would behave differently (return a different
value or have different side effects) for some arguments.

obj1 and obj2 are pairs, vectors, strings, bit strings, records, cells, or weak pairs
that denote distinct locations.
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Some examples:

(eqv? ’a ’a) = #t
(eqv? ’a ’Db) = #f
(eqv? 2 2) = #t
(eqv? 7O 2 0O) = #t
(eqv? 100000000 100000000) = #t
(eqv? (cons 1 2) (comns 1 2)) = #f
(eqv? (lambda () 1)
(lambda () 2)) = #f
(equ? #f ’nil) = #f
(let ((p (lambda (x) x)))
(eqv? p p)) = #t

The following examples illustrate cases in which the above rules do not fully specify
the behavior of eqv?. All that can be said about such cases is that the value returned
by eqv? must be a boolean.

(equ? "™ ") = unspecified
(eqv? ’#0 ’#0) = unspecified
(eqv? (lambda (x) x)

(lambda (x) x)) = unspecified
(eqv? (lambda (x) x)

(lambda (y) y)) = unspecified

The next set of examples shows the use of eqv? with procedures that have local state.
gen-counter must return a distinct procedure every time, since each procedure has
its own internal counter. gen-loser, however, returns equivalent procedures each
time, since the local state does not affect the value or side effects of the procedures.

(define gen-counter
(lambda (O
(let ((n 0))
(lambda () (set! m (+ n 1)) n))))
(let ((g (gen-counter)))

(eqv? g g)) = #t
(eqv? (gen-counter) (gen-counter))
= #f

(define gen-loser

(lambda ()

(let ((n 0))
(lambda () (set! n (+ n 1)) 27))))

(let ((g (gen-loser)))

(eqv? g g)) = #t
(eqv? (gen-loser) (gen-loser))

= unspecified
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(letrec ((f (lambda () (if (eqv? f g) ’both ’£)))
(g (lambda () (if (eqv? f g) ’both ’g)))
(eqv? f g))
= unspecified

(letrec ((f (lambda () (if (eqv? f g) ’f ’both)))
(g (lambda () (if (eqv? f g) ’g ’both)))
(eqv? f g))
= #f
Objects of distinct types must never be regarded as the same object.

Since it is an error to modify constant objects (those returned by literal expressions),
the implementation may share structure between constants where appropriate. Thus
the value of eqv? on constants is sometimes unspecified.

(let ((x ’(a)))

(eqv? x x)) = #t
(eqv? ’(a) ’(a)) = unspecified
(eqv? "a" "a") = unspecified
(eqv? ’(b) (cdr ’(a b))) = unspecified

Rationale: The above definition of eqv? allows implementations latitude in their
treatment of procedures and literals: implementations are free either to detect or to
fail to detect that two procedures or two literals are equivalent to each other, and
can decide whether or not to merge representations of equivalent objects by using the
same pointer or bit pattern to represent both.



58 MIT/GNU Scheme 10.1.4

eq? objl obj2 [procedure]
eq? is similar to eqv? except that in some cases it is capable of discerning distinctions
finer than those detectable by eqv?.

eq? and eqv? are guaranteed to have the same behavior on symbols, booleans, the
empty list, pairs, records, and non-empty strings and vectors. eq?’s behavior on
numbers and characters is implementation-dependent, but it will always return either
true or false, and will return true only when eqv? would also return true. eq? may
also behave differently from eqv? on empty vectors and empty strings.

(eq? ’a ’a) = #t
(eq? ’(a) ’(a)) = unspecified
(eq? (list ’a) (1list ’a)) = #f
(eq? "a" "a") = unspecified
(eq? "™ "™M) = unspecified
(eq? 0O 70 = #t
(eq? 2 2) = unspecified
(eq? #\A #\A) = unspecified
(eq? car car) = #t
(let ((n (+ 2 3)))

(eq? n n)) = unspecified
(let ((x ’(a)))

(eq? x x)) = #t
(let ((x *#0))

(eq? x x)) = #t
(let ((p (lambda (x) x)))

(eq? p p)) = #t

Rationale: It will usually be possible to implement eq? much more efficiently than
eqv?, for example, as a simple pointer comparison instead of as some more compli-
cated operation. One reason is that it may not be possible to compute eqv? of two
numbers in constant time, whereas eq? implemented as pointer comparison will always
finish in constant time. eq? may be used like eqv? in applications using procedures
to implement objects with state since it obeys the same constraints as eqv?.
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equal? objl obj2 [procedure]
equal? recursively compares the contents of pairs, vectors, and strings, applying
eqv? on other objects such as numbers, symbols, and records. A rule of thumb is
that objects are generally equal? if they print the same. equal? may fail to terminate
if its arguments are circular data structures.
(equal? ’a ’a) = #t
(equal? ’(a) ’(a)) = #t
(equal? ’(a (b) c)
’(a (b) ©)) = #t
(equal? "abc" "abc") #t
(equal? 2 2) #t
(equal? (make-vector 5 ’a)
(make-vector 5 ’a)) = #t
(equal? (lambda (x) x)
(lambda (y) y)) = unspecified

4






61

4 Numbers

(This section is largely taken from the Revised~4 Report on the Algorithmic Language
Scheme.)

Numerical computation has traditionally been neglected by the Lisp community. Until
Common Lisp there was no carefully thought out strategy for organizing numerical com-
putation, and with the exception of the MacLisp system little effort was made to execute
numerical code efficiently. This report recognizes the excellent work of the Common Lisp
committee and accepts many of their recommendations. In some ways this report simplifies
and generalizes their proposals in a manner consistent with the purposes of Scheme.

It is important to distinguish between the mathematical numbers, the Scheme numbers
that attempt to model them, the machine representations used to implement the Scheme
numbers, and notations used to write numbers. This report uses the types number, complex,
real, rational, and integer to refer to both mathematical numbers and Scheme numbers.
Machine representations such as fixed point and floating point are referred to by names
such as firnum and flonum.

4.1 Numerical types

Mathematically, numbers may be arranged into a tower of subtypes in which each level is
a subset of the level above it:

number
complex
real
rational
integer

For example, 3 is an integer. Therefore 3 is also a rational, a real, and a complex. The
same is true of the Scheme numbers that model 3. For Scheme numbers, these types are
defined by the predicates number?, complex?, real?, rational?, and integer?.

There is no simple relationship between a number’s type and its representation inside
a computer. Although most implementations of Scheme will offer at least two different
representations of 3, these different representations denote the same integer.

Scheme’s numerical operations treat numbers as abstract data, as independent of their
representation as possible. Although an implementation of Scheme may use fixnum, flonum,
and perhaps other representations for numbers, this should not be apparent to a casual
programmer writing simple programs.

It is necessary, however, to distinguish between numbers that are represented exactly
and those that may not be. For example, indexes into data structures must be known
exactly, as must some polynomial coefficients in a symbolic algebra system. On the other
hand, the results of measurements are inherently inexact, and irrational numbers may be
approximated by rational and therefore inexact approximations. In order to catch uses of
inexact numbers where exact numbers are required, Scheme explicitly distinguishes exact
from inexact numbers. This distinction is orthogonal to the dimension of type.
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4.2 Exactness

Scheme numbers are either exact or inexact. A number is exact if it was written as an
exact constant or was derived from exact numbers using only exact operations. A number
is inexact if it was written as an inexact constant, if it was derived using inexact ingredients,
or if it was derived using inexact operations. Thus inexactness is a contagious property of
a number.

If two implementations produce exact results for a computation that did not involve in-
exact intermediate results, the two ultimate results will be mathematically equivalent. This
is generally not true of computations involving inexact numbers since approximate methods
such as floating point arithmetic may be used, but it is the duty of each implementation to
make the result as close as practical to the mathematically ideal result.

Rational operations such as + should always produce exact results when given exact
arguments. If the operation is unable to produce an exact result, then it may either report
the violation of an implementation restriction or it may silently coerce its result to an
inexact value. See Section 4.3 [Implementation restrictions], page 62.

With the exception of exact, the operations described in this section must generally
return inexact results when given any inexact arguments. An operation may, however,
return an exact result if it can prove that the value of the result is unaffected by the
inexactness of its arguments. For example, multiplication of any number by an exact zero
may produce an exact zero result, even if the other argument is inexact.

4.3 Implementation restrictions

Implementations of Scheme are not required to implement the whole tower of subtypes
(see Section 4.1 [Numerical types|, page 61), but they must implement a coherent subset
consistent with both the purposes of the implementation and the spirit of the Scheme
language. For example, an implementation in which all numbers are real may still be quite
useful.!

Implementations may also support only a limited range of numbers of any type, subject
to the requirements of this section. The supported range for exact numbers of any type
may be different from the supported range for inexact numbers of that type. For example,
an implementation that uses flonums to represent all its inexact real numbers may support
a practically unbounded range of exact integers and rationals while limiting the range of
inexact reals (and therefore the range of inexact integers and rationals) to the dynamic range
of the flonum format. Furthermore the gaps between the representable inexact integers and
rationals are likely to be very large in such an implementation as the limits of this range
are approached.

An implementation of Scheme must support exact integers throughout the range of
numbers that may be used for indexes of lists, vectors, and strings or that may result
from computing the length of a list, vector, or string. The length, vector-length, and
string-length procedures must return an exact integer, and it is an error to use anything
but an exact integer as an index. Furthermore any integer constant within the index range,

1 MIT/GNU Scheme implements the whole tower of numerical types. It has unlimited-precision exact
integers and exact rationals. Flonums are used to implement all inexact reals; on machines that support
IEEE floating-point arithmetic these are double-precision floating-point numbers.
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if expressed by an exact integer syntax, will indeed be read as an exact integer, regardless of
any implementation restrictions that may apply outside this range. Finally, the procedures
listed below will always return an exact integer result provided all their arguments are exact
integers and the mathematically expected result is representable as an exact integer within
the implementation:

* ged modulo
imag-part numerator

- exact quotient

abs lcm rationalize

angle magnitude real-part

ceiling make-polar remainder

denominator make-rectangular round

expt max truncate

floor min

Implementations are encouraged, but not required, to support exact integers and exact
rationals of practically unlimited size and precision, and to implement the above procedures
and the / procedure in such a way that they always return exact results when given exact
arguments. If one of these procedures is unable to deliver an exact result when given exact
arguments, then it may either report a violation of an implementation restriction or it may
silently coerce its result to an inexact number. Such a coercion may cause an error later.

An implementation may use floating point and other approximate representation strate-
gies for inexact numbers. This report recommends, but does not require, that the IEEE
32-bit and 64-bit floating point standards be followed by implementations that use flonum
representations, and that implementations using other representations should match or ex-
ceed the precision achievable using these floating point standards.

In particular, implementations that use flonum representations must follow these rules:
A flonum result must be represented with at least as much precision as is used to express any
of the inexact arguments to that operation. It is desirable (but not required) for potentially
inexact operations such as sqrt, when applied to exact arguments, to produce exact answers
whenever possible (for example the square root of an exact 4 ought to be an exact 2). If,
however, an exact number is operated upon so as to produce an inexact result (as by sqrt),
and if the result is represented as a flonum, then the most precise flonum format available
must be used; but if the result is represented in some other way then the representation
must have at least as much precision as the most precise flonum format available.

Although Scheme allows a variety of written notations for numbers, any particular im-
plementation may support only some of them.? For example, an implementation in which
all numbers are real need not support the rectangular and polar notations for complex num-
bers. If an implementation encounters an exact numerical constant that it cannot represent
as an exact number, then it may either report a violation of an implementation restriction
or it may silently represent the constant by an inexact number.

2 MIT/GNU Scheme implements all of the written notations for numbers.
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4.4 Syntax of numerical constants

A number may be written in binary, octal, decimal, or hexadecimal by the use of a radix
prefix. The radix prefixes are #b (binary), #o (octal), #d (decimal), and #x (hexadecimal).
With no radix prefix, a number is assumed to be expressed in decimal.

A numerical constant may be specified to be either exact or inexact by a prefix. The
prefixes are #e for exact, and #i for inexact. An exactness prefix may appear before or after
any radix prefix that is used. If the written representation of a number has no exactness
prefix, the constant may be either inexact or exact. It is inexact if it contains a decimal
point, an exponent, or a # character in the place of a digit, otherwise it is exact.

In systems with inexact numbers of varying precisions it may be useful to specify the
precision of a constant. For this purpose, numerical constants may be written with an
exponent marker that indicates the desired precision of the inexact representation. The
letters s, f, d, and 1 specify the use of short, single, double, and long precision, respectively.
(When fewer than four internal inexact representations exist, the four size specifications
are mapped onto those available. For example, an implementation with two internal repre-
sentations may map short and single together and long and double together.) In addition,
the exponent marker e specifies the default precision for the implementation. The default
precision has at least as much precision as double, but implementations may wish to allow
this default to be set by the user.

3.14159265358979F0
Round to single — 3.141593
0.6L0
Extend to long — .600000000000000

4.5 Numerical operations

See Section 1.1.3 [Entry Format|, page 5, for a summary of the naming conventions used
to specify restrictions on the types of arguments to numerical routines. The examples
used in this section assume that any numerical constant written using an exact notation is
indeed represented as an exact number. Some examples also assume that certain numerical
constants written using an inexact notation can be represented without loss of accuracy;
the inexact constants were chosen so that this is likely to be true in implementations that
use flonums to represent inexact numbers.

number? object [ ]

complex? object [ ]

real? object [procedure]

rational? object [ ]

integer? object [ ]
These numerical type predicates can be applied to any kind of argument, including
non-numbers. They return #t if the object is of the named type, and otherwise they
return #f. In general, if a type predicate is true of a number then all higher type
predicates are also true of that number. Consequently, if a type predicate is false of
a number, then all lower type predicates are also false of that number.?

3 In MIT/GNU Scheme the rational? procedure is the same as real?, and the complex? procedure is
the same as number?.
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If z is an inexact complex number, then (real? z) is true if and only if (zero?
(imag-part z)) is true. If x is an inexact real number, then (integer? x) is true if
and only if (= x (round x)).

(complex? 3+41i) = #t
(complex? 3) = #t
(real? 3) = #t
(real? -2.5+0.01) = #t
(real? #elel0) = #t
(rational? 6/10) = #t
(rational? 6/3) = #t
(integer? 3+0i) = #t
(integer? 3.0) = #t
(integer? 8/4) = #t

Note: The behavior of these type predicates on inexact numbers is unreliable, since
any inaccuracy may affect the result.

exact? z [procedure]

inexact? z [procedure]
These numerical predicates provide tests for the exactness of a quantity. For any
Scheme number, precisely one of these predicates is true.

exact-integer? object [procedure]
exact-nonnegative-integer? object [procedure]
exact-rational? object [procedure]

These procedures test for some very common types of numbers. These tests could be
written in terms of simpler predicates, but are more efficient.

=z12z22z3 ... [procedure]
< x1x2x3... [procedure]
> x1 x2x3 ... [procedure]
<=x1x2x3... [procedure]
>=x1x2x3 ... [procedure]

These procedures return #t if their arguments are (respectively): equal, monotonically
increasing, monotonically decreasing, monotonically nondecreasing, or monotonically
nonincreasing.

These predicates are transitive. Note that the traditional implementations of these
predicates in Lisp-like languages are not transitive.

Note: While it is not an error to compare inexact numbers using these predicates,
the results may be unreliable because a small inaccuracy may affect the result; this
is especially true of = and zero?. When in doubt, consult a numerical analyst.

zero? z [procedure]
positive? x [procedure]
negative? x [procedure]
odd? x [procedure]
even? x [procedure]

These numerical predicates test a number for a particular property, returning #t or
#f. See note above regarding inexact numbers.
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max xI x2 ... [procedure]
min xI x2 ... [procedure]
These procedures return the maximum or minimum of their arguments.
(max 3 4) = 4 ; exact
(max 3.9 4) = 4.0 ;inexact
Note: If any argument is inexact, then the result will also be inexact (unless the
procedure can prove that the inaccuracy is not large enough to affect the result, which
is possible only in unusual implementations). If min or max is used to compare numbers
of mixed exactness, and the numerical value of the result cannot be represented as an
inexact number without loss of accuracy, then the procedure may report a violation
of an implementation restriction.*
+z1 ... [procedure]
x z1 ... [procedure]
These procedures return the sum or product of their arguments.
(+ 3 4) = 7
(+ 3) = 3
(+) = 0
(x 4) = 4
€)) = 1
-zl 272 ... [procedure]
/ zlz2 ... [procedure]
With two or more arguments, these procedures return the difference or quotient of
their arguments, associating to the left. With one argument, however, they return
the additive or multiplicative inverse of their argument.
(- 3 4) = -1
(- 345) = -6
(- 3) = -3
(/ 3 45) = 3/20
/ 3 = 1/3
1+ z [procedure]
1+ g [procedure]
(1+ z) is equivalent to (+ z 1); (-1+ z) is equivalent to (- z 1).
abs x [procedure]
abs returns the magnitude of its argument.
(abs -T7) = 7
quotient nl n2 [procedure]
remainder nl n2 [procedure]
modulo nl n2 [procedure]

These procedures implement number-theoretic (integer) division: for positive integers
nl and n2, if n3 and n4 are integers such that

Ny = NNz + Ny

4 MIT/GNU Scheme signals an error of type condition-type:bad-range-argument in this case.
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0 <ny <ng
then
(quotient ni1 n2) = n3
(remainder nl1 n2) = n4
(modulo ni1 n2) = n4
For integers nl1 and n2 with n2 not equal to 0,

(= n1
(+ (* n2 (quotient nl1 n2))
(remainder n1 n2)))
= #t
provided all numbers involved in that computation are exact.

The value returned by quotient always has the sign of the product of its arguments.

remainder and modulo differ on negative arguments — the remainder always has
the sign of the dividend, the modulo always has the sign of the divisor:

(modulo 13 4) = 1

(remainder 13 4) = 1

(modulo -13 4) = 3

(remainder -13 4) = -1

(modulo 13 -4) = -3

(remainder 13 -4) = 1

(modulo -13 -4) = -1

(remainder -13 -4) = -1

(remainder -13 -4.0) = -1.0 ;inexact

Note that quotient is the same as integer-truncate.

integer-floor nl n2 [procedure]
integer-ceiling nl n2 [procedure]
integer-truncate nl n2 [procedure]
integer-round nl n2 [procedure]

These procedures combine integer division with rounding. For example, the following
are equivalent:

(integer-floor nl1 n2)
(floor (/ ni1 n2))

However, the former is faster and does not produce an intermediate result.

Note that integer-truncate is the same as quotient.

integer-divide nl n2 [procedure]
integer-divide-quotient qr [procedure]
integer-divide-remainder qr [procedure]

integer-divide is equivalent to performing both quotient and remainder at
once. The result of integer-divide is an object with two components; the
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procedures integer-divide-quotient and integer-divide-remainder select
those components. These procedures are useful when both the quotient and
remainder are needed; often computing both of these numbers simultaneously is
much faster than computing them separately.

For example, the following are equivalent:

(lambda (n 4d)
(cons (quotient n d)
(remainder n d)))

(lambda (n d)
(let ((qr (integer-divide n d)))
(cons (integer-divide-quotient qr)
(integer-divide-remainder qr))))

gcd nl ... [procedure]

lcm nl ... [procedure]
These procedures return the greatest common divisor or least common multiple of
their arguments. The result is always non-negative.

(gcd 32 -36) = 4

(gecd) = 0

(1cm 32 -36) = 288

(1cm 32.0 -36) = 288.0 ;inexact

(1cm) = 1
numerator q [procedure]
denominator q [procedure]

These procedures return the numerator or denominator of their argument; the result
is computed as if the argument was represented as a fraction in lowest terms. The
denominator is always positive. The denominator of 0 is defined to be 1.

(numerator (/ 6 4)) = 3
(denominator (/ 6 4)) = 2
(denominator (inexact (/ 6 4))) = 2.0

floor x [procedure]
ceiling x [procedure]
truncate x [procedure]
round x [procedure]

These procedures return integers. floor returns the largest integer not larger than
x. ceiling returns the smallest integer not smaller than x. truncate returns the
integer closest to x whose absolute value is not larger than the absolute value of x.
round returns the closest integer to x, rounding to even when x is halfway between
two integers.

Rationale: round rounds to even for consistency with the rounding modes required
by the IEEE floating point standard.
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Note: If the argument to one of these procedures is inexact, then the result will also
be inexact. If an exact value is needed, the result should be passed to the exact
procedure (or use one of the procedures below).

(floor -4.3) -5.0
(ceiling -4.3) -4.0
(truncate -4.3)
(round -4.3)

R A
A
o

(floor 3.5)
(ceiling 3.5)
(truncate 3.5)
(round 3.5)

R A

; inexact

(round 7/2)
(round 7)

4 ; exact

44

floor->exact x [procedure

ceiling->exact x [procedure

truncate->exact x [procedure

round->exact x [procedure
These procedures are similar to the preceding procedures except that they always
return an exact result. For example, the following are equivalent

[l AL AL AL

(floor->exact x)
(exact (floor x))

except that the former is faster and has fewer range restrictions.

rationalize x y [procedure]

rationalize->exact xy [procedure]
rationalize returns the simplest rational number differing from x by no more than
v. A rational number rl is simpler than another rational number r2 if ri=p1/q1
and r2=p2/q2 (both in lowest terms) and |p1|<=|p2| and |q1l<=1g2|. Thus 3/5 is
simpler than 4/7. Although not all rationals are comparable in this ordering (consider
2/7 and 3/5) any interval contains a rational number that is simpler than every other
rational number in that interval (the simpler 2/5 lies between 2/7 and 3/5). Note
that 0=0/1 is the simplest rational of all.

(rationalize (exact .3) 1/10) = 1/3 ; exact
(rationalize .3 1/10) = #i1/3 ; inexact
rationalize->exact is similar to rationalize except that it always returns an exact
result.
simplest-rational xy [procedure]
simplest-exact-rational xy [procedure]

simplest-rational returns the simplest rational number between x and y inclusive;
simplest-exact-rational is similar except that it always returns an exact result.

These procedures implement the same functionality as rationalize and

rationalize->exact, except that they specify the input range by its endpoints;
rationalize specifies the range by its center point and its (half-) width.
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exp z [procedure]
log z [procedure]
sin z [procedure]
cos z [procedure]
tan z [procedure]
asin z [procedure]
acos z [procedure]
atan z [procedure]
atan y x [procedure]
These procedures compute the usual transcendental functions. log computes the
natural logarithm of z (not the base ten logarithm). asin, acos, and atan compute
arcsine, arccosine, and arctangent, respectively. The two-argument variant of atan
computes (angle (make-rectangular x y)) (see below).
In general, the mathematical functions log, arcsine, arccosine, and arctangent are
multiply defined. For nonzero real x, the value of log x is defined to be the one
whose imaginary part lies in the range minus pi (exclusive) to pi (inclusive). log 0 is
undefined. The value of log z when z is complex is defined according to the formula
log z = log magnitude(z) + iangle(z)
With log defined this way, the values of arcsine, arccosine, and arctangent are accord-
ing to the following formulae:
sin™' z = —ilog(iz + V1 — 22)
cos tz=m/2—sin""z
tan~" z = (log(1 + iz) — log(1 —iz))/(2i)
The above specification follows Common Lisp: the Language, which in turn cites
Principal Values and Branch Cuts in Complex APL; refer to these sources for more
detailed discussion of branch cuts, boundary conditions, and implementation of these
functions. When it is possible these procedures produce a real result from a real
argument.
sqrt z [procedure]
Returns the principal square root of z. The result will have either positive real part,
or zero real part and non-negative imaginary part.
expt z1 z2 [procedure]

make-rectangular xI x2 [ ]
make-polar xJ3 x4 [procedure]
real-part z [ ]
imag-part z [ ]

Returns z1 raised to the power z2:
z2 €Z2 log z1

Z1

0% is defined to be equal to 1.

procedure

procedure
procedure
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magnitude z [procedure]
angle z [procedure]
conjugate z [procedure]

Suppose x1, x2, x3, and x4 are real numbers and z is a complex number such that

2 =X + Toi = x5 - T4

Then make-rectangular and make-polar return z, real-part returns x1, imag-part
returns x2, magnitude returns x3, and angle returns x4. In the case of angle, whose
value is not uniquely determined by the preceding rule, the value returned will be the
one in the range minus pi (exclusive) to pi (inclusive).

conjugate returns the complex conjugate of z.

The procedures exact and inexact implement the natural one-to-one correspondence
between exact and inexact integers throughout an implementation-dependent range.

inexact z [procedure]

exact->inexact z [procedure]
inexact returns an inexact representation of z. The value returned is the inexact
number that is numerically closest to the argument. If an exact argument has no
reasonably close inexact equivalent, then a violation of an implementation restriction
may be reported; MIT/GNU Scheme signals an error of type condition-type:bad-
range-argument in this case.

The procedure exact->inexact has been deprecated by R7RS.

inexact z [procedure]

exact->inexact z [procedure]
inexact returns an inexact representation of z. The value returned is the inexact
number that is numerically closest to the argument. If an exact argument has no
reasonably close inexact equivalent, then a violation of an implementation restriction
may be reported; MIT/GNU Scheme signals an error of type condition-type:bad-
range-argument in this case.

exact returns an exact representation of z. The value returned is the exact number
that is numerically closest to the argument. If an inexact argument has no reason-
ably close exact equivalent, then a violation of an implementation restriction may be
reported; in MIT/GNU Scheme this case does not occur because all inexact numbers
are representable as exact numbers.

The procedure inexact->exact has been deprecated by R7RS.

4.6 Numerical input and output

number->string number [radix] [procedure]
Radix must be an exact integer, either 2, 8, 10, or 16. If omitted, radix defaults to
10. The procedure number->string takes a number and a radix and returns as a
string an external representation of the given number in the given radix such that


http://r7rs.org/
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(let ((number number)
(radix radix))
(eqv? number
(string->number (number->string number radix)
radix)))

is true. It is an error if no possible result makes this expression true.

If number is inexact, the radix is 10, and the above expression can be satisfied by
a result that contains a decimal point, then the result contains a decimal point and
is expressed using the minimum number of digits (exclusive of exponent and trailing
zeroes) needed to make the above expression true; otherwise the format of the result
is unspecified.

The result returned by number->string never contains an explicit radix prefix.
Note: The error case can occur only when number is not a complex number or is a
complex number with an non-rational real or imaginary part.

Rationale: If number is an inexact number represented using flonums, and the radix
is 10, then the above expression is normally satisfied by a result containing a decimal
point. The unspecified case allows for infinities, NaNs, and non-flonum representa-
tions.

flonum-parser-fast? [variable]

This variable controls the behavior of string->number when parsing inexact numbers.
Specifically, it allows the user to trade off accuracy against speed.

When set to its default value, #£, the parser provides maximal accuracy, as required
by the Scheme standard. If set to #t, the parser uses faster algorithms that will
sometimes introduce small errors in the result. The errors affect a few of the least-
significant bits of the result, and consequently can be tolerated by many applications.

flonum-unparser-cutoff [variable]

This variable is deprecated; use param:flonum-printer-cutoff instead.

param:flonum-printer-cutoff [parameter]

This parameter controls the action of number->string when number is a flonum (and
consequently controls all printing of flonums). This parameter may be called with an
argument to set its value.

The value of this parameter is normally a list of three items:

rounding-type
One of the following symbols: normal, relative, or absolute. The sym-
bol normal means that the number should be printed with full precision.
The symbol relative means that the number should be rounded to a
specific number of digits. The symbol absolute means that the number
should be rounded so that there are a specific number of digits to the
right of the decimal point.

precision  An exact integer. If rounding-type is normal, precision is ignored. If
rounding-type is relative, precision must be positive, and it specifies
the number of digits to which the printed representation will be rounded.
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If rounding-type is absolute, the printed representation will be rounded
precision digits to the right of the decimal point; if precision is negative,
the representation is rounded (- precision) digits to the left of the
decimal point.

format-type

One of the symbols: normal, scientific, or engineering. This speci-
fies the format in which the number will be printed.

scientific specifies that the number will be printed using scientific no-
tation: x.xxxeyyy. In other words, the number is printed as a significand
between zero inclusive and ten exclusive, and an exponent. engineering
is like scientific, except that the exponent is always a power of three,
and the significand is constrained to be between zero inclusive and 1000
exclusive. If normal is specified, the number will be printed in positional
notation if it is “small enough”, otherwise it is printed in scientific nota-
tion. A number is “small enough” when the number of digits that would
be printed using positional notation does not exceed the number of digits
of precision in the underlying floating-point number representation; IEEE
double-precision floating-point numbers have 17 digits of precision.

This three-element list may be abbreviated in two ways. First, the symbol normal
may be used, which is equivalent to the list (normal O normal). Second, the third
element of the list, format-type, may be omitted, in which case it defaults to normal.

The default value for param:flonum-printer-cutoff is normal. If it is bound to a
value different from those described here, number->string issues a warning and acts
as though the value had been normal.

Some examples of param:flonum-printer-cutoff:

(number->string (* 4 (atan 1 1)))
= "3.141592653589793"
(parameterize ((param:flonum-printer-cutoff ’(relative 5)))

(lambda O
(number->string (* 4 (atan 1 1)))))
= "3.1416"
(parameterize ((param:flonum-printer-cutoff ’(relative 5)))
(lambda ()
(number->string (* 4000 (atan 1 1)))))
= "3141.6"
(parameterize ((param:flonum-printer-cutoff ’(relative 5 scientific)))
(lambda O
(number->string (* 4000 (atan 1 1)))))
= "3.1416e3"
(parameterize ((param:flonum-printer-cutoff ’(relative 5 scientific)))
(lambda ()

(number->string (* 40000 (atan 1 1)))))
= "3.1416e4"
(parameterize ((param:flonum-printer-cutoff ’(relative 5 engineering)))
(lambda (O
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(number->string (* 40000 (atan 1 1)))))
= "31.416e3"
(parameterize ((param:flonum-printer-cutoff ’(absolute 5)))
(lambda ()
(number->string (* 4 (atan 1 1)))))
= "3.14159"
(parameterize ((param:flonum-printer-cutoff ’(absolute 5)))
(lambda (O
(number->string (* 4000 (atan 1 1)))))
= "3141.59265"
(parameterize ((param:flonum-printer-cutoff ’(absolute -4)))
(lambda O
(number->string (* 4el10 (atan 1 1)))))
= "31415930000."
(parameterize ((param:flonum-printer-cutoff ’(absolute -4 scientific)))
(lambda O
(number->string (* 4el10 (atan 1 1)))))
= "3.141593e10"
(parameterize ((param:flonum-printer-cutoff °’(absolute -4 engineering)))
(lambda ()
(number->string (* 4el0 (atan 1 1)))))
= "31.41593e9"
(parameterize ((param:flonum-printer-cutoff °’(absolute -5)))
(lambda Q)
(number->string (* 4el10 (atan 1 1)))))
= "31415900000."

string->number string [radix] [procedure]
Returns a number of the maximally precise representation expressed by the given
string. Radix must be an exact integer, either 2, 8 10, or 16. If supplied, radix
is a default radix that may be overridden by an explicit radix prefix in string (e.g.
"#0177"). If radix is not supplied, then the default radix is 10. If string is not a
syntactically valid notation for a number, then string->number returns #f.

(string->number "100") = 100
(string->number "100" 16) = 256
(string->number "1e2") = 100.0
(string->number "15##") = 1500.0

Note that a numeric representation using a decimal point or an exponent marker is
not recognized unless radix is 10.

4.7 Fixnum and Flonum Operations

This section describes numerical operations that are restricted forms of the operations
described above. These operations are useful because they compile very efficiently. However,
care should be exercised: if used improperly, these operations can return incorrect answers,
or even malformed objects that confuse the garbage collector.
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4.7.1 Fixnum Operations

A fixnum is an exact integer that is small enough to fit in a machine word. In MIT/GNU
Scheme, fixnums are typically 24 or 26 bits, depending on the machine; it is reasonable to
assume that fixnums are at least 24 bits. Fixnums are signed; they are encoded using 2’s
complement.

All exact integers that are small enough to be encoded as fixnums are always encoded as
fixnums — in other words, any exact integer that is not a fixnum is too big to be encoded
as such. For this reason, small constants such as 0 or 1 are guaranteed to be fixnums.

fix:

fixnum? object [procedure]
Returns #t if object is a fixnum; otherwise returns #f.

Here is an expression that determines the largest fixnum:

(let loop ((n 1))
(if (fix:fixnum? n)
(loop (* n 2))
(- n 1))

A similar expression determines the smallest fixnum.

fix:
fix:
fix:
fix:
fix:

fix:
fix:
fix:

fix:
fix:
fix:
fix:
fix:
fix:
fix:
fix:

fixnum fixnum [procedure]
< fixnum fixnum [procedure]
> fixnum fixnum [procedure]
<= fixnum fixnum [procedure]
>= fixnum fixnum [procedure]
These are the standard order and equality predicates on fixnums. When compiled,
they do not check the types of their arguments.

zero? fixnum [procedure]
positive? fixnum [procedure]
negative? fixnum [procedure]

These procedures compare their argument to zero. When compiled, they do not
check the type of their argument. The code produced by the following expressions is
identical:

(fix:zero? fixnum)

(fix:= fixnum 0)
Similarly, fix:positive? and fix:negative? produce code identical to equivalent
expressions using fix:> and fix:<.

+ fixnum fixnum procedure
- fixnum fixnum procedure
* fixnum fixnum procedure

[ ]

rocedune

quotient fixnum fixnum {procedure}
[ ]

[ ]

]

remainder fixnum fixnum procedure
gcd fixnum fixnum procedure
1+ fixnum procedure
-1+ fixnum [procedure

These procedures are the standard arithmetic operations on fixnums. When compiled,
they do not check the types of their arguments. Furthermore, they do not check to
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see if the result can be encoded as a fixnum. If the result is too large to be encoded
as a fixnum, a malformed object is returned, with potentially disastrous effect on the
garbage collector.

fix:divide fixnum fixnum [procedure]
This procedure is like integer-divide, except that its arguments and its results must
be fixnums. It should be used in conjunction with integer-divide-quotient and
integer-divide-remainder.

The following are bitwise-logical operations on fixnums.

fix:not fixnum [procedure]
This returns the bitwise-logical inverse of its argument. When compiled, it does not
check the type of its argument.

(fix:not 0) = -1
(fix:not -1) = 0
(fix:not 1) = -2
(fix:not -34) = 33
fix:and fixnum fixnum [procedure]

This returns the bitwise-logical “and” of its arguments. When compiled, it does not
check the types of its arguments.

(fix:and #x43 #x0f) = 3
(fix:and #x43 #xf0) = #x40
fix:andc fixnum fixnum [procedure]

Returns the bitwise-logical “and” of the first argument with the bitwise-logical inverse
of the second argument. When compiled, it does not check the types of its arguments.

(fix:andc #x43 #x0f) =  #x40
(fix:andc #x43 #xf0) = 3
fix:or fixnum fixnum [procedure]

This returns the bitwise-logical “inclusive or” of its arguments. When compiled, it
does not check the types of its arguments.

(fix:or #x40 3) = #x43
(fix:or #x41 3) = #x43
fix:xor fixnum fixnum [procedure]

This returns the bitwise-logical “exclusive or” of its arguments. When compiled, it
does not check the types of its arguments.

(fix:xor #x40 3) = #x43
(fix:xor #x41 3) = #x42
fix:1sh fixnuml fixnum?2 [procedure]

This procedure returns the result of logically shifting fixnuml1 by fixnum2 bits. If
fixnum?2 is positive, fixnuml is shifted left; if negative, it is shifted right. When
compiled, it does not check the types of its arguments, nor the validity of its result.
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(fix:1sh 1 10) = #x400
(fix:1sh #x432 -10) = 1
(fix:1sh -1 3) = -8
(fix:1sh -128 -4) =  #x3FFFF8

4.7.2 Flonum Operations

A flonum is an inexact real number that is implemented as a floating-point number. In
MIT/GNU Scheme, all inexact real numbers are flonums. For this reason, constants such

as 0.

flo:

flo:
flo:
flo:

flo:
flo:

flo

flo:

flo

flo:
flo:

flo:

flo:

flo:
flo:
flo:
flo:
flo:
flo:
flo:

and 2.3 are guaranteed to be flonums.

flonum? object [procedure]
Returns #t if object is a flonum; otherwise returns #f£.

= flonum1 flonum?2 [procedure]
< flonum1 flonum?2 [procedure]
> flonuml1 flonum?2 [procedure]

These procedures are the standard order and equality predicates on flonums. When
compiled, they do not check the types of their arguments.

zero? flonum [procedure]
positive? flonum [procedure]
:negative? flonum [procedure]

Each of these procedures compares its argument to zero. When compiled, they do
not check the type of their argument.

+ flonum1 flonum?2 [procedure]
:= flonum1 flonum?2 [procedure]
* flonum1 flonum2 [procedure]
]

/ flonum1 flonum?2 [procedure
These procedures are the standard arithmetic operations on flonums. When compiled,
they do not check the types of their arguments.

finite? flonum [procedure]
The IEEE floating-point number specification supports three special “numbers”: pos-
itive infinity (+inf), negative infinity (-inf), and not-a-number (NaN). This predicate
returns #f if flonum is one of these objects, and #t if it is any other floating-point
number.

negate flonum [procedure]
This procedure returns the negation of its argument. When compiled, it does not
check the type of its argument. Equivalent to (flo:- 0. flonum).

abs flonum [procedure]
exp flonum [procedure]
log flonum [procedure]
sin flonum [procedure]
cos flonum [procedure]
tan flonum [procedure]

[ ]

asin flonum procedure
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flo:acos flonum procedure
flo:atan flonum procedure
flo:sqrt flonum procedure
flo:expt flonuml flonum?2 procedure
flo:floor flonum procedure

[
[
[
|
flo:ceiling flonum [procedure
[
[
[
[
[

flo:truncate flonum procedure
flo:round flonum procedure
flo:floor->exact flonum procedure
flo:ceiling->exact flonum procedure
flo:truncate->exact flonum procedure

flo:round->exact flonum [procedure
These procedures are flonum versions of the corresponding procedures. When com-
piled, they do not check the types of their arguments.

flo:atan2 flonuml flonum?2 [procedure]
This is the flonum version of atan with two arguments. When compiled, it does not
check the types of its arguments.

4.8 Random Numbers

MIT/GNU Scheme provides a facility for generating pseudo-random numbers. The current
implementation is a “subtract-with-carry” random-number generator, based on the algo-
rithm from A New Class of Random Number Generators, George Marsaglia and Arif Zaman,
The Annals of Applied Probability, Vol. 1, No. 3, 1991. At the time it was implemented,
this was a good algorithm for general purposes, but the state of the art in random-number
generation is constantly changing. If necessary, the implementation will be updated to use
a new algorithm while retaining the same interface.

The interface described here is very similar to that of Common Lisp.

random modulus [state] [procedure]
Modulus must be a positive real number. random returns a pseudo-random number
between zero (inclusive) and modulus (exclusive). The exactness of the returned
number is the same as the exactness of modulus. Additionally, if modulus is an exact
integer, the returned number will be also. Usually, modulus is either an exact integer
or an inexact real; the current implementation has been tuned to make these two
cases fast.

If state is given and not #£, it must be a random-state object; otherwise, it defaults to
the default-random-source. This object is used to maintain the state of the pseudo-
random-number generator and is altered as a side effect of the random procedure.

(random 1.0) = .32744744667719056

(random 1.0) = .01668326768172354

(random 10) = 3

(random 10) = 8

(random 100) = 38

(random 100) = 63

(random 100/3) = 130501475769920525/6755399441055744
(random 100/3) = 170571694016427575/13510798882111488
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flo:random-unit state [procedure]
State must be a random-state object. flo:random-unit returns a pseudo-random
number between zero inclusive and one exclusive; the returned number is always
a flonum and therefore an inexact real number. flo:random-unit is equivalent to
random with a modulus of 1.0, except that it is faster.

The next three definitions concern random-state objects. In addition to these definitions,
it is important to know that random-state objects are specifically designed so that they
can be saved to disk using the fasdump procedure, and later restored using the fasload
procedure. This allows a particular random-state object to be saved in order to replay a
particular pseudo-random sequence.

xrandom-statex [variable]
This variable is deprecated; pass an explicit state instead.

make-random-state [state] [procedure]
This procedure returns a new random-state object, suitable for use as as the state
argument to random. If state is not given or #f, make-random-state returns a copy
of default-random-source. If state is a random-state object, a copy of that object
is returned. If state is #t, then a new random-state object is returned that has been
“randomly” initialized by some means (such as by a time-of-day clock).

random-state? object [procedure]
Returns #t if object is a random-state object, otherwise returns #f.
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5 Characters

Characters are objects that represent printed characters such as letters and digits.
MIT/GNU Scheme supports the full Unicode character repertoire.

Characters are written using the notation #\character or #\character-name or
#\xhex-scalar-value.

The following standard character names are supported:

#\alarm ; U+0007

#\backspace ; U+0008

#\delete ; U+007F

#\escape ; U+001B

#\newline ; the linefeed character, U+000A

#\null ; the null character, U+0000

#\return ; the return character, U+000D

#\space ; the preferred way to write a space, U+0020

#\tab ; the tab character, U+0009
Here are some additional examples:

#\a ; lowercase letter

#\A ; uppercase letter

#\ ( ; left parenthesis

#\ ; the space character

Case is significant in #\character, and in #\character-name, but not in #\xhex-scalar-
value. If character in #\character is alphabetic, then any character immediately following
character cannot be one that can appear in an identifier. This rule resolves the ambiguous
case where, for example, the sequence of characters ‘#\space’ could be taken to be either
a representation of the space character or a representation of the character ‘#\s’ followed
by a representation of the symbol ‘pace’.

Characters written in the #\ notation are self-evaluating. That is, they do not have to
be quoted in programs.

Some of the procedures that operate on characters ignore the difference between upper
case and lower case. The procedures that ignore case have ‘-ci’ (for “case insensitive”)
embedded in their names.

MIT/GNU Scheme allows a character name to include one or more bucky bit prefixes to
indicate that the character includes one or more of the keyboard shift keys Control, Meta,
Super, or Hyper (note that the Control bucky bit prefix is not the same as the ASCII control
key). The bucky bit prefixes and their meanings are as follows (case is not significant):

Key Bucky bit prefix Bucky bit
Meta M- or Meta- 1
Control C- or Control- 2
Super S- or Super- 4
Hyper H- or Hyper- 8
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For example,

#\c-a ; Control-a
#\meta-b ; Meta-b
#\c-s-m-h-A ; Control-Meta-Super-Hyper-A
char->name char [procedure]

Returns a string corresponding to the printed representation of char. This is the
character, character-name, or xhex-scalar-value component of the external repre-
sentation, combined with the appropriate bucky bit prefixes.

(char->name #\a) = "a"
(char->name #\space) = "gpace"
(char->name #\c-a) = "C-a"
(char->name #\control-a) = "C-a"
name->char string [procedure]

Converts a string that names a character into the character specified. If string does
not name any character, name->char signals an error.

(name->char "a" = #\a

(name->char "space") = #\space

(name->char "SPACE") = #\space

(name->char "c-a") = #\C-a

(name->char "control-a") = #\C-a
char? object [standard procedure]

Returns #t if object is a character, otherwise returns #f.

char=7 charl char2 char3 . .. [standard procedure]
char<? charl char2 char3 ... [standard procedure]
char>? charl char2 char3 ... [standard procedure]
char<=7? charl char2 char3 . .. [standard procedure]
char>=7? charl char2 char3 . .. [standard procedure]

These procedures return #t if the results of passing their arguments to char->integer
are respectively equal, monotonically increasing, monotonically decreasing, monoton-
ically non-decreasing, or monotonically non-increasing.

These predicates are transitive.

char-ci=? charl char2 char3 ... [char library procedure]

char-ci<? charl char2 char3 ... [char library procedure]

char-ci>? charl char2 char3 ... [char library procedure]

char-ci<=7 charl char2 char3 . .. [char library procedure]

char-ci>=? charl char2 char3 . .. [char library procedure]
These procedures are similar to char=7 et cetera, but they treat upper case and lower
case letters as the same. For example, (char-ci=7 #\A #\a) returns #t.

Specifically, these procedures behave as if char-foldcase were applied to their argu-
ments before they were compared.

char-alphabetic? char [char library procedure]
char-numeric? char [char library procedure]
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char-whitespace? char [char library procedure]
char-upper-case? char [char library procedure]
char-lower-case? char [char library procedure]

These procedures return #t if their arguments are alphabetic, numeric, whitespace,
upper case, or lower case characters respectively, otherwise they return #f.

Specifically, they return #t when applied to characters with the Unicode properties
Alphabetic, Numeric_Decimal, White_Space, Uppercase, or Lowercase respectively,
and #f when applied to any other Unicode characters. Note that many Unicode
characters are alphabetic but neither upper nor lower case.

char-alphanumeric? char [procedure]
Returns #t if char is either alphabetic or numeric, otherwise it returns #f£.

digit-value char [char library procedure]
This procedure returns the numeric value (0 to 9) of its argument if it is a numeric
digit (that is, if char-numeric? returns #t), or #f on any other character.

(digit-value #\3) = 3

(digit-value #\x0664) = 4
(digit-value #\x0AE6) = O
(digit-value #\xOEA6) = #f

char->integer char [standard procedure]

integer->char n [standard procedure]
Given a Unicode character, char->integer returns an exact integer between 0 and
#xD7FF or between #xE000 and #x10FFFF which is equal to the Unicode scalar value
of that character. Given a non-Unicode character, it returns an exact integer greater
than #x10FFFF.

Given an exact integer that is the value returned by a character when char->integer
is applied to it, integer->char returns that character.

Implementation note: MIT/GNU Scheme allows any Unicode code point, not just
scalar values.

Implementation note: If the argument to char->integer or integer->char is a
constant, the MIT/GNU Scheme compiler will constant-fold the call, replacing it
with the corresponding result. This is a very useful way to denote unusual character
constants or ASCII codes.

char-upcase char [char library procedure]
char-downcase char [char library procedure]
char-foldcase char [char library procedure]

The char-upcase procedure, given an argument that is the lowercase part of a Uni-
code casing pair, returns the uppercase member of the pair. Note that language-
sensitive casing pairs are not used. If the argument is not the lowercase member of
such a pair, it is returned.

The char-downcase procedure, given an argument that is the uppercase part of a
Unicode casing pair, returns the lowercase member of the pair. Note that language-
sensitive casing pairs are not used. If the argument is not the uppercase member of
such a pair, it is returned.
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The char-foldcase procedure applies the Unicode simple case-folding algorithm to
its argument and returns the result. Note that language-sensitive folding is not used.
See UAX #44 (part of the Unicode Standard) for details.

Note that many Unicode lowercase characters do not have uppercase equivalents.

char->digit char [radix] [procedure]
If char is a character representing a digit in the given radix, returns the corresponding
integer value. If radix is specified (which must be an exact integer between 2 and 36
inclusive), the conversion is done in that base, otherwise it is done in base 10. If char
doesn’t represent a digit in base radix, char->digit returns #f.

Note that this procedure is insensitive to the alphabetic case of char.

(char->digit #\8) = 8
(char->digit #\e 16) = 14
(char->digit #\e) = #f
digit->char digit [radix] [procedure]

Returns a character that represents digit in the radix given by radix. The radix
argument, if given, must be an exact integer between 2 and 36 (inclusive); it defaults
to 10. The digit argument must be an exact non-negative integer strictly less than
radix.

(digit->char 8) = #\8
(digit->char 14 16) = #\E

5.1 Character implementation

An MIT/GNU Scheme character consists of a code part and a bucky bits part. The code
part is a Unicode code point, while the bucky bits are an additional set of bits representing
shift keys available on some keyboards.

There are 4 bucky bits, named control, meta, super, and hyper. On GNU/Linux systems
running a graphical desktop, the control bit corresponds to the CTRL key; the meta bit
corresponds to the ALT key; and the super bit corresponds to the “windows” key. On
macOS, these are the CONTROL, OPTION, and COMMAND keys respectively.

Characters with bucky bits are not used much outside of graphical user interfaces (e.g.
Edwin). They cannot be stored in strings or character sets, and aren’t read or written by
textual I/O ports.

make-char code bucky-bits [procedure]
Builds a character from code and bucky-bits. The value of code must be a Unicode
code point; the value of bucky-bits must be an exact non-negative integer strictly less
than 16. If 0 is specified for bucky-bits, make-char produces an ordinary character;
otherwise, the appropriate bits are set as follows:

meta
control
super
hyper

QO BN =
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For example,

(make-char 97 0) = #\a
(make-char 97 1) = #\M-a
(make-char 97 2) = #\C-a
(make-char 97 3) = #\C-M-a
char-code char [procedure]

Returns the Unicode code point of char. Note that if char has no bucky bits set, then
this is the same value returned by char->integer.

For example,

(char-code #\a) = 97
(char-code #\c-a) = 97
char-bits char [procedure]
Returns the exact integer representation of char’s bucky bits. For example,
(char-bits #\a) = 0
(char-bits #\m-a) = 1
(char-bits #\c-a) = 2
(char-bits #\c-m-a) = 3
char-code-limit [constant)

This constant is the strict upper limit on a character’s code value. It is #x110000
unless some future version of Unicode increases the range of code points.

char-bits-limit [constant]
This constant is the strict upper limit on a character’s bucky-bits value. It is currently
#x10 and unlikely to change in the future.

bitless-char? object [procedure]
Returns #t if object is a character with no bucky bits set, otherwise it returns #f .

char-predicate char [procedure]
Returns a procedure of one argument that returns #t if its argument is a character
char=7 to char, otherwise it returns #f£.

char-ci-predicate char [procedure]
Returns a procedure of one argument that returns #t if its argument is a character
char-ci=? to char, otherwise it returns #f.

5.2 Unicode

MIT/GNU Scheme implements the full Unicode character repertoire, defining predicates for
Unicode characters and their associated integer values. A Unicode code point is an exact
non-negative integer strictly less than #x110000. A Unicode scalar value is a Unicode code
point that doesn’t fall between #xD800 inclusive and #xE000 exclusive; in other words, any
Unicode code point except for the surrogate code points.

unicode-code-point? object [procedure]
Returns #t if object is a Unicode code point, otherwise it returns #£.



86 MIT/GNU Scheme 10.1.4

unicode-scalar-value? object [procedure]
Returns #t if object is a Unicode scalar value, otherwise it returns #£.

unicode-char? object [procedure]
Returns #t if object is any “bitless” character corresponding to a Unicode code point,
except for those with general category other:surrogate or other:not-assigned.

char-general-category char [procedure]
code-point-general-category code-point [procedure]
Returns the Unicode general category of char (or code-point) as a descriptive symbol:

Category Symbol

Lu letter:uppercase

Ll letter:lowercase

Lt letter:titlecase

Lm letter:modifier

Lo letter:other

Mn mark:nonspacing

Mc mark:spacing-combining
Me mark:enclosing

Nd number:decimal-digit
NI number:letter

No number : other

Pc punctuation:connector
Pd punctuation:dash

Ps punctuation:open

Pe punctuation:close

Pi punctuation:initial-quote
Pf punctuation:final-quote
Po punctuation:other

Sm symbol:math

Sc symbol:currency

Sk symbol:modifier

So symbol:other

Zs separator:space

71 separator:line

Zp separator:paragraph
Cc other:control

Cf other:format

Cs other:surrogate

Co other:private-use

Cn other:not-assigned

5.3 Character Sets

MIT/GNU Scheme’s character-set abstraction is used to represent groups of characters, such
as the letters or digits. A character set may contain any “bitless” character. Alternatively,
a character set can be treated as a set of code points.
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char-set? object [procedure]
Returns #t if object is a character set, otherwise it returns #£.

char-in-set? char char-set [procedure]
Returns #t if char is in char-set, otherwise it returns #f.

code-point-in-set? code-point char-set [procedure]
Returns #t if code-point is in char-set, otherwise it returns #f£.

char-set-predicate char-set [procedure]
Returns a procedure of one argument that returns #t if its argument is a character
in char-set, otherwise it returns #f.

compute-char-set predicate [procedure]
Calls predicate once on each Unicode code point, and returns a character set contain-
ing exactly the code points for which predicate returns a true value.

The next procedures represent a character set as a code-point list, which is a list of
code-point range elements. A code-point range is either a Unicode code point, or a pair
(start . end) that specifies a contiguous range of code points. Both start and end must
be exact nonnegative integers less than or equal to #x110000, and start must be less than
or equal to end. The range specifies all of the code points greater than or equal to start
and strictly less than end.

char-set element . .. [procedure]

char-set* elements [procedure]
Returns a new character set consisting of the characters specified by elements. The
procedure char-set takes these elements as multiple arguments, while char-set*
takes them as a single list-valued argument; in all other respects these procedures are
identical.

An element can take several forms, each of which specifies one or more characters
to include in the resulting character set: a (bitless) character includes itself; a string
includes all of the characters it contains; a character set includes its members; or a
code-point range includes the corresponding characters.

In addition, an element may be a symbol from the following table, which represents
the characters as shown:

Name Unicode character specification
alphabetic Alphabetic = True
alphanumeric Alphabetic = True | Numeric_Type = Decimal
cased Cased = True
lower-case Lowercase = True
numeric Numeric_Type = Decimal
unicode General_Category != (Cs | Cn)
upper-case Uppercase = True
whitespace White_Space = True
char-set->code-points char-set [procedure]

Returns a code-point list specifying the contents of char-set. The returned list consists
of numerically sorted, disjoint, and non-abutting code-point ranges.
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char-set=7 char-set-1 char-set-2 [procedure]
Returns #t if char-set-1 and char-set-2 contain exactly the same characters, otherwise
it returns #f£.

char-set-invert char-set [procedure]
Returns a character set that’s the inverse of char-set. That is, the returned character
set contains exactly those characters that aren’t in char-set.

char-set-union char-set ... [procedure]
char-set-intersection char-set ... [procedure]
char-set-difference char-set-1 char-set . .. [procedure]

These procedures compute the respective set union, set intersection, and set difference
of their arguments.

char-set-union* char-sets [procedure]
char-set-intersection* char-sets [procedure]
These procedures correspond to char-set-union and char-set-intersection but
take a single argument that’s a list of character sets rather than multiple character-set

arguments.
char-set:alphabetic constant
char-set:numeric constant

[ ]
[ ]

char-set:whitespace [constant]
[ ]
[ ]
[

char-set:upper-case constant
char-set:lower-case constant
char-set:alphanumeric constant|

These constants are the character sets corresponding to char-alphabetic?,
char-numeric?, char-whitespace?, char-upper-case?, char-lower-case?, and
char-alphanumeric? respectively.

8-bit-char-set? char-set [procedure]
Returns #t if char-set contains only 8-bit code points (i.e.. ISO 8859-1 characters),
otherwise it returns #f£.
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6 Strings

Strings are sequences of characters. Strings are written as sequences of characters enclosed
within quotation marks ("). Within a string literal, various escape sequences represent
characters other than themselves. Escape sequences always start with a backslash (\):

\a : alarm, U+0007

\b : backspace, U+0008

\t : character tabulation, U+0009

\n : linefeed, U+000A

\r : return, U+000D

\" : double quote, U+0022

\\ : backslash, U+005C

\| : vertical line, U+007C

\intraline-whitespace*® line-ending intraline-whitespace™*
: nothing

\xhex-scalar-value;
: specified character (note the terminating semi-colon).

The result is unspecified if any other character in a string occurs after a backslash.

Except for a line ending, any character outside of an escape sequence stands for itself
in the string literal. A line ending which is preceded by \intraline-whitespace expands to
nothing (along with any trailing intraline whitespace), and can be used to indent strings for
improved legibility. Any other line ending has the same effect as inserting a \n character
into the string.

Examples:

"The word \"recursion\" has many meanings."
"Another example:\ntwo lines of text"
"Here’s text \

containing just one line"
"\x03B1; is named GREEK SMALL LETTER ALPHA."

The length of a string is the number of characters that it contains. This number is an
exact, non-negative integer that is fixed when the string is created. The valid indexes of
a string are the exact non-negative integers less than the length of the string. The first
character of a string has index 0, the second has index 1, and so on.

Some of the procedures that operate on strings ignore the difference between upper and
lower case. The names of the versions that ignore case end with ‘-ci’ (for “case insensitive”).

Implementations may forbid certain characters from appearing in strings. However,
with the exception of #\null, ASCII characters must not be forbidden. For example, an
implementation might support the entire Unicode repertoire, but only allow characters
U+0001 to U+00FF (the Latin-1 repertoire without #\null) in strings.

Implementation note: MIT/GNU Scheme allows any “bitless” character to be stored in
a string. In effect this means any character with a Unicode code point, including surrogates.

It is an error to pass such a forbidden character to make-string, string, string-set!,
or string-fill!, as part of the list passed to 1ist->string, or as part of the vector passed
to vector->string, or in UTF-8 encoded form within a bytevector passed to ut£8->string.



90 MIT/GNU Scheme 10.1.4

It is also an error for a procedure passed to string-map to return a forbidden character, or
for read-string to attempt to read one.

MIT/GNU Scheme supports both mutable and immutable strings. Procedures that mu-
tate strings, in particular string-set! and string-fill!, will signal an error if given an
immutable string. Nearly all procedures that return strings return immutable strings; no-
table exceptions are make-string and string-copy, which always return mutable strings,
and string-builder which gives the programmer the ability to choose mutable or im-
mutable results.

string? obj [standard procedure]
Returns #t if obj is a string, otherwise returns #f£.

make-string k [char] [standard procedure]
The make-string procedure returns a newly allocated mutable string of length k. If
char is given, then all the characters of the string are initialized to char, otherwise
the contents of the string are unspecified.

string object ... [extended standard procedure]

string* objects [procedure]
Returns an immutable string whose characters are the concatenation of the characters
from the given objects. Each object is converted to characters as if passed to the
display procedure.

This is an MIT/GNU Scheme extension to the standard string that accepts only
characters as arguments.

The procedure string* is identical to string but takes a single argument that’s a
list of objects, rather than multiple object arguments.

string-length string [standard procedure]
Returns the number of characters in the given string.

string-ref string k [standard procedure]
It is an error if k is not a valid index of string.

The string-ref procedure returns character k of string using zero-origin indexing.
There is no requirement for this procedure to execute in constant time.

string-set! string k char [standard procedure]
It is an error if string is not a mutable string or if k is not a valid index of string.

The string-set! procedure stores char in element k of string. There is no require-
ment for this procedure to execute in constant time.

(define (f) (make-string 3 #\*))

(define (g) "**x")

(string-set! (£) 0 #\7) = unspecified

(string-set! (g) 0 #\?) = error

(string-set! (symbol->string ’immutable) 0 #\?) = error

string=7 stringl string?2 string . . . [standard procedure]
Returns #t if all the strings are the same length and contain exactly the same char-
acters in the same positions, otherwise returns #f.
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string-ci=? stringl string?2 string . .. [char library procedure]
Returns #t if, after case-folding, all the strings are the same length and contain
the same characters in the same positions, otherwise returns #f. Specifically, these
procedures behave as if string-foldcase were applied to their arguments before
comparing them.

string<? stringl string?2 string . . . [standard procedure]
string-ci<? stringl string?2 string . .. [char library procedure]
string>? stringl string?2 string . . . [standard procedure]
string-ci>? stringl string?2 string . . . [char library procedure]
string<=7 stringl string?2 string . .. [standard procedure]
string-ci<=7? stringl string?2 string . .. [char library procedure]
string>=7 stringl string2 string . . . [standard procedure]
string-ci>="? stringl string?2 string . . . [char library procedure]

These procedures return #t if their arguments are (respectively): monotonically in-
creasing, monotonically decreasing, monotonically non-decreasing, or monotonically
non-increasing.

These predicates are required to be transitive.

These procedures compare strings in an implementation-defined way. One approach
is to make them the lexicographic extensions to strings of the corresponding order-
ings on characters. In that case, string<? would be the lexicographic ordering on
strings induced by the ordering char<? on characters, and if the two strings differ
in length but are the same up to the length of the shorter string, the shorter string
would be considered to be lexicographically less than the longer string. However, it is
also permitted to use the natural ordering imposed by the implementation’s internal
representation of strings, or a more complex locale-specific ordering.

In all cases, a pair of strings must satisfy exactly one of string<?, string=7, and
string>?, and must satisfy string<=7 if and only if they do not satisfy string>?
and string>=? if and only if they do not satisfy string<?.

The ‘-ci’ procedures behave as if they applied string-foldcase to their arguments
before invoking the corresponding procedures without ‘-ci’.

string-compare stringl string?2 if-eq if-It if-gt [procedure]

string-compare-ci stringl string?2 if-eq if-It if-gt [procedure]
If-eq, if-It, and if-gt are procedures of no arguments (thunks). The two strings are
compared; if they are equal, if-eq is applied, if stringl is less than string2, if-It is
applied, else if stringl is greater than string2, if-gt is applied. The value of the
procedure is the value of the thunk that is applied.

string-compare distinguishes uppercase and lowercase letters;
string-compare-ci does not.

(define (cheer) (display "Hooray!"))

(define (boo) (display "Boo-hiss!"))

(string-compare "a" "b" cheer (lambda() ’ignore) boo)
- Hooray!
= unspecified
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string-upcase string [char library procedure]
string-downcase string [char library procedure]
string-titlecase string [procedure]
string-foldcase string [char library procedure]

These procedures apply the Unicode full string uppercasing, lowercasing, titlecasing,
and case-folding algorithms to their arguments and return the result. In certain cases,
the result differs in length from the argument. If the result is equal to the argument in
the sense of string=7, the argument may be returned. Note that language-sensitive
mappings and foldings are not used.

The Unicode Standard prescribes special treatment of the Greek letter X, whose nor-
mal lower-case form is o but which becomes ¢ at the end of a word. See UAX #44 (part
of the Unicode Standard) for details. However, implementations of string-downcase
are not required to provide this behavior, and may choose to change ¥ to ¢ in all

cases.
string-upper-case? string [procedure]
string-lower-case? string [procedure]

These procedures return #t if all the letters in the string are lower case or upper
case, otherwise they return #f. The string must contain at least one letter or the
procedures return #f.

(map string—upper-case? 1(uu npn narg" "ATE" HARTH))
= (#f #t #£ #£ #t)
substring string [start [end]] [standard procedure]

Returns an immutable copy of the part of the given string between start and end.

string-slice string [start [end]] [procedure]
Returns a slice of string, restricted to the range of characters specified by start and
end. The returned slice will be mutable if string is mutable, or immutable if string
is immutable.

A slice is a kind of string that provides a view into another string. The slice behaves
like any other string, but changes to a mutable slice are reflected in the original string
and vice versa.

(define foo (string-copy "abcde"))
foo = "abcde"

(define bar (string-slice foo 1 4))
bar = "bcd"

(string-set! foo 2 #\z)
foo = "abzde"
bar = "bzd"

(string-set! bar 1 #\y)
bar = "byd"
foo = "abyde"


http://www.unicode.org/reports/tr44/

Chapter 6: Strings 93

string-append string . .. [standard procedure]

string-append* strings [procedure]
Returns an immutable string whose characters are the concatenation of the characters
in the given strings.

The non-standard procedure string-append* is identical to string-append but
takes a single argument that’s a list of strings, rather than multiple string arguments.

string->list string [start [end]] [standard procedure]
list->string list [standard procedure]
It is an error if any element of list is not a character.

The string->1ist procedure returns a newly allocated list of the characters of string
between start and end. list->string returns an immutable string formed from the
elements in the list list. In both procedures, order is preserved. string->list and
list->string are inverses so far as equal? is concerned.

string-copy string [start [end]] [standard procedure]
Returns a newly allocated mutable copy of the part of the given string between start
and end.

string-copy! to at from [start [end]] [standard procedure]

It is an error if to is not a mutable string or if at is less than zero or greater than
the length of to. It is also an error if (- (string-length to) at) is less than (- end
start).

Copies the characters of string from between start and end to string to, starting at at.
The order in which characters are copied is unspecified, except that if the source and
destination overlap, copying takes place as if the source is first copied into a temporary
string and then into the destination. This can be achieved without allocating storage
by making sure to copy in the correct direction in such circumstances.

(define a "12345")

(define b (string-copy "abcde"))
(string-copy! b 1 a 0 2) = 3

b = "al2de"%

Implementation note: in MIT/GNU Scheme string-copy! returns the value (+ at
(- end start)).

string-fill! string fill [start [end]|] [standard procedure]
It is an error if string is not a mutable string or if fill is not a character.

The string-fill! procedure stores fill in the elements of string between start and
end.

The next two procedures treat a given string as a sequence of grapheme clusters, a
concept defined by the Unicode standard in UAX #29:

It is important to recognize that what the user thinks of as a “character”—a
basic unit of a writing system for a language—may not be just a single Unicode
code point. Instead, that basic unit may be made up of multiple Unicode
code points. To avoid ambiguity with the computer use of the term character,
this is called a user-perceived character. For example, G + acute-accent is a
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user-perceived character: users think of it as a single character, yet is actually
represented by two Unicode code points. These user-perceived characters are
approximated by what is called a grapheme cluster, which can be determined
programmatically.

grapheme-cluster-length string [procedure]
This procedure returns the number of grapheme clusters in string.

For ASCII strings, this is identical to string-length.

grapheme-cluster-slice string start end [procedure]
This procedure slices string at the grapheme-cluster boundaries specified by the start
and end indices. These indices are grapheme-cluster indices, not normal string indices.

For ASCII strings, this is identical to string-slice.

string-word-breaks string [procedure]
This procedure returns a list of word break indices for string, ordered from smallest
index to largest. Word breaks are defined by the Unicode standard in UAX #29, and
generally coincide with what we think of as the boundaries of words in written text.

MIT/GNU Scheme supports the Unicode canonical normalization forms NFC (Normal-
ization Form C) and NFD (Normalization Form D). The reason for these forms is that there
can be multiple different Unicode sequences for a given text; these sequences are semanti-
cally identical and should be treated equivalently for all purposes. If two such sequences
are normalized to the same form, the resulting normalized sequences will be identical.

By default, most procedures that return strings return them in NFC. Notable excep-
tions are 1ist->string, vector->string, and the utfX->string procedures, which do no
normalization, and of course string->nfd.

Generally speaking, NFC is preferred for most purposes, as it is the minimal-length
sequence for the variants. Consult the Unicode standard for the details and for information
about why one normalization form is preferable for a specific purpose.

string-in-nfc? string [procedure]

string-in-nfd? string [procedure]
These procedures return #t if string is in Unicode Normalization Form C or D re-
spectively. Otherwise they return #£.

Note that if string consists only of code points strictly less than #xCO, then
string-in-nfd? returns #t. If string consists only of code points strictly less than
#x300, then string-in-nfc? returns #t. Consequently both of these procedures
will return #t for an ASCII string argument.

string->nfc string [procedure]

string->nfd string [procedure]
The procedures convert string into Unicode Normalization Form C or D respectively.
If string is already in the correct form, they return string itself, or an immutable copy
if string is mutable.

string-map proc string string . .. [standard procedure]
It is an error if proc does not accept as many arguments as there are strings and
return a single character.
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The string-map procedure applies proc element-wise to the elements of the strings
and returns an immutable string of the results, in order. If more than one string
is given and not all strings have the same length, string-map terminates when the
shortest string runs out. The dynamic order in which proc is applied to the elements
of the strings is unspecified. If multiple returns occur from string-map, the values
returned by earlier returns are not mutated.

(string-map char-foldcase "AbdEgH") = "abdegh"

(string-map

(lambda (c)
(integer->char (+ 1 (char->integer c))))
IIHAL“) j ||IBMH

(string-map
(lambda (c k)
((if (eqv? k #\u) char-upcase char-downcase) c))
"studlycaps xxx"
"wlulululul") = "StUdLyCaPs"

string-for-each proc string string . .. [standard procedure]
It is an error if proc does not accept as many arguments as there are strings.

The arguments to string-for-each are like the arguments to string-map, but
string-for-each calls proc for its side effects rather than for its values. Unlike
string-map, string-for-each is guaranteed to call proc on the elements of the lists
in order from the first element(s) to the last, and the value returned by string-for-
each is unspecified. If more than one string is given and not all strings have the same
length, string-for-each terminates when the shortest string runs out. It is an error
for proc to mutate any of the strings.

(et ((v 70))
(string-for-each
(lambda (c) (set! v (cons (char->integer c) v)))
"abcde")
V) = (101 100 99 98 97)

string-count proc string string . .. [procedure]
It is an error if proc does not accept as many arguments as there are strings.

The string-count procedure applies proc element-wise to the elements of the strings
and returns a count of the number of true values it returns. If more than one string
is given and not all strings have the same length, string-count terminates when the
shortest string runs out. The dynamic order in which proc is applied to the elements
of the strings is unspecified.

string-any proc string string . . . [procedure]
It is an error if proc does not accept as many arguments as there are strings.
The string-any procedure applies proc element-wise to the elements of the strings

and returns #t if it returns a true value. If proc doesn’t return a true value,
string-any returns #f.
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If more than one string is given and not all strings have the same length, string-any
terminates when the shortest string runs out. The dynamic order in which proc is
applied to the elements of the strings is unspecified.

string-every proc string string . . . [procedure]
It is an error if proc does not accept as many arguments as there are strings.

The string-every procedure applies proc element-wise to the elements of the strings
and returns #f if it returns a false value. If proc doesn’t return a false value,
string-every returns #t.

If more than one string is given and not all strings have the same length,
string-every terminates when the shortest string runs out. The dynamic order in
which proc is applied to the elements of the strings is unspecified.

string-null? string [procedure]
Returns #t if string has zero length; otherwise returns #f.
(string-null? "") = #t
(string-null? "Hi") = #f
string-hash string [modulus| [procedure]
string-hash-ci string [modulus| [procedure]

These procedures return an exact non-negative integer that can be used for storing
the specified string in a hash table. Equal strings (in the sense of string=?7 and
string-ci=? respectively) return equal (=) hash codes, and non-equal but similar
strings are usually mapped to distinct hash codes.

If the optional argument modulus is specified, it must be an exact positive integer,
and the result of the hash computation is restricted to be less than that value. This
is equivalent to calling modulo on the result, but may be faster.

string-head string end [procedure]
Equivalent to (substring string O end).

string-tail string start [procedure]
Equivalent to (substring string start).

string-builder [buffer-length] [procedure]
This procedure returns a string builder that can be used to incrementally collect
characters and later convert that collection to a string. This is similar to a string
output port, but is less general and significantly faster.

The optional buffer-length argument, if given, must be an exact positive integer. It
controls the size of the internal buffers that are used to accumulate characters. Larger
values make the builder somewhat faster but use more space. The default value of
this argument is 16.

The returned string builder is a procedure that accepts zero or one arguments as
follows:

e Given a bitless character argument, the string builder appends that character to
the string being built and returns an unspecified value.
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e Given a string argument, the string builder appends that string to the string
being built and returns an unspecified value.

e Given no arguments, or one of the “result” arguments (see below), the string
builder returns a copy of the string being built. Note that this does not affect
the string being built, so immediately calling the builder with no arguments a
second time returns a new copy of the same string.

e Given the argument empty?, the string builder returns #t if the string being built
is empty and #f otherwise.

e Given the argument count, the string builder returns the size of the string being
built.

e Given the argument reset!, the string builder discards the string being built
and returns to the state it was in when initially created.

The “result” arguments control the form of the returned string. The arguments
immutable and mutable are straightforward, specifying the mutability of the returned
string. For these arguments, the returned string contains exactly the same characters,
in the same order, as were appended to the builder.

However, calling with the argument nfc, or with no arguments, returns an immutable
string in Unicode Normalization Form C, exactly as if string->nfc were called on
one of the other two result strings.

string-joiner infix prefix suffix [procedure]

string-joiner* infix prefix suffix [procedure]
This procedure’s arguments are keyword arguments; that is, each argument is a sym-
bol of the same name followed by its value. The order of the arguments doesn’t
matter, but each argument may appear only once.

These procedures return a joiner procedure that takes multiple strings and joins them
together into an immutable string. The joiner returned by string-joiner accepts
these strings as multiple string arguments, while string-joiner* accepts the strings
as a single list-valued argument.

The joiner produces a result by adding prefix before, suffix after, and infix between
each input string, then concatenating everything together into a single string. Each
of the prefix, suffix, and infix arguments is optional and defaults to an empty string,
so normally at least one is specified.

Some examples:

((string-joiner) "a" "b" "c")

= "abc"

((string—joiner ’infix " n) uau nbn "C")
= "a b c"

((string-joiner ’infix ", ") "a" "b" "c")

= "a, b, c¢"

((string-joiner* ’infix ", " ’prefix "<" ’suffix ">")
;(nan "p" "C"))
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= "<a>, <b>, <c>"

string-splitter delimiter allow-runs? copy? [procedure]
This procedure’s arguments are keyword arguments; that is, each argument is a sym-
bol of the same name followed by its value. The order of the arguments doesn’t
matter, but each argument may appear only once.

This procedure returns a splitter procedure that splits a given string into parts,
returning a list of the parts. This is done by identifying delimiter characters and
breaking the string at those delimiters. The splitting process is controlled by the
arguments:

e delimiter is either a character, a character set, or more generally a procedure that
accepts a single character argument and returns a boolean value. The splitter
uses this to identify delimiters in the string. The default value of this argument
is char-whitespace?.

e allow-runs? is a boolean that controls what happens when two or more adjacent
delimiters are found. If allow-runs? is #t, then all of the adjacent delimiters are
treated as if they were a single delimiter, and the string is split at the beginning
and end of the delimiters. If allow-runs? is #f, then adjacent delimiters are
treated as if they were separate with an empty string between them. The default
value of this argument is #t.

e copy? is a boolean: if it is #t, then the returned strings are immutable copies,
but if it is #f the returned strings are slices of the original string. The default
value of this argument is #f£.

Some examples:

((string-splitter) "a b c")
j llall ||b|| "C")

((string-splitter) "a\tb\tc")
: (llall ||b|| "C")

((string-splitter ’delimiter #\space) "a\tb\tc")
= ("a\tb\tc")

((string-splitter) " a b c ")
é (llall IIbll IICII)

((string-splitter ’allow-runs? #f) "a b c ")
:> (ll n "all nn "bll nn "C" n ll)

string-padder where fill-with clip? [procedure]
This procedure’s arguments are keyword arguments; that is, each argument is a sym-
bol of the same name followed by its value. The order of the arguments doesn’t
matter, but each argument may appear only once.

This procedure returns a padder procedure that takes a string and a grapheme-cluster
length as its arguments and returns a new string that has been padded to that length.
The padder adds grapheme clusters to the string until it has the specified length. If
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the string’s grapheme-cluster length is greater than the given length, the string may,
depending on the arguments, be reduced to the specified length.

The padding process is controlled by the arguments:

e where is a symbol: either leading or trailing, which directs the padder to
add/remove leading or trailing grapheme clusters. The default value of this
argument is leading.

e fill-with is a string that contains exactly one grapheme cluster, which is used as
the padding to increase the size of the string. The default value of this argument
is " " (a single space character).

e clip? is a boolean that controls what happens if the given string has a longer
grapheme-cluster length than the given length. If c1ip? is #t, grapheme clusters
are removed (by slicing) from the string until it is the correct length; if it is #f
then the string is returned unchanged. The grapheme clusters are removed from
the beginning of the string if where is leading, otherwise from the end of the
string. The default value of this argument is #t.

Some examples:

((string-padder) "abc def" 10)
= " abc def"

((string-padder ’where ’trailing) "abc def" 10)
= "abc def "

((string-padder ’fill-with "X") "abc def" 10)
= "XXXabc def"

((string-padder) "abc def" 5)
= "c def"

((string-padder ’where ’trailing) "abc def" 5)
= "abc 4"

((string-padder ’clip? #f) "abc def" 5)
= "abc def"

string-pad-left string k [char] [obsolete procedure]

string-pad-right string k [char] [obsolete procedure]
These procedures are deprecated and should be replaced by use of string-padder
which is more flexible.

These procedures return an immutable string created by padding string out to length
k, using char. If char is not given, it defaults to #\space. If k is less than the length
of string, the resulting string is a truncated form of string. string-pad-left adds
padding characters or truncates from the beginning of the string (lowest indices),
while string-pad-right does so at the end of the string (highest indices).
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string-trimmer where to-trim copy?
This procedure’s arguments are keyword arguments; that is, each argument is a sym-
bol of the same name followed by its value.
matter, but each argument may appear only once.

MIT/GNU Scheme

(string-pad-left "hello" 4) = "ello"
(string-pad-left "hello" 8) = " hello"
(string-pad-left "hello" 8 #\*) = "k*xhello"
(string-pad-right "hello" 4) = "hell"
(string-pad-right "hello" 8) = ‘"hello "

Some examples:

((string-trimmer ’where ’leading) " ABC  DEF ")
= "ABC DEF "

((string-trimmer ’where ’trailing) " ABC  DEF ")
= " ABC DEF"
((string-trimmer ’where ’both) " ABC  DEF ")

= "ABC DEF"

((string-trimmer) " ABC  DEF ")
= "ABC DEF"

((string-trimmer ’to-trim char-numeric? ’where ’leading)
"21 East 21st Street #3")
= " East 21st Street #3"

((string-trimmer ’to-trim char-numeric? ’where ’trailing)
"21 East 21st Street #3")
= "21 East 21st Street #"

((string-trimmer ’to-trim char-numeric?)
"21 East 21st Street #3")
= " East 21st Street #"

10.1.4

[procedure]

The order of the arguments doesn’t

This procedure returns a trimmer procedure that takes a string as its argument and
trims that string, returning the trimmed result. The trimming process is controlled
by the arguments:

e where is a symbol: either leading, trailing, or both, which directs the trimmer
to trim leading characters, trailing characters, or both. The default value of this
argument is both.

to-trim is either a character, a character set, or more generally a procedure that
accepts a single character argument and returns a boolean value. The trimmer
uses this to identify characters to remove. The default value of this argument is
char-whitespace?.

copy? is a boolean: if #t, the trimmer returns an immutable copy of the trimmed
string, if #f it returns a slice. The default value of this argument is #f.
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string-trim string [char-set] [obsolete procedure]
string-trim-left string [char-set] [obsolete procedure]
string-trim-right string [char-set] [obsolete procedure]

These procedures are deprecated and should be replaced by use of string-trimmer
which is more flexible.

Returns an immutable string created by removing all characters that are not in
char-set from: (string-trim) both ends of string; (string-trim-left) the be-
ginning of string; or (string-trim-right) the end of string. Char-set defaults to
char-set:not-whitespace.

(string-trim " in the end ") = "in the end"
(string-trim " ") =
(string-trim "100th" char-set:numeric) = "100"
(string-trim-left "-.-+-=-" (char-set #\+))

= Np_=_n

(string-trim "but (+ x y) is" (char-set #\( #\)))
:> n (+ X y) n

string-replace string charl char2 [procedure]
Returns an immutable string containing the same characters as string except that all
instances of charl have been replaced by char2.

6.1 Searching and Matching Strings

This section describes procedures for searching a string, either for a character or a substring,
and matching two strings to one another.

string-search-forward pattern string [start [end]] [procedure]
The arguments pattern and string must satisfy string-in-nfc?.

Searches string for the leftmost occurrence of the substring pattern. If successful,
the index of the first character of the matched substring is returned; otherwise, #f is
returned.

(string-search-forward "rat" "pirate")
g p

= 2

(string-search-forward "rat" "pirate rating")
= 2

(string-search-forward "rat" "pirate rating" 4 13)
= 7

(string-search-forward "rat" "pirate rating" 9 13)
= #f

string-search-backward pattern string [start [end]] [procedure]

The arguments pattern and string must satisfy string-in-nfc?.

Searches string for the rightmost occurrence of the substring pattern. If successful,
the index to the right of the last character of the matched substring is returned;
otherwise, #f is returned.



102 MIT/GNU Scheme 10.1.4

(string-search-backward "rat" "pirate")

= b

(string-search-backward "rat" "pirate rating")
= 10

(string-search-backward "rat" "pirate rating" 1 8)
= 5

(string-search-backward "rat" "pirate rating" 9 13)
= #£f

string-search-all pattern string [start [end|] [procedure]

The arguments pattern and string must satisfy string-in-nfc?.

Searches string to find all occurrences of the substring pattern. Returns a list of the
occurrences; each element of the list is an index pointing to the first character of an
occurrence.

(string-search-all "rat" "pirate")
= (2)

(string-search-all "rat" "pirate rating")
= (27

(string-search-all "rat" "pirate rating" 4 13)
= (7

(string-search-all "rat" "pirate rating" 9 13)
= O

substring? pattern string [procedure]
Searches string to see if it contains the substring pattern. Returns #t if pattern is a
substring of string, otherwise returns #1£.

(substring? "rat" "pirate") = #t
(substring? "rat" "outrage") = #f
(substring? "" any-string) = #t

(if (substring? "moon" text)
(process-lunar text)

’no-moon)
string-find-first-index proc string string . . . [procedure]
string-find-last-index proc string string . . . [procedure]

Each string must satisfy string-in-nfc?, and proc must accept as many arguments
as there are strings.

These procedures apply proc element-wise to the elements of the strings and return
the first or last index for which proc returns a true value. If there is no such index,
then #f is returned.

If more than one string is given and not all strings have the same length, then only
the indexes of the shortest string are tested.

string-find-next-char string char [start [end]] [procedure]
string-find-next-char-ci string char [start [end]] [procedure]
string-find-next-char-in-set string char-set [start [end]] [procedure]

The argument string must satisfy string-in-nfc?.
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These procedures search string for a matching character, starting from start and
moving forwards to end. If there is a matching character, the procedures stop the
search and return the index of that character. If there is no matching character, the
procedures return #f.

The procedures differ only in how they match characters: string-find-next-char
matches a character that is char=7 to char; string-find-next-char-ci matches a
character that is char-ci=7 to char; and string-find-next-char-in-set matches
a character that’s a member of char-set.

(string-find-next-char "Adam" #\A) = 0
(string-find-next-char "Adam" #\A 1 4) = #f
(string-find-next-char-ci "Adam" #\A 1 4) = 2
(string-find-next-char-in-set my-string char-set:alphabetic)
= start position of the first word in my-string
; Can be used as a predicate:
(if (string-find-next-char-in-set my-string
(char-set #\( #\) ))
’contains-parentheses
’no-parentheses)

string-find-previous-char string char [start [end]] [procedure]
string-find-previous-char-ci string char [start [end]] [procedure]
string-find-previous-char-in-set string char-set [start [end]] [procedure]

The argument string must satisfy string-in-nfc?.

These procedures search string for a matching character, starting from end and mov-
ing backwards to start. If there is a matching character, the procedures stop the
search and return the index of that character. If there is no matching character, the
procedures return #f.

The procedures differ only in how they match characters: string-find-previous-
char matches a character that is char=7 to char; string-find-previous-char-ci
matches a character that is char-ci=? to char; and string-find-previous-char-
in-set matches a character that’s a member of char-set.

string-match-forward stringl string2 [procedure]
The arguments stringl and string2 must satisfy string-in-nfc?.

Compares the two strings, starting from the beginning, and returns the number of
characters that are the same. If the two strings start differently, returns 0.

(string-match-forward "mirror" "micro") = 2 ; matches "mi"
(string-match-forward "a" "b") = 0 ;no match

string-match-backward stringl string?2 [procedure]
The arguments stringl and string2 must satisfy string-in-nfc?.

Compares the two strings, starting from the end and matching toward the front, re-
turning the number of characters that are the same. If the two strings end differently,
returns 0.

(string-match-backward "bulbous" "fractious")
= 3 ; matches "ous"
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string-prefix? stringl string2 [procedure]

string-prefix-ci? stringl string2 [procedure]
These procedures return #t if the first string forms the prefix of the second; otherwise
returns #f. The -ci procedures don’t distinguish uppercase and lowercase letters.

(string-prefix? "abc" "abcdef") = #t

(string-prefix? "" any-string) = #t
string-suffix? stringl string2 [procedure]
string-suffix-ci? stringl string?2 [procedure]

These procedures return #t if the first string forms the suffix of the second; otherwise
returns #f. The -ci procedures don’t distinguish uppercase and lowercase letters.

(string-suffix? "ous" "bulbous") = #t
(string-suffix? "" any-string) = #t

6.2 Regular Expressions

MIT/GNU Scheme provides support for matching and searching strings against regular
expressions. This is considerably more flexible than ordinary string matching and searching,
but potentially much slower. On the other hand it is less powerful than the mechanism
described in Section 14.14 [Parser Language|, page 219.

Traditional regular expressions are defined with string patterns in which characters like
‘[’ and ‘*’ have special meanings. Unfortunately, the syntax of these patterns is not only
baroque but also comes in many different and mutually-incompatible varieties. As a con-
sequence we have chosen to specify regular expressions using an s-expression syntax, which
we call a regular s-expression, abbreviated as regsexp.

Previous releases of MIT/GNU Scheme provided a regular-expression implementation
nearly identical to that of GNU Emacs version 18. This implementation supported only
8-bit strings, which made it unsuitable for use with Unicode strings. This implementation
still exists but is deprecated and will be removed in a future release.

6.2.1 Regular S-Expressions

A regular s-expression is either a character or a string, which matches itself, or one of the
following forms.

Examples in this section use the following definitions for brevity:

(define (try-match pattern string)
(regsexp-match-string (compile-regsexp pattern) string))

(define (try-search pattern string)
(regsexp-search-string-forward (compile-regsexp pattern) string))

These forms match one or more characters literally:

char-ci char [regsexp]
Matches char without considering case.

string-ci string [regsexp]
Matches string without considering case.
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any-char [regsexp]
Matches one character other than #\newline.

(try-match ’(any-char) "") = #f
(try-match ’(any-char) "a") = (0 1)
(try-match ’(any-char) "\n") = #f
(try-search ’(any-char) "") = #f
(try-search ’(any-char) "ab") = (0 1)
(try-search ’(any-char) "\na") = (1 2)

char-in datum ... [regsexp]
char-not-in datum ... [regsexp]
Matches one character in (not in) the character set specified by (char-set datum

L)

(try-match ’(seq "a" (char-in "ab") "c") "abc") = (0 3)
(try-match ’(seq "a" (char-not-in "ab") "c") "abc") = #f
(try-match ’(seq "a" (char-not-in "ab") "c") "adc") = (0 3)
(try-match ’(seq "a" (+ (char-in numeric)) "c") "a019c") = (0 5)

These forms match no characters, but only at specific locations in the input string:

line-start [regsexp]
line-end [regsexp]
Matches no characters at the start (end) of a line.

(try-match ’(seq (line-start)
(* (any-char))
(line-end))
"abc") = (0 3)
(try-match ’(seq (line-start)
(* (any-char))
(1ine-end))
"ab\nc") = (0 2)
(try-search ’(seq (line-start)
(* (char-in alphabetic))
(line-end))
"labc") = #f
(try-search ’(seq (line-start)
(* (char-in alphabetic))
(line-end))
"1\nabc") = (2 5)

string-start [regsexp]
string-end [regsexp]
Matches no characters at the start (end) of the string.
(try-match ’(seq (string-start)
(* (any-char))
(string-end))
"abc") = (0 3)
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(try-match ’(seq (string-start)
(* (any-char))
(string-end))
"ab\nc") = #f
(try-search ’(seq (string-start)
(* (char-in alphabetic))
(string-end))
"labc") = #f
(try-search ’(seq (string-start)
(* (char-in alphabetic))
(string-end))
"1\nabc") = #f

MIT/GNU Scheme 10.1.4

These forms match repetitions of a given regsexp. Most of them come in two forms,

one of which is greedy and the other shy. The greedy form matches as many repetitions
as it can, then uses failure backtracking to reduce the number of repetitions one at a time.
The shy form matches the minimum number of repetitions, then uses failure backtracking
to increase the number of repetitions one at a time. The shy form is similar to the greedy

form except that a 7 is added at the end of the form’s keyword.

? regsexp
77 regsexp
Matches regsexp zero or one time.

* regsexp

(try-search ’(seq (char-in alphabetic)
(? (char-in numeric)))
||all) :> (O 1)
(try-search ’(seq (char-in alphabetic)
(7?7 (char-in numeric)))
"a") = (0 1)
(try-search ’(seq (char-in alphabetic)
(? (char-in numeric)))
"ai") = (0 2)
(try-search ’(seq (char-in alphabetic)
(7?7 (char-in numeric)))
"al") = (0 1)
(try-search ’(seq (char-in alphabetic)
(? (char-in numeric)))
"1a2") = (1 3)
(try-search ’(seq (char-in alphabetic)
(?? (char-in numeric)))
"1a2") = (1 2)

*? regsexp

Matches regsexp zero or more times.

[regsexp]
[regsexp]

[regsexp]
[regsexp]
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(try-match

(try-match

(try-match

(try-match

+ regsexp
+7 regsexp

’(seq (char-in alphabetic)
(* (char-in numeric))
(any-char))

"aa") = (0 2)

’(seq (char-in alphabetic)
(*7? (char-in numeric))
(any-char))

"aa") = (0 2)

’(seq (char-in alphabetic)
(* (char-in numeric))
(any-char))

"al23a") = (0 5)

’(seq (char-in alphabetic)
(x? (char-in numeric))
(any-char))

"al23a") = (0 2)

Matches regsexp one or more times.

(try-match

(try-match

(try-match

(try-match

** 1 m regsexp
**x7 1 m regsexp

’(seq (char-in alphabetic)
(+ (char-in numeric))
(any-char))

"aa") = #f

’(seq (char-in alphabetic)
(+?7 (char-in numeric))
(any-char))

"aa") = #f

’(seq (char-in alphabetic)
(+ (char-in numeric))
(any-char))

"al123a") = (0 5)

’(seq (char-in alphabetic)
(+7 (char-in numeric))
(any-char))

"a123a") = (0 3)
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[regsexp]
[regsexp]

[regsexp]
[regsexp]

The n argument must be an exact nonnegative integer. The m argument must be

either an exact integer greater than or equal to n, or else #f.

Matches regsexp at least n times and at most m times; if m is #f then there is no

upper limit.

(try-match

’(seq (char-in alphabetic)

(x* 0 2 (char-in numeric))

(any-char))
"aa") = (0 2)
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(try-match ’(seq (char-in alphabetic)
(**? 0 2 (char-in numeric))
(any-char))
"aa") = (0 2)
(try-match ’(seq (char-in alphabetic)
(¥* 0 2 (char-in numeric))
(any-char))
"a123a") = (0 4)
(try-match ’(seq (char-in alphabetic)
(**? 0 2 (char-in numeric))
(any-char))
"al123a") = (0 2)

** 11 regsexp [regsexp]
This is an abbreviation for (** n n regsexp). This matcher is neither greedy nor shy
since it matches a fixed number of repetitions.

These forms implement alternatives and sequencing;:

alt regsexp ... [regsexp]
Matches one of the regsexp arguments, trying each in order from left to right.

(try-match ’(alt #\a (char-in numeric)) "a") = (0 1)
(try-match ’(alt #\a (char-in numeric)) "b") = #f
(try-match ’(alt #\a (char-in numeric)) "1") = (0 1)

seq regsexp . . . [regsexp]
Matches the first regsexp, then continues the match with the next regsexp, and so on
until all of the arguments are matched.

(try-match ’(seq #\a #\b) "a") = #f
(try-match ’(seq #\a #\b) "aa") = #f
(try-match ’(seq #\a #\b) "ab") = (0 2)

These forms implement named registers, which store matched segments of the input
string:

group key regsexp [regsexp]
The key argument must be a fixnum, a character, or a symbol.

Matches regsexp. If the match succeeds, the matched segment is stored in the register
named key.

(try-match ’(seq (group a (any-char))
(group b (any-char))
(any-char))
"radar") = (0 3 (a . "r") (b . "a"))

group-ref key [regsexp]
The key argument must be a fixnum, a character, or a symbol.
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Matches the characters stored in the register named key. It is an error if that register
has not been initialized with a corresponding group expression.

(try-match ’(seq (group a (any-char))
(group b (any-char))
(any-char)
(group-ref b)
(group-ref a))
"radar") = (05 (a . "r") (b . "a"))

6.2.2 Regsexp Procedures

The regular s-expression implementation has two parts, like many other regular-expression
implementations: a compiler that translates the pattern into an efficient form, and one or
more procedures that use that pattern to match or search inputs.

compile-regsexp regsexp [procedure]
Compiles regsexp by translating it into a procedure that implements the specified
matcher.

The match and search procedures each return a list when they are successful, and #f
when they fail. The returned list is of the form (s e register ...), where s is the index
at which the match starts, e is the index at which the match ends, and each register is a
pair (key . contents) where key is the register’s name and contents is the contents of that
register as a string.

In order to get reliable results, the string arguments to these procedures must be in
Unicode Normalization Form C. The string implementation keeps most strings in this form
by default; in other cases the caller must convert the string using string->nfc.

regsexp-match-string crse string [start [end]] [procedure]
The crse argument must be a value returned by compile-regsexp. The string argu-
ment must satisfy string-in-nfc?.

Matches string against crse and returns the result.

regsexp-search-string-forward crse string [start [end]] [procedure]
The crse argument must be a value returned by compile-regsexp. The string argu-
ment must satisfy string-in-nfc?.

Searches string from left to right for a match against crse and returns the result.
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7 Lists

A pair (sometimes called a dotted pair) is a data structure with two fields called the car
and cdr fields (for historical reasons). Pairs are created by the procedure cons. The car and
cdr fields are accessed by the procedures car and cdr. The car and cdr fields are assigned
by the procedures set-car! and set-cdr!.

Pairs are used primarily to represent lists. A list can be defined recursively as either
the empty list or a pair whose cdr is a list. More precisely, the set of lists is defined as the
smallest set X such that

e The empty list is in X.

e If list is in X, then any pair whose cdr field contains list is also in X.

The objects in the car fields of successive pairs of a list are the elements of the list. For
example, a two-element list is a pair whose car is the first element and whose cdr is a pair
whose car is the second element and whose cdr is the empty list. The length of a list is the
number of elements, which is the same as the number of pairs. The empty list is a special
object of its own type (it is not a pair); it has no elements and its length is zero.!

The most general notation (external representation) for Scheme pairs is the “dotted”
notation (c1 . ¢2) where c1 is the value of the car field and ¢2 is the value of the cdr field.
For example, (4 . 5) is a pair whose car is 4 and whose cdr is 5. Note that (4 . 5) is the
external representation of a pair, not an expression that evaluates to a pair.

A more streamlined notation can be used for lists: the elements of the list are simply
enclosed in parentheses and separated by spaces. The empty list is written (). For example,
the following are equivalent notations for a list of symbols:

(abcde)
(a. M. (.@. . Onn

Whether a given pair is a list depends upon what is stored in the cdr field. When the
set-cdr! procedure is used, an object can be a list one moment and not the next:

(define x (list ’a ’b ’c))
(define y x)

y = (a b <)
(1ist? y) = #t
(set-cdr! x 4) = unspecified
X = (a . 4)
(eqv? x y) = #t

y = (a . 4
(1ist? y) = #f
(set-cdr! x x) = unspecified
(1ist? y) = #f

A chain of pairs that doesn’t end in the empty list is called an improper list. Note that
an improper list is not a list. The list and dotted notations can be combined to represent
improper lists, as the following equivalent notations show:

(abc . d
(a. (. (c. DN

! The above definitions imply that all lists have finite length and are terminated by the empty list.
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Within literal expressions and representations of objects read by the read procedure, the
forms ’datum, ‘datum, ,datum, and ,@datum denote two-element lists whose first elements
are the symbols quote, quasiquote, unquote, and unquote-splicing, respectively. The
second element in each case is datum. This convention is supported so that arbitrary Scheme
programs may be represented as lists. Among other things, this permits the use of the read
procedure to parse Scheme programs.

7.1 Pairs

This section describes the simple operations that are available for constructing and manip-
ulating arbitrary graphs constructed from pairs.

pair? object [procedure]
Returns #t if object is a pair; otherwise returns #£.
(pair? ’(a . b)) = #t
(pair? ’(a b c)) = #t
(pair? () = #f
(pair? ’#(a b)) = #f
cons objl obj2 [procedure]

Returns a newly allocated pair whose car is objl and whose cdr is obj2. The pair
is guaranteed to be different (in the sense of eqv?) from every previously existing

object.
(cons ’a ’()) = (a)
(cons ’(a) (b c d)) = ((a) b c 4d)
(cons "a" (b c)) = ("a" b ¢)
(cons ’a 3) = (a . 3)
(cons ’(a b) ’¢) = ((ab) . <)
xcons objl obj2 [procedure]
(SRFI 1) Returns a newly allocated pair whose car is obj2 and whose cdr is objl1.
(xcons (b c) ’a) = (a b c)
car pair [procedure]

Returns the contents of the car field of pair. Note that it is an error to take the car
of the empty list.

(car ’(a b ¢)) = a
(car ’((a) b c 4)) = (a)
(car (1 . 2)) = 1
(car 7)) Illegal datum
cdr pair [procedure]

Returns the contents of the cdr field of pair. Note that it is an error to take the cdr
of the empty list.

(cdr ’((a) b c d)) = (b cd

(cdr > (1 . 2)) = 92

(cdr 7 0)) Illegal datum



Chapter 7: Lists 113

car+cdr pair [procedure]
(SRFI 1) The fundamental pair deconstructor:

(lambda (p) (values (car p) (cdr p)))

(receive (a b) (car+cdr (cons 1 2))
(write-line a)
(write-line b))

41

-4 2

set-car! pair object [procedure]
Stores object in the car field of pair. The value returned by set-car! is unspecified.

(define (f) (list ’not-a-constant-list))
(define (g) ’(constant-list))

(set-car! (£) 3) = unspecified
(set-car! (g) 3) Illegal datum
set-cdr! pair object [procedure]

Stores object in the cdr field of pair. The value returned by set-cdr! is unspecified.

caar pair [procedure]
cadr pair [procedure]
cdar pair [procedure]
cddr pair [procedure]
caaar pair [procedure]
caadr pair [procedure]
cadar pair [procedure]
caddr pair [procedure]
cdaar pair [procedure]
cdadr pair [procedure]
cddar pair [procedure]
cdddr pair [procedure]
caaaar pair [procedure]
caaadr pair [procedure]
caadar pair [procedure]
caaddr pair [procedure]
cadaar pair [procedure]
cadadr pair [procedure]
caddar pair [procedure]
cadddr pair [procedure]
cdaaar pair [procedure]
cdaadr pair [procedure]
cdadar pair [procedure]
cdaddr pair [procedure]
cddaar pair [procedure]
cddadr pair [procedure]
cdddar pair [procedure]
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cddddr pair [procedure]
These procedures are compositions of car and cdr; for example, caddr could be
defined by

(define caddr (lambda (x) (car (cdr (cdr x)))))

general-car-cdr object path [procedure]
This procedure is a generalization of car and cdr. Path encodes a particular sequence
of car and cdr operations, which general-car-cdr executes on object. Path is an
exact non-negative integer that encodes the operations in a bitwise fashion: a zero
bit represents a cdr operation, and a one bit represents a car. The bits are executed
LSB to MSB, and the most significant one bit, rather than being interpreted as an
operation, signals the end of the sequence.?

For example, the following are equivalent:

(general-car-cdr object #b1011)
(cdr (car (car object)))

Here is a partial table of path/operation equivalents:

#b10 cdr
#bl11 car
#0100 cddr

#0101 cdar
#b110 cadr
#b111 caar
#01000 cdddr

tree-copy tree [procedure]
(SRFI 1) This copies an arbitrary tree constructed from pairs, copying both the car
and cdr elements of every pair. This could have been defined by

(define (tree-copy tree)
(let loop ((tree tree))
(if (pair? tree)
(cons (loop (car tree)) (loop (cdr tree)))
tree)))

7.2 Construction of Lists

list object ... [procedure]
Returns a list of its arguments.
(1ist ’a (+ 3 4) ’c) = (a7 c)
(list) = 0
These expressions are equivalent:
(1ist obj1 obj2 ... objN)
(cons obj1 (cons obj2 ... (coms objN >()) ...))

2 Note that path is restricted to a machine-dependent range, usually the size of a machine word. On many
machines, this means that the maximum length of path will be 30 operations (32 bits, less the sign bit
and the “end-of-sequence” bit).
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make-list k [element] [procedure]
(SRFI 1) This procedure returns a newly allocated list of length k, whose elements
are all element. If element is not supplied, it defaults to the empty list.

(make-list 4 ’c) = (c cc c)

cons* object object . . . [procedure]
(SRFI 1) cons* is similar to list, except that cons* conses together the last two
arguments rather than consing the last argument with the empty list. If the last
argument is not a list the result is an improper list. If the last argument is a list,
the result is a list consisting of the initial arguments and all of the items in the final
argument. If there is only one argument, the result is the argument.

(cons* ’a ’b ’c) = (ab . c)
(cons* ’a ’b ’(c d)) = (abcd
(cons* ’a) = a

These expressions are equivalent:

(cons* objl obj2 ... objN-1 objN)

(cons obj1 (cons obj2 ... (cons objN-1 objN) ...))
list-tabulate k init-proc [procedure]
make-initialized-1list k init-proc [procedure]

Returns a k-element list. Element i of the list, where 0 <= i < k, is produced by
(init-proc i). No guarantee is made about the dynamic order in which init-proc is
applied to these indices.

(list-tabulate 4 values) => (0 1 2 3)
list-tabulate is defined by SRFT 1.

list-copy list [procedure]
(SRFI 1) Returns a newly allocated copy of list. This copies each of the pairs com-
prising list. This could have been defined by
(define (list-copy list)
(if (null? 1list)
0]
(cons (car list)
(list-copy (cdr list)))))

iota count [start [step]] [procedure]
(SRFI 1) Returns a list containing the elements

(start start+step ... start+(count-1)*step)
Count must be an exact non-negative integer, while start and step can be any num-
bers. The start and step parameters default to 0 and 1, respectively.

(iota 5) = (01 2 3 4)

(iota 5 0 -0.1) = (0 -0.1 -0.2 -0.3 -0.4)

vector->list vector [procedure]

subvector->1ist vector start end [procedure]
vector->1list returns a newly allocated list of the elements of vector.
subvector->list returns a newly allocated list of the elements of the given subvector.
The inverse of vector->1list is 1list->vector.
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(vector->list ’#(dah dah didah)) = (dah dah didah)

7.3 Selecting List Components

list? object [procedure]
Returns #t if object is a list, otherwise returns #f. By definition, all lists have finite
length and are terminated by the empty list. This procedure returns an answer even
for circular structures.

Any object satisfying this predicate will also satisfy exactly one of pair? or null?.

(1ist? ’(a b c)) = #t
(1ist? > Q)) = #t
(1ist? ’(a . b)) = #f

(let ((x (list ’a)))
(set-cdr! x x)

(list? x)) = #f
circular-1ist? object [procedure]
(SRFI 1) Returns #t if object is a circular list, otherwise returns #f.
(circular-1list? (list ’a ’b ’c)) = #f
(circular-1ist? (cons* ’a ’b ’c)) = #f

(circular-1list? (circular-list ’a ’b ’c)) = #t

dotted-1ist? object [procedure]
(SRFI 1) Returns #t if object is an improper list, otherwise returns #f.
(dotted-1ist? (list ’a ’b ’c)) = #f
(dotted-1ist? (comns* ’a ’b ’c)) = #t

(dotted-1ist? (circular-list ’a ’b ’c)) = #f

length list [procedure]
Returns the length of list. Signals an error if list isn’t a proper list.
(length ’(a b c)) = 3
(length ’(a (b) (c d e))) = 3
(length ’()) = 0
(length (circular-list ’a ’b ’c))
length+ clist [procedure]

(SRFI 1) Returns the length of clist, if it is a proper list. Returns #f if clist is a
circular list. Otherwise signals an error.

(length+ (list ’a ’b ’c)) = 3
(length+ (cons* ’a ’b ’c))
(length+ (circular-list ’a ’b ’c)) = #f

null? object [procedure]
Returns #t if object is the empty list; otherwise returns #f£.
(null? ’(a . b)) = #£f
(null? ’(a b c)) = #f

(null? ° ) = #t
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list-ref list k [procedure]

Returns the kth element of list, using zero-origin indexing. The valid indexes of a list
are the exact non-negative integers less than the length of the list. The first element
of a list has index 0, the second has index 1, and so on.

(list-ref ’(a b c d) 2) = c

(l1ist-ref ’(a b c d)

(exact (round 1.8)))
= C

(list-ref list k) is equivalent to (car (list-tail list k)).

first list [procedure]
second list [procedure]
third list [procedure]
fourth list [procedure]
fifth list [procedure]
sixth list [procedure]
seventh list [procedure]
eighth list [procedure]
ninth list [procedure]
tenth list [procedure]

Returns the specified element of list. It is an error if list is not long enough to contain
the specified element (for example, if the argument to seventh is a list that contains
only six elements).

7.4 Cutting and Pasting Lists

sublist list start end [procedure]
Start and end must be exact integers satisfying

0 <= start <= end <= (length list)

sublist returns a newly allocated list formed from the elements of list beginning at
index start (inclusive) and ending at end (exclusive).

list-head list k [procedure]
Returns a newly allocated list consisting of the first k elements of list. K must not
be greater than the length of Iist.

We could have defined list-head this way:

(define (list-head list k)
(sublist list 0 k))

list-tail list k [procedure]
Returns the sublist of list obtained by omitting the first k elements. The result, if
it is not the empty list, shares structure with list. K must not be greater than the
length of list.

append list ... [procedure]
Returns a list consisting of the elements of the first list followed by the elements of
the other lists.
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(append ’(x) ’(y)) = &y
(append ’(a) (b c d)) = (abcd
(append ’(a (b)) *((c))) = (a () ()
(append) = 0O

The resulting list is always newly allocated, except that it shares structure with the
last list argument. The last argument may actually be any object; an improper list
results if the last argument is not a proper list.

(append ’(a b) ’(c . d)) = (abc . d
(append () ’a) = a
append! list ... [procedure]

Returns a list that is the argument lists concatenated together. The arguments are
changed rather than copied. (Compare this with append, which copies arguments
rather than destroying them.) For example:

(define x ’(a b c))

(define y ’(d e £))

(define z ’(g h))

(append! x y z) = (abcdefgh)
X = (abcdef gh)
y = (def gh)
z = (g h)
last-pair list [procedure]

Returns the last pair in list, which may be an improper list. last-pair could have
been defined this way:
(define last-pair
(lambda (x)
(if (pair? (cdr x))
(last-pair (cdr x))

x)))
except-last-pair list [procedure]
except-last-pair! list [procedure]

These procedures remove the last pair from list. List may be an improper list, except
that it must consist of at least one pair. except-last-pair returns a newly allocated
copy of list that omits the last pair. except-last-pair! destructively removes the
last pair from list and returns list. If the cdr of list is not a pair, the empty list is
returned by either procedure.

7.5 Filtering Lists

filter predicate list [procedure]
(SRFI 1) Returns a newly allocated copy of list containing only the elements satisfying
predicate. Predicate must be a procedure of one argument.
(filter odd? (1 2 3 45)) = (1 3 5)

The non-standard procedure keep-matching-items (and its alias list-transform-
positive) are the same except that its arguments are reversed.
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remove predicate list [procedure]
(SRFI 1) Like filter, except that the returned list contains only those elements not
satisfying predicate.

(remove 0dd? (1 2 3 4 5)) = (2 4)

The non-standard procedure delete-matching-items (and its alias
list-transform-negative) are the same except that its arguments are
reversed.

partition predicate list [procedure]
(SRFI 1) Partitions the elements of list with predicate, and returns two values: the list
of in-elements and the list of out-elements. The list is not disordered—elements occur
in the result lists in the same order as they occur in the argument list. The dynamic
order in which the various applications of predicate are made is not specified. One
of the returned lists may share a common tail with the argument Iist.

(partition symbol? ’(one 2 3 four five 6)) =>
(one four five)

(2 36)
filter! predicate list [procedure]
remove! predicate list [procedure]
partition! predicate list [procedure]

(SRFI 1) Linear-update variants of filter, remove and partition. These procedures
are allowed, but not required, to alter the cons cells in the argument 1ist to construct
the result lists.

The non-standard procedures keep-matching-items! and delete-matching-
items! bear a similar relationship to keep-matching-items and delete-matching-
items, respectively.

delq element list [procedure]
delv element list [procedure]
delete element list [procedure]

Returns a newly allocated copy of list with all entries equal to element removed. delq
uses eq? to compare element with the entries in list, delv uses eqv?, and delete uses

equal?.
delq! element list [procedure]
delv! element list [procedure]
delete! element list [procedure]

Returns a list consisting of the top-level elements of list with all entries equal to
element removed. These procedures are like delq, delv, and delete except that
they destructively modify list. delq! uses eq? to compare element with the entries
in list, delv! uses eqv?, and delete! uses equal?. Because the result may not be
eq? to list, it is desirable to do something like (set! x (delete! x)).
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(define x ’(a b ¢ b))
(delete ’b x) = (a c)
X = (abchb)
(define x ’(a b ¢ b))
(delete! ’b x) = (a c)
X = (a c)
;; Returns correct result:
(delete! ’a x) = (c)
;; Didn’t modify what x points to:
X = (a ¢)
delete-member-procedure deletor predicate [procedure]
Returns a deletion procedure similar to delv or delete!. Deletor should be one of
the procedures list-deletor or list-deletor!. Predicate must be an equivalence
predicate. The returned procedure accepts exactly two arguments: first, an object to
be deleted, and second, a list of objects from which it is to be deleted. If deletor is
list-deletor, the procedure returns a newly allocated copy of the given list in which
all entries equal to the given object have been removed. If deletor is 1ist-deletor!,
the procedure returns a list consisting of the top-level elements of the given list with
all entries equal to the given object removed; the given list is destructively modified
to produce the result. In either case predicate is used to compare the given object to
the elements of the given list.
Here are some examples that demonstrate how delete-member-procedure could have
been used to implement delv and delete!:
(define delv
(delete-member-procedure list-deletor eqv?))
(define delete!
(delete-member-procedure list-deletor! equal?))
list-deletor predicate [procedure]
list-deletor! predicate [procedure]

These procedures each return a procedure that deletes elements from lists. Predicate
must be a procedure of one argument. The returned procedure accepts exactly one
argument, which must be a proper list, and applies predicate to each of the elements
of the argument, deleting those for which it is true.

The procedure returned by list-deletor deletes elements non-destructively, by re-
turning a newly allocated copy of the argument with the appropriate elements re-
moved. The procedure returned by list-deletor! performs a destructive deletion.

7.6 Searching Lists

find predicate list [procedure]

(SRFI 1) Returns the first element in list for which predicate is true; returns #f if it
doesn’t find such an element. Predicate must be a procedure of one argument.

(find even? (31415 9)) =>4
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Note that find has an ambiguity in its lookup semantics—if find returns #f, you
cannot tell (in general) if it found a #f element that satisfied predicate, or if it did not
find any element at all. In many situations, this ambiguity cannot arise—either the
list being searched is known not to contain any #f elements, or the list is guaranteed
to have an element satisfying predicate. However, in cases where this ambiguity can
arise, you should use find-tail instead of find—find-tail has no such ambiguity:

(cond ((find-tail pred lis)
=> (lambda (pair) ...)) ; Handle (CAR PAIR)
(else ...)) ; Search failed.

The non-standard find-matching-item procedure (and its alias list-search-
positive) works identically except that its argument order is reversed.
list-search-negative is similar to list-search-positive but the sense of the
predicate is reversed.

find-tail predicate list [procedure]
(SRFI 1) Returns the first pair of list whose car satisfies predicate; returns #£ if there’s
no such pair. find-tail can be viewed as a general-predicate variant of memv.

memq object list [procedure]
memv object list [procedure]
member object list [procedure]

These procedures return the first pair of list whose car is object; the returned pair
is always one from which list is composed. If object does not occur in list, #f (n.b.:
not the empty list) is returned. memq uses eq? to compare object with the elements
of list, while memv uses eqv? and member uses equal?.?

(memq ’a ’(a b c)) = (a b <)

(memg ’b ’(a b c)) = (b ¢)

(memq ’a ’(b ¢ d)) = #f

(memq (list ’a) ’(b (a) c)) = #f

(member (list ’a) ’(b (a) c)) = ((@) <)

(memq 101 ’ (100 101 102)) = unspecified

(memv 101 > (100 101 102)) = (101 102)
member-procedure predicate [procedure]

Returns a procedure similar to memq, except that predicate, which must be an equiv-
alence predicate, is used instead of eq?. This could be used to define memv as follows:

(define memv (member-procedure eqv?))

7.7 Mapping of Lists

map procedure list list . . . [procedure]
Procedure must be a procedure taking as many arguments as there are lists. If more
than one list is given, then they must all be the same length. map applies procedure
element-wise to the elements of the lists and returns a list of the results, in order from

3 Although they are often used as predicates, memqg, memv, and member do not have question marks in their
names because they return useful values rather than just #t or #f£.
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left to right. The dynamic order in which procedure is applied to the elements of the
lists is unspecified; use for-each to sequence side effects.

(map cadr ’((a b) (d e) (g h))) = (b e h)
(map (lambda (n) (expt n n)) (1 2 3 4)) = (1 4 27 256)
(map + ’(1 2 3) (4 5 6)) = (579

(let ((count 0))
(map (lambda (ignored)
(set! count (+ count 1))
count)
>(a b c))) = unspecified

map* initial-value procedure list1 list2 . .. [procedure]
Similar to map, except that the resulting list is terminated by initial-value rather than
the empty list. The following are equivalent:

(map procedure list list ...)

(map* ’() procedure list list ...)
append-map procedure list list . . . [procedure]
append-map* initial-value procedure list list . . . [procedure]

Similar to map and map*, respectively, except that the results of applying procedure
to the elements of lists are concatenated together by append rather than by cons.
The following are equivalent, except that the former is more efficient:

(append-map procedure list list ...)
(apply append (map procedure list list ...))

append-map! procedure list list . . . [procedure]

append-map*! initial-value procedure list list . . . [procedure]
Similar to map and map*, respectively, except that the results of applying procedure
to the elements of lists are concatenated together by append! rather than by cons.
The following are equivalent, except that the former is more efficient:

(append-map! procedure list list ...)
(apply append! (map procedure list list ...))

for-each procedure list list . .. [procedure]
The arguments to for-each are like the arguments to map, but for-each calls proce-
dure for its side effects rather than for its values. Unlike map, for-each is guaranteed
to call procedure on the elements of the lists in order from the first element to the
last, and the value returned by for-each is unspecified.

(let ((v (make-vector 5)))
(for-each (lambda (i)
(vector-set! v i (x i 1)))
(01 2 3 4))
V) = #(0 1 4 9 16)
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7.8 Reduction of Lists

reduce-left procedure initial list [procedure]
Combines all the elements of list using the binary operation procedure. For example,
using + one can add up all the elements:

(reduce-left + 0 list-of-numbers)

The argument initial is used only if list is empty; in this case initial is the result of
the call to reduce-left. If list has a single argument, it is returned. Otherwise, the
arguments are reduced in a left-associative fashion. For example:

(reduce-left + 0 (1 2 3 4)) = 10

(reduce-left + 0 > (1 2)) = 3

(reduce-left + 0 (1)) =1

(reduce-left + 0 ’()) = 0

(reduce-left + 0 ’(foo0)) = foo

(reduce-left list () ’(1 2 3 4)) = (((1 2) 3) 4
reduce-right procedure initial list [procedure]

Like reduce-left except that it is right-associative.

(reduce-right list () (1 2 3 4)) = (1 (@2 BN

fold-right procedure initial list [procedure]

Combines all of the elements of list using the binary operation procedure. Unlike
reduce-left and reduce-right, initial is always used:

(fold-right + 0 ’(1 2 3 4)) = 10
(fold-right + 0 ’(foo)) Illegal datum
(fold-right list () ’(1 2 3 4)) = (1 (2 (8 & OMNN

Fold-right has interesting properties because it establishes a homomorphism be-
tween (cons, ()) and (procedure, initial). It can be thought of as replacing the
pairs in the spine of the list with procedure and replacing the () at the end with
initial. Many of the classical list-processing procedures can be expressed in terms of
fold-right, at least for the simple versions that take a fixed number of arguments:

(define (copy-list list)
(fold-right cons ’() list))

(define (append listl list2)
(fold-right cons list2 listl1))

(define (map p list)
(fold-right (lambda (x r) (cons (p x) r)) ’() 1list))

(define (reverse items)
(fold-right (lambda (x r) (append r (list x))) ’>() items))

fold-left procedure initial list [procedure]
Combines all the elements of list using the binary operation procedure. Elements are
combined starting with initial and then the elements of list from left to right. Whereas
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fold-right is recursive in nature, capturing the essence of cdr-ing down a list and
then computing a result, fold-left is iterative in nature, combining the elements as
the list is traversed.

(fold-left list () ’(1 2 3 4)) = (((CO 1) 2) 3) 4
(define (length list)

(fold-left (lambda (sum element) (+ sum 1)) 0 list))
(define (reverse items)

(fold-left (lambda (x y) (cons y x)) () items))

any predicate list list . .. [procedure]
(SRFI 1) Applies predicate across the lists, returning true if predicate returns true on
any application.

If there are n list arguments list1 . .. listn, then predicate must be a procedure taking
n arguments and returning a boolean result.
any applies predicate to the first elements of the list parameters. If this application
returns a true value, any immediately returns that value. Otherwise, it iterates,
applying predicate to the second elements of the list parameters, then the third, and
so forth. The iteration stops when a true value is produced or one of the lists runs
out of values; in the latter case, any returns #£. The application of predicate to the
last element of the lists is a tail call.
Note the difference between find and any—find returns the element that satisfied
the predicate; any returns the true value that the predicate produced.
Like every, any’s name does not end with a question mark—this is to indicate that
it does not return a simple boolean (#t or #f), but a general value.

(any integer? ’(a 3 b 2.7)) => #t

(any integer? ’(a 3.1 b 2.7)) => #f

(any < (3141 5)

(27 18 2)) => #t

The non-standard procedure there-exists? is similar, except that it takes a single
list and a predicate argument, in that order.

every predicate list list . . . [procedure]

(SRFI 1) Applies predicate across the lists, returning true if predicate returns true on
every application.

If there are n list arguments list1 . .. listn, then predicate must be a procedure taking
n arguments and returning a boolean result.

every applies predicate to the first elements of the list parameters. If this application
returns false, every immediately returns false. Otherwise, it iterates, applying pred-
icate to the second elements of the list parameters, then the third, and so forth. The
iteration stops when a false value is produced or one of the lists runs out of values.
In the latter case, every returns the true value produced by its final application of
predicate. The application of predicate to the last element of the lists is a tail call.

If one of the lists has no elements, every simply returns #t.
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Like any, every’s name does not end with a question mark—this is to indicate that
it does not return a simple boolean (#t or #f), but a general value.

The non-standard procedure for-all? is similar, except that it takes a single list and
a predicate argument, in that order.

7.9 Miscellaneous List Operations

circular-list object . .. [procedure]
make-circular-list k [element] [procedure]
These procedures are like 1ist and make-1ist, respectively, except that the returned
lists are circular. circular-list could have been defined like this:
(define (circular-list . objects)
(append! objects objects))

circular-1ist is compatible with SRFI 1, but extended so that it can be called with
no arguments.

reverse list [procedure]
Returns a newly allocated list consisting of the top-level elements of list in reverse
order.
(reverse ’(a b ¢)) = (c b a)
(reverse ’(a (b c) d (e (£)))) = ((e (£)) d (b c) a)
reverse! list [procedure]

Returns a list consisting of the top-level elements of list in reverse order. reverse!
is like reverse, except that it destructively modifies list. Because the result may not
be eqv? to list, it is desirable to do something like (set! x (reverse! x)).

sort sequence procedure [procedure]
merge-sort sequence procedure [procedure]
quick-sort sequence procedure [procedure]

Sequence must be either a list or a vector. Procedure must be a procedure of two
arguments that defines a total ordering on the elements of sequence. In other words,
if x and y are two distinct elements of sequence, then it must be the case that

(and (procedure x y)
(procedure y x))
= #f

If sequence is a list (vector), sort returns a newly allocated list (vector) whose ele-
ments are those of sequence, except that they are rearranged to be sorted in the order
defined by procedure. So, for example, if the elements of sequence are numbers, and
procedure is <, then the resulting elements are sorted in monotonically nondecreasing
order. Likewise, if procedure is >, the resulting elements are sorted in monotonically
nonincreasing order. To be precise, if x and y are any two adjacent elements in the
result, where x precedes y, it is the case that

(procedure y x)
= #f
Two sorting algorithms are implemented: merge-sort and quick-sort. The proce-
dure sort is an alias for merge-sort.


http://srfi.schemers.org/srfi-1/srfi-1.html
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See also the definition of sort!.
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8 Vectors

Vectors are heterogenous structures whose elements are indexed by exact non-negative
integers. A vector typically occupies less space than a list of the same length, and the
average time required to access a randomly chosen element is typically less for the vector
than for the list.

The length of a vector is the number of elements that it contains. This number is an
exact non-negative integer that is fixed when the vector is created. The valid indexes of
a vector are the exact non-negative integers less than the length of the vector. The first
element in a vector is indexed by zero, and the last element is indexed by one less than the
length of the vector.

Vectors are written using the notation #(object ...). For example, a vector of length
3 containing the number zero in element 0, the list (2 2 2 2) in element 1, and the string
"Anna" in element 2 can be written as

#(0 (2 2 2 2) "Anna")

Note that this is the external representation of a vector, not an expression evaluating to a
vector. Like list constants, vector constants must be quoted:

#(0 (2 2 2 2) "Anna") = #(0 (2 2 2 2) "Anna")

A number of the vector procedures operate on subvectors. A subvector is a segment of a
vector that is specified by two exact non-negative integers, start and end. Start is the index
of the first element that is included in the subvector, and end is one greater than the index
of the last element that is included in the subvector. Thus if start and end are the same,
they refer to a null subvector, and if start is zero and end is the length of the vector, they
refer to the entire vector. The valid indexes of a subvector are the exact integers between
start inclusive and end exclusive.

8.1 Construction of Vectors

make-vector k [object] [procedure]
Returns a newly allocated vector of k elements. If object is specified, make-vector
initializes each element of the vector to object. Otherwise the initial elements of the
result are unspecified.

vector object . .. [procedure]
Returns a newly allocated vector whose elements are the given arguments. vector is
analogous to list.

(vector ’a ’b ’c) = #(a b c)

vector-copy vector [procedure]
Returns a newly allocated vector that is a copy of vector.

list->vector list [procedure]
Returns a newly allocated vector initialized to the elements of list. The inverse of
list->vector is vector->1list.

(list->vector ’(dididit dah)) = #(dididit dah)
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string->vector string [start [end]] [standard procedure]
vector->string vector [start [end]] [standard procedure]
It is an error if any element of vector is not a character.

The vector->string procedure returns a newly allocated string of the objects con-
tained in the elements of vector between start and end. The string->vector pro-
cedure returns a newly created vector initialized to the elements of the string string
between start and end.

In both procedures, order is preserved.

(string->vector "ABC") =  #(#\A #\B #\C)
(vector->string #(#\1 #\2 #\3) = "123"
make-initialized-vector k initialization [procedure]

Similar to make-vector, except that the elements of the result are determined by
calling the procedure initialization on the indices. For example:

(make-initialized-vector 5 (lambda (x) (* x x)))
= #(0 1 4 9 16)

vector-grow vector k [procedure]
K must be greater than or equal to the length of vector. Returns a newly allocated
vector of length k. The first (vector-length vector) elements of the result are
initialized from the corresponding elements of vector. The remaining elements of the
result are unspecified.

vector-map procedure vector [procedure]
Procedure must be a procedure of one argument. vector-map applies procedure
element-wise to the elements of vector and returns a newly allocated vector of the
results, in order from left to right. The dynamic order in which procedure is applied
to the elements of vector is unspecified.

(vector-map cadr ’#((a b) (d e) (g h))) = #(b e h)
(vector-map (lambda (n) (expt n n)) ’#(1 2 3 4))

= #(1 4 27 256)
(vector-map + ’#(5 7 9)) = #(5 7 9)

8.2 Selecting Vector Components

vector? object [procedure]
Returns #t if object is a vector; otherwise returns #f.

vector-length vector [procedure]
Returns the number of elements in vector.

vector-ref vector k [procedure]
Returns the contents of element k of vector. K must be a valid index of vector.

(vector-ref ’#(1 1 2 3 5 8 13 21) 5) = 8
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vector-set! vector k object [procedure]
Stores object in element k of vector and returns an unspecified value. K must be a
valid index of vector.

(let ((vec (vector 0 ’(2 2 2 2) "Amna")))
(vector-set! vec 1 ’("Sue" "Sue"))
vec)
= #(0 ("Sue" "Sue") "Anna")

vector-first vector [procedure]
vector-second vector [procedure]
vector-third vector [procedure]
vector-fourth vector [procedure]
vector-fifth vector [procedure]
vector-sixth vector [procedure]
vector-seventh vector [procedure]

]

vector-eighth vector [procedure
These procedures access the first several elements of vector in the obvious way. It is
an error if the implicit index of one of these procedurs is not a valid index of vector.

vector-binary-search vector key<?” unwrap-key key [procedure]
Searches vector for an element with a key matching key, returning the element if one
is found or #f if none. The search operation takes time proportional to the logarithm
of the length of vector. Unwrap-key must be a procedure that maps each element of
vector to a key. Key<? must be a procedure that implements a total ordering on the
keys of the elements.

(define (translate number)
(vector-binary-search *#((1 . i)

(2 . ii)
(3 . iii)
(6 . vi))

< car number))
(translate 2) = (2 . ii)
(translate 4) = #F

8.3 Cutting Vectors

subvector vector start end [procedure]
Returns a newly allocated vector that contains the elements of vector between index
start (inclusive) and end (exclusive).

vector-head vector end [procedure]
Equivalent to

(subvector vector 0 end)

vector-tail vector start [procedure]
Equivalent to

(subvector vector start (vector-length vector))
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8.4 Modifying Vectors

vector-fill! vector object [procedure]

subvector-fill! vector start end object [procedure]
Stores object in every element of the vector (subvector) and returns an unspecified
value.

subvector-move-left! vectorl startl endl vector2 start2 [procedure]

subv