PostgreSQL 8.4.0 Documentation

The PostgreSQL Global Development Group

PostgreSQL 8.4.0 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2009 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2009 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

Preface xlv
1. What iS POStZIESQLT ...ccuuiiiiiiiiiieeceeteeet ettt st xlv
2. A Brief History of POStreSQLu........coicuiiiiiiiieiiieiieiieeteeeceteste ettt sve e beesnesne e xlvi

2.1. The Berkeley POSTGRES Projectccoccveeiiiiiieniienieiieenieenee e sve e x1vi
2.2, POSEEIESOS ..ottt ettt ettt ettt st sttt st et e tae st e enbeebee s xlvi
2.3, POSEEIESQLou. ittt st ettt st e e st e sanesnteen xlvii
3. CONVENTIONS ...ttt sttt ettt ettt st et e b e sttt e b eat e saeeateaesbeesse bt eatenaesueeneesueennens xlvii
4. Further INfOrmation........c.ccovueriiriiriiniiniec ittt ettt ettt et nesiees xlviii
5. Bug Reporting GUIEIINES........ccuieiierieriieiieriieeie ettt ettt sttt st et e e s xlviii
5.1, Tdentifying BugScooieriiiiiiiieiece ettt st xlix
5.2, WAL £ TEPOT..ccuueiiuiiiiieiieiie ettt sttt ettt ettt sit e sbe bt e s bt e st e beesbeesateenbeebeens xlix
5.3. WheEre tO TEPOTE DUZS ...eevueiriiiiiieniieeiie ettt ettt ettt sttt e st st e b e saae st s li
I. Tutorial 1
1. GEttING STATTEAeeeniiiieieieeiieeee ettt st e 1
1.1 INSEALIALION ..ottt et sttt st sttt et en 1
1.2. Architectural Fundamentals............ccoceriiriiriiiniiiieiieeceeceee e 1
1.3. Creating a Databasececueiuieieriieiieerie ettt ettt ettt et saeesaesbeeneens 2
1.4. Accessing @ Databasecooeeriiriiiriiiiiiieetee ettt 3
2. The SQL LaNGUAZEcovveiriiiiiieieenite ettt ettt st sa e st sttt e sbe e saneesbeenbee e 5
2.1, INEEOAUCTION 1ttt ettt et sttt e bttt et e e st e st e s be et e beeaeenes 5
2.2, COMCEPLS .uveeneeeiieeieeieeeite ettt e et st e b e bt e sat e e bt e sbtesate e bt e s bt esaeesabe e bt esbeesabeenbeesaeesaneen 5
2.3. Creating @ NeW Tablecccoviiiiiiiieieeee ettt 5
2.4. Populating a Table With ROWScccoeiiiiiiiiiiiiiiieeeecee e 6
2.5. QUErying @ TaDIEcc.coiiiiiiiiiiiiiee et st 7
2.6. Joins Between Tables........cocoviiiiiiiiiiiiieeeceereeesest et 9
2.7. Aggregate FUNCHIONS......ccccoviiiiiiieeteteeitete ettt sttt 11
2.8 UPAALES ..ottt sttt et sttt ettt b ettt et sa e bbbt ettt eae e 12
2.9, DCIETIONS ...conveeeenieieeiteteettete sttt ettt sttt sttt b ettt ebt et st sbe et et ebeenees 13
3. AdVANCEd FRATUIES ...c..eeiiiiiiiiiieiietceitctee ettt ettt ettt ettt s ennens 14
3.1 INTOAUCTION «.nveiiiiiiieiieitete ettt ettt ettt ettt eb s 14
3.2 VIBWS ittt ettt sttt ettt et sttt ettt na e sttt et eae e 14
3.3, FOTEIZN KEYS...uiiiiiiiiiiiieeie ettt ettt sttt ettt e bt e sbeeseneenbeenbeesene 14
3.4, TTANSACHIONS ..c.eevveniieiieteeitete sttt ettt ettt et sttt e st e e sbtebeesaesaeesbesbeeesemteeaeenees 15
3.5. WIndow FUNCHONSccuiiiiriiiiiiinieiececeteeceteste ettt st 17
3.6. INNETILANCE ...c.eeiiiiiiiciiecc ettt sttt 20
3.7 CONCIUSION ...ttt ettt ettt ettt sa et esae st e bt eneeaeemnes 21

I1. The SQL Language 22

4. SQL SYNEAX .eontiiieiieiieiete ettt ettt ettt ettt et e ae st h e n et ae e e nesreeanenee 24

4.1, LeXiCal SIUCLUTE.eivuiiiiiiiieteeitt ettt ettt ettt st sbe et e st e sbeesaee st ens 24
4.1.1. Identifiers and Key Words.........ccccceeveeriiiiniiniiniineeeeneeeieeeeiee e 24
1.2, CONSLANLS .e.uveeutieiteeieetee sttt ettt et st e bt e bt e st e e bt e bt e sbeesbe e bt enbeesanesaeeenbeas 26
4.1.2.1. String CONSLANESeeouervereietierieieeeeeeenteeeeete et eee et eesee s eeeseeeneenes 26

4.1.2.2. String Constants with C-Style Escapesc.cccccevirreereneeneneennnn 26

4.1.2.3. String Constants with Unicode Escapes.......c..ccccoecvrreenereenenennnnne. 27

4.1.2.4. Dollar-Quoted String CONSLANTScevereeerieriieieniieiene e 28

4.1.2.5. Bit-String CONSTANLS ...c..eveureuirierienrerereteeterenieneeeeeee e 29

4.1.2.6. NUMEIIC CONSLANLSovereieniietieienieeieniesiteie ettt sttt sbe e 29

4.1.2.7. Constants of Other TYPEScccevereerererienenieieneeee e 30

iii

1.3, OPCTALOTSeeuvieiieeieeiiesite et et e sitesteeabte bt e satesabeesbeesasesateebeesseesssesnseeseenaees 30

4.1.4. SPecial CharaClers........cevueruersiieriieriestiesieeste st et esiteseesbeesbeesbeesaresnseenbeas 31
4.1.5. COMMENLSoueiieiiiiieiietteteteste ettt ettt sttt sae et sre et e aesaeesne b eenenee 31
4.1.6. Lexical PreCedencec..cocevverieieniieieniinieieneeteeeeereeeceeese st 32

4.2, Value EXPIESSIONS......eiiuiiriiiiiieiienite ettt ettt ettt sttt et e st e bt e st e sateesbeesaeesaeeens 33
4.2.1. Column References..........coceoerieieriinieninieneneeieeeeeteeee et 34
4.2.2. Positional Parameters.........cceevueerierieriiiinienienieeieeitesee et 34
4.2.3. SUDSCIIPLS ..ottt ettt et 34
4.2.4. Field SEIECHONooueiiiiiiieiieiieeiteetee ettt st 35
4.2.5. Operator INVOCAtIONSc..coueevuiriiiiiiieiieie et 35
4.2.6. FUNCHON CallSeoiiiiiiiiiiieeiietete ettt s 36
4.2.77. Aggregate EXPreSSIONS.cccueiviiiiiirieriierieentenite ettt st 36
4.2.8. Window Function Calls...........cceeruiririeninierieieeeeeeee e 37
4.2.9. TYPE CaSS .. s 38
4.2.10. Scalar SUDQUETIES........cocerverueieieiniinereeeeet ettt 39
4.2.11. Array COnSLIUCTOTSccuiiuiiiiiiiiiiii ettt 39
4.2.12. ROW CONSIIUCLOTS ...cuveeiieeuierteenieenitenteenieesiee st et esreesieesseeneesseesmresaneenees 41
4.2.13. Expression Evaluation RuUlesccccocovvivininiininiieeeccee 42

5. Datad DEfINItION ...coueetiiiieiietieieeicetere ettt sttt bbbt ettt st be bt ae et e 43
5.1, TabIE BASICS ..uveiuiitiiiieieeieete ettt ettt sttt 43
5.2. Default ValUEScc.eoieriiriiiiiiiieieieeteeet ettt st st 44
5.3, CONSIIAINES ...ttt ettt ettt ettt sb et s bt ettt ebe e b sbe et e s bt entebeeaeenees 45
5.3.1. Check CONSLIAINEScoveiereieiinieeienieeiteie ettt sttt st sreeaeeaes 45
5.3.2. NOt-NUIL CONSIIAINEScneeienriieeiiinieeiienienieetenteeieete sttt ereeees 47
5.3.3. UnNiqUeE CONSLIAINES. ..cuveereeiieriienieeiiesteeteeieesiresteeteesseessessseeseesssessseensens 48
5.3.4. Primary KEYS....ouiovuieiiiieiiieieeitesteete ettt st 48
5.3.5. FOT@IN KEYS ..coiuiiiiieiiiiieiiecieeteste ettt sttt st ettt ae e 49

5.4, SStem COIUMMNS ...c..veiiieriieiiieiierte sttt sttt et st e bt esttesabeebeesbeesaneeseenseesane 52
5.5. MOAIfying TabIES......cccueerieriiiiieiieiit ettt ettt sttt ettt sbe e s b e b seee 53
5.5.1. Adding @ COIUMN.....cc.eeriiiiiiiiieeieeieert ettt ettt 53
5.5.2. Removing @ COIUMcc.ueiiieriiinieiiieniteeteeieeit ettt et et 54
5.5.3. Adding @ CONSIIAINEccueritierierieriienieete ettt ettt s eaeas 54
5.5.4. Removing @ CONSLIAINT ...oeveerierieriiieniieeieeieesit ettt ebees 55
5.5.5. Changing a Column’s Default Value...........ccccccoeceevinienininieninicicnieeenne. 55
5.5.6. Changing a Column’s Data Typecccccoeeieniiniiininiicnccceeecceeeenee. 55
5.5.7. Renaming @ COIUMNcocoooiiiiiiiiiniiiieienietcece e 56
5.5.8. Renaming a Tablec..cocoeoiiiiiiiniiiiicece e 56

5.6 PLIVIIEEES ..o s 56
5.7, SCREIMAS ..ttt ettt sttt st 57
5.7.1. Creating @ SChemMacocueeiiiiiiiriiiiette e 57
5.7.2. The PUBIiC SCheMAooiuiiiiiiiieiiit e 58
5.7.3. The Schema Search Path...........cccccooiiiiiiiiiiiiieccceen 58
5.7.4. Schemas and Privileges..........ccceevuiririenenieiesieee e 60
5.7.5. The System Catalog SChemacccceviiieiiniiieieeeeee e 60
5.7.6. USAZE PALEINS....cc.eeveiuieiieiieieeiceteee ettt sttt 60
5.7.7. POTtability ..ottt e 61

5.8, INHGTILANCE ...ttt sttt s 61
581 CAVRALS ...ttt sttt sttt sttt ettt 64

5.9, PArtItIONINE ...cveeutetieiieiieiiete ettt ettt sttt sb ettt ebt e bt st e e s bt est et sbeenees 64
591, OVEIVIEBW ..ttt ettt sttt et st besae e 64

5.9.2. Implementing Partitioningc.ccocceveerereeiieneniienineeieneeeeneseeree e 65
5.9.3. Managing Partitionsc...coeeeevienerienenieienieeeetesceeene et 68

v

5.9.4. Partitioning and Constraint EXCIUSIONccccevvirvieniiiinienieeieeiiesieeieeeen 69

5.9.5. Alternative Partitioning Methods..........ccecueeviiiniinieniiiinieriecceeesee e 70
5.9.60. CAVEALS ...ttt ettt ettt ettt sttt st n e 71

5.10. Other Database ODJECEScevveeruieritiriieriienieeieesite sttt ettt e it e saeeesseenbeesaee 72
5.11. Dependency TraCKing..........coceereeriiiiiienienieeieete sttt sttt 72
6. Data ManipUlation.......coc.eeiierieriieeniie ittt ettt et et e sbte st e sbeesbeesabesaeeenbeas 74
6.1. INSErting DAtacc.eoieiiiiiiiiieieceeetece et 74
6.2. Updating Data......c..cocoeviiriiiiiieieiieieieeeeeee ettt st 75
6.3. Deleting Data.......c..cocueiiriiiiiieiesceieeeceee et 76
T QUETICS ... ettt ettt e e ettt e e e et a e e e e e e tbae e e e eetaaeeeeeetaseeeeeataaseeeeetbaeaeeaanbaaeeeeeattreeeeeatraaeeaan 77
T 1. OVEIVIEW ettt sttt ettt ettt s ittt et e st st e bt e bt e sateenbeesbtesateenbeesaeesateens 77
7.2. TabIe EXPIESSIONScueevieieiietieieeteete ettt ettt et ettt e st et e sttt esaesneesesbeeneenes 77
7.2.1. The FROM ClaUSE......cccuerieriieniienieeieeniteete ettt ettt sttt erees 78
7.2.1.1. JOIN@d TADIES ..ot 78

7.2.1.2. Table and Column AIASeS.........ccceeuererieriinieieneeeee e 81

7.2.1.3. SUDQUETIES ...ttt 82

7.2.1.4. Table FUNCHONSooouiiiieiiiiiiieierieeieee et 83

7.2.2. The WHERE ClaUSE....cc.eeiuirtieiiniieienieeitesie sttt ettt sttt sttt 83
7.2.3. The GROUP BY and HAVING ClaUSES........ccceeveeruirerenieniereinieneesienieeeneenens 84
7.2.4. Window Function Processingcccceoereerienieniienineenenenieneneeeenieeeenees 87

7.3 SLECT LISES. ..ttt ettt ettt sttt st e b 87
7.3.1. Select-LiSt TtEIMS ...c.eeieieiiieiiriieienieeteesiee ettt 87
7.3.2. Column Labelsc..cooueririiiiniiiiniiieieneeeetee et 88

733 DISTINCT tuiuiiireienieieeteeie ettt sttt ettt sae e nee 88

7.4, COMDINING QUETIESceuvererieiieriierieeteeritesteeteesteestesbeesseesseessseesseesseessseesseesseessseens 89
7.5, SOTtING ROWS ittt ettt st ettt se e esbeesatesabeebeesaeesaseens 89
7.6. LIMIT ANd OFFSET.cuiiiiiiiiieiiiiietiieiet ettt sttt es e st 90
7.7 VALUES LISES vttt s 91
T8 WITH QUETICS ..uvveeeuiiieeirieeireeeieeeeteeesbeeesibeeestreeebsaeassseesssseessseeaassesesssasessesansseesssens 92
8. DALA TYPES . ettt ettt ettt ettt et e b e st e bt bt e st e et e et e bt e s ab e st e e bt e s atesabe e beenaaesateen 96
8.1 INUMETIC TYPES.ueeeiiieniieiieniie ettt sttt ettt ettt et st e s bt e st e s be e beesabeeaeeenbeas 97
811, INtEZET TYPES .eeuutieuiietieriieeit ettt ettt ettt st sttt et st e sbeesaee s ens 98

8.1.2. Arbitrary Precision NUMDETSccceiviiirieniiiiiiieiieniecieetetese e 98
8.1.3. Floating-Point TYPEScccerieiiriieiiiiiieieiecreseeeeet et 99

814, Serial TYPES . ..covetieuiiiiriieierieeteteete ettt 100

8.2. MONELATY TYPES ettt e 101
8.3, Character TYPEScoeevuiriieieiieeeeeeeeee ettt e 102
8.4. BINary Data TYPEScoueruieiiiiiiieiieieceieeeee ettt e 104
8.5. Date/Time TYPES.....c.eeruiriiiiiiiiieiieit ettt 106
8.5.1. Date/Time INPUL.....ccceeriiiiiiiiiieictec et 107
T TN B TR B 1 1< SUSR RSP 108

8.5 1.2 TIMES .ttt ettt et et st ae s nte e ene 108

8.5.1.3. TIME STAIMPServirvireieienieiietinentesieeee ettt 109

8.5.1.4. Special ValUesccccoieiiiriieiiniieiee et 110

8.5.2. Date/Time OULPULc.eruieiiriieiieitietieieett ettt ettt sbe e e e 111

8.5.3. TIME ZIOMES ...ttt sttt sttt ettt et sae st sbeesee e eae 111
8.5.4. Interval INPUL.....cc.eiiiiiiiiiiieeeee et 113

8.5.5. INterval OULPUL ..c..eeueiiiiiieiirieiieteetteeeeete ettt 115

8.5.6. INLEINALS......eiuiiiiiiiiiiiieee ettt 115

8.6. BOOLCAN TYPEL..c.uviiiiiiniiiiiiieieeiteeettete ettt sttt 116
8.7. ENUMETAted TYPES .e.eeevireiiniiiiiiieiieitetentcetete ettt ettt 116
8.7.1. Declaration of Enumerated TYPeS.......cceevveerverriierienieeiienienieeieenieeseee e 116

8. 7.2, OTAETING ..ottt ettt st ettt st e bt e st e st e ebeesaeesaees 117

8. 7.3 TYPE SALELY .ottt et 117
8.7.4. Implementation Details.........cceevveriiiiiiinieniiiiieeeeceeee e 118

8.8. GEOMELIIC TYPES .ceuueiruriiiieriieiiieiterte sttt ettt ettt sbe e st sbeesbeesatesaneenee 118
881 POINLS ... s 119
8.8.2. LINe SEZMENLS.......eoueiiiriieiirieeieieeieeteecet ettt 119
883, BOXES ettt ettt st 119
884 PathS .t 120
8.8.5. POLYZOMNS. ...ttt 120
8.8.0. CIICIES ..ottt sttt st e 120

8.9. Network Address TYPES.coeeieiiiiiiiiiiiicieeeeeie e e 120
8L0. 1L AT ittt e 121
8102 LA AT ittt e s 121
LR G T o T I e oSSR 122
8.9.4. MACAAAT wvteeiiieeiie ettt ettt ettt st e et e et e et e et eeenteeenaeas 122

8.10. Bit StrNG TYPES ..ttt ettt et sttt st nee e 122
811, TeXt SEATCH TYPES ..cuveeteeriiiiiieiteterteeee ettt ettt sttt e 123
LT B B e =Y ot e 3 PSRRI 123
Bl 2 S UETY teitttieeetiee ettt ettt ettt e e e e et e et e e et e e ate e et e e eeateeeaaaas 124

812, UUID TYPE ..ttt sttt ettt s st 125
813, XIML TYPE vttt s sttt e 126
8.13.1. Creating XML ValUesc..cocuerierieniinieieniiienienieeesieetenee st 126
8.13.2. Encoding Handlingcoccevvererieniininnieneiieienteiesieetenee e 127
8.13.3. Accessing XML ValUues.......ccccoerieviinieriinenienienieieneetenie e 128

BLL4. ATTAYS .eeeeiieiiieiteeitt ettt ettt ettt et e st e e et e e sate et e e beesabeesbeenbeesbaesabeenseebeesanesnbeente 128
8.14.1. Declaration of Array TYPES....ccceecvierieerieriieeiiereeeieeieente st 128
8.14.2. Array Value INPUL.....cocieriiiiieieeieeeeteee ettt 129
8.14.3. ACCESSING ATTAYS .eeuveeereeurieiieniieeteeieesitestesteesseesitesteesseesssessseenseesseesnns 130
8.14.4. MOAIfYING ATTAYS....ueereeeieeiieniienieeitesteete et esitesiteebeesttesitesateenaeesaeesaeas 132
8.14.5. Searching in ATTAYS.......cccuieriierieriieiierteeie ettt ettt et e e 134
8.14.6. Array Input and OUtPUL SYNEAX ..cc.eeeruierieriieriiieniienie ettt e 135

8.15. COMPOSILE TYPES ..veuveeneieiieriieitenite ettt sttt ettt e sbee st sbeesbeesaaesaneenne 136
8.15.1. Declaration of CompoSite TYPES......ceeveeriuerriienienienieenienieeie e 137
8.15.2. Composite Value INput.........cccoeeieviinieiiniiiiiinieieeecceeeeseereieee 138
8.15.3. Accessing Composite TYPES ...c..cocvevuiruierieririenienieieneeeee e 138
8.15.4. Modifying Composite TYPES......cecuevuiruieruererieieniieienieeeenie e 139
8.15.5. Composite Type Input and Output Syntax.........cccceceeeeveeneneeneneecnennene 139

8.16. Object Identifier TYPEScceeveiirieiiiiieicieneeeee e 140
817, PSEUAO-TYPES ...t 142
9. Functions and OPETALOLSccceiuiiiiiiiiiiieiieieie sttt 144
9.1. LOZICAl OPETALOTSeovevirienieiieiiiitriintetetenteneettete st sttt sue et s e eeeseeneeuesaesaennen 144
9.2. COmMPATISON OPETALOTSc.veuvuruiruertietitetententettetesreseetenteatesesse s ssesseseeseeseesesaesaennes 144
9.3. Mathematical Functions and OPerators............cccceveverueveieeninenieneeneeeneneneneennes 146
9.4. String Functions and OPErators..........cccoueveerirerenuenierieteenessesseseeeeeeessesaesaennes 149
9.5. Binary String Functions and Operatorscceveverueueirenininenieneeenineneseenne 161
9.6. Bit String Functions and OPeratorsccoeeeerererienienienienieeteseseeniesieeeenieeae 163
0.7. Pattern MatChiNgcouiiuiiiiiiiieitiiete ettt s 164
0.7 1. LIKE ittt 164
9.7.2. SIMILAR TO Regular EXpPressionsc..ccceeeevienerieneneeienenienenceeennens 165
9.7.3. POSIX Regular EXPressionsc..ceeevereeiereeieneneeneneeienieeeeneeseeeeennens 166
9.7.3.1. Regular Expression Detailsc.cccoceeveevireeneneniienenieencneeienen. 169

9.7.3.2. Bracket EXPIeSSIONScccververrieerieenieeieenieenieesieesieenieesveeseeneeens 171

Vi

9.7.3.3. Regular Expression ESCapes.......cccccevveriernieeniinieeieeniesieeieeeene 172

9.7.3.4. Regular Expression MetasyntaX..........ceceereeneerieenieeneeneeeneenneens 174

9.7.3.5. Regular Expression Matching Rules...........ccocevviiiniiniinienncnnnenn. 176

9.7.3.6. Limits and Compatibilitycccecceeriervierreenienieeieeneesieeieeieene 177

9.7.3.7. Basic Regular EXPressionscocceeveervierseeneeniensieenieesieesieeiens 178

9.8. Data Type Formatting FUNCHONSccceeriiniiiiiiiienieeieeteec e 178
9.9. Date/Time Functions and OPErators.............coeeeeruereeruenieneereneeeeneeeenreseenenneens 184
9.9.1. EXTRACT, QAT E_PATE tttiiteiiieeeeeiirreeeeeeireeeeeeeteeeeeeeireeeeeeeteeeeeeesreeeeeennnnes 188
R G N S oY o o 8 o o ORI 192
9.9.3. AT TIME ZONE..cccisiiiitirieientieienteeeeresieeeesteeeesae st enesaeesnesseeneesaesaeennesnees 192
9.9.4. Current Date/Timecocueeviieriiiieiiieniteete ettt 193
9.9.5. Delaying EXECUtION.......c.cetririinieieieieiietieenteeeeeiteit et 195

9.10. Enum Support FUNCHONSccoeiririirieieieininineneeeeteteese et 195
9.11. Geometric Functions and OPErators..........c.ceceeerereriereieenenrenreneeeeeeesessenaennes 196
9.12. Network Address Functions and OpPerators..........c.cceueeveeeerenenreneeneeenenerenuenne 200
9.13. Text Search Functions and OPerators..........c.ceceveruerveeeieeneneneneeneeeeeneneeneennes 202
0.14. XML FUNCHONSevteuiiiieientieiienie ettt ettt sttt ettt eatesae st esaesbeensenaeeae 207
9.14.1. Producing XML CONENt..........cccerierierierieniieienieniieienieete e eiee e sieas 207
9.14.1.1. XIMLCOMMENT 1veervrerurieieerieenireeteesteensaeesseesseesseesseesseesseesssesssesnseens 207

0.14.1.2. XINLCONCAL teveertreriiieieesieestieereesteessteeteesseesseesseenseenseessseeseenseens 207

9.14.1.3. XINLELEMENT wveertreriieieeiieniieeieerteeseeeteesteesseesseenseenseessseenseenseens 208

0.14.1.4. XINLEOTESE tevveerireriieieerieesiteeieesteesttesteesseesteesseesseeseesnseeseenseens 209

014, 1.5, XINLP I weetiriieieieeiteie ettt sttt sttt 210

9.14.1.6. XINLT OO terurieiieieeriieeieerieesiteeteesteestaesbeesseesbaesebeebeensaesnseenseenseens 210

0.14.1.7. XINLAGG tttiiiiiirieeeeeireeeeeeeireeeeeetiareeeeeetreeeeeenareeeeeesareeeeesiareeeeeens 211

9.14.1.8. XML Predicates.cccccoireerienerieniinienicneeienieerenieeieeneeseeeeeniees 211

9.14.2. ProcessSing XMLcocuiiiiierienieiiienieeieeieesitestesieesitesteseeesbeesnessneenne 211
9.14.3. Mapping Tables to XML.....c.ccceceriiiinienieiiiieniieeieeieesite e 212

9.15. Sequence Manipulation FUNCHONSccccveviiiiiiinieniiiieeiieec et 215
9.16. Conditional EXPIeSSIONScccueeruieriiiriieniienieeieenitesiteeteesieesiee bt esseesseeseeenseenaeens 217
9.16.1. CASE ottt e 217
9.16.2. COALESCE .. uiiuiiiiiiiiieiiitieie sttt st 219
9.160.3. NULLIF ittt sttt st 219
9.16.4. GREATEST aNd LEAST ...ciuiiiiiiiiiiiiiiiiiitiiereeeeeieenc st 219

9.17. Array Functions and OPEIatorscoeecueruieieruereeienieneerenieeeesreeeessesieenenneens 220
9.18. Aggregate FUNCHONS.........ccoiiiieiiiieieieeice ettt 222
9.19. WIndOwW FUNCHONSeevuiiiiiiiiiiieiieeeetete ettt st 225
9.20. Subquery EXPIessionsc.ccoceiiiiiieniiiiiiiee ettt 227
9.20. 1. EXISTS uieiieuieienieeieetee ettt ettt sttt et st e st e a e s 227
9.200. 2. TN 11ttt ettt ettt ettt et a e e a et e bt e e bt eneenteeneeneeaean 228
9.20.3. NOT INuuiiuiiiiiieiiiiiieiee ettt ettt sttt st s e s 228
9.20.4. ANY/SOME ...cuiiuiiiiiiiiiieiieieete ettt s s 229
9.20.5. AL it e e 229
9.20.6. ROW-Wise COMPATISOMNcouerverierenrenieiierinienieteeenteieniesaesseseeeeeresressesaens 230

9.21. Row and Array COMPATISOIScc.eeveruerereieuinierienieteeenteensessessesseeeseesessessessenees 230
0. 2110 TN ettt et b ettt et e st bt e b s 230
9.21.2. NOT INutuiiuieuieiiieieeeeeieetes ettt ettt ettt ettt s st eue b b saens 230
9.21.3. ANY/SOME (AITAY) «.vveverreenrenteeienierstentenieetenteestestesseesesseessensesseessesseensensens 231
9.21.4. ALL (AITAY) tveervererireienteeieeteeteniesitete st ettt ebtesaesbtebesbeesbenbeebeenaesbeenaenbeas 231
9.21.5. ROW-WiS€ COMPATISONeeveruiiiiriieieniietenteeitenienieetenieeerenteeieeneesbeeneenueas 232

0.22. Set Returning FUNCHONSc..cocueruirieiieniinieiiniceenieeteseetete sttt 232
9.23. System Information FUNCIONSc.coceerieriiriiieniienie et eie e 235

Vii

9.24. System Administration FUNCHONScovvieriiiiiienieniiiiecitesec e 244

0.25. Trig@er FUNCHONS ...ccueiiiiiiiiiiieiieiie ettt ettt sttt et st ebe e 250
1O. TYPE CONVETSION. ...cuueiruiieiieriieeieettesite et et e stteete et esbtesabesbeesbeesabessseesbaesasesaseenbeesssesnseenne 251
LO.1. OVEIVIEW ettt 251
1O.2. OPETALOTS ...eueveeutieiiieeieetee st et et e st et et e sbtesbe e bt e sbtesabeebeesbeesabeebeenbeesaseeseeseens 252
10.3. FUNCHONS ..eeoiiiiiiieiteieceteeeete ettt s 255
10.4. ValUe StOTAZE......cverueeriiieieiieiieteetteteste ettt ettt sr e sae s ne e 257
10.5. UNION, CASE, and Related CONSITUCES.uuveveeiiiiieieieeeeeeiiiieieeeeeeeeeeeee e e eeeeennnnes 258
L1 TRAEXES vttt ettt ettt sttt st e s bt e s st e s bt e s bt e sabe et e e bt e sabesaneenne 261
11,1, INEOAUCTION ...ttt ettt ettt e et st e b e b s 261
112, TNACX TYPES ittt ettt ettt sttt et st e see e st st e b e naee s 262
11.3. Multicolumn INAEXESccveiueeuieiieiieie ettt ettt 263
11.4. Indexes and ORDER BYicoueiieieriiriieierieetentesseetesteeeesseeseentesseensasseeneessesaeensesnens 264
11.5. Combining Multiple INAEXESceceeriiririerieriieieeeeeere et 265
11.6. UNIQUe INAEXESeeveeiiiieiieieeiteie ettt ettt ettt et saeas 266
11.7. Indexes on EXPreSSIONScceeieriirierieriiieieeiieie sttt et 266
11.8. Partial INAEXESc.ooueeriiieiiieieeiieeee ettt s 267
11.9. Operator Classes and Operator Familiesccccoceveviecieienininencnienieincneneaee 269
11.10. Examining INdeX USAZE........cecueviiruieriinirienieniteienieetenie sttt 270
12. Full TEXt SEATCH «....ooviiiiiiiieiiiiiiteeeee ettt st s 272
12,1, INETOAUCLION ...ttt s 272
12.1.1. What Is @ DOCUMENt?.......cccoouiiiiiiiiiiiiiiieiciceecese e 273
12.1.2. Basic Text MatChingcoceeveririenienieienieeieniesteeseeteeeeeee e 273
12.1.3. CONAIGUIATIONS ...uvievieiieeiieeiienite et et esiteseteebeesteeseaesebeesseesaeesnseeseesseennnes 274

12.2. Tables and INAEXES.........ccoviruiviiiiiiiiiiiiieicce e 275
12.2.1. Searching a Table........cccocuiiiierienieiieeeete e 275
12.2.2. Creating INAEXESccoveriiiiieniienie ettt sttt sttt st 276

12.3. Controlling TeXt SEarch.......ccceiviiriiiiieierieeeeeere et e 277
12.3.1. Parsing DOCUMENLSccceeruiirieeniieiieiiieieeite sttt 277
12.3.2. Parsing QUETIEScc.ueeveerueeriieiieeieenitesteeieeieesiteeteebeesitestesateenbeesanesaeas 278
12.3.3. Ranking Search Resultscccceevieriiiiiiiiiiniienieeieceeeeeeeeie e 280
12.3.4. Highlighting ReSUILSccceeviiiiiiiiiiiiieceeceeeeeete e 282

12.4. Additional FEaturesccoeiiiiiiiiiiiiiiiiiiciceeeee e 283
12.4.1. Manipulating DOCUMENLS.........ccceovuerrerieieniieieieneeieneerere e e 283
12.4.2. Manipulating QUETIES........cc.eecveruirienieniieietieeeie ettt 284
12.4.2.1. Query REWTItNGcc.coieviiriiiieiiiieieeeeeeeeeeese e 285

12.4.3. Triggers for Automatic Updatescccoeievenirienenenienieecieseeneeee 286
12.4.4. Gathering Document StatiStiCsccceevueruieiienieieenieneeieieeeie e 288

12,5, PATSEIS ettt ettt st ettt st sttt st e ae e s 288
12.6. DICHIONATIES.ceeeueieeieeeetieteste et ettt ettt et et s et e ae et esae et ebe e b e et e beeneeseesneesesnean 290
12.6.1. StOP WOTAS ...ttt sttt 291
12.6.2. Simple DICtIONATYc.coceviririinieieieinieieseseeeeeeee ettt 292
12.6.3. Synonym DIiCHONATYccccoerueieieinieiinienieieeeteese ettt 293
12.6.4. Thesaurus DIiCONATYcoceevecueieiriniinenieieeeteene et 294
12.6.4.1. Thesaurus Configurationcceeeveevereeeeenieneneennereenenesrennenne 294

12.6.4.2. Thesaurus EXamplecccocovieneiiiiininiinineecceesceeee 295

12.6.5. ISpell DICHONAIYcueitieiiiieiieriiiieiestteee ettt s 296
12.6.6. SNOWDAILl DICHONATY ..c.veeuviiieiiiniiniieienieeiesteetenee ettt 297

12.7. Configuration EXample...........coceevireeniininiininieieneeeenesteesiteteee et 297
12.8. Testing and Debugging Text Searchccoceevevineriieniniincnieceeencceeeeee 299
12.8.1. Configuration TeStING........ccceevueruirienieriieienieetene et 299
12.8.2. Parser TeSTINGcovervireeienieriteiesieeteeteete ettt ettt s 301

viii

12.8.3. Dictionary TeSNZ......cceereerieiiieeniienie sttt steete et et sresbeenbeesaeesaees 302

12.9. GiST and GIN INEX TYPES .cuverrveeruiieiieiieniieeieeitesite et eieestte st eeeesieesebeeaeenaee s 303
12.10. PSL SUPPOTL.c.nviiiiieniiiiieiie ettt ettt ettt et sttt e st e sabeebeesbeesabeebeeseens 304
12,11, LAMITATIOMS ...cveenteiieititteieete ettt ettt ettt s et sbe e sae st nesbeeanenneene 307
12.12. Migration from Pre-8.3 Text Search.......ccccooveiviiniiiiiniiiiiiieeeeeeee 307
13. ConcurrenCy CONIOL......cc.eeiiiiriiiiriieieeee ettt sttt et enene e 309
13,1, INtFOAUCHION ...evieiiiieeiiie et cteeeeiee et et e e te e e a e e et eeentaeessseaessseeesssaeessseaesseeannns 309
13.2. Transaction ISOIAtIONccccviiieeiiriiiieeriie ettt e et e e eeeeesre e e ereeenene 309
13.2.1. Read Committed Isolation Levelc.ccccceeeeiiieiiieniiieeieeceeeee e, 310
13.2.2. Serializable Isolation Level.........cccoveviieeriieeciie e 311
13.2.2.1. Serializable Isolation versus True Serializability 312

13.3. EXPLCIt LOCKING ..ot 313
13.3.1. Table-Level LOCKS......ccciiiiiieeiie ettt e 313
13.3.2. ROW-Level LOCKScooiiiiiiiieeeiie ettt 315
13.3.3. DeAdIOCKS.....cciuiieeieeiieiieeieeiie ettt ettt et e st eeaeebe e tbeebeenbe e baesnaeeneas 316
13.3.4. AdVISOIY LOCKS ...cuiiiiiieieii e 317

13.4. Data Consistency Checks at the Application Level.........c.cccccevievininiininienennen. 317
13.5. Locking and INAEXES........cocueruirieniiriieienieetesieettee sttt s 318
14, Performance TIPScooereeierienieienieeerieet ettt ettt ettt ettt sbe bt e b sbeenne b eae 320
14.1. USING EXPLATN .eeitirutetenteeitenteettetesteetestesstentesteestesueestensesseesesbeensensesseensesueensessens 320
14.2. Statistics Used by the Plannercccccoevienirieiiiniiiiinenieeneceeeee e 324
14.3. Controlling the Planner with Explicit JOIN Clauses.......c..ccocceveevvenereencrcenennen. 326
14.4. Populating @ Databaseccceceeviireinienerienienieieneetene ettt 328
14.4.1. Disable AUtOCOMIMILccvirrtieriierieeieerieeeteeteesieesteereesteeseeseseenseenseesnnes 328
14.4.2. USE COPY ittt sttt sttt sttt st sttt ettt st e e sbeeaesbeeanenteene 328
14.4.3. REMOVE INAEXESccuveueemiiiiriiiiiniieieeitetenic ettt 328
14.4.4. Remove Foreign Key COnstraintscoeceeevveeneeniescieeneeneesieenieeneennnes 329
14.4.5. Increase maint €Nance WOTK_ IMEM et eeeeeeeeeeeereeeeeeeeeeeeseeeeeeeeeeeneennnnanns 329
14.4.6. Increase checkpoint__SEgmMENTS .ovvvviieeeiiiveeeeeerrreeeeeeereeeeeeeeareeeeeennnnes 329
14.4.7. Turn off arChive MO woviiiueeeeeeeeee e e e e e e e e e e e e eeeeeeae s 329
14.4.8. Run ANALYZE AfterwardS........cceeveerieriierieiiienieeieeieente et 329
14.4.9. Some Notes AbOUL PE_AUMPeeeviiriiiriiiiiiiienieeieeieeree et 330

II1. Server Administration 331
15. Installation from SOUrCe COAEcccueeeeeuireiiieeiie ettt ereesree e e eere e e seseeeebeeenens 333
15.1. SHOTt VEISION ..eeiiiiiieiiieiiieeciieeeieeestte et e et et e e et eeeseaeessaeaessseeesssaeesnseaesseennnns 333
15.2. REQUITEIMENLScouviiieiiiiieiieieeicete ettt et s s 333
15.3. Getting The SOUICE......covuiiiiiriiieieeieeiteeteee ettt sttt st 335
15,4, UPGLAQING . .eovienieiieeieeeieee ettt ettt ettt ettt ettt ettt eneesaesaeeaesnean 335
15.5. Installation ProCedUre........cc.ecvieiiieriieiieeieeieeceeete ettt ee e seeesaeesebeeaeesnee s 336
15.6. Post-InStallation SELUP.......c.ccueeieriirieriirieeiesieet ettt s 345
15.6.1. Shared LiDIariesccueeveriieiieenieniesrieieeiee e eaeeveeseeeaeeveesaessneennas 345
15.6.2. Environment Variables...........cccverierieiiiienieeniesieeieeiee e eee e see e ennas 346

15.7. Supported PlatfOrmsccoiuieieriiiieieieetee ettt 347
15.8. Platform-Specific NOLES.ccueruieiiiriiiiirieeteert ettt 347
I5.8. 1. ALX ettt bttt st 348
I5.8.1.1. GCC ISSULS ...cuvenveeienieiieiieniesitentesieete ettt st ettt e e b ane i eae 348

15.8.1.2. Unix-domain sockets broken..........ccccceeevevinernencnienenennienenne 348

15.8.1.3. Internet address ISSUESevuereerereerienienienienieetenieeteniesieeneniene 349

15.8.1.4. Memory Mmanagement...........ccccevuereeruerreneenienieeseenseneenueneesuenenne 349

References and reSOUICeS.cvvereeriireeniinerieneniieeneeeenee e 350

15.8.2. CYZWIN.cuiiiiiiiiiieitetieieeterte sttt sttt ettt sae st eae s ieeae 350

ix

I5.8.3. HP-UX ... 351

15,84 TRIX .ottt et sttt 352
15.8.5. MinGW/Native WINAOWSccccoeiiiiiiiiiiiiiiiiiiiiicnceeceeeecnene 353
15.8.6. SCO OpenServer and SCO UnixWare.........ccccevvvervuerrieenieniiensieenieeneenae 353
15.8.6.1. SKUNKWATIEccvimiiiiiiiiiiiiiice e 353

15.8.6.2. GNU MAKE ..ottt 353

15.8.6.3. REAAINE.....c.eeveuieiieiiriiieiciceetscr ettt 354

15.8.6.4. Using the UDK on OpenServer..........c..coceeeeievencrieneneeceennene 354

15.8.6.5. Reading the PostgreSQL man pagesccccoceeeeerereenuenencuennenne 354

15.8.6.6. C99 Issues with the 7.1.1b Feature Supplement 354

15.8.6.7. ——enable-thread-safety and UnixWarec.cccccvvveunnne 354

15.8.7. SOLATIS ...ttt ettt ettt sttt et e s aeeneas 355
15.8.7.1. Required tOOLScccerueruieieriieiieieeicee et 355

15.8.7.2. Problems with OpenSSLcccoooiiiiiininieierieeeeee e 355

15.8.7.3. configure complains about a failed test program...............cc........ 355

15.8.7.4. 64-bit build sometimes crashesccoceeeeveriereniesencneeenen. 356

15.8.7.5. Compiling for optimal performance...........c.cceceeveveeveenercenuennen. 356

15.8.7.6. Using DTrace for tracing PostgreSQLcccoceviriinininienene 356

16. Installation from Source Code on WINdOWScc.cceuririniinienienieininenieneeieeee e 358
16.1. Building with Visual CH+4 2005.........ccooveiieiiiiiiiininiiieieieeeteieeeeeeee e 358
16.1.1. REQUITEIMENLS ...cuvevieniitieiieniieiteniesitetesteeite e eite e st e e st ebee e saee e b 358
16.1.2. BUIIAING ..voviiiiiieicieiie ettt 359
16.1.3. Cleaning and inStallingcccccoereeriereeiienenieneneeieneeteeeeeie e 360
16.1.4. Running the reZreSSion TESES ..e.uerrierieereerieeieereenteeieesieeneesreenseenseesnnes 360
16.1.5. Building the dOCUMENtAtioNcevviriieriiriiieieeeenee et 361

16.2. Building libpq with Visual C++ or Borland CH+.......cocvevviiiiiiiiiiiieiciieeiceee 361
16.2.1. Generated filesccooveiiiiiiiniiiiiiiiic 362

17. Server Setup and OPETALIONc.eeveeriuieriierieeieeieeste et eieesttesteeteesbeesresseesbeesasesseenne 363
17.1. The PostgreSQL USEr ACCOUNLeevuirruiiriieeieeiieniieeieeitesiee st eieesieesbeeieenaee s 363
17.2. Creating a Database CIUSLETccouirierriierieiieeieerite ettt 363
17.2.1. Network File SYStemSc.covviivieiriiinieiiieieeieesieeieeteeste et 364

17.3. Starting the Database SETVET.........cccueevueeriiniiiiieiiienite ettt 364
17.3.1. Server Start-up Failuresc.ccoeeeviiiiinieiiiinieeeceeeeeeeeeee e 366
17.3.2. Client Connection Problemsc..cccceceeieiiniiiineninicieecicnceeeee 366

17.4. Managing Kernel ReSOUICES..........cccceceririiiiiniiiiniccccccceerceeeee e 367
17.4.1. Shared Memory and Semaphoresccccoceecevirienieneniienieeeieneenennees 367
17.4.2. ResoUICe LIMILScccueeiiiiriiiniiiieeieeie ettt 372
17.4.3. Linux Memory OVErCOMMIL..........cccueiuirieriieiienieiieieneeeere e 373

17.5. Shutting Down the SEIVeT...........cccooviiiiiiiiiiiiiiii e 374
17.6. Preventing Server SPOOfINGccirieriiiirierieeiieie ettt 375
17.7. ENCIyPtioN OPLIONS. ..cc.vevieuieiietieieeiteie st eteste et cete st eeesteeseestesbeeneesteeneeseesaeenaesneas 375
17.8. Secure TCP/IP Connections wWith SSLcccooiiiiiiiiiniieeeeeeee e 377
17.8.1. Using client CertifiCates..........cueririererierieniieiene st 377
17.8.2. SSL Server File USagecceeoueririenieniieienieeienee st 377
17.8.3. Creating a Self-Signed Certificateccoceeveerereeneneesienieene e 378

17.9. Secure TCP/IP Connections with SSH Tunnelsccocceceveniiieniniencncenennen. 378
18. Server CONfIGUIATIONeiuiruiiiiriieiesieeiet ettt ettt st b ettt et esbesbtesaesbeennenbeene 380
18.1. Setting Parametersc..cevererieriirieienieeteest ettt s 380
18.2. File LOCAtIONS ...ttt sttt s s 381
18.3. Connections and Authentication.............cccovecveiririniinieieieinieeieeeeeeee e 382
18.3.1. CoNNECHION SELHINES ...eveeuveririieniiriieienieetenteetente sttt ettt saeeee i 382
18.3.2. Security and AuthentiCatioN.........c.coceereerierrieeneenieeieeneeseesreeseeeseeesnnes 384

18.4. ReSoUrce CONSUMPLION....cuuiriierieeriieeieerieenitesteesteenitesbeeteesseesaseesseesseesssesssessseens 385

L84, 1. IMBIMOTY ..ottt ettt sttt st ettt st sttt e st st st e baesanesaees 385
18.4.2. Kernel Resource USage..........cocueerueerieriieniiiniienieeieeieeseeeee et eniee e 386
18.4.3. Cost-Based Vacuum Delayccccceveiiiiiiiiniiniiniieiieieeeeeieeeeee e 387
18.4.4. Background WIILeT........cccueviiiieiriieniieiieeieeiee ettt 388
18.4.5. Asynchronous Behavior...........ccccocveveiieiiinieiiniiieenecrceeeceeceee e 389

18.5. Write Ahead LOZ ..c..coviiiiiiiiicieeeeeee e 389
I8.5. 1. SENS......eenvieiieieiiieieettetee ettt st s 389
18.5.2. CheCKPOINLS.....couiiieiieiiiiiiieeete ettt s 392
18.5.3. ArChIVING ..o e 392

18.6. Query PIANNINGcooiiiiiiiiiiiiiiiet e e 393
18.6.1. Planner Method Configuration..........cc.ceceeeruereeeeinicrenenienieeeeeeseneneene 393
18.6.2. Planner Cost CONSLANEScveeeveereerieereerieesieesreesseesseesseesessseesseessnesnnes 394
18.6.3. Genetic QUErY OPHIMIZETcc.ccveveiruierinienieieeeieene ettt eresrenaens 395
18.6.4. Other Planner OPLiONS.........c.eevecvereiruinrinenieneeeeeneneseeteteneeeresressenaens 396

18.7. Error Reporting and LOZZINGcccecevimirieniiiiiiineniccieieeeteeeieeeeeeee e 397
18.7.1. Where T LOZcoveeeieiieiiiineicceteiteeeeeeeeee ettt 397
18.7.2. When To L0 ..ottt 399
18.7.3. What TO LOE ..ottt 401
18.7.4. Using CSV-Format Log Outputccceecueririienenienenenieieeeee e 404

18.8. RUN-TIME SEALISTICS ..ceuvevirireiiniieiirieeterieeitetest ettt ettt et 405
18.8.1. Query and Index Statistics COIlECtOrcc.eecuerereereneriiniinieicrceeene 405
18.8.2. Statistics MONIOTING ... ceververeieriiriieieniieienieeitenee ettt siea 406

18.9. AUtOMALIC VACUUIMINZveeueieeieeieeiieniieeieeieesieesteeteebeesatestaesabeesseesseessseenseenseens 406
18.10. Client Connection Defaultscccooeririininiiiiniiiiineiiccnceceeeesc e 408
18.10.1. Statement BEhavior........c..cocuevverieiiniriiineiienieniicieneeecne et 408
18.10.2. Locale and FOrmattingcceecueevieeneenieiieenieniesieeneesee e eieesiee e 410
18.10.3. Other Defaultscccoeeiiririiniiieienicieeetee e 412
18.11. LOCK MaANaemEeNLccvuieiieiieniieeieeieenitesteeteesieesteeieesteesateeseenseessseeseenaeens 413
18.12. Version and Platform Compatibilitycceeveeveenieriienniienieiieeeesee e 413
18.12.1. Previous PostgreSQL Versionsc.ccceceeveeriensiersieenienieesieenieeseenanes 414
18.12.2. Platform and Client Compatibility........c.ccceoceeriervieriiienienienieeeeneeaee, 415
18.13. PreSet OPLiONS. ..cccueeruiieieierieeniieeieeieenite et ettt e site sttt e st e st sabeesbeesaeessbeenbeenaee s 416
18.14. CustomizZed OPLIONSeevueeruiiiiiiieeniieeieeieertte sttt ettt sttt e st e st e st esbeenaee s 417
18.15. DeVElOPEr OPLIONScevieuieiiiieitinieetenieerete ettt sttt esae s ene e 417
18.16. ShOTt OPHONS....cceiiieiiiieiieieeeete ettt ettt ettt e s ne s 420
19. Client AUtheNtICAIONccuvieeiiieiiieeeiieeeieeesieeesteeeeteeeaee e taeessaeesbeeessseeeesseeeasseeesseeenns 421
19.1. The pg_hba . conf fil ..ottt e e e 421
19.2. USEINAME MAPSooviemiiiiiiieiieiieiieie ettt sttt e s st eae st e s eaeesae s nesnees 426
19.3. Authentication MEthOAS........c.ceireiiiiiiieeiiie ettt e e ree e 427
19.3.1. Trust aUtheNtiCAtION.ccverireeiieeieeriieeteeie e eteeae e e sreeeeebeeseesseeennas 427
19.3.2. Password authentiCation...........ceeeueereeeerienieenieesieesieesreesreesveeseesseessnesnnes 428
19.3.3. GSSAPI authentiCationcceereeririiierieeniiesieeieesieeseeeveeveeseessneennas 428
19.3.4. SSPI authentiCationcccueeveeeieerieerieeiieieerieeeteesteereeseeereeseenseessnesnnas 428
19.3.5. Kerberos authentiCationecceeeeeevienieenieenieesieesieeseeeeeeveesseessneennas 429
19.3.6. Ident-based authentiCationccceevveeevierieeneesieeieesieesreereereeseeesnnesnnes 431
19.3.6.1. Ident Authentication over TCP/IP.........cccccccviivininienininienene 431

19.3.6.2. Ident Authentication over Local Socketsc..ccoceeveereneeniencnne 431

19.3.7. LDAP authentiCation.........ccccecueririenienieeieniieieniesieeiesieetenieeieeee e 431
19.3.8. Certificate authenticationc..coceevuereerieneriieneneeeneeteeeeeee e 432
19.3.9. PAM authentiCation........cc.ceueeterereenienieeienieetenie ettt eieenieseeeee e 432

19.4. Authentication ProODIEINSc.eevuieriieriieriieeiieenienie et et e steeresbeeseeeseeesebeesseenaeens 433

Xi

20. Database Roles and PrivilE@esccceevueerieriiriieiienieeieeieesite ettt et sbe e 435

20.1. Database ROIEScccccivuiiiiiiiiiiiiiciccice e 435
20.2. ROl AIDULES.c.eeviiiiiiiiiiiiiciicccce e 436
20.3. PLAVIIEEES ...eeuvieiieiiiieiteite ettt sttt ettt st ettt st be e bt st e b b 437
20.4. ROIE MEMDETSHIP ...couveeiiiriiiiiiiiieeie ettt ettt 437
20.5. Functions and TIIZEETSccceecuerierieieniinieiineee ettt ettt s s eenenneene 439
21. Managing Databasescooeceeruirieriinieieieieiese ettt e 440
211 OVEIVIBW ..ottt ettt sttt ettt ettt e sht e st e bt e s bt e sabe e bt e bt e sabeenbeebeens 440
21.2. Creating a Database.........cc.coeeeeriiiieiiniiiieie et 440
21.3. Template Databasesccccoceeieriiiiiiiniiiieice et 441
21.4. Database CONfIGUIALIONcecueiueruieiertieienie ettt ettt sae e see s ensenaeene 442
21.5. Destroying a Databaseccccceveeiiiiiiinieniieeeeeste ettt 443
21.6. TaDIESPACES ...eenneiniieiieiteeitee ettt ettt st ettt et st e aee s 443
2P e Yoz 1 1121 i o) FO OO RS URSRURPRRR 445
22.1. LOCALE SUPPOIT....cotiiiiiriiiiiieieitenite ettt sttt ettt st sttt e beesbeesareebeeree s 445
22.1. 1. OVEIVIEW ..ottt ettt ettt ettt ettt et sae st s be et e st et e ntesaeeneeaneas 445
22.1.2. BERAVIOT ..ottt st 446
22.1.3. PIODICINS ..ouviinieiiiiieieetteesie ettt sttt et st 447

22.2. Character SEt SUPPOIT......cc.evuiruieriirieientieiienie ettt st ete sttt steetestesieenaesbeeseenieene 447
22.2.1. Supported Character SELS........cocereererierieneeienieneenienieetenieeee e sieeeesieas 447
22.2.2. Setting the Character Sel.........ccoceeeererierienieiienieneeienieeteneeiee e 450
22.2.3. Automatic Character Set Conversion Between Server and Client........... 451
22.2.4. Further REadingcocceviiviiiiininiiiiniiiicneetenecceeseeee et 453

23. Routine Database Maintenance Tasks...........ceceverieneniriiininiienenieeneeteeeceee e 454
23.1. ROUING VACUUIMINGeoviieiiieiieiieeiieeieesiteeeteeteesieesiresbeesaeesseesabeeseenseesnseensesnseens 454
23.1.1. Vacuuming BasiCS.......ceecuirriirrieniiiiierieeie ettt ettt 454
23.1.2. Recovering DisK SPaceccevueriieiiiinieniiieieeeeeeeeeeit e 455
23.1.3. Updating Planner StatiStiCSceevveerieriieriieenienieniieeniiesieeieesieesresneenne 456
23.1.4. Preventing Transaction ID Wraparound Failures...........c.cccecceevieriennunnnne 457
23.1.5. The Autovacuum Daemonccceeeveecienirieenerieneneereneeeene e 459

23.2. ROUting REINAEXINGcccueiruiiiiiiiieriiieiieriterie ettt ettt ettt e 460
23.3. Log File Maintenance..........coceereerieeriienienieeieeitesite st esieesiee e et esiee st eseeniee s 461
24. Backup and RESTOTEceiuiiriiiiiiiiiiiieeieeiee sttt ettt ettt et st bee st e eane e 462
24.1. SQL DUMIP ...ttt ettt sttt s s 462
24.1.1. Restoring the dumpccccoceevveriiieiinieieieceeceeeee e e 462
24.1.2. Using pg_dumpall..........cccooiiiiiniiiiiinieienieece e 463
24.1.3. Handling large databasescoceeerieiiinieiieniiieienecreeeeeee e 464

24.2. File System Level BaCkup.........ccccoviiiiiiiiiiiiiiiicceceeeece e 465
24.3. Continuous Archiving and Point-In-Time Recovery (PITR)c...cccccovienienncen. 466
24.3.1. Setting up WAL archiving..........cceceieeieiiinieiieneeierieseeeseeee e 467
24.3.2. Making a Base Backupccccccooiiiiiiiiiiiiiice e 469
24.3.3. Recovering using a Continuous Archive Backupccccoooeeeininennnn. 471
24.3.3.1. RECOVEIY SENZSeoueeeeruieieitieiieieeiieneeeeeeee st eeee e eiee e seeeee e 472

24.3.4. TIMELIINES . ..c.veeeieieiieieetete ettt ettt sb ettt e e e eee b 473
24.3.5. Tips and EXamplesccceveeiiininieniinieeneetere e e 474
24.3.5.1. Standalone hot backupscceeverierieneriinenieeieneeeenc e 474

24.3.5.2. archive_command SCIIPLS ...ccerrerierieriereeienieetenieeieeneeseeeeenaeas 475

24.3.6. CAVEALSuevivirenieieeeiieiee ettt ettt s st 475

24.4. Warm Standby Servers for High Availabilitycccccovevieiininniniinieneniiienene 476
24.4. 1. PIANNING «..viveinieieeiieieeiteteeeetese ettt ettt ettt ettt 4717
24.4.2. IMPLEMENTATION «..cuvventiiieiiiieeiienieeiteiesie ettt ettt eet et ebeeseesveenee b 478
2443 FallOVET ...ouiiiiiiiiiiicicceeeee e e 479

Xii

24.4.4. Record-based Lo Shipping........cccceevierieiiiienienienieeniiesieeieesiee e eieenne 479

24.4.5. Incrementally Updated Backups.........cecveevieenienieniiienienieeieesieesieeieene 480

24.5. Migration Between Releasescccvvvieriiniiiiieenienieeieeieesec ettt 480

25. High Availability, Load Balancing, and Replication.........c...cccceeevuervieinieniensieenienieeieene 482
26. Monitoring Database ACHVILYccc.eevuerrieeriierieeieetee st ettt et ete et e sbtesatesreesbeesaaesareenne 486
26.1. Standard UnixX TOOISccceririininieiiiieeei et 486

26.2. The StatiStics COIECIOT........eiruiiiiiriieieeterte ettt ettt st 486
26.2.1. Statistics Collection CONfIGUIAtioNcc.coeeceeruirierieriereniieeeie e 487

26.2.2. Viewing Collected StatiStiCsccecuerievuerieiiererieieneeree e 487

26.3. VIEWINZ LOCKS ...ttt 495

26.4. DynamicC TraCINgcc.coiiiiiriiiiiiiiicieieeieie ettt 495
26.4.1. Compiling for Dynamic Tracing..........ccccecevverveveeenerenenenneieenesenennens 496

26.4.2. BUilt-in PrODESceeiiiiieiieieeeee et 496

26.4.3. USING PrODES ..ottt 504

26.4.4. Defining New Probesccoccoviiiiiiiieiiinieee e 505

27. Monitoring DiSK USAZEcc.eeieriiriieiiriieieieetere ettt sttt 507
27.1. Determining Disk USAZEcoceevuiriiiiiniiiieiiiieie et 507

27.2. Disk Full Failure.......cc.coieiiiiiiiiiiieiesicetee ettt 508

28. Reliability and the Write-Ahead Log.........cccervieririiniiniiiiniciee et 509
28.1. REIIADIIILY ..eoveiiieniiiieieiceteeeee ettt st st 509

28.2. Write-Ahead Log@ing (WAL)cocooiiiiiiiiieeneeteeeteeseetese et 510

28.3. ASynchronous COMMIUL..........cecueruerierienierientinteieneetenie ettt esteseesreesaesbeesnenieene 510

28.4. WAL CONfIGUIALION ...uveuveiiiiiiniienieniietenieeiteie ettt sttt ettt sttt et sbeesnenieene 512

28.5. WAL INEEINALS ...ouveiieiiiiieienieeiteiesieetestcetete et sttt ettt sae s eae 513

20, REZIESSION TOSSeeuvietieriiiiiieieeitie st et esteesteebeebeesiteeseebeesseessseesseessaesssesnseesaesssessesnne 515
29.1. RUNNING the TESES ...eevviiriieriieiieniiesiteiteste ettt eteesitesitesteesie e st e sbeeseesseesebeenseenseens 515

29.2. Test EVAlUALION ..c..eouviiiriiiiiniiiieieneetet ettt ettt 516
29.2.1. Error message differences.......cocvvviierierieiiiienienienieeriieeie ettt 516

29.2.2. Locale differencesoceeerviinerienienieiinieeeeneeeeteseeresie et 517

29.2.3. Date and time differencesc..coceeerievienieiiencnieneneeeneeeene e 517

29.2.4. Floating-point differencesccceeveerierieisiienienieeieeniteeeeee e 517

29.2.5. Row ordering differences........cocceevueerierieiiiienienienieesiteeeeee et 518

29.2.6. Insufficient stack depthcocueeviiiniiniiiiiiiieeeeee e 518

29.2.7. The “Tandom’” tESt......cccuerrrierierierieeniteeteeteestteete et et este et e sbeesresae e 518

29.3. Variant Comparison FIlesccccoceiiiiiiiiiiiiiiiiieceeece e 518

29.4. Test Coverage EXamination..........c.cccceeieieriirieneneeiienieneeresie e eeeaesieenenneene 519

IV. Client Interfaces 521
30. IDPQG = € LIDIATY ettt ettt ettt ettt et esbe s st e aesbeeneeneeene 523
30.1. Database Connection Control FUnctionscooceevuererieieneenieneeiesesceieene 523

30.2. Connection Status FUNCHONScoiiiiiiiiiiiiiiieie e 530

30.3. Command Execution FUNCHONSccceeiiriiiieniiiieieieceeceese e 534
30.3.1. Main FUNCHONScoouiiiieieiiieieieeiteieet ettt 534

30.3.2. Retrieving Query Result Informationcccceeeevenenrienencenenenenene 540

30.3.3. Retrieving Result Information for Other Commandsccoceveevennene 544

30.3.4. Escaping Strings for Inclusion in SQL Commandsc.cceccevereeuennenne 545

30.3.5. Escaping Binary Strings for Inclusion in SQL Commandsc...... 546

30.4. Asynchronous Command Processing.........c..ceccevererienienienienennienenieneneeienenne 547

30.5. Cancelling QUueries in PrOZIESScccccveriiriirienenenienieniteiesieetesee st 551

30.6. The Fast-Path INterface..........cccceverieiiininiiniiiiienceteeeteeseete et 552

30.7. Asynchronous NOtHICAIONeeruieriirriienieeieeieete sttt sre e steeaeeeee s 553

30.8. Functions Associated with the COPY Commandcc.ceceeeverereeneneencnennrenene 554

xiii

30.8.1. Functions for Sending COPY Data.......cccceecuerviienienienieenienienieeieeneeeees 555

30.8.2. Functions for Receiving COPY Data........ccccevvveevienieriieenienienieeeeseeee, 556
30.8.3. Obsolete Functions for COPYccceciirievienerienienieieneeeenieeeeese e 556

30.9. Control FUNCHONSccciuiiiiiiiiiiiiicicicciee e 558
30.10. Miscellaneous FUNCHIONScceiierieriirieniinieienecreieeeetesie et 559
30.11. NOtICE PIOCESSINGvevieuriiiriieiiniieieniieieete ettt ne s nneeae 561
30.12. EVENE SYSIBIM ...cuiiiiiiiiieiienieeietese ettt ettt s neeae 563
30.12. 1. EVENE TYPLS ..ottt ettt s 563
30.12.2. Event Callback Procedure............ccccevieriiiiiiiiniinieniienienieeieeeeeee 565
30.12.3. Event Support FUNCHONS.......c..cociviiiiiiiiiicieicieecece e 565
30.12.4. Event EXamplecccociiiiiiiiiiiiiiiiiiccceee e 566
30.13. Environment Variablesccccceviiriiiriiniiiiiiieiiceeeecneceeeeee e 569
30.14. The PassWord Filecccooieiiiiiieieiieiee ettt 570
30.15. The Connection Service Fileccccoviiiiiiiieiiiieeeeeeee e 570
30.16. LDAP Lookup of Connection Parameters............ccecueveriereneenienenienenceienene 571
30.17. SSL SUPPOIT.c..eitiiieiietieieste ettt ettt st ettt et sbe et e sbe st enbesbeeneenaeens 572
30.17.1. Certificate VerifiCation...........c.ceeeruerieriereeienieniieiese et 572
30.17.2. Client CErtifICaLESo.eeruiruerieiieiieieeieeie ettt ettt s 572
30.17.3. Protection provided in different modes.........c.cceceevuereevienenienencnnenenne 573
30.17.4. SSL File USAZEcoverueeieriiriieiiniieieeieete ettt st 575
30.17.5. SSL library initialiZation..........cecvevuereerienerienieneeieneeeene e 575
30.18. Behavior in Threaded Programs...........c.cccoeeeevinerieninieienieieneneeneneevenene 576
30.19. Building libpgq Programs..........c.ccoceecuereriininienenenienieneeiesieeeenie st 576
30.20. EXample Programs........cccccoeeiererieieninienieneente ettt sttt ene 577
31, LarZ8 ODJECLS ..eeuveeiieeieeieeiite ettt et e te ettt e st e et e esbeessaeesbessbeesaaesssesabeenseensnesnseenseensnennsas 587
311 INErOQUCTION ..ttt s 587
31.2. Implementation FEAtUIEScccveviiiriieniienieiieeteste ettt st 587
31.3. Client INterfaces.........cccovueviiiiiiiiiiiiiiiicicicce e 587
31.3.1. Creating a Large ODJECT........cevueriiiriienienieeiteniteete ettt 587
31.3.2. Importing a Large ODJECT.......ccuevuirriierienierieeiteete ettt 588
31.3.3. Exporting a Large ObJECt.......cccuevuirriiinienierieeniierieeieesitesite e 588
31.3.4. Opening an Existing Large Object.........ccecerviierieniiriiienienienieeeeneeeene 588
31.3.5. Writing Data to a Large Object.........ccovievviiriiienienieniieienieeieeeeeeee 589
31.3.6. Reading Data from a Large Objectcocceceevienieiiinincicninicicnecienene 589
31.3.7. Seeking in a Large ObJect.......c..cocuevuirieiiiniiienienieieieeceeeeeseereieee 589
31.3.8. Obtaining the Seek Position of a Large Object.........ccccevervienenincennenne 590
31.3.9. Truncating a Large ObJectcccecirieiiiniiieiiinicieeeeee e 590
31.3.10. Closing a Large Object DeSCIIPLOrc.cecverueriieciiniieieneeeeieneeieieene 590
31.3.11. Removing a Large ODbJectcccciviiiiniiiiiiiiiiiiiceceecescceee 590

31.4. Server-Side FUNCHONS.coieiiiiiieiesteeee ettt 590
31.5. Example Programccocoooiiiiiiiiiiiiiicc e 591
32. ECPG - Embedded SQL N C.....oveuiiiiiiriiiiieieieietne ettt 597
32.1. The CONCEPL......oouiiiiiiiiiiiiti e e s 597
32.2. Connecting to the Database SEIVET.........ccccceivirererieieiiinineneseeeeeeee e 597
32.3. CloSINg @ CONNECLIONcueueuiriiriintiieienteitetteeste ettt st e et ebesae e 598
32.4. Running SQL Commands...........ccceeuevuerierieinininenienieieieeeeesresieseeeeseeneene e saennes 599
32.5. ChooSING @ CONNECIION.oruiruieiiriieienieeiiete et ste ettt st estestesitentesbeessenieene 600
32.6. Using HOSt Variablescccevieriiieieniiieieiceie ettt 600
32.6. 1. OVEIVIEW ..cuiiiiiiieiceeeetteee ettt st e 600
32.6.2. Declare SECHOMNS.ccueveuiiuieiirierieicieiee ettt 601
32.6.3. Different types of host variablescccccoceevienenieniininiininieneneeienene 601
32.6.4. SELECT INTO and FETCH INTO .eccevirririsienieieienierinienieeeeeneenesnesnenenns 602

Xiv

32.0.5. INAICALOTS.vvvieeeeiireeeeeeeieeeeeeeetreeeeeetre e e e eeetaeeeeeesareeeeeeaaeeeeeenareeeeeennnres 603

32.7. Dynamic SQLcocuiiiiiiiiiiieitete ettt sttt st e be e 604
32.8. PELYPES LIDTATY ..ottt et sttt st e be e 605
32.8.1. The NUIMETIC LYPE .eeuveeeeeruiiiiieiieniieeieenite et ettt ettt sate st e b e saee e 605
32.8.2. The date LYPE....eecveerrieriieriiieitenite ettt ettt ettt et sttt et st esbeesaee e 608
32.8.3. The timeStamP tYPC.....eeruverrieeriierieeiieniteeteeieerttesite et e st e st st e nbeesaeesaees 611
32.8.4. The INterval LYPEccverueeviirieieiieieieeceeesee ettt 615
32.8.5. The decimal tyPe.......ccccevverieeieiiinieiieieiere ettt 615
32.8.6. errno values of pgtypeslib.......ccccocoviiiiiiniiiiiee 616
32.8.7. Special constants of pgtypeslib.........cccocoviiiiiiiiiiiiniiiccee 616

32.9. Informix compatibility MOde...........ccceiiiiiiiiiiiiiiiiiiiec e 617
32.9.1. Additional embedded SQL Statements............cccoverveerreerresreecreeseeseenenes 617
32.9.2. Additional fUnCHONS.cc.oeeeiiiiciieeeie e et 617
32.9.3. Additional CONSLANES.........cccueeeeiiierieeeiieeeeieeeeeteeeetee e e e e eeeaaeeeeaeas 626
32.10. Using SQL DeSCriptor AT@as.........cccuerteeieruerierieneeienieeitetesieeeeseeeeeseesreeeenaeens 627
32.11. Error Handling.......c.coevieieiiinininiiieicicceteeseseeeeetee et s 629
32.11.1. Setting CallDACKSc..cceevirreririeieiiiniriinteiceceeeeese e 629
32112, SQLCA .ttt st 630
32.11.3. SQLSTATE VS SQLCODE c..testtesreerreerrersresressseesseessuessseesseessesssesssessseessses 631
32.12. Preprocessor Qir@CHIVESceueruirieieniirienteniteiesie et sttt st et seesiee st sbeessenieeae 634
32.12.1. INCIUdING fIl@S...c..eeviriieiiniiiieieeiteteeceese ettt 634
32.12.2. The #define and #undef dir€Ctivescccceevvierierieeiiienieeieeieeeeseeeene 634
32.12.3. ifdef, ifndef, else, elif and endif dir€Ctivesccoovvvvvvviivviieieeeeeeeeenn. 635
32.13. Processing Embedded SQL Programs............cccccoeevienenieiienennieneneeneneeienene 635
32.14. Library FUNCHONScociiiiieiieiieniieeiterite st eieesitesiresteesieeseeesbeeieesaeesabeenseenseens 636
32,15, INLETNALS ...ttt ettt ettt et e st st eesbeesaaesabeenseebeesabeenbaenbeens 637
33. The Information SCREMA.........c.eevuiiriiirieriieiieete ettt ettt et et st beesaaesaeas 640
33.1. The SCHEMIA ...ccueeiiiiieiieiieeeeeee ettt ettt st sbee st ebeebee s 640
33.2. DAta TYPES .eeuvteuieintieiiente ettt ettt et e st et e bt esatesabe e bt e satesabeesbeebeesabeebeebeens 640
33.3. information_schema_catalog NAME .ueieeerireeeeeiiireeeeeiireeeeeensreeeeenereeeees 640
33.4. administrable role aUthOTrizZationS . eeieeeeeeeeeeeeeeeeereeeeeeeeeeeees 641
R TN o) R R o B =Y o o Y K=Y TR U U U PR UTRRRRRTT 641
I I T ol o o) o1 o =Y =TSSR 642
33.7. check_constraint_roULiNe_USAGTE .ccvivieeiiiirieeeeeeitreeeeeeereeeeeeerreeeeeeerree s 644
33.8. CheCK _CONSETAINES tiiiiiiiiiiiiieiicieeeie e e e e e e e et e e e e eeeeeeesesssssnsarsseeeeees 645
33.9. COLUMN_AOMAIN_TUSATE turrieeierriieeeieiirreeeeeeitreeeeeeireeeeeeetreeeeeeeraeeeeeesreeeeeeenseeeeas 645
33.10. COlUMN_PTivVileges cimiieeiiieeiieesitieeeiteeesireeesseeessseesssseeassreesssseessseessseesssses 646
33,11, COLUMN UL _USAG ciiiitiiieeieettieeeeeeitreeeeeeetteeeeeeetteeeeeeetreeeeeeessaeeeeeensreeeeeaensraeeas 647
33,12, COLUIMNS ciitieieeitttieeeeeeeeeee e e e e e e e e e e eeeeeeeeeeeeeeeeeesasasssssaareeeeeseeeeeeseseenssrsssrnneeees 647
33.13. constraint_COLUMN_USAGTE wiireiieirrereeereirreeeeeeireeeeeeerrereeeeesraeeeeeesreeeeeesssseeens 652
33.14. constraint_table USAGE i iiieeeiiiieeeeeeiiteeeeeeetreeeeeeetraeeeeeerreeeeeenseeeeas 652
33,15, data LYPEe PrivVileges i iciiiieeecceeeeeeetee e e et e e e etrae e e e eearre e e e e enaaaea s 653
33,16, AOMAIN, CONSETAINTS teeteeeeetiteeee e e e e e et eeaaaaaaaaaaes 654
33.17. AOMaAIN_ UL _USAGC e iiiituiieeeeeriieeeeeittteeeeeetareeeeetteeeeesestaeseesssraseeeesnsseseeeaansraeens 654
R RN B e e} =T R o ¥ T RRRURURORRRRRROY 655
33,10, E1EMENt_ L YPES tirtiiieiieeetieeeetieeeeteeeeete e e et e e eteeeeteeeeaaeeeetaeeeeteeeeaaeeeteeeeaaeeeeaneas 657
33,20, ENIAD L A, T Ol S et ee e e a e e e et ——————————— 660
33.21. foreign_data_WrappPer_OPtiONS e eereeeeeeeeeieeeeeteeeeereeeereeeeveeeeaneas 660
33,22, fOreign_data_WIaPDETS cerrieeeiieeeiteeeeieeeeeireeeereeeeseeeeseeeessseessssesssesensesenssens 661
33,23, foreign_Server _OPLiONS e iiiieeiteeeiireeeereeeereeeeteeeesteeeeseeeeseeeearesenaneas 661
R I S oY o=k e s o N =1= Y o 14 = of - DRSSPSR 662
33,25, Ky COLUMN_USATC ciittturieeierrereeeieirreeeeieitereeeeesreeeeeeestreeseessrareeeensareeeeennsreeees 662

XV

33,20, P AT AMEE T S uuiiiiieiirieeeeeiieeeeeeette e e e eeete e e e ee e e e e eeera e e e e eetraeeeeearareeeeatraeeeeenrraaeas 663

33.27. referential CONSTIAINTS weeeeeeee e eeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeareeaeaaaaaees 666
33.28. r0le_COLUMN__ GIANTS tirieeierirreeeeeeiirreeeeiiireeeeeeeireeeeeeessreesesssreseeeesssseeeeessssseeens 667
33.29. role_roULANE _GrantS aiieeeeeeiireieeeeeireeeeeeereeeeeeetreeeeeeeraeeeeesareeeeeeerreeees 667
33.30. £0le_ L ale_GLants wirieeieeieeeeeeeiirreeeeeeetreeeeeeiteeeeeeeitreeeeeeereeeeeeesreeeeeeerreeees 668
33.3]. £Ole_USAGE_GTANES witeerciieerriesireesireeesiteeesreeessreesssseesssseesssseesssseessseessssesssssees 669
33,32, rOULINE_PTrivVileges ciiiiiieiiieeeriieeeiieeerreeesreeesereestaeeesreessseessseeessseessssens 669
33,33, L OU L ANIE S ceetriiee ettt ettt eeeee e ettt e e e e e et e e e et e e e e e abar e e e eetreeeeeenraaeeas 670
33,3, SR EMAT A ceetriiei ittt et e e e e e et e e e e e bar e e e eetreeeeeearaaaaas 676
I TR o T =Ye b 1Y oY =Y F SRS 676
33.30. Sl _fEALUTES wireeciiieeiieeiiieerieeetteestteeeteeesbeeesabeesssseesssaeeansseesnsseessseaennseesnnsens 677
33.37. sql_implementation_INFO vt e et et e et e eearaee s 678
33,38, SAL_LANGUAGES ceurreeeeeirireeeeeeiteeeeeeittteeeeeeteeeeeeeesteseeesesreseeasassaseeeaasreseeeaasssaeens 678
33.30. SOl _PACKAGES tteeerireiiieeiiieeitieeseiteeeteeeeteeesteeesbeesaabeeasaeeasbeeesaeeanbeeennraeenaeas 679
33140, SOl DA Suuttiieeieiiiieeeeeiireeeeeete e e e ee it e e e e eetae e e e e et taeaeeeetaaaaeeaataeaeeeantraaeeeanrraaaas 680
33141, SOl S1 ZANGuutiiiiiiiiiee et e e e e e e e et e e e e e et ae e e e entbaeeeeaaraaaeas 680
33,42, 5l _SizZing_PrOfileS ciiieiiiiiieeeeeiieeeeeeiteee e e et e e e star e e e eare e e e e aaaaaea s 681
3343, LA e COMSETAITITES teeteeeeeeeteeeee e ettt e e e e e e e e e e e e e e e eee e eaaaaaaaaaaes 681
3344, LAl e PTivVilEgeS i eiiieectieeeiee et et e e et et e e e e ta e e te e e eteeeeareas 682
33 LA LS tiiiitie ettt ettt ettt e e e et e et e et e e e ta e e eteeeetae e e teeenareeeareas 683
3340, £ i ggOT S cetuiieeiieeeiieeete e e ettt e et e et e e e te e e eae e et a e e e b e e eeateeetaeeetteeeaaeeeabaeenareeeareas 683
3347, USAGE _PTiVILEGES ciiiiiiiiieetiieciteeetteeetee et e e et eeeateeeetaeeete e e etae e s be e e areeeaneas 685
33.48. USer_MaPPiNGg _OPEIONS iiiiriiiieeieiteieee et eeeeertreee e e eetre e e eeeataeeeeeeaaeeeeeenaaeeeees 685
RIS R TET=S ol (1= o) o3 o Lo 1= SRR 686
33.50. VieW_COLUMN_USAGE tirrurieeierrereeeeeitrreeeeiiitereeeenireeeeeeessseesesisseseeeesssseeeeesnsseeees 686
33,51, VieW _FOULINE_ USEGE tiriiiieeiiiieeieieeeeeeeetee e e eeete e e e eetre e e e e eearaeeeeeeareeeeeenarreeees 687
R R Vo RS o=t o B =Y Y= T- N [= FOU ORI 688
3303, VA @WS tttrtieriteite ettt ettt ettt sttt ettt e b et hb e bt ea e at e st e e bt ebeesabeebeebeens 688
V. Server Programming 690
34, EXtending SQL.....c.eooieiiiiieeeeteite ettt ettt et st b e saeesaees 692
34.1. How EXtensibility WOTKS.........coociiriiiiiinieniiiieeteste ettt 692
34.2. The PostgreSQL Type SYSteM......cccccueriiriiriinieiineeienieeeereste et 692
34.2.1. BASE TYPES ..ceveniiiierieiieiesieeeeteee ettt st 692
34.2.2. COMPOSILE TYPES....ccuviuiererierieiieiieteeie ettt sttt 692
34.2.3. DOMAINS ..eeuvvieeeiieeiieesiieeesieeeeteeeereeseteessaeesseeessseeeessaeessseeessseeesssessnsses 693
34.2.4. PSEUAO-TYPES ..ottt 693
34.2.5. PolymorphiC TYPESccouiririiiiiiiieiiiieeenie ettt 693

34.3. User-Defined FUNCHONScccieiiiiiieiieeiecie ettt ettt eve e e s veeaaenee s 694
34.4. Query Language (SQL) FUNCHONSooviriiriiiiieieiieiesieeieeee e 694
34.4.1. SQL Functions on Base TYPeSccccceveririnienieenininenenieiereeseseenenne 695
34.4.2. SQL Functions on Composite TYPESccccevvevveeeerenenenieieinenenrenenns 697
34.4.3. SQL Functions with Output Parametersccceceeverererueeeenenennennenn 699
34.4.4. SQL Functions with Variable Numbers of Arguments...........cc.cccceeeuennene 700
34.4.5. SQL Functions with Default Values for Argumentscccceeeveeuennene 701
34.4.6. SQL Functions as Table SOUICEScc.ccovvieeiiieeeiiiieeiee e 702
34.4.7. SQL Functions Returning Setscccceocererierienienienenieneneeneneeieniene 702
34.4.8. SQL Functions Returning TABLEc.cecceverierienierieneneeneseeneesieeeeniene 704
34.4.9. Polymorphic SQL FUnctionsc.ccecceeeririenenienienenieneneeneneeeniene 704

34.5. Function OVerloading.........c.cceceverieieniriiniinienieneetesiesitetesieeee et nieeae 706
34.6. Function Volatility Cate@OIiesc.eevverreruieruireenienienienienieetenieeeeseesieesiesieerenieene 707
34.7. Procedural Language FUNCHONScooeerieriiiiiieiienie ettt s eie e 708

xvi

34.8. Internal FUNCHONSccooiiiiiee ettt e eetre e e e e e e e eetreeeeeearaeee s 708

34.9. C-Language FUNCHONS.cooiiriiriieiieniteniie ettt sttt et esiee st ebeebee s 709
34.9.1. Dynamic Loading.........cceceevueerieriiiniieniienieeieesiteste ettt 709
34.9.2. Base Types in C-Language Functions.........c..cceeceevvieriieenieniiensieeneeneennne. 710
34.9.3. Version 0 Calling CONVENLIONSeeveerererueriiieriienienieeniteseeseeenieeseeenanes 713
34.9.4. Version 1 Calling CONVENLIONSeeveeruierierrieeniienienieenieeseeseeenieesaeenanes 715
34.9.5. WIiting COde......coueioiirieiiiiieieiieieteeceere ettt s 717
34.9.6. Compiling and Linking Dynamically-Loaded Functions......................... 718
34.9.7. Extension Building Infrastructure............c..ccccceevieiininiininieniniienene 720
34.9.8. Composite-Type ATZUMENLSc.cccevierieririeieniieietieeene e 722
34.9.9. Returning Rows (Composite TYPes)cccoeevieriririieniiiieniiicciccieene 724
34.9.10. REMUINING SELS....eveveureuierieterierieteteiteienteereteteneeneere e see et ee s srenenee 726
34.9.11. Polymorphic Arguments and Return Types.........c.ccccevererveveeeerennennenn 730
34.9.12. Shared Memory and LWLOCKSccccccvivirienieninininenencceeeneeeeenne 732

34.10. User-Defined AZEIEZaesccoeruieieriirienieeiienie ettt ettt st saesbeeee e ene 732

34.11. USer-Defined TYPESc.eecueririerieiiieienieeiieie ettt ettt sttt ee e eae 734

34.12. User-Defined OPErators...........coeeeeueriieieniereenienieetenieeiteiesteeeeseesee e sieesenaeene 738

34.13. Operator Optimization Information............c.ecceveveviecieiniinininenceeeeeneseseees 739
34.13.1. COMMUTATOR cevevirentenrenterietesiesseseneeateuestessesesenteneeses e saesaesneasenesaessenenne 739
34.13.2. NEGATOR weeeuiuiiiieniententeneetesiesteeessest et sttt st st esesbesaesaesensenesuesnenenne 740
34.13.3. RESTRICT weoutruiiiieienrenietietesiesteeeseeie st st st sen et eneese e s sae et saesnenenne 740
341314, TOTIN ettt ettt sttt st e 741
34.13.5. HASHES ittt sttt sttt s s st 741
34.13.0. MERGES .ottt sttt sttt s s 742

34.14. Interfacing Extensions To INAEXES.......cccvervirriienieniiriieeniienie et 743
34.14.1. Index Methods and Operator CIaSSESccceereereeerieenieeniesieenieeneennnes 743
34.14.2. Index Method Strateiescccueeeverrieerieriieriieniienieeieeseeseesreesieeseeeseees 744
34.14.3. Index Method Support ROULINESccceevcveriierienieniierierieeieeeeseeeen 745
34.14.4. AN EXAMPIE ...ouviiiiiiiiiiiiieeteec ettt 747
34.14.5. Operator Classes and Operator Families...........ccoccevveenieniieniiieneeneennne. 749
34.14.6. System Dependencies on Operator CIassesccecvereereerieenieeneennne. 752
34.14.7. Special Features of Operator Classes........coceerveerieriieenienieensieenieeneennnes 752

35 TIIZEETS -eeeuteeneeeieeeite ettt ettt ettt b e st e e e bt e st e et e bt e s st e sab e eabeesbtesbbesabeenbeesaeesateenbeenaeesaees 754

35.1. Overview of Trigger BEhavior..........ccccoievieviiiieiiniiiiinicieceecre e 754

35.2. Visibility of Data Changes.........c..cocecevieiiriiiienineeieieeecreeeeeese e 755

35.3. Writing Trigger Functions in Cc..cccooiiiiiiiiiiniiiiineeeeeeese e 756

35.4. A Complete EXamPIEc.coieiiiiiiiiiiiiiiiceceneceee e 758

36. The RUle SYSIEIMcoiiiiiiiiiiicieice et e s 762

36.1. The QUETY TTEE.......eeiuieriiiiieiteite ettt ettt ettt sttt e eiee s 762

36.2. Views and the RUle SYStemccooiiiiiiiiiiiiee e 764
36.2.1. How SELECT Rules WOrkccoocieiiiiiiiiieeeeeeeee e 764
36.2.2. View Rules in Non-SELECT Statementsccceeeevereeeeneseeneneeeeneens 769
36.2.3. The Power of Views in PostgreSQLc.ccccoiiiiiiininiinieeesceeee 770
36.2.4. UPAating @ VIEW.....couiiuieiiiiieiesieeiieie ettt ettt st eae 770

36.3. Rules on INSERT, UPDATE, ANA DELETE ..eeveettteteeeeieeeeeeeeeereeeeeeeseseesesesssnenseeeees 770
36.3.1. How Update Rules WOrkccccoceeiiriiiiniiiiiniceeeececeeseeeeee 771

36.3.1.1. A First Rule Step by Step......ccceeoveririieniiiienieeieeec e 772
36.3.2. Cooperation With VIEWS.......ccccoerieiiiniiniiniiieienieeeetee e 775

36.4. Rules and Privil@Zescccooerieriiieiieniiiiiieccee ettt 781

36.5. Rules and Command StatUs...........cccecueeveieirininenenieieieeneseeeee e 781

36.6. Rules VErsus TIIZEETS ..cc.cocueririeniinieienieeieieecete ettt ettt 782

37. Procedural LangUAaZESccveevieriiiriieeieeieeitieeteeteeteesitesetessbeesasesssesaseesaaesseesnseenseensnesnnas 785

XVii

37.1. Installing Procedural Languagesccccevverrieenienienieeeenec et 785
38. PL/pgSQL - SQL Procedural Languagec.cceecueeviierienieniiienienieeieenieesiee e eiee e 787
38.1. OVEIVIBW ..ottt ettt sttt b st sbe et sae s enesaeeanenneeae 787
38.1.1. Advantages of Using PL/PESQLcoocieviiiiiiiiiiieeeteeeeeeeeee, 787
38.1.2. Supported Argument and Result Data Types......ccccceevveeveenieniieeneeneennne. 787

38.2. Structure of PL/PZSQL.......ooiiiiiiiieiiiee ettt 788
38.3. DECIATALIONS ..ottt sttt ettt ettt sttt e s bt sttt e sbeesatesbeebee s 789
38.3.1. Aliases for Function Parametersccecervieenienieniiiinienienieeeceeee, 790
38.3.2. COPYING TYPES ..ottt 792
38.3.3. ROW TYPES. ..ttt s 793
38.3.4. RECOTA TYPES ..ttt 793
38.3.5. RENAME ..ottt et st et ete et ettt be s e b et sae st aesreeanenene 794

38.4. EXPIESSIONS....ccuviuiruinrinieteieiteitett ettt tentent et et st seeaene et et sae et b e e e st ebeebesaesaennen 794
38.5. BASIC StAtEIMEILS...c..eeutietieuiirteeiieieeiiete sttt et et esaeete st e ebe e e sbe et eseeeaeebesbeensenaeene 795
38.5.1. ASSIZIMENL ...veviviriienieiieiieiere ettt sttt ettt st s sn e 795
38.5.2. Executing a Command With No Result..........ccccccocevininininninnnnennnn. 795
38.5.3. Executing a Query with a Single-Row Resultc.ccoccoeeiiinnininnn. 796
38.5.4. Executing Dynamic Commandsccccoveeierienienienenieneneeneneeeneene 798
38.5.5. Obtaining the Result Status........cccceverierieniiienenieereeeeeeee e 800
38.5.6. Doing Nothing At Allcocceieiiirieiinieieneeteeeeeeetese e 801

38.6. CONLIOL SIUCLUIES.....cuviteeiieiieiieieiieetent ettt sttt ettt ettt e b b eane i eae 801
38.6.1. Returning From a FUncCtion...........cccceceeviiniiiinininiicninicncececsceeee 802
38.0.1.1. RETURN ..ottt ettt sttt s 802

38.6.1.2. RETURN NEXT and RETURN QUERYccceceriruinuenienieneenenenienuennen 802

38.60.2. Conditionalscoceevuireeniiriiieniinieicecetereete ettt 803
38.0.2.1. IF—THEN .eouistiieiieiieitetiteteeee ettt st s 804

38.6.2.2. IF—THEN=ELSE ..ecttiruirieieieieiieesie sttt st s 804

38.6.2.3. IF—THEN=ELSTIF cceoiruirriieieieiieieniesieteieeeie st s 804

38.6.2.4. SIMPIE CASE ..eviruiiiirieeierieeienieerete ettt sttt e s 805

38.6.2.5. Searched CASE....c.coireeririeienieereieeeete sttt 806

38.6.3. SIMPIE LOOPS -.eerevieiieiieiiieieeriteete ettt sttt st et 807
38.60.3.1. LOOP vttt s 807

38.0.3.2. EXIT oottt sttt s 807

38.6.3.3. CONTINUE ...ceivtiuiimiiiiitiiteieieeeiieic sttt s 808

38.0.3.4 WHILE .eoiiiieieiieieetieieete sttt et et e e s ene s n e ene s ene e 808

38.6.3.5. FOR (INLEZET VATIANL)....cccueerurerureeieeniieeieeieeniee e eieenieesateeeeeniee 808

38.6.4. Looping Through Query Resultscccoceeoiiiiniiiininiicenecieene 809
38.6.5. Trapping EITOTScc.ooiiiiiiiiiiiieiciiecere e 810

387 CUISOTS . ..ueeueeeuteeuieete ettt ettt sat et e st e s bt e bt et esbt e st e e bt e sbtesabe e bt ebeesabeenbeebeens 812
38.7.1. Declaring Cursor Variables............cccoeiererieienenieeeieeiese e 812
38.7.2. OPening CUISOLSccuerueeriirueeieiteetieieeteeeesteetestesseetesteeneesaesaeessesbeeneeneeens 813
38.7.2.1. OPEN FOR QUEL Y eeturrreeeeirrereeeeiureeeeeaiseseesesssessesssssesssessssessesans 813

38.7.2.2. OPEN FOR EXECUTE .ecouiruiiieiiiiiiaiieiieie e s ene s 813

38.7.2.3. Opening a Bound CUrSOr..........cccevieieniieeneniieiesieecee e 814

38.7.3. USING CUISOIS.euieneieiieiesieeitenteettete st eteseeetebe st este bt eseesaesaeenaesbeenneneeene 814
38731 FETCH wiiiiiiiieiicee e e e 814

38.7.3.2. MOVE vttt ettt ettt sttt st s 815

38.7.3.3. UPDATE/DELETE WHERE CURRENT OF ..cccevvirerienrereerenrennennennes 815

38.7.3.4. CLOSE ettt sttt s 816

38.7.3.5. Returning CUISOLScccereeierierieniiniienienieeienieeirenieeieeneesieeneenieas 816

38.7.4. Looping Through a Cursor’s Result.........c.cceceverieniininnininieneneiienene 817

38.8. Errors and MeESSAZES........cocuerueruieniiniieienienitenieeitentenieeitente sttt eaeesaeseeesaesbeesnenieene 818

XViii

38.9. Trig@er PrOCEAUIESccoueiiuiiiiiiiieiiteieeteete ettt ettt sttt st e 819

38.10. PL/pgSQL Under the HOOGcoutiiiiniiiniiiiieiienie ettt 824
38.10.1. Variable SubStitUtioNccccoereeriirieiieneeieieneeteeeeeeee et 824
38.10.2. Plan CaChingcoceevuieriiiiiieieeieeieesteeee ettt 826

38.11. Tips for Developing in PL/PESQL......cccciiiiiiiiiiiiiiiieieeneceeeeeiee e 828
38.11.1. Handling of Quotation Marksccccceevierrieenieniieniieenieneenieeieeseeeee 829

38.12. Porting from Oracle PL/SQL.........ccccoiiiiiiiiiiniiieieeeeceee e 830
38.12.1. Porting EXamPIEscccoeriiiiirieiinieienieeicieeieeee e 831
38.12.2. Other Things to Watch FOr...........cccoociiiiiiiiiiiiiiceccecee 836

38.12.2.1. Implicit Rollback after Exceptions..........cccccoceecveeiieiienineennennen. 836

38.12.2.2. EXECUTE .ttruteeteeieeniteeteeieesiteeteeteesbeesasesateenbeesasesaneenbeesanesaseenne 837

38.12.2.3. Optimizing PL/pgSQL Functions...........cccceeeeveeniroeeneneeieienne 837

38.12.3. APPENAIX...iiouiiriiieiiiriieeiieeieeete ettt sttt 837

39. PL/Tcl - Tcl Procedural Language............c.cocveiiiiiiiiiiiiiiiiicicncccie e 840

3. 1. OVEIVIEW ..veiuvieiiieiieiieeeiteeteesteesteeesteesseesseessseaseesseessseasseesseesssesssaeseesseessseesseensenns 840

39.2. PL/Tcl Functions and ATZUMENLS........cc.ccueeruirirerienieieieenensenseseeeeseerensesuesuennes 840

39.3. Data Values in PL/TCl......cccviiiiieiiieeetecee ettt ettt 841

39.4. Global Data in PL/TCLcccuoiiiiiiiiieieieeee ettt 842

39.5. Database Access fTom PL/TCLcoooiiiiiiiniiiiieiineeeeeeetese et 842

39.6. Trigger Procedures in PL/TCLcocoooiiiiiiiniiiiiiicneeeeeeeeese e 844

39.7. Modules and the unknown COMMANd.........ccereerererieninieieneetene e 846

39.8. Tcl Procedure NAMESccceeeerierierienieniieieniceie ettt ettt seesite e sbeesnenieene 846

40. PL/Perl - Perl Procedural Language...........cccccoereeienienieniineeieneeicnesieetesieeeesee e 847

40.1. PL/Perl Functions and ATrgUMENTS........c..cecueruereerieneeeenenienenieerenieeeeneesseensennens 847

40.2. Database Access from PL/Per]ccccooeiiiniiniiiiniiiiciiencneccceeeeceeeee 850

40.3. Data Values in PL/Perl.........cccoocieiiiiininiiiiiniciccccctecseeteeeeeee e 853

40.4. Global Values in PL/Per]cccccoiriininiiiiiniiniiiinciccteeseeeeeeeec e 853

40.5. Trusted and Untrusted PL/Perl]cccccoceeiiiniiniiiiiniiiineiicncneccnceeeee e 854

40.6. PL/PETT TTIZZEIS ..eeveeiieeiieiienteeiit ettt ettt sit e sttt esitesabeesbeesaeesateenbeesaaesaeas 855

40.7. Limitations and Missing FEaturescccccoevueerieniiiriienienieeieerieenee e 856

41. PL/Python - Python Procedural Language...........cccovevieenieeniiinieeiieniesieeieeiee e 857

41.1. PL/Python FUNCHONScc.coiiiiiiiiiiiiiieitenite ettt sttt st e 857

41.2. Trig@er FUNCLIONSeoouiiiiiiiiieiieniieeieete sttt ettt ettt st e 861

41.3. DAtabase ACCESS ..ccuveeruieruiiriieniieniieeitente sttt et e st st e sbe e st esate e bt e sbeesateebeesaaesaees 861

42. Server Programming INterfaceocevuivieiiiieiieniniiiieccnceceeeeeee e 863

42.1. Interface FUNCHONSccccviiiiiiieeiiieciiee sttt ere e et e e san e e seaaeessbeeenens 863
N &4 BeT0) 111 (= AR 863
SPLAINISR ..ottt 865
SPIPUSH .ttt et 866
N 2d (5707 o TSRS PTRSRRPRPNt 867
SPI EXECULE ...ceeeeeeeeee et e e e e e e e e e e e e s e e e e e aeeeeeeeeeeeeeeens 868
P KO e it e ettt ———————————aaaaetataa————— 871
SPI_eXecute_With_argsccceceeriirieieitieiieieeeete ettt 872
SPI_PIEPATE.....cciiieiieiieeeeeetee ettt sttt sttt 874
SPI_PIEPAIE_CUISOTottt ettt ettt et sttt ettt e sbe e 876
SPI_ZELATZCOUNL ...c..teeiieriieiieeiieeieet ettt ettt sttt ettt e e b e 877
SPL_getargtyPeid.....ccueruieieriiiieieieeteteet ettt 878
SPI_iS_CUISOT_PIAN ..ottt 879
SPI_eXECULE_PIAN....eiuiiiieiiiiiriieieieete ettt 880
SPI_EXECP ettt ettt ettt sttt b ettt sae st a e et nae e 882
SPL_CUISOT_OPCIL..c.eitiniiiieiirieeie sttt ettt ettt et ettt ettt et sae st eae b eane e eae 883
SPI_cursor_Open_wWith_argscccoovuerierciieriienienie ettt ste e see e eaeeseee e 885

Xix

SPI_cCUIrSOr_fINd.....cuvviiiiieiiiie e et e e e e e eeare e e e e enannes 887

SPI_CUISOT_fELCH ... iiiiiiiieiie e e e v e e eeaneas 888
SPI_CUISOT_INOVEiiiiiiieiiieeiieeeiteeeeiteeeiteeetteeetaeesbaeeesseeesssaeesssaaessseeesseeenssens 889
SPI_Scroll_cursor_fetCh........ccciiieciiieiie et e 890
SPI_SCIOIl_CUISOT_IMOVEeveieuiiieeiiieeireeeieeeeiieeeteeesteeesreeesssaeessseeessseeensseesssens 891
SPI_CUISOT_ClOSC......eeeeiieeirieeiiee et e et e ette e ettt e et e e s beeesbeeeessaeessseeessseeesseesnsnens 892
SPI_SAVEPIAN ...ttt et sttt 893

42.2. Interface Support FUNCHONSccoovieiiiiiiiiiiiiieieeecccceece e 894
N &4 ' o T 894

N 54 I 1100001 <) OO 895
SPI_ZELVALUE ...c.eiiiieiieeeee ettt 896
SPL_gethinvalcc.oeiiiieieieee e 897
SPI_GELEYPE ... e e 898
SPI_ZEEYPEIA ...ttt st 899
SPI_gELreINAIME ...c.veeiiiiiiieiieciieeceee ettt ettt 900
SPI_ZENSPNAIMNE.eeeueeriiieiieeiieeteetee ettt ettt st ettt e esree e 901

42.3. Memory Managementcoeeeruirieenienieeieenitenieeereesieesiee st esveesiee st ereesmeesaees 902
SPI_PALLOC ...ttt sttt ettt sttt eae 902
SPL_1EPallOC ... ittt s 904
SPL_PITEE. .ottt st 905
SPI_COPYLUPLE ...ttt ettt eae 906
SPL_ICTUIMTUPLE ..ottt ettt 907
SPIL_MOAIfYTUPLE ...ttt 908

N o I 6 ESTS1 117) (OSSPSR 910
SPI_fretUPtable.......ccveeiiiiieeieeieeeee ettt et e 911
SPI_IEePIaN....cctiiiiieieeiieeeee ettt st 912

42.4. Visibility of Data Changes...........cccevueerieriiiiiienienieeieeneeste et esiee e steeveessaeseees 913
42.5. EXAMPIES ...eeoniiiieiieiieiieeie ettt ettt sttt et sttt e st st sba e bt e st enbeenaaesaees 913
VI. Reference 917
L. SQL COMMANGS....cutiiiiiiiiiiieeiiieeeiee et eeieeeetteeseteeesreeesbeeetbeeesseessseesssesesssseessseeesssesnnsns 919
ABORT ...ttt e et eesb e e et e e e tae e e tbeeetaeeebeeeansaeensbaeensseeennns 920
ALTER AGGREGATE......c..oiitietieeeett ettt ettt e svaestae v evaeeaae e 922
ALTER CONVERSION ... e e eneeeenns 924
ALTER DATABASE ...t eeae e e enee e 926
ALTER DOMAIN ...ttt e et e eeaee e enneeeneeeenns 928
ALTER FOREIGN DATA WRAPPERoooiviiiiiieeee e 931
ALTER FUNCTIONooiiiiiiee et eeae e e e e eenns 933
ALTER GROUP ...t eaeeeeans 936
ALTER INDEX ...t et e et e e e e e eaeeeenns 938
ALTER LANGUAGEttt 940
ALTER OPERATOR ...ttt ean e e 941
ALTER OPERATOR CLASS ...ttt eae e e 943
ALTER OPERATOR FAMILYooiiiiiiiieeeee ettt e 944
ALTER ROLE ... ettt e et e e et e et e e eaveeeaes 948
ALTER SCHEMA ...t ettt et e et e e eaee e eaveeeens 951
ALTER SEQUENCE ...ttt ettt e et e e aee e eavee e 952
ALTER SERVER ...t ettt e et e e e e e ete e e eaveeeens 955
ALTER TABLE ...ttt et e e et e e e ve e e e aee e saaaeesaveeenens 957
ALTER TABLESPACEooioie et ettt e savee e 966
ALTER TEXT SEARCH CONFIGURATIONccoocoiiiiiieieeeieeeee et 968
ALTER TEXT SEARCH DICTIONARYoooiiiiitiiiieeieeieeeteeeee ettt eve e 970

XX

ALTER TEXT SEARCH PARSERccccociiiiiiiiiiiiiiciccccccce s 972

ALTER TEXT SEARCH TEMPLATEccccccoiiiniiiiiiiiiiicccce 973
ALTER TRIGGERcoociiiiiiiiiiiiiiiiiici s 974
ALTER TYPE.....ccoiiiiiiic s 976
ALTER USERcoioiiiiiiiiiiiiii s 978
ALTER USER MAPPINGcccoiiiiiiiiiiiiii s 979
ALTER VIEW ...ttt ettt 981
ANALYZE ...ttt ettt ettt et et 983
BEGIN ...ttt 985
CHECKPOINT ...ttt sttt s s 987
CLOSE ...t sttt 988
CLUSTER ... e et 990
COMMENT ... ettt st s 993
COMMIT ... et st 996
COMMIT PREPARED......c.ooiiiiiiiiiiiiiee e 997
COPY e e 998
CREATE AGGREGATEccoooiiiiiiiiiiiiic e 1006
CREATE CAST ... 1009
CREATE CONSTRAINT TRIGGERccccceoiiiiiiiniiniiieicieecteeseieeeeeeeese s 1013
CREATE CONVERSIONooiiiiiiiiiiiiiteteeeteesie ettt ettt 1015
CREATE DATABASE ...ttt ettt 1017
CREATE DOMAIN......coiiiiiiiiiieietnt sttt sttt sttt 1020
CREATE FOREIGN DATA WRAPPER.........ccccccooiiiiiniiiiiiiiiciciecceceeee e 1022
CREATE FUNCTION.......coooiiiiiiiiiiiiitieeeteteeese ettt 1024
CREATE GROUP........coooiiiiiiiiiiiicisieeeteteee ettt 1031
CREATE INDEX.....coooiiiiiiiiiiieiiieit ettt 1032
CREATE LANGUAGEccooiiiiiiiiiiiicicci e 1038
CREATE OPERATORcooiiiiiiiiiiiiiniiiccte ettt 1041
CREATE OPERATOR CLASS ..ottt 1044
CREATE OPERATOR FAMILYcccoooiiiiiiiiiiiiiiiiiicictcicceeeeeeeceeee s 1047
CREATE ROLE.......ccoooiiiiiiiiiiiiiiiirnitceee et 1049
CREATE RULE.......ccociiiiiiiiiiiiiceec et 1054
CREATE SCHEMAcciiiiiiiiiiiiiiinticeeeei e 1057
CREATE SEQUENCEcccooiiiiiiiiiiiiiiiiciccc et 1059
CREATE SERVERc.ooiiiiiiiteeeeeee ettt 1063
CREATE TABLE ..ottt s 1065
CREATE TABLE AS ...ttt s 1077
CREATE TABLESPACEcooioiiiiiiiiieee et 1080
CREATE TEXT SEARCH CONFIGURATION.........cccccoiiiiiiiiiniiiencieceeeeee 1082
CREATE TEXT SEARCH DICTIONARYcccooiiiiiiiiiiieececeeeeeeeeee 1084
CREATE TEXT SEARCH PARSER ..o 1086
CREATE TEXT SEARCH TEMPLATE ..ot 1088
CREATE TRIGGER.......ccooiiiiiiiiiie e 1090
CREATE TYPE ... e 1093
CREATE USERo e 1101
CREATE USER MAPPING........cocoooiiiiiiiiiiiiic e 1102
CREATE VIEW ..ot s 1104
DEALLOCATEooiiiiiiiie ettt sttt s 1107
DECLARE ...ttt sttt s 1108
DELETE ..ottt 1112
DISCARD. ..ottt sttt s 1115
DROP AGGREGATE.......coooiiiiiiiiiieicicieseete sttt 1116

xxi

DROP CAST ..ottt 1118

DROP CONVERSIONc.oooiiiiiiiiiiiiiiiiecteeec e 1120
DROP DATABASE ..ottt 1121
DROP DOMAIN ..ottt 1122
DROP FOREIGN DATA WRAPPERccccooiiiiiiiiiiiiiiicccecece 1123
DROP FUNCTIONcoooiiiiiiiiiiiiiiicicciee st 1124
DROP GROUP ..ottt ettt et s 1126
DROP INDEX ...ttt ettt sttt st s ne s 1127
DROP LANGUAGEcccooiiiiiiiieeeteeee ettt st s 1128
DROP OPERATORcocoiiiiiiiiiiieeeteeese ettt s 1129
DROP OPERATOR CLASS ...t 1131
DROP OPERATOR FAMILYoooiiiiiiiiiiiiciteet et 1133
DROP OWNEDoiiiiiiiiiiiie et e s 1135
DROP ROLE ...ttt 1136
DROP RULE ...t s 1138
DROP SCHEMA ... 1140
DROP SEQUENCE.......cociiiiiiiiiiiiicie e s 1142
DROP SERVER.......oooiiiiiiii e 1143
DROP TABLE ...ttt s 1144
DROP TABLESPACEccooiiiiiiiieieietcteeeteeeeet ettt s 1146
DROP TEXT SEARCH CONFIGURATIONcccovviiiniiiiiieieinenieeeeeeese s 1148
DROP TEXT SEARCH DICTIONARYocciiiiiiiiiiiiiiniinicieieteeeieseeeeeeeeee s 1150
DROP TEXT SEARCH PARSERcccciiiiiiiiiiiiiiiecceceseeeeeeeeeee s 1151
DROP TEXT SEARCH TEMPLATEccccooiiiiiiiiiiiiiiiciciciceeeieeeeeeeeee s 1152
DROP TRIGGERccuiiiiiiiiiiiiiiiiiicicceeeeetee sttt 1153
DROP TYPE......ooiiiiiiiiiieee ettt s 1155
DROP USER ...ttt 1156
DROP USER MAPPINGcccoiiiiiiiiiiiiiiieicccn st 1157
DROP VIEW ..ottt 1159
END oo 1160
EXECUTE ..ottt 1161
EXPLAIN ..ottt 1163
FETCH ... 1166
GRANT Lo 1170
INSERT ..ottt ettt et e sae e nesae e 1176
LISTEN ..ottt sttt et et st et sae e nesieas 1179
LIOAD ..ttt s 1181
LIOCK ..ottt et sttt s 1182
MOVE. ...ttt et sttt s 1185
INOTIFY ..ot ettt st s ne s 1187
PREPARE ... s 1189
PREPARE TRANSACTIONccooiiiiiiiiiiiiiiceee e 1191
REASSIGN OWNED ..o 1193
REINDEXo e s 1194
RELEASE SAVEPOINTooiii e 1197
RESET ... e e 1199
REVOKE ... e 1201
ROLLBACK ..ottt ettt sttt et s 1205
ROLLBACK PREPAREDcociiiiiiiiiiitintieececeeitee sttt 1206
ROLLBACK TO SAVEPOINTccooiiiiiiiiiieiceeieeee sttt 1207
SAVEPOINT ..ottt ettt s 1209
SELECT ...ttt sttt et 1211

XXii

SET ettt ettt ettt et ae et 1229

SET CONSTRAINTS ...ttt ettt 1232

SET ROLE ..ottt ettt sttt ettt et sae e 1233

SET SESSION AUTHORIZATION.......ccooiieieiteieieeeeteie ettt nee e 1235

SET TRANSACTIONooiieieiteiee sttt ettt sttt te et eessessaessesseensenseenes 1237

Y = (0) SRR 1239
START TRANSACTION ..ottt ettt ettt sae e se s eneesaeens 1241
TRUNCATE ...ttt ettt ettt ettt et ae st e be e st et e s seeneesseeneensesneens 1242
UNLISTEN ...ttt ettt ettt a et esae et e beebeenteeseeneenaesneensenseens 1245
UPDATE ...ttt e et ettt s bt st ebe e bt et e eeeneesaeeneesesneens 1247
VACUUM ...ttt sttt ettt e be et s bt et ebe e bt et e eaeeneesaeeneensesseans 1251
VALUES ...ttt ettt ettt et s bt st e b e st e e s teeneesaesaeensesneens 1254

I1. PostgreSQL Client APPIICALIONScceeruiruieiiriieiierieeieete sttt ettt e ete et s ee e eae 1257
CIUSEEIAD ..ttt ettt e ve e bt e s tee st e esbe e teessbeenseenseesssaesseenseenes 1258

1&] (T2 (16 Lo TR PRSPPIt 1261
CIEALELAIIZ ...ttt ettt ettt et et eb ettt e e s ae s bt et e s b e entesbeeatenbesbeebenbens 1264
CTEALEUSET 1.vvevveeuveeereeereesseesseessseeseesseessseassaeseesssesssaeseesseessseesseesseesssessesssessssesssesssennns 1267
AEOPAD .ttt ettt sttt et sae st sbeea 1271
ATOPLANEZ ..ottt ettt ettt et et st e b s bt et e st ebtenaesbeeaesbeens 1274
ATOPUSET ...ttt ettt ettt et et b et s b et e bt bt et sb e e st e sbeebtenaesbeeaenbeens 1277

BCOPE e eueereemtenteett et et et s bt e st e s bt e bt et e bt e a e bt e st bt e bt et eh e st eb e e bt e bt e bt et eh e ea b bt ebeenae s bt ebenbeea 1280
PECOMIIZ coeeniiteiet ettt ettt b et sttt st b ettt ebe e et st nae b eas 1282
PEQUITID ettt ettt ettt sb et sb e ebee e bt eae b ea 1285
PE_AUMPALL....iiiiiiieiiiiie ettt sttt st et st ebeebeesabeenbeebee e 1294
PE_TESTOTE .eeeveeutieeieeite et et e st et esteestteeabeebeessaesaseeseeteesabeensaensaesssesnseenseesasesnseenseenes 1299

PSGL ettt e et st b et st e et e e btesabeenbeebeesabeenbeebeees 1306
TEINAEXAD ..ottt sttt et et ae e 1332
VACUUIMAD ...ttt ettt ettt be s saeene 1335

III. PostgreSQL Server APPLICAtIONScevcveeriierierierieeniteete et enieesee st enreesieesatessbeesaeesaees 1338
INIEAD .ttt ettt ettt a et s eas 1339
PE_CONLIOIAALA ..ottt ettt ettt st st e bt e st ebeebee e 1342
PECL ettt sttt e b e sttt e bt st st e be e st e ebeenbee e 1343
PETESEEXIOR ..ttt s 1348
POSEGLES .ttt ettt et st st st saa e e ne e 1350
POSTIMIASTET ...ttt s s s e 1357

VII. Internals 1358
43. Overview of PostgreSQL INternalscccocoiieiieiiniinieiee e 1360
43.1. The Path of @ QUETY ...cc.eeuiiiiiieieeiieeeee et 1360

43.2. How Connections are Establishedccccoooeeiiiiiiiiiiiiiceicceeceeeee e 1360

43.3. The Parser STAZEcoceeriirniiieiiieieeteite ettt 1361
B33, 1. PaSET ..ottt ettt e e eeaae e eaeaean 1361

43.3.2. Transformation PrOCESS.......cccueeiiuiiiecuiiieiie ettt 1362

43.4. The PostgreSQL Rule SyStemcccccverieriiniiiiinieienerteiesitetenee e 1362

43.5. Planner/OPtimiZer......c..covetirierieniieierieeiteteettete sttt st e ettt eaeesaeseeenaesbeens 1362
43.5.1. Generating Possible Plans............ccccoceviiiininiiininiinniencneeee 1363

43.6. EXECULOL ...cuitieiieitieiteteeite ettt ettt ettt et sb et sa et esae st enaesbeens 1364

44, SYSEM CAtALOZSenveveeneiriieientieitetteterte sttt ettt ettt et sttt ettt sbe et nae st e b sieenn 1366
AA.T. OVEIVIBW ..ttt ettt sttt et sttt b et sttt e aesbt et e sb e et e sbeebeenaesbeenaesbeeas 1366

Vi Vi S0 Yo =Ye [o b ot =Ye = L it = SRR U TP PPRN 1367

¥ T oY H- 1 AP RSP UUUOPPPRN 1368

XXiil

¥ oY H=11Te) < J TR TSP P PPN 1370

Vi Vi S T oY fE=V 11k b e Yo RUUUUUN O USSP U RO P PPN 1370
Vi ¥i 3 S oY H=N ok o e L= PO USROS UEUUUU PP 1371
Vi ¥i R B Yo H= N o o o o X ot =SOSR UP PPN 1371
A4 8. PG AUE NI it iiiiiiiii ettt e e e e e e e et e e e e era e e e e eetraeaeeas 1374
44.9. DG AUL N _MEMDE TS ceeitriieeieiirieeeeeiireeeeeeiteeeeeeeireeeeeeeareeeeeeireeeeeesiareeeeeeesreeeeeans 1375
G410, PG_CASE ttrrercrrrerreeerrteesireeesteeastreesssreessteesseeesssaeessseeassseeassseeasseeassseesssseesseeens 1376
T B o Yo B 1= Y= = S USSR 1377
VYIS0 R oTe BieTo Y s =R uliar= 1 o X N USSP 1380
V2Yi0 1 T oTo B eTo s Ta = af = oY o WSS 1382
Y W oTe B e Yo=Y o Y- =1 USSR 1383
44,15, PG _AEPENA ccitiiiee ettt ettt e e et e e e e et e e e e e eta e e e e e aaraeaeeeerraaaaaas 1385
V2 ¥ U W oYe fle [=Y-Teb ok o) o K o) s WU RN USROS 1386
Q4. 177, PG _ENUM tttiiieeiiiieeeeeitieeeeeetteeeeeeareeeeeetaeeeeeesbraeeeeessreeeeeaassssaeeeassaseeeeansresaenns 1387
44.18. pg_foreign_data_WIAPPET cucvrreeeeecrrereeeeiirreeeeeeisreeeeesisreeeessssreeseeesssseseenses 1387
44.19. PG_fOTEIGN_S@IVET teettteiiieeitieeeiiteeeiteeeteeeetteesteeessteessateessaeessseesseaesnseeens 1388
Vi)) R eTe B Yo 1= D S U P PR USRR 1389
4421, PG _INNETIES toierierieiiieieesteste et e steesteete et estaesbeebe e taessbeesbeeseesnbeenbaenseenns 1391
4422, DG _LANGUAGE teeteeeetreeeeeeeeeeeeeetteeeitteeeeteeeeeteeeeseeeesseeetseseesseseetsseessseseessaeanreeeas 1392
44,23, PG L AT GEOD JECT tettiiieiieeeiieeeete e e et e e et e e eteeeeteeeeaeeeetreeeeateeetaeeeeteeeeraaeereeans 1393
Q424 DG LA STENET tittieeeieeeeiee ettt e ettt e et e e et e e ettt e e eteeeeaeeeetbeeeeaaeeetteeetteeeaaeeearaeans 1393
44,25, DY _NAMESPACE erreeeereeeetreeeeiteeeetreeeitreeeeteeeeiteeeeseeesseeeetseseessesessseeeasseeeasseesreeans 1394
¥) W o Ye He) < Yo R =X =T TSRO 1394
ViV 30 B o Yo He) o 1 o= o e} RO PRPRN 1395
Vi ViR T oYe Me) < a1 11 KL I VO RPN 1396
V¥ B oY B oY A o= 1) I X o = O RSP PPN 1397
¥R T I oY B o3 e YRR PPRN 1397
ViR B R oY B =3 5 o Iy ol = SO SO UURUU PPN 1401
Vi ViR YR oY BT oTe [=) o 1= o Lo NNUUUUU U USSP P PPN 1402
ViV R o I oY MY oTe [T oh okl oY ull Kol o PORNURUUNNN U USSP PPN 1404
V¥ RQ Vi oYe B R uf= N o = o I < BT RO SRR P PPN 1404
V¥ S0 oI oYe B =Y M =Y o T Y= WU TSROSO PPN 1406
ViV SR T YA oYe M ol ol Ko fo 1% oBNNNN OO USROS TP PP 1406
ViV R 1R Yo B ok -Jil of o o B s e HUUUUUUNN U TS USROS UUUUUUOPPPTN 1408
ViV BC T I oYo Hk ot =T eTo Yo Bifh Ko HD (L= < JHUUU USSR 1408
Vi 1® I oYo B ot =T e i) cH PRSI 1409
44,40, DGt S_PATSET sereeerreeerreeerreeastreesisreesaseeeaseeeasseeessseesssseessssessssseesssseesssseessseeens 1409
VAYi Y W oTo B o= T o= 11} = = USSR 1410
V2T oTo B o oY= WSS 1410
44,43, PG _USET_MAPPING cttiteiieiitrieeeeeiitteeeeeeitteeeeeeireeeeeeetreeeeesesseeeeeeasreeeeeeasreeaeeans 1418
44,44, SYSLEIM VIEWS ..eoviiuiiiieiieiiettete et ete st ette et et e steetesaesat e tesbeeneeseeeneesaesaeensesseens 1418
A S DG CUT SOT Suutteiutieeriieeeteeeiteeeatteeaieteestteeateeeasseeeasseeessseesasseeasseeasseesseassnseeenn 1419
QA A, DO gL OUD eeieutieieiteeeeeeeeeeeee et e ettt e e et e e et e e eteeeetee e eaeeeetaeeeeateeeeteeeeeteeeeeaaaeereeean 1420
ViR Yo H I oL [0 4= Y= TN U OO USSP PP PPN 1420
Q4 48, PG _LOCKS teeieectrreeeeeiittieeeeestreeeeeesureeeeeatteeeeeeatraeeeeaassraaeeeaastaeaeeeasraeseeaanrreeeaans 1421
44,49, pg_prepared_StaftemMeNE S i iieeeeeiiieeeeeeiireeeeesirrreeeeesrreeeeeeesreeaenns 1424
44.50. PY_PTePATEA_XACES tirieiiiireeitrieeitreeeiteeeeiteeeeiaeeeeiaeeeeteseesseeeetseeeetseeeeseeeareeeas 1424
QA 5] DG T 0L @S tiitiiieeiie et ettt e ettt e e et e e e et e e eeat e e ettaeetteeetaaeearaeaas 1425
A5 DO TULES tiietiieeiiieeeiee et e ettt e et e et e e et e e ettt e e eaae e eabe e e tbeeeeateeetaeeetreeetaaeearaeans 1426
4,53, PG SEELINGS tirtieeiieeeeieeeeiee ettt e et e e et e e ettt e eetee e ebee e treeeeareeetaeeeteeeeraeeearaeens 1427
Y Y N oY BT o 1= Ve Lo) SUU RPN 1428
¥ T TR o Ye R o= N = U OO PPPRN 1429

XXV

Y T Y oY B =1 M = - DO S USSP 1432

44,57, PG L iMEZONE_ADITEVS tirtriieieeiirieeeeeirreeeeesireeeeeeeirreeeeeeirreeeeesireeeeeeeirreeeeeans 1432
44.58. Pg_LiMEZONE_NAMES tiiirrirreeeeeeirreeeeeeirreeeeesireeeeeesitreeeeeeirreeeeesiareeeeeeesrreeeeeans 1433
.50, DG UST wriiiieeitrieee ettt eeee e ee et e e et e e e e e e e e e e e e e e aeraaeeeearaaeeeenrraaaeaaas 1433
44.60. PG _USE T _MAPPIIIGS ttteiiiiitrieeeeeiirreeeeeeiirreeeeesireeeeeesireeeeesiirreeeeesireeeeeeeisreeeeeans 1434
O Y B oTe B =3 2= SRS 1434
45. Frontend/Backend ProtoCOL..........cocueiieiiiiiiiiieiieeiteeieeecteeteee et 1436
A5. 1. OVEIVIEW ..ttt ettt et ettt sttt b e st et e bt e st sabeesbeesateeaseebee e 1436
45.1.1. Messaging OVEIVIEW..........cccceueeuiriieienienieienieeeere oo 1436
45.1.2. Extended QUEry OVEIVIEWcc.couieieriirienieniiiieiieeeee e 1437
45.1.3. Formats and Format Codescccceeeuerieenienienieinieenienieeieeneeeeeee 1437

45.2. MESSAZE FIOWiiiiiiiiiiiiieeeet ettt sttt 1438
45.2.1. StAt-UP ...ttt sttt sttt 1438
45.2.2. SIMPIE QUETY ...ttt ettt sttt sttt et sbe st saeene 1440
45.2.3. EXtended QUETYcecueruirierientieieeieeie ettt 1441
45.2.4. FUNCtion Call........cccoeiiiiiiiiiiiieieieeee et 1444
45.2.5. COPY OPECIALIONScorueruieientieiieniieiientesieeiesteetesteeaeeeeseeeeesbesseeneesseens 1445
45.2.6. Asynchronous OPErations............ceeeeeruereerieruerieneneenieseeeeesiesseniesseens 1446
45.2.7. Cancelling Requests in Progress.........c.ccocceveverieninienenceneneniencneene 1447
45.2.8. TeIMINAtION ..c.vevvenrniiiiiriieteteeeeet ettt sttt s 1447
45.2.9. SSL Session ENCryption........ccccecueveeierireenenieienenienie et 1448

45.3. MesSage Data TYPES ..c..eeueeuiiriieiiniiiienieniteesttet ettt sttt 1448
45.4. MeSSaZE FOIMALSocuevuiiiiniiiiiniciieierteeet ettt ettt 1449
45.5. Error and Notice Message Fieldsc.ccocueveriiiiininienicnienienieicncceenceeeienens 1464
45.6. Summary of Changes since Protocol 2.0........cccceeveeriienieenienieeieeneesveeieeieens 1465
46. PostgreSQL Coding CONVENTIONScccueerveerirerierrieenienieeieenteesseesseesieessessessseesssesssesnses 1467
46.1. FOTMALING ..covviiirieiieriienieeieenitesiteeteesitestteste e bt esteesbeebeebeesebesnseeseesasesnseenseenns 1467
46.2. Reporting Errors Within the Server.......c.ccoocevvieiiiiiiieiieieieeieeee e 1467
46.3. Error Message Style GUIAE........ccueeieeriiiniiiiieitenie et 1469
46.3.1. What 0€8 WRETE......cceeviiiiiiiiiiiiieitesteee ettt s 1470
46.3.2. FOTMANGviiiieiieeieeieeriteet ettt sttt ettt ste bt e st e st enbeesaaesanesanes 1470
46.3.3. QUOtAtiON MATKS.....ccciieeirieeiiieiiieeetieeeieeesreeesreeeebeeetaeeeebeessseesereeens 1470
46.3.4. USE Of QUOLES.....veivieeiiiiiieiteete ettt ettt sttt ettt saae s e 1471
46.3.5. Grammar and PUNCLUALION.eecuterrierierieeriienie et eieeste st esee e 1471
46.3.6. Upper case VS. JOWET CASEcc.eeveruieieriirieeienieeieieeeete e 1471
46.3.7. AVOid PASSIVE VOICE.....ccuerueeririieiriiieiiete et see e 1471
46.3.8. Present VS Past tENSE.......coveuerueeiiriieiertesieenesie et 1471
46.3.9. Type of the ObJECE.....c..couiiiiiiiiiiiiiiec e 1472
46.3.10. BIaCKELS. ..ceoueiriieiieeiieeieeieeeteete ettt ettt 1472
46.3.11. Assembling error MESSAZES.eeueeueerterueereerreeeenteeeeneeeeeeeesseseeseesseens 1472
46.3.12. REASONS fOI @ITOISeovveiieieitieieieeie sttt eiee et eeene 1472
46.3.13. FUNCLION NAMESeoveeeiiieieetieieeteeee e te st eeee st etee e e eeesbeeeteneeseeens 1473
46.3.14. Tricky words t0 avoidccceeiuerieiieniiieeseee e 1473
46.3.15. Proper SPEIlingcoceeierieriieiiniieiesie ettt 1474
46.3.16. LOCAlIZATION. c..cueetieiieiieiieieet ettt 1474

47. Native Language SUPPOIT.......cc.eeieriirierenieienieetenteettete sttt eitetestee e et estesaesieensesseens 1475
47.1. For the Translatorc.occoirierieiieiiiniieiceceere ettt 1475
47.1.1. REQUITEIMENLS «..cuvitiiiiiieiieientietesteeite sttt et see et e b siee i sbeens 1475

AT 1.2, CONCEPLS..c..eentetienietietente ettt sttt ettt ettt et bt ettt et et sbeeseesbesbnenaenbeens 1475
47.1.3. Creating and maintaining message catalogsc..ceceevveverreenervenenene 1476
47.1.4. Editing the PO fIleSco.ooiiiiiiiiiiiieniciceeeeeceeeceese st 1477

47.2. FOr the Programmer..........c..coccevuireiiienenienienieiesecetesie sttt 1477

XXV

VIII.

AT7.2.1. MIECHAIICS ..eeeeeeivvieeeeeiieeee ettt eeetee e eeeve e eeetre e e e eetre e e e e eetraeeeeeeanreeeas 1478

47.2.2. Message-writing guidelinesocceeveeriieniienieniiienieniesieeeenee e 1479

48. Writing A Procedural Language Handlerc..ccooieriiiiiiiniiniiniiiienieeceeeseeeee e 1481
49. Genetic QUETY OPUIMIZETcccueeuierieeieeiieniteeteeieestteete et et eesateste e bt e sabesateebeessaesanesnses 1483
49.1. Query Handling as a Complex Optimization Problem.............cccceveeriiriennenne 1483

49.2. Genetic AIZOTItRIMS ...c..coiiiiiieiiieieeeeceeeeeec ettt 1483

49.3. Genetic Query Optimization (GEQO) in PostgreSQLcc.ccoeveriiiniinnenneene 1484
49.3.1. Generating Possible Plans with GEQO............cccccceviiviniiiinineinee 1485

49.3.2. Future Implementation Tasks for PostgreSQL GEQOc.c.cc.c...... 1485

49.4. Further Reading.........c.ccooiiiiiiiiiiiiiiiiiceeeee e 1486

50. Index Access Method Interface Definitioncccoeceeverieiienieienieeeee e 1487
50.1. Catalog Entries for INAEXESsc.ceverieieriiieieieeeeeee e 1487

50.2. Index Access Method FUNCHIONS..........ccueririerieiieieieeieeeeee e 1488

50.3. INAEX SCANMINGcovervirririeieieiietitteteetetetet ettt ettt ettt be b e e eneenesaenaens 1491

50.4. Index Locking Considerations.............coeevereeieeneruenienseeeenieressensenseeeneeenensens 1493

50.5. Index Uniqueness CheCKS.........ccviririiieieininincneicieeeeeeeeresterereeeneee e 1493

50.6. Index Cost Estimation FUNCHONS.........ccceeririirieninieieeeeeeee e 1494

51, GIST INACKESeeneeeieiteieeieee ettt ettt et et b ettt e b et sbe et e bt et e b s bt et e seeeae 1497
511 TNEPOAUCTION ...ttt sttt st ettt see e 1497

51.2. EXEENSIDIIIEY . ..ceuvetiiiieiieiieie sttt ettt 1497

51.3. IMPIeMENTALIONeoutiiiriieiiriieierteeitet ettt ettt ettt st 1497

51,4 EXAMPLES .ottt ettt ettt sttt 1503

51.5. Crash RECOVETY.....coueriiriiiiriiiienieetceetete sttt 1504

52, GIN INAEXES ..eveeneiieriieieniieteeieetest ettt ettt sttt et et sbt et sbe et e sbe e bt ebe s bt ennenaeene 1505
52.1. TAEOAUCHION ...ttt sttt 1505

52.2. EXIENSIDIIILY ...couveiieitiiieiieicnieetesicetet ettt 1505

52.3. IMPIEMENTALION......eiiiieiiiiieeieette ettt ettt et et eesbe et e e bt e sabesabeenbeesaeesanesnss 1506
52.3.1. GIN fast update teChNiqQUEcccecveerieriiiiiieieese e 1506

52.3.2. Partial match algorithm..........cccccoevieniiniiiniiieeeeee e 1507

52.4. GIN tips and trICKS. ..cueeruiiriiiiieiierie ettt et 1507

52.5. LIMITAtIONS ..c.ueeuieiieiretieieete sttt ettt eteete et een et st esesaeeseesaesanenesbeennesneene 1508

52.6. EXAMPIES ...ecuvieiiiiiiiiieiie sttt ettt ettt sttt sttt st e st 1508

53. Database PhySical STOTQZEcccueervieriiriiiiieniieeieeieete ettt ettt et 1510
53.1. Database File Layout..........c.cccoeiieiiniiniieniinieieneeeereeeereeeeeese e 1510

R 7 L0 7N SRS 1511

53.3. Free SPace Mapc..ooieiiiiiiiieniieicieeeete ettt 1513

53.4. VISIDIIEY MAD ...eetieiieiieiieie ettt ettt ettt es e nse s enes 1514

53.5. Database Page Layoutccccoiiiiiiiiiiiiiiieeeceeeeeee e 1514

54. BKI Backend INErface.cocueeuiiiiiiiiiniiiiieteeteeeeteteee ettt 1518
54.1. BKI File FOIMALccuieiiiiiiieieitieieieee ettt 1518

54.2. BKI COMMANGSeeveiiiiniiinieeieeniteeteeteesit ettt sttt ettt 1518

54.3. Structure of the Bootstrap BKI File........c..ccccceviiinininieiiiininincncceciecncnene 1519

54,4, EXAMPLL ...oeiiiiiitieiietieie ettt sttt et b et be et be et b et nae s 1520

55. How the Planner USes StatiStiCS.......ecuerirueeieriirienieeiceriesieeie ettt st 1521
55.1. Row Estimation EXamples.........ccccecueririeniniinieninieeeeeseete et 1521
Appendixes 1527
A. PoStgreSQL Error COAESc.uivuiiiiiiiieieniieienieetenie sttt ettt 1528
B. Date/Time SUPPOIT ...c.eeruiriiiiiniiiteteeteteete ettt sttt ettt ettt et sbe et it et esbe s b e e b eae 1537
B.1. Date/Time Input INterpretationcoeeeerierierienerieneneenieneetenee et seenienieens 1537

B.2. Date/Time Key WOTdS........cocvveruiiiiiiiieiierieeieesitesite sttt st eveesieesre e eniee e 1538

B.3. Date/Time Configuration Filesccccceeviiiiiienieniiiieeieeie e 1539

XXVi

B.4. HiStOTy Of UNILS ...eovvuieiiiiiiiiieiiesite ettt sttt sttt st et e satesbeenbee e 1540

C. SQL KEY WOTAS.....eeiuieiiieiieriieeit ettt ettt st st et e st e st e sbeesatesabeebeesaeesasesbeenseensnens 1542
D. SQL CONTOIMANCEccuvviiiiiiieiiieeiieeiee ettt et e stte e et e esaaeesbeeeseveeeaseeesseesssseesssseessseaans 1566
D.1. SUppOrted FEATUIESc.covuiiiiiiiieiieiieeiterite ettt sttt st 1567
D.2. Unsupported FEAtUIescceevuiiiiiiiiiiieiieiieeiteite sttt 1581
E. REIEASE NOLES ..ottt st 1596
E L REICASE 8.4 ...ttt sttt sttt et et 1596
E L L OVETVIEW ..ottt ettt ettt s n 1596
E.1.2. Migration to Version 8.4cccccoirieriiieiienieiee e 1597
E.1.2.1. General......cocueeiiiiiiiiieeieiteeeeeete ettt 1597

E.1.2.2. Server Setngsccccoieieiiiiiiniinieieneeeeeseeee e 1597

Eo1.2.3. QUETIES ..cvveeeieeiieiie ettt etee et ettt eveeveeteeseveeaeereeseseenaeensee e 1597

E.1.2.4. Functions and Operatorsc.ccccccvirieiiininiienieiienieneeneneens 1598

E.1.2.4.1. Temporal Functions and Operatorscccceeeeevennenn 1599

E 1.3 Changes ..o 1599
E.1.3.1. Performancecccoeveeienienienienieeie ettt 1599

Ei1.3.2. SEIVET ..ttt st st 1600

E.1.3.2.1. SEtNZS .couveiienieiieieeieeiesieetesee sttt 1600

E.1.3.2.2. Authentication and SECUIItY..........cccceeeruererreenereeniennenne 1600

E.1.3.2.3. pg_hba.CONT ciiiieiiiiiieeeteeeeee e 1601

E.1.3.2.4. Continuous Archivingc..ccoceeveeveneevienienieenenienenens 1601

E.1.3.2.5. MONItOTING....cevereieiiniieiinientenieniteiesteetesie et sieens 1602

E.1.3.3. QUETICS ...uviiiiiieeiiee ettt ettt e et e et e e ear e e etaeeeareeeeans 1602

E.1.3.3.1. TRUNCATE .cettruiriiieiereieiieesieteeee st 1603

E.1.3.3.2. EXPLATIN ottt sttt e 1603

E.1.3.3.3. LIMIT/OFFSET cueouiiiieiiieieienieteeeeee st 1604

E.1.3.4. Object Manipulationcecueevueerieerieenieenieenieeieeesieeseesieenieenns 1604

E.1.3.4.1 ALTER cooiiiciiicicceceeeeee s e 1604

E.1.3.4.2. Database Manipulation...........ccceeceevuernieenieniennieeneennnenn 1605

E.1.3.5. Utility OPerationscccecvuerueerueenieerieniieenieesieesieesieeseessseesieenns 1605

E.1.3.5. 1. INA@XES...cevieiienieniieienieeieteeeetesieeeeeeteeee et 1605

E.1.3.5.2. Full Text INdeXEeSccceecvemiriuenerieiinieiineceeneeeeienieee 1605

E.1.3.5.3. VACUUM ..ottt 1606

E.1.3.6. Data TYPES ...eeueeiiriieieriieieieeiecieneeeeese ettt 1606

E.1.3.6.1. Temporal Data TYpPes.........ccccerueruerreniecuenirienereerenneens 1606

E.1.3.6.2. AITAYS .couviiiiiiieieeeeeeeeeeee e 1607

E.1.3.6.3. Wide-Value Storage (TOAST) .cccccevvirviiniiniiiiiecenen 1607

E.1.3.7. FUNCHONS ...c..eeiiiiiiieieeieeiteetee ettt et 1608

E.1.3.7.1. Object Information Functionsccccceceevenirvicncnncnne 1608

E.1.3.7.2. Function Creation...........cceceeceereeienieseeieseeeeseeeeseeeneane 1609

E.1.3.7.3. PL/PgSQL Server-Side Language..........c.cccccevevueerrennnn 1609

E.1.3.8. Client Applicationscccceeeerierierieneeieiesiceie et see e 1610

E. 13081, PSAL ettt 1610

E.1.3.8.2. psql \d* commands.........cccceceererienenienieninieneneeeeieee 1610

E.1.3.8.3. pg_dump.c.ccoeeieiiiieiieieeeeeeeee e 1611

E.1.3.9. Programming TOOIS.......c..cccccuriririninienieieininenencereeee e 1612

E.1.3.9. 1 lIDPQaccieiiiciiiiieiicceee et e 1612

E.1.3.9.2. libpq SSL (Secure Sockets Layer) supportc...... 1612

B 1.3.0.3. @0PE ottt 1613

E.1.3.9.4. Server Programming Interface (SPI)........cccccocerienenncn. 1613

E.1.3.10. Build Options........ccccovevieieiiininiiniiierceeeeeeeseeseeeeeee e 1613

E.1.3.11. S0urce Code......coueeiiniiriiiinieiiniceicnieeteiesitete et 1614

XXVii

E.1.3.12. CoNtIrib ... 1615

E.2. REIEASE 8.3.7 ..ottt ettt st 1616
E.2.1. Migration to Version 8.3.7.......cceceriiiinienieniieneente sttt 1616
E.2.2. CRANEES .ouveeiieeiiteieeiteete ettt sttt st ettt st e s s 1616

E.3.REIEASE 8.3.0 ...ttt e 1618
E.3.1. Migration to Version 8.3.0........cccccoervieninieiieninieniineeeneereieeeeeeeee e 1618
E.3.2.0 Changescoovieiieiiiieieieeecteeeese ettt st 1618

E.4. RELEASE 8.3.5 .ottt ettt sttt st et 1619
E.4.1. Migration to Version 8.3.5........ccccoiriiiiiiniiiiiiii e 1620
E.4.2. Changescouooieiiiiiieieeeeee et 1620

E.5.REIEASE 8.3.4 ..ttt st 1621
E.5.1. Migration to Version 8.3.4.........cccovviriiiirieiiieere e 1621
E.5.2. CRANZES ..cneeiieiieieeieee ettt sttt et 1621

E.0. Release 8.3.3 ... ettt ettt ettt ettt 1623
E.6.1. Migration to Version 8.3.3......c.ccoiiiiiiiiiieieieee e 1623
E.0.2. CRANZES ..c..eetieiieieeieetet ettt ettt 1624

E.7.REIEASE 8.3.2 ..ttt et 1624
E.7.1. Migration to Version 8.3.2........cccceviriiniiiiiiiniieiene et 1624
E.7.2. CRANZES ..ceteiieiieieeieete ettt sttt 1624

E.8. RelEase 8.3.1oouiiiiiiiiiii ettt 1626
E.8.1. Migration to Version 8.3.1.....cc.cccceviriiniiinniiniiiienieneeie et 1626
E.8.2. CRANZES ..cvteniiiiienieiieeieieeiteee ettt e ettt 1627

E.O.REIEASE 8.3 ...t 1628
ELO.1. OVEIVIEW ..ottt sttt 1628
E.9.2. Migration to VErsion 8.3cccceeieiiiierienieeiienieeneesie e esee v eveesiee e s 1629

E.9.2.1. GENETAL.....ooiiiiiiiiriiiiiieeieiceiecte ettt 1629
E.9.2.2. Configuration Parameters............ccccvevueerieenieeniennieeneenieeieenieens 1631
E.9.2.3. Character ENCOdINGScccverierriiiriienieniieiiesieeieesiee e eie e 1631
ELO.3. CRANZES .ouveeiieeiiieiteteete ettt st ettt ettt st naeesaee s 1632
E.9.3.1. Performance..........cccoeveeienieneenieneenieneeieieneeeesreeneenee e 1632
E.9.3.2. SEIVET ...eiiiiiiiiiiiritcesectceetee sttt 1634
E.9.3.3. MONILOTING ..veeuveeiieniieeieenieesieeie ettt et e st eee et esieesneeeee e 1635
E.9.3.4. AuthentiCation.........ccccoeecieriirieriinienieneeeeeneere e 1635
E.9.3.5. Write-Ahead Log (WAL) and Continuous Archiving 1636
E.9.3.6. QUETICSveeeirieeiiieeiie ettt e et etteestteesre e eereeeereeesreesssaeesnsaeennns 1636
E.9.3.7. Object Manipulationc..coceeueriereniniieniinieieneeeeieeeeneneens 1637
E.9.3.8. Utility Commands...........ccccceeeeeiimieneninieienieieneeeenieeeeneneens 1638
E.9.3.9. Data TYPES ...ccueeiiriieiiiieietieeeiese et 1638
E.9.3.10. FUNCHONSeettiiiieiieeieeieeeieee ettt st 1639
E.9.3.11. PL/PgSQL Server-Side Languagec.ccccecevverervevevecncnnennen 1640
E.9.3.12. Other Server-Side Languagescccccceeviiviniiicncniccenenns 1640
E.9.3.13. PSQLuuiiiiiiieieieieiteenteseeete sttt 1640
E.9.3.14. pZdump ..o 1641
E.9.3.15. Other Client Applicationsccoceeveeveieenenereneneeneeeennenes 1641
E.9.3.160. IIDPQ .cveviieieieiieiieieerccetee sttt 1641
ELO.3.17. P ettt e s 1642
E.9.3.18. WIndows POrt......c.ccceviriiriiiiinininiiiceeieeeeneseeceeee e 1642
E.9.3.19. Server Programming Interface (SPI)ccccooceniiiininincnnnn. 1642
E.9.3.20. Build Options.........ccceverieieiiiiininieieieeeeeesesieseeeeeee e 1643
E.9.3.21. S0urce Code........ccoviviirieiiiiiiiniinieieecieeeeee e 1643
E.9.3.22. CONLIID ...t 1644
E.10. Release 8.2.13 ..ottt et 1644

XXVili

E.10.1. Migration to Version 8.2.13........ccceeviiriiriiinienienieeieesee et 1644

E.10.2. ChanES ...coovveeuiiiiieniieiieeieeitesite ettt st ettt st e be et st s esaeesaee s 1644
E.11.Release 8.2.12 ..ot 1645
E.11.1. Migration to Version 8.2.12........cccceeviiriiriiiinienienieeieeseeste e 1646
E.11.2. Chang@es ...ccc.eeeueiiiiiniieiieeieeiteste ettt ettt ettt e i s 1646
E.12.Release 8.2.11 ..ottt 1647
E.12.1. Migration to Version 8.2.11.....c..ccccoceiiiiiiiininiiniiiecneceeeeeeeee 1647
E.12.2. Changesc..coceeuiiiiieiieieieeeeeseeeee ettt 1647

E.13. Release 8.2.10 c..coueiiieiiiiriiriiieicteeeitet ettt sttt ettt et e 1648
E.13.1. Migration to Version 8.2.10........c.ccoceriiiiiiiniiiiiniiicenececeeeeeeee 1648
E.13.2. Changesc..ooeoiiiiiiiiieieieee e 1648

E. 14, Release 8.2.9 ..ottt ettt sttt st 1650
E.14.1. Migration to Version 8.2.9........cccccevrvirininenenieieine e 1650
E.14.2. CHANEES ..ottt sttt et 1650
E.15.RelEaSE 8.2.8 ...ttt sttt 1650
E.15.1. Migration to Version 8.2.8.......ccccoceriiririeiieniiiiene e 1650

E 152, ChANEES ..eoviiienieiieeieiee ettt st 1650

E.16. RelCASE 8.2.7 ..ottt sttt sttt 1651
E.16.1. Migration to Version 8.2.7.......ccccoceviererienienienienieneeie et 1652
E.16.2. ChaNEES ..ottt st sttt 1652
E.17.RElIEASE 8.2.0 ..ottt 1653
E.17.1. Migration to Version 8.2.6......cccccocevuirerieienienieniineeienieetenieseeee e 1653
E.17.2. ChanEeS ..coveeueeiinieiienieeiteteeteete sttt s et 1654

E.18. Relase 8.2.5 ..o 1655
E.18.1. Migration to Version 8.2.5.......ccccecverieriiriiieniieniesieerieeseeseeeieesieesaee s 1655
E.18.2. CHANZES ...eevveeiiieiiieiieeie ettt ettt ettt ettt sete et e s e e sabesbeeseesane s 1655
E.19.Release 8.2.4cc.oviuiiiiiiiiiiieicicceeee e 1656
E.19.1. Migration to Version 8.2.4........cccecvevieriiriiienienienieenieeneeseeesreesieesieen 1656
E.19.2. ChanGEs ...cocuveeiiiiieiieeiieeieesiteete ettt ettt st ettt et et e saeesaee s 1657

E.20. Release 8.2.3 ..o 1657
E.20.1. Migration to Version 8.2.3......ccccceceirieriiriiieniienienieenieesee st evee e 1657
E.20.2. ChANZES ...eevveeiiiiiieiieeieeieeiteete ettt sttt ettt ettt e beesaeesaee s 1658

E.21. Release 8.2.2 ..o 1658
E.21.1. Migration to Version 8.2.2.......ccccoceeveeririenieniineeniineeeneeeesreeeeeeeaeenee 1658
E.21.2. Changescc.cocvevuiruieiiiieieieeeeteste ettt st 1658

E.22. RIS 8.2.1 ..coniiiiiiiieieeee ettt st 1659
E.22.1. Migration to Version 8.2.1.......ccccoccovieiiiiiiiiniiiiiieceeeeeeeeeeeeeeee 1659
E.22.2. Changesc.ooceeviiiiiiiiieieieeeese et 1659

E.23. REIEASE 8.2 ...ttt ettt st e 1660
E.23.1. OVEIVIEW ..cutiiieiieiieiecieee ettt sttt ettt et ae s 1660
E.23.2. Migration to Version 8.2.........cccceveriererieiienieeienie et 1660
E.23.3. ChanEESooueeuieieieieieieeiee ettt st sttt et 1662
E.23.3.1. Performance Improvementscccceeoeeruenienieneenienencenenneans 1662

E.23.3.2. Server Changesc.ccecuereeienienienieneeieieeiceie et ie s 1663

E.23.3.3. QUery Changes........ccceeuerierienienieeienieniieieeiteie et 1665

E.23.3.4. Object Manipulation Changesc.cceceervereerieneerieneneenenenns 1666

E.23.3.5. Utility Command Changes...........cccccoeeeeruenienieneenieneneeneneens 1667

E.23.3.6. Date/Time Changes.........cccceceevuereerenenienienieienieeeenieseenienieens 1668

E.23.3.7. Other Data Type and Function Changesc..cccccveveeruennenn. 1668

E.23.3.8. PL/PgSQL Server-Side Language Changes.........cc.cccccecueruennenee 1669

E.23.3.9. PL/Perl Server-Side Language Changes...........cccceceevereenuenncnns 1669

E.23.3.10. PL/Python Server-Side Language Changes.......c..cc.ccocuevuenenee 1669

XXIX

E.23.3.11. pSQlL Changesceeveviieiieiieeieeiee ettt 1670

E.23.3.12. pg_dump Changes..........ccecueevueerieerieenieeniienieerieesieeseeeieenieenns 1670

E.23.3.13. libpq CRangescccceereerierrieeniierieeieeiee st siee e 1671

E.23.3.14. cpZ Changesc.eecueeiuierieriieiierieeieeiee sttt st 1671

E.23.3.15. WIndows POTt......c..cccceciiiiimiiiiniiieniiieeneceeceecre e 1671

E.23.3.16. Source Code Changescccceevveerierriernieenieniieenieenieesieenieenne 1671

E.23.3.17. Contrib Changesccccceceevierienenenieeieneeeeseeeesreeeenenneens 1673

E.24. Release 8.1.17 c..coueiiieiiiiiiitiietetetettetese ettt sttt ettt 1674
E.24.1. Migration to Version 8.1.17........cccociiiiiiiiniiiniiecenecreeeeeeeeee 1674
E.24.2. Changescccoeouiiiiiiiiieieiecese e 1674

E.25. RelEaSE 8.1.16 c..cueuiiniiiiiiiriiiciciecetteteertetetee ettt ettt e 1675
E.25.1. Migration to Version 8.1.16.......cccceeieiirieiiiniieiee e 1675
E.25.2. CHANEZES ..ottt ettt sttt et 1675

E.26. Release 8.1.15 ..ottt st 1676
E.26.1. Migration to Version 8.1.15......cccociriiiiiieiiiiiee e 1676
E.26.2. CHANEZES ..ottt sttt et 1676
E.27.Release 8.1.14 ..ottt et 1677
E.27.1. Migration to Version 8.1.14........cccoviiiiiiiiiniiieneieee e 1677
E.27.2. CHANEZES ..ottt sttt 1677

E.28. Release 8.1.13 ..ottt 1678
E.28.1. Migration to Version 8.1.13.....c.ccocerieiiiiriiniiienieneeieneeteieeeeeeee 1678
E.28.2. CHANEES ..ottt sttt 1678

E.29. Release 8.1.12 ...cc.oiiiiiiiiiiiiciciceteecete st 1679
E.29.1. Migration to Version 8.1.12.....c.cccccevieriririiininiinineenieneeieneeieeeseenee 1679
E.29.2. CHANZES ...eevvveeiiieiieiieeie ettt ettt ettt e bee st e sateebeesaaesaseenbeenseesnne s 1679

E.30. Release 8.1.11 cuuiiiiiiiiiiiiieeeiiceteectcestete ettt 1680
E.30.1. Migration to Version 8.1.11....ccccecieviiniiiiiiiiiinienieeieeneeeie e 1681
E.30.2. ChanGEsccueeevieiieniieeieeieesite sttt ettt ettt e sate et e aee st sbeenaeesaee s 1681
E.31.Release 8.1.10 c...ouieiiiiiiiiiieiincetenecteestete ettt sttt s 1682
E.31.1. Migration to Version 8.1.10.......ccccceeviiriiniiiiniiniinieeitereeeiceeeee e 1682
E.31.2. Changescceeeiieiieniieeieeieeiteete ettt sttt ettt ettt et st esaee s 1682
E.32.Release 8.1.9 ..cc.ooiiiiiiiiiceeeeeettetet et 1683
E.32.1. Migration to Version 8.1.9......cccccocuiiiiiriiiniiiiniiniieieeieeeeeeceeeee e 1683
E.32.2. Changescc.oeceeiiriieieiieieieeieeeeste ettt 1683

E.33. Release 8. 1.8 ..ottt st 1684
E.33.1. Migration to Version 8.1.8.......ccccoceovieiiiiiiiiniiiiieeeneceeeeeeeeee 1684
E.33.2. Changesc..coceeiiiiiiiiieiciieeeeese et 1684

E.34. ReElEaSE 8. 1.7 ..ottt ettt ettt sttt et 1684
E.34.1. Migration to Version 8.1.7.......ccccocooviiiiiiiiiiiiiiieceneeeeeeeeee 1684
E.34.2. Changescceeeuieiienieniieieeiteete ettt ettt ettt 1685
E.35.RelCASE 8.1.0 ..ottt st 1685
E.35.1. Migration to Version 8.1.6.......cccocerieiiiieriiniieiene et 1685
E.35.2. ChANEES ..ottt sttt 1685

E.36. Release 8.1.5 ..ottt 1686
E.36.1. Migration to Version 8.1.5......cccoviriiniiiiiiniiiiee e 1686
E.36.2. CHANEZES ..ottt sttt 1686
E.37.Release 8.1.4 ..ottt 1687
E.37.1. Migration to Version 8.1.4......cccccocerieniriiiiniiieneneee et 1687
E.37.2. ChaNEES ..ottt sttt 1688

E.38. Release 8.1.3 ..ot 1689
E.38.1. Migration to Version 8.1.3......cccccoceriiriririiininienineeieneetenieeeee e 1689
E.38.2. CHANZES ...eoovveeiiieiieriieeiie ettt ettt ettt te et esete et e s saesabesnbaenseesnne s 1689

XXX

E.39.Release 8.1.2 ..ot 1690
E.39.1. Migration to Version 8.1.2......cccccecierieriiriiiiniienienieeieesee st 1690
E.39.2. Changescceeeuiiiiiniieeiieieesiteste ettt ettt st ettt et st esaee s 1690

E.40. Release 8.1.1 ..o 1691
E.40.1. Migration to Version 8.1.1.....cccccovvuiiriiniiniiiiienienieeieeeesec e 1692
E.40.2. Changesc..coceeruirieieniieieiineeeesie ettt st 1692

Eid1. REIEASE 8.1 .neiiiiiiiieiiete ettt ettt ettt e 1692
Ei41.1. OVEIVIEW oottt ettt st ettt st n 1693
E.41.2. Migration to Version 8.1.........cccccoviriiiiiiiiiniiiii e 1694
E.41.3. Additional Changescc.coceeceririeninieienieiene e 1696

E.41.3.1. Performance Improvementsc.ccoceeueriiiinieicncneenennens 1697
E.41.3.2. Server Changescccccoieiiiiiniiiiniiiceeeceeee e 1697
E.41.3.3. Query Changes.........c.ccocueiuiiiiiiiniiiiniieceeeceee e 1698
E.41.3.4. Object Manipulation Changesccccceeeererverenervecneenennennen 1699
E.41.3.5. Utility Command Changes...........ccceeevereeerenenenenuecneenennene 1699
E.41.3.6. Data Type and Function Changescccceccevereerienencenenncnns 1700
E.41.3.7. Encoding and Locale Changes.........c..cecueruereenieneenieneneenienneans 1702
E.41.3.8. General Server-Side Language Changes...........c.ccecevereenuennnne 1702
E.41.3.9. PL/PgSQL Server-Side Language Changes.........c..ccccceceeruenenn. 1703
E.41.3.10. PL/Perl Server-Side Language Changes.........c..cccccoereeruennnn. 1703
E.41.3.11. pSQl Changesccccoueeierierieniinieienieeeeieniteesieete et 1704
E.41.3.12. pg_dump Changes.........c..ceceevuereerienerienienieienieeienieneenieniens 1704
E.41.3.13. libpq Changesc.ccecuererieniineenienenieienieeienieeteniesieenieniens 1705
E.41.3.14. Source Code Changescccceeevuerereenieneenieneeienieneenieniens 1705
E.41.3.15. Contrib Changescccueeeveevieeniierieeieenieesieesieenieesveesaeesieenes 1706

E.42. Release 8.0.21 ...ccoiiiiiiiiiiiiiicieciecec e 1706
E.42.1. Migration to Version 8.0.21cccccceevieriiriiieniienienieeieenee st 1706
E.42.2. CHANZES ...eevieeiiiiiieiieeit ettt ettt st ettt e sttt e e st sbeenaeesaee s 1707

E.43. Release 8.0.20cccoiiiiiiiiiiiiiiici e 1707
E.43.1. Migration to Version 8.0.20........cccceevieriiriiiinienienieeieenee e 1707
E.43.2. ChAN@ES ...coovveeiiiiiieiieeie ettt ettt ettt ettt st ettt b saeesaee s 1707

E.44. Release 8.0.19c.cociiiiiiiiiiiiiiiciccc 1708
E.44.1. Migration to Version 8.0.19.......ccccceiviiriiiiiiniiiinieeieeeeeceeeee e 1708
E.44.2. Changesc.cocveriiruieieiieiieiieeetesteeeee ettt 1708

E.45. Release 8.0.18 ..cc.ciiiiiiiiiiiictete ettt 1708
E.45.1. Migration to Version 8.0.18........c.ccccceoiiiiiininiiniiieeeceeeeeeee 1709
E.45.2. Changesccceeouiiiiiiiieieiieeeese et 1709

E.46. Release 8.0.17 c..couciiiiiiiiiiiieetecetetentertetet ettt ettt e 1709
E.46.1. Migration to Version 8.0.17........ccccocoiiiiiiiiiiiiniiiceneceeeeeeeee 1710
E.46.2. CHANEZES ...eovieeieieeieeeeteee ettt ettt et eae e 1710

E.47. Release 8.0.16cc.oouiiiiiiiiiieiieeeee ettt sttt st 1710
E.47.1. Migration to Version 8.0.16........ccceecieiirieiiininiee e 1710
E.47.2. Chan@ES ...ceouveruiiiiiiiieiieeeeteete ettt ettt ettt e 1710

E.48. Release 8.0.15 ...ttt st 1712
E.48.1. Migration to Version 8.0.15.......ccccooiiiiiiiiiniiieneneee e 1712
E.48.2. CHANEES ..ottt sttt s 1712

E.49. Release 8.0.14 ..ottt 1713
E.49.1. Migration to Version 8.0.14........ccccooieriiiiiiininieniieee et 1713
E.49.2. ChanEEScoveeuieiirieeieieeiteeette sttt st sttt 1714

E.50. Release 8.0.13 ..o 1714
E.50.1. Migration to Version 8.0.13........cccceviiriririiininiinineeneneeteieeeeeeieee 1714
E.50.2. CHANZES ...eevvveeniieiieniieeieeieeite sttt et e st e st tae st e sateebeessaesssesnbaeseessnes 1714

XXXI

E.5T.Release 8.0.12 ..o 1715
E.51.1. Migration to Version 8.0.12........ccceeviiriiiniiiinieniinieeieeseesee e 1715
E.51.2. ChanGes ...cccueeeuiieiieniieeiteieeiteste ettt sttt ettt st saee e s 1715

E.52. Release 8.0.11 ..o 1715
E.52.1. Migration to Version 8.0.11....cc.ccoceiviiriiiniiiniiiirieeiteeeeee e 1715
E.52.2. Changescc.ooceeuiriieiiiieieiieeetenteeeeee ettt 1715

E.53. Release 8.0.10 ...cc.couiieiriiiriiieicieceieetesesteteeee ettt ettt 1716
E.53.1. Migration to Version 8.0.10........c.ccoceiiiiiiiininiiniiiecnecreeeeeeeee 1716
E.53.2. Changesc..oocoeoiiiiiiiiieieiieeeeseeeee et 1716

E.54. Release 8.0.9 ...ttt st 1717
E.54.1. Migration to Version 8.0.9..........ccccociiiiiiiiiiiiiiceeeeeeeee 1717
E.54.2. Changescc.ccocuieiierieiiieieesiteete ettt ettt ettt 1717

E.55. Release 8.0.8 ..ottt s 1717
E.55.1. Migration to Version 8.0.8........cccoceeiiiiiieiinieiee e 1718
E.55.2. CRANEES ..ottt sttt 1718

E.56. Release 8.0.7 ..c.eiiiiiiiieiieieeeee ettt ettt sttt et s st 1719
E.56.1. Migration to Version 8.0.7........cccccevirinininenieieieinesesrereeeeeneenesnene 1719
E.56.2. CHANEES ..ottt ettt 1719

E.57. Release 8.0.0cccoueiiiiiiiiiiieieieeeiteeseeeeet sttt ettt 1720
E.57.1. Migration to Version 8.0.6.........ccoceevieriririiininienineene et 1720
E.57.2. ChANEES ..ottt sttt 1720

E.58. Release 8.0.5couoiiiiiiiiiiiieteceeeee e 1721
E.58.1. Migration to Version 8.0.5......cccccocevieririeiiininiiniineeneneetenieeeeeeeenee 1721
E.58.2. CHANGZES ...eecvveeiiieiiieiieeie ettt ettt ettt et e sete et e aaesabeenbaenaeesnee s 1721

E.59. Release 8.0.4 ..o 1722
E.59.1. Migration to Version 8.0.4........cccecverieriiniiienieniesieeieeneesteeveeniee s 1722
E.59.2. ChaNGES ...coouveeuiiiiieiieeie ettt ettt sttt sttt e e st ebeenaeesane s 1722

E.60. Release 8.0.3 ..o 1723
E.60.1. Migration to Version 8.0.3.......ccccecvirieriiiniiiiiienienieeitesee st 1723
E.60.2. ChanGESscc.eevviiiieriieniieieeitesite ettt st ettt e sttt e sieesatesbeesaeesaee s 1724

E.61. Release 8.0.2 ...ccoiiiiiiiiiiiiiciicic e 1725
E.61.1. Migration to Version 8.0.2.........cceceivieriiriiiiniieniesieerieesee st 1725
E.61.2. Chang@escoocuieiuienieniieieeiteete ettt ettt st ettt et st e i s 1725

E.62. Release 8.0.1 ..ottt et 1727
E.62.1. Migration to Version 8.0.1.......cc.coccocieiiriiiiininiininiecnecreeeeeeeeeeee 1727
E.02.2. Changesc..ccceevuiriieieiieieiieectesteeeeee sttt 1727

E.63. Release 8.0coouiiiiiiiiiiiiieeeet ettt sttt st 1728
E.63.1. OVEIVIEW .eueiiiiiiiiiiiieiit ettt ettt ettt ettt st e i s 1728
E.63.2. Migration to Version 8.0..........ccccociriiiiiiiiiiiiiiiieccnececeeeeee 1729
E.63.3. Deprecated FEaturesccoeeeviereeieneiieieieeee e 1730
E.03.4. CHANEESovienieieiiieieieee ettt et sttt 1731

E.63.4.1. Performance Improvementsccoceeeeerueeienieneenieneneesienneens 1731
E.63.4.2. Server Changesccecereeienierienieneeieieeiceie et 1732
E.63.4.3. QUery Changes.........ccceecuerueeienienieienieeiteieeiceie et 1734
E.63.4.4. Object Manipulation Changesccecerereerieneerieneneenenenns 1735
E.63.4.5. Utility Command Changes...........cccccovereerienienieneerieneneeneneans 1736
E.63.4.6. Data Type and Function Changescccceccevueveerieneneenenenne 1737
E.63.4.7. Server-Side Language Changesccccccveveevieneenieneneenieneas 1738
E.63.4.8. PSQL Changesccceruerieriirieniinieieneeiteiesitete et 1739
E.63.4.9. pg_dump Changes..........ccoceeeeviereenenenienienieieneeeeneseenieniens 1739
E.63.4.10. libpq Changesc..cecuevereenieneenienenieieneeieneeteniesieenieniens 1740
E.63.4.11. Source Code Changescccceeeveerereenienienieneeienieneenienens 1740

XXXIT

E.64.

E.65.

E.66.

E.67.

E.68.

E.69.

E.70.

E.71.

E.72.

E.73.

E.74.

E.75.

E.76.

E.77.

E.78.

E.79.

E.80.

E.63.4.12. Contrib Changescccceevverrieenieerieeiieenieesieesieesieeseeeieesieenns 1742

ReElease 7.4.25 ..o 1742
E.64.1. Migration to Version 7.4.25......cccoceirieriiiniienieneesieeieesee st 1742
E.64.2. ChanESscc.eeviiiiieniienieeieeiteste ettt ettt ettt st ettt et st e saeesaee s 1742
Release 7.4.24c.ccooviiiiiiiiiiiiiiic 1743
E.65.1. Migration to Version 7.4.24ccccccevirieiininenineenenecresreseeeeeae e 1743
E.05.2. Changesc.coceeouiriieieiieietieeeteseeeeee ettt 1743
REICASE T.4.23 ...ttt et sttt 1743
E.66.1. Migration to Version 7.4.23........ccccoceiirieiiniiiee e 1744
E.06.2. Changesccccouiriiiiiiiiiieiieieceese ettt 1744
REICASE T.4.22 .ttt et sttt 1744
E.67.1. Migration to Version 7.4.22.......cccceeeierierenieiene et 1744
E.07.2. CHANEZES ...eotieiieieeieeeeeieee ettt sttt et 1744
REICASE T.4.21 ettt 1745
E.68.1. Migration to Version 7.4.21ccoceveriiiiiinieene e 1745
E.08.2. CHANEES ...eotieeieniiitieieeieee ettt ettt 1745
REICASE 7.4.20 ..ttt ettt 1745
E.69.1. Migration to Version 7.4.20.......c.cccecevinininenienieiinenenesrereeeeeeeesnee 1745
E.09.2. CHANEES ..ottt sttt 1746
REICASE 7.4.19 .ot 1746
E.70.1. Migration to Version 7.4.19.......cccevieriiiriininienineeeneeeeieeeeeeeee 1747
E.70.2. CHANEZES ..ottt sttt st 1747
REIEASE 7.4.18 .o 1748
E.71.1. Migration to Version 7.4.18........ccccovuererievieninienineenieneerenieseeeesaeenee 1748
E.71.2. CHANZES ...eevieeiiieiieiieeie ettt ettt ettt sate et e aaesabesnbaenseesnne s 1748
REICASE T 4. 17 .o 1748
E.72.1. Migration to Version 7.4.17cccocvverieniieniiieniienienieeieesee st esieesiee s 1748
E.72.2. CHANZES ...eevteeiiiiiieriieeie ettt ettt st ettt et et esate s beenaeesaee s 1749
ReElEASE 7.4.16 ..o 1749
E.73.1. Migration to Version 7.4.16.......ccccceevieriiriiienienienieeieesee e 1749
E.73.2. CHANZES ...eovveeiiieiiieiieete ettt ettt sttt ettt et et st saeesaee s 1749
Release 7.4.15 ..o 1750
E.74.1. Migration to Version 7.4.15....ccccoviiiiiniiniiietesieeieeeeeee e 1750
E.74.2. ChanEesc.oeeeiiriiiieiieieiieieetesee ettt 1750
REICASE T4 14 ..ottt sttt e 1750
E.75.1. Migration to Version 7.4.14c.ccccceviriiiininiiniieeeeeeeeeeeeeeneeee 1750
E.75.2. Changesc.coveiiiiiiiiieieieeeeese ettt 1751
REICASE T4 13 .ttt sttt st 1751
E.76.1. Migration to Version 7.4.13.....ccccooiiiiiiiiniiiienteeieeieeeeeeceeeeeeee 1751
E.76.2. CHANEZES ...eovieeieieeieeeeieee ettt et sttt 1751
REICASE T4 12 .ottt ettt s 1752
E.77.1. Migration to Version 7.4.12.......cccceeoeiiiienenieiene et 1752
E.77.2. ChANZES ...eeoveiiiiiiieiieeit ettt sttt ettt e 1752
REICASE 7.4 11 .ottt s 1753
E.78.1. Migration to Version 7.4. 11ccccoceviiiiiiiiiniiiene e 1753
E.78.2. CHANEES ..ottt sttt 1753
ReEICASE 7.4. 10 .ottt 1754
E.79.1. Migration to Version 7.4.10.......ccoccevieririeneninienineene et 1754
E.79.2. CHANEES ..ottt st sttt 1754
REICASE 7.4.9 ..o 1754
E.80.1. Migration to Version 7.4.9......ccccoevieriririininienineeneneetesieeeeeeseeenee 1754
E.80.2. CHANZES ...eeouveeuiieiieniieeieeieerieeste ettt e site st eteesatesabeebeessaesntesnbaenseessnes 1755

XXXi11

E.81. Release 7.4.8cooiiiiiiiiiieiccceeee e 1755
E.81.1. Migration to Version 7.4.8.......ccceveerieniiriiieniienienie ettt 1755
E.81.2. ChaNGES ...cooueeeuiiiiieiieeiteeieeteste ettt ettt st ettt st saee e s 1757

E.82. Release 7.4.7 ...c.ccceiiiiiiiiiiiiiciiicc e 1758
E.82.1. Migration to Version 7.4.7ccccovveivieriiniiienieneesie ettt 1758
E.82.2. Changescceeeceeiiriieieiieieieeeeteneetee ettt 1758

E.83. REICASE 746 ..ttt ettt st ettt et 1758
E.83.1. Migration to Version 7.4.6.......ccccoceevueriririieninienieeeeneeeereeeeeeeeenee 1759
E.83.2. Changesc..ccceeoiiiiiiiiieieiieeceeseeeeee e 1759

E.84. REICASE T.4.5 ettt ettt sttt st be e 1759
E.84.1. Migration to Version 7.4.5......ccccoviiiiiniiniiiieneenieeieeseeste e 1760
E.84.2. CHANGESovieuieieeiieieteee ettt sttt e e 1760

E.85. REICASE T.4.4 ...ttt ettt sttt et sae et enen 1760
E.85.1. Migration to Version 7.4.4........cccoceeieririenenieienie et 1760
E.85.2. Changescc.eeeuuiiiiirieniieieeteeteee ettt ettt ettt e 1760

E.86. REICASE 7.4.3 ...ttt ettt sttt et st saen 1761
E.86.1. Migration to Version 7.4.3.......ccccoeriiriiieneniieienie et 1761
E.86.2. CHANEZESoviiieniiiiieiieieeieeete ettt sttt st 1761

E.87. REICASE T.4.2 .ottt sttt s 1762
E.87.1. Migration to Version 7.4.2......cccccoceeieririenienienienieneenie et 1762
E.87.2. CHANEES ..ottt st sttt 1763

E.88. RelEaSE 7.4.1 ..ouiiiiiiiiiiieiieectceeee sttt 1764
E.88.1. Migration to Version 7.4.1......ccccoervieririeniinenienineenieneetenieseeeeseeenee 1764
E.88.2. CHANGZES ...ceovveeuiieiiieniieeie ettt sttt st e te et eseteebeesaaesabeenbaenseesnee s 1764

E.89. REICASE 7.4 ...ttt 1765
E.89.1. OVEIVIEWooiviiiiiiiiiiiiiiiiietceeee et e 1765
E.89.2. Migration to VErsion 7.4cccecueeiiierienieiiienieeneesieesieesieeseeereenaeesane s 1767
E.89.3. ChaNGES ...ceouveeuiiiiieiieeie ettt ettt st ettt et ettt et e s e sane s 1768

E.89.3.1. Server Operation Changesccecueevveereerieenieenieeneessieeneenns 1768
E.89.3.2. Performance Improvementscccceeeueevieeriennieeneenvessieeneenns 1769
E.89.3.3. Server Configuration Changesccccceeveerierrierneeniessieeneenns 1770
E.89.3.4. QUery Changes.........coceerueerierrieeniienieeieeniee st eieesieesiee e eniee e 1771
E.89.3.5. Object Manipulation Changescecceeveerierieineeniensieeneenne 1772
E.89.3.6. Utility Command Changes............ccocueevueerieerierrienneeniensienneenns 1773
E.89.3.7. Data Type and Function Changesc.cecceeereeceencreennennens 1774
E.89.3.8. Server-Side Language Changesccccccceeceeceiniecencnieennenens 1776
E.89.3.9. psql Changesccccceeieriirieniinieieneeeeeeeeeeee e 1776
E.89.3.10. pg_dump Changes............ccceeirieiininiieniinieieneeeeeeeeieneene 1777
E.89.3.11. libpq Changesccceeieieiinieniniiieieneeeeeeeee e 1777
E.89.3.12. IDBC Changes.......c.ccoueeueueeuiririnrenienieeeeeieneneeseeeeseneeseesenes 1778
E.89.3.13. Miscellaneous Interface Changesc..ccccceevevervevevecncnnenne. 1778
E.89.3.14. Source Code Changescccoceevueriiieiiiniiiiiiiciciciecienee 1778
E.89.3.15. Contrib Changescccccueeeririninienienieinineneneeeeree e 1779

E.90. RelEaSE 7.3.21 c..eieieiieiieiieeeete ettt ettt st 1780
E.90.1. Migration to Version 7.3.21cccoceriiniiiiiiniiiee e 1780
E.90.2. CHANEES ...eovievieniiiiieieieeieeeeee sttt sttt 1780

E.91. Relase 7.3.20 ...cceiueiiiiiiiriiteieeeteiteteseeeeee sttt ettt s 1780
E.91.1. Migration to Version 7.3.20.......cccceevieririenieninieniineene et 1781
E.OT.2. Chan@esccueeueeriiriiiieiieiteieeitete ettt sttt 1781

E.92. Relase 7.3.19 ..ottt 1781
E.92.1. Migration to Version 7.3.19.....c.ccocvviiniririininiiinineeneneetenieseeeeeenee 1781
E.02.2. CHANZES ...eeovveeuiieiieniieete ettt ste ettt st te et e seteebeessaesnsesnbaenseessnes 1781

XXXIV

E.93. REICASE 7.3.18 ..ot era e e e e e e e e etreeeeeas 1782

E.93.1. Migration to Version 7.3.18cccecceevieriiiriiiiiienienieeitesee et 1782
E.93.2. ChanGES ...ceouveeuiiiiieniieeit ettt ettt ettt ettt st ettt s e st esaeesaee s 1782
E.94. Release 7.3.17 ..ot 1782
E.94.1. Migration to Version 7.3.17ccccoociirieriiiniieieeeeieeieeste et 1782
E.O4.2. ChanES ...cccueeeuiiiiieiieeieeieeiteete ettt sttt st ettt et e e e e s 1782
E.95. RelASE 7.3.16 c..eueniiniiieiiiiiititctcteteeteseete ettt ettt ettt 1783
E.95.1. Migration to Version 7.3.10.....cc.ccccoceririiniiininiiniiieeneereeeeeeeeeeee 1783
E.95.2. Changesccceeouiiiiiiiieieiieeeeseeeee et 1783
E.960. RElCASE 7.3.15 c.oeiiiiieieiieiteetete ettt sttt ettt 1783
E.96.1. Migration to Version 7.3.15......cccocoiiiiiiiiiiiii e 1783
E.90.2. ChaNEEScoveruiriiiieieiieiineseestetetetet ettt sttt 1784
E.O7. RelCASE 7.3.14 .ottt sttt ettt e 1784
E.97.1. Migration to Version 7.3.14ccccccoorimiminenenieinenenesrereeeeeneeneene e 1785
E.97.2. Changescccouiiiiiiiiiiiciices e 1785
E.98. Release 7.3.13 ...ttt ettt et s st 1785
E.98.1. Migration to Version 7.3.13cccooiriiiiiieinieiere e 1785
E.98.2. CHANEES ..ottt sttt 1785
E.99. Relase 7.3.12 ...ccooieiiiriiiiiiieiceeteteteeteeee ettt 1786
E.99.1. Migration to Version 7.3.12.....c.ccoceevieririenieninieneneene et 1786
E.99.2. ChanEesccueeueeiiriiiiiiieiteieeteete sttt ettt 1786
E.100. Release 7.3.11 .ottt 1786
E.100.1. Migration to Version 7.3.11.....ccccooenininnininiinineneneeeeeeeeeeenee 1787
E.100.2. CRANGESveoveenviieeiieieeiteeeieete ettt ettt 1787
E.101. Release 7.3.10 ..ottt 1787
E.101.1. Migration to Version 7.3.10......ccccevieriiriiienienienieeieesee st ereesiee s 1787
E.TOT.2. CRANEES .ooueveeiiieiieiieeie ettt ettt ettt et e ieesatesbeenaeesaee s 1788
E.102. Release 7.3.9 ..o 1789
E.102.1. Migration to Version 7.3.9....c.cccociiriiriiniiiieniesieeieeree et 1789
E.102.2. CRANEES ..cuvveeiiieiiieiieeiieeieeteste ettt sttt ettt et st s e saeesaee s 1789
E.103. Release 7.3.8 ..ot 1789
E.103.1. Migration to Version 7.3.8 ...cccccecviriiriiiriieiieeesieeieesee st 1790
E.103.2. CRANEES .eoveeiiieiiieiieeie ettt st ettt st e i s 1790
E.104. REIEASE T.3.7 ..ottt ettt e s 1790
E.104.1. Migration to Version 7.3.7........ccceceririieieninienineeneneeeesreseeeeeee e 1790
E.104.2. Changesccoeiieieniieieiieecienieeeeee et 1790
E.105. REIEASE 7.3.6 ettt sttt ettt et s 1791
E.105.1. Migration to Version 7.3.0........ccccecevirieiiininienineceneeeeieeeeeeeneeee 1791
E.105.2. Changesccoiiiiiiiiiiiiiiceneeece e 1791
E.106. ReIEaSE 7.3.5 ..ottt ettt ettt et sae st nneeneen 1791
E.106.1. Migration to Version 7.3.5......ccccccevririninenenieieenenesrerereeeneenennene 1792
E.106.2. CRANEESoovieveienieiieiieiieiesiestetetetee ettt sttt 1792
E.107. ReEIEASE 7.3.4 .ottt sttt ettt e 1792
E.107.1. Migration to Version 7.3.4......cccccceeeiriminenierieinenenenrerereeeneenennene 1793
E.107.2. CRANEES «..veviienieieiciieiteereteetet ettt st e 1793
E.108. ReIEaSE 7.3.3 ..ottt sttt ettt s 1793
E.108.1. Migration to Version 7.3.3.......ccccvriririinininieneseee e 1793
E.108.2. CRANGESeveenieieeiiesieeiteeeee sttt sttt 1793
E.100. ReIEASE 7.3.2 c..cuiiiiiiiieiiieitececeeteeee ettt ettt s 1795
E.109.1. Migration to Version 7.3.2.......ccoccevueririenienenienineeieneerenieseeee e 1795
E.109.2. CRANGES ...veoveeniiieiieieeiteieeieete sttt 1795
E.110. Release 7.3.1 ..ottt 1796

XXXV

E.110.1. Migration to Version 7.3.1....ccccecierieriiiniiiiniieniesieeieesee et 1797

E.110.2. CRANEES ..ouvveiiieiieiieeieeieeiteste ettt sttt et ettt s e s e saee s 1797
E.TT1.REICASE 7.3 ..ottt ettt sa et s 1797
E.TT1.1. OVEIVIBW ..ottt st 1797
E.111.2. Migration to VErSion 7.3ccoceriiiirieniiniieieeite sttt 1798
E.TT1.3. Changescccceoueriieiiniieiciieeceenieeeees ettt 1799
E.111.3.1. Server Operationcccceceeeuerienenenienienieeeneeeeseeeenenneens 1799

E. 111.3.2. PerfOrmancececueeveeriernieinieeiieeieeiee st 1799

E.111.3.3. PrivII@@es. .. .ccouiruieiiiieieiieicieseeeeseeeeeseeee e 1800

E.111.3.4. Server Configuration...........ccccceeevuererienieniesieneeieneseeneneens 1800

EolT1.3.5. QUETIES ..eeuevieeiiieeiie ettt ette ettt e re e e ere e s eesraeenne 1801

E.111.3.6. Object Manipulationccceeeeriereeienienieieeeeie e 1801

E.111.3.7. Utility COMMANGScceertirmieieriieieneeieieeiceee e 1802

E.111.3.8. Data Types and FUnctions.............cccceeeeerenieneneenienencenenneee 1803

E.111.3.9. InternationaliZationcccceeereerienerienienieiesieeee e 1804

E.111.3.10. Server-side Languagesc.cceccererierienienieneeieneneeeneeene 1805
ELTL3 11, PSAliiiiiiiiieiieeercceee et 1805

E L1133 02, 1DPQ ceviveieieieiieieniereceeee sttt 1805
EQTL3 130 JDBC ..ttt 1806
E.111.3.14. Miscellaneous Interfaces..........c.ccoceeveevevininencncniecnecnennenne. 1806

E.111.3.15. Source Code.......cceverieieirininiiniiieieieieienesieseeeeeee e 1806
E.TT1.3.16. CONLIID .eeiiiiiiiieccccceceeee e 1808

E. 112, RelEASE 7.2.8 ..ottt 1808
E.112.1. Migration to Version 7.2.8........ccccocuererierienenienineeneneetenienieeeesieenee 1808

B 112.2. CRANEES .oouvveeiiieiiieiieeieeiteteete ettt sttt sete et esaaesabeebeenaeesane s 1809

E 113, REICASE T.2.7 oottt ettt sttt et s sae s 1809
E.113.1. Migration to Version 7.2.7cccceecverieriieriiieniienienieeieeseeseeeveesiee e 1809
E.113.2. CRANEES .oouvteeiiieiieiieete ettt sttt et ettt b saeesaee s 1809

E. 114 REICASE T.2.6 ..ottt sttt sttt ettt st st 1810
E.114.1. Migration to Version 7.2.6.......ccccceevieriiriiieniienienieenieenee st esveesiee e 1810

E. 1142, CRANEES .eovveiiieiieiteeieeeete ettt ettt ettt s e e s 1810

E. 115, REIEASE T.2.5 .ottt ettt et s 1810
E.115.1. Migration to Version 7.2.5....cccceviirieriiiniieieentesie ettt 1810

E 1152 Changesccccooueiuieieniieieiieectenieeeeeeeetee et 1811
E.116. REICASE 7.2.4 ..ottt sttt ettt 1811
E.116.1. Migration to Version 7.2.4........c.cccccevirieiieniniienineeneneeeereeeeeeeee e 1811
E.116.2. Changescccoouiiiiiiiieieiieeceereeeeee et 1811

E. 117 REICASE 7.2.3 .ottt sttt ettt e 1812
E.117.1. Migration to Version 7.2.3........cccoceiiiiiiiniiieniieee e 1812
E.117.2. CRANEES .ccveeeiiiiiieiieee ettt ettt ettt 1812
E.T18. REICASE 7.2.2 .ttt sttt 1812
E.118.1. Migration to Version 7.2.2.......cccceeeririenienieiene e 1812
E.T18.2. CRANGES -...veveenieiieieieee ettt sttt 1812
E.T19. ReICASE 7.2.1 .ottt ettt ettt ettt s st saeas 1813
E.119.1. Migration to Version 7.2.1......cccccceevvimininenienieiininenesrerereeeneenennene 1813
E.119.2. CRANGES ..ottt ettt 1813
E.120. REICASE 7.2 ..ttt sttt s 1814
E.120.1. OVEIVIEW ...ttt ettt 1814
E.120.2. Migration to VEersion 7.2.......ccccceceeviererienienienienieneenieneeeeniesieeee e 1814
E.120.3. ChangEscoueeiirieiieieeiteieeieete ettt sttt 1815
E.120.3.1. Server Operationcocceceevuereenienerienieneenieneeeeneneesienieens 1815

E.120.3.2. Performancec.ccoeecveviereenieneenienenteieneeeesieeneesiesieeiesiens 1815

XXXVI

E.120.3.3. PrivIlEZeS...cccvteriierieeiieiiesieeie ettt ettt 1816

E.120.3.4. Client AuthentiCationccccevcevuerereenieneenueneereenieneennenens 1816

E.120.3.5. Server Configuration...........cecueerveerieerieeneenieesieeseeseessieenieenns 1816

E.120.3.6. QUETIESevieeeiieeiiieeiieeeieeeeiteeeteeeeire e esereeeseveeeereesssaeesareeennns 1817

E.120.3.7. Schema Manipulationccocceevueeveeniieniiennenneenieeieeeene 1817

E.120.3.8. Utility Commands.........c..ceceeeuereenuerereenienieeieneeeenreneeneneens 1817

E.120.3.9. Data Types and Functions.............c.cceceeeeriecenieccncneenenenns 1818
E.120.3.10. InternationaliZationc.ccceveerueeriernieenienienseenieeieeseene 1819
E.120.3.11. PL/PESQL ..ot 1819
E.120.3.12. PL/PEIL ..ot 1820
E.120.3.130 PLITCL ettt 1820
E.120.3.14. PL/PYhON ..ottt 1820
Eo120.3.15. PSQLatiiiiiieieie ettt 1820
E.120.3.16. TIDPQ c.eeenvieeieieeieeeseee ettt 1820
E.120.3.17. JDBC ..ttt e 1820
E.120.3.18. ODBC ...ttt 1821
E.120.3.19. ECPG ..ottt 1822
E.120.3.20. MisC. INterfaces.ccceoereeriireenienenieienieiencetenee e 1822
E.120.3.21. Build and Install..........ccccocieviniineninieienieieceteneeeeeieee 1822
E.120.3.22. S0Urce Code......cc.coerieriirieiinieeienieeteienitee et 1823
E.120.3.23. CONLLID ..ottt 1823

E. 121, ReIEaSE 7. 1.3 oottt ettt 1823
E.121.1. Migration to Version 7.1.3 . ..cc.ccocvviirininiininienincenicneetenieseeee e 1823
E.121.2. ChANGES ...veoveeniiiieiieieeiteeetcetesteetee ettt sttt 1824

E. 122, ReIEASE T.1.2 oottt ettt 1824
E.122.1. Migration to Version 7.1.2......ccccccuevieriiiniiienieneenieeieeseeseeeveeseee s 1824
E.122.2. CRANEES .oouvveeiiiiiieiieeie ettt sttt et ebe et e st ebeenaeesaee s 1824
E.123. ReIEASE 7. 1.1 ettt sttt s st 1824
E.123.1. Migration to Version 7.1.1....ccccociiviiniiiniiiiieiesieeeeree et 1825
E.123.2. CRANEES .oovteeiiiiiieiieeieeieeteste ettt ettt ettt st esaee s 1825

E 124, REICASE 7.1 ..ottt ettt ettt 1825
E.124.1. Migration to VErsion 7.1ccccceriiinieniiniieiieneesieeieesiee st 1826
E.124.2. CRANEES .eouvveeiiiiiieiieeie ettt st ettt s saee s 1826
E.125. Release 7.0.3 ...ttt et s 1829
E.125.1. Migration to Version 7.0.3........ccccoceriiiiniieninieniieeeneeeereeeeeeeeeee 1830
E.125.2. Changesc.cooueiiiiiniiiieiieecereeeeee ettt 1830
E.126. Release 7.0.2ooueeiiiieeieieeeee ettt sttt e e ennesneens 1831
E.126.1. Migration to Version 7.0.2........c.cccceoiiiiiiniiiiniiieeneceeeeeeeeeeeee 1831
E.126.2. Changescoouvieiiiiienieeieeteete ettt ettt s 1831
E.127. RelEas@ 7.0.1 c.eeoiieieieeieeeee ettt ettt ettt et st enen 1831
E.127.1. Migration to Version 7.0.1.......ccccooriiiiiiiinieee e 1831
E.127.2. ChAnEes ..cveeeuiiiiiiiieeieeeeteete ettt ettt 1831
E.128. REIEASE 7.0 ..eeiiiiiiiiiiiiieeee ettt ettt 1832
E.128.1. Migration to Version 7.0........ccccocerienirienieniniene et 1832
E.128.2. CRANGESveveenieieeieieee ettt 1833
E.129. Release 0.5.3 ..ottt ettt ettt 1839
E.129.1. Migration to Version 6.5.3.......ccccceceriiiineninieniieee et 1839
E.129.2. ChaNGESooueenieiieieieeiteiee ettt e ettt 1839
E.130. ReIEASE 0.5.2 ..ottt ettt ettt st 1839
E.130.1. Migration to Version 6.5.2........ccccecuererienieninienineenenenienieneeeseeenee 1839
E.130.2. ChANGESooveenieiieieieeiteieeieete ettt 1839

E 131, REICASE 6.5.1 .ottt sttt s 1840

XXXVii

E.131.1. Migration to Version 6.5.1......cccecvevieriiniiiiniiinienieeieesee et 1840

E.131.2. CRANEES .oeuvteviiieiiieiieeteeieeite sttt sttt sttt ettt st esaeesaee s 1840
E.132.RElEASE 6.5 ... 1841
E.132.1. Migration to VErSion 6.5.......ccccevviiiniieriiniiiieenitesieeieesee et 1842
E.132.1.1. Multiversion Concurrency COntrolccecveeveeereeriensienneenne 1842

E.132.2. Changesccccooueiuieieniieieiieeeeeneeteeee ettt 1843

E 1330 REIEASE 60.4.2 ..ottt ettt sttt 1846
E.133.1. Migration to Version 6.4.2........c..cccccoerieiieninienineeneneeresreseeeeeeenee 1846
E.133.2. Changesccoouiiiiiiiiieieiieecereceeee et 1846
E.134. ReEIEASE 60.4.1 ..ottt ettt ettt e 1846
E.134.1. Migration to Version 6.4.1........c..ccccooiiiiiiiiiiiniiineceeeeceeee 1846
E.134.2. CRANGES -.cuveovieeeeieeieieee ettt sttt et 1846
E.135. REICASE 0.4 ...ttt ettt ettt et st eaen 1847
E.135.1. Migration to Version 6.4cccceeeuererierieniniene e 1848
E.135.2. ChanEscoueeiueiiieieieei ettt sttt 1848
E.136. Release 0.3.2 ..ottt sttt et st 1851
E.136.1. ChanGEScoueeiiiieieieeiteee ettt sttt 1852

E 137, ReIEaSE 0.3.1 .ottt sttt et 1852
E 1371, CRANGES ..ottt sttt 1853
E.138. REIEASE 6.3 ...ttt 1853
E.138.1. Migration to Version 6.3.......cc.cccceevieririenieninienineenie et 1855
E.138.2. CRANGESeoveeniiieeiieieeiteeceeseetee ettt 1855
E.139. Release 6.2.1 ..cooviuiiiiiiiiiiiiciceceieeeeeee sttt 1858
E.139.1. Migration from version 6.2 to version 6.2.1.......c.cccocererienenennuencne. 1858
E.139.2. CRANEES ..ovveeiiieiiieiieeie ettt ettt sttt ettt sete et esaaesabesbeenseesnee s 1859
E.140. RElEaSE 6.2ovouiiiiiiiiiiiiiicicicceeee ettt 1859
E.140.1. Migration from version 6.1 to version 6.2........c..cocceecereecvenieneennenncnnes 1859
E.140.2. Migration from version 1.x to version 6.2c..cccccecereecveneneennenncnnes 1859
E.140.3. CRANEES ..ouvveeiiiiiieiieeieeieeiteste ettt sttt st e be et st e beesaeesaee s 1859
E.141. Release 6. 1.1 ..o 1861
E.141.1. Migration from version 6.1 to version 6.1.1.....c..c.cccoccoiriiinininnnncne. 1861
E.14T1.2. CRANEES .eouvveiiieiieiieete ettt ettt ettt ettt e i s 1862
E.142. Release 6.1ccooviiiiiiiiiiiiiiiiiciciicc e 1862
E.142.1. Migration to Version 6.1ccccocceceeririeiiininieninieeneereeseeeeeeeee 1863
E.142.2. Changescccoouiiieieiieiieiieeceereceeee ettt 1863

E. 143, REIEASE 6.0 ...conneiiiiiiiiiiiiieetet ettt sttt st et 1865
E.143.1. Migration from version 1.09 to version 6.0............cccccoceevevinincnnnnne. 1865
E.143.2. Migration from pre-1.09 to version 6.0...........cccccoccevininiinininccnne. 1865
E.143.3. Changesccoiiiiiiiiiiieiiceeeeee e e 1865

E. 144, Release 1.09ooiiiiiiiiieeteetete ettt st 1867
E.145. Release 1.02oouiiiiiiieieeiiee ettt sttt et 1867
E.145.1. Migration from version 1.02 to version 1.02.1.......cccccocevvienininnnnnnnne. 1867
E.145.2. Dump/Reload Procedurecocevirieiieniinienieicee e 1868
E.145.3. ChanGESooueeeiiiieieieeieee ettt sttt 1868
E.146. Release 1.01 ...couiiiiiiieieeee ettt st 1869
E.146.1. Migration from version 1.0 to version 1.01.......ccccocooiviieciinininennenn. 1869
E.146.2. CRANGESeoveeniiiieiieiieiteeeeee sttt st 1870
E.147. Release 1.0 ...ccuiiiiiiiiiiiiiiieicieeteeeeeee sttt s 1871
E 1471, CRANGES ..cuveveenieiieiieieeeeee sttt 1871
E.148. Postgres95 Release 0.03.......couiiiiieririiiinieieneetesiesiteesitete et 1872
E.148.1. CRANGESveoveeniiiieiieiieiteeicee ettt et 1872
E.149. Postgres95 Release 0.02......cc.coiiieiieriinieiieeieerie ettt eie e sreeseeniee e 1874

XXXVIil

E.149.1. CRANEES .oouvteviiieiieiieete ettt ettt ettt enaeesaee s 1874

E.150. Postgres95 Release 0.01......cccoviiiiiiiiiiiiiieeieeie ettt 1875
F. Additional Supplied MOAUIEScccceeruiriiiiriinieeiieniie ettt 1876
Fol. adminpack.....coo.coviiiiiiniiieeecee ettt st 1876
F.1.1. Functions implemented............ccoceriienienieniieniieeesieeieeeeeee e 1876

F.2. QUtO_eXPlaiN...c.cociiiieiiiiiieiieieeeeceeee ettt 1877
F.2.1. Configuration parameters...........ccccoeeeeruereerenreneenueneenneneenenneseenenseenne 1877

F2.2. BXAMPIE ..ot e 1878
FL2.3. AULNOT ..ot aeeeenns 1878

B3 DO _IN ettt ettt 1879
F3.1. EXamPle USAZE ...c..oouviiiiiiiiiiiiicieeeeceee e 1879
F.3.2, AULROTS....oiiiiieiieee et e e et e e e e eeavaaee e 1879

Fld. DIEE_@IST ..ottt ettt ettt et s b ettt et sae et e neeneens 1879
F4.1. EXample USagec.cociiiiiiiiiiiiiiiiciccc e 1879
Fid.2, AUROTS.....oiiiieiieee e et e e e et e e e e eavaeeeeen 1880

LS. CRKPASS .ttt ettt st 1880
FoS. 1. AULNOT oottt et et e et et e e e aee e 1881

FLB. CIEEXE ettt ettt e et e et e et e e e taeeeeaaeeetaeeeeteeeetaeeeareeens 1881
F.6.1. RAtIONALEccuviiiiiiiiiieieee et ettt e e e vee e 1881

F.6.2. HOW 10 USE Lt ..oiiuiiiiiiiiciieieee et et e 1881
F.6.3. String Comparison Behavior.........c..coceverieiininiinininenenienceeeenee 1882
F.6.4. LIMItAtIONS ...uviiieeiiiiiiiieeeiiee ettt ettt eete et e et e e veeeeateeeeareeeeaseeearaeeenveeenans 1882

FL0.5. AULNOT ..ottt et ettt e et eete e e e veeeeaes 1883

BT CUDRC...c.eeeeee ettt et et et e e et e e e tr e e e tae e earaeens 1883
FL7. 1L SYNEAX citiiiieiieeit ettt sttt st et e e st e naeesnae s 1883
FL7.2. PIECISIONcciiiiiciiiieciiie ettt ettt et e et eeav e e e stbeeeaseeearseasnvaeenns 1883

B3, USAZR.ceuiiiiieiieeit ettt ettt st ettt st et e bt esabesabeenaeenaee s 1884

F7.4. Defaultscccouiiiiiiiiiiieiee ettt ettt et tb e e tae e svaeenes 1885

FL7.5. INOEES «.veieetieeeiet ettt e et e e et e e e e e e s bt e e s sbeeesabeeetseeesseesasaeesssaeannes 1886
FL7.6. CIEdits cooeuviiieiiieeiie ettt ettt et e e ve e eebeeestbeeeebeesasaeasnsaeenes 1886

FLB. ADIINK ...viiiiiii ettt ettt e et e e e e e tb e e eabe e eataeeetbeeebaeesaraeeas 1887
ADINK_CONMMECTceiiiiiiiieeiiieeeiie et et ettt tee et e e beeeabeeestbeeeebeesasaeesssaaenes 1887
ADINK_CONMMECT_U.ccuuiiiiiiiieiiiieeiieeiee et tee e st e e re e eeveeesebeeeebeesasaeessseaenes 1890
AbINK_dISCONMECEeieeviieiiiieiiieeiee ettt ettt et e e e seb e e et e e ssaeeessaeenns 1891
ADINK ..ottt e e e e e et e e eeneeeeaeeeenns 1892

16 10) 5001 Q) (= R RRRRROUPRRRRN 1895
ADIINK_OPEI. ..ttt ettt et 1897
ADINK_FEICI ..o et 1899
ADIINK _CLOSE vttt e e e e e e e e e e e e se e s saaasraeneees 1901
dblink_ZEt_CONNECHIONS ...veeueieieeieiietieie sttt sttt ene 1903
ADlINK_@ITOT_MESSAZEvevveeueetieeieiietieie ettt ettt et 1904
ADBINK_SeNA_QUETY ...eviiiiiieiieieeieeee et 1905
ADINK_IS_DUSY ..ttt e sttt 1906
ADINK_GEt_TESUIL...c.uiiiiiiiiiiieieee e e 1907
dblinK_CaNCEl_qUETY ...cooueiuiiiiiieiieieecee ettt 1909
ADINK_ GOt PKEY ..ottt et 1910
dblink_build_SQI_INSeIT......ceouiriiriieiiniieieneeteeri et 1911
dblink_build_sql_delete.........ccceeieriirieiiinirieeiieeiee e 1913
dblink_build_sql_update........cccceceeviiriiriininienierieieeetee e 1915

FLO. QIO Nt ettt e e e e e e e e e e s e s e e aa e st e teeaeeeeseseeaaaanns 1917
F.O.1. CONfigurationc.cceeueruerieriineenienientenierteteteeete ettt 1917
FLO. 2. USAZR.c.evieiiiiieieeerect ettt st sttt 1917

XXXIX

F.10.

F.11.

F.12.

F.13.

F.14.

F.15.

F.16.

F.17.

F.18.

F.19.

F.20.

QI XS YThe i uiteutieite ittt ettt ettt e st e et et e st e sabesab e e beesatesateenbeenbeesabeenbeenbeenns 1917
F.10.1. CONfAGUIATION «..eeeitiiiieiiieieeiteeiteee ettt st ettt st e s s 1917
FL10.2. USAZE...ttiuiieiieeit ettt ettt ettt st ettt e st st e e e saee s 1918
CAINAISTANCE ..ottt 1918
F.11.1. Cube-based earth diStances.........c.ccecevuereecieniinienineeneneereieneereeeeeee 1919
F.11.2. Point-based earth diStances.........c..cocceeereevieniniieninienenecreeneceeeeeee 1920
fUZZYSIMALCH. ..o 1920
Fo12.1. SOUNAEX.....coiiiiiiiiieiieee ettt ettt e 1921
Fi12.2. LeVENSNEEIN ...ouviiiiiiieiiiieieeteeteee ettt ettt 1921
F.12.3. MEtaphone.cccoiiiiiiiiieiieiceneeeeie e 1922
F.12.4. Double Metaphone............ccccociiiininiiiiiiiiiiicc e 1922
RISEOTE .ttt ettt et 1923
F.13.1. hstore External Representationcoccoeeveveeieencrienienrenneeeeeennenn 1923
F.13.2. hstore Operators and FUNCHIONSc.cccevverieieiniincrinieiereeenceenenee 1923
FoI3.30 INAEXES ettt st 1924
F13.4. EXAMPIES ..coviiiiiiiiiiieeiieeeteee ettt 1925
FLI3.5. StAtISTICS c.uveutieiienierieeierteet ettt st 1925
FiI13.0. AUTNOTS......ooiiiieieiieeee ettt 1926
TIEAZE ettt sttt ettt h et bt et bbbttt e b et be e bt et bttt enee 1926
Fol4. 1. FUNCHOMNS ...uetienieiieciteieei ettt 1926
Fo14.2. SamPle USES....ccoueiuiiieriiniieiinieeiesieeitesesiteete ettt 1926
IIEATTAY .ottt sttt ettt et s b et st eb et e bt et s b et e besbe e b e sbeestenaeene 1927
F.15.1. intarray Functions and Operators............cc.cecuevereenenerieneneennenenne 1927
Fo15.2. INAEX SUPPOIL...tiitiiiiieiiiiieieeete ettt ettt e ste et e seesebesbeenaeeseee s 1929
FIS5.3 EXAMPIE ..ottt sttt ettt s n 1929
F.I5.4. BenChmarkcoccoeeoieiiniiiiiniiieninieneseeceetee et 1930
FoIS.5. AUTNOTS..c..oiiiiiiiiiicieec ettt 1930
ISThu ettt ettt ettt ettt b et a e st beeanenaeeae 1930
Fo16.1. DAta tyPeS.cceeeriieiieniieeieeieenitesite ettt et sttt e sete bt e ieesatesbeenaeesaee s 1930
FiI0.2. CaSS cueniiiieiieieeierieet ettt ettt ettt st st 1931
F.16.3. Functions and OPEratorscoceevueerierieriieenieeneesieenieeseeseeesseesseeseeens 1931
Fi16.4. EXAMPIES ..couiiiiiiiiiiiieiieeieeiteete ettt ettt et st n 1932
F.16.5. BibLIOGIaPNY.....coiviiiiiiiiiiieiieeieeeetete ettt 1933
Fi160.6. AUNOT ...ttt 1933
Lo SR 1933
F7.1. RAONALE ..ttt 1933
F17.2. HOW t0 USE Tt .ttt 1934
Fo17.3. LIMITALHONS ..ottt ettt sttt st 1934
FoI17.4. AUNOT ...ttt 1934
LETEE ettt sttt 1935
FoI8.1. DefiNitiONS . .eeueenieiieiieiieiieieetce ettt et 1935
F.18.2. Operators and FUNCHONScc.ccueeveiririnenienieieieencnesrereeee e 1936
FLI8.3. INAEXES ettt 1939
FI8.4. EXAMPIEcooiiiiiiiiiiiiiii e 1939
FoI8.5. AUNOTIS ..ottt e et 1941
OIAZNAME ...ttt b et s bt et be bbbt nae e 1941
FiI1O.1. OVEIVIEW ..oniiieniiiiteieieee ettt st sttt 1942
Fo19.2. EXAMPIES ...ttt st 1942
F.19.3. LIMItAtIONS «..euveeniiiieiieieeiieieeicete sttt sttt 1945
FiI1O.4. AUNOT ...ttt 1945
PAZEINSPECT ..ttt ettt ettt ettt ettt ste st et e s bt eabe st eaeenbesbeeaenbeens 1945
F.20.1. FUNCHOMNS ..ottt sttt 1945

xl

F21. PEDENCH....cueiiiiiiieeee et sttt sttt be e 1947

F21.1. OVEIVIBW ..ouiiiiniiiiieicieeeeeeceteseetee ettt 1947
F.21.2. What is the “transaction” actually performed in pgbench?.................... 1950
F.21.3. CUSLOM SCTIPLS ..euvieniieiieiiieiieste ettt ettt st e be et st s be e e saee s 1950
F.21.4. Per-transaction loZ@INgccecuervieirieniiniiieniienienie et 1951
F.21.5. GOOd PractiCescccevueruieiinieiinieeieienecteieeeeee st 1952
F22. pg DUuffercache........ccccoeeiiiiiiiiiieecce et 1952
F.22.1. The pg_buffercache VIEWcccccccieecieeeriieeeieeerreeesereeeseseesseeesseeennns 1952
F.22.2. Sample OULPULco.eeiiiiiiiiiieieeeeeeeeeete e 1953
FL22.30 AUTNOTSeeeiiiiieeee ettt st 1954
FL23. PECIYPLO ottt 1954
F.23.1. General hashing functions............cccccceceeerenenenieriniencneneneeeeeeeennene 1954
F.23.1.1. AigeSt () ceveereereeeeiesieeie ettt ettt ettt 1954
F.23.1.2. MAC () ceteteeierie ettt ettt sttt 1954
F.23.2. Password hashing functionscccecevevenenerienninicnenicnreeeeeeeennenne 1955
F23.2. 1. CrYPE () ittt et et 1955
F23.2.2. gen_Sa11 () tooviieeeeciiee ettt et 1955
F.23.3. PGP encryption fUncCtionsccocceceererieienienienieneeneneeeenieeeee e 1957
F.23.3.1. pOP_SYM_ENCTYPE () crrreerrieeirieeeireeeeteeeeteeeereeeeareeeeaeeeeveeeeans 1957
F.23.3.2. pgp_SYM_dECTYPE () rrreerrieeirieeeireeeeieeeereeeeiveeeeareeeeaeeeeveeeeans 1958
F.23.3.3. pgp_pUb_eNCTYPE () rrreerrieeiiieeeieeeeieeeereeeeireeeeereeeveeeeveeeeans 1958
F.23.3.4. pgp_pub_deCTYPE () creeeeeieeieieeeieeeeieeeereeesireeeeareeeeaeeeereeeeans 1958
F.23.3.5. DOP_KeY_ TG () ttieiiiiiiieeeeeeee ettt eeee et erae e 1958
F.23.3.6. armor (), ACATMOT () ceveeeeeeeiereerieeeeeeeeeeeeeeeessesineseseseeeeeeeeseens 1959
F.23.3.7. Options for PGP functionscceceevuervienieniennienieeieeieee 1959
F.23.3.7.1. CIPher-al@occeevieeiieieiiieieeeecee et 1959

F.23.3.7.2. cOMPIESS-alZ0ccverveeriiiriieiieiienieeieeniee s sieenaee s 1959

F.23.3.7.3. compress-1eVelcccoocieriirniienieniiiieeenieeieeeee 1959

F.23.3.7.4. convert-Crlf........ccoooviriiininiininieienccneceee e 1960

F.23.3.7.5. disable-mdC.........ccceeeriimirieeninieienieicnceeeneeeeieeeee 1960

F.23.3.7.6. enable-sesSI0N-KeYcccceevuerrueeneenienieenieeniesieenieenaeenn 1960

F.23.3.7.7. S2K-MOdE......cc.creiriiieiiiieieieneeieeeceee e 1960

F.23.3.7.8. 82K-digest-al@O.......eevueereiriiniieiienieeieeeeee e 1960

F.23.3.7.9. s2k-cipher-algocccceevereeeninieniininiiniciencceeieeee 1961
F.23.3.7.10. unicode-mode...........cccceeriirrieeneenienieenienieeieesieenaeenn 1961

F.23.3.8. Generating PGP keys with GnuPG.............c..ccccociiiinininnnnn. 1961
F.23.3.9. Limitations of PGP cOdec.ccccooeiriiniiiiiiniiniiiecnieeieeeee 1962
F.23.4. Raw encryption functionsc..ceceeerieiiiniinienineeneneceeeeeeeeeeeeeee 1962
F.23.5. Random-data fUnCHONSccceevueriiiinieniiniieieeecneeeeee e 1963
FL23.0. INOLES -ttt sttt ettt ettt ettt e st e st e e s ene 1963
F.23.6.1. CONfiGUIAtiON......couevuiriirieieieiieinetnteteieteeete e erenes 1963
F.23.6.2. NULL handlingccecereeienenienienieeieieeiceie e 1964
F.23.6.3. Security limitations.........cccccueeveerinenenienieenineneneeereeeeenenes 1964
F.23.6.4. Useful readingcccovevverveirinininienieneeeeeenenieseeeeeee e 1964
F.23.6.5. Technical referencesceceevereenienerienienieieseeesie e 1964
F23. 7. AUTNOT ..ot 1965
F.24. pg_freeSpacemapcceeeeriiriieiiniieierieeiteeet ettt sttt ettt st st 1965
F.24. 1. FUNCHIONS ...ttt sttt 1965
F.24.2. Sample OULPULoueiiiriiiiieieeiceiesieeteesteeeete ettt 1966
F.24.3. AUNOT ..ottt 1966
FL25. PEIOWIOCKS....c.eeeuiiiiiiieieeiteteeeet ettt sttt et et st 1967
F25.1. OVEIVIBW ..oniiiiniiiiieiieieeitcecete sttt st sttt 1967

xli

F.26.

F27.

F.28.

F.29.

F31.

F.32.

F.33.

F.34.

F.35.

F.25.2. Sample OULPUL ...oouveeiieiieiieiieeie ettt ettt e n 1968

F.25.3. AUTNOT ..ottt 1968
PE_StANADY ..ttt sttt e e e s 1968
FL26. 1. USAZE...ciitieiieeiiieiteeet ettt sttt ettt ettt st et e b e saae s 1968
F.26.2. EXAMPIES ..ccuutiiiiiiiiiiieeiieieeteste ettt ettt s 1970
F.26.3. Supported SEIVET VEISIONSccceeruereerieriereniineeiineeene e erereseenesaeenee 1971
N T N 11 4 o) PR 1971
PE_Stat_SEALEIMENLSevieieeeerieeeeiie et et ettt e et e et e sree e sbee e e e e sareeesareeeas 1972
F.27.1. The pg_stat_statements VIEWcccccceecieeeiieeerreeesreeenereessreesneeennns 1972
FL27.2. FUNCHONS ..ttt ettt ettt st et 1973
F.27.3. Configuration parameters............coceeeeruerieuenrieienueseene e seeee e 1973
F27.4. Sample OULPULcc.cocviiiiiiiiiiici e 1973
F27.5. AUNOT ...t 1974
PESTALTUPLE ... 1974
F28.1. FUNCHIOMNS ...ttt ettt 1974
F28.2. AUNOTIS......eiiiiiiieieee et 1976
0o ¢4 1| DO OO UR U SO PO URURERURRURRIURRONt 1976
F.29.1. Trigram (or Trigraph) CONCePLS.....ccccevueruieueniirieniireeie et 1976
F.29.2. Functions and OPEratorsc..cceeeieruerierienienienienieeneenieseeniesieeeeneeenee 1976
F.29.3. INEX SUPPOIT..ccuviriiiiiiiiiieiieieeieseeteeetete ettt 1977
F.29.4. Text Search INt@Zrationcccceveriererienienienienieneee et 1978
F.29.5. REfEICNCEScueenvirieiiiiieeiteieeicee ettt 1978
F.29.6. AUTNOTS......cooiiiiiiiiieieieeteceetee e e 1979
S veeuteeuteete e tte st e e e e bt e hte et e e te e bae e te e be e bteeabeenbe e bteeabeenbe et eeeateenbeebeessteebeenbeenes 1979
F.30.1. RAtIONALE ..ottt 1979
F.30.2. SYNEAX ceveiiiiiiiieierieeteee ettt ettt st 1980
F.30.3. PreCiSION ...coviiiiiiriieierieeiteteetceteseeetee sttt 1981
FL30.4. USAZE...eiiiieiieeiieitesteett ettt ettt st ettt sate et et e st s beenseesaee s 1981
FL30.5. NOTES ..enviitiiieieeierieetesteet ettt ettt ettt s s et b e st 1982
F.30.6. CIedits c..covvevieiieiirieeieieeeeieecete ettt st 1982
] 01 FO OO OO USRS U O RUUPRTUPRRPPRIOt 1982
F.31.1. refint.c — functions for implementing referential integrity................... 1982
F.31.2. timetravel.c — functions for implementing time travel.............c........... 1983
F.31.3. autoinc.c — functions for autoincrementing fields...........ccoceeveeneennnen. 1984
F.31.4. insert_username.c — functions for tracking who changed a table 1984
F.31.5. moddatetime.c — functions for tracking last modification time 1984
SSIINEO. ¢ttt st et 1984
F.32.1. Functions Providedcooieviiiniiiniiniiiiieeeeeeeec e 1985
F32.2. AUNOT ...t 1986
EADIETUINC ..o 1986
F.33.1. Functions Providedcccooeeiiiiriiniieeeeee e 1986

F.33.1.1. NOTMAL_TANA ittt e e e e e e 1987

F 33,12, CroSStal (£@XE) oo et e e eaees 1988

F.33.1.3. CroSstablN (£@XE) ittt eeeees 1989

F.33.1.4. crosstab (£eXt, TeXE) wiieeeeeeeee ettt e e e 1991

F.33.1.5. CONNECED Y iiiiieiieeieeieeie ettt ete et sbe e saeessbeeaeeree e 1993
F33.20 AUTNOT ..o 1995
BT DAISET ..ttt ettt ettt b ettt et et bt et s bt eb et e bt et b e et beebe et ebeentenaeeaee 1996
B34 1. USAZE .ttt st st 1996
ESEATCHIZ ...ttt 1997
F.35.1. POrtability ISSUEScccverueruieiiniiiiinienteieniteteeetee et 1997
F.35.2. Converting a pre-8.3 Installation........c..ccceecvereeienineencnenniencneeeenenes 1998

xlii

FL30. UUIA-0SSP e uveeneieeiiieieeiteee ettt ettt sttt et st ettt e st et e beesabesnbeebee e 1998
F.36.1. uuid-055p FUNCHIONS ...ccovveiiiiiiieic et 1999
F36.2. AUhOr ..o 2000

F.37. VACUUMIO. ...ttt sttt e 2000
F37. 1. USAZE .ottt s 2000
F37.2. MEthOd ..ottt e 2001
FL37.30 ATNOT ..ottt e 2001

FL38. XIMIZ ittt sttt ettt 2001
F.38.1. Deprecation NOICEcoveuieuieieniieieieneeiete et 2001
F.38.2. Description of fUNCHONS........c.ccciiiiiiiiiiiieicee e 2001
F.38.3. XAt LAl ittt ettt et e e e e raa e e 2002

F.38.3.1. Multivalued reSultsccccoeieiiriereneeieeeeeeeee e 2004

F.38.4. XSLT fUNCHONS ...ttt 2005

F38.4. 1. XS 1t _PrOCESS iiiiiiiiiee ettt ettt et e s 2005

F38.5. ATNOT ..ot 2005

G. EXtErNal PrOJECES ...oueiuiiiiiiieiieiieteste ettt sttt 2006

G.1. CHENt INEEITACES ... eeuteiieeieieitieie ittt sttt 2006

G.2. Procedural Lan@uages..........c.cceeueruerienienienienieeienientenie ettt ettt 2007

G.3. EXIENSIONS ..ottt sttt sttt et ea et s 2007

H. The CVS REPOSILOTYcuveriieuiiiieiiinieeiteniesiteteste ettt sttt ettt sttt st sae e 2009

H.1. Getting The Source Via Anonymous CVScccoceoviininiinininiineieneneenenene 2009

H.2. CVS Tree Organizationcccceceereererienienienieneeeenenteniesieesessesseesuesmeessessenns 2010

H.3. Getting The SoUrce Via ISYINC......cocerviererieriinieiinieeteneniteniesitete e eiee e sieenaesieens 2011

H.4. Getting The Source Via CVSUP......cooieriiiriiiiieitenie ettt eve e 2012
H.4.1. Preparing A CVSup Client SYSteM......cccceevvvieriierieniieieenienieesieenieenenenn 2012
H.4.2. Running a CVSUpP CHENL ...covuieviiiiiieiienieeieeiteeesie et 2012

L. DOCUMENTALION.....ccueiiiriiiiiriietietceientc ettt ettt st ettt et eat et bt e e sae e be b eanesaeeae 2015

L1 DOCBOOK ...ttt sttt 2015

LL20 TOOL SELS ..ottt ettt ettt sv et st be st sa e sae e enenbeeas 2015
[.2.1. Linux RPM Installationccccoccenerieninienieniniencnceeneceeieseeeeneeenee 2016
1.2.2. FreeBSD Installationccceceevierinieninieieniinieenceee e 2016
1.2.3. Debian Packages.......cocueeuiriiirieniiiiiiiteeeceetetese et 2017
1.2.4. Manual Installation from SOUICEccccoeeiiniriieninieneneceeeeeeee 2017

1.2.4.1. Installing OpenJade............ccceeveeviinienininieniinicenccece e 2017
1.2.4.2. Installing the DocBook DTD Kit........c.ccoceeeiiniiciinieiininicienns 2018
1.2.4.3. Installing the DocBook DSSSL Style Sheets...........ccccccevvenenns 2018
1.2.4.4. Installing JadeTeX...........cccooiriiiiniiiiiceceece e 2019
[.2.5. Detection by COnfigure .ccciiiiiiiniiieiiiieieeceee e 2019

1.3. Building The DOCUMENTAtIONeouieierieriieieetieie ettt 2020
L30T HTML ettt st e 2020
L.3.2. MANPAZESeeeeeiiieiieeiteeite ettt sttt ettt sttt 2020
1.3.3. Print Output via JadeTeXcccooiririiniiieieeeee e 2021
1.3.4. Print Output via RTFocoiiiiiiie e 2021
1.3.5. Plain Text FIleS ...c..coeeiiiiiiieiieieeseeteeteeeee e 2023
L.3.6. Syntax ChecKcooiiiiiiiiieiieese e 2023

L.4. Documentation AUtNOTING.......c.cecuiriiiererieientieiesie ettt ettt 2023
L4.1. EMacs/PSGMLc..cocoiiiiiiiiiicicictc et e 2023
[.4.2. Other EMacs MOdESc.ccccoviriirieieieiiiniiicsieiceeicese e 2024

L5, StYle GUIAE.....cviiiiiiicieiieieecec ettt s 2025
L.5.1. Reference Pages........cccccvivieiiiniiiininicieeceeeteeee et 2025

T ACTOMYIIIS ... eitieiie ettt ettt ettt s e et e bt e st e et e e bt e s bt e sabeenseenbaessseesseensaesasesssesnseenssenasennses 2027

xliii

Bibliography 2032
Index 2034

xliv

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL devel-
opers and other volunteers in parallel to the development of the PostgreSQL software. It describes all
the functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been orga-
nized in several parts. Each part is targeted at a different class of users, or at users in different stages
of their PostgreSQL experience:

« Part I is an informal introduction for new users.

« Part II documents the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every PostgreSQL user should read this.

« Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

« Part IV describes the programming interfaces for PostgreSQL client programs.

+ Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

« Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

« Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2', developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database sys-
tems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

« complex queries

- foreign keys

. triggers

. views

« transactional integrity

« multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

« data types

« functions

+ operators

« aggregate functions
« index methods

1. http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/postgres.html

xly

Preface

« procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free
of charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available any-
where.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial con-
cepts for the system were presented in The design of POSTGRES , and the definition of the initial
data model appeared in The POSTGRES data model . The design of the rule system at that time was
described in The design of the POSTGRES rules system. The rationale and architecture of the storage
manager were detailed in The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGRES , was released to a few external users in June 1989. In response to
a critique of the first rule system (A commentary on the POSTGRES rules system), the rule system
was redesigned (On Rules, Procedures, Caching and Views in Database Systems), and Version 2
was released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support
for multiple storage managers, an improved query executor, and a rewritten rule system. For the most
part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Infor-
mation Technologies (later merged into Informix?, which is now owned by IBM?) picked up the code
and commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia
2000 scientific computing project®.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2. http://www.informix.com/

3.

http://www.ibm.com/

4. http://meteora.ucsd.edu/s2k/s2k_home.html

xlvi

Preface

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a
new name, Postgres95 was subsequently released to the web to find its own way in the world as an
open-source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

+ The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries
were not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregate functions were re-implemented. Support for the GROUP BY
query clause was also added.

+ A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

« A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 server.

« The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

+ The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because
of tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

This book uses the following typographical conventions to mark certain portions of text: new terms,
foreign phrases, and other important passages are emphasized in italics. Everything that represents

xlvii

Preface

input or output of the computer, in particular commands, program code, and screen output, is shown
in a monospaced font (example). Within such passages, italics (example) indicate placeholders;
you must insert an actual value instead of the placeholder. On occasion, parts of program code are
emphasized in bold face (example), if they have been added or changed since the preceding example.

The following conventions are used in the synopsis of a command: brackets ([and 1) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.)
Braces ({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. . .) mean
that the preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL.:

Wiki
The PostgreSQL wiki® contains the project’s FAQ® (Frequently Asked Questions) list, TODO’
list, and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists
The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.
Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part

PN

http://wiki.postgresql.org
http://wiki.postgresql.org/wiki/Frequently_Asked_Questions
http://wiki.postgresql.org/wiki/Todo
http://www.postgresql.org

xIviii

Preface

of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

« A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

+ A program produces the wrong output for any given input.
+ A program refuses to accept valid input (as defined in the documentation).

« A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

+ PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

5.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

xlix

Preface

« The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and INSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/ .psqglrc start-up file.)
An easy way to create this file is to use pg_dump to dump out the table declarations and data
needed to set the scene, then add the problem query. You are encouraged to minimize the size of
your example, but this is not absolutely necessary. If the bug is reproducible, we will find it either
way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

« The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the mes-
sage. In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to verbose so that all de-
tails are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

« The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

» Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

+ Anything you did at all differently from the installation instructions.

« The PostgreSQL version. You can run the command SELECT version () ; to find out the version
of the server you are connected to. Most executable programs also support a ——version option; at
least postgres —--versionand psql —--version should work. If the function or the options do

Preface

not exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a CVS snapshot, mention that, including its date and time.

If your version is older than 8.4.0 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL; if you require more than we can provide, consider
acquiring a commercial support contract.

« Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on i386s. If you have
installation problems then information about the toolchain on your machine (compiler, make, and
so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an
article’ that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the back-
end server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend server
process is quite different from crash of the parent “postgres” process; please don’t say “the server
crashed” when you mean a single backend process went down, nor vice versa. Also, client programs
such as the interactive frontend “psql” are completely separate from the backend. Please try to be
specific about whether the problem is on the client or server side.

5.3. Where to report bugs

In general, send bug reports to the bug report mailing list at <pgsgl-bugs@postgresqgl.org>. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site'’. Entering a
bug report this way causes it to be mailed to the <pgsgql-bugs@postgresqgl.org> mailing list.

If your bug report has security implications and you’d prefer that it not become immediately vis-
ible in public archives, don’t send it to pgsgl-bugs. Security issues can be reported privately to
<security@postgresqgl.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsql-sgl@postgresql.org>
or <pgsgl-general@postgresqgl.org>. These mailing lists are for answering user questions, and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers’ mailing list
<pgsgl-hackers@postgresqgl.org>. This list is for discussing the development of PostgreSQL,

9. http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10. http://www.postgresql.org/

li

Preface

and it would be nice if we could keep the bug reports separate. We might choose to take up a
discussion about your bug report on pgsgl-hackers, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@postgresqgl . org>. Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsgl-hackers@postgresqgl.org>, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it.
(You need not be subscribed to use the bug-report web form, however.) If you would like to send
mail but do not want to receive list traffic, you can subscribe and set your subscription option to
nomail. For more information send mail to <majordomo@postgresql .org> with the single word
help in the body of the message.

lii

l. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple in-
troduction to PostgreSQL, relational database concepts, and the SQL language to those who are new
to any one of these aspects. We only assume some general knowledge about how to use computers.
No particular Unix or programming experience is required. This part is mainly intended to give you
some hands-on experience with important aspects of the PostgreSQL system. It makes no attempt to
be a complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a
more formal knowledge of the SQL language, or Part IV for information about developing applica-
tions for PostgreSQL. Those who set up and manage their own server should also read Part III.

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator already installed it. If that is the case, you should obtain infor-
mation from the operating system documentation or your system administrator about how to access
PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your ex-
perimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 15 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

+ A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program
is called postgres.

« The user’s client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution; most are developed
by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. You should keep this in mind, because
the files that can be accessed on a client machine might not be accessible (or might only be accessible
using a different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this
it starts (“forks™) a new process for each connection. From that point on, the client and the new

Chapter 1. Getting Started

server process communicate without intervention by the original postgres process. Thus, the master
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of this is of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next
section.

To create a new database, in this example named mydb, you use the following command:

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell’s search
path was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such f
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role "Jjoe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 20 for help creating accounts. You will need to
become the operating system user under which PostgreSQL was installed (usually postgres) to
create the first user account. It could also be that you were assigned a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the —U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

Chapter 1. Getting Started

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of this tutorial under the user account that you started the server as. '

You can also create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
characters in length. A convenient choice is to create a database with the same name as your current
user name. Many tools assume that database name as the default, so it can save you some typing. To
create that database, simply type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

» Running the PostgreSQL interactive terminal program, called psqgl, which allows you to interac-
tively enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

« Writing a custom application, using one of the several available language bindings. These possibil-
ities are discussed further in Part IV.

You probably want to start up psql to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psql mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When
you connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same
name as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the
same name as the operating system user that started the server, and it also happens that that user always has permission to
create databases. Instead of logging in as that user you can also specify the —U option everywhere to select a PostgreSQL user
name to connect as.

Chapter 1. Getting Started

psgl (8.4.0)
Type "help" for help.

mydb=>
The last line could also be:
mydb=+#

That would mean you are a database superuser, which is most likely the case if you installed Post-
greSQL yourself. Being a superuser means that you are not subject to access controls. For the purposes
of this tutorial that is not important.

If you encounter problems starting psqgl then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that
you can type SQL queries into a work space maintained by psgl. Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 8.4.0 on i586-pc-linux-gnu, compiled by GCC 2.96, 32-bit
(1 row)

mydb=> SELECT current_date;
date

2002-08-31
(1 row)

mydb=> SELECT 2 + 2;

?column?

The psqgl program has a number of internal commands that are not SQL commands. They begin
with the backslash character, “\”. Some of these commands were listed in the welcome message. For
example, you can get help on the syntax of various PostgreSQL SQL commands by typing:

mydb=> \h

To get out of psql, type:
mydb=> \q

and psgl will quit and return you to your command shell. (For more internal commands, type \ 2 at
the psql prompt.) The full capabilities of psgl are documented in psql. If PostgreSQL is installed
correctly you can also type man psqgl at the operating system shell prompt to see the documentation.
In this tutorial we will not use these features explicitly, but you can use them yourself when it is
helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial
is only intended to give you an introduction and is in no way a complete tutorial on SQL. Numer-
ous books have been written on SQL, including Understanding the New SQL and A Guide to the
SQL Standard. You should be aware that some PostgreSQL language features are extensions to the
standard.

In the examples that follow, we assume that you have created a database named mydb, as described in
the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/. To use those files, first change to that directory and run make:

$ ed/src/tutorial
S make

This creates the scripts and compiles the C files containing user-defined functions and types. (If you
installed a pre-packaged version of PostgreSQL rather than building from source, look for a directory
named tutorial within the PostgreSQL distribution. The “make” part should already have been
done for you.) Then, to start the tutorial, do the following:

$ ed/tutorial
$ psql -s mydb

mydb=> \i basics.sql

The \ i command reads in commands from the specified file. psql’s —s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for zable. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific data type. Whereas columns have a fixed order in each row,
it is important to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.

Chapter 2. The SQL Language

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)

You can enter this into psgl with the line breaks. psgl will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you
can type the command aligned differently than above, or even all on one line. Two dashes (“--") in-
troduce comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive
about key words and identifiers, except when identifiers are double-quoted to preserve the case (not
done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in
length. int is the normal integer type. real is a type for storing single precision floating-point num-
bers. date should be self-explanatory. (Yes, the column of type date is also named date. This might
be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision,
char (N), varchar (N), date, time, timestamp, and interval, as well as other types of general
utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary number of
user-defined data types. Consequently, type names are not key words in the syntax, except where
required to support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differ-
ently you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, 71994-11-27");

Chapter 2. The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (), as in the example. The date type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)");

The syntax used so far requires you to remember the order of the columns. An alternative syntax
allows you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, 71994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, 'Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implic-
itly.

Please enter all the commands shown above so you have some data to work with in the following
sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually
faster because the COPY command is optimized for this application while allowing less flexibility than
INSERT. An example would be:

COPY weather FROM ’ /home/user/weather.txt’;

where the file name for the source file must be available to the backend server machine, not the client,
since the backend server reads the file directly. You can read more about the CopY command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT % FROM weather;
Here = is a shorthand for “all columns”. ' So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

1. While SELECT =« is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a
column to the table would change the results.

Chapter 2. The SQL Language

San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can
do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:
city | temp_avg | date
_______________ e
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the &S clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression
is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification.
For example, the following retrieves the weather of San Francisco on rainy days:

SELECT % FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:
city | temp_lo | temp_hi | prcp | date
——————————————— B e At
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
777777777777777 -t
Hayward \ 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in
either order. But you’d always get the results shown above if you do:

SELECT » FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Chapter 2. The SQL Language

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT

and ORDER BY together:

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. A query that accesses multiple rows of the same or different tables at one time is called
a join query. As an example, say you wish to list all the weather records together with the location
of the associated city. To do that, we need to compare the city column of each row of the weather
table with the name column of all rows in the cities table, and select the pairs of rows where these

values match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner
than actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT «
FROM weather, cities
WHERE city = name;
city | temp_lo
_______________ [P
San Francisco | 46
San Francisco | 43

(2 rows)

Observe two things about the result set:

1994-11-27
1994-11-29

San Francisco
San Francisco

(-194,53)
(-194,53)

+ There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will
see shortly how this can be fixed.

2.

In some database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders

the rows and so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not
guarantee that DISTINCT causes the rows to be ordered.

Chapter 2. The SQL Language

« There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you
will probably want to list the output columns explicitly rather than using »:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to.
If there were duplicate column names in the two tables you’d need to gualify the column names to
show which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won’t
fail if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT «
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
is to scan the weather table and for each row to find the matching cities row(s). If no matching
row is found we want some “empty values” to be substituted for the cities table’s columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT «
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— B E e e bt Tt e
Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to
find all the weather records that are in the temperature range of other weather records. So we need to
compare the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi
columns of all other weather rows. We can do this with the following query:

10

Chapter 2. The SQL Language

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather Wl, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— s et e e Atk
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as w1 and w2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT «
FROM weather w, cities c¢
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weather WHERE temp_lo = max(temp_1lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max (temp_lo) FROM weather);

San Francisco
(1 row)

11

Chapter 2. The SQL Language

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city;

city | max
,,,,,,,,,,,,,,, I
Hayward | 37

San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows match-
ing that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

city | max
_________ b
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_1lo values below 40. Finally, if
we only care about cities whose names begin with “S”, we might do:

SELECT city, max(temp_1lo)
FROM weather
WHERE city LIKE ’'S%'@®
GROUP BY city
HAVING max (temp_lo) < 40;

© The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL’s WHERE and HAVING
clauses. The fundamental difference between WHERE and HAVING is this: WHERE selects input rows
before groups and aggregates are computed (thus, it controls which rows go into the aggregate com-
putation), whereas HAVING selects group rows after groups and aggregates are computed. Thus, the
WHERE clause must not contain aggregate functions; it makes no sense to try to use an aggregate to
determine which rows will be inputs to the aggregates. On the other hand, the HAVING clause al-
ways contains aggregate functions. (Strictly speaking, you are allowed to write a HAVING clause that
doesn’t use aggregates, but it’s seldom useful. The same condition could be used more efficiently at
the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

12

Chapter 2. The SQL Language

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > 71994-11-28';

Look at the new state of the data:

SELECT = FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B et B et T T e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward \ 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’'Hayward’;
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B i B e et T T
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

13

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so
it will be useful to have read that chapter. Some examples from this chapter can also be found in
advanced. sql in the tutorial directory. This file also contains some sample data to load, which is
not repeated here. (Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to en-
capsulate the details of the structure of your tables, which might change as your application evolves,
behind consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want
to make sure that no one can insert rows in the weather table that do not have a matching entry
in the cities table. This is called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at all) by first looking at the cities table to check
if a matching record exists, and then inserting or rejecting the new weather records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar (80) primary key,
location point

14

Chapter 3. Advanced Features

CREATE TABLE weather (
city varchar (80) references cities(city),
temp_lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:
INSERT INTO weather VALUES (’'Berkeley’, 45, 53, 0.0, ’1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint "weather_cit
DETAIL: Key (city)=(Berkeley) 1is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well
as total deposit balances for branches. Suppose that we want to record a payment of $100.00 from
Alice’s account to Bob’s account. Simplifying outrageously, the SQL commands for this might look
like:

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = ’Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank’s officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for
a system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into a transaction gives us this guarantee. A transaction is said to
be atomic: from the point of view of other transactions, it either happens completely or not at all.

15

Chapter 3. Advanced Features

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic up-
dates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice’s branch but not the credit to Bob’s
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility as they happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGIN and COMMIT commands. So our banking transaction would actually look like:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

-— etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful)
coMMIT wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes
called a transaction block.

Note: Some client libraries issue BEcTN and comutT commands automatically, so that you might
get the effect of transaction blocks without asking. Check the documentation for the interface you
are using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction’s database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
a savepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to
other sessions, while the rolled-back actions never become visible at all.

16

Chapter 3. Advanced Features

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s
account, only to find later that we should have credited Wally’s account. We could do it using save-
points like this:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’'Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;

-— oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’"Wally’;

COMMIT;

This example is, of course, oversimplified, but there’s a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transac-
tion block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.
But unlike regular aggregate functions, use of a window function does not cause rows to become
grouped into a single output row — the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee’s salary with the average salary in his
or her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
——————————— -t
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000
develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 | 3900 | 3700.0000000000000000
sales | 3 4800 | 4866.6666666666666667
sales | 1] 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the regular avg
aggregate function, but the OVER clause causes it to be treated as a window function and computed
across an appropriate set of rows.)

17

Chapter 3. Advanced Features

A window function call always contains an OVER clause following the window function’s name and
argument(s). This is what syntactically distinguishes it from a regular function or aggregate function.
The OVER clause determines exactly how the rows of the query are split up for processing by the
window function. The PARTITION BY list within OVER specifies dividing the rows into groups, or
partitions, that share the same values of the PARTITION BY expression(s). For each row, the window
function is computed across the rows that fall into the same partition as the current row.

Although avg will produce the same result no matter what order it processes the partition’s rows in,
this is not true of all window functions. When needed, you can control that order using ORDER BY
within OVER. Here is an example:

SELECT depname, empno, salary, rank() OVER (PARTITION BY depname ORDER BY salary DESC)

depname | empno | salary | rank
——————————— e e
develop | 8 | 6000 | 1
develop | 10 | 5200 | 2
develop | 11 | 5200 | 2
develop | 9 | 4500 | 4
develop | 7 4200 | 5
personnel | 2 3900 | 1
personnel | 5 3500 | 2
sales | 1 5000 | 1
sales | 4 | 4800 | 2
sales | 3 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank within the current row’s partition for
each distinct ORDER BY value, in the order defined by the ORDER BY clause. rank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query’s
FROM clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row
removed because it does not meet the WHERE condition is not seen by any window function. A query
can contain multiple window functions that slice up the data in different ways by means of different
OVER clauses, but they all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also
possible to omit PARTITION BY, in which case there is just one partition containing all the rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Many (but not all) window functions act only on
the rows of the window frame, rather than of the whole partition. By default, if ORDER BY is supplied
then the frame consists of all rows from the start of the partition up through the current row, plus any
following rows that are equal to the current row according to the ORDER BY clause. When ORDER BY
is omitted the default frame consists of all rows in the partition. ' Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;

salary | sum
________ b
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100

1. There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for

details.

18

F

47100
47100
47100
47100
47100
47100

Chapter 3. Advanced Features

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get
very different results:

SELECT sa

lary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

Here the sum is taken from the first (lowest) salary up through the current one, including any dupli-
cates of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They
are forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they
logically execute after the processing of those clauses. Also, window functions execute after regular
aggregate functions. This means it is valid to include an aggregate function call in the arguments of a
window function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname,

FROM
(SELECT

FROM
) AS ss
WHERE pos

empno,

salary, enroll_date

depname, empno, salary, enroll_date,

rank () OVER
empsalary
< 3;

(PARTITION BY depname ORDER BY salary DESC,

The above query only shows the rows from the inner query having rank less than 3.

empno)

AS pos

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for
several functions. Instead, each windowing behavior can be named in a WINDOW clause and then
referenced in OVER. For example:

SELECT sum(salary)

FROM empsalary

OVER w, avg(salary) OVER w

19

Chapter 3. Advanced Features

WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 7.2.4, and the SELECT
reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so
you want some way to show the capitals implicitly when you list all cities. If you’re really clever you
might invent some scheme like this:

CREATE TABLE capitals (
name text,
population real,
altitude int, -— (in ft)
state char (2)
)

CREATE TABLE non_capitals (
name text,
population real,
altitude int -— (in ft)
)i

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (

name text,

population real,

altitude int —— (in ft)
)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and altitude) from its
parent, cities. The type of the column name is text, a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL,
a table can inherit from zero or more other tables.

20

Chapter 3. Advanced Features

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude of 500 feet or higher:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
,,,,,,,,,,, [P
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the oNLY before cities indicates that the query should be run over only the cities table, and
not tables below cities in the inheritance hierarchy. Many of the commands that we have already
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints
or foreign keys, which limits its usefulness. See Section 5.8 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to
more resources.

2. http://www.postgresql.org

21

Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database,
and how to query it. The middle part lists the available data types and functions for use in SQL
commands. The rest treats several aspects that are important for tuning a database for optimal perfor-
mance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a
complete description of a particular command should see Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it
contains several rules and concepts that are implemented inconsistently among SQL databases or that
are specific to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
6,9

terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which
tokens are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special
character symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not
be if there is no ambiguity (which is generally only the case if a special character is adjacent to some
other token type).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT = FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’'hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above ex-
ample we would usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance the UPDATE command always requires a SET token to appear in a certain position, and this
particular variation of INSERT also requires a VALUES in order to be complete. The precise syntax
rules for each command are described in Part VI.

4.1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are exam-
ples of identifiers. They identify names of tables, columns, or other database objects, depending on
the command they are used in. Therefore they are sometimes simply called “names”. Key words and
identifiers have the same lexical structure, meaning that one cannot know whether a token is an iden-
tifier or a key word without knowing the language. A complete list of key words can be found in
Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be
letters, underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers
according to the letter of the SQL standard, so their use might render applications less portable. The

24

Chapter 4. SQL Syntax

SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
length is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant

in src/include/pg_config_manual.h.

Identifier and key word names are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by en-
closing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an
identifier, never a key word. So "select" could be used to refer to a column or table named “select”,
whereas an unquoted select would be taken as a key word and would therefore provoke a parse
error when used where a table or column name is expected. The example can be written with quoted
identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with Us (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example Us"foo". (Note that this
creates an ambiguity with the operator &. Use spaces around the operator to avoid this problem.) Inside
the quotes, Unicode characters can be specified in escaped form by writing a backslash followed by
the four-digit hexadecimal code point number or alternatively a backslash followed by a plus sign
followed by a six-digit hexadecimal code point number. For example, the identifier "data" could be
written as

Us"d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&"d!0061t!+000061" UESCAPE ' !’

25

Chapter 4. SQL Syntax

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \007F) can be specified.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "FoO" are different from these three and each other. (The folding of unquoted names to
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the
standard. If you want to write portable applications you are advised to always quote a particular name
or never quote it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (), for
example ' This is a string’. To include a single-quote character within a string constant, write
two adjacent single quotes, e.g., ' Dianne”s horse’. Note that this is not the same as a double-quote
character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT '’ foo’
"bar’;

is equivalent to:

SELECT ' foobar’;

but:

SELECT ' foo’ "bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. String Constants with C-Style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard.
An escape string constant is specified by writing the letter E (upper or lower case) just before the
opening single quote, e.g., E’ foo’. (When continuing an escape string constant across lines, write
E only before the first opening quote.) Within an escape string, a backslash character (\) begins a

26

Chapter 4. SQL Syntax

C-like backslash escape sequence, in which the combination of backslash and following character(s)
represent a special byte value, as shown in Table 4-1.

Table 4-1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (0=0-7) octal byte value

\xh, \xhh (h=0-9,A-F) hexadecimal byte value

Any other character following a backslash is taken literally. Thus, to include a backslash character,
write two backslashes (\\). Also, a single quote can be included in an escape string by writing \’, in
addition to the normal way of ”.

It is your responsibility that the byte sequences you create are valid characters in the server charac-
ter set encoding. When the server encoding is UTF-8, then the alternative Unicode escape syntax,
explained in Section 4.1.2.3, should be used instead. (The alternative would be doing the UTF-8
encoding by hand and writing out the bytes, which would be very cumbersome.)

Caution

If the configuration parameter standard_conforming_strings is off, then
PostgreSQL recognizes backslash escapes in both regular and escape
string constants. This is for backward compatibility with the historical
behavior, where backslash escapes were always recognized. Although
standard_conforming_strings currently defaults to off, the default
will change to on in a future release for improved standards compliance.
Applications are therefore encouraged to migrate away from using backslash
escapes. If you need to use a backslash escape to represent a special
character, write the string constant with an £ to be sure it will be handled the
same way in future releases.

In addition to standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes
in string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with Us (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example Us’ foo’ . (Note that this creates an ambiguity with the operator &. Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number
or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point

27

Chapter 4. SQL Syntax

number. For example, the string * data’ could be written as

Us&’d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us’\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&’d!0061t!+000061" UESCAPE ’!’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \007F) can be specified.

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security
issues. If the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence
of characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne’s horse”
using dollar quoting:

SDianne’s horses
S$SomeTag$Dianne’s horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always writ-
ten literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
This is most commonly used in writing function definitions. For example:

$function$
BEGIN
RETURN ($1 ~ $gSI\t\r\n\v\\1sqg$);
END;
Sfunction$

28

Chapter 4. SQL Syntax

Here, the sequence $gs [\t\r\n\v\\1s$g$ represents a dollar-quoted literal string [\t\r\n\v\\],
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter $function$, it is just some more characters within
the constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, 0 Stag$String contentS$tag$ is correct,
but $TAGSString content$tags$ is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write com-
plicated string literals than the standard-compliant single quote syntax. It is particularly useful when
representing string constants inside other constants, as is often needed in procedural function defini-
tions. With single-quote syntax, each backslash in the above example would have to be written as four
backslashes, which would be reduced to two backslashes in parsing the original string constant, and
then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.g., B’ 1001’ . The only characters allowed
within bit-string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper
or lower case), e.g., X’ 1LFF’. This notation is equivalent to a bit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits. [digits] [e[+-]1digits]
[digits] .digits[e[+-]digits]
digitse[+-]digits

where digits is one or more decimal digits (0 through 9). At least one digit must be before or
after the decimal point, if one is used. At least one digit must follow the exponent marker (e), if one
is present. There cannot be any spaces or other characters embedded in the constant. Note that any
leading plus or minus sign is not actually considered part of the constant; it is an operator applied to
the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925¢-3

29

Chapter 4. SQL Syntax

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint
if its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that
contain decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force a numeric value to be interpreted as a specific data
type by casting it. For example, you can force a numeric value to be treated as type real (float4)
by writing:

REAL ’1.23" —-- string style

1.23::REAL —-— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type ' string’
! string’ ::type
CAST (’'string’” AS type)

The string constant’s text is passed to the input conversion routine for the type called ¢ ype. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string’)

but not all type names can be used in this way; see Section 4.2.9 for details.

The : :, CAST (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type ’ string’
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type
" string’ syntax is that it does not work for array types; use : : or CAST () to specify the type of an
array constant.

The caAST () syntax conforms to SQL. The type ’string’ syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with : : is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the follow-
ing list:

+-F/<>=~1@# D &I ?

30

Chapter 4. SQL Syntax

There are a few restrictions on operator names, however:

« —-and /« cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

+ A multiple-character operator name cannot end in + or —, unless the name also contains at least one
of these characters:

~1@#EDPN&I?

For example, @- is an allowed operator name, but «- is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator
named @, you cannot write Xx@Y; you must write X+ @Y to ensure that PostgreSQL reads it as two
operator names not one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these char-
acters.

« A dollar sign (s) followed by digits is used to represent a positional parameter in the body of
a function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

« Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets ([1) are used to select the elements of an array. See Section 8.14 for more information on
arrays.

« Commas (,) are used in some syntactical constructs to separate the elements of a list.

+ The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

« The colon (:) is used to select “slices” from arrays. (See Section 8.14.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

» The asterisk () is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

+ The period (.) is used in numeric constants, and to separate schema, table, and column names.

31

Chapter 4. SQL Syntax

4.1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.g.:

—— This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
+ with nesting: /* nested block comment =/
x/

where the comment begins with /» and extends to the matching occurrence of « /. These block com-
ments nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks
of code that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

4.1.6. Lexical Precedence

Table 4-2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is
hard-wired into the parser. This can lead to non-intuitive behavior; for example the Boolean operators
< and > have a different precedence than the Boolean operators <= and >=. Also, you will sometimes
need to add parentheses when using combinations of binary and unary operators. For instance:

SELECT 5 ! - 6;
will be parsed as:
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an
infix one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4-2. Operator Precedence (decreasing)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast
[left array element selection
right unary minus
» left exponentiation
x /% left multiplication, division,
modulo
+ - left addition, subtraction

32

Chapter 4. SQL Syntax

Operator/Element Associativity Description

Is IS TRUE, IS FALSE, IS
UNKNOWN, IS NULL

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defined
operators

IN set membership

BETWEEN range containment

OVERLAPS time interval overlap

LIKE ILIKE SIMILAR string pattern matching

<> less than, greater than

= right equality, assignment

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:
SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4-2 for “any other”
operator. This is true no matter which specific operator appears inside OPERATOR () .

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:

« A constant or literal value

+ A column reference

+ A positional parameter reference, in the body of a function definition or prepared statement
+ A subscripted expression

A field selection expression

« An operator invocation

« A function call

33

Chapter 4. SQL Syntax

« An aggregate expression
« A window function call
- A type cast

» A scalar subquery

« An array constructor

» A row constructor

+ Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References

A column can be referenced in the form:

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause, or one of the key words NEW or OLD. (NEW and OLD can only appear
in rewrite rules, while other correlation names can be used in any SQL statement.) The correlation
name and separating dot can be omitted if the column name is unique across all the tables being used
in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as:
CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the s1 references the value of the first function argument whenever the function is invoked.

34

Chapter 4. SQL Syntax

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expression|subscript]
or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|lower_subscript:upper_subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which
must yield an integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:
mytable.arraycolumn[4]

mytable.two_d_column[17] [34]

$1[10:42]

(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.14 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn

(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An
important special case is extracting a field from a table column that is of a composite type:

(compositecol) .somefield
(mytable.compositecol) .somefield

The parentheses are required here to show that compositecol is a column name not a table name,
or that mytable is a table name not a schema name in the second case.

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)

35

Chapter 4. SQL Syntax

operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND,
OR, and NOT, or is a qualified operator name in the form:

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function_name ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt (2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ...])

aggregate_name (ALL expression [, ... 1)

(
(

aggregate_name (DISTINCT expression)
(

aggregate_name *)

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name),
and expression is any value expression that does not itself contain an aggregate expression or a
window function call.

The first form of aggregate expression invokes the aggregate across all input rows for which the given
expression(s) yield non-null values. (Actually, it is up to the aggregate function whether to ignore null
values or not — but all the standard ones do.) The second form is the same as the first, since ALL is
the default. The third form invokes the aggregate for all distinct non-null values of the expressions
found in the input rows. The last form invokes the aggregate once for each input row regardless of
null or non-null values; since no particular input value is specified, it is generally only useful for the
count () aggregate function.

For example, count () yields the total number of input rows; count (£1) yields the number of input
rows in which £1 is non-null; count (distinct £1) yields the number of distinct non-null values
of £1.

36

Chapter 4. SQL Syntax

The predefined aggregate functions are described in Section 9.18. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.10 and Section 9.20), the aggre-
gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s
arguments contain only outer-level variables: the aggregate then belongs to the nearest such outer
level, and is evaluated over the rows of that query. The aggregate expression as a whole is then an
outer reference for the subquery it appears in, and acts as a constant over any one evaluation of that
subquery. The restriction about appearing only in the result list or HAVING clause applies with respect
to the query level that the aggregate belongs to.

Note: PostgreSQL currently does not support prsTINcT with more than one input expression.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike regular aggregate function calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function is able to scan all the rows that would be part of the current row’s group according to
the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name

[expression [, expression ...]]) OVER (window_definition)

*) OVER (window_definition)
*) OVER window_name

(

function_name ([expression [, expression ...]]) OVER window_name
function_name (
(

function_name
where window_definition has the syntax

[existing_window_name]

[PARTITION BY expression [, ...] 1]

[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST } 1 [,
[

frame_clause]

and the optional frame_clause can be one of

RANGE UNBOUNDED PRECEDING

RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
ROWS UNBOUNDED PRECEDING

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

Here, expressionrepresents any value expression that does not itself contain window function calls.
The PARTITION BY and ORDER BY lists have essentially the same syntax and semantics as GROUP
BY and ORDER BY clauses of the whole query. window_name is a reference to a named window spec-
ification defined in the query’s WINDOW clause. Named window specifications are usually referenced
with just OVER window_name, but it is also possible to write a window name inside the parentheses
and then optionally supply an ordering clause and/or frame clause (the referenced window must lack

37

Chapter 4. SQL Syntax

these clauses, if they are supplied here). This latter syntax follows the same rules as modifying an
existing window name within the WINDOW clause; see the SELECT reference page for details.

The frame_clause specifies the set of rows constituting the window frame, for those window
functions that act on the frame instead of the whole partition. The default framing option iS RANGE
UNBOUNDED PRECEDING, which is the same as RANGE BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW; it selects rows up through the current row’s last peer in the ORDER BY ordering
(which means all rows if there is no ORDER BY). The options RANGE BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED FOLLOWING and ROWS BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING are also equivalent: they always select all rows in the partition.
Lastly, ROWS UNBOUNDED PRECEDING or its verbose equivalent ROWS BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW select all rows up through the current row (regardless of
duplicates). Beware that this option can produce implementation-dependent results if the ORDER BY
ordering does not order the rows uniquely.

The built-in window functions are described in Table 9-44. Other window functions can be added by
the user. Also, any built-in or user-defined aggregate function can be used as a window function.

The syntaxes using = are used for calling parameter-less aggregate functions as window functions, for
example count () OVER (PARTITION BY x ORDER BY y). is customarily not used for non-
aggregate window functions. Aggregate window functions, unlike normal aggregate functions, do not
allow DISTINCT to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5 and Section 7.2.4.

4.2.9. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)

expression: :type

The casT syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this is
subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an
unadorned string literal represents the initial assignment of a type to a literal constant value, and so it
will succeed for any type (if the contents of the string literal are acceptable input syntax for the data
type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to a table column); the system will automatically
apply a type cast in such cases. However, automatic casting is only done for casts that are marked
“OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting
syntax. This restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example,
double precision cannot be used this way, but the equivalent float8 can. Also, the names
interval, time, and t imestamp can only be used in this fashion if they are double-quoted, because

38

Chapter 4. SQL Syntax

of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and
should probably be avoided.

Note: The function-like syntax is in fact just a function call. When one of the two standard cast
syntaxes is used to do a run-time conversion, it will internally invoke a registered function to
perform the conversion. By convention, these conversion functions have the same name as their
output type, and thus the “function-like syntax” is nothing more than a direct invocation of the
underlying conversion function. Obviously, this is not something that a portable application should
rely on. For further details see CREATE CAST.

4.2.10. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.20 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.11. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket 1. For example:

SELECT ARRAY[1,2,3+4];

By default, the array element type is the common type of the member expressions, determined using
the same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly
casting the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];

{1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more
on casting, see Section 4.2.9.

39

Chapter 4. SQL Syntax

Multidimensional array values can be built by nesting array constructors. In the inner constructors,
the key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],1[3,411];

{{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must pro-
duce sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(fl intf[], f2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],1[7,811);

SELECT ARRAY[fl, f£2, ’'{{9,10},{11,12}}’::int[]] FROM arr;
array

{4{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it’s impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer([];
array

It is also possible to construct an array from the results of a subquery. In this form, the array construc-
tor is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE ’'bytea%’);
?column?

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}
(1 row)

The subquery must return a single column. The resulting one-dimensional array will have an element
for each row in the subquery result, with an element type matching that of the subquery’s output
column.

40

Chapter 4. SQL Syntax

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.14.

4.2.12. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using
values for its member fields. A row constructor consists of the key word ROw, a left parenthesis, zero
or more expressions (separated by commas) for the row field values, and finally a right parenthesis.
For example:

SELECT ROW(1,2.5,"this is a test’);

The key word rROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue.«, which will be expanded to a list of the ele-
ments of the row value, just as occurs when the . ~ syntax is used at the top level of a SELECT list. For
example, if table t has columns £1 and £2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.fl, t.f2, 42) FROM t;

Note: Before PostgreSQL 8.2, the .« syntax was not expanded, so that writing rRow (t ., 42)
created a two-field row whose first field was another row value. The new behavior is usually more
useful. If you need the old behavior of nested row values, write the inner row value without . «, for
instance row (t, 42).

By default, the value created by a ROw expression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable(fl int, f2 float, £f3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS ’'SELECT $1.f1’ LANGUAGE SQL;

—-— No cast needed since only one getfl() exists
SELECT getfl (ROW(1,2.5,’this is a test’));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (fl int, £f2 text, £3 numeric);

CREATE FUNCTION getfl (myrowtype) RETURNS int AS /SELECT $1.f1’ LANGUAGE SQL;
—-— Now we need a cast to indicate which function to call:

SELECT getfl (ROW(1,2.5,"this is a test’));

ERROR: function getfl (record) is not unique

SELECT getfl (ROW(1l,2.5,’this is a test’)::mytable);
getfl

41

Chapter 4. SQL Syntax

1
(1 row)

SELECT getfl (CAST(ROW(11l,’this is a test’,2.5) AS myrowtype));
getfl

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row values or test a row with IS NULL or IS NOT NULL, for example:

SELECT ROW(1,2.5,"this is a test’) = ROW(1l, 3, ’"not the same’);
SELECT ROW (table.x) IS NULL FROM table; —— detect all-null rows

For more detail see Section 9.21. Row constructors can also be used in connection with subqueries,
as discussed in Section 9.20.

4.2.13. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();
then somefunc () would (probably) not be called at all. The same would be the case if one wrote:
SELECT somefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.16) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But this is safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would be better to sidestep the problem by writing y
> 1.5«x instead.)

42

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as inheritance, views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is
variable — it reflects how much data is stored at a given moment. SQL does not make any guarantees
about the order of the rows in a table. When a table is read, the rows will appear in random order,
unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned
to a column and assigns semantics to the data stored in the column so that it can be used for com-
putations. For instance, a column declared to be of a numerical type will not accept arbitrary text
strings, and the data stored in such a column can be used for mathematical computations. By contrast,
a column declared to be of a character string type will accept almost any kind of data but it does not
lend itself to mathematical calculations, although other operations such as string concatenation are
available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
a detailed explanation to Chapter 8. Some of the frequently used data types are integer for whole
numbers, numeric for possibly fractional numbers, text for character strings, date for dates, t ime
for time-of-day values, and t imestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and
the type integer. The table and column names follow the identifier syntax explained in Section
4.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of data they store. So let’s look at a more realistic example:

CREATE TABLE products (

43

Chapter 5. Data Definition

product_no integer,
name text,
price numeric

)

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern
for the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS
variant to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a t imestamp column to have a default of

44

Chapter 5. Data Definition

CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval (' products_product_no_seq’),

)

where the nextval () function supplies successive values from a sequence object (see Section 9.15).
This arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

)

The sERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only
positive numbers. Another issue is that you might want to constrain column data with respect to other
columns or rows. For example, in a table containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)i

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

45

Chapter 5. Data Definition

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive_price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed
by the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a
name for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be writ-
ten as table constraints, while the reverse is not necessarily possible, since a column constraint is
supposed to refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you
should follow it if you want your table definitions to work with other database systems.) The above
example could also be written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)i

or even:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)i

It’s a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

46

Chapter 5. Data Definition

product_no integer,

name text,

price numeric,

CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0),

CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)i

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, like it because it makes it easy to toggle the constraint in a script file.
For example, you could start with:

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

)i

and then insert the NOT key word where desired.

47

Chapter 5. Data Definition

Tip: In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with
respect to all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

)i
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

This specifies that the combination of values in the indicated columns is unique across the whole
table, though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)i

In general, a unique constraint is violated when there is more than one row in the table where the
values of all of the columns included in the constraint are equal. However, two null values are not
considered equal in this comparison. That means even in the presence of a unique constraint it is
possible to store duplicate rows that contain a null value in at least one of the constrained columns.
This behavior conforms to the SQL standard, but we have heard that other SQL databases might not
follow this rule. So be careful when developing applications that are intended to be portable.

48

Chapter 5. Data Definition

5.3.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null
constraint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)i

A primary key indicates that a column or group of columns can be used as a unique identifier for
rows in the table. (This is a direct consequence of the definition of a primary key. Note that a unique
constraint does not, by itself, provide a unique identifier because it does not exclude null values.) This
is useful both for documentation purposes and for client applications. For example, a GUI application
that allows modifying row values probably needs to know the primary key of a table to be able to
identify rows uniquely.

A table can have at most one primary key. (There can be any number of unique and not-null con-
straints, which are functionally the same thing, but only one can be identified as the primary key.)
Relational database theory dictates that every table must have a primary key. This rule is not enforced
by PostgreSQL, but it is usually best to follow it.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

49

Chapter 5. Data Definition

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

Now it is impossible to create orders with product_no entries that do not appear in the products
table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

)i

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be
written in table constraint form. Here is a contrived syntax example:

CREATE TABLE tl (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can contain more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)
CREATE TABLE orders (

order_id integer PRIMARY KEY,
shipping_address text,

50

Chapter 5. Data Definition

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

« Disallow deleting a referenced product
+ Delete the orders as well
» Something else?

To illustrate this, let’s implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order_items), we disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of
a referenced row. NO ACTION means that if any referencing rows still exist when the constraint is
checked, an error is raised; this is the default behavior if you do not specify anything. (The essential
difference between these two choices is that NO ACTION allows the check to be deferred until later
in the transaction, whereas RESTRICT does not.) CASCADE specifies that when a referenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULL and SET DEFAULT. These cause the referencing columns to be set to nulls or default
values, respectively, when the referenced row is deleted. Note that these do not excuse you from
observing any constraints. For example, if an action specifies SET DEFAULT but the default value
would not satisfy the foreign key, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same.

51

Chapter 5. Data Definition

More information about updating and deleting data is in Chapter 6.

Finally, we should mention that a foreign key must reference columns that either are a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explained in the reference documenta-
tion for CREATE TABLE.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate
from whether the name is a key word or not; quoting a name will not allow you to escape these
restrictions.) You do not really need to be concerned about these columns; just know they exist.

oid
The object identifier (object ID) of a row. This column is only present if the table was created
using WITH OIDs, or if the default_with_oids configuration variable was set at the time. This

column is of type oid (same name as the column); see Section 8.16 for more information about
the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that
select from inheritance hierarchies (see Section 5.8), since without it, it’s difficult to tell which
individual table a row came from. The tableoid can be joined against the oid column of
pg_class to obtain the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is
an individual state of a row; each update of a row creates a new row version for the same logical
row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

Cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ctid can be
used to locate the row version very quickly, a row’s ct id will change if it is updated or moved
by vacuuM FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even
better a user-defined serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs
are unique, unless you take steps to ensure that this is the case. If you need to identify the rows in

52

Chapter 5. Data Definition

a table, using a sequence generator is strongly recommended. However, OIDs can be used as well,
provided that a few additional precautions are taken:

+ A unique constraint should be created on the OID column of each table for which the OID will
be used to identify rows. When such a unique constraint (or unique index) exists, the system takes
care not to generate an OID matching an already-existing row. (Of course, this is only possible if
the table contains fewer than 2*? (4 billion) rows, and in practice the table size had better be much
less than that, or performance might suffer.)

+ OIDs should never be assumed to be unique across tables; use the combination of tableoid and
row OID if you need a database-wide identifier.

« Of course, the tables in question must be created WITH OIDS. As of PostgreSQL 8.1, WITHOUT
01DS is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter
23 for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2*? (4 billion) SQL com-
mands within a single transaction. In practice this limit is not a problem — note that the limit is on
the number of SQL commands, not the number of rows processed. Also, as of PostgreSQL 8.3, only
commands that actually modify the database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the appli-
cation change, you can drop the table and create it again. But this is not a convenient option if the
table is already filled with data, or if the table is referenced by other database objects (for instance a
foreign key constraint). Therefore PostgreSQL provides a family of commands to make modifications
to existing tables. Note that this is conceptually distinct from altering the data contained in the table:
here we are interested in altering the definition, or structure, of the table.

You can:

« Add columns

« Remove columns

« Add constraints

« Remove constraints

+ Change default values

« Change column data types
« Rename columns

« Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

53

Chapter 5. Data Definition

5.5.1. Adding a Column

To add a column, use a command like:

ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a
DEFAULT clause).

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> ");

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

Tip: Adding a column with a default requires updating each row of the table (to store the new
column value). However, if no default is specified, PostgreSQL is able to avoid the physical update.
So if you intend to fill the column with mostly nondefault values, it's best to add the column with
no default, insert the correct values using upDATE, and then add any desired default as described
below.

5.5.2. Removing a Column

To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. You can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.11 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint
To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

54

Chapter 5. Data Definition

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command
is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don’t forget that you’ll need to double-
quote it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint
use:

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column’s Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn’t affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
a default where one hadn’t been defined, because the default is implicitly the null value.

5.5.6. Changing a Column’s Data Type
To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If a more complex conversion is needed, you can add a USING clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising

55

Chapter 5. Data Definition

results. It’s often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table
To rename a table:

ALTER TABLE products RENAME TO items;

5.6. Privileges

When you create a database object, you become its owner. By default, only the owner of an object
can do anything with the object. In order to allow other users to use it, privileges must be granted.
(However, users that have the superuser attribute can always access any object.)

There are several different privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES,
TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a par-
ticular object vary depending on the object’s type (table, function, etc). For complete information on
the different types of privileges supported by PostgreSQL, refer to the GRANT reference page. The
following sections and chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

Note: To change the owner of a table, index, sequence, or view, use the ALTER TABLE command.
There are corresponding ALTER commands for other object types.

To assign privileges, the GRANT command is used. For example, if joe is an existing user, and
accounts is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “user” name PUBLIC can be used to grant a privilege to every user on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 20.

To revoke a privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLIC;

56

Chapter 5. Data Definition

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. How-
ever, it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant
it in turn to others. If the grant option is subsequently revoked then all who received the privilege from
that recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT
and REVOKE reference pages.

5.7. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client con-
nection to the server can access only the data in a single database, the one specified in the connection
request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say, joe in
two databases in the same cluster; but the system can be configured to allow joe access to only
some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and myschema can
contain tables named myt able. Unlike databases, schemas are not rigidly separated: a user can access
objects in any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

« To allow many users to use one database without interfering with each other.
« To organize database objects into logical groups to make them more manageable.

 Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.7.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice.
For example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by a dot:

57

Chapter 5. Data Definition
schema.table

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,
but the same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (

)i

To drop a schema if it’s empty (all objects in it have been dropped), use:

DROP SCHEMA myschema;

To drop a schema including all contained objects, use:
DROP SCHEMA myschema CASCADE;

See Section 5.11 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to
restrict the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schemaname AUTHORIZATION username;

You can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.7.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.7.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such
tables (and other objects) are automatically put into a schema named “public”’. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

58

Chapter 5. Data Definition

5.7.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, which is
a list of schemas to look in. The first matching table in the search path is taken to be the one wanted.
If there is no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser",public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:
SET search_path TO myschema,public;

(We omit the Suser here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.
We could also have written:

SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.23 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR (schema.operator)

59

Chapter 5. Data Definition

This is needed to avoid syntactic ambiguity. An example is:

SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.7.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of
the schema must grant the USAGE privilege on the schema. To allow users to make use of the objects
in the schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, the CREATE
privilege on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE
privileges on the schema public. This allows all users that are able to connect to a given database to
create objects in its public schema. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.7.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema,
which contains the system tables and all the built-in data types, functions, and operators. pg_catalog
is always effectively part of the search path. If it is not named explicitly in the path then it is implicitly
searched before searching the path’s schemas. This ensures that built-in names will always be findable.
However, you can explicitly place pg_catalog at the end of your search path if you prefer to have
user-defined names override built-in names.

In PostgreSQL versions before 7.3, table names beginning with pg_ were reserved. This is no longer
true: you can create such a table name if you wish, in any non-system schema. However, it’s best
to continue to avoid such names, to ensure that you won’t suffer a conflict if some future version
defines a system table named the same as your table. (With the default search path, an unqualified
reference to your table name would then be resolved as the system table instead.) System tables will
continue to follow the convention of having names beginning with pg_, so that they will not conflict
with unqualified user-table names so long as users avoid the pg__ prefix.

5.7.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are
recommended and are easily supported by the default configuration:

« If you do not create any schemas then all users access the public schema implicitly. This simu-
lates the situation where schemas are not available at all. This setup is mainly recommended when
there is only a single user or a few cooperating users in a database. This setup also allows smooth
transition from the non-schema-aware world.

60

Chapter 5. Data Definition

« You can create a schema for each user with the same name as that user. Recall that the default
search path starts with Suser, which resolves to the user name. Therefore, if each user has a
separate schema, they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it
altogether), so users are truly constrained to their own schemas.

« To install shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow
the other users to access them. Users can then refer to these additional objects by qualifying the
names with a schema name, or they can put the additional schemas into their search path, as they
choose.

5.7.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basic schema support specified in the standard. Therefore, many
users consider qualified names to really consist of username.tablename. This is how PostgreSQL
will effectively behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to
the standard, you should not use (perhaps even remove) the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.8. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define a type inheritance feature, which differs in many respects from the
features described here.)

Let’s start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular
state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about a city, regardless of whether it
is a capital or not? The inheritance feature can help to resolve this problem. We define the capitals
table so that it inherits from cities:

CREATE TABLE cities (

name text,
population float,
altitude int —-— in feet

)
CREATE TABLE capitals (

state char (2)
) INHERITS (cities);

61

Chapter 5. Data Definition

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals
also have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude over 500 feet:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
,,,,,,,,,,, S,
Las Vegas | 2174
Mariposa | 1953

Here the oNLY keyword indicates that the query should apply only to cities, and not any tables
below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:
tableoid | name | altitude
__________ +___________+__________
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join
with pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude

62

Chapter 5. Data Definition

FROM cities ¢, pg_class p
WHERE c.altitude > 500 AND c.tableoid = p.oid;

which returns:

relname | name | altitude
,,,,,,,,,, gy
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in
the inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, altitude, state)
VALUES (’New York’, NULL, NULL, ’'NY’);

We might hope that the data would somehow be routed to the capitals table, but this does not
happen: INSERT always inserts into exactly the table specified. In some cases it is possible to redirect
the insertion using a rule (see Chapter 36). However that does not help for the above case because the
cities table does not contain the column state, and so the command will be rejected before the
rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its chil-
dren. Other types of constraints (unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child table’s definition are added to these.
If the same column name appears in multiple parent tables, or in both a parent table and the child’s
definition, then these columns are “merged” so that there is only one such column in the child table.
To be merged, columns must have the same data types, else an error is raised. The merged column
will have copies of all the check constraints coming from any one of the column definitions it came
from, and will be marked not-null if any of them are.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this the
new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of
the parent. Similarly an inheritance link can be removed from a child using the NO INHERIT variant
of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful when
the inheritance relationship is being used for table partitioning (see Section 5.9).

One convenient way to create a compatible table that will later be made a new child is to use the
LIKE clause in CREATE TABLE. This creates a new table with the same columns as the source table. If
there are any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to
LIKE should be specified, as the new child must have constraints matching the parent to be considered
compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove a table and all of its descendants, one easy way is to drop the parent table with the
CASCADE option.

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible

63

Chapter 5. Data Definition

when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging
and rejection that apply during CREATE TABLE.

5.8.1. Caveats

Table access permissions are not automatically inherited. Therefore, a user attempting to access a
parent table must either have permissions to do the same operation on all its child tables as well, or
must use the ONLY notation. When adding a new child table to an existing inheritance hierarchy, be
careful to grant all the needed permissions on it.

More generally, note that not all SQL commands are able to work on inheritance hierarchies.
Commands that are used for data querying, data modification, or schema modification (e.g.,
SELECT, UPDATE, DELETE, most variants of ALTER TABLE, but not INSERT and ALTER TABLE

RENAME) typically default to including child tables and support the ONLY notation to exclude
them. Commands that do database maintenance and tuning (e.g., REINDEX, VACUUM) typically only
work on individual, physical tables and do no support recursing over inheritance hierarchies. The
respective behavior of each individual command is documented in the reference part (Reference I,
SQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and for-
eign key constraints only apply to single tables, not to their inheritance children. This is true on both
the referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above ex-
ample:

« If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would
by default show up in queries from cities. In fact, by default capitals would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint to capitals, but this would not prevent duplication compared to cities.

- Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

+ Specifying that another table’s column REFERENCES cities (name) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable
care is needed in deciding whether inheritance is useful for your application.

Deprecated: In releases of PostgreSQL prior to 7.1, the default behavior was not to include child
tables in queries. This was found to be error prone and also in violation of the SQL standard. You
can get the pre-7.1 behavior by turning off the sqgl_inheritance configuration option.

5.9. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement par-
titioning as part of your database design.

64

Chapter 5. Data Definition

5.9.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partition-
ing can provide several benefits:

» Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more
likely that the heavily-used parts of the indexes fit in memory.

« When queries or updates access a large percentage of a single partition, performance can be im-
proved by taking advantage of sequential scan of that partition instead of using an index and random
access reads scattered across the whole table.

+ Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement
is planned into the partitioning design. ALTER TABLE is far faster than a bulk operation. It also
entirely avoids the vACUUM overhead caused by a bulk DELETE.

+ Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of
thumb is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent
the entire data set. You should be familiar with inheritance (see Section 5.8) before attempting to set
up partitioning.

The following forms of partitioning can be implemented in PostgreSQL:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by
date ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

5.9.2. Implementing Partitioning

To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you
intend them to be applied equally to all partitions. There is no point in defining any indexes or
unique constraints on it, either.

2. Create several “child” tables that each inherit from the master table. Normally, these tables will
not add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL
tables.

65

Chapter 5. Data Definition

3. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

CHECK (x =1)

CHECK (county IN ('Oxfordshire’, ’Buckinghamshire’, ’'Warwickshire’))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are
descriptive only.

4. For each partition, create an index on the key column(s), as well as any other indexes you might
want. (The key index is not strictly necessary, but in most scenarios it is helpful. If you intend
the key values to be unique then you should always create a unique or primary-key constraint for
each partition.)

5. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate
partition.

6. Ensure that the constraint_exclusion configuration parameter is not disabled in
postgresqgl.conf. If it is, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company
measures peak temperatures every day as well as ice cream sales in each region. Conceptually, we
want a table like:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

)

We know that most queries will access just the last week’s, month’s or quarter’s data, since the main
use of this table will be to prepare online reports for management. To reduce the amount of old data
that needs to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning
of each month we will remove the oldest month’s data.

In this situation we can use partitioning to help us meet all of our different requirements for the
measurements table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.
2. Next we create one partition for each active month:

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
CREATE TABLE measurement_y2007mll () INHERITS (measurement);
CREATE TABLE measurement_y2007ml12 () INHERITS (measurement);
CREATE TABLE measurement_y2008m0l1 () INHERITS (measurement);

Each of the partitions are complete tables in their own right, but they inherit their definitions from
the measurement table.

66

Chapter 5. Data Definition

This solves one of our problems: deleting old data. Each month, all we will need to do is perform
a DROP TABLE on the oldest child table and create a new child table for the new month’s data.

. We must provide non-overlapping table constraints. Rather than just creating the partition tables
as above, the table creation script should really be:

CREATE TABLE measurement_y2006m02 (

CHECK (logdate >= DATE ’2006-02-01" AND logdate < DATE ’2006-03-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2006m03 (

CHECK (logdate >= DATE ’'2006-03-01’ AND logdate < DATE ’'2006-04-01")
) INHERITS (measurement);

CREATE TABLE measurement_y2007mll (

CHECK (logdate >= DATE ’2007-11-01’ AND logdate < DATE ’2007-12-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 (

CHECK (logdate >= DATE ’'2007-12-01’ AND logdate < DATE ’2008-01-01'")
) INHERITS (measurement);
CREATE TABLE measurement_y2008m01 (

CHECK (logdate >= DATE ’2008-01-01" AND logdate < DATE ’2008-02-01")
) INHERITS (measurement);
. We probably need indexes on the key columns too:

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);

CREATE INDEX measurement_y2007mll_logdate ON measurement_y2007mll (logdate);
CREATE INDEX measurement_y2007ml2_logdate ON measurement_y2007ml2 (logdate);
CREATE INDEX measurement_y2008m0l1_logdate ON measurement_y2008m0l (logdate);

We choose not to add further indexes at this time.

. We want our application to be able to say INSERT INTO measurement ... and have the data
be redirected into the appropriate partition table. We can arrange that by attaching a suitable
trigger function to the master table. If data will be added only to the latest partition, we can use a
very simple trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()

RETURNS TRIGGER AS $$

BEGIN
INSERT INTO measurement_y2008m0l1 VALUES (NEW.x);
RETURN NULL;

END;

$S

LANGUAGE plpgsql;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger

BEFORE INSERT ON measurement

FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();
We must redefine the trigger function each month so that it always points to the current partition.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN
IF (NEW.logdate >= DATE ’'2006-02-01" AND
NEW.logdate < DATE ’2006-03-01") THEN

67

Chapter 5. Data Definition

INSERT INTO measurement_y2006m02 VALUES (NEW.x);
ELSIF (NEW.logdate >= DATE '2006-03-01" AND
NEW.logdate < DATE ’"2006-04-01") THEN
INSERT INTO measurement_y2006m03 VALUES (NEW.x);

ELSIF (NEW.logdate >= DATE ’2008-01-01" AND
NEW.logdate < DATE ’2008-02-01") THEN
INSERT INTO measurement_y2008m01 VALUES (NEW.x);

ELSE
RAISE EXCEPTION ’Date out of range. Fix the measurement_insert_trigger () fur
END IF;
RETURN NULL;
END;
$$

LANGUAGE plpgsql;
The trigger definition is the same as before. Note that each IF test must exactly match the CHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn’t need to be updated as
often, since branches can be added in advance of being needed.

Note: In practice it might be best to check the newest partition first, if most inserts go into
that partition. For simplicity we have shown the trigger’s tests in the same order as in other
parts of this example.

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the
above example we would be creating a new partition each month, so it might be wise to write a script
that generates the required DDL automatically.

5.9.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions
for new data. One of the most important advantages of partitioning is precisely that it allows this
otherwise painful task to be executed nearly instantaneously by manipulating the partition structure,
rather than physically moving large amounts of data around.

The simplest option for removing old data is simply to drop the partition that is no longer necessary:

DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn’t have to individually delete every
record.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

68

Chapter 5. Data Definition

This allows further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using copy, pg_dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01")
) INHERITS (measurement);

As an alternative, it is sometimes more convenient to create the new table outside the partition struc-
ture, and make it a proper partition later. This allows the data to be loaded, checked, and transformed
prior to it appearing in the partitioned table:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01");
\copy measurement_y2008m02 from ’'measurement_y2008m02’
—-— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.9.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned
tables defined in the fashion described above. As an example:

SET constraint_exclusion = on;
SELECT count () FROM measurement WHERE logdate >= DATE ’2008-01-01'";

Without constraint exclusion, the above query would scan each of the partitions of the measurement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition
and try to prove that the partition need not be scanned because it could not contain any rows meeting
the query’s WHERE clause. When the planner can prove this, it excludes the partition from the query
plan.

You can use the EXPLAIN command to show the difference between a plan with
constraint_exclusion on and a plan with it off. A typical unoptimized plan for this type of table
setup is:

SET constraint_exclusion = off;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01";

QUERY PLAN
Aggregate (cost=158.66..158.68 rows=1 width=0)
-> Append (cost=0.00..151.88 rows=2715 width=0)
-> Seqg Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2006m02 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= 72008-01-01’::date)
-> Seq Scan on measurement_y2006m03 measurement (cost=0.00..30.38 rows=543 wi

Filter: (logdate >= ’2008-01-01’::date)

69

Chapter 5. Data Definition

-> Seq Scan on measurement_y2007ml2 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2008m0l measurement (cost=0.00..30.38 rows=543 wi

Filter: (logdate >= ’2008-01-01’::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
constraint exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constraint_exclusion = on;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01';
QUERY PLAN

Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)
-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’72008-01-01’::date)
-> Seqg Scan on measurement_y2008m0l measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’2008-01-01’::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes.
Therefore it isn’t necessary to define indexes on the key columns. Whether an index needs to be
created for a given partition depends on whether you expect that queries that scan the partition will
generally scan a large part of the partition or just a small part. An index will be helpful in the latter
case but not the former.

The default (and recommended) setting of constraint_exclusion is actually neither on nor of £, but an
intermediate setting called partition, which causes the technique to be applied only to queries that
are likely to be working on partitioned tables. The on setting causes the planner to examine CHECK
constraints in all queries, even simple ones that are unlikely to benefit.

5.9.5. Alternative Partitioning Methods

A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead
of a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’'2006-02-01’ AND logdate < DATE ’'2006-03-01")
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.x);

CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’2008-01-01" AND logdate < DATE ’2008-02-01")
DO INSTEAD

INSERT INTO measurement_y2008m01 VALUES (NEW.x);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

70

Chapter 5. Data Definition

Be aware that copY ignores rules. If you want to use COPY to insert data, you’ll need to copy into the
correct partition table rather than into the master. Copy does fire triggers, so you can use it normally
if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn’t cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNION ALL view, instead of table inheritance. For example,

CREATE VIEW measurement AS
SELECT x FROM measurement_y2006m02
UNION ALL SELECT % FROM measurement_y2006m03

UNION ALL SELECT % FROM measurement_y2007mll
UNION ALL SELECT % FROM measurement_y2007ml2
UNION ALL SELECT % FROM measurement_y2008m01;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions
of the data set. In practice this method has little to recommend it compared to using inheritance.

5.9.6. Caveats

The following caveats apply to partitioned tables:

» There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates partitions and creates and/or modifies associated objects than to
write each by hand.

+ The schemes shown here assume that the partition key column(s) of a row never change, or at
least do not change enough to require it to move to another partition. An UPDATE that attempts
to do that will fail because of the CHECK constraints. If you need to handle such cases, you can
put suitable update triggers on the partition tables, but it makes management of the structure much
more complicated.

« If you are using manual VACUUM or ANALYZE commands, don’t forget that you need to run them on
each partition individually. A command like:

ANALYZE measurement;
will only process the master table.

The following caveats apply to constraint exclusion:

 Constraint exclusion only works when the query’s WHERE clause contains constants. A parameter-
ized query will not be optimized, since the planner cannot know which partitions the parameter
value might select at run time. For the same reason, “stable” functions such as CURRENT_DATE
must be avoided.

« Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don’t need to be visited. Use simple equality conditions for list partitioning, or simple range tests for
range partitioning, as illustrated in the preceding examples. A good rule of thumb is that partitioning
constraints should contain only comparisons of the partitioning column(s) to constants using B-
tree-indexable operators.

« All constraints on all partitions of the master table are examined during constraint exclusion, so
large numbers of partitions are likely to increase query planning time considerably. Partitioning

71

Chapter 5. Data Definition

using these techniques will work well with up to perhaps a hundred partitions; don’t try to use
many thousands of partitions.

5.10. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

+ Views

» Functions and operators

« Data types and domains

» Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.11. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you implicitly create a net of dependencies between the objects. For
instance, a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had
considered in Section 5.3.5, with the orders table depending on it, would result in an error message
such as this:

DROP TABLE products;

NOTICE: constraint orders_product_no_fkey on table orders depends on table products
ERROR: cannot drop table products because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent
objects individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check what DrROP ... cASCADE will do, run
DROP without CASCADE and read the NOTICE messages.)

All drop commands in PostgreSQL support specifying CASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE to
get the default behavior, which is to prevent the dropping of objects that other objects depend on.

72

Chapter 5. Data Definition

Note: According to the SQL standard, specifying either RESTRICT or cascapk is required. No
database system actually enforces that rule, but whether the default behavior is REsTRICT or
CASCADE varies across systems.

Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL
versions prior to 7.3 are not maintained or created during the upgrade process. All other depen-
dency types will be properly created during an upgrade from a pre-7.3 database.

73

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. We
also introduce ways to effect automatic data changes when certain events occur: triggers and rewrite
rules. The chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row. Even if you know only some column
values, a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’'Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns
will be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

74

Chapter 6. Data Manipulation

INSERT INTO products (product_no, name, price) VALUES
(1, "Cheese’, 9.99),
(2, ’"Bread’, 1.99),
(3, 'Milk’", 2.99);

Tip: When inserting a lot of data at the same time, considering using the COPY command. It
is not as flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more
information on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it
is not always possible to directly specify which row to update. Instead, you specify which conditions
a row must meet in order to be updated. Only if you have a primary key in the table (independent of
whether you declared it or not) can you reliably address individual rows by choosing a condition that
matches the primary key. Graphical database access tools rely on this fact to allow you to update rows
individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let’s look at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equal sign, and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also
left out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is
present, only those rows that match the WHERE condition are updated. Note that the equals sign in
the SET clause is an assignment while the one in the WHERE clause is a comparison, but this does not
create any ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other
operators are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

75

Chapter 6. Data Manipulation

You can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to
discuss how to remove data that is no longer needed. Just as adding data is only possible in whole
rows, you can only remove entire rows from a table. In the previous section we explained that SQL
does not provide a way to directly address individual rows. Therefore, removing rows can only be
done by specifying conditions that the rows to be removed have to match. If you have a primary key
in the table then you can specify the exact row. But you can also remove groups of rows matching a
condition, or you can remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command.
For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:

DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

76

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipu-
late that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort specifi-
cation. WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM tablel;

Assuming that there is a table called tablel, this command would retrieve all rows and all columns
from tablel. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to
extract individual values from the query result.) The select list specification » means all columns that
the table expression happens to provide. A select list can also select a subset of the available columns
or make calculations using the columns. For example, if tablel has columns named a, b, and c (and
perhaps others) you can make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM tablel isasimple kind of table expression: it reads just one table. In general, table expressions
can be complex constructs of base tables, joins, and subqueries. But you can also omit the table
expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table
on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FrROM clause. All these transforma-

77

Chapter 7. Queries

tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

7.2.1. The rroM Clause

The FROM Clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a sub-
query, a table join, or complex combinations of these. If more than one table reference is listed in the
FROM clause they are cross-joined (see below) to form the intermediate virtual table that can then be
subject to transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the result of
the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word
ONLY precedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types

Cross join
T1 CROSS JOIN T2
For every possible combination of rows from 71 and 72 (i.e., a Cartesian product), the joined

table will contain a row consisting of all columns in 71 followed by all columns in T2. If the
tables have N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM 71, 72. It is also equivalent to FROM T1
INNER JOIN T2 ON TRUE (see below).

Qualified joins

71 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
71 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and
FULL imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL.
The join condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The oN clause is the most general kind of join condition: it takes a Boolean value expression
of the same kind as is used in a WHERE clause. A pair of rows from 71 and 72 match if the on
expression evaluates to true for them.

USING is a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs

78

Chapter 7. Queries

of columns. Furthermore, the output of JOIN USING has one column for each of the equated
pairs of input columns, followed by the remaining columns from each table. Thus, USING (a,
b, c)isequivalenttoON (tl.a = t2.a AND tl.b = t2.b AND tl.c = t2.c) withthe
exception that if on is used there will be two columns a, b, and c in the result, whereas with
USING there will be only one of each (and they will appear first if SELECT « is used).

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column
names that appear in both input tables. As with USING, these columns appear only once in the
output table.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Thus, the joined table always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, a joined row is added with null values in columns of T1. This
is the converse of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Also, for each row of T2 that does not satisfy the join condition with any row in T1, a
joined row with null values in the columns of T1 is added.

Joins of all types can be chained together or nested: either or both 71 and T2 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

To put this together, assume we have tables t 1:

m | name
PR
11 a

2 | b

3] ¢

t2:

m | value
__+ _______
1 | xxx

3 1 yyy

5 | zzz

then we get the following results for the various joins:

=>

SELECT * FROM tl CROSS JOIN t2;

num | name | num | value

79

Chapter 7. Queries

| xXxx
| yyy
| zzz
| xXxx
| yyy
| zzz
| xxx
|

|

YYy
2227

g w kR U WwEF 0o wkRE

W w w NN

=> SELECT % FROM tl INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— ot
11 a \ 1 | xxx
3 c 31 yyy
(2 rows)

=> SELECT * FROM tl INNER JOIN t2 USING (num);

num | name | value
_____ e
1] a | xxx
31 c | yyy
(2 rows)

=> SELECT * FROM tl NATURAL INNER JOIN t2;

num | name | value
_____ o
1] a | xxx
31 ¢ | yyy
(2 rows)

=> SELECT » FROM tl LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— ot
11 a \ 1 | xxx
2 1 Db \ |
3 1 ¢ \ 3 | yyy
(3 rows)

=> SELECT x FROM tl LEFT JOIN t2 USING (num);

num | name | value
_____ e

11 a | xxx

2 1 Db \

31 ¢ | yyy
(3 rows)

=> SELECT % FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— ot
11 a \ 1 | xxx
31 ¢ \ 3 1 yyy
| | 5] zzz
(3 rows)

80

Chapter 7. Queries

=> SELECT x FROM tl FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— Bt it
1] a | 1 | xxx
2 1 b \ |
3| c \ 3 1 yyy
| 5 1| zzz
(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT x FROM tl LEFT JOIN t2 ON tl.num = t2.num AND t2.value = ’'xxx’;

num | name | num | value
_____ T
11 a | 1 | xxx
2 1 Db \ |
3 c \ |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = ’'xxx’;
num | name | num | value
————— B Rt e
1] a | 1 | xxx
(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table_reference AS alias

or
FROM table reference alias

The As key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join

clauses readable. For example:

SELECT x= FROM some_very_long_table_name s JOIN another_fairly long_name a ON s.id = a.nu

The alias becomes the new name of the table reference for the current query — it is no longer possible
to refer to the table by the original name. Thus:

SELECT x FROM my_table AS m WHERE my_table.a > 5;

81

Chapter 7. Queries

is not valid according to the SQL standard. In PostgreSQL this will draw an error, assuming the
add_missing_from configuration variable is of £ (as it is by default). If it is on, an implicit table
reference will be added to the FROM clause, so the query is processed as if it were written as:

SELECT % FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;

That will result in a cross join, which is usually not what you want.

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
table to itself, e.g.:

SELECT x= FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT = FROM my_table AS a CROSS JOIN my_table AS b
SELECT % FROM (my_table AS a CROSS JOIN my_table) AS b

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias (columnl [, column2 [, ...]]1)

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.* FROM my_table AS a JOIN your_table AS b ON
is valid SQL, but:
SELECT a.x FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name. (See Section 7.2.1.2.) For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (’anne’, ’'smith’), (‘bob’, ’jones’), (’Jjoe’, ’'blow’))
AS names (first, last)

82

Chapter 7. Queries

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional,
but is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like a table, view, or subquery in the FROM
clause of a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE
clauses in the same manner as a table, view, or subquery column.

If a table function returns a base data type, the single result column name matches the function name.
If the function returns a composite type, the result columns get the same names as the individual
attributes of the type.

A table function can be aliased in the FROM clause, but it also can be left unaliased. If a function is
used in the FROM clause with no alias, the function name is used as the resulting table name.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo (int) RETURNS SETOF foo AS $$
SELECT % FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT = FROM getfoo(l) AS t1;

SELECT x FROM foo
WHERE foosubid IN (
SELECT foosubid
FROM getfoo (foo.fooid) z
WHERE z.fooid = foo.fooid
)i

CREATE VIEW vw_getfoo AS SELECT » FROM getfoo(l);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudotype
record. When such a function is used in a query, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan the query. Consider this example:

SELECT =«
FROM dblink (' dbname=mydb’, ’SELECT proname, prosrc FROM pg_proc’)
AS tl(proname name, prosrc text)
WHERE proname LIKE ’bytea%’;

The dblink function executes a remote query (see contrib/dblink). It is declared to return
record since it might be used for any kind of query. The actual column set must be specified in
the calling query so that the parser knows, for example, what » should expand to.

83

Chapter 7. Queries

7.2.2. The wHERE Clause

The syntax of the WHERE Clause is
WHERE search condition

where search condition is any value expression (see Section 4.2) that returns a value of type

boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (i.e., if the result is false or null) it is discarded. The search condition typically references
at least one column of the table generated in the FROM clause; this is not required, but otherwise the
WHERE clause will be fairly useless.

Note: The join condition of an inner join can be written either in the wrERE clause or in the JoIn
clause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The Jo1n syntax in the Frou clause is
probably not as portable to other SQL database management systems, even though it is in the
SQL standard. For outer joins there is no choice: they must be done in the From clause. The ox
or UsING clause of an outer join is not equivalent to a wHERE condition, because it results in the
addition of rows (for unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE cl > 5

SELECT ... FROM fdt WHERE cl IN (1, 2, 3)

SELECT ... FROM fdt WHERE cl IN (SELECT cl FROM t2)

SELECT ... FROM fdt WHERE cl IN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10)
SELECT ... FROM fdt WHERE cl BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.cl +
SELECT ... FROM fdt WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced
in the subqueries. Qualifying c1 as £dt . c1 is only necessary if c1 is also the name of a column in the
derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. This example shows how the column naming scope of an outer query extends into its inner
queries.

84

10)

AND 100

Chapter 7. Queries

7.2.3. The crourP BY and HAVING Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVING clause.

SELECT select_list
FROM
[WHERE ...]
GROUP BY grouping_column_reference [, grouping_column_reference] ...

The GROUP BY Clause is used to group together those rows in a table that have the same values in all
the columns listed. The order in which the columns are listed does not matter. The effect is to combine
each set of rows having common values into one group row that represents all rows in the group. This
is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.
For instance:

=> SELECT * FROM testl;
X

a
c
b
a
4

(

(3 rows)

In the second query, we could not have written SELECT » FROM testl GROUP BY x, because
there is no single value for the column y that could be associated with each group. The grouped-
by columns can be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except
in aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

X | sum

Here sum is an aggregate function that computes a single value over the entire group. More informa-
tion about the available aggregate functions can be found in Section 9.18.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the prsTINCT clause (see Section 7.3.3).

85

Chapter 7. Queries

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause
since they are referenced in the query select list. (Depending on how the products table is set up, name
and price might be fully dependent on the product ID, so the additional groupings could theoretically
be unnecessary, though this is not implemented.) The column s.units does not have to be in the
GROUP BY list since it is only used in an aggregate expression (sum (. . .)), which represents the
sales of a product. For each product, the query returns a summary row about all sales of the product.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this
to also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead
of simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING
clause can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;
X | sum

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c’;
X | sum

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’'4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price = s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expres-
sion is only true for sales during the last four weeks), while the HAVING clause restricts the output to
groups with total gross sales over 5000. Note that the aggregate expressions do not necessarily need
to be the same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result
is a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The

86

Chapter 7. Queries

same is true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY
clause.

7.2.4. Window Function Processing

If the query contains any window functions (see Section 3.5 and Section 4.2.8), these functions are
evaluated after any grouping, aggregation, and HAVING filtering is performed. That is, if the query
uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions are the
group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated
in a single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY
does not uniquely determine an ordering. However, no guarantees are made about the evaluation of
functions having different PARTITION BY or ORDER BY specifications. (In such cases a sort step is
typically required between the passes of window function evaluations, and the sort is not guaranteed
to preserve ordering of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions’ PARTITION BY/ORDER BY clauses. It is not
recommendable to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be
sure the results are sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table
is finally passed on to processing by the select list. The select list determines which columns of the
intermediate table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is = which emits all columns that the table expression produces.
Otherwise, a select list is a comma-separated list of value expressions (as defined in Section 4.2). For
instance, it could be a list of column names:

SELECT a, b, ¢ FROM

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:
SELECT tbll.a, tbl2.a, tbll.b FROM

When working with multiple tables, it can also be useful to ask for all the columns of a particular
table:

SELECT tbll.x, tbl2.a FROM

87

Chapter 7. Queries

(See also Section 7.2.2.)

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row’s values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of the FROM clause; they can be constant arithmetic expressions,
for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of
the function. For complex expressions, the system will generate a generic name.

The As keyword is optional, but only if the new column name does not match any PostgreSQL key-
word (see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column
name. For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM
but this does:
SELECT a "value", b + ¢ AS sum FROM

For protection against possible future keyword additions, it is recommended that you always either
write AS or double-quote the output column name.

Note: The naming of output columns here is different from that done in the From clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all
TOWS.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DISTINCT ON (expression [, expression ...]) select_list

88

Chapter 7. Queries

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON
processing occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subqueries in FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and differ-
ence. The syntax is

queryl UNION [ALL] query2
queryl INTERSECT [ALL] query?2
queryl EXCEPT [ALL] query2

queryl and query2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

queryl UNION query2 UNION query3
which is executed as:

(queryl UNION query2) UNION query3

UNION effectively appends the result of query?2 to the result of query1 (although there is no guaran-
tee that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate
rows from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of guery1 and in the result of query2. Dupli-
cate rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query but not in the result of query2. (This is some-
times called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT
ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which means that they return the same number of columns and the corresponding
columns have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not be relied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

89

Chapter 7. Queries

SELECT select_1list
FROM table_expression
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query’s select list. An example
is:

SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can be followed by an optional ASC or DEsC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller values first, where “smaller” is defined in terms of the < operator. Similarly, descending order
is determined with the > operator. '

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before
or after non-null values in the sort ordering. By default, null values sort as if larger than any non-null
value; that is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC,
y DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone,
that is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, ¢ FROM tablel ORDER BY sum + cC; —-— wWrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The
output column is used in such cases. This would only cause confusion if you use AS to rename an
output column to match some other table column’s name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this
case it is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of
the query:

SELECT select_list
FROM table_expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

1. Actually, PostgreSQL uses the default B-tree operator class for the expression’s data type to determine the sort ordering
for asc and DEsc. Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but
a user-defined data type’s designer could choose to do something different.

90

Chapter 7. Queries

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rows). LIMIT ALL is the same as omitting the LIMIT clause.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as
omitting the OFFSET clause, and LIMIT NULL is the same as omitting the LIMIT clause. If both
OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows
that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows. You might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LIMIT and
OFFSET. Thus, using different LIMIT/OFFSET values to select different subsets of a query result will
give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This is not
a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a
query in any particular order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. vALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...]1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each
list must have compatible data types. The actual data type assigned to each column of the result is
determined using the same rules as for UNION (see Section 10.5).

As an example:
VALUES (1, ’'one’), (2, 'two’), (3, "three’);
will return a table of two columns and three rows. It’s effectively equivalent to:

SELECT 1 AS columnl, ’one’ AS column2
UNION ALL

SELECT 2, ’"two’

UNION ALL

SELECT 3, ’'three’;

By default, PostgreSQL assigns the names columnl, column2, etc. to the columns of a VALUES
table. The column names are not specified by the SQL standard and different database systems do it
differently, so it’s usually better to override the default names with a table alias list.

Syntactically, VALUES followed by expression lists is treated as equivalent to:

SELECT select_list FROM table_expression

91

Chapter 7. Queries

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used
as the data source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. wITH Queries

WITH provides a way to write subqueries for use in a larger SELECT query. The subqueries can be
thought of as defining temporary tables that exist just for this query. One use of this feature is to break
down complicated queries into simpler parts. An example is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
product,
SUM (quantity) AS product_units,
SUM (amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. This example could have been
written without WITH, but we’d have needed two levels of nested sub-SELECTSs. It’s a bit easier to
follow this way.

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature
that accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query
can refer to its own output. A very simple example is this query to sum the integers from 1 through
100:

WITH RECURSIVE t (n) AS (
VALUES (1)
UNION ALL
SELECT n+l FROM t WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION
ALL), then a recursive term, where only the recursive term can contain a reference to the query’s own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. In-
clude all remaining rows in the result of the recursive query, and also place them in a temporary
working table.

92

Chapter 7. Queries
2. So long as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for
the recursive self-reference. For UNION (but not UNION ALL), discard duplicate rows
and rows that duplicate any previous result row. Include all remaining rows in the result
of the recursive query, and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table,
then empty the intermediate table.

Note: Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology
chosen by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE
clause, and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

WITH RECURSIVE included_parts (sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = ’'our_product’
UNION ALL
SELECT p.sub_part, p.part, p.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNTON instead
of UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However,
often a cycle does not involve output rows that are completely duplicate: it may be necessary to check
just one or a few fields to see if the same point has been reached before. The standard method for
handling such situations is to compute an array of the already-visited values. For example, consider
the following query that searches a table graph using a 1ink field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT x FROM search_graph;

This query will loop if the 1ink relationships contain cycles. Because we require a “depth” output,
just changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize

93

Chapter 7. Queries

whether we have reached the same row again while following a particular path of links. We add two
columns path and cycle to the loop-prone query:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [g.1id],
false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.1id = ANY (path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fields £1 and £2:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [ROW (g.f1l, g.f2)],

false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || ROW(g.fl, g.f2),
ROW(g.fl, g.f2) = ANY (path)

FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT * FROM search_graph;

Tip: Omit the row () syntax in the common case where only one field needs to be checked to
recognize a cycle. This allows a simple array rather than a composite-type array to be used,
gaining efficiency.

Tip: The recursive query evaluation algorithm produces its output in breadth-first search order.
You can display the results in depth-first search order by making the outer query orDER BY a
“path” column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in
the parent query. For example, this query would loop forever without the L,ITMIT:

WITH RECURSIVE t (n) AS (
SELECT 1
UNION ALL
SELECT n+1 FROM t

94

Chapter 7. Queries

)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL’s implementation evaluates only as many rows of a WITH query as
are actually fetched by the parent query. Using this trick in production is not recommended, because
other systems might work differently. Also, it usually won’t work if you make the outer query sort the
recursive query’s results or join them to some other table.

A useful property of WITH queries is that they are evaluated only once per execution of the parent
query, even if they are referred to more than once by the parent query or sibling WITH queries. Thus,
expensive calculations that are needed in multiple places can be placed within a WITH query to avoid
redundant work. Another possible application is to prevent unwanted multiple evaluations of func-
tions with side-effects. However, the other side of this coin is that the optimizer is less able to push
restrictions from the parent query down into a WITH query than an ordinary sub-query. The wITH
query will generally be evaluated as stated, without suppression of rows that the parent query might
discard afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to the
query demand only a limited number of rows.)

95

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to Post-
greSQL using the CREATE TYPE command.

Table 8-1 shows all the built-in general-purpose data types. Most of the alternative names listed in
the “Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character varying [(n) |varchar [(n)] variable-length character string

]

character [(n)] char [(n)] fixed-length character string

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month,
day)

double precision float8 double precision floating-point
number (8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields] [time span

(p)]

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control)
address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

path geometric path on a plane

point geometric point on a plane

polygon closed geometric path on a
plane

real float4 single precision floating-point
number (4 bytes)

96

Chapter 8. Data Types

Name Aliases Description

smallint int2 signed two-byte integer

serial serial4 autoincrementing four-byte
integer

text variable-length character string

time [(p)] [without time of day (no time zone)

time zone]

time [(p)] with time |timetz time of day, including time

zone zone

timestamp [(p) 1 [date and time (no time zone)

without time zone]

timestamp [(p)] with

time zone

timestamptz

date and time, including time
zone

tsquery

text search query

tsvector

text search document

txid_snapshot

user-level transaction ID

snapshot
uuid universally unique identifier
xml XML data

Compatibility: The following types (or spellings thereof) are specified by SQL: bigint, bit, bit
varying, boolean, char, character varying, character, varchar, date, double precision,
integer, interval, numeric, decimal, real, smallint, time (With or without time zone),
timestamp (with or without time zone), xm1.

Each data type has an external representation determined by its input and output functions. Many of
the built-in types have obvious external formats. However, several types are either unique to Post-
greSQL, such as geometric paths, or have several possible formats, such as the date and time types.
Some of the input and output functions are not invertible, i.e., the result of an output function might

lose accuracy when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and selectable-precision decimals. Table 8-2 lists the available types.

Table 8-2. Numeric Types

Name Storage Size Description Range

smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes typical choice for -2147483648 to
integer +2147483647

97

Chapter 8. Data Types

Name Storage Size Description Range

bigint 8 bytes large-range integer -
9223372036854775808
to
9223372036854775807

decimal variable user-specified no limit

precision, exact

numeric variable user-specified no limit
precision, exact

real 4 bytes variable-precision, 6 decimal digits
inexact precision

double precision |8 bytes variable-precision, 15 decimal digits
inexact precision

serial 4 bytes autoincrementing 1 to 2147483647
integer

bigserial 8 bytes large autoincrementing | 1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.
The following sections describe the types in detail.

8.1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint
type should only be used if the integer range is insufficient, because the latter is definitely faster.

On very minimal operating systems the bigint type might not function correctly, because it relies
on compiler support for eight-byte integers. On such machines, bigint acts the same as integer,
but still takes up eight bytes of storage. (We are not aware of any modern platform where this is the
case.)

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names
int2, int4, and int8 are extensions, which are also used by some other SQL database systems.

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with up to 1000 digits of precision and perform calculations
exactly. It is especially recommended for storing monetary amounts and other quantities where exact-
ness is required. However, arithmetic on numeric values is very slow compared to the integer types,
or to the floating-point types described in the next section.

We use the following terms below: The scale of a numeric is the count of decimal digits in the
fractional part, to the right of the decimal point. The precision of a numeric is the total count of

98

Chapter 8. Data Types

significant digits in the whole number, that is, the number of digits to both sides of the decimal point.
So the number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a
scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To
declare a column of type numeric use the syntax:

NUMERIC (precision, scale)

The precision must be positive, the scale zero or positive. Alternatively:
NUMERIC (precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to the implementation limit on precision. A column of this kind will not coerce
input values to any particular scale, whereas numeric columns with a declared scale will coerce input
values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision.
We find this a bit useless. If you’re concerned about portability, always specify the precision and scale
explicitly.)

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type
is more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each
group of four decimal digits, plus five to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning
“not-a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in
an SQL command, you must put quotes around it, for example UPDATE table SET x = ’NaN’.
On input, the string NaN is recognized in a case-insensitive manner.

Note: In most implementations of the “not-a-number” concept, Nan is not considered equal to any
other numeric value (including Nan). In order to allow numeric values to be sorted and used in
tree-based indexes, PostgreSQL treats nan values as equal, and greater than all non-nan values.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. In prac-
tice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arith-
metic (single and double precision, respectively), to the extent that the underlying processor, operating
system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as ap-
proximations, so that storing and retrieving a value might show slight discrepancies. Managing these

99

Chapter 8. Data Types

errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the numeric
type instead.

« If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

« Comparing two floating-point values for equality might not always work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are
not representable as distinct from zero will cause an underflow error.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

LEINNT3

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, re-
spectively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values
will probably not work as expected.) When writing these values as constants in an SQL command,
you must put quotes around them, for example UPDATE table SET x = 'Infinity’. On input,
these strings are recognized in a case-insensitive manner.

Note: IEEE754 specifies that nan should not compare equal to any other floating-point value
(including nan). In order to allow floating-point values to be sorted and used in tree-based indexes,
PostgreSQL treats nan values as equal, and greater than all non-nan values.

PostgreSQL also supports the SQL-standard notations float and float (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL
accepts float (1) to float (24) as selecting the real type, while f1loat (25) to float (53) select
double precision. Values of p outside the allowed range draw an error. £1oat with no precision
specified is taken to mean double precision.

Note: Prior to PostgreSQL 7.4, the precision in float (p) was taken to mean so many decimal
digits. This has been corrected to match the SQL standard, which specifies that the precision is
measured in binary digits. The assumption that real and double precision have exactly 24 and
53 bits in the mantissa respectively is correct for IEEE-standard floating point implementations.
On non-IEEE platforms it might be off a little, but for simplicity the same ranges of p are used on
all platforms.

100

Chapter 8. Data Types

8.1.4. Serial Types

The data types serial and bigserial are not true types, but merely a notational convenience for
creating unique identifier columns (similar to the AUTO_INCREMENT property supported by some
other databases). In the current implementation, specifying:

CREATE TABLE tablename (
colname SERIAL

)i
is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (
colname integer NOT NULL DEFAULT nextval (' tablename_colname_seq’)
)i
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a se-
quence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted. (In
most cases you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate
values from being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as
“owned by” the column, so that it will be dropped if the column or table is dropped.

Note: Prior to PostgreSQL 7.3, serial implied un1Que. This is no longer automatic. If you wish a
serial column to have a unique constraint or be a primary key, it must now be specified, just like
any other data type.

To insert the next value of the sequence into the serial column, specify that the serial column
should be assigned its default value. This can be done either by excluding the column from the list of
columns in the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create abigint column. bigserial
should be used if you anticipate the use of more than 2*' identifiers over the lifetime of the table.

The sequence created for a serial column is automatically dropped when the owning column is
dropped. You can drop the sequence without dropping the column, but this will force removal of the
column default expression.

8.2. Monetary Types

The money type stores a currency amount with a fixed fractional precision; see Table 8-3. The frac-
tional precision is determined by the database’s lc_monetary setting. Input is accepted in a variety of
formats, including integer and floating-point literals, as well as typical currency formatting, such as
7$1,000.00”. Output is generally in the latter form but depends on the locale. Non-quoted numeric
values can be converted to money by casting the numeric value to text and then money, for example:

SELECT 1234::text::money;

101

Chapter 8. Data Types

There is no simple way of doing the reverse in a locale-independent manner, namely casting a money
value to a numeric type. If you know the currency symbol and thousands separator you can use

regexp_replace():

SELECT regexp_replace (’52093.89’ ::money::text, "[$,1', ”, 'g’)::numeric;

Since the output of this data type is locale-sensitive, it might not work to load money data into a
database that has a different setting of 1c_monetary. To avoid problems, before restoring a dump
into a new database make sure 1c_monetary has the same or equivalent value as in the database that
was dumped.

Table 8-3. Monetary Types

Name Storage Size Description Range

money 8 bytes currency amount -
92233720368547758.08
to
+92233720368547758.0

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n), varchar (n) variable-length with limit
character (n), char (n) fixed-length, blank padded
text variable unlimited length

Table 8-4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character (n), where n
is a positive integer. Both of these types can store strings up to n characters (not bytes) in length.
An attempt to store a longer string into a column of these types will result in an error, unless the
excess characters are all spaces, in which case the string will be truncated to the maximum length.
(This somewhat bizarre exception is required by the SQL standard.) If the string to be stored is shorter
than the declared length, values of type character will be space-padded; values of type character
varying will simply store the shorter string.

If one explicitly casts a value to character varying(n) or character (n), then an over-length
value will be truncated to n characters without raising an error. (This too is required by the SQL
standard.)

The notations varchar (n) and char(n) are aliases for character varying(n) and
character (n), respectively. character without length specifier is equivalent to character (1).
If character varying is used without length specifier, the type accepts strings of any size. The
latter is a PostgreSQL extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the
type text is not in the SQL standard, several other SQL database management systems have it as

102

Chapter 8. Data Types

well.

Values of type character are physically padded with spaces to the specified width n, and are stored
and displayed that way. However, the padding spaces are treated as semantically insignificant. Trailing
spaces are disregarded when comparing two values of type character, and they will be removed
when converting a character value to one of the other string types. Note that trailing spaces are
semantically significant in character varying and text values.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includes the space padding in the case of character. Longer strings have 4 bytes of overhead instead
of 1. Long strings are compressed by the system automatically, so the physical requirement on disk
might be less. Very long values are also stored in background tables so that they do not interfere with
rapid access to shorter column values. In any case, the longest possible character string that can be
stored is about 1 GB. (The maximum value that will be allowed for n in the data type declaration
is less than that. It wouldn’t be useful to change this because with multibyte character encodings
the number of characters and bytes can be quite different. If you desire to store long strings with no
specific upper limit, use text or character varying without a length specifier, rather than making
up an arbitrary length limit.)

Tip: There is no performance difference among these three types, apart from increased storage
space when using the blank-padded type, and a few extra CPU cycles to check the length when
storing into a length-constrained column. While character (n) has performance advantages in
some other database systems, there is no such advantage in PostgreSQL; in fact character (n)
is usually the slowest of the three because of its additional storage costs. In most situations text
Or character varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for infor-
mation about available operators and functions. The database character set determines the character
set used to store textual values; for more information on character set support, refer to Section 22.2.

Example 8-1. Using the character types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES (’ok’);

SELECT a, char_length(a) FROM testl; —- ©
a | char_length

______ e

ok | 2

CREATE TABLE test2 (b varchar(5));

INSERT INTO test2 VALUES ('ok’);

INSERT INTO test2 VALUES (’good ")

INSERT INTO test2 VALUES (’too long’);

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES (’too long’::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;
b | char_length
,,,,,,, o
ok | 2
good | 5
too 1 | 5

©® The char_length function is discussed in Section 9.4.

103

Chapter 8. Data Types

There are two other fixed-length character types in PostgreSQL, shown in Table 8-5. The name type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by
the general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but
should be referenced using the constant NAMEDATALEN in C source code. The length is set at compile
time (and is therefore adjustable for special uses); the default maximum length might change in a
future release. The type "char" (note the quotes) is different from char (1) in that it only uses one
byte of storage. It is internally used in the system catalogs as a simplistic enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

The bytea data type allows storage of binary strings; see Table 8-6.

Table 8-6. Binary Data Types

Name Storage Size Description

bytea 1 or 4 bytes plus the actual variable-length binary string
binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character
strings in two ways: First, binary strings specifically allow storing octets of value zero and other “non-
printable” octets (usually, octets outside the range 32 to 126). Character strings disallow zero octets,
and also disallow any other octet values and sequences of octet values that are invalid according to
the database’s selected character set encoding. Second, operations on binary strings process the actual
bytes, whereas the processing of character strings depends on locale settings. In short, binary strings
are appropriate for storing data that the programmer thinks of as “raw bytes”, whereas character
strings are appropriate for storing text.

When entering bytea values, octets of certain values must be escaped (but all octet values can be
escaped) when used as part of a string literal in an SQL statement. In general, to escape an octet,
convert it into its three-digit octal value and precede it by two backslashes. Table 8-7 shows the
characters that must be escaped, and gives the alternative escape sequences where applicable.

Table 8-7. bytea Literal Escaped Octets

Decimal Octet | Description Escaped Input | Example Output
Value Representation Representation
0 zero octet E’\\00O0" SELECT \000

E’\\000’ : :bytea;

39 single quote 77 or E/'\\047’ |SELECT ’
E’\”::bytea;

104

Chapter 8. Data Types

Decimal Octet | Description Escaped Input | Example Output
Value Representation Representation
92 backslash E’\\\\" or SELECT A\
E’\\134’ E’\\\\’ : :bytea
0to 31 and 127 to | “non-printable” E’\\xxx’ (octal |SELECT \001
255 octets value) E’\\001’ : :bytea;

The requirement to escape non-printable octets varies depending on locale settings. In some instances
you can get away with leaving them unescaped. Note that the result in each of the examples in Table
8-7 was exactly one octet in length, even though the output representation is sometimes more than
one character.

The reason multiple backslashes are required, as shown in Table 8-7, is that an input string written
as a string literal must pass through two parse phases in the PostgreSQL server. The first backslash
of each pair is interpreted as an escape character by the string-literal parser (assuming escape string
syntax is used) and is therefore consumed, leaving the second backslash of the pair. (Dollar-quoted
strings can be used to avoid this level of escaping.) The remaining backslash is then recognized by
the bytea input function as starting either a three digit octal value or escaping another backslash. For
example, a string literal passed to the server as E’ \\001’ becomes \001 after passing through the
escape string parser. The \001 is then sent to the bytea input function, where it is converted to a
single octet with a decimal value of 1. Note that the single-quote character is not treated specially by
bytea, so it follows the normal rules for string literals. (See also Section 4.1.2.1.)

Bytea octets are sometimes escaped when output. In general, each “non-printable” octet is converted
into its equivalent three-digit octal value and preceded by one backslash. Most “printable” octets are
represented by their standard representation in the client character set. The octet with decimal value
92 (backslash) is doubled in the output. Details are in Table 8-8.

Table 8-8. bytea Output Escaped Octets

Decimal Octet | Description Escaped Example Output Result
Value Output

Representation
92 backslash AN\ SELECT AN\

E’\\134’ : :bytea;

0to 31 and 127 to | “non-printable” \xxx (octal value) | SELECT \001
255 octets E’\\001’ : :bytea;
3210 126 “printable” octets | client character SELECT ~

set representation |E’\\176’ : :bytea;

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT.
The input format is different from bytea, but the provided functions and operators are mostly the

105

Chapter 8. Data Types

same.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8-9. The operations
available on these data types are described in Section 9.9.

Table 8-9. Date/Time Types

Name Storage Size | Description |Low Value High Value |Resolution
timestamp [|8 bytes both date and |4713 BC 294276 AD 1 microsecond
(p) 1 I time (no time / 14 digits
without zone)

time zone]

timestamp [|8 bytes both date and | 4713 BC 294276 AD 1 microsecond
(p) 1 with time, with time / 14 digits
time zone zone
date 4 bytes date (no time |4713 BC 5874897 AD |1 day

of day)
time [(p) 8 bytes time of day (no | 00:00:00 24:00:00 1 microsecond
] [without date) / 14 digits

time zone]

time [(p) |12 bytes times of day 00:00:00+1459 | 24:00:00-1459 | 1 microsecond
] with time only, with time / 14 digits
zone zone

interval [|12 bytes time interval | -178000000 178000000 1 microsecond
fields 1 [years years / 14 digits

(p)]

Note: Prior to PostgreSQL 7.3, writing just t imestamp was equivalent to t imestamp with time
zone. This was changed for SQL compliance.

time, timestamp, and interval accept an optional precision value p which specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range of p is from O to 6 for the t imestamp and interval types.

Note: When t imestamp values are stored as eight-byte integers (currently the default), microsec-
ond precision is available over the full range of values. When timestamp values are stored as
double precision floating-point numbers instead (a deprecated compile-time option), the effective
limit of precision might be less than 6. timestamp values are stored as seconds before or after
midnight 2000-01-01. When timestamp values are implemented using floating-point numbers,
microsecond precision is achieved for dates within a few years of 2000-01-01, but the precision
degrades for dates further away. Note that using floating-point datetimes allows a larger range of
timestamp values to be represented than shown above: from 4713 BC up to 5874897 AD.

106

Chapter 8. Data Types

The same compile-time option also determines whether time and interval values are stored
as floating-point numbers or eight-byte integers. In the floating-point case, large interval values
degrade in precision as the size of the interval increases.

For the time types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or
from O to 10 when floating-point storage is used.

The interval type has an additional option, which is to restrict the set of stored fields by writing
one of these phrases:

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
MINUTE TO SECOND

Input falling outside the specified set of fields is silently discarded. Note that if both rfields and
precision are specified, the £fields must include SECOND, since the precision applies only to the
seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits
properties which lead to questionable usefulness. In most cases, a combination of date, time,
timestamp without time zone, and timestamp with time zone should provide a
complete range of date/time functionality required by any application.

The types abstime and reltime are lower precision types which are used internally. You are dis-
couraged from using these types in applications; these internal types might disappear in a future
release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601,
SQL-compatible, traditional POSTGRES, and others. For some formats, ordering of day, month, and
year in date input is ambiguous and there is support for specifying the expected ordering of these
fields. Set the DateStyle parameter to MDY to select month-day-year interpretation, DMY to select
day-month-year interpretation, or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Ap-
pendix B for the exact parsing rules of date/time input and for the recognized text fields including
months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p) 1 'value’

where p is an optional precision specification giving the number of fractional digits in the seconds
field. Precision can be specified for t ime, t imestamp, and interval types. The allowed values are

107

Chapter 8. Data Types

mentioned above. If no precision is specified in a constant specification, it defaults to the precision of
the literal value.

8.5.1.1. Dates

Table 8-10 shows some possible inputs for the date type.

Table 8-10. Date Input

Example Description
1999-01-08 ISO 8601; January 8 in any mode
(recommended format)
January 8, 1999 unambiguous in any datestyle input mode
1/8/1999 January 8 in MDY mode; August 1 in DMY mode
1/18/1999 January 18 in MDY mode; rejected in other modes
01/02/03 January 2, 2003 in MDY mode; February 1, 2003
in DMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode
990108 ISO 8601; January 8, 1999 in any mode
1999.008 year and day of year

J2451187 Julian day

January 8, 99 BC year 99 BC
8.5.1.2. Times
The time-of-day types are time [(p)] without time zoneandtime [(p)] with time

zone. time alone is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8-11
and Table 8-12.) If a time zone is specified in the input for time without time zone, itis silently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name
that involves a daylight-savings rule, such as America/New_York. In this case specifying the date
is required in order to determine whether standard or daylight-savings time applies. The appropriate
time zone offset is recorded in the time with time zone value.

Table 8-11. Time Input

Example Description
04:05:06.789 ISO 8601
04:05:06 ISO 8601

108

Chapter 8. Data Types

Example Description

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12
04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by abbreviation
2003-04-12 04:05:06 America/New_York |time zone specified by full name

Table 8-12. Time Zone Input

Example Description

PST Abbreviation (for Pacific Standard Time)
America/New_York Full time zone name

PST8PDT POSIX-style time zone specification
-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form of zulu

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by
an optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the
time zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:
January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates t imestamp without time zone and timestamp with time
zone literals by the presence of a “+” or “-” symbol and time zone offset after the time. Hence,
according to the standard,

TIMESTAMP ’'2004-10-19 10:23:54'

109

Chapter 8. Data Types

isatimestamp without time zone, while
TIMESTAMP ’'2004-10-19 10:23:54+02’

isatimestamp with time zone.PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as t imestamp without time zone.
To ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE ’2004-10-19 10:23:54+02'

In a literal that has been determined to be timestamp without time zone, PostgreSQL will
silently ignore any time zone indication. That is, the resulting value is derived from the date/time
fields in the input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordi-
nated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit
time zone specified is converted to UTC using the appropriate offset for that time zone. If no time
zone is stated in the input string, then it is assumed to be in the time zone indicated by the system’s
timezone parameter, and is converted to UTC using the offset for the t imezone zone.

When a timestamp with time zone value is output, it is always converted from UTC to the
current timezone zone, and displayed as local time in that zone. To see the time in another time
zone, either change t imezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between timestamp without time zone and timestamp with time zone
normally assume that the timestamp without time zone value should be taken or given as
timezone local time. A different time zone can be specified for the conversion using AT TIME
ZONE.

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table §-13.
The values infinity and -infinity are specially represented inside the system and will be dis-
played unchanged; but the others are simply notational shorthands that will be converted to ordinary
date/time values when read. (In particular, now and related strings are converted to a specific time
value as soon as they are read.) All of these values need to be enclosed in single quotes when used as
constants in SQL commands.

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description

epoch date, timestamp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date, timestamp later than all other time stamps

—infinity date, timestamp earlier than all other time
stamps

now date, time, timestamp current transaction’s start time

today date, timestamp midnight today

tomorrow date, timestamp midnight tomorrow

yesterday date, timestamp midnight yesterday

allballs time 00:00:00.00 UTC

110

Chapter 8. Data Types

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LOCALTIMESTAMP. The latter four accept an optional subsecond precision specification. (See
Section 9.9.4.) Note that these are SQL functions and are not recognized in data input strings.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL
standard requires the use of the ISO 8601 format. The name of the “SQL” output format is a historical
accident.) Table 8-14 shows examples of each output style. The output of the date and t ime types is
of course only the date or time part in accordance with the given examples.

Table 8-14. Date/Time Output Styles

Style Specification Description Example

ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST

POSTGRES original style Wed Dec 17 07:37:16 1997
PST

German regional style 17.12.1997 07:37:16.00 PST

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been spec-
ified, otherwise month appears before day. (See Section 8.5.1 for how this setting also affects inter-
pretation of input values.) Table 8-15 shows an example.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/monthlyear 17/12/1997 15:37:16.00 CET

SQL, MDY month/daylyear 12/17/1997 07:37:16.00 PST

Postgres, DMY day/monthlyear Wed 17 Dec 07:37:16 1997
PST

The date/time styles can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresqgl.conf configuration file, or the PGDATESTYLE environment variable
on the server or client. The formatting function to_char (see Section 9.8) is also available as a more
flexible way to format date/time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the
widely-used zoneinfo time zone database for information about historical time zone rules. For times
in the future, the assumption is that the latest known rules for a given time zone will continue to be
observed indefinitely far into the future.

111

Chapter 8. Data Types

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

+ Although the date type cannot have an associated time zone, the t ime type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can
vary through the year with daylight-saving time boundaries.

 The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We do not recommend using the type time with time zone (though it
is supported by PostgreSQL for legacy applications and for compliance with the SQL standard).
PostgreSQL assumes your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in
the zone specified by the timezone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

« A full time zone name, for example America/New_York. The recognized time zone names are
listed in the pg_timezone_names view (see Section 44.58). PostgreSQL uses the widely-used
zoneinfo time zone data for this purpose, so the same names are also recognized by much other
software.

« A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition-
date rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view
(see Section 44.57). You cannot set the configuration parameters timezone or log_timezone to a
time zone abbreviation, but you can use abbreviations in date/time input values and with the AT
TIME ZONE operator.

+ In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time
zone specifications of the form STDoffset or STDoffsetDST, where STD is a zone abbreviation,
offset is a numeric offset in hours west from UTC, and DST is an optional daylight-savings zone
abbreviation, assumed to stand for one hour ahead of the given offset. For example, if ESTSEDT
were not already a recognized zone name, it would be accepted and would be functionally equiva-
lent to United States East Coast time. When a daylight-savings zone name is present, it is assumed
to be used according to the same daylight-savings transition rules used in the zoneinfo time zone
database’s posixrules entry. In a standard PostgreSQL installation, posixrules is the same as
US/Eastern, so that POSIX-style time zone specifications follow USA daylight-savings rules. If
needed, you can adjust this behavior by replacing the posixrules file.

In short, this is the difference between abbreviations and full names: abbreviations always represent a
fixed offset from UTC, whereas most of the full names imply a local daylight-savings time rule, and
so have two possible UTC offsets.

One should be wary that the POSIX-style time zone feature can lead to silently accepting bogus input,
since there is no check on the reasonableness of the zone abbreviations. For example, SET TIMEZONE
TO FOOBARO will work, leaving the system effectively using a rather peculiar abbreviation for UTC.
Another issue to keep in mind is that in POSIX time zone names, positive offsets are used for locations
west of Greenwich. Everywhere else, PostgreSQL follows the ISO-8601 convention that positive
timezone offsets are east of Greenwich.

112

Chapter 8. Data Types

In all cases, timezone names are recognized case-insensitively. (This is a change from PostgreSQL
versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither full names nor abbreviations are hard-wired into the server; they are obtained from configura-
tion files stored under . . . /share/timezone/and . ../share/timezonesets/ of the installation
directory (see Section B.3).

The timezone configuration parameter can be set in the file postgresgl . conf, or in any of the other
standard ways described in Chapter 18. There are also several special ways to set it:

« If timezone is not specified in postgresqgl.conf or as a server command-line option, the server
attempts to use the value of the Tz environment variable as the default time zone. If TZ is not
defined or is not any of the time zone names known to PostgreSQL, the server attempts to deter-
mine the operating system’s default time zone by checking the behavior of the C library function
localtime (). The default time zone is selected as the closest match among PostgreSQL’s known
time zones. (These rules are also used to choose the default value of log_timezone, if not specified.)

« The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative
spelling of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

- The pPGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to
the server upon connection.

8.5.4. Interval Input

interval values can be written using the following verbose syntax:
[@Q] quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit is microsecond, millisecond, second,
minute, hour, day, week, month, year, decade, century, millennium, or abbreviations or plu-
rals of these units; direction can be ago or empty. The at sign (@) is optional noise. The amounts
of the different units are implicitly added with appropriate sign accounting. ago negates all the fields.
This syntax is also used for interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example, 1 12:59:10’ isread the same as '1 day 12 hours 59 min 10 sec’. Also, a com-
bination of years and months can be specified with a dash; for example ' 200-10" is read the same
as 200 years 10 months’. (These shorter forms are in fact the only ones allowed by the SQL
standard, and are used for output when IntervalStyle is set to sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designa-
tors” of the standard’s section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with
designators looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8-16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of M depends on whether
it is before or after T.

Table 8-16. ISO 8601 interval unit abbreviations

113

Chapter 8. Data Types

Abbreviation Meaning

Years

Months (in the date part)

Weeks

Days

Hours

Minutes (in the time part)

©wiZz|m|o|= (|

Seconds

In the alternative format:
P [years—months—days] [T hours:minutes:seconds |

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to ISO 8601 dates.

When writing an interval constant with a £ields specification, or when assigning to an interval col-
umn that was defined with a fields specification, the interpretation of unmarked quantities depends
onthe fields. Forexample INTERVAL ’1’ YEARisread as 1 year, whereas INTERVAL ‘1’ means
1 second.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign applies to all fields; for example the negative sign in the interval literal * -1 2:03:04"
applies to both the days and hour/minute/second parts. PostgreSQL allows the fields to have differ-
ent signs, and traditionally treats each field in the textual representation as independently signed, so
that the hour/minute/second part is considered positive in this example. If IntervalStyle is set
to sql_standard then a leading sign is considered to apply to all fields (but only if no additional
signs appear). Otherwise the traditional PostgreSQL interpretation is used. To avoid ambiguity, it’s
recommended to attach an explicit sign to each field if any field is negative.

Internally interval values are stored as months, days, and seconds. This is done because the number
of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment is
involved. The months and days fields are integers while the seconds field can store fractions. Because
intervals are usually created from constant strings or timestamp subtraction, this storage method
works well in most cases. Functions justify_days and justify_hours are available for adjusting
days and hours that overflow their normal ranges.

In the verbose input format, and in some fields of the more compact input formats, field values can
have fractional parts; for example 1.5 week’ or 01:02:03.45”. Such input is converted to the
appropriate number of months, days, and seconds for storage. When this would result in a fractional
number of months or days, the fraction is added to the lower-order fields using the conversion factors
1 month = 30 days and 1 day = 24 hours. For example, 1.5 month’ becomes 1 month and 15 days.
Only seconds will ever be shown as fractional on output.

Table 8-17 shows some examples of valid interval input.

Table 8-17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes
6 seconds

114

Chapter 8. Data Types

Example Description

1 year 2 months 3 days 4 hours 5 minutes 6 Traditional Postgres format: 1 year 2 months 3
seconds days 4 hours 5 minutes 6 seconds
P1Y2M3DT4H5M6S ISO 8601 “format with designators”: same

meaning as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as

above

8.5.5. Interval Output

The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, Or iso_8601, using the command SET intervalstyle. The default is the
postgres format. Table 8-18 shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard’s specification for
interval literal strings, if the interval value meets the standard’s restrictions (either year-month only or
day-time only, with no mixing of positive and negative components). Otherwise the output looks like
a standard year-month literal string followed by a day-time literal string, with explicit signs added to
disambiguate mixed-sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to IS0.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4
when the DateStyle parameter was set to non-ISO output.

The output of the i so_8601 style matches the “format with designators” described in section 4.4.3.2
of the ISO 8601 standard.

Table 8-18. Interval Output Style Examples

Style Specification

Year-Month Interval

Day-Time Interval

Mixed Interval

sgl_standard

1-2

3 4:05:06

-1-2 +3 -4:05:06

postgres

1 year 2 mons

3 days 04:05:06

-1 year -2 mons +3
days -04:05:06

postgres_verbose

@ 1 year 2 mons

@ 3 days 4 hours 5

@ 1 year 2 mons -3

mins 6 secs days 4 hours 5 mins 6
secs ago
iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-

6S

8.5.6. Internals

PostgreSQL uses Julian dates for all date/time calculations. This has the useful property of correctly
calculating dates from 4713 BC to far into the future, using the assumption that the length of the year
is 365.2425 days.

Date conventions before the 19th century make for interesting reading, but are not consistent enough
to warrant coding into a date/time handler.

115

Chapter 8. Data Types

8.6. Boolean Type

PostgreSQL provides the standard SQL type boolean. boolean can have one of only two states:
“true” or “false”. A third state, “unknown”, is represented by the SQL null value.

Valid literal values for the “true” state are:

TRUE
4 t 4
"true’
4 yf
’ yes ’
4 OI’l’
4 1 4

For the “false” state, the following values can be used:
FALSE
4 f!
"false’
4 n!
4 nol
"off’
4 O 4

Leading or trailing whitespace is ignored, and case does not matter. The key words TRUE and FALSE
are the preferred (SQL-compliant) usage.

Example 8-2. Using the boolean type
CREATE TABLE testl (a boolean, b text);
INSERT INTO testl VALUES (TRUE, ’sic est’);

INSERT INTO testl VALUES (FALSE, 'non est’);
SELECT * FROM testl;

a | b
t | sic est

Example 8-2 shows that boolean values are output using the letters t and £.

boolean uses | byte of storage.

8.7. Enumerated Types

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equiv-
alent to the enum types supported in a number of programming languages. An example of an enum
type might be the days of the week, or a set of status values for a piece of data.

116

Chapter 8. Data Types

8.7.1. Declaration of Enumerated Types

Enum types are created using the CREATE TYPE command, for example:
CREATE TYPE mood AS ENUM (’sad’, ’ok’, ’'happy’);

Once created, the enum type can be used in table and function definitions much like any other type:

Example 8-3. Basic Enum Usage

CREATE TYPE mood AS ENUM (’sad’, ’'ok’, ’"happy’);
CREATE TABLE person (
name text,
current_mood mood
)i
INSERT INTO person VALUES (’Moe’, ’"happy’);
SELECT x FROM person WHERE current_mood = ’"happy’;

name current_mood

8.7.2. Ordering

The ordering of the values in an enum type is the order in which the values were listed when the
type was created. All standard comparison operators and related aggregate functions are supported
for enums. For example:

Example 8-4. Enum Ordering

INSERT INTO person VALUES (’'Larry’, ’'sad’);
INSERT INTO person VALUES (’Curly’, ’ok’);
SELECT x FROM person WHERE current_mood > ’'sad’;

name | current_mood
_______ e
Moe | happy

Curly | ok

(2 rows)

SELECT x FROM person WHERE current_mood > ’sad’ ORDER BY current_mood;

name current_mood

|
_______ o
Curly | ok
Moe | happy
(2 rows)

SELECT name

FROM person

WHERE current_mood = (SELECT MIN (current_mood) FROM person);
name

117

Chapter 8. Data Types

8.7.3. Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types.

Example 8-5. Lack of Casting

CREATE TYPE happiness AS ENUM ('happy’, ’'very happy’, ’ecstatic’);
CREATE TABLE holidays (

num_weeks integer,

happiness happiness
)i
INSERT INTO holidays (num_weeks, happiness) VALUES (4, ’'happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (6, ’very happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (8, ’‘ecstatic’);
INSERT INTO holidays (num_weeks, happiness) VALUES (2, ’'sad’);
ERROR: invalid input value for enum happiness: "sad"
SELECT person.name, holidays.num_weeks FROM person, holidays

WHERE person.current_mood = holidays.happiness;

ERROR: operator does not exist: mood = happiness

If you really need to do something like that, you can either write a custom operator or add explicit
casts to your query:

Example 8-6. Comparing Different Enums by Casting to Text

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood::text = holidays.happiness::text;
name | num_weeks

8.7.4. Implementation Details

An enum value occupies four bytes on disk. The length of an enum value’s textual label is limited by
the NAMEDATALEN setting compiled into PostgreSQL; in standard builds this means at most 63 bytes.

Enum labels are case sensitive, so ' happy’ is not the same as ' HAPPY’. White space in the labels is
significant too.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8-19 shows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other

types.

118

Chapter 8. Data Types

Name ‘ Storage Size Representation Description
Table 8-19. Geometric Types

Name Storage Size Representation Description

point 16 bytes Point on a plane (x,y)

line 32 bytes Infinite line (not fully | ((x1,y1),(x2,y2))
implemented)

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to | ((x1,yl),...)
polygon)

path 16+16n bytes Open path [(xLyD),...]

polygon 40+16n bytes Polygon (similar to (x1,yD),...)
closed path)

circle 24 bytes Circle <(x,y),r> (center point

and radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type point
are specified using the following syntax:

(x, v)
X 5 Y

where x and y are the respective coordinates, as floating-point numbers.

8.8.2. Line Segments

Line segments (1seq) are represented by pairs of points. Values of type 1seg are specified using the

following syntax:

((x1, y1) ,
(x1, y1) ,
x1 , yl ,

(
(

x2
x2
x2

r ¥2))
; y2)
, 2

where (x1,y1) and (x2, y2) are the end points of the line segment.

8.8.3. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using the following syntax:

((x1, y1) ,
(x1 , y1) ,
x1 , yl ’

(
(

x2
x2
x2

;o ¥y2))
IYZ)
r y2

119

Chapter 8. Data Types

where (x1, y1) and (x2, y2) are any two opposite corners of the box.

Boxes are output using the first syntax. Any two opposite corners can be supplied on input, but the
values will be reordered as needed to store the upper right and lower left corners.

8.8.4. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points
in the list are considered not connected, or closed, where the first and last points are considered
connected.

Values of type path are specified using the following syntax:

((x1, y1) , «.. , (xn, yn))
[(x1, y1), ..., (xn, yn)]
(x1 , y1) , .. , (xn , yn)
(x1 , vyl PR xn , yn)
x1 , yl ;e g Xxn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([1)
indicate an open path, while parentheses (()) indicate a closed path.

Paths are output using the first or second syntax, as appropriate.

8.8.5. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Values of type polygon are specified using the following syntax:

((x1, vi) , «o. , (xn , yn))
(x1 , y1) , «o. , (xn , yn)
(x1 , yl PR xn , yn)
x1 , vyl ;oee e g xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.8.6. Circles

Circles are represented by a center point and radius. Values of type circle are specified using the
following syntax:

>
)

< |
A« ’

X
X
(x,
X

r

r
) , r
, r

where (x, y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

120

Chapter 8. Data Types

8.9. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8-20. It is
better to use these types instead of plain text types to store network addresses, because these types
offer input error checking and specialized operators and functions (see Section 9.12).

Table 8-20. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, in-
cluding IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet

The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The sub-
net is represented by the number of network address bits present in the host address (the “netmask”).
If the netmask is 32 and the address is [Pv4, then the value does not indicate a subnet, only a single
host. In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you
want to accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the
number of bits in the netmask. If the /y portion is missing, the netmask is 32 for [Pv4 and 128 for
IPv6, so the value represents just a single host. On display, the /y portion is suppressed if the netmask
specifies a single host.

8.9.2. cidr

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Class-
less Internet Domain Routing conventions. The format for specifying networks is address/y where
address is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the
netmask. If y is omitted, it is calculated using assumptions from the older classful network numbering
system, except it will be at least large enough to include all of the octets written in the input. It is an
error to specify a network address that has bits set to the right of the specified netmask.

Table 8-21 shows some examples.

Table 8-21. cidr Type Input Examples

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

121

Chapter 8. Data Types

cidr Input cidr Output abbrev (cidr)
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16
128.1.2 128.1.2.0/24 128.1.2/24
10.1.2 10.1.2.0/24 10.1.2/24
10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8
10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

2001:418:3:ba::/64

2001:4£8:3:ba::/64

2001:4£8:3:ba::/64

2001:418:3:ba:2e0:81ff:fe22:d1f]

| AXB1 :418:3:ba:2e0:81ff:fe22:d1f

DIONB] :4£8:3:ba:2e0:81ff:fe22:d1f

|

:offff:1.2.3.0/120

=ffff:1.2.3.0/120

=ffff:1.2.3/120

:offff:1.2.3.0/128

=ffff:1.2.3.0/128

ffff:1.2.3.0/128

8.9.3. inet VS. cidr

The essential difference between inet and cidr data types is that inet accepts values with nonzero

bits to the right of the netmask, whereas cidr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions host, text, and

abbrev.

8.9.4. macaddr

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following

formats:

708:00:2b:01:02:03"
"08-00-2b-01-02-03"
08002b:010203"
"08002b-010203"
70800.2b01.0203"
708002b010203"

These examples would all specify the same address. Upper and lower case is accepted for the digits a

through f£. Output is always in the

first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for MAC
addresses, and specifies the first form (with colons) as the bit-reversed notation, so that 08-00-2b-01-
02-03 = 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is only relevant for
obsolete network protocols (such as Token Ring). PostgreSQL makes no provisions for bit reversal,
and all accepted formats use the canonical LSB order.

The remaining four input formats

are not part of any standard.

122

Chapter 8. Data Types

8.10. Bit String Types

Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two
SQL bit types: bit (n) and bit varying (n), Where n is a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalenttobit (1), whilebit varying without alength
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit (n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value
tobit varying(n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

Example 8-7. Using the bit string types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’00");

INSERT INTO test VALUES (B’10’, B’1017);

ERROR: Dbit string length 2 does not match type bit (3)
INSERT INTO test VALUES (B’10’::bit(3), B’101’");
SELECT x FROM test;

a | b
,,,,, I
101 | 00
100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section
8.3 for character strings).

8.11. Text Search Types

PostgreSQL provides two data types that are designed to support full text search, which is the activity
of searching through a collection of natural-language documents to locate those that best match a
query. The tsvector type represents a document in a form optimized for text search; the t squery
type similarly represents a text query. Chapter 12 provides a detailed explanation of this facility, and
Section 9.13 summarizes the related functions and operators.

8.11.1. tsvector

A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized
to merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-
elimination are done automatically during input, as shown in this example:

SELECT ’"a fat cat sat on a mat and ate a fat rat’::tsvector;
tsvector

123

Chapter 8. Data Types
"a’ "and’ ’'ate’ ’cat’ ’"fat’ ’'mat’ ’'on’ ’'rat’ ’sat’

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT Sthe lexeme ' ’ contains spaces$$::tsvector;
tsvector
! " ’contains’ ’lexeme’ ’spaces’ ’the’

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT Sthe lexeme ’Joe”s’ contains a quote$$::tsvector;
tsvector

s’ ’"a’ ’'contains’ ’lexeme’ ’'quote’ ’‘the’

Optionally, integer positions can be attached to lexemes:

SELECT "a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12’
tsvector

"a’:1,6,10 "and’ :8 "ate’:9 'cat’:3 'fat’:2,11 'mat’:7 ’'on’:5 'rat’:12 ’"sat’:

A position normally indicates the source word’s location in the document. Positional information can
be used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently
set to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A, B, C, or D. D is the
default and hence is not shown on output:

SELECT "a:1A fat:2B,4C cat:5D’ ::tsvector;
tsvector

"a’” ;1A ’'cat’:5 ’"fat’ :2B,4C

Weights are typically used to reflect document structure, for example by marking title words differ-
ently from body words. Text search ranking functions can assign different priorities to the different
weight markers.

It is important to understand that the tsvector type itself does not perform any normalization; it
assumes the words it is given are normalized appropriately for the application. For example,

select ’'The Fat Rats’ ::tsvector;
tsvector

"Fat’” ’'Rats’ ’'The’

For most English-text-searching applications the above words would be considered non-normalized,
but tsvector doesn’t care. Raw document text should usually be passed through to_tsvector to
normalize the words appropriately for searching:

SELECT to_tsvector (’english’, ’'The Fat Rats’);
to_tsvector

"fat’:2 ’'rat’:3

Again, see Chapter 12 for more detail.

124

::tsvector;

Chapter 8. Data Types

8.11.2. tsquery

A tsquery value stores lexemes that are to be searched for, and combines them honoring the boolean
operators & (AND), | (OR), and ! (NOT). Parentheses can be used to enforce grouping of the opera-
tors:

SELECT ’fat & rat’::tsquery;
tsquery

SELECT "fat & (rat | cat)’::tsquery;
tsquery

SELECT ’'fat & rat & ! cat’::tsquery;
tsquery

"fat’ & ’'rat’ & !’cat’

In the absence of parentheses, ! (NOT) binds most tightly, and & (AND) binds more tightly than |
(OR).

Optionally, lexemes in a tsquery can be labeled with one or more weight letters, which restricts
them to match only t svector lexemes with matching weights:

SELECT ’"fat:ab & cat’::tsquery;
tsquery

Also, lexemes in a t squery can be labeled with to specify prefix matching:

SELECT ’super:«’::tsquery;
tsquery

This query will match any word in a t svector that begins with “super”.

Quoting rules for lexemes are the same as described previously for lexemes in t svector; and, as with
tsvector, any required normalization of words must be done before converting to the t squery type.
The to_tsquery function is convenient for performing such normalization:

SELECT to_tsquery ('Fat:ab & Cats’);
to_tsquery

125

Chapter 8. Data Types

8.12. UUID Type

The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identi-
fier, or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen
to make it very unlikely that the same identifier will be generated by anyone else in the known uni-
verse using the same algorithm. Therefore, for distributed systems, these identifiers provide a better
uniqueness guarantee than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by
hyphens, specifically a group of 8 digits followed by three groups of 4 digits followed by a group of
12 digits, for a total of 32 digits representing the 128 bits. An example of a UUID in this standard
form is:

aleebc99-9c0b-4ef8-bb6d-6bb9%d380all

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the stan-
dard format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of
four digits. Examples are:

AOEEBC99-9COB-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bb6d-6bb9bd380all}
al0eebc999c0b4ef8bb6d6bb9bd380all
alee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0all
{a0eebc99-9c0bdef8-bb6d6bb9-bd380all}

Output is always in the standard form.

PostgreSQL provides storage and comparison functions for UUIDs, but the core database does not
include any function for generating UUIDs, because no single algorithm is well suited for every
application. The contrib module contrib/uuid-ossp provides functions that implement several
standard algorithms. Alternatively, UUIDs could be generated by client applications or other libraries
invoked through a server-side function.

8.13. XML Type

The xm1 data type can be used to store XML data. Its advantage over storing XML data in a text
field is that it checks the input values for well-formedness, and there are support functions to perform
type-safe operations on it; see Section 9.14. Use of this data type requires the installation to have been
built with configure —-with-libxml.

The xm1 type can store well-formed “documents”, as defined by the XML standard, as well as “con-
tent” fragments, which are defined by the production xMLDecl? content in the XML standard.
Roughly, this means that content fragments can have more than one top-level element or character
node. The expression xmlvalue IS DOCUMENT can be used to evaluate whether a particular xml
value is a full document or only a content fragment.

8.13.1. Creating XML Values

To produce a value of type xm1 from character data, use the function xmlparse:

XMLPARSE ({ DOCUMENT | CONTENT } value)

Examples:

126

Chapter 8. Data Types

XMLPARSE (DOCUMENT ’<?xml version="1.0"?><book><title>Manual</title><chapter>...</chapte
XMLPARSE (CONTENT ’abc<foo>bar</foo><bar>foo</bar>')

While this is the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL-specific syntaxes:

xml ’<foo>bar</foo>’
' <foo>bar</foo>’::xml

can also be used.

The xml type does not validate input values against a document type declaration (DTD), even when
the input value specifies a DTD.

The inverse operation, producing a character string value from xm1, uses the function xmlserialize:
XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type)

type can be character, character varying, or text (or an alias for one of those). Again,
according to the SQL standard, this is the only way to convert between type xm1 and character types,
but PostgreSQL also allows you to simply cast the value.

When a character string value is cast to or from type xml without going through XMLPARSE or
XMLSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML
option” session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };

or the more PostgreSQL-like syntax
SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in
the XML data passed through them. When using the text mode to pass queries to the server and
query results to the client (which is the normal mode), PostgreSQL converts all character data passed
between the client and the server and vice versa to the character encoding of the respective end; see
Section 22.2. This includes string representations of XML values, such as in the above examples.
This would ordinarily mean that encoding declarations contained in XML data can become invalid as
the character data is converted to other encodings while travelling between client and server, because
the embedded encoding declaration is not changed. To cope with this behavior, encoding declarations
contained in character strings presented for input to the xm1 type are ignored, and content is assumed
to be in the current server encoding. Consequently, for correct processing, character strings of XML
data must be sent from the client in the current client encoding. It is the responsibility of the client
to either convert documents to the current client encoding before sending them to the server, or to
adjust the client encoding appropriately. On output, values of type xm1 will not have an encoding
declaration, and clients should assume all data is in the current client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
character set conversion is performed, so the situation is different. In this case, an encoding declaration
in the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as
required by the XML standard; note that PostgreSQL does not support UTF-16). On output, data will

127

Chapter 8. Data Types

have an encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in
which case it will be omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient
if the XML data encoding, client encoding, and server encoding are the same. Since XML data is
internally processed in UTF-8, computations will be most efficient if the server encoding is also
UTEF-8.

Caution

Some XML-related functions may not work at all on non-ASCII data when the
server encoding is not UTF-8. This is known to be an issue for xpath () in
particular.

8.13.3. Accessing XML Values

The xm1 data type is unusual in that it does not provide any comparison operators. This is because
there is no well-defined and universally useful comparison algorithm for XML data. One consequence
of this is that you cannot retrieve rows by comparing an xml column against a search value. XML
values should therefore typically be accompanied by a separate key field such as an ID. An alternative
solution for comparing XML values is to convert them to character strings first, but note that character
string comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xm1 data type, it is not possible to create an index
directly on a column of this type. If speedy searches in XML data are desired, possible workarounds
include casting the expression to a character string type and indexing that, or indexing an XPath
expression. Of course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches
of XML data. The necessary preprocessing support is, however, not yet available in the PostgreSQL
distribution.

8.14. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Ar-
rays of any built-in or user-defined base type, enum type, or composite type can be created. Arrays of
domains are not yet supported.

8.14.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
name text,
pay_by_qgquarter integer|[],
schedule text[][]
)i

As shown, an array data type is named by appending square brackets ([1) to the data type name of
the array elements. The above command will create a table named sal_emp with a column of type

128

Chapter 8. Data Types

text (name), a one-dimensional array of type integer (pay_by_quarter), which represents the
employee’s salary by quarter, and a two-dimensional array of text (schedule), which represents
the employee’s weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3][3]
)

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the
same as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of
a particular element type are all considered to be of the same type, regardless of size or number
of dimensions. So, declaring the array size or number of dimensions in CREATE TABLE is simply
documentation; it does not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used
for one-dimensional arrays. pay_by_quarter could have been defined as:

pay_by_qgquarter integer ARRAY[4],
Or, if no array size is to be specified:

pay_by_quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.14.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and
separate them by commas. (If you know C, this is not unlike the C syntax for initializing structures.)
You can put double quotes around any element value, and must do so if it contains commas or curly
braces. (More details appear below.) Thus, the general format of an array constant is the following:

"{ vall delim val2 delim ... }'

where delim is the delimiter character for the type, as recorded in its pg_type entry. Among the
standard data types provided in the PostgreSQL distribution, all use a comma (,), except for type box
which uses a semicolon (;). Each val is either a constant of the array element type, or a subarray. An
example of an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}’

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or
lower-case variant of NULL will do.) If you want an actual string value “NULL”, you must put double
quotes around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements:

INSERT INTO sal_emp

129

Chapter 8. Data Types

VALUES (’'Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"training", "presentation"}}’);

INSERT INTO sal_emp
VALUES (’Carol’,
{20000, 25000, 25000, 25000}",
"{{"breakfast", "consulting"}, {"meeting", "lunch"}}’);

The result of the previous two inserts looks like this:

SELECT % FROM sal_emp;

name | pay_by_quarter | schedule

_______ S
Bill | {10000,10000,10000,10000} | {{meeting,lunch}, {training,presentation}}
Carol | {20000,25000,25000,25000} | {{breakfast,consulting}, {meeting, lunch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error,
for example:

INSERT INTO sal_emp
VALUES (’Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"meeting"}}’);
ERROR: multidimensional arrays must have array expressions with matching dimensions

The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp
VALUES (’Bill’,
ARRAY[10000, 10000, 10000, 100007,
ARRAY [['meeting’, ’'lunch’], [’training’, ’presentation’]]);

INSERT INTO sal_emp
VALUES ('Carol’,
ARRAY[20000, 25000, 25000, 250007,
ARRAY [["breakfast’, ’consulting’], ['meeting’, ’'lunch’]1]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
are single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.11.

8.14.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_quarter([2];

name

130

Chapter 8. Data Types

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-
based numbering convention for arrays, that is, an array of n elements starts with array[1] and ends
with array [n].

This query retrieves the third quarter pay of all employees:
SELECT pay_by_gquarter[3] FROM sal_emp;

pay_by_qguarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted
by writing lower-bound: upper-bound for one or more array dimensions. For example, this query
retrieves the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting}, {training}}
(1 row)

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices.
Any dimension that has only a single number (no colon) is treated as being from 1 to the number
specified. For example, [2] is treated as [1:2], as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = ’Bill’;

schedule

{{meeting, lunch}, {training, presentation}}
(1 row)

To avoid confusion with the non-slice case, it’s best to use slice syntax for all dimensions, e.g.,
[1:2][1:1],n0t [2][1:1].

An array subscript expression will return null if either the array itself or any of the subscript expres-
sions are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise
an error). For example, if schedule currently has the dimensions [1:3]1[1:2] then referencing
schedule[3] [3] yields NULL. Similarly, an array reference with the wrong number of subscripts
yields a null rather than an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slice that is completely outside the current
array bounds, a slice expression yields an empty (zero-dimensional) array instead of null. (This does
not match non-slice behavior and is done for historical reasons.) If the requested slice partially over-
laps the array bounds, then it is silently reduced to just the overlapping region instead of returning
null.

131

Chapter 8. Data Types

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims (schedule) FROM sal_emp WHERE name = ’'Carol’;

array_dims

[1:2][1:2]
(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with array_upper and array_lower, which return
the upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal_emp WHERE name = ’'Carol’;

array_upper

(1 row)
array_length will return the length of a specified array dimension:
SELECT array_length(schedule, 1) FROM sal_emp WHERE name = ’'Carol’;

array_length

8.14.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ’{25000,25000,27000,27000}"
WHERE name = ’'Carol’;

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’'Carol’;

An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = 'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[1l:2] = 7 {27000,27000}"
WHERE name = ’'Carol’;

A stored array value can be enlarged by assigning to elements not already present. Any positions be-
tween those previously present and the newly assigned elements will be filled with nulls. For example,

132

Chapter 8. Data Types

if array myarray currently has 4 elements, it will have six elements after an update that assigns to
myarray[6]; myarray [5] will contain null. Currently, enlargement in this fashion is only allowed
for one-dimensional arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example
one might assign to myarray[-2:7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, | | :

SELECT ARRAY[1,2] || ARRAY[3,4];
?column?

{1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY([[1,2]1,1[3,4]11;
?column?

{{5,6},{1,2},{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed onto the beginning or end of a
one-dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-
dimensional array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the
result is an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims (1 || "[0:1]={2,3}" ::int[]);
array_dims

[0:2]
(1 row)

SELECT array_dims (ARRAY[1,2] || 3);
array_dims

[1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand’s outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

[1:5]
(1 row)

SELECT array_dims (ARRAY[[1,2],1[3,41]1 || ARRAY[[5,6],17,81,19,011);
array_dims

[1:5][1:2]
(1 row)

133

Chapter 8. Data Types

When an N-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the
result is analogous to the element-array case above. Each N-dimensional sub-array is essentially an
element of the nN+1-dimensional array’s outer dimension. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[[3,4]1,[5,6]11]);
array_dims

[1:3][1:2]
(1 row)

An array can also be constructed by using the functions array_prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Note that the concatenation operator discussed above is preferred over
direct use of these functions. In fact, these functions primarily exist for use in implementing the
concatenation operator. However, they might be directly useful in the creation of user-defined
aggregates. Some examples:

SELECT array_prepend(l, ARRAY[2,3]);
array_prepend

{1,2,3}
(1 row)

SELECT array_append (ARRAY[1,2], 3);
array_append

{1,2,3}
(1 row)

SELECT array_cat (ARRAY[1,2], ARRAY[3,4]);
array_cat

{1,2,3,4}
(1 row)

SELECT array_cat (ARRAY[[1,2],1[3,41]1, ARRAY[5,6]);
array_cat

{{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat (ARRAY[5,6], ARRAY[[1,2],1[3,411);
array_cat

{{5,6},{1,2},{3,4}}

134

Chapter 8. Data Types

8.14.5. Searching in Arrays

To search for a value in an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:

SELECT = FROM sal_emp WHERE pay_by_quarter[1l] = 10000 OR
pay_by_qgquarter[2] = 10000 OR
[3] = 10000 OR

[4] = 10000;

pay_by_quarter
pay_by_qguarter

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.21. The above query could be replaced by:

SELECT x= FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);
In addition, you can find rows where the array has all values equal to 10000 with:

SELECT x= FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, the generate_subscripts function can be used. For example:

SELECT x FROM
(SELECT pay_by_quarter,
generate_subscripts (pay_by_qgquarter, 1) AS s
FROM sal_emp) AS foo
WHERE pay_by_dquarter[s] = 10000;

This function is described in Table 9-46.

Tip: Arrays are not sets; searching for specific array elements can be a sign of database misde-
sign. Consider using a separate table with a row for each item that would be an array element.
This will be easier to search, and is likely to scale better for a large number of elements.

8.14.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure.
The decoration consists of curly braces ({ and }) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually a comma (,) but can be something else:
it is determined by the typdelim setting for the array’s element type. Among the standard data
types provided in the PostgreSQL distribution, all use a comma, except for type box, which uses a
semicolon (;). In a multidimensional array, each dimension (row, plane, cube, etc.) gets its own level
of curly braces, and delimiters must be written between adjacent curly-braced entities of the same
level.

The array output routine will put double quotes around element values if they are empty strings,
contain curly braces, delimiter characters, double quotes, backslashes, or white space, or match the
word NULL. Double quotes and backslashes embedded in element values will be backslash-escaped.
For numeric data types it is safe to assume that double quotes will never appear, but for textual data
types one should be prepared to cope with either the presence or absence of quotes.

135

Chapter 8. Data Types

By default, the lower bound index value of an array’s dimensions is set to one. To represent arrays
with other lower bounds, the array subscript ranges can be specified explicitly before writing the array
contents. This decoration consists of square brackets ([1) around each array dimension’s lower and
upper bounds, with a colon (:) delimiter character in between. The array dimension decoration is
followed by an equal sign (=). For example:

SELECT f£f1[1][-2]1[3] AS el, f1[1]1[-1][5] AS e2
FROM (SELECT ' [1:1]1[-2:-1]1[3:51={{{1,2,3},{4,5,6}}}’::int[] AS fl) AS ss;

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL.
The presence of any quotes or backslashes disables this and allows the literal string value “NULL” to
be entered. Also, for backwards compatibility with pre-8.2 versions of PostgreSQL, the array_nulls
configuration parameter can be turned of £ to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser.
For example, elements containing curly braces, commas (or the data type’s delimiter character), dou-
ble quotes, backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and
strings matching the word NULL must be quoted, too. To put a double quote or backslash in a quoted
array element value, use escape string syntax and precede it with a backslash. Alternatively, you can
avoid quotes and use backslash-escaping to protect all data characters that would otherwise be taken
as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before
or after any individual item string. In all of these cases the whitespace will be ignored. However,
whitespace within double-quoted elements, or surrounded on both sides by non-whitespace characters
of an element, is not ignored.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as an array. This doubles the number of backslashes you need. For example, to
insert a text array value containing a backslash and a double quote, you'd need to write:

INSERT ... VALUES (E’ {"\\\\","\\""}");

The escape string processor removes one level of backslashes, so that what arrives at the array-
value parser looks like {"\\", "\""}. In turn, the strings fed to the text data type’s input routine
become \ and " respectively. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored array element.) Dollar quoting (see Section 4.1.2.4)
can be used to avoid the need to double backslashes.

Tip: The arRrRAY constructor syntax (see Section 4.2.11) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In array, individual element values
are written the same way they would be written when not members of an array.

136

Chapter 8. Data Types

8.15. Composite Types

A composite type represents the structure of a row or record; it is essentially just a list of field names
and their data types. PostgreSQL allows composite types to be used in many of the same ways that
simple types can be used. For example, a column of a table can be declared to be of a composite type.

8.15.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
r double precision,
i double precision
)i

CREATE TYPE inventory_item AS (

name text,
supplier_id integer,
price numeric

)

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the As keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will
get odd syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item,
count integer

)
INSERT INTO on_hand VALUES (ROW(’fuzzy dice’, 42, 1.99), 1000);
or functions:

CREATE FUNCTION price_extension (inventory_item, integer) RETURNS numeric
AS "SELECT $l.price % $2’ LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as
the table, to represent the table’s row type. For example, had we said:

CREATE TABLE inventory_item (

name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

)i

then the same inventory_item composite type shown above would come into being as a byproduct,
and could be used just as above. Note however an important restriction of the current implementation:
since no constraints are associated with a composite type, the constraints shown in the table definition

137

Chapter 8. Data Types

do not apply to values of the composite type outside the table. (A partial workaround is to use domain
types as members of composite types.)

8.15.2. Composite Value Input

To write a composite value as a literal constant, enclose the field values within parentheses and sepa-
rate them by commas. You can put double quotes around any field value, and must do so if it contains
commas or parentheses. (More details appear below.) Thus, the general format of a composite constant
is the following:

"(vall , valz , ...)’
An example is:
" ("fuzzy dice",42,1.99)"

which would be a valid value of the inventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third
field:

" ("fuzzy dice",42,)’
If you want an empty string rather than NULL, write double quotes:
4 (nmn , 4 2 ,) 4

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Section
4.1.2.7. The constant is initially treated as a string and passed to the composite-type input conversion
routine. An explicit type specification might be necessary.)

The ROW expression syntax can also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax since you don’t have to worry about multiple
layers of quoting. We already used this method above:

ROW (' fuzzy dice’, 42, 1.99)
ROW (”, 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so
these can simplify to:

(" fuzzy dice’, 42, 1.99)
(”, 42, NULL)

The rROW expression syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it’s so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields
from our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

138

Chapter 8. Data Types

This will not work since the name item is taken to be a table name, not a column name of on_hand,
per SQL syntax rules. You must write it like this:

SELECT (item) .name FROM on_hand WHERE (item) .price > 9.99;
or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item) .name FROM on_hand WHERE (on_hand.item) .price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to
select just one field from the result of a function that returns a composite value, you’d need to write
something like:

SELECT (my_func(...)).field FROM

Without the extra parentheses, this will generate a syntax error.

8.15.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));
UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omits ROW, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:
UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don’t need to (and indeed cannot) put parentheses around the column name
appearing just after SET, but we do need parentheses when referencing the same column in the ex-
pression to the right of the equal sign.

And we can specify subfields as targets for INSERT, too:
INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(l1.1l, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have
been filled with null values.

8.15.5. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the I/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ((and)) around the whole value, plus commas (,)
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it

139

Chapter 8. Data Types

is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:

I(42)/

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any in-
dividual field value. You must do so if the field value would otherwise confuse the composite-value
parser. In particular, fields containing parentheses, commas, double quotes, or backslashes must be
double-quoted. To put a double quote or backslash in a quoted composite field value, precede it with
a backslash. (Also, a pair of double quotes within a double-quoted field value is taken to represent a
double quote character, analogously to the rules for single quotes in SQL literal strings.) Alternatively,
you can avoid quoting and use backslash-escaping to protect all data characters that would otherwise
be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents
a NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as a composite. This doubles the number of backslashes you need (assuming
escape string syntax is used). For example, to insert a text field containing a double quote and
a backslash in a composite value, you'd need to write:

INSERT ... VALUES (E’ ("\\"\\\\")");

The string-literal processor removes one level of backslashes, so that what arrives at the
composite-value parser looks like ("\"\\"). In turn, the string fed to the text data type’s input
routine becomes "\. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored composite field.) Dollar quoting (see Section
4.1.2.4) can be used to avoid the need to double backslashes.

Tip: The row constructor syntax is usually easier to work with than the composite-literal syntax
when writing composite values in SQL commands. In row, individual field values are written the
same way they would be written when not members of a composite.

8.16. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
OIDs are not added to user-created tables, unless WITH 01IDS is specified when the table is created,
or the default_with_oids configuration variable is enabled. Type oid represents an object identifier.
There are also several alias types for oid: regproc, regprocedure, regoper, regoperator,
regclass, regtype, regconfig, and regdictionary. Table 8-22 shows an overview.

140

Chapter 8. Data Types

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniqueness in large databases, or even in large individual tables. So,
using a user-created table’s OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for
objects. For example, to examine the pg_attribute rows related to a table mytable, one could
write:

SELECT = FROM pg_attribute WHERE attrelid = 'mytable’::regclass;
rather than:

SELECT » FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = ’'mytable’);

While that doesn’t look all that bad by itself, it’s still oversimplified. A far more complicated sub-
select would be needed to select the right OID if there are multiple tables named mytable in differ-
ent schemas. The regclass input converter handles the table lookup according to the schema path
setting, and so it does the “right thing” automatically. Similarly, casting a table’s OID to regclass
is handy for symbolic display of a numeric OID.

Table 8-22. Object Identifier Types

Name References Description Value Example
oid any numeric object 564182
identifier
regproc pPg_proc function name sum
regprocedure pPg_proc function with argument | sum (int4)
types
regoper pg_operator operator name +
regoperator pPg_operator operator with argument | « (integer, integer)
types or — (NONE, integer)
regclass pg_class relation name Pg_type
regtype pg_type data type name integer
regconfig pg_ts_config text search english
configuration
regdictionary pg_ts_dict text search dictionary |simple

All of the OID alias types accept schema-qualified names, and will display schema-qualified names
on output if the object would not be found in the current search path without being qualified. The
regproc and regoper alias types will only accept input names that are unique (not overloaded), so
they are of limited use; for most uses regprocedure or regoperator are more appropriate. For
regoperator, unary operators are identified by writing NONE for the unused operand.

An additional property of the OID alias types is the creation of dependencies. If a constant of one
of these types appears in a stored expression (such as a column default expression or view), it

141

Chapter 8. Data Types

creates a dependency on the referenced object. For example, if a column has a default expression
nextval ('my_seq’ : :regclass), PostgreSQL understands that the default expression depends on
the sequence my_segq; the system will not let the sequence be dropped without first removing the
default expression.

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is
the data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the system is cid, or command identifier. This is the data type of the
system columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data
type of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that
identifies the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

8.17. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function’s argument or result type. Each of the available pseudo-types is useful in situations where a
function’s behavior does not correspond to simply taking or returning a value of a specific SQL data
type. Table 8-23 lists the existing pseudo-types.

Table 8-23. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type.

anyarray Indicates that a function accepts any array data
type (see Section 34.2.5).

anyelement Indicates that a function accepts any data type
(see Section 34.2.5).

anyenum Indicates that a function accepts any enum data
type (see Section 34.2.5 and Section 8.7).

anynonarray Indicates that a function accepts any non-array
data type (see Section 34.2.5).

cstring Indicates that a function accepts or returns a
null-terminated C string.

internal Indicates that a function accepts or returns a
server-internal data type.

language_handler A procedural language call handler is declared to
return language_handler.

record Identifies a function returning an unspecified
Trow type.

trigger A trigger function is declared to return
trigger.

void Indicates that a function returns no value.

142

Chapter 8. Data Types

Name Description

opaque An obsolete type name that formerly served all
the above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo data types. It is up to the function author to ensure that the function will behave safely
when a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementa-
tion languages. At present the procedural languages all forbid use of a pseudo-type as argument type,
and allow only void and record as a result type (plus trigger when the function is used as a trig-
ger). Some also support polymorphic functions using the types anyarray, anyelement, anyenum,

and anynonarray.

The internal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in an SQL query. If a function has at least one
internal-type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it is important to follow this coding rule: do not create any function that is declared to
return internal unless it has at least one internal argument.

143

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described in Part V. The psql commands \df and
\do can be used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described
in this chapter, with the exception of the most trivial arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of this extended function-
ality is present in other SQL database management systems, and in many cases this functionality is
compatible and consistent between the various implementations. This chapter is also not exhaustive;
additional functions appear in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued Boolean logic where the null value represents “unknown”. Observe the
following truth tables:

a b a AND b aORb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.13 for more information about the order of evaluation of
subexpressions.

9.2. Comparison Operators

The usual comparison operators are available, shown in Table 9-1.

144

Chapter 9. Functions and Operators

Table 9-1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<>or!l= not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement =
and <> operators that do different things.

Comparison operators are available for all relevant data types. All comparison operators are binary
operators that return values of type boolean; expressions like 1 < 2 < 3 are not valid (because
there is no < operator to compare a Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available:
a BETWEEN x AND y

is equivalent to

a >= x AND a <=y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN does the
opposite comparison:

a NOT BETWEEN x AND y
is equivalent to
a< x OR a >y

BETWEEN SYMMETRIC is the same as BETWEEN except there is no requirement that the argument to
the left of AND be less than or equal to the argument on the right. If it is not, those two arguments are
automatically swapped, so that a nonempty range is always implied.

To check whether a value is or is not null, use the constructs:

expression IS NULL
expression 1S NOT NULL

or the equivalent, but nonstandard, constructs:

expression ISNULL
expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.) This behavior conforms
to the SQL standard.

145

Chapter 9. Functions and Operators

Tip: Some applications might expect that expression = NULL returns true if expression evalu-
ates to the null value. It is highly recommended that these applications be modified to comply
with the SQL standard. However, if that cannot be done the transform_null_equals configuration
variable is available. If it is enabled, PostgreSQL will convert x = NULL clauses to x IS NULL.

Note: If the expression is row-valued, then 1s NULL is true when the row expression itself is null
or when all the row’s fields are null, while 1s noT NULL is true when the row expression itself is
non-null and all the row’s fields are non-null. Because of this behavior, 1s nULL and Is NOT NULL
do not always return inverse results for row-valued expressions, i.e., a row-valued expression that
contains both NULL and non-null values will return false for both tests. This definition conforms
to the SQL standard, and is a change from the inconsistent behavior exhibited by PostgreSQL
versions prior to 8.2.

Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input
is null. For example, 7 = NULL yields null. When this behavior is not suitable, use the IS [NOT]
DISTINCT FROM constructs:

expression IS DISTINCT FROM expression
expression IS NOT DISTINCT FROM expression

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, if both inputs are
null it returns false, and if only one input is null it returns true. Similarly, IS NOT DISTINCT FROM
is identical to = for non-null inputs, but it returns true when both inputs are null, and false when only
one input is null. Thus, these constructs effectively act as though null were a normal data value, rather
than “unknown”.

Boolean values can also be tested using the constructs

expression IS TRUE
expression 1S NOT TRUE
expression 1S FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null
input is treated as the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are
effectively the same as Is NULL and IS NOT NULL, respectively, except that the input expression
must be of Boolean type.

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without standard mathe-
matical conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9-2 shows the available mathematical operators.

Table 9-2. Mathematical Operators

Operator Description Example Result

146

Chapter 9. Functions and Operators

Operator Description Example Result
+ addition 2 + 3 5
- subtraction 2 -3 -1
* multiplication 2 % 3 6
/ division (integer 4/ 2 2
division truncates the
result)
S modulo (remainder) 5% 4 1
0 exponentiation 2.0 ~ 3.0 8
|/ square root |/ 25.0 5
|1/ cube root |/ 27.0 3
! factorial 5 ! 120
! factorial (prefix 15 120
operator)
@ absolute value @ -5.0 5
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric

data types. The bitwise operators are also available for the bit string types bit and bit varying, as

shown in Table 9-10.

Table 9-3 shows the available mathematical functions. In the table, dp indicates double precision.
Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions work-
ing with double precision data are mostly implemented on top of the host system’s C library;
accuracy and behavior in boundary cases can therefore vary depending on the host system.

Table 9-3. Mathematical Functions

Function Return Type Description Example Result
abs (x) (same as input) absolute value abs (-17.4) 17.4
cbrt (dp) dp cube root cbrt (27.0) 3
ceil (dp or (same as input) smallest integer ceil (-42.8) -42
numeric) not less than

argument
ceiling (dp or |(same as input) smallest integer ceiling(-95.3) |-95

numeric)

not less than
argument (alias
for ceil)

degrees (dp)

dp

radians to degrees

degrees (0.5)

28.64788975654

| 2

147

Chapter 9. Functions and Operators

Function Return Type Description Example Result
div (y numeric, |numeric integer quotient of | div (9, 4) 2
X numeric) y/x
exp (dp or (same as input) exponential exp (1.0) 2.71828182845905
numeric)
floor (dp or (same as input) largest integer not | floor (-42.8) -43
numeric) greater than
argument
1n(dp or (same as input) natural logarithm | 1n(2.0) 0.693147180559945
numeric)
log (dp or (same as input) base 10 logarithm | 1og (100.0) 2
numeric)
log (b numeric, |numeric logarithm to base | log (2.0, 6.0000000000
X numeric) b 64.0)
mod (y, x) (same as argument | remainder of y/x | mod (9, 4) 1
types)
pi () dp “m” constant pi() 3.14159265358979
power (a dp, b |dp a raised to the power (9.0, 729
dp) power of b 3.0)
power (a numeric a raised to the power (9.0, 729
numeric, b powerofb 3.0)
numeric)
radians (dp) dp degrees to radians | radians (45.0) [0.785398163397448
random () dp random value random ()
between 0.0 and
1.0, inclusive
round (dp or (same as input) round to nearest round (42.4) 42
numeric) hueger
round (v numeric round to s round (42.4382,|42.44
numeric, s decimal places 2)
int)
setseed (dp) void set seed for setseed (0.54823)
subsequent
random () calls
(value between
-1.0 and 1.0,
inclusive)
sign(dp or (same as input) sign of the sign(-8.4) -1
numeric) argument (-1, 0,
+1)
sqrt (dp or (same as input) square root sqrt (2.0) 1.4142135623731

numeric)

trunc (dp or

numeric)

(same as input)

truncate toward
ZEero

trunc (42.8)

42

148

Chapter 9. Functions and Operators

in an equidepth
histogram with
count buckets, in
the range b1l to b2

Function Return Type Description Example Result
trunc (v numeric truncate to s trunc(42.4382,|42.43
numeric, s decimal places 2)
int)
width_bucket (op |int return the bucket |width_bucket (5}35,
numeric, bl to which operand | 0.024, 10.06,
numeric, b2 would be assigned | 5)
numeric, count in an equidepth
int) histogram with

count buckets, in

the range b1 to b2
width_bucket (op | int return the bucket |width_bucket (5} 35,
dp, bl dp, b2 to which operand|0.024, 10.06,
dp, count int) would be assigned | 5)

Finally, Table 9-4 shows the available trigonometric functions. All trigonometric functions take argu-
ments and return values of type double precision.

Table 9-4. Trigonometric Functions

Function Description
acos (x) inverse cosine
asin (x) inverse sine
atan (x) inverse tangent

atan2 (y, x)

inverse tangent of y/x

cos (x) cosine
cot (x) cotangent
sin (x) sine

tan (x) tangent

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of the types character, character varying, and text. Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of poten-
tial effects of automatic space-padding when using the character type. Some functions also exist
natively for the bit-string types.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9-5. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9-6).

149

Chapter 9. Functions and Operators

Note: Before PostgreSQL 8.3, these functions would silently accept values of several non-string
data types as well, due to the presence of implicit coercions from those data types to text. Those
coercions have been removed because they frequently caused surprising behaviors. However,
the string concatenation operator (| |) still accepts non-string input, so long as at least one input
is of a string type, as shown in Table 9-5. For other cases, insert an explicit coercion to text if
you need to duplicate the previous behavior.

Table 9-5. SQL String Functions and Operators

Function Return Type Description Example Result

string || text String "Post’ || PostgreSQL

string concatenation "greSQL’

string || text String "Value: 7 || Value: 42

non-string Or concatenation 42

non-string || with one

string non-string input

bit_length (string)nt Number of bits in |bit_length (' jo$82)
string

char_length (strijngdt Number of char_length (' jpde’)

or characters in

character_length|(string) snjng

lower (string) text Convert string to | lower (* TOM') tom
lower case

octet_length (striimyt) Number of bytes |octet_length(’ fjdse’)
in string

overlay (string |text Replace substring | overlay (' TxxxxaEhomas

placing string placing ’"hom’

from int [for from 2 for 4)

int])

position (substrijngnt Location of position(’om’ |3

in string) specified substring | in ’ Thomas’)

substring (string text Extract substring | substring (’ Thomhsth

[from int] from 2 for 3)

[for int])

substring (string text Extract substring | substring (' Thommas

from pattern)

matching POSIX
regular
expression. See
Section 9.7 for
more information
on pattern
matching.

.87)

from ' ..

150

Chapter 9. Functions and Operators

Function Return Type Description Example Result
substring (string text Extract substring | substring (' Thomema
from pattern matching SQL from
for escape) regular "S#"o_a#"_’
expression. See for "#7)
Section 9.7 for
more information
on pattern
matching.
trim([leading |text Remove the trim(both ’x’ |Tom
| trailing | longest string from
both] containing only " xTomxx"')
[characters] the characters
from string) (a space by
default) from the
start/end/both
ends of the
string
upper (string) text Convensnﬂngto upper (" tom’) TOM
uppercase

Additional string manipulation functions are available and are listed in Table 9-6. Some of them are
used internally to implement the SQL-standard string functions listed in Table 9-5.

Table 9-6. Other String Functions

Function

Return Type

Description

Example

Result

ascii (string)

int

ASCII code of
the first character
of the argument.
For UTFS returns
the Unicode code
point of the
character. For
other multibyte
encodings, the
argument must be
an ASCII
character.

ascii(’'x")

120

btrim(string
text [,
characters

text])

text

Remove the
longest string
consisting only of
characters in
characters (a
space by default)
from the start and
end of string

btrim(’xyxtrimy

"xy’)

yExin

151

Chapter 9. Functions and Operators

Function Return Type Description Example Result

chr (int) text Character with chr (65) A
the given code.
For UTFS the
argument is
treated as a
Unicode code
point. For other
multibyte
encodings the
argument must
designate an
ASCII character.
The NULL (0)
character is not
allowed because
text data types
cannot store such

bytes.
convert (string |bytea Convert string to | convert (' text_jhentf&h, ut£8
bytea, dest_encoding. | 'UTF8’', represented in
src_encoding The original "LATIN1') Latin-1 encoding
name, encoding is (ISO 8859-1)
dest_encoding specified by
name) src_encoding.

The string must
be valid in this
encoding.
Conversions can
be defined by
CREATE
CONVERSION.
Also there are
some predefined
conversions. See
Table 9-7 for

available
conversions.
text Convert String to |convert_from(’téegktinnutf&s,
convert_from (stying the database "UTF8') represented in the
bytea, encoding. The current database
src_encoding original encoding encoding
name) is specified by

src_encoding.
The string must
be valid in this
encoding.

152

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

convert_to (strin
text,
dest_encoding

name)

bytea
g

Convert string to

dest_encoding.

convert_to (’soj
text’,
"UTF8’")

neome text
represented in the
UTF8 encoding

decode (string
text, type

text)

bytea

Decode binary
data from string
previously
encoded with
encode.
Parameter type is
same as in

encode.

decode (' MTIzAA}R
"base64d’)

££23\000\001

encode (data
bytea, type

text)

text

Encode binary
data to different
representation.
Supported types
are: base64, hex,
escape. Escape
merely outputs
null bytes as \000
and doubles
backslashes.

encode (E’ 123\\
"baseb64d’)

MUY XBRAEE,

initcap (string)

text

Convert the first
letter of each
word to uppercase
and the rest to
lowercase. Words
are sequences of
alphanumeric
characters
separated by
non-alphanumeric
characters.

initcap(’hi
THOMAS')

Hi Thomas

length (string)

int

Number of
characters in

string

length (' jose’)

length (stringbyt]

encoding name)

eint

Number of
characters in
stringin the
given encoding.
The string must
be valid in this
encoding.

length (’ jose’,
"UTF8’)

153

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

lpad (string
text, length
int [, fill

text])

text

Fill up the
string to length
length by
prepending the
characters fil1 (a
space by default).
If the stringis
already longer
than 1length then
it is truncated (on
the right).

lpad("hi’,
"xy'")

5,

xyxhi

ltrim(string
text [,
characters

text])

text

Remove the
longest string
containing only
characters from
characters (a
space by default)
from the start of

string

ltrim (/" zzzytriy

Ixyzl)

trim

md5 (string)

text

Calculates the
MD)5 hash of
string, returning
the result in
hexadecimal

md5 (" abc’)

900150983cd24f
d6963£7d28el7f

b0
V2

pg_client_encodi]

nyahe

Current client
encoding name

pg_client_enco

H$0% (ASCIT

quote_ident (stri]

text)

roext

Return the given
string suitably
quoted to be used
as an identifier in
an SQL statement
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or
would be
case-folded).
Embedded quotes
are properly
doubled. See also
Example 38-1.

quote_ident ('F

bar’)

p&Foo bar"

154

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

quote_literal (st
text)

rtiegt

Return the given
string suitably
quoted to be used
as a string literal
in an SQL
statement string.
Embedded
single-quotes and
backslashes are
properly doubled.
Note that
quote_literal
returns null on
null input; if the
argument might
be null,
quote_nullable
is often more
suitable. See also
Example 38-1.

quote_literal (

O8"Reilly’)

quote_literal (v

anyelement)

Ihext

Coerce the given
value to text and
then quote it as a
literal. Embedded
single-quotes and
backslashes are
properly doubled.

quote_literal (

1243) 5"

quote_nullable (
text)

slthraxt

Return the given
string suitably
quoted to be used
as a string literal
in an SQL
statement string;
or, if the argument
is null, return
NULL. Embedded
single-quotes and
backslashes are
properly doubled.
See also Example
38-1.

quote_nullable

(NULL)

155

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

quote_nullable (v

anyelement)

Alext

Coerce the given
value to text and
then quote it as a
literal; or, if the
argument is null,
return NULL.
Embedded
single-quotes and
backslashes are
properly doubled.

quote_nullable

(4225p'

regexp_matches (
text, pattern
text [, flags

text])

stxahgf text[]

Return all
captured
substrings
resulting from
matching a
POSIX regular
expression against
the string. See
Section 9.7.3 for
more information.

regexp_matches

" (bar) (beque)’

({Peohbebagleba

regexp_replace (
text, pattern
text,
replacement
text [,

text])

flags

Sthréxty

Replace
substring(s)
matching a
POSIX regular
expression. See
Section 9.7.3 for
more information.

regexp_replace
. [mN]a.’,
IMI)

(TEMomas’,

regexp_split_to_larexy (dtring

text, pattern
text [, flags
text])

Split string
using a POSIX
regular expression
as the delimiter.
See Section 9.7.3
for more
information.

regexp_split_t
world’,
E’\\s+’)

p{bhetdyp (Wheldd

regexp_split_to_ftadte fsteiy Split string regexp_split_toheabdeerhdl(@®
text, pattern using a POSIX world’, rows)
text [, flags regular expression |E’ \\s+")
text]) as the delimiter.
See Section 9.7.3
for more
information.
repeat (string text Repeat string repeat (' Pg’, PgPgPgPg
text, number the specified 4)
int) number of times

156

~

Chapter 9. Functions and Operators

Function Return Type Description Example Result
replace (string |text Replace all replace (' abcdefabgdefapXXef
text, from occurrences in rcd’, "XX')
text, to text) string of

substring from

with substring to
rpad (string text Fill up the rpad(’hi’, 5, |hixyx
text, length stringtolength |’xy’)
int [, fill length by
text]) appending the

characters £il1l (a

space by default).

If the stringis

already longer

than length then

it is truncated.
rtrim(string text Remove the rtrim(/ trimxxxktrim
text [, longest string rx")
characters containing only
text]) characters from

characters (a

space by default)

from the end of

string
split_part (strindext Split stringon |split_part (' abgd@fdef~Q@~ghi’,
text, delimiter delimiter and f~@~", 2)
text, field return the given
int) field (counting

from one)
strpos (string, |int Location of strpos (high’, |2
substring) specified substring | 7 ig’)

(same as

position (substring

in string), but

note the reversed

argument order)
substr (string, |text Extract substring | substr (/ alphabgph,
from [, (same as 3, 2)
count]) substring (string

from from for

count))
to_ascii (string |text Convert string |to_ascii (’KarelKarel

text [,

encoding text])

to ASCII from
another encoding
(only supports
conversion from
LATINI, LATIN2,
LATINO, and
WIN1250

encodings)

157

Chapter 9. Functions and Operators

Function Return Type Description Example Result
to_hex (number text Convert number to_hex (214748363Fffffff
int or bigint) to its equivalent

hexadecimal

representation

text Any characterin |translate (’1234823x5

translate (string string that r147, "ax’)
text, from matches a
text, to text) character in the

from set is
replaced by the
corresponding
character in the to

set

Table 9-7. Built-in Conversions

Conversion Name a

Source Encoding

Destination Encoding

ascii_to_mic SQL_ASCIT MULE_INTERNAL
ascii_to_utfs8 SQL_ASCII UTF8
bigb_to_euc_tw BIGS EUC_TW
big5_to_mic BIGS MULE_INTERNAL
bigb_to_utf8 BIGS UTF8
euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to_utf8 EUC_CN UTF'8
euc_jp_to_mic EUC_JP MULE_INTERNAL
euc_Jjp_to_sijis EUC_JP SJIS
euc_Jjp_to_utfs8 EUC_JpP UTF8
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf8 EUC_KR UTF8
euc_tw_to_bigh EUC_TW BIGSH
euc_tw_to_mic EUC_TwW MULE_INTERNAL
euc_tw_to_utf8 EUC_TW UTF8
gb18030_to_utf8 GB18030 UTF8
gbk_to_utf8 GBK UTF8
iso0_8859_10_to_utf8 LATING UTF8

iso_8859 13 to_utf8 LATIN7 UTF8
iso_8859_14_to_utf8 LATINS UTF8
iso_8859_15 to_utf8 LATINY UTF8
iso_8859_16_to_utf8 LATIN1O UTFEF8
1is0_8859_1_to_mic LATIN1 MULE_INTERNAL
iso_8859_1_to_utfs LATIN1 UTF8
iso_8859_ 2 to_mic LATIN2 MULE_INTERNAL
iso_8859_2_to_utfs8 LATIN2 UTF8

158

Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

is0_8859_2 to_windows_12

bOATINZ2

WIN1250

1is0_8859_3_to_mic LATIN3 MULE_INTERNAL
iso_8859_3_to_utfs LATIN3 UTF8
iso_8859_4 to_mic LATIN4A MULE_INTERNAL
iso_8859_4_to_utfs8 LATIN4 UTF8
iso_8859_5 to_koi8_ r IS0_8859_5 KOI8R
iso0_8859_5_to_mic I150_8859_5 MULE_INTERNAL
is0_8859_5_to_utf8 IS0O_8859_5 UTF8
iso_8859_5_to_windows_125150_8859_5 WIN1251
is0_8859_5_to_windows_866ISO_8859_5 WIN866
iso_8859_6_to_utfs8 ISO_8859_6 UTF38
iso0_8859_7_to_utf8 IS0O_8859_7 UTF38
iso0_8859_8_to_utf8 ISO_8859_8 UTF8
iso_8859_9 to_utfs8 LATINS UTF8
johab_to_utf8 JOHAB UTF8
koi8_r_to_iso_8859_5 KOI8R IS0_8859_5
koi8_r_to_mic KOI8R MULE_INTERNAL
koi8_r_to_utf8 KOI8R UTF8

koi8_r_ to_windows_1251 KOI8R WIN1251
koi8_r_to_windows_866 KOI8R WIN866
koi8_u_to_utf8 KOI8U UTF8
mic_to_ascii MULE_INTERNAL SQL_ASCII
mic_to_bigh MULE_INTERNAL BIGS
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_jp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859_1 MULE_INTERNAL LATINL
mic_to_iso_8859_2 MULE_INTERNAL LATIN2
mic_to_iso_8859_3 MULE_INTERNAL LATIN3
mic_to_iso_8859_4 MULE_INTERNAL LATIN4
mic_to_1iso_8859_5 MULE_INTERNAL IS0O_8859_5
mic_to_koi8_r MULE_INTERNAL KOI8R
mic_to_sijis MULE_INTERNAL SJIS
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN1251
mic_to_windows_866 MULE_INTERNAL WIN866
sjis_to_euc_jp SJIS EUC_JP
sjis_to_mic SJIS MULE_INTERNAL

159

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
sjis_to_utfs8 SJIS UTF8
tcvn_to_utf8 WIN1258 UTFEF8
uhc_to_utf8 UHC UTF8
utf8_to_ascii UTF8 SQL_ASCII
utf8_to_bigh UTF8 BIGS
utf8_to_euc_cn UTF8 EUC_CN
utf8_to_euc_ijp UTF8 EUC_JP
utf8_to_euc_kr UTF8 EUC_KR
utf8_to_euc_tw UTFE8 EUC_TW
utf8_to_gbl8030 UTF8 GB18030
ut£8_to_gbk UTF'8 GBK
utf8_to_iso_8859_1 UTF8 LATIN1
utf8_to_iso_8859_10 UTF8 LATING
utf8_to_iso_8859_ 13 UTF8 LATIN7
utf8_to_iso_8859_ 14 UTFES8 LATINS
utf8_to_iso_8859_15 UTF8 LATINOS
utf8_to_iso_8859_16 UTF8 LATINIO
utf8_to_iso_8859_2 UTF8 LATIN2
utf8_ _to_iso_8859_3 UTFE8 LATIN3
utf8_to_iso_8859_4 UTF8 LATIN4
utf8_to_iso_8859_5 UTF8 IS0O_8859_5
utf8_to_iso_8859_6 UTF8 IS0O_8859_6
utf8_to_iso_8859_7 UTF8 IS0_8859_7
utf8_to_iso_8859_8 UTF8 IS0O_8859_8
utf8_to_iso_8859_9 UTF8 LATINS
ut£8_to_johab UTF8 JOHAB
utf8_to_koi8_r UTFES8 KOI8R
utf8_to_koi8_u UTFE8 KOI8U
utf8_to_sjis UTF8 SJIS
utf8_to_tcvn UTF8 WIN1258
utf8_to_uhc UTF8 UHC
utf8_to_windows_1250 UTFS8 WIN1250
utf8_to_windows_1251 UTF8 WIN1251
utf8_to_windows_1252 UTFE8 WIN1252
utf8_to_windows_1253 UTF8 WIN1253
utf8_to_windows_1254 UTF8 WIN1254
utf8_to_windows_1255 UTF8 WIN1255
utf8_to_windows_1256 UTF8 WIN1256
utf8_to_windows_1257 UTFS8 WIN1257
utf8_to_windows_866 UTFES8 WINB66
utf8_to_windows_874 UTF8 WIN874

160

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
windows_1250_to_iso_8859|WIN1250 LATINZ2
windows_1250_to_mic WIN1250 MULE_INTERNAL
windows_1250_to_utf8 WIN1250 UTF8
windows_1251_to_iso_8859|®BIN1251 IS0_8859_5
windows_1251 to_koi8_r WIN1251 KOI8R
windows_1251_to_mic WIN1251 MULE_INTERNAL
windows_1251_to_utf8 WIN1251 UTF8
windows_1251_to_windows_8WEN1251 WIN866
windows_1252_to_utf8 WIN1252 UTF8
windows_1256_to_utf8 WIN1256 UTF8
windows_866_to_iso_8859 bBWIN8G66 ISO_8859_5
windows_866_to_koi8_r WIN866 KOI8R
windows_866_to_mic WINB66 MULE_INTERNAL
windows_866_to_utf8 WIN866 UTF8
windows_866_to_windows_1PWINB66 WIN
windows_874_to_utfs8 WIN874 UTF8
euc_7jis_2004_to_utfs8 EUC_JIS_2004 UTF8
ut8_to_euc_jis_2004 UTF8 EUC_JIS_2004
shift_jis_2004_to_utfs SHIFT_JIS_2004 UTF8
ut8_to_shift_jis_2004 UTF8 SHIFT_JIS_2004
euc_7jis_2004_to_shift_jisEWQ04IS_2004 SHIFT_JIS_2004
shift_Jjis_2004_to_euc_JjisSRUBDE_JIS_2004 EUC_JIS_2004

Notes:

a. The conversion names follow a standard naming scheme: The official name of the source
encoding with all non-alphanumeric characters replaced by underscores, followed by _to_,
followed by the similarly processed destination encoding name. Therefore, the names might
deviate from the customary encoding names.

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating values of type bytea.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9-8. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9-9).

161

Table 9-8. SQL Binary String Functions and Operators

Chapter 9. Functions and Operators

bytes from

string)

longest string
containing only
the bytes in
bytes from the
start and end of

string

from

E’\\000Tom\\000’ : :bytea)

Function Return Type Description Example Result
string || bytea String E’\\\\Post’ : :byk&Rost’ gres\00
string concatenation |

E’\\047gres\\000"’ : :bytea
get_bit(string,|int Extract bit from |get_bit (E’ Th\\QQ0omas’ : :bytea
offset) string 45)
get_byte(string,int Extract byte from | get_byte (E’ Th\)\000omas’ : :bytea,
offset) string 4)
octet_length (stritm Number of bytes |octet_length(E{50\\000se’ ::bytea)

in binary string

position (substrijngnt Location of position (E’\\0QBom’ : :bytea
in string) specified substring | in

E’Th\\00Oomas’ | :bytea)
set_bit(string,|bytea Set bit in string set_bit (E’ Th\\Q0haNABbmAbytea
offset, 45, 0)
newvalue)
set_byte(stringbytea Set byte in string | set_byte (E’ Th\)\0hQ6MasRasbytea,
offset, 4, 64)
newvalue)
substring (string bytea Extract substring | substring (E’ Th\RR006mas’ : :bytea
[from int] from 2 for 3)
[for int])
trim([both] bytea Remove the trim(E’\\00OQ’ : | Bymea

Additional binary string manipulation functions are available and are listed in Table 9-9. Some of
them are used internally to implement the SQL-standard string functions listed in Table 9-8.

Table 9-9. Other Binary String Functions

Function Return Type Description Example Result
btrim(string bytea Remove the btrim(E’\\000tritmi®n000’ : :bytea,
bytea, bytes longest string E’\\000’ : :bytea)

bytea) consisting only of

bytes in bytes
from the start and
end of string

162

Chapter 9. Functions and Operators

Function Return Type Description Example Result

decode (string |bytea Decode binary decode (E’ 123\\00235600456
text, type string from "escape’)

text) string
previously
encoded with
encode.
Parameter type is
same as in

encode.

encode (string text Encode binary encode (E’ 123\\002356004bgtea,
bytea, type string to "escape’)
text) ASClII-only
representation.
Supported types
are: base64, hex,

escape.

length (string) |int Length of binary |length (E’ jo\\00Bse’ : :bytea)
string

md5 (string) text Calculates the md5 (E’ Th\\000om&8abh2cdBygBE8Paaf]s
MD)5 hash of b4958c334c82d8hl
string, returning
the result in
hexadecimal

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is
values of the types bit and bit varying. Aside from the usual comparison operators, the operators
shown in Table 9-10 can be used. Bit string operands of &, |, and # must be of equal length. When bit
shifting, the original length of the string is preserved, as shown in the examples.

Table 9-10. Bit String Operators

Operator Description Example Result

I concatenation B’ 10001’ || 10001011
B/ 011’

& bitwise AND B’10001’ & 00001
B’ 01101

bitwise OR B’10001" | 11101

B’01101"'

bitwise XOR B’10001" # 11100
B’01101"'

~ bitwise NOT ~ B’10001’ 01110

<< bitwise shift left B’10001" << 3 01000

>> bitwise shift right B’10001" >> 2 00100

163

Chapter 9. Functions and Operators

The following SQL-standard functions work on bit strings as well as character strings: length,
bit_length, octet_length, position, substring.

In addition, it is possible to cast integral values to and from type bit. Some examples:

44::pit (10) 0000101100
44::pbit (3) 100

cast (44 as bit(12)) 111111010100
71110’ : :bit (4) : :integer 14

Note that casting to just “bit” means casting to bit (1), and so will deliver only the least significant
bit of the integer.

Note: Prior to PostgreSQL 8.0, casting an integer to bit (n) would copy the leftmost n bits of the
integer, whereas now it copies the rightmost n bits. Also, casting an integer to a bit string width
wider than the integer itself will sign-extend on the left.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional
SQL LIKE operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style
regular expressions. Aside from the basic “does this string match this pattern?” operators, functions
are available to extract or replace matching substrings and to split a string at matching locations.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined
function in Perl or Tcl.

9.7.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LIKE expression returns true if the string matches the supplied pattern. (As expected, the
NOT LIKE expression returns false if LIKE returns true, and vice versa. An equivalent expression is
NOT (string LIKE pattern))

If pattern does not contain percent signs or underscores, then the pattern only represents the string
itself; in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for
(matches) any single character; a percent sign (%) matches any sequence of zero or more characters.

Some examples:

"abc’ LIKE ’"abc’ true
"abc’ LIKE "a%’ true
"abc’ LIKE '_b_ ' true
"abc’ LIKE ’c’ false

LIKE pattern matching always covers the entire string. Therefore, to match a sequence anywhere
within a string, the pattern must start and end with a percent sign.

164

Chapter 9. Functions and Operators

To match a literal underscore or percent sign without matching other characters, the respective char-
acter in pattern must be preceded by the escape character. The default escape character is the back-
slash but a different one can be selected by using the ESCAPE clause. To match the escape character
itself, write two escape characters.

Note that the backslash already has a special meaning in string literals, so to write a pattern constant
that contains a backslash you must write two backslashes in an SQL statement (assuming escape string
syntax is used, see Section 4.1.2.1). Thus, writing a pattern that actually matches a literal backslash
means writing four backslashes in the statement. You can avoid this by selecting a different escape
character with ESCAPE; then a backslash is not special to LIKE anymore. (But backslash is still special
to the string literal parser, so you still need two of them to match a backslash.)

It’s also possible to select no escape character by writing ESCAPE ”. This effectively disables the
escape mechanism, which makes it impossible to turn off the special meaning of underscore and
percent signs in the pattern.

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to
the active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LIKE, and ~~ corresponds to ILIKE. There are also !~~ and
I ~~x operators that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are
PostgreSQL-specific.

9.7.2. stMILAR TO Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given
string. It is similar to LIKE, except that it interprets the pattern using the SQL standard’s definition of a
regular expression. SQL regular expressions are a curious cross between LIKE notation and common
regular expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is
unlike common regular expression behavior where the pattern can match any part of the string. Also
like LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and any
string, respectively (these are comparable to . and . » in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

+ | denotes alternation (either of two alternatives).

« * denotes repetition of the previous item zero or more times.

+ + denotes repetition of the previous item one or more times.

» Parentheses () can be used to group items into a single logical item.

« A bracket expression [.. .] specifies a character class, just as in POSIX regular expressions.

Notice that bounded repetition operators (? and { . . . }) are not provided, though they exist in POSIX.
Also, the period (.) is not a metacharacter.

As with LIKE, a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified with ESCAPE.

Some examples:

165

Chapter 9. Functions and Operators

"abc’ SIMILAR TO ’abc’ true
"abc’ SIMILAR TO ’a’ false
"abc’ SIMILAR TO ’'%(bld)%’ true
"abc’ SIMILAR TO ' (blc)%’ false

The substring function with three parameters, substring(string from pattern for
escape-character), provides extraction of a substring that matches an SQL regular expression
pattern. As with SIMILAR TO, the specified pattern must match the entire data string, or else the
function fails and returns null. To indicate the part of the pattern that should be returned on success,
the pattern must contain two occurrences of the escape character followed by a double quote ("). The
text matching the portion of the pattern between these markers is returned.

Some examples, with #" delimiting the return string:

substring (' foobar’ from ’%$#"o_b#"%’ for ’'#’) oob
substring (' foobar’ from '#"o_b#"%’ for ’"#') NULL

9.7.3. POSIX Regular Expressions

Table 9-11 lists the available operators for pattern matching using POSIX regular expressions.

Table 9-11. Regular Expression Match Operators

Operator Description Example
~ Matches regular expression, "thomas’ ~ ' .xthomas.x’
case sensitive
~x Matches regular expression, "thomas’ ~x
case insensitive ’ .xThomas. '
I~ Does not match regular "thomas’ !~
expression, case sensitive " .xThomas. x’
[Does not match regular ’thomas’ !~=
expression, case insensitive " .xvadim. x’

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and
SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular set). A string is said to match a regular expression if it is a member of the regular set described
by the regular expression. As with LIKE, pattern characters match string characters exactly unless
they are special characters in the regular expression language — but regular expressions use different
special characters than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match
anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end
of the string.

Some examples:

"abc’ ~ ’abc’ true
"abc’ ~ ’"a’ true
rabe’ ~ " (b|d)’ true

166

Chapter 9. Functions and Operators

rabc’ ~ """ (blc)’ false

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring (string from pattern), provides ex-
traction of a substring that matches a POSIX regular expression pattern. It returns null if there is no
match, otherwise the portion of the text that matched the pattern. But if the pattern contains any paren-
theses, the portion of the text that matched the first parenthesized subexpression (the one whose left
parenthesis comes first) is returned. You can put parentheses around the whole expression if you want
to use parentheses within it without triggering this exception. If you need parentheses in the pattern
before the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring (' foobar’ from ’"o0.b’) oob
substring (’ foobar’ from ’'o(.)b’))

The regexp_replace function provides substitution of new text for substrings that match POSIX
regular expression patterns. It has the syntax regexp_replace(source, pattern, replacement
[, f1ags]). The source string is returned unchanged if there is no match to the pattern. If there
is a match, the source string is returned with the replacement string substituted for the matching
substring. The replacement string can contain \ n, where n is 1 through 9, to indicate that the source
substring matching the n’th parenthesized subexpression of the pattern should be inserted, and it can
contain \ & to indicate that the substring matching the entire pattern should be inserted. Write \\ if you
need to put a literal backslash in the replacement text. (As always, remember to double backslashes
written in literal constant strings, assuming escape string syntax is used.) The f1ags parameter is an
optional text string containing zero or more single-letter flags that change the function’s behavior. Flag
i specifies case-insensitive matching, while flag g specifies replacement of each matching substring
rather than only the first one. Other supported flags are described in Table 9-19.

Some examples:

regexp_replace ('’ foobarbaz’, 'b..’, 'X’)

fooXbaz
regexp_replace (' foobarbaz’, 'b..’, X', 'g’)

fooXX
regexp_replace (' foobarbaz’, 'b(..)’, E’X\\1Y’, ’'g’)

fooXarYXazY

The regexp_matches function returns all of the captured substrings resulting from matching a
POSIX regular expression pattern. It has the syntax regexp_matches(string, pattern [, flags
]). If there is no match to the pattern, the function returns no rows. If there is a match, the function
returns a text array whose n’th element is the substring matching the n’th parenthesized subexpression
of the pattern (not counting “non-capturing” parentheses; see below for details). If the pattern does
not contain any parenthesized subexpressions, then the result is a single-element text array containing
the substring matching the whole pattern. The f1ags parameter is an optional text string containing
zero or more single-letter flags that change the function’s behavior. Flag g causes the function to find
each match in the string, not only the first one, and return a row for each such match. Other supported
flags are described in Table 9-19.

Some examples:

167

Chapter 9. Functions and Operators

SELECT regexp_matches (' foobarbequebaz’, ’ (bar) (beque)’);
regexp_matches

{bar, beque}
(1 row)

SELECT regexp_matches (' foobarbequebazilbarfbonk’, ' (b["bl+) (b["b]l+)’", 'g’);
regexp_matches

{bar,beque}
{bazil, barf}
(2 rows)

SELECT regexp_matches (’ foobarbequebaz’, ’"barbeque’);
regexp_matches

{barbeque}
(1 row)

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as
a delimiter. It has the syntax regexp_split_to_table(string, pattern [, flags]). If there is
no match to the pattern, the function returns the string. If there is at least one match, for each
match it returns the text from the end of the last match (or the beginning of the string) to the beginning
of the match. When there are no more matches, it returns the text from the end of the last match to the
end of the string. The f1ags parameter is an optional text string containing zero or more single-letter
flags that change the function’s behavior. regexp_split_to_table supports the flags described in
Table 9-19.

The regexp_split_to_array function behaves the same as regexp_split_to_table,
except that regexp_split_to_array returns its result as an array of text. It has the syntax
regexp_split_to_array(string, pattern [, flags]). The parameters are the same as for
regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split_to_table(’the quick brown fox jumped over the lazy dog’, E’
foo

quick
brown
fox
Jjumped
over
the
lazy
dog

(9 rows)

SELECT regexp_split_to_array(’the quick brown fox Jjumped over the lazy dog’, E’\\s+’);
regexp_split_to_array

{the, quick, brown, fox, jumped, over, the, lazy, dog}
(1 row)

SELECT foo FROM regexp_split_to_table(’the quick brown fox’, E’\\s*’) AS foo;

168

Chapter 9. Functions and Operators

6 rows)

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur
at the start or end of the string or immediately after a previous match. This is contrary to the strict
definition of regexp matching that is implemented by regexp_matches, but is usually the most
convenient behavior in practice. Other software systems such as Perl use similar definitions.

9.7.3.1. Regular Expression Details

PostgreSQL’s regular expressions are implemented using a software package written by Henry
Spencer. Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egrep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become
widely used due to their availability in programming languages such as Perl and Tcl. REs using these
non-POSIX extensions are called advanced REs or AREs in this documentation. AREs are almost an
exact superset of EREs, but BREs have several notational incompatibilities (as well as being much
more limited). We first describe the ARE and ERE forms, noting features that apply only to AREs,
and then describe how BREs differ.

Note: The form of regular expressions accepted by PostgreSQL can be chosen by setting the
regex_flavor run-time parameter. The usual setting is advanced, but one might choose extended
for backwards compatibility with pre-7.4 releases of PostgreSQL.

A regular expression is defined as one or more branches, separated by |. It matches anything that
matches one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the
first, followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches
a match for the atom. With a quantifier, it can match some number of matches of the atom. An atom
can be any of the possibilities shown in Table 9-12. The possible quantifiers and their meanings are
shown in Table 9-13.

169

Chapter 9. Functions and Operators

A constraint matches an empty string, but matches only when specific conditions are met. A constraint
can be used where an atom could be used, except it cannot be followed by a quantifier. The simple
constraints are shown in Table 9-14; some more constraints are described later.

Table 9-12. Regular Expression Atoms

Atom

Description

(re)

(where re is any regular expression) matches a
match for re, with the match noted for possible
reporting

(?:re)

as above, but the match is not noted for
reporting (a “non-capturing” set of parentheses)
(AREs only)

matches any single character

[chars]

a bracket expression, matching any one of the
chars (see Section 9.7.3.2 for more detail)

\k

(where k is a non-alphanumeric character)
matches that character taken as an ordinary
character, e.g., \\ matches a backslash character

where c is alphanumeric (possibly followed by
other characters) is an escape, see Section
9.7.3.3 (AREs only; in EREs and BREs, this
matches c)

when followed by a character other than a digit,
matches the left-brace character {; when
followed by a digit, it is the beginning of a
bound (see below)

where x is a single character with no other

significance, matches that character

An RE cannot end with \.

Note: Remember that the backslash (\) already has a special meaning in PostgreSQL string
literals. To write a pattern constant that contains a backslash, you must write two backslashes in
the statement, assuming escape string syntax is used (see Section 4.1.2.1).

Table 9-13. Regular Expression Quantifiers

Quantifier

Matches

*

a sequence of 0 or more matches of the atom

+

a sequence of 1 or more matches of the atom

?

a sequence of 0 or 1 matches of the atom

{m}

a sequence of exactly m matches of the atom

{m, }

a sequence of m or more matches of the atom

{m, n}

a sequence of m through n (inclusive) matches
of the atom; m cannot exceed n

170

Chapter 9. Functions and Operators

Quantifier Matches

*? non-greedy version of x

+2 non-greedy version of +

?? non-greedy version of ?

{m}? non-greedy version of {m}

{m, }? non-greedy version of {m, }

{m, n}? non-greedy version of {m, n}

The forms using { ...} are known as bounds. The numbers m and n within a bound are unsigned

decimal integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their correspond-
ing normal (greedy) counterparts, but prefer the smallest number rather than the largest number of
matches. See Section 9.7.3.5 for more detail.

Note: A quantifier cannot immediately follow another quantifier, e.g., =« is invalid. A quantifier
cannot begin an expression or subexpression or follow ~ or |.

Table 9-14. Regular Expression Constraints

Constraint Description
~ matches at the beginning of the string
$ matches at the end of the string
(?=re) positive lookahead matches at any point where

a substring matching re begins (AREs only)

(?!re) negative lookahead matches at any point where
no substring matching re begins (AREs only)

Lookahead constraints cannot contain back references (see Section 9.7.3.3), and all parentheses within
them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is a list of characters enclosed in []. It normally matches any single character
from the list (but see below). If the list begins with ~, it matches any single character not from the
rest of the list. If two characters in the list are separated by -, this is shorthand for the full range
of characters between those two (inclusive) in the collating sequence, e.g., [0-9] in ASCII matches
any decimal digit. It is illegal for two ranges to share an endpoint, e.g., a—c—e. Ranges are very
collating-sequence-dependent, so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (after ~, if that is used). To include a
literal —, make it the first or last character, or the second endpoint of a range. To use a literal - as
the first endpoint of a range, enclose it in [. and .] to make it a collating element (see below).
With the exception of these characters, some combinations using [(see next paragraphs), and escapes
(AREs only), all other special characters lose their special significance within a bracket expression.
In particular, \ is not special when following ERE or BRE rules, though it is special (as introducing
an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that col-

171

Chapter 9. Functions and Operators

lates as if it were a single character, or a collating-sequence name for either) enclosed in [. and .]
stands for the sequence of characters of that collating element. The sequence is treated as a single ele-
ment of the bracket expression’s list. This allows a bracket expression containing a multiple-character
collating element to match more than one character, e.g., if the collating sequence includes a ch
collating element, then the RE [[.ch.]]*c matches the first five characters of chchcec.

Note: PostgreSQL currently does not support multi-character collating elements. This information
describes possible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, stand-
ing for the sequences of characters of all collating elements equivalent to that one, including itself. (If
there are no other equivalent collating elements, the treatment is as if the enclosing delimiters were [.
and .].) For example, if o and ~ are the members of an equivalence class, then [[=0=]1, [[="=]],
and [o~] are all synonymous. An equivalence class cannot be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list
of all characters belonging to that class. Standard character class names are: alnum, alpha, blank,
cntrl,digit, graph, lower, print, punct, space, upper, xdigit. These stand for the character
classes defined in ctype. A locale can provide others. A character class cannot be used as an endpoint
of a range.

There are two special cases of bracket expressions: the bracket expressions [[:<:]1] and [[:>:]]
are constraints, matching empty strings at the beginning and end of a word respectively. A word is
defined as a sequence of word characters that is neither preceded nor followed by word characters.
A word character is an alnum character (as defined by ctype) or an underscore. This is an extension,
compatible with but not specified by POSIX 1003.2, and should be used with caution in software in-
tended to be portable to other systems. The constraint escapes described below are usually preferable;
they are no more standard, but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes
come in several varieties: character entry, class shorthands, constraint escapes, and back references.
A\ followed by an alphanumeric character but not constituting a valid escape is illegal in AREs. In
EREs, there are no escapes: outside a bracket expression, a \ followed by an alphanumeric character
merely stands for that character as an ordinary character, and inside a bracket expression, \ is an
ordinary character. (The latter is the one actual incompatibility between EREs and ARE:s.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient char-
acters in REs. They are shown in Table 9-15.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9-16.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written
as an escape. They are shown in Table 9-17.

A back reference (\ n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9-18). For example, ([bc])\1 matches bb or cc but not bc
or cb. The subexpression must entirely precede the back reference in the RE. Subexpressions are
numbered in the order of their leading parentheses. Non-capturing parentheses do not define subex-
pressions.

172

Chapter 9. Functions and Operators

Note: Keep in mind that an escape’s leading \ will need to be doubled when entering the pattern
as an SQL string constant. For example:

71237 ~ E’"\\d{3}’ true

Table 9-15. Regular Expression Character-Entry Escapes

Escape Description
\a alert (bell) character, as in C
\b backspace, as in C
\B synonym for backslash (\) to help reduce the
need for backslash doubling
\cX (where Xx is any character) the character whose
low-order 5 bits are the same as those of x, and
whose other bits are all zero
\e the character whose collating-sequence name is
ESC, or failing that, the character with octal
value 033
\f form feed, as in C
\n newline, as in C
\r carriage return, as in C
\t horizontal tab, as in C
\uwxyz (where wxyz is exactly four hexadecimal digits)
the UTF16 (Unicode, 16-bit) character U+wxyz
in the local byte ordering
\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal
digits) reserved for a hypothetical Unicode
extension to 32 bits
\v vertical tab, as in C
\xhhh (where hhh is any sequence of hexadecimal
digits) the character whose hexadecimal value is
Oxhhh (a single character no matter how many
hexadecimal digits are used)
N¢ the character whose value is 0 (the null byte)
\xy (where xy is exactly two octal digits, and is not
a back reference) the character whose octal value
1S Oxy
\xyz (where xyz is exactly three octal digits, and is
not a back reference) the character whose octal
value is Oxyz

Hexadecimal digits are 0-9, a-f, and A-F. Octal digits are 0-7.

The character-entry escapes are always taken as ordinary characters. For example, \135 is] in ASCII,
but \ 135 does not terminate a bracket expression.

173

Chapter 9. Functions and Operators

Table 9-16. Regular Expression Class-Shorthand Escapes

Escape Description

\d [[:digit:]]

\'s [[:space:]]

\w [[:alnum:]_] (note underscore is included)
\D [*[:digit:]]

\S [*[:space:]]

\W [~ [:alnum:]_] (note underscore is included)

Within bracket expressions, \d, \'s, and \w lose their outer brackets, and \D, \'s, and \w are illegal.
(So, for example, [a-c\d] is equivalent to [a-c[:digit:]]. Also, [a-c\D], which is equivalent

to [a-c”[:digit:]],isillegal.)

Table 9-17. Regular Expression Constraint Escapes

Escape Description

\A matches only at the beginning of the string (see
Section 9.7.3.5 for how this differs from)

\m matches only at the beginning of a word

\M matches only at the end of a word

\y matches only at the beginning or end of a word

\Y matches only at a point that is not the beginning
or end of a word

\2Z matches only at the end of the string (see
Section 9.7.3.5 for how this differs from $)

A word is defined as in the specification of [[:<:]] and [[:>:]] above. Constraint escapes are

illegal within bracket expressions.

Table 9-18. Regular Expression Back References

Escape Description

\m (where m is a nonzero digit) a back reference to
the m’th subexpression

\mnn (where m is a nonzero digit, and nn is some

more digits, and the decimal value mnn is not
greater than the number of closing capturing
parentheses seen so far) a back reference to the
mnn’th subexpression

Note: There is an inherent ambiguity between octal character-entry escapes and back references,
which is resolved by the following heuristics, as hinted at above. A leading zero always indicates
an octal escape. A single non-zero digit, not followed by another digit, is always taken as a back
reference. A multi-digit sequence not starting with a zero is taken as a back reference if it comes
after a suitable subexpression (i.e., the number is in the legal range for a back reference), and

otherwise is taken as octal.

174

Chapter 9. Functions and Operators

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syn-
tactic facilities available.

Normally the flavor of RE being used is determined by regex_flavor. However, this can be overrid-
den by a director prefix. If an RE begins with »xx :, the rest of the RE is taken as an ARE regardless
of regex_flavor. If an RE begins with =, the rest of the RE is taken to be a literal string, with
all characters considered ordinary characters.

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously de-
termined options (including both the RE flavor and case sensitivity). The available option letters are
shown in Table 9-19.

Table 9-19. ARE Embedded-Option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator
type)

e rest of RE is an ERE

i case-insensitive matching (see Section 9.7.3.5)
(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

p partial newline-sensitive matching (see Section
9.7.3.5)

a rest of RE is a literal (“quoted”) string, all
ordinary characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

W inverse partial newline-sensitive (“weird”)

matching (see Section 9.7.3.5)

x expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of
an ARE (after the »»: director if any).

In addition to the usual (#ight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters
in the RE are ignored, as are all characters between a # and the following newline (or the end of the
RE). This permits paragraphing and commenting a complex RE. There are three exceptions to that
basic rule:

« a white-space character or # preceded by \ is retained
« white space or # within a bracket expression is retained
« white space and comments cannot appear within multi-character symbols, such as (?:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the

175

Chapter 9. Functions and Operators

space character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#ttt) (where ttt is any text not
containing a)) is a comment, completely ignored. Again, this is not allowed between the characters of
multi-character symbols, like (?:. Such comments are more a historical artifact than a useful facility,
and their use is deprecated; use the expanded syntax instead.

None of these metasyntax extensions is available if an initial » » == director has specified that the user’s
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
either the longest possible match or the shortest possible match will be taken, depending on whether
the RE is greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

« Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

+ Adding parentheses around an RE does not change its greediness.

« A quantified atom with a fixed-repetition quantifier ({m} or {m} ?) has the same greediness (possi-
bly none) as the atom itself.

+ A quantified atom with other normal quantifiers (including {m, n} with m equal to n) is greedy
(prefers longest match).

+ A quantified atom with a non-greedy quantifier (including {m, n} ? with m equal to n) is non-greedy
(prefers shortest match).

« A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

« An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done
in such a way that the branch, or whole RE, matches the longest or shortest possible substring as
a whole. Once the length of the entire match is determined, the part of it that matches any particu-
lar subexpression is determined on the basis of the greediness attribute of that subexpression, with
subexpressions starting earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRING (’XY12347Z’, 'Y= ([0-91{1,3})");
Result: 123

SELECT SUBSTRING (’/XY12347’, '"Yx?2([0-9]1{1,3})");
Result: 1

In the first case, the RE as a whole is greedy because v~ is greedy. It can match beginning at the v,
and it matches the longest possible string starting there, i.e., Y123. The output is the parenthesized
part of that, or 123. In the second case, the RE as a whole is non-greedy because Y2 is non-greedy.
It can match beginning at the v, and it matches the shortest possible string starting there, i.e., Y1. The

176

Chapter 9. Functions and Operators

subexpression [0-9] {1, 3} is greedy but it cannot change the decision as to the overall match length;
so it is forced to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE.
The attributes assigned to the subexpressions only affect how much of that match they are allowed to
“eat” relative to each other.

The quantifiers {1,1} and {1, 1}? can be used to force greediness or non-greediness, respectively,
on a subexpression or a whole RE.

Match lengths are measured in characters, not collating elements. An empty string is considered
longer than no match at all. For example: bb* matches the three middle characters of abbbc;
(week |wee) (night |knights) matches all ten characters of weeknights; when (.«*).x is
matched against abc the parenthesized subexpression matches all three characters; and when (a«) *
is matched against bc both the whole RE and the parenthesized subexpression match an empty
string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished
from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket expression containing both
cases, e.g., x becomes [xxX]. When it appears inside a bracket expression, all case counterparts of it
are added to the bracket expression, e.g., [x] becomes [xx] and [~x] becomes [*xX].

If newline-sensitive matching is specified, . and bracket expressions using ~ will never match the
newline character (so that matches will never cross newlines unless the RE explicitly arranges it) and
~and $ will match the empty string after and before a newline respectively, in addition to matching at
beginning and end of string respectively. But the ARE escapes \a and \ z continue to match beginning
or end of string only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with
newline-sensitive matching, but not ~ and $.

If inverse partial newline-sensitive matching is specified, this affects ~ and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn’t very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs in-
tended to be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant
implementation can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is that \ does not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or
has undefined or unspecified effects in POSIX EREs; the «x+ syntax of directors likewise is outside
the POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them
up, and a few Perl extensions are not present. Incompatibilities of note include \b, \B, the lack of
special treatment for a trailing newline, the addition of complemented bracket expressions to the
things affected by newline-sensitive matching, the restrictions on parentheses and back references in
lookahead constraints, and the longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4
releases of PostgreSQL:

177

Chapter 9. Functions and Operators

» In AREs, \ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

« In AREs, \ remains a special character within [], so a literal \ within a bracket expression must
be written \\.

While these differences are unlikely to create a problem for most applications, you can avoid them if
necessary by setting regex_flavor to extended.

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. In BREs, |, +, and 2 are ordinary characters and there
is no equivalent for their functionality. The delimiters for bounds are \ { and \}, with { and } by
themselves ordinary characters. The parentheses for nested subexpressions are \ (and \), with (and
) by themselves ordinary characters. ~ is an ordinary character except at the beginning of the RE or
the beginning of a parenthesized subexpression, $ is an ordinary character except at the end of the
RE or the end of a parenthesized subexpression, and « is an ordinary character if it appears at the
beginning of the RE or the beginning of a parenthesized subexpression (after a possible leading *).
Finally, single-digit back references are available, and \< and \> are synonyms for [[:<:]] and
[[:>:]] respectively; no other escapes are available in BREs.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data types. Table 9-20 lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is a template that
defines the output or input format.

A single-argument to_t imestamp function is also available; it accepts a double precision argu-
ment and converts from Unix epoch (seconds since 1970-01-01 00:00:00+00) to t imestamp with
time zone. (Integer Unix epochs are implicitly cast to double precision.)

Table 9-20. Formatting Functions

Function Return Type Description Example
to_char (timestamp, text convert time stamp to to_char (current_timestamp,
text) string "HH12:MI:SS’)
to_char (interval, text convert interval to to_char (interval
text) string ’15h 2m 12s’,
"HH24 :MI:SS’)
to_char (int, text) |text convert integer to string | to_char (125,
79997)
to_char (double text convert real/double to_char(125.8::reall,
precision, text) precision to string "999D9")
to_char (numeric, text convert numeric to to_char (-125.8,
text) string 7999D99s")

178

Chapter 9. Functions and Operators

Function Return Type Description Example
to_date (text, text) |date convert string to date to_date (05 Dec 20007,
DD Mon YYYY')
to_number (text, numeric convert String to to_number ('12,454.8-",
text) numeric 799G999D9S")
to_timestamp (text, |timestamp with convert string to time to_timestamp (' 05 Dec 2000',
text) time zone stamp DD Mon YYYY')
to_timestamp (double |timestamp with convert Unix epochto |to_timestamp (1284352323)

precision) time zone

time stamp

In a to_char output template string, there are certain patterns that are recognized and replaced with
appropriately-formatted data based on the given value. Any text that is not a template pattern is simply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns
identify the values to be supplied by the input data string.

Table 9-21 shows the template patterns available for formatting date and time values.

Table 9-21. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

SS second (00-59)

MS millisecond (000-999)

Us microsecond (000000-999999)
SSSS seconds past midnight (0-86399)

AM, am, PM Or pm

meridiem indicator (without periods)

A.M.,a.m.,P.M. Orp.m.

meridiem indicator (with periods)

Y,YYY year (4 and more digits) with comma
YYYY year (4 and more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

IYYY ISO year (4 and more digits)

IYY last 3 digits of ISO year

1Y last 2 digits of ISO year

I last digit of ISO year

BC, bc, AD Or ad

era indicator (without periods)

B.C.,b.c.,A.D.Ora.d.

era indicator (with periods)

MONTH full uppercase month name (blank-padded to 9
chars)
Month full capitalized month name (blank-padded to 9

chars)

179

Chapter 9. Functions and Operators

Pattern Description

month full lowercase month name (blank-padded to 9
chars)

MON abbreviated uppercase month name (3 chars in
English, localized lengths vary)

Mon abbreviated capitalized month name (3 chars in
English, localized lengths vary)

mon abbreviated lowercase month name (3 chars in
English, localized lengths vary)

MM month number (01-12)

DAY full uppercase day name (blank-padded to 9
chars)

Day full capitalized day name (blank-padded to 9
chars)

day full lowercase day name (blank-padded to 9
chars)

DY abbreviated uppercase day name (3 chars in
English, localized lengths vary)

Dy abbreviated capitalized day name (3 chars in
English, localized lengths vary)

dy abbreviated lowercase day name (3 chars in
English, localized lengths vary)

DDD day of year (001-366)

IDDD ISO day of year (001-371; day 1 of the year is
Monday of the first ISO week.)

DD day of month (01-31)

D day of the week, Sunday(1) to Saturday(7)

ID ISO day of the week, Monday(1) to Sunday(7)

W week of month (1-5) (The first week starts on the
first day of the month.)

WW week number of year (1-53) (The first week
starts on the first day of the year.)

Iw ISO week number of year (01 - 53; the first
Thursday of the new year is in week 1.)

cc century (2 digits) (The twenty-first century starts
on 2001-01-01.)

J Julian Day (days since November 24, 4714 BC
at midnight)

Q quarter

RM month in uppercase Roman numerals (I-XII;
I=January)

rm month in lowercase Roman numerals (i-xii;
i=January)

TZ uppercase time-zone name

tz lowercase time-zone name

180

Chapter 9. Functions and Operators

Modifiers can be applied to any template pattern to alter its behavior. For example, FMMonth is the
Month pattern with the FM modifier. Table 9-22 shows the modifier patterns for date/time formatting.

Table 9-22. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example
FM prefix fill mode (suppress padding FMMonth
blanks and zeroes)
TH suffix uppercase ordinal number DDTH, e.g., 12TH
suffix
th suffix lowercase ordinal number suffix | DDth, e.g., 12th
FX prefix fixed format global option (see |FX Month DD Day

usage notes)

TM prefix translation mode (print TMMonth
localized day and month names
based on Ic_time)

SP suffix spell mode (not implemented) |DDSP

Usage notes for date/time formatting:

« FMsuppresses leading zeroes and trailing blanks that would otherwise be added to make the output
of a pattern be fixed-width.

« TM does not include trailing blanks.

+ to_timestamp and to_date skip multiple blank spaces in the input string unless the Fx
option is used. For example, to_timestamp (2000 JUN’, 'YYYY MON’) works, but
to_timestamp (2000 JUN’, 'FXYYYY MON’) returns an error because to_timestamp
expects one space only. Fx must be specified as the first item in the template.

+ Ordinary text is allowed in to_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains pattern key words. For
example, in ' "Hello Year "YYYY’,the YYYY will be replaced by the year data, but the single v
in Year will not be.

«+ If you want to have a double quote in the output you must precede it with a backslash, for exam-
ple E/\\"YYYY Month\\"’. (Two backslashes are necessary because the backslash has special
meaning when using the escape string syntax.)

« The vvYY conversion from string to timestamp or date has a restriction when processing
years with more than 4 digits. You must use some non-digit character or template after vYvy,
otherwise the year is always interpreted as 4 digits. For example (with the year 20000):
to_date (200001131”, ’YYyymvmpD’) will be interpreted as a 4-digit year; instead use
a non-digit separator after the year, like to_date(’20000-1131’, ’YYYY-MMDD’) oOr
to_date (Y 20000Nov31l’, ’"YYYYMonDD’).

+ In conversions from string to timestamp or date, the CC (century) field is ignored if there is a
YYY,YYYYOry,yyy field. If ccis used with YY or Y then the year is computed as (CC-1) x100+YY.

+ An ISO week date (as distinct from a Gregorian date) can be specified to to_timestamp and
to_date in one of two ways:

181

Chapter 9. Functions and Operators

+ Year, week, and weekday: for example to_date (1 2006-42-4’, ’IYYY-IW-ID’) returns the
date 2006-10-19. If you omit the weekday it is assumed to be 1 (Monday).

« Year and day of year: for example to_date(’2006-291’, 'IYYY-IDDD’) also returns
2006-10-19.

Attempting to construct a date using a mixture of ISO week and Gregorian date fields is nonsensical,
and will cause an error. In the context of an ISO year, the concept of a “month” or “day of month”
has no meaning. In the context of a Gregorian year, the ISO week has no meaning. Users should
avoid mixing Gregorian and ISO date specifications.

+ In a conversion from string to t imestamp, millisecond (MS) or microsecond (Us) values are used
as the seconds digits after the decimal point. For example to_timestamp (’12:37, ’SS:MS’)
is not 3 milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds. This means
for the format ss:Ms, the input values 12:3, 12:30, and 12:300 specify the same number of
milliseconds. To get three milliseconds, one must use 12 : 003, which the conversion counts as 12
+0.003 = 12.003 seconds.

Here is a more complex example: to_timestamp(’15:12:02.020.0012307,
"HH:MI:SS.MS.US’) is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230
microseconds = 2.021230 seconds.

+ to_char(..., "ID’")’s day of the week numbering matches the extract (* isodow’, ...)
function, but to_char (..., ’D’)’sdoes not match extract (“dow’, ...)’s day numbering.

+ to_char (interval) formats HH and HH12 as hours in a single day, while HH24 can output hours
exceeding a single day, e.g., >24.

Table 9-23 shows the template patterns available for formatting numeric values.

Table 9-23. Template Patterns for Numeric Formatting

Pattern Description

9 value with the specified number of digits

0 value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number < 0)
PL plus sign in specified position (if number > 0)
SG plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)
THoOr th ordinal number suffix

\Y% shift specified number of digits (see notes)
EEEE scientific notation (not implemented)

Usage notes for numeric formatting:

182

Chapter 9. Functions and Operators

A sign formatted using SG, PL, or MI is not anchored to the number; for example, to_char (-12,
"MI9999’) produces ‘- 12’ but to_char(-12, ’59999’) produces © -12’. The Oracle
implementation does not allow the use of MI before 9, but rather requires that 9 precede MI.

9 results in a value with the same number of digits as there are 9s. If a digit is not available it
outputs a space.

TH does not convert values less than zero and does not convert fractional numbers.
PL, SG, and TH are PostgreSQL extensions.

v effectively multiplies the input values by 10~n, where n is the number of digits following v.
to_char does not support the use of v combined with a decimal point (e.g., 99.9vV99 is not
allowed).

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FM9999 is
the 9999 pattern with the FM modifier. Table 9-24 shows the modifier patterns for numeric formatting.

Table 9-24. Template Pattern Modifiers for Numeric Formatting

Modifier Description Example

FM prefix fill mode (suppress padding FM9999
blanks and zeroes)

TH suffix uppercase ordinal number 999TH
suffix

th suffix lowercase ordinal number suffix | 999th

Table 9-25 shows some examples of the use of the to_char function.

Table 9-25. to_char Examples

Expression Result

to_char (current_timestamp, "Tuesday , 06 05:39:18’
"Day, DD HH12:MI:SS’)

to_char (current_timestamp, "Tuesday, 6 05:39:18"
"FMDay, FMDD HH12:MI:SS’)

to_char(-0.1, 799.99") ’ -.10"

to_char(-0.1, "FM9.99") r—.1r

to_char (0.1, 70.97) 0.1’

to_char (12, "9990999.9") ! 0012.0"

to_char (12, ’'FM9990999.9") r0012.7

to_char (485, ’79997") ! 485’

to_char (-485, 7999") ! -485'

to_char (485, 79 9 9') " 4 8 57

to_char (1485, '9,999") ' 1,485

to_char (1485, "9G999') 1 485’
to_char(148.5, 7999.999") 7 148.500"
to_char(148.5, 'FM999.999") 7148.57

183

Chapter 9. Functions and Operators

Expression Result
to_char(148.5, ’FM999.990") 148.500’
to_char (148.5, ’999D999’) 148,500

to_char(3148.5,

"9G999D999")

" 3 148,500’

to_char (=485, '999s’) " 485~

to_char (=485, "999MI’) " 485~

to_char (485, 7999MI’) "485

to_char (485, "FM999MI’) ' 4857

to_char (485, ’'PL999’) '+4857

to_char (485, ’SG999") " +485"

to_char (-485, 7SG999") " -485'

to_char (=485, ’9SG99') " 4-85"

to_char (-485, "999PR’) ! <485>

to_char (485, ’'L999") DM 485

to_char (485, ’'RN’) ’ CDLXXXV'
to_char (485, ’'FMRN’) " CDLXXXV'

to_char (5.2, ’'FMRN’) rv’

to_char (482, 7999th’) " 482nd’

to_char (485, ’'"Good number:"999’) "Good number: 4857
to_char (485.8, "Pre: 485 Post: .800’
""Pre:"999" Post:" .9997)

to_char (12, 799v999") r 120007
to_char(12.4, "99v999') r 12400
to_char(12.45, ’"99V9’) r 1257

9.9. Date/Time Functions and Operators

Table 9-27 shows the available functions for date/time value processing, with details appearing in
the following subsections. Table 9-26 illustrates the behaviors of the basic arithmetic operators (+,
+, etc.). For formatting functions, refer to Section 9.8. You should be familiar with the background
information on date/time data types from Section 8.5.

All the functions and operators described below that take t ime or t imestamp inputs actually come
in two variants: one that takes time with time zone or timestamp with time zone, and one
that takes time without time zone Or timestamp without time zone. For brevity, these
variants are not shown separately. Also, the + and » operators come in commutative pairs (for ex-
ample both date + integer and integer + date); we show only one of each such pair.

Table 9-26. Date/Time Operators

Operator Example Result

+ date 72001-09-28" + date ’2001-10-05"
integer 7’

+ date 72001-09-28" + timestamp "2001-09-28
interval ’1 hour’ 01:00:00"

184

Chapter 9. Functions and Operators

Operator Example Result

+ date 72001-09-28" + timestamp "2001-09-28
time 703:00’ 03:00:00"

+ interval 'l day’ + interval ’'1 day
interval ’1 hour’ 01:00:00"

+ timestamp "2001-09-28 timestamp "2001-09-29
01:00" + interval ’23 00:00:00"
hours’

+ time ’01:00’" + interval |time "04:00:00"
"3 hours’

- - interval ’23 hours’ interval "-23:00:00"

- date ’2001-10-01" - integer '3’ (days)
date "2001-09-28"

- date "2001-10-01" - date 72001-09-24"
integer "7’

- date 72001-09-28" - timestamp "2001-09-27
interval '1 hour’ 23:00:00"

- time ’05:00’ - time interval "02:00:00"
03:00"

- time ’05:00" - interval |time ’"03:00:00'
"2 hours’

- timestamp ’2001-09-28 timestamp ’2001-09-28
23:00” - interval ’23 00:00:00"
hours’

- interval '1 day’ - interval ’'1 day
interval ’1 hour’ -01:00:00"

- timestamp "2001-09-29 interval ’'1 day
03:00" - timestamp 15:00:00"
72001-09-27 12:00"

* 900 » interval 1 interval "00:15:00”
second’

* 21 = interval ’'1 day’ interval 721 days’

* double precision ’3.5’ interval 703:30:00'
* interval ’1 hour’

/ interval ’1 hour’ / interval "00:40:00"

double precision 1.5’

Table 9-27. Date/Time Functions

Function Return Type Description Example Result

age (timestamp, Subtract age (timestamp |43 years 9

timestamp) arguments, r2001-04-10", mons 27 days
producing a timestamp

that uses years
and months

“symbolic” result |’1957-06-13")

185

Chapter 9. Functions and Operators

Function Return Type Description Example Result
age (timestamp) |interval Subtract from age (timestamp |43 years 8
current_date r1957-06-13") mons 3 days
(at midnight)
clock_timestamp ()t imestamp Current date and
with time time (changes
zone during statement
execution); see
Section 9.9.4
current_date date Current date; see
Section 9.9.4
current_time time with Current time of
time zone day; see Section

9.94

current_timestampt imestamp

with time

Current date and
time (start of

zone current
transaction); see
Section 9.9.4
date_part (text, |double Get subfield date_part (" hour29
timestamp) precision (equivalent to timestamp
extract); see r2001-02-16
Section 9.9.1 20:38:40")
date_part (text, |double Get subfield date_part (' montRB’,
interval) precision (equivalent to interval ’2
extract); see years 3
Section 9.9.1 months”’)
date_trunc (text,|timestamp Truncate to date_trunc (' hou20p1-02-16
timestamp) speciﬁed timestamp 20:00:00
precision; see also | Y 2001-02-16
Section 9.9.2 20:38:40")
extract (field double Get subfield; see |extract (hour 20
from precision Section 9.9.1 from
timestamp) timestamp
72001-02-16
20:38:40")
extract (field double Get subfield; see |extract (month |3
from interval) |precision Section 9.9.1 from interval
"2 years 3
months’)
isfinite (date) boolean Test for finite date | isfinite (date |true

(not +/-infinity)

72001-02-16")

isfinite (timestagnpjolean

Test for finite time
stamp (not
+/-infinity)

isfinite (timestéampe

72001-02-16
21:28:30")

isfinite (intervaljoolean

Test for finite
interval

isfinite (intervyatue

"4 hours’)

186

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

Jjustify_days (int]

einvbéyval

Adjust interval so
30-day time
periods are
represented as
months

Justify_days (i

35 days’)

ntemwvalb days

Justify_hours (in

tiertvetyal

Adjust interval so
24-hour time
periods are
represented as
days

justify_hours (

27 hours’)

ihtdayal
03:00:00

justify_interval

(imtervall)

Adjust interval
using
Justify_days
and
justify_hours,
with additional
sign adjustments

Jjustify_interv
"1l mon -1

hour’)

n29idagsval
23:00:00

localtime

time

Current time of
day; see Section
994

localtimestamp

timestamp

Current date and
time (start of
current
transaction); see
Section 9.9.4

now ()

timestamp

with time

Current date and
time (start of

with time

zone

zone current
transaction); see
Section 9.9.4
statement_timestlmpni¢stamp Current date and

time (start of
current
statement); see
Section 9.9.4

timeofday ()

text

Current date and
time (like
clock_timestamj
but as a text
string); see

Section 9.9.4

transaction_time

stamp $f amp
with time

zone

Current date and
time (start of
current
transaction); see

Section 9.9.4

In addition to these functions, the SQL OVERLAPS operator is supported:

187

Chapter 9. Functions and Operators

(startl, endl) OVERLAPS (start2, end2)
(startl, lengthl) OVERLAPS (start2, length2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when
they do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a
date, time, or time stamp followed by an interval.

SELECT (DATE ’2001-02-16’, DATE ’2001-12-21") OVERLAPS
(DATE "2001-10-30", DATE ’2002-10-307");

Result: true

SELECT (DATE ’2001-02-16’, INTERVAL ’100 days’) OVERLAPS
(DATE "2001-10-30’, DATE ’'2002-10-30");

Result: false

When adding an interval value to (or subtracting an interval value from) a timestamp with
time zone value, the days component advances (or decrements) the date of the timestamp with
time zone by the indicated number of days. Across daylight saving time changes (with the
session time zone set to a time zone that recognizes DST), this means interval 1 day’ does
not necessarily equal interval ‘24 hours’. For example, with the session time zone set to
CST7CDT, timestamp with time zone ’2005-04-02 12:00-07’ + interval ’'1 day’
will produce t imestamp with time zone ’2005-04-03 12:00-06’, while adding interval
’24 hours’ to the same initial timestamp with time zone produces timestamp with time
zone ’2005-04-03 13:00-06", as there is a change in daylight saving time at 2005-04-03
02:00 in time zone CST7CDT.

Note there can be ambiguity in the months returned by age because different months have a different
number of days. PostgreSQL’s approach uses the month from the earlier of the two dates when cal-
culating partial months. For example, age (1 2004-06-01’, "2004-04-30") uses April to yield 1
mon 1 day, while using May would yield 1 mon 2 days because May has 31 days, while April
has only 30.

9.9.1. EXTRACT, date_part

EXTRACT (field FROM source)

The extract function retrieves subfields such as year or hour from date/time values. source must
be a value expression of type t imestamp, time, or interval. (Expressions of type date are cast to
timestamp and can therefore be used as well.) field is an identifier or string that selects what field
to extract from the source value. The extract function returns values of type double precision.
The following are valid field names:

century

The century

SELECT EXTRACT (CENTURY FROM TIMESTAMP ’'2000-12-16 12:21:13");
Result: 20
SELECT EXTRACT (CENTURY FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 21

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time.
This definition applies to all Gregorian calendar countries. There is no century number 0, you
go from -1 century to 1 century. If you disagree with this, please write your complaint to: Pope,
Cathedral Saint-Peter of Roma, Vatican.

188

Chapter 9. Functions and Operators
PostgreSQL releases before 8.0 did not follow the conventional numbering of centuries, but just
returned the year field divided by 100.
day
The day (of the month) field (1 - 31)

SELECT EXTRACT (DAY FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 16

decade
The year field divided by 10

SELECT EXTRACT (DECADE FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 200

dow
The day of the week as Sunday(0) to Saturday(6)

SELECT EXTRACT (DOW FROM TIMESTAMP ’2001-02-16 20:38:40");

Result: 5
Note that extract’s day of the week numbering differs from that of the to_char (..., ’D’)
function.

doy
The day of the year (1 - 365/366)

SELECT EXTRACT (DOY FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 47

epoch

For date and timestamp values, the number of seconds since 1970-01-01 00:00:00 UTC (can
be negative); for interval values, the total number of seconds in the interval

SELECT EXTRACT (EPOCH FROM TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-08');

Result: 982384720

SELECT EXTRACT (EPOCH FROM INTERVAL ’5 days 3 hours’);

Result: 442800

Here is how you can convert an epoch value back to a time stamp:

SELECT TIMESTAMP WITH TIME ZONE ’epoch’ + 982384720 x INTERVAL ’1 second’;
hour

The hour field (0 - 23)

SELECT EXTRACT (HOUR FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 20

isodow

The day of the week as Monday(1) to Sunday(7)

SELECT EXTRACT (ISODOW FROM TIMESTAMP ’'2001-02-18 20:38:40");
Result: 7

This is identical to dow except for Sunday. This matches the ISO 8601 day of the week number-
ing.

189

Chapter 9. Functions and Operators

isoyear
The ISO 8601 year that the date falls in (not applicable to intervals)

SELECT EXTRACT (ISOYEAR FROM DATE ’'2006-01-01");
Result: 2005
SELECT EXTRACT (ISOYEAR FROM DATE ’'2006-01-02");
Result: 2006

Each ISO year begins with the Monday of the week containing the 4th of January, so in early
January or late December the ISO year may be different from the Gregorian year. See the week
field for more information.

This field is not available in PostgreSQL releases prior to 8.3.
microseconds

The seconds field, including fractional parts, multiplied by 1 000 000; note that this includes full
seconds

SELECT EXTRACT (MICROSECONDS FROM TIME "17:12:28.5");
Result: 28500000

millennium
The millennium

SELECT EXTRACT (MILLENNIUM FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 3

Years in the 1900s are in the second millennium. The third millennium started January 1, 2001.

PostgreSQL releases before 8.0 did not follow the conventional numbering of millennia, but just
returned the year field divided by 1000.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full
seconds.

SELECT EXTRACT (MILLISECONDS FROM TIME "17:12:28.5");
Result: 28500

minute
The minutes field (0 - 59)

SELECT EXTRACT (MINUTE FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 38

month

For t imestamp values, the number of the month within the year (1 - 12) ; for interval values
the number of months, modulo 12 (0 - 11)

SELECT EXTRACT (MONTH FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 2

SELECT EXTRACT (MONTH FROM INTERVAL ’2 years 3 months’);
Result: 3

SELECT EXTRACT (MONTH FROM INTERVAL ’2 years 13 months’);
Result: 1

190

Chapter 9. Functions and Operators

quarter

The quarter of the year (1 - 4) that the date is in

SELECT EXTRACT (QUARTER FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 1

second
The seconds field, including fractional parts (0 - 59")
SELECT EXTRACT (SECOND FROM TIMESTAMP ’2001-02-16 20:38:407);
Result: 40
SELECT EXTRACT (SECOND FROM TIME '17:12:28.5");
Result: 28.5

timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones
east of UTC, negative values to zones west of UTC.

timezone_hour

The hour component of the time zone offset
timezone_minute

The minute component of the time zone offset
week

The number of the week of the year that the day is in. By definition (ISO 8601), the first week of
a year contains January 4 of that year. (The ISO-8601 week starts on Monday.) In other words,
the first Thursday of a year is in week 1 of that year.

Because of this, it is possible for early January dates to be part of the 52nd or 53rd week
of the previous year. For example, 2005-01-01 is part of the 53rd week of year 2004, and
2006-01-01 is part of the 52nd week of year 2005.

SELECT EXTRACT (WEEK FROM TIMESTAMP ’2001-02-16 20:38:407);
Result: 7

year

The year field. Keep in mind there is no 0 AD, so subtracting BC years from AD years should be
done with care.

SELECT EXTRACT (YEAR FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 2001

The extract function is primarily intended for computational processing. For formatting date/time
values for display, see Section 9.8.

The date_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract:

date_part (' field’, source)

Note that here the field parameter needs to be a string value, not a name. The valid field names for
date_part are the same as for extract.

SELECT date_part (‘day’, TIMESTAMP ’2001-02-16 20:38:40");

60 if leap seconds are implemented by the operating system

191

Chapter 9. Functions and Operators
Result: 16

SELECT date_part ("hour’, INTERVAL "4 hours 3 minutes’);
Result: 4

9.9.2. date_trunc

The function date_trunc is conceptually similar to the t runc function for numbers.

date_trunc ('’ field’, source)

source is a value expression of type t imestamp or interval. (Values of type date and time are
cast automatically to timestamp or interval, respectively.) field selects to which precision to
truncate the input value. The return value is of type t imestamp or interval with all fields that are
less significant than the selected one set to zero (or one, for day and month).

Valid values for field are:

microseconds
milliseconds
second
minute

hour

day

week

month
quarter

year

decade
century

millennium

Examples:

SELECT date_trunc (’hour’, TIMESTAMP ’'2001-02-16 20:38:40");
Result: 2001-02-16 20:00:00

SELECT date_trunc(’year’, TIMESTAMP ’'2001-02-16 20:38:40");
Result: 2001-01-01 00:00:00

9.9.3. AT TIME ZONE

The AT TIME ZONE construct allows conversions of time stamps to different time zones. Table 9-28
shows its variants.

192

Chapter 9. Functions and Operators

Expression Return Type Description

Table 9-28. AT TIME ZONE Variants

Expression Return Type Description
timestamp without time timestamp with time Treat given time stamp without
zone AT TIME ZONE zone zone time zone as located in the

specified time zone

timestamp with time zone |timestamp without time |Convert given time stamp with
AT TIME ZONE zone zone time zone to the new time zone,
with no time zone designation

time with time zone AT time with time zone Convert given time with time
TIME ZONE zone zone to the new time zone

In these expressions, the desired time zone zone can be specified either as a text string (e.g., ' PST’)
or as an interval (e.g., INTERVAL ’-08:00"). In the text case, a time zone name can be specified in
any of the ways described in Section 8.5.3.

Examples (assuming the local time zone is PST8PDT):

SELECT TIMESTAMP ’'2001-02-16 20:38:40’ AT TIME ZONE ’'MST’;
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-05" AT TIME ZONE ’MST’;
Result: 2001-02-16 18:38:40

The first example takes a time stamp without time zone and interprets it as MST time (UTC-7), which
is then converted to PST (UTC-8) for display. The second example takes a time stamp specified in
EST (UTC-5) and converts it to local time in MST (UTC-7).

The function timezone (zone, timestamp) is equivalent to the SQL-conforming construct
timestamp AT TIME ZONE zone.

9.9.4. Current Date/Time

PostgreSQL provides a number of functions that return values related to the current date and time.
These SQL-standard functions all return values based on the start time of the current transaction:

CURRENT_DATE

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME (precision)
CURRENT_TIMESTAMP (precision)
LOCALTIME

LOCALTIMESTAMP

LOCALTIME (precision)
LOCALTIMESTAMP (precision)

CURRENT_TIME and CURRENT_TIMESTAMP deliver values with time zone; LOCALTIME and
LOCALTIMESTAMP deliver values without time zone.

193

Chapter 9. Functions and Operators

CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP can optionally take a
precision parameter, which causes the result to be rounded to that many fractional digits in the seconds
field. Without a precision parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2001-12-23

SELECT CURRENT_TIMESTAMP;
Result: 2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP (2) ;
Result: 2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2001-12-23 14:39:53.662522

Since these functions return the start time of the current transaction, their values do not change during
the transaction. This is considered a feature: the intent is to allow a single transaction to have a
consistent notion of the “current” time, so that multiple modifications within the same transaction
bear the same time stamp.

Note: Other database systems might advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well as the
actual current time at the instant the function is called. The complete list of non-SQL-standard time
functions is:

transaction_timestamp ()
statement_timestamp ()
clock_timestamp ()
timeofday ()

now ()

transaction_timestamp() 1S equivalent to CURRENT_TIMESTAMP, but is named to
clearly reflect what it returns. statement_timestamp () returns the start time of the current
statement (more specifically, the time of receipt of the latest command message from the
client). statement_timestamp () and transaction_timestamp () return the same value
during the first command of a transaction, but might differ during subsequent commands.
clock_timestamp () returns the actual current time, and therefore its value changes even
within a single SQL command. timeofday () is a historical PostgreSQL function. Like
clock_timestamp (), it returns the actual current time, but as a formatted text string rather
than a timestamp with time zone value. now() is a traditional PostgreSQL equivalent to
transaction_timestamp ().

All the date/time data types also accept the special literal value now to specify the current date and
time (again, interpreted as the transaction start time). Thus, the following three all return the same
result:

194

Chapter 9. Functions and Operators

SELECT CURRENT_TIMESTAMP;
SELECT now () ;
SELECT TIMESTAMP ’'now’; —-- incorrect for use with DEFAULT

Tip: You do not want to use the third form when specifying a pErauLT clause while creating a
table. The system will convert now to a timestamp as soon as the constant is parsed, so that
when the default value is needed, the time of the table creation would be used! The first two
forms will not be evaluated until the default value is used, because they are function calls. Thus
they will give the desired behavior of defaulting to the time of row insertion.

9.9.5. Delaying Execution

The following function is available to delay execution of the server process:
pg_sleep (seconds)

pg_sleep makes the current session’s process sleep until seconds seconds have elapsed. seconds
is a value of type double precision, so fractional-second delays can be specified. For example:

SELECT pg_sleep(l.5);

Note: The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common
value. The sleep delay will be at least as long as specified. It might be longer depending on factors
such as server load.

Warning

Make sure that your session does not hold more locks than necessary when
calling pg_s1leep. Otherwise other sessions might have to wait for your sleeping
process, slowing down the entire system.

9.10. Enum Support Functions

For enum types (described in Section 8.7), there are several functions that allow cleaner programming
without hard-coding particular values of an enum type. These are listed in Table 9-29. The examples
assume an enum type created as:

CREATE TYPE rainbow AS ENUM (’red’, ’orange’, ’yellow’, ’green’, ’blue’, ’'purple’);

Table 9-29. Enum Support Functions

195

Chapter 9. Functions and Operators

Function

Description

Example

Example Result

enum_first (anyenum

)Returns the first value
of the input enum type

enum_first (null::r

pratow)

enum_last (anyenum)

Returns the last value
of the input enum type

enum_last (null::ra

yoioop) e

enum_range (anyenum

)Returns all values of
the input enum type in
an ordered array

enum_range (null::r

pinddwdrange, yellow

ygreen,blue, p

enum_range (anyenum

anyenum)

, Returns the range
between the two given
enum values, as an
ordered array. The
values must be from
the same enum type. If
the first parameter is
null, the result will
start with the first value
of the enum type. If the
second parameter is
null, the result will end
with the last value of
the enum type.

enum_range (' orange

"green’ : :rainbow)

! foradgdowellow, gre

en}

enum_range (NULL,

"green’ : :rainbow)

{red, orange, yellow

, green}

enum_range (' orange
NULL)

" foradgdowellow, gre

en,blue, purpl

Notice that except for the two-argument form of enum_range, these functions disregard the specific
value passed to them; they care only about its declared data type. Either null or a specific value of
the type can be passed, with the same result. It is more common to apply these functions to a table
column or function argument than to a hardwired type name as suggested by the examples.

9.11. Geometric Functions and Operators

The geometric types point, box, 1seq, line, path, polygon, and circle have alarge set of native
support functions and operators, shown in Table 9-30, Table 9-31, and Table 9-32.

Caution

Note that the “same as” operator, ~=, represents the usual notion of equality for
the point, box, polygon, and circle types. Some of these types also have an
= operator, but = compares for equal areas only. The other scalar comparison
operators (<= and so on) likewise compare areas for these types.

Table 9-30. Geometric Operators

Operator Description Example

+ Translation box ’ ((0,0), (1,1))" +
point ' (2.0,0)"

- Translation box 7 ((0,0), (1,1))" -
point " (2.0,0)"

196

Chapter 9. Functions and Operators

Operator Description Example

* Scaling/rotation box ' ((0,0),(1,1))" =
point " (2.0,0)’

/ Scaling/rotation box ' ((0,0),(2,2))" /
point " (2.0,0)’

Point or box of intersection T((1,-1), (-1,1))"
T((1,1), (-1,-1))"

Number of points in path or

Ixﬂygon "((1,0),(0,1),(-1,0))"

e-@ Length or circumference @-@ path
" ((0,0),(1,0))"

ee Center @@ circle ' ((0,0),10)"

Closest point to first operand on | point ' (0,0)’ ## lseg

second operand " ((2,0),(0,2))"

<-> Distance between circle 7 ((0,0),1)" <->
circle 7 ((5,0),1)"

&6& Overlaps? box 7 ((0,0), (1,1))’ s&&
box " ((0,0), (2,2))"

<< Is strictly left of? circle 7 ((0,0),1)" <<
circle ' ((5,0),1)"

>> Is strictly right of? circle 7 ((5,0),1)" >>
circle 7 ((0,0),1)"

&< Does not extend to the right of? |box ’ ((0,0), (1,1))" &<
box " ((0,0), (2,2))"

&> Does not extend to the left of? |box ’ ((0,0), (3,3))’ &>
box ' ((0,0),(2,2))’

<< | Is strictly below? box ' ((0,0),(3,3))" <<|
box " ((3,4), (5,5))"

[>> Is strictly above? box ' ((3,4),(5,5))" |>>
box " ((0,0), (3,3))’

&< | Does not extend above? box ' ((0,0), (1,1))’" &<|
box " ((0,0), (2,2))"

| &> Does not extend below? box ' ((0,0),(3,3))" |&>
box " ((0,0), (2,2))"

< Is below (allows touching)? circle 7 ((0,0),1)" <»
circle ’ ((0,5),1)"

>n Is above (allows touching)? circle 7 ((0,5),1)" >~
circle ' ((0,0),1)’

24 Intersects? lseg " ((=1,0),(1,0))"

?# box
" ((=2,-2),(2,2))"

Is horizontal?

?— lseg
" ((=1,0),(1,0))"

Are horizontally aligned?

point ' (1,0)’ 7?- point
' (0,0)

?

Is vertical?

?| lseg
" ((=1,0),(1,0))"

197

Chapter 9. Functions and Operators

Operator Description Example

2 Are vertically aligned? point ' (0,1)’ ?| point
' (0,0)"

- Is perpendicular? lseg ' ((0,0), (0,1))"
?-| lseg
" ((0,0),(1,0))"

21 | Are parallel? lseg ' ((=1,0),(1,0))"
211 lseg
f((=1,2),(1,2))"

@> Contains? circle 7 ((0,0),2)" @>
point " (1,1)’

<@ Contained in or on? point ' (1,1)’ <@ circle

" ((0,0),2)"

Same as?

polygon ’ ((0,0), (1,1))"
~= polygon

" ((1,1),(0,0))"

Note: Before PostgreSQL 8.2, the containment operators @> and <e were respectively called ~
and e. These names are still available, but are deprecated and will eventually be removed.

Table 9-31. Geometric Functions

Function Return Type Description Example
area (object) double precision area area (box

" ((0,0),(1,1))")
center (object) point center center (box

" ((0,0),(1,2))")

diameter (circle)

double precision

diameter of circle

diameter (circle
" ((0,0),2.0)")

height (box)

double precision

vertical size of box

height (box
" ((0,0),(1,1))")

isclosed (path) boolean a closed path? isclosed (path
" ((0,0),(1,1),(2,0
isopen (path) boolean an open path? isopen (path

"1(0,0),(1,1),(2,0

) 17)

length (object)

double precision

length

length (path
"((=1,0),(1,0))")

) 17)

npoints (path) int number of points npoints (path
"[(0,0),(1,1), (2,0
npoints (polygon) int number of points npoints (polygon

"((1,1),(0,0))")

198

Chapter 9. Functions and Operators

) 17)

Function Return Type Description Example

pclose (path) path convert path to closed |pclose (path
"[(0,0),(1,1),(2,0

popen (path) path convertpaﬂ1u>0pen popen (path

" ((0,0),(1,1),(2,0

) ")

radius (circle)

double precision

radius of circle

radius (circle
"((0,0),2.0)")

width (box)

double precision

horizontal size of box

width (box
" ((0,0),(1,1))")

Table 9-32. Geometric Type Conversion Functions

) ")

) ")

D)) ")

Function Return Type Description Example
box (circle) box circle to box box (circle
"((0,0),2.0)")
box (point, point) box points to box box (point
"(0,0)’, point
"(1,1)")
box (polygon) box polygon to box box (polygon
"((0,0),(1,1),(2,0
circle (box) circle box to circle circle (box
" ((0,0),(1,1))")
circle (point, circle center and radius to circle (point
double precision) circle "(0,0)", 2.0)
circle (polygon) circle polygon to circle circle (polygon
"((0,0),(1,1), (2,0
1seg (box) lseg box diagonal to line lseg (box
segment " ((=1,0),(1,0)0)")
lseg (point, point) |lseg points to line segment | l1seg (point
"(-1,0)", point
'(1,0)")
path (polygon) point polygon to path path (polygon
"((0,0),(1,1), (2,0
point (double point construct point point (23.4,
precision, double -44.5)
precision)
point (box) point center of box point (box
" ((-1,0),(1,0))")
point (circle) point center of circle point (circle
" ((0,0),2.0)")
point (1seg) point center of line segment |point (lseg

"((=1,0),(1,0))")

199

Chapter 9. Functions and Operators

Function Return Type Description Example

point (polygon) point center of polygon point (polygon
"((0,0),(1,1),(2,0))")

polygon (box) polygon box to 4-point polygon |polygon (box
" ((0,0),(1,1))")
polygon (circle) polygon circle to 12-point polygon (circle
polygon 7((0,0),2.0)")
polygon (npts, polygon circle to npts-point polygon (12,
circle) polygon circle

" ((0,0),2.0)")

polygon (path) polygon path to polygon polygon (path
" ((0,0),(1,1),(2,0))")

It is possible to access the two component numbers of a point as though the point were an array with
indexes 0 and 1. For example, if t . p iS a point column then SELECT p[0] FROM t retrieves the X
coordinate and UPDATE t SET p[l1] = ... changesthe Y coordinate. In the same way, a value of
type box or 1seg can be treated as an array of two point values.

The area function works for the types box, circle, and path. The area function only
works on the path data type if the points in the path are non-intersecting. For example,
the path "((0,0),(0,1),(2,1),(2,2),(1,2),(1,0), (0,0))" ::PATH
will not work; however, the following visually identical path
7 ((0,0),(0,1),(1,1),(1,2),(2,2),(2,1),(1,1),(1,0), (0,0))”::PATH will work. If
the concept of an intersecting versus non-intersecting path is confusing, draw both of the above
paths side by side on a piece of graph paper.

9.12. Network Address Functions and Operators

Table 9-33 shows the operators available for the cidr and inet types. The operators <<, <<=,
>>, and >>= test for subnet inclusion. They consider only the network parts of the two addresses
(ignoring any host part) and determine whether one network is identical to or a subnet of the other.

Table 9-33. cidr and inet Operators

Operator Description Example

< is less than inet 7192.168.1.5" <
inet 7192.168.1.6'

<= is less than or equal inet 7192.168.1.5" <=
inet 7192.168.1.5"

= equals inet 7192.168.1.5" =
inet 7192.168.1.5"

>= is greater or equal inet 7192.168.1.5" >=
inet 7192.168.1.5'

> is greater than inet 7192.168.1.5" >
inet 7192.168.1.4'

200

Chapter 9. Functions and Operators

Operator Description Example

<> is not equal inet 7192.168.1.5" <>
inet 7192.168.1.4"

<< is contained within inet 7192.168.1.5" <<
inet 7192.168.1/24'

<<= is contained within or equals inet 7192.168.1/24" <<=
inet 7192.168.1/24'

>> contains inet 7192.168.1/247 >>
inet 7192.168.1.5'

>>= contains or equals inet 7192.168.1/24" >>=
inet 7192.168.1/24’

~ bitwise NOT ~ inet 7192.168.1.6’

& bitwise AND inet 7192.168.1.6" &
inet 70.0.0.255"

bitwise OR inet 7192.168.1.6" |

inet 70.0.0.255"

+ addition inet 7192.168.1.6" + 25

- subtraction inet 7192.168.1.43" -
36

- subtraction inet 7192.168.1.43" -
inet 7192.168.1.19'

Table 9-34 shows the functions available for use with the cidr and inet types. The abbrev, host,
and text functions are primarily intended to offer alternative display formats.

Table 9-34. cidr and inet Functions

P4

Function Return Type Description Example Result

abbrev (inet) text abbreviated abbrev (inet 10.1.0.0/16
display formatas |’10.1.0.0/16")
text

abbrev (cidr) text abbreviated abbrev (cidr 10.1/16
display formatas |710.1.0.0/16")
text

broadcast (inet) |inet broadcast address |broadcast (1192,168.168/24255/}
for network

family (inet) int extract family of |family(’::1") |6
address; 4 for
IPv4, 6 for IPv6

host (inet) text extract IP address |host (7192.168.11922468.1.5
as text

hostmask (inet) inet construct host hostmask (7192.168028.30/30")
mask for network

masklen (inet) int extract netmask masklen (/192.16841.5/24")
length

netmask (inet) inet construct netmask | netmask (/192.16855.3%24255.0

for network

201

Chapter 9. Functions and Operators

Function Return Type Description Example Result

network (inet) cidr extract network network (192.16892.5%56841)0/24
part of address

set_masklen (inet|,inet set netmask length | set_masklen (’ 192926868.%5/3416%
int) for inet value 16)
set_masklen (cidd,cidr set netmask length | set_masklen(’192926868.0/R416;cidr,
int) for cidr value 16)
text (inet) text extract IP address |text (inet 192.168.1.5/32
and netmask 7192.168.1.5")

length as text

Any cidr value can be cast to inet implicitly or explicitly; therefore, the functions shown above
as operating on inet also work on cidr values. (Where there are separate functions for inet and
cidr, it is because the behavior should be different for the two cases.) Also, it is permitted to cast
an inet value to cidr. When this is done, any bits to the right of the netmask are silently zeroed to
create a valid cidr value. In addition, you can cast a text value to inet or cidr using normal casting
syntax: for example, inet (expression) O colname: :cidr.

Table 9-35 shows the functions available for use with the macaddr type. The function
trunc (macaddr) returns a MAC address with the last 3 bytes set to zero. This can be used to
associate the remaining prefix with a manufacturer.

Table 9-35. macaddr Functions

Function Return Type Description Example Result
trunc (macaddr) |macaddr set last 3 bytes to | trunc (macaddr |[12:34:56:00:00:00
Zero "12:34:56:78:90:ab")

The macaddr type also supports the standard relational operators (>, <=, etc.) for lexicographical
ordering.

9.13. Text Search Functions and Operators

Table 9-36, Table 9-37 and Table 9-38 summarize the functions and operators that are provided for
full text searching. See Chapter 12 for a detailed explanation of PostgreSQL’s text search facility.

Table 9-36. Text Search Operators

Operator Description Example Result
Q@ tsvector matches to_tsvector (’ fat t
tsquery ? cats ate rats’)
Qe

to_tsquery (' cat &
rat’)

202

Chapter 9. Functions and Operators

in ?

"cat &

rat’ ::tsquery

Operator Description Example Result
eee deprecated synonym to_tsvector (' fat |t
for @@ cats ate rats’)
@Qea@
to_tsquery (' cat &
rat’)
| concatenate ra:l ra’:1 'b’":2,5
tsvectors b:2"::tsvector || |'c’:3 'd’':4
"c:l d:2
b:3" ::tsvector
&8 AND tsquerys "fat | ("fat’ | ’'rat’)
together rat’ ::tsquery &é& & 'cat’
"cat’ ::tsquery
| OR tsquerys together |’ fat | ("fat’ | ’"rat’)
rat’ ::tsquery || | "cat’
"cat’ ::tsquery
[y negate a tsquery 'l 7cat’::tsquery |!’cat’
@> tsquery contains "cat’ ::tsquery @> | f
another ? "cat &
rat’ ::tsquery
<@ tsquery is contained |’cat’::tsquery <@ |t

Note: The tsquery containment operators consider only the lexemes listed in the two queries,
ignoring the combining operators.

In addition to the operators shown in the table, the ordinary B-tree comparison operators (=, <, etc)

are defined for types t svector and tsquery. These are not very useful for text searching but allow,

for example, unique indexes to be built on columns of these types.

Table 9-37. Text Search Functions

Function Return Type Description Example Result
to_tsvector ([tsvector reduce document |to_tsvector (' engEash*
config textto tsvector |’The Fat "rat’:3
regconfig , | Rats’)
document text)
length (tsvector)| integer number of length (' fat:2,43
lexemes in cat:3
tsvector rat:5A’ ::tsvector)
setweight (tsvectldxsvector asﬂgn\vdghtu) setweight (' fatt2¢dt’ :3A
"char") each element of cat:3 " fat’ :2A, 4A
tsvector rat:5B’ ::tsvectbrat’ : 5A
TAr)

203

Chapter 9. Functions and Operators

Function Return Type Description Example Result
strip (tsvector) |tsvector remove positions |strip(’fat:2,4|’cat’ ’fat’
and weights from |cat:3 "rat’
tsvector rat:5A’ : :tsvector)
to_tsquery ([tsquery normalize words |to_tsquery(’englfah’, & ’rat’
config and convert to "The & Fat &
regconfig ,] tsquery Rats’)
query text)
plainto_tsquery ([tsquery produce tsquery |plainto_tsquery(fehg§lishrat’
config ignoring "The Fat
regconfig , | punctuation Rats’)
query text)
numnode (tsquery)| integer number of 5
lexemes plus numnode (’ (fat
operators in & rat) |
tsquery cat’ ::tsquery)
querytree (query | text get indexable part | querytree (' foo|’ foo’
tsquery) of a tsquery & !
bar’ ::tsquery)
ts_rank ([floatd rank document for | ts_rank (textseafcB}l8
weights query query)
floatd[],]
vector
tsvector, query
tsquery [,
normalization
integer 1])
ts_rank_cd ([float4 rank document for | ts_rank_cd(’ {0}2,01317
weights query using cover (0.2, 0.4,
float4[],] density 1.0}/,
vector textsearch,
tsvector, query query)
tsquery [,
normalization
integer 1)
ts_headline ([text display a query ts_headline ('x|x y z
config match y z',
regconfig,] "z'"::tsquery)

document text,
query tsquery
[, options

text])

204

Chapter 9. Functions and Operators

Function Return Type Description Example Result
ts_rewrite (query tsquery replace target with | ts_rewrite (‘a |’b’ & (’foo’
tsquery, target substitute within & | "bar’)
tsquery, query b’ ::tsquery,
substitute "a’ ::tsquery,
tsquery) "fool|bar’ ::tsquery)
ts_rewrite (query tsquery replace using SELECT b’ & ("foo’
tsquery, select targets and ts_rewrite(’a || ’'bar’)
text) substitutes from a | &
SELECT command | b’ : :tsquery,
"SELECT t,s
FROM
aliases’)
get_current_ts_clon€ggonfig get default text get_current_ts|engfigh)
search
configuration

tsvector_update_[trrggget) Uiggerfuncﬁon CREATE
for automatic TRIGGER
tsvector tsvector_update_trigger (tsvcol,
column update 'pg_catalog.swedish’,
title, body)
tsvector_update_[trrgggercolumn () Ujggerfuncﬁon CREATE
for automatic TRIGGER
tsvector tsvector_update_trigger_column (tsvcol,
column update configcol,
title, body)

Note: All the text search functions that accept an optional regconfig argument will use the con-
figuration specified by default_text_search_config when that argument is omitted.

The functions in Table 9-38 are listed separately because they are not usually used in everyday text
searching operations. They are helpful for development and debugging of new text search configura-

tions.

Table 9-38. Text Search Debugging Functions

Function

Return Type

Description

Example

Result

205

Chapter 9. Functions and Operators

Function Return Type Description Example Result
ts_debug ([setof record test a ts_debug (’englighs¢iiword, "Wot
config configuration " The all

regconfig,]
document text,
OUT alias
text, OUT
description
OuUT
token text,

ouT

text,

dictionaries
regdictionaryl([],
OUT dictionary
regdictionary,
OUT lexemes

text[])

Brightest

supernovaes’)

ASCII", The, {en

rd,

lish_stem}, er

ts_lexize (dict
regdictionary,

token text)

text []

test a dictionary

ts_lexize (’eng

"stars’)

lishastem’,

ts_parse (parser.|
text, document
text, OUT
tokid integer,
OUT token

text)

remateof record

test a parser

ts_parse ('defa

"foo - bar’)

1t7 foo)

ts_parse (parser.|
document
ouT
tokid integer,
OUT token
text)

oid,

text,

aietof record

test a parser

ts_parse (3722,

"foo - bar’)

(1, foo)

ts_token_type (p4
text, OUT
tokid integer,
OUT alias
text, OUT
description

text)

rsetroflamecord

get token types
defined by parser

ts_token_type (

défarnctivord, "|
all ASCII")

Nord,

ts_token_type (p4g
oid, OUT tokid
integer, OUT
alias text,
ouT
description

text)

rsetrobidecord

get token types
defined by parser

ts_token_type (

Bl122asciiword, "
all ASCII")

Nord,

206

Chapter 9. Functions and Operators

Function Return Type Description Example Result
ts_stat (sqlquery setof record |getstatisticsofa |ts_stat (' SELECT (foo,10,15)
text, [tsvector vector from

weights text, column apod’)

] OUT word

text, OUT ndoc
integer, OUT

nentry integer)

9.14. XML Functions

The functions and function-like expressions described in this section operate on values of type xml.
Check Section 8.13 for information about the xm1 type. The function-like expressions xmlparse and
xmlserialize for converting to and from type xml are not repeated here. Use of many of these
functions requires the installation to have been built with configure --with-libxml.

9.14.1. Producing XML Content

A set of functions and function-like expressions are available for producing XML content from SQL
data. As such, they are particularly suitable for formatting query results into XML documents for
processing in client applications.

9.14.1.1. xmlcomment

xmlcomment (text)

The function xmlcomment creates an XML value containing an XML comment with the specified
text as content. The text cannot contain “-~-"" or end with a “-” so that the resulting construct is a valid
XML comment. If the argument is null, the result is null.

Example:

SELECT xmlcomment ("hello’);
xmlcomment

<!--hello-——->

9.14.1.2. xmlconcat

xmlconcat (xmI[, ...])

The function xmlconcat concatenates a list of individual XML values to create a single value con-
taining an XML content fragment. Null values are omitted; the result is only null if there are no
nonnull arguments.

207

Chapter 9. Functions and Operators

Example:

SELECT xmlconcat (' <abc/>", ’'<bar>foo</bar>’);

xmlconcat

<abc/><bar>foo</bar>

XML declarations, if present, are combined as follows. If all argument values have the same XML
version declaration, that version is used in the result, else no version is used. If all argument values
have the standalone declaration value “yes”, then that value is used in the result. If all argument
values have a standalone declaration value and at least one is “no”, then that is used in the result.
Else the result will have no standalone declaration. If the result is determined to require a standalone
declaration but no version declaration, a version declaration with version 1.0 will be used because
XML requires an XML declaration to contain a version declaration. Encoding declarations are ignored
and removed in all cases.

Example:
SELECT xmlconcat (’/<?xml version="1.1"?><foo/>’, ’'<?xml version="1.1" standalone="no"?><b
xmlconcat

<?xml version="1.1"?><foo/><bar/>

9.14.1.3. xmlelement

xmlelement (name name [, xmlattributes (value [AS attname]l [, ... 1)1 [, content, ...])

The xmlelement expression produces an XML element with the given name, attributes, and content.

Examples:

SELECT xmlelement (name foo);
xmlelement
SELECT xmlelement (name foo, xmlattributes(’xyz’ as bar));
xmlelement
<foo bar-"xyzt/>
SELECT xmlelement (name foo, xmlattributes (current_date as bar), ’'cont’, ’'ent’);
xmlelement

<foo bar="2007-01-26">content</foo>

208

Chapter 9. Functions and Operators

Element and attribute names that are not valid XML names are escaped by replacing the offending
characters by the sequence _xHHHH_, where HHHH is the character’s Unicode codepoint in hexadeci-
mal notation. For example:

SELECT xmlelement (name "fooS$bar", xmlattributes (’xyz’ as "a&b"));

xmlelement

<foo_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which
case the column’s name will be used as the attribute name by default. In other cases, the attribute must
be given an explicit name. So this example is valid:

CREATE TABLE test (a xml, b xml);
SELECT xmlelement (name test, xmlattributes(a, b)) FROM test;

But these are not:

SELECT xmlelement (name test, xmlattributes(’constant’), a, b) FROM test;
SELECT xmlelement (name test, xmlattributes (func(a, b))) FROM test;

Element content, if specified, will be formatted according to its data type. If the content is itself of
type xm1, complex XML documents can be constructed. For example:

SELECT xmlelement (name foo, xmlattributes(’xyz’ as bar),
xmlelement (name abc),
xmlcomment (' test’),
xmlelement (name xyz));

xmlelement

<foo bar="xyz"><abc/><!--test--><xyz/></foo>

Content of other types will be formatted into valid XML character data. This means in particular
that the characters <, >, and & will be converted to entities. Binary data (data type bytea) will
be represented in base64 or hex encoding, depending on the setting of the configuration parameter
xmlbinary. The particular behavior for individual data types is expected to evolve in order to align the
SQL and PostgreSQL data types with the XML Schema specification, at which point a more precise
description will appear.

9.14.1.4. xmlforest

xmlforest (content [AS name] [, ...])

The xm1forest expression produces an XML forest (sequence) of elements using the given names
and content.

Examples:

SELECT xmlforest ("abc’ AS foo, 123 AS bar);

209

Chapter 9. Functions and Operators

xmlforest

<foo>abc</foo><bar>123</bar>

SELECT xmlforest (table_name, column_name)
FROM information_schema.columns
WHERE table_schema = ’"pg_catalog’;

xmlforest

<table_name>pg_authid</table_name><column_name>rolname</column_name>
<table_name>pg_authid</table_name><column_name>rolsuper</column_name>

As seen in the second example, the element name can be omitted if the content value is a column
reference, in which case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xmlelement above. Simi-
larly, content data is escaped to make valid XML content, unless it is already of type xm1.

Note that XML forests are not valid XML documents if they consist of more than one element, so it
might be useful to wrap xm1forest expressions in xmlelement.

9.14.1.5. xmlpi

xmlpi (name target [, content])

The xm1pi expression creates an XML processing instruction. The content, if present, must not con-
tain the character sequence ?>.

Example:

SELECT xmlpi (name php, ’"echo "hello world";’);

<?php echo "hello world";?>

9.14.1.6. xmlroot

xmlroot (xml, version text | no value [, standalone yes|no|no value])

The xmlroot expression alters the properties of the root node of an XML value. If a version is spec-
ified, it replaces the value in the root node’s version declaration; if a standalone setting is specified, it
replaces the value in the root node’s standalone declaration.

SELECT xmlroot (xmlparse (document ’<?xml version="1.1"?><content>abc</content>’),
version ’1.0’, standalone yes);

xmlroot

210

Chapter 9. Functions and Operators

<?xml version="1.0" standalone="yes"?>
<content>abc</content>

9.14.1.7. xmlagg
xmlagg (xml)

The function xmlagg is, unlike the other functions described here, an aggregate function. It con-
catenates the input values to the aggregate function call, like xmlconcat does. See Section 9.18 for
additional information about aggregate functions.

Example:

CREATE TABLE test (y int, x xml);
INSERT INTO test VALUES (1, ’'<foo>abc</foo>');
INSERT INTO test VALUES (2, ’'<bar/>');
SELECT xmlagg(x) FROM test;
xmlagg

<foo>abc</foo><bar/>

To determine the order of the concatenation, something like the following approach can be used:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;
xmlagg

<bar/><foo>abc</foo>

Again, see Section 9.18 for additional information.

9.14.1.8. XML Predicates

xml IS DOCUMENT

The expression IS DOCUMENT returns true if the argument XML value is a proper XML document,
false if it is not (that is, it is a content fragment), or null if the argument is null. See Section 8.13 about
the difference between documents and content fragments.

9.14.2. Processing XML

To process values of data type xm1, PostgreSQL offers the function xpath, which evaluates XPath
1.0 expressions.

xpath (xpath, xml[, nsarray])

The function xpath evaluates the XPath expression xpath against the XML value xm1. It returns an
array of XML values corresponding to the node set produced by the XPath expression.

211

Chapter 9. Functions and Operators

The second argument must be a well formed XML document. In particular, it must have a single root
node element.

The third argument of the function is an array of namespace mappings. This array should be a two-
dimensional array with the length of the second axis being equal to 2 (i.e., it should be an array of
arrays, each of which consists of exactly 2 elements). The first element of each array entry is the
namespace name, the second the namespace URI.

Example:

SELECT xpath(’//my:a/text()’, ’'<my:a xmlns:my="http://example.com">test</my:a>’,
ARRAY [ARRAY ['my’, ’'http://example.com’]]);

9.14.3. Mapping Tables to XML

The following functions map the contents of relational tables to XML values. They can be thought of
as XML export functionality:

table_to_xml (tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xml (query text, nulls boolean, tableforest boolean, targetns text)
cursor_to_xml (cursor refcursor, count int, nulls boolean,

tableforest boolean, targetns text)

The return type of each function is xm1.

table_to_xml maps the content of the named table, passed as parameter tbl. The regclass type
accepts strings identifying tables using the usual notation, including optional schema qualifications
and double quotes. query_to_xml executes the query whose text is passed as parameter query and
maps the result set. cursor_to_xml fetches the indicated number of rows from the cursor specified
by the parameter cursor. This variant is recommended if large tables have to be mapped, because
the result value is built up in memory by each function.

If tableforest is false, then the resulting XML document looks like this:
<tablename>
<row>
<columnnamel>data</columnnamel>
<columnname2>data</columnname?2>
</row>
<row>
</row>
</tablename>

If tableforest is true, the result is an XML content fragment that looks like this:

<tablename>

212

Chapter 9. Functions and Operators

<columnnamel>data</columnnamel>
<columnname2>data</columnname?2>
</tablename>

<tablename>

</tablename>

If no table name is available, that is, when mapping a query or a cursor, the string table is used in
the first format, row in the second format.

The choice between these formats is up to the user. The first format is a proper XML document,
which will be important in many applications. The second format tends to be more useful in the
cursor_to_xml function if the result values are to be reassembled into one document later on. The
functions for producing XML content discussed above, in particular xmlelement, can be used to
alter the results to taste.

The data values are mapped in the same way as described for the function xmlelement above.
The parameter nulls determines whether null values should be included in the output. If true, null
values in columns are represented as:

<columnname xsi:nil="true"/>

where xsi is the XML namespace prefix for XML Schema Instance. An appropriate namespace
declaration will be added to the result value. If false, columns containing null values are simply
omitted from the output.

The parameter targetns specifies the desired XML namespace of the result. If no particular names-
pace is wanted, an empty string should be passed.

The following functions return XML Schema documents describing the mappings performed by the
corresponding functions above:

table_to_xmlschema (tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xmlschema (query text, nulls boolean, tableforest boolean, targetns text)
cursor_to_xmlschema (cursor refcursor, nulls boolean, tableforest boolean, targetns text)

It is essential that the same parameters are passed in order to obtain matching XML data mappings
and XML Schema documents.

The following functions produce XML data mappings and the corresponding XML Schema in one
document (or forest), linked together. They can be useful where self-contained and self-describing
results are wanted:

table_to_xml_and_xmlschema (tbl regclass, nulls boolean, tableforest boolean, targetns te
query_to_xml_and_xmlschema (query text, nulls boolean, tableforest boolean, targetns text

In addition, the following functions are available to produce analogous mappings of entire schemas
or the entire current database:

schema_to_xml (schema name, nulls boolean, tableforest boolean, targetns text)
schema_to_xmlschema (schema name, nulls boolean, tableforest boolean, targetns text)

schema_to_xml_and_xmlschema (schema name, nulls boolean, tableforest boolean, targetns te

database_to_xml (nulls boolean, tableforest boolean, targetns text)

213

Chapter 9. Functions and Operators

database_to_xmlschema (nulls boolean, tableforest boolean, targetns text)
database_to_xml_and_xmlschema (nulls boolean, tableforest boolean, targetns text)

Note that these potentially produce a lot of data, which needs to be built up in memory. When request-
ing content mappings of large schemas or databases, it might be worthwhile to consider mapping the
tables separately instead, possibly even through a cursor.

The result of a schema content mapping looks like this:
<schemaname>
tablel-mapping

table2-mapping

</schemaname>

where the format of a table mapping depends on the tableforest parameter as explained above.

The result of a database content mapping looks like this:

<dbname>
<schemalname>
</;;£ema1name>
<schema2name>

</schema2name>

</dbname>

where the schema mapping is as above.

As an example of using the output produced by these functions, Figure 9-1 shows an XSLT stylesheet
that converts the output of table_to_xml_and_xmlschema to an HTML document containing a
tabular rendition of the table data. In a similar manner, the results from these functions can be con-
verted into other XML-based formats.

Figure 9-1. XSLT stylesheet for converting SQL/XML output to HTML

<?xml version="1.0"7?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.w3.0rg/1999/xhtml"

<xsl:output method="xml"
doctype-system="http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-strict.dtd"
doctype-public="-//W3C/DTD XHTML 1.0 Strict//EN"
indent="yes"/>

214

Chapter 9. Functions and Operators

<xsl:template match="/+">
<xsl:variable name="schema" select="//xsd:schema"/>
<xsl:variable name="tabletypename"
select="$schema/xsd:element [@name=name (current ())]/Qtype"/>
<xsl:variable name="rowtypename"
select="$schema/xsd:complexType [@name=Stabletypename] /xsd:sequence/xsd

<html>
<head>
<title><xsl:value-of select="name (current ())"/></title>
</head>
<body>
<table>
<tr>
<xsl:for-each select="S$schema/xsd:complexType[@name=Srowtypename]/xsd:sequen
<th><xsl:value-of select="."/></th>
</xsl:for-each>
</tr>

<xsl:for-each select="row">
<tr>
<xsl:for-each select="x">
<td><xsl:value-of select="."/></td>
</xsl:for-each>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>

</xsl:stylesheet>

9.15. Sequence Manipulation Functions

This section describes PostgreSQL’s functions for operating on sequence objects. Sequence objects
(also called sequence generators or just sequences) are special single-row tables created with CREATE
SEQUENCE. A sequence object is usually used to generate unique identifiers for rows of a table.
The sequence functions, listed in Table 9-39, provide simple, multiuser-safe methods for obtaining
successive sequence values from sequence objects.

Table 9-39. Sequence Functions

Function Return Type Description

currval (regclass) bigint Return value most recently
obtained with nextval for
specified sequence

lastval () bigint Return value most recently
obtained with nextval for any
sequence

215

Chapter 9. Functions and Operators

Function Return Type Description

nextval (regclass) bigint Advance sequence and return
new value

setval (regclass, bigint) bigint Set sequence’s current value

setval (regclass, bigint, bigint Set sequence’s current value

boolean) and is_called flag

The sequence to be operated on by a sequence function is specified by a regclass argument, which is
simply the OID of the sequence in the pg_class system catalog. You do not have to look up the OID
by hand, however, since the regclass data type’s input converter will do the work for you. Just write
the sequence name enclosed in single quotes so that it looks like a literal constant. For compatibility
with the handling of ordinary SQL names, the string will be converted to lowercase unless it contains
double quotes around the sequence name. Thus:

nextval (' foo’) operates on sequence foo
nextval (" FOO’) operates on sequence foo
nextval (' "Foo"') operates on sequence Foo

The sequence name can be schema-qualified if necessary:

nextval ('myschema.foo’) operates on myschema.foo
nextval (! "myschema".foo’) same as above
nextval (' foo’) searches search path for foo

See Section 8.16 for more information about regclass.

Note: Before PostgreSQL 8.1, the arguments of the sequence functions were of type text, not
regclass, and the above-described conversion from a text string to an OID value would happen
at run time during each call. For backwards compatibility, this facility still exists, but internally it is
now handled as an implicit coercion from text to regclass before the function is invoked.

When you write the argument of a sequence function as an unadorned literal string, it becomes
a constant of type regclass. Since this is really just an OID, it will track the originally identified
sequence despite later renaming, schema reassignment, etc. This “early binding” behavior is
usually desirable for sequence references in column defaults and views. But sometimes you might
want “late binding” where the sequence reference is resolved at run time. To get late-binding
behavior, force the constant to be stored as a text constant instead of regclass:

nextval (' foo’ ::text) foo 1is looked up at runtime

Note that late binding was the only behavior supported in PostgreSQL releases before 8.1, so you
might need to do this to preserve the semantics of old applications.

Of course, the argument of a sequence function can be an expression as well as a constant. If it
is a text expression then the implicit coercion will result in a run-time lookup.

The available sequence functions are:

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even
if multiple sessions execute nextval concurrently, each will safely receive a distinct sequence
value.

216

Chapter 9. Functions and Operators

currval

Return the value most recently obtained by nextval for this sequence in the current session. (An
error is reported if nextval has never been called for this sequence in this session.) Because this
is returning a session-local value, it gives a predictable answer whether or not other sessions have
executed nextval since the current session did.

lastval

Return the value most recently returned by nextval in the current session. This function is
identical to currval, except that instead of taking the sequence name as an argument it fetches
the value of the last sequence used by nextval in the current session. It is an error to call
lastval if nextval has not yet been called in the current session.

setval

Reset the sequence object’s counter value. The two-parameter form sets the sequence’s
last_value field to the specified value and sets its is_called field to true, meaning that
the next nextval will advance the sequence before returning a value. The value reported by
currval is also set to the specified value. In the three-parameter form, is_called can be set
to either true or false. true has the same effect as the two-parameter form. If it is set to
false, the next nextval will return exactly the specified value, and sequence advancement
commences with the following nextval. Furthermore, the value reported by currval is not
changed in this case (this is a change from pre-8.3 behavior). For example,

SELECT setval ('’ foo’, 42); Next nextval will return 43
SELECT setval (' foo’, 42, true); Same as above
SELECT setval(’foo’, 42, false); Next nextval will return 42

The result returned by setval is just the value of its second argument.

If a sequence object has been created with default parameters, successive nextval calls will return
successive values beginning with 1. Other behaviors can be obtained by using special parameters in
the CREATE SEQUENCE command; see its command reference page for more information.

Important: To avoid blocking concurrent transactions that obtain numbers from the same se-
quence, a nextval operation is never rolled back; that is, once a value has been fetched it is con-
sidered used, even if the transaction that did the nextval later aborts. This means that aborted
transactions might leave unused “holes” in the sequence of assigned values. setval operations
are never rolled back, either.

9.16. Conditional Expressions

This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip: If your needs go beyond the capabilities of these conditional expressions, you might want to
consider writing a stored procedure in a more expressive programming language.

217

Chapter 9. Functions and Operators

9.16.1. cASE

The SQL cASE expression is a generic conditional expression, similar to if/else statements in other
programming languages:

CASE WHEN condition THEN result
[WHEN ...]
[ELSE result]

END

CASE clauses can be used wherever an expression is valid. Each condition is an expression that
returns a boolean result. If the condition’s result is true, the value of the CASE expression is the
result that follows the condition, and the remainder of the CASE expression is not processed. If the
condition’s result is not true, any subsequent WHEN clauses are examined in the same manner. If no
WHEN condition yields true, the value of the CASE expression is the result of the ELSE clause. If
the ELSE clause is omitted and no condition is true, the result is null.

An example:

SELECT x FROM test;

a
1
2
3
SELECT a,
CASE WHEN a=1 THEN ’one’
WHEN a=2 THEN ’two’
ELSE ’other’
END
FROM test;
a | case
I
1 | one
2 | two
3 | other

The data types of all the result expressions must be convertible to a single output type. See Section
10.5 for more details.

There is a “simple” form of CASE expression that is a variant of the general form above:

CASE expression
WHEN value THEN result
[WHEN ...]
[ELSE result]

END

The first expression is computed, then compared to each of the value expressions in the WHEN
clauses until one is found that is equal to it. If no match is found, the result of the ELSE clause (or
a null value) is returned. This is similar to the switch statement in C.

The example above can be written using the simple CASE syntax:

218

Chapter 9. Functions and Operators

SELECT a,
CASE a WHEN 1 THEN ’one’
WHEN 2 THEN 'two’
ELSE ’other’

END
FROM test;
a | case
e
1 | one
2 | two
3 | other

A CASE expression does not evaluate any subexpressions that are not needed to determine the result.
For example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

9.16.2. COALESCE
COALESCE (value [, ...])

The COALESCE function returns the first of its arguments that is not null. Null is returned only if all
arguments are null. It is often used to substitute a default value for null values when data is retrieved
for display, for example:

SELECT COALESCE (description, short_description, ’ (none)’)

Like a CASE expression, COALESCE only evaluates the arguments that are needed to determine the
result; that is, arguments to the right of the first non-null argument are not evaluated. This SQL-
standard function provides capabilities similar to NVL and IFNULL, which are used in some other
database systems.

9.16.3. NULLIF
NULLIF (valuel, valueZ2)

The NULLIF function returns a null value if valuel equals value2; otherwise it returns valuel.
This can be used to perform the inverse operation of the COALESCE example given above:

SELECT NULLIF (value, ’ (none)’)

If valuelis (none), return a null, otherwise return valuel.

219

Chapter 9. Functions and Operators

9.16.4. GREATEST and LEAST
GREATEST (value [, ...])

LEAST (value [, ...])

The GREATEST and LEAST functions select the largest or smallest value from a list of any number of
expressions. The expressions must all be convertible to a common data type, which will be the type of
the result (see Section 10.5 for details). NULL values in the list are ignored. The result will be NULL
only if all the expressions evaluate to NULL.

Note that GREATEST and LEAST are not in the SQL standard, but are a common extension. Some other
databases make them return NULL if any argument is NULL, rather than only when all are NULL.

9.17. Array Functions and Operators

Table 9-40 shows the operators available for array types.

Table 9-40. Array Operators

Operator Description Example Result
= equal ARRAY[1.1,2.1,3.1]|tint[]
= ARRAY[1,2,3]
<> not equal ARRAY[1,2,3] <> t
ARRAY[1,2,4]
< less than ARRAY[1,2,3] < t
ARRAY[1,2,4]
> greater than ARRAY[1,4,3] > t
ARRAY[1,2,4]
<= less than or equal ARRAY[1,2,3] <= t
ARRAY[1,2, 3]
>= greater than or equal ARRAY[1,4,3] >= t
ARRAY[1, 4, 3]
@> contains ARRAY[1,4,3] @> t
ARRAY[3,1]
<@ is contained by ARRAY[2,7] <@ t
ARRAY[1,7,4,2,6]
&& overlap (have elements | ARRAY[1,4,3] && t
in common) ARRAY[2, 1]
[array-to-array ARRAY[1,2,3] || (1,2,3,4,5,6}
concatenation ARRAY[4,5, 6]
I array-to-array ARRAY[1,2,3] || {{1,2,3},1{4,5,6},1{[7,8,9}}
concatenation ARRAY[[4,5,6]1,17,8},91]
| element-to-array 3 || ARRAY[4,5,6] |{3,4,5,6}
concatenation
| array—to—element ARRAY [4,5,6] || 7 |{4,5,6,7}
concatenation

220

Chapter 9. Functions and Operators

Array comparisons compare the array contents element-by-element, using the default B-Tree com-
parison function for the element data type. In multidimensional arrays the elements are visited in
row-major order (last subscript varies most rapidly). If the contents of two arrays are equal but the
dimensionality is different, the first difference in the dimensionality information determines the sort
order. (This is a change from versions of PostgreSQL prior to 8.2: older versions would claim that
two arrays with the same contents were equal, even if the number of dimensions or subscript ranges

were different.)

See Section 8.14 for more details about array operator behavior.

Table 9-41 shows the functions available for use with array types. See Section 8.14 for more informa-
tion and examples of the use of these functions.

Table 9-41. Array Functions

int[],

array_prepend (an

anyarray)

yelement,

to the beginning
of an array

ARRAY[2, 3])

Function Return Type Description Example Result
anyarray appendan array_append (ARRAY2]1321,
array_append (anyarray, element to the end | 3)
anyelement) of an array
anyarray concatenate two array_cat (ARRAY{1,2,3]4,5}
array_cat (anyarray, arrays ARRAY [4,5])
anyarray)
int returns the array_ndims (ARRRY[[1,2,3],
array_ndims (anygrray) number of [4,5,611])
dimensions of the
array
text returns a text array_dims (ARRAYI{2]2133])
array_dims (anyarnray) representation of | [4,5,611)
array’s
dimensions
anyarray returns an array array_fill (7, [2:41={7,7,7}
array_fill (anyellement, initialized with ARRAY [3],
int[1, [, supplied value and | ARRAY [2])
int[11) dimensions,
optionally with
lower bounds
other than 1
int returns the length |array_length(ardayll,2, 31,
array_length (anyarray, of the requested 1)
int) array dimension
int returns lower array_lower (' [002]={1,2,3}" ::]
array_lower (anydrray, bound of the 1)
int) requested array
dimension
anyarray append an element | array_prepend (1{1,2, 3}

array_to_string(

text)

text

anyarray,

concatenates array
elements using
supplied delimiter

array_to_strin
2/ 31! ’NAN,)

yIARRAY 113

221

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

int
array_upper (anyagrray

int)

returns upper

, bound of the 1)

requested array
dimension

array_upper (ARRAY[1,2,3,4],

string_to_array (text
text)

text []

splits string into

, array elements B

using supplied
delimiter

string_to_array{kxxy9yry¥y¥t+" ~zz

~

set

unnest (anyarray)| anyelement

of expand an array to

a set of rows

unnest (ARRAY[1

22) (2 rows)

See also Section 9.18 about the aggregate function array_agg for use with arrays.

9.18. Aggregate Functions

Aggregate functions compute a single result from a set of input values. The built-in aggregate func-

tions are listed in Table 9-42 and Table 9-43. The special syntax considerations for aggregate functions

are explained in Section 4.2.7. Consult Section 2.7 for additional introductory information.

Table 9-42. General-Purpose Aggregate Functions

Function

Argument Type

Return Type

Description

array_agg (expressio

any

n)

array of the argument
type

input values
concatenated into an
array

avg (expression)

smallint, int,

bigint, real,

numeric for any
integer-type argument,

the average (arithmetic
mean) of all input

bit_and (expression)

double precision, |double precision |values
numeric, Or for a floating-point
interval argument, otherwise
the same as the
argument data type
smallint, int, same as argument data | the bitwise AND of all

bigint,orbit

type

non-null input values,
or null if none

bit_or (expression)

smallint, int,
bigint,orbit

same as argument data
type

the bitwise OR of all
non-null input values,
or null if none

bool_and(expression

bool
)

bool

true if all input values
are true, otherwise
false

bool_or (expression)

bool

bool

true if at least one input
value is true, otherwise
false

count ()

bigint

number of input rows

222

Chapter 9. Functions and Operators

Function Argument Type Return Type Description
count (expression) |any bigint number of input rows
for which the value of
expression is not
null
every (expression) | bool bool equivalent to

bool_and

max (expression)

any array, numeric,
string, or date/time

type

same as argument type

maximum value of
expression across all
input values

min (expression)

any array, numeric,
string, or date/time

type

same as argument type

minimum value of
expression across all
input values

sum (expression)

smallint, int,
bigint, real,
double precision,
numeric, or

interval

bigint for smallint
or int arguments,
numeric for bigint
arguments, double
precision for
floating-point
arguments, otherwise
the same as the
argument data type

sum of expression
across all input values

xmlagg (expression)

xml

xml

concatenation of XML
values (see also Section
9.14.1.7)

It should be noted that except for count, these functions return a null value when no rows are selected.
In particular, sum of no rows returns null, not zero as one might expect, and array_agg returns null
rather than an empty array when there are no input rows. The coalesce function can be used to
substitute zero or an empty array for null when necessary.

Note: Boolean aggregates bool_and and bool_or correspond to standard SQL aggregates
every and any or some. As for any and some, it seems that there is an ambiguity built into the
standard syntax:

SELECT bl = ANY ((SELECT b2 FROM t2 ...)) FROM tl ...;

Here any can be considered either as introducing a subquery, or as being an aggregate function,
if the sub-select returns one row with a boolean value. Thus the standard name cannot be given
to these aggregates.

Note: Users accustomed to working with other SQL database management systems might be
disappointed by the performance of the count aggregate when it is applied to the entire table. A
query like:

SELECT count (*) FROM sometable;

will be executed by PostgreSQL using a sequential scan of the entire table.

223

Chapter 9. Functions and Operators

The aggregate functions array_agg and xmlagg, as well as similar user-defined aggregate functions,
produce meaningfully different result values depending on the order of the input values. In the current
implementation, the order of the input is in principle unspecified. Supplying the input values from a
sorted subquery will usually work, however. For example:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

But this syntax is not allowed in the SQL standard, and is not portable to other database systems.
A future version of PostgreSQL might provide an additional feature to control the order in a better-
defined way (xmlagg (expr ORDER BY expr, expr, ...)).

Table 9-43 shows aggregate functions typically used in statistical analysis. (These are separated out
merely to avoid cluttering the listing of more-commonly-used aggregates.) Where the description
mentions N, it means the number of input rows for which all the input expressions are non-null. In all
cases, null is returned if the computation is meaningless, for example when ¥ is zero.

Table 9-43. Aggregate Functions for Statistics

Function Argument Type Return Type Description
corr (Y, X) double precision | double precision |correlation coefficient
covar_pop (Y, X) double precision | double precision |population covariance

covar_samp (Y, X) double precision double precision sample covariance

regr_avgx (Y, X) double precision | double precision |average of the
independent variable
(sum (x) /N)

regr_avgy (Y, X) double precision double precision |average of the
dependent variable
(sum (Y) /N)

regr_count (Y, X) double precision | bigint number of input rows
in which both
expressions are nonnull

double precision | double precision |y-intercept of the
regr_intercept (v, least-squares-fit linear
X) equation determined by
the (X, v) pairs

regr_r2 (Y, X) double precision | double precision [square of the
correlation coefficient

regr_slope (Y, X) | double precision double precision |[slope of the
least-squares-fit linear
equation determined by
the (X, Y) pairs

regr_sxx (Y, X) double precision double precision sum(xX~2) -

sum (x) ~2/nN (“sum of
squares” of the
independent variable)

224

Chapter 9. Functions and Operators

Function Argument Type Return Type Description

regr_sxy (Y, X) double precision double precision sum(X*xY) — sum(X)
x sum(Y) /N (“sum of
products” of
independent times
dependent variable)

regr_syy (Y, X) double precision double precision sum(y~2) -

sum (v) ~2/n (“sum of
squares” of the
dependent variable)

smallint, int, double precision |historical alias for
stddev (expression) |bigint, real, for ﬂoating-point stddev_samp
double precision, |arguments, otherwise

Oor numeric numeric

smallint, int, double precision |population standard
stddev_pop (expressidmgint, real, for floating-point deviation of the input

double precision, |arguments, otherwise |values

Oor numeric numeric

smallint, int, double precision |sample standard
stddev_samp (expresgimnyint, real, for floating-point deviation of the input

double precision, |arguments, otherwise | values

Oor numeric numeric

smallint, int, double precision |historical alias for
variance(expressionpigint, real, for floating-point var_samp

double precision, |arguments, otherwise

or numeric numeric
smallint, int, double precision |population variance of
var_pop(expression)bigint, real, for floating-point the input values (square
double precision, |arguments, otherwise |of the population
or numeric numeric standard deviation)
smallint, int, double precision |sample variance of the
var_samp(expressionpigint, real, for floating-point input values (square of
double precision, |arguments, otherwise |the sample standard
or numeric numeric deviation)

9.19. Window Functions
Window functions provide the ability to perform calculations across sets of rows that are related to the
current query row. See Section 3.5 for an introduction to this feature.

The built-in window functions are listed in Table 9-44. Note that these functions must be invoked
using window function syntax; that is an OVER clause is required.

In addition to these functions, any built-in or user-defined aggregate function can be used as a window
function (see Section 9.18 for a list of the built-in aggregates). Aggregate functions act as window
functions only when an OVER clause follows the call; otherwise they act as regular aggregates.

Table 9-44. General-Purpose Window Functions

225

Chapter 9. Functions and Operators

Function Return Type Description

row_number () bigint number of the current row
within its partition, counting
from 1

rank () bigint rank of the current row with
gaps; same as row_number of
its first peer

dense_rank () bigint rank of the current row without

gaps; this function counts peer
groups

percent_rank ()

double precision

relative rank of the current row:
(rank - 1)/ (total rows - 1)

cume_dist ()

double precision

relative rank of the current row:
(number of rows preceding or
peer with current row) / (total
TOWS)

ntile (num_buckets

integer)

integer

integer ranging from 1 to the
argument value, dividing the
partition as equally as possible

lag(value any [, offset
integer [, default any
11)

same type as value

returns value evaluated at the
row that is offset rows before
the current row within the
partition; if there is no such
row, instead return default.
Both offset and default are
evaluated with respect to the
current row. If omitted, offset
defaults to 1 and default to
null

lead(value any [,
offset integer [, default
any 11])

same type as value

returns value evaluated at the
row that is offset rows after
the current row within the
partition; if there is no such
row, instead return default.
Both offset and default are
evaluated with respect to the
current row. If omitted, offset
defaults to 1 and default to
null

first_value (value any)

same type as value

returns value evaluated at the
row that is the first row of the
window frame

last_value (value any)

same type as value

returns value evaluated at the
row that is the last row of the
window frame

nth_value (value any,

nth integer)

same type as value

returns value evaluated at the
row that is the nth row of the
window frame (counting from
1); null if no such row

226

Chapter 9. Functions and Operators

All of the functions listed in Table 9-44 depend on the sort ordering specified by the ORDER BY clause
of the associated window definition. Rows that are not distinct in the ORDER BY ordering are said to
be peers; the four ranking functions are defined so that they give the same answer for any two peer
TOWS.

Note that first_value, last_value, and nth_value consider only the rows within the “window
frame”, which by default contains the rows from the start of the partition through the last peer of the
current row. This is likely to give unhelpful results for nth_value and particularly last_value.
You can redefine the frame as being the whole partition by adding ROWS BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED FOLLOWING to the OVER clause. See Section 4.2.8 for more infor-
mation.

When an aggregate function is used as a window function, it aggregates over the rows within the
current row’s window frame. To obtain aggregation over the whole partition, omit ORDER BY or use
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING. An aggregate used with
ORDER BY and the default window frame definition produces a “running sum” type of behavior, which
may or may not be what’s wanted.

Note: The SQL standard defines a RESPECT NULLS Or IGNORE NULLS option for 1lead, lag,
first_value, last_value, and nth_value. This is not implemented in PostgreSQL: the
behavior is always the same as the standard’'s default, namely rRespECT NULLS. Likewise, the
standard’s FROM FIRST OfF FROM LAST option for nth_value is not implemented: only the default
FROM FIRST behavior is supported. (You can achieve the result of FrRoM LAST by reversing the
ORDER BY ordering.)

9.20. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the
expression forms documented in this section return Boolean (true/false) results.

9.20.1. EXISTS

EXISTS (subquery)

The argument of EXISTS is an arbitrary SELECT statement, or subguery. The subquery is evaluated
to determine whether it returns any rows. If it returns at least one row, the result of EXISTS is “true”;
if the subquery returns no rows, the result of EXISTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during
any one evaluation of the subquery.

The subquery will generally only be executed long enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has side effects (such as
calling sequence functions); whether the side effects occur might be unpredictable.

Since the result depends only on whether any rows are returned, and not on the contents of those
rows, the output list of the subquery is normally unimportant. A common coding convention is to
write all EXISTS tests in the form EXISTS (SELECT 1 WHERE ...). There are exceptions to this
rule however, such as subqueries that use INTERSECT.

This simple example is like an inner join on col2, but it produces at most one output row for each
tabl row, even if there are several matching tab2 rows:

227

Chapter 9. Functions and Operators

SELECT coll
FROM tabl
WHERE EXISTS (SELECT 1 FROM tab2 WHERE col2 = tabl.col2);

9.20.2. IN

expression IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of 1IN is “true”
if any equal subquery row is found. The result is “false” if no equal row is found (including the case
where the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at
least one right-hand row yields null, the result of the IN construct will be null, not false. This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.
row_constructor IN (subquery)

The left-hand side of this form of IN is a row constructor, as described in Section 4.2.12. The right-
hand side is a parenthesized subquery, which must return exactly as many columns as there are ex-
pressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result. The result of IN is “true” if any equal subquery row is found. The
result is “false” if no equal row is found (including the case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If all the per-row results are either unequal or null, with at least one
null, then the result of IN is null.

9.20.3. NOT IN

expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-
hand expression is evaluated and compared to each row of the subquery result. The result of NOT IN
is “true” if only unequal subquery rows are found (including the case where the subquery returns no
rows). The result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand row yields null, the result of the NOT 1N construct will be null, not true. This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.
row_constructor NOT IN (subquery)

The left-hand side of this form of NOT IN is a row constructor, as described in Section 4.2.12. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there are

228

Chapter 9. Functions and Operators

expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result. The result of NOT IN is “true” if only unequal subquery rows are
found (including the case where the subquery returns no rows). The result is “false” if any equal row
is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If all the per-row results are either unequal or null, with at least one
null, then the result of NOT 1IN is null.

9.20.4. ANY/SOME

expression operator ANY (subquery)

expression operator SOME (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result
is “false” if no true result is found (including the case where the subquery returns no rows).

SOME is a synonym for ANY. IN is equivalent to = ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator’s result,
the result of the ANY construct will be null, not false. This is in accordance with SQL’s normal rules
for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor operator ANY (subquery)

row_constructor operator SOME (subquery)

The left-hand side of this form of ANY is a row constructor, as described in Section 4.2.12. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there
are expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise
to each row of the subquery result, using the given operator. The result of ANY is “true” if the
comparison returns true for any subquery row. The result is “false” if the comparison returns false for
every subquery row (including the case where the subquery returns no rows). The result is NULL if
the comparison does not return true for any row, and it returns NULL for at least one row.

See Section 9.21.5 for details about the meaning of a row-wise comparison.

9.20.5. ALL

expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ALL is “true” if all rows yield true (including the case
where the subquery returns no rows). The result is “false” if any false result is found. The result is
NULL if the comparison does not return false for any row, and it returns NULL for at least one row.

NOT 1IN isequivalentto <> ALL.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

229

Chapter 9. Functions and Operators

row_constructor operator ALL (subquery)

The left-hand side of this form of ALL is a row constructor, as described in Section 4.2.12. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there
are expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise
to each row of the subquery result, using the given operator. The result of ALL is “true” if the
comparison returns true for all subquery rows (including the case where the subquery returns no
rows). The result is “false” if the comparison returns false for any subquery row. The result is NULL
if the comparison does not return false for any subquery row, and it returns NULL for at least one row.

See Section 9.21.5 for details about the meaning of a row-wise comparison.

9.20.6. Row-wise Comparison

row_constructor operator (subquery)

The left-hand side is a row constructor, as described in Section 4.2.12. The right-hand side is a paren-
thesized subquery, which must return exactly as many columns as there are expressions in the left-
hand row. Furthermore, the subquery cannot return more than one row. (If it returns zero rows, the
result is taken to be null.) The left-hand side is evaluated and compared row-wise to the single sub-
query result row.

See Section 9.21.5 for details about the meaning of a row-wise comparison.

9.21. Row and Array Comparisons

This section describes several specialized constructs for making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but do
not involve subqueries. The forms involving array subexpressions are PostgreSQL extensions; the rest
are SQL-compliant. All of the expression forms documented in this section return Boolean (true/false)
results.

9.21.1. IN

expression IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression’s result is equal to any of the right-hand expressions. This is a shorthand notation for

expression = valuel
OR
expression = value2
OR

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of the 1N construct will be null, not false. This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

230

Chapter 9. Functions and Operators

9.21.2. NOT IN

expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression’s result is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> valuel
AND
expression <> value2
AND

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of the NOT IN construct will be null, not true as one
might naively expect. This is in accordance with SQL’s normal rules for Boolean combinations of null
values.

Tip: x NOT IN yisequivalenttoNoT (x IN y) in all cases. However, null values are much more
likely to trip up the novice when working with not 1N than when working with 1n. It is best to
express your condition positively if possible.

9.21.3. ANY/SOME (array)

expression operator ANY (array expression)

expression operator SOME (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using the given operator, which
must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result is
“false” if no true result is found (including the case where the array has zero elements).

If the array expression yields a null array, the result of ANY will be null. If the left-hand expression
yields null, the result of ANY is ordinarily null (though a non-strict comparison operator could possibly
yield a different result). Also, if the right-hand array contains any null elements and no true compar-
ison result is obtained, the result of ANY will be null, not false (again, assuming a strict comparison
operator). This is in accordance with SQL’s normal rules for Boolean combinations of null values.

SOME is a synonym for ANY.

9.21.4. aLL (array)

expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using the given operator, which
must yield a Boolean result. The result of ALL is “true” if all comparisons yield true (including the
case where the array has zero elements). The result is “false” if any false result is found.

231

Chapter 9. Functions and Operators

If the array expression yields a null array, the result of ALL will be null. If the left-hand expression
yields null, the result of ALL is ordinarily null (though a non-strict comparison operator could possibly
yield a different result). Also, if the right-hand array contains any null elements and no false compar-
ison result is obtained, the result of ALL will be null, not true (again, assuming a strict comparison
operator). This is in accordance with SQL’s normal rules for Boolean combinations of null values.

9.21.5. Row-wise Comparison

row_constructor operator row_constructor

Each side is a row constructor, as described in Section 4.2.12. The two row values must have the
same number of fields. Each side is evaluated and they are compared row-wise. Row comparisons are
allowed when the operatoris =, <>, <, <=, > or >=, or has semantics similar to one of these. (To
be specific, an operator can be a row comparison operator if it is a member of a B-Tree operator class,
or is the negator of the = member of a B-Tree operator class.)

The = and <> cases work slightly differently from the others. Two rows are considered equal if
all their corresponding members are non-null and equal; the rows are unequal if any corresponding
members are non-null and unequal; otherwise the result of the row comparison is unknown (null).

For the <, <=, > and >= cases, the row elements are compared left-to-right, stopping as soon as
an unequal or null pair of elements is found. If either of this pair of elements is null, the result of
the row comparison is unknown (null); otherwise comparison of this pair of elements determines the
result. For example, ROW (1, 2, NULL) < ROW (1,3, 0) yields true, not null, because the third pair of
elements are not considered.

Note: Prior to PostgreSQL 8.2, the <, <=, > and >= cases were not handled per SQL specifica-
tion. A comparison like Row (a,b) < ROW(c,d) was implementedasa < ¢ aND b < dwhereas
the correct behavior is equivalenttoa < ¢ OR (a = ¢ AND b < d).

row_constructor IS DISTINCT FROM row_ constructor

This construct is similar to a <> row comparison, but it does not yield null for null inputs. Instead,
any null value is considered unequal to (distinct from) any non-null value, and any two nulls are
considered equal (not distinct). Thus the result will either be true or false, never null.

row_constructor IS NOT DISTINCT FROM row_constructor

This construct is similar to a = row comparison, but it does not yield null for null inputs. Instead,
any null value is considered unequal to (distinct from) any non-null value, and any two nulls are
considered equal (not distinct). Thus the result will always be either true or false, never null.

Note: The SQL specification requires row-wise comparison to return NULL if the result depends
on comparing two NULL values or a NULL and a non-NULL. PostgreSQL does this only when
comparing the results of two row constructors or comparing a row constructor to the output of a
subquery (as in Section 9.20). In other contexts where two composite-type values are compared,
two NULL field values are considered equal, and a NULL is considered larger than a non-NULL.
This is necessary in order to have consistent sorting and indexing behavior for composite types.

232

Chapter 9. Functions and Operators

9.22. Set Returning Functions

This section describes functions that possibly return more than one row. Currently the only functions
in this class are series generating functions, as detailed in Table 9-45 and Table 9-46.

Table 9-45. Series Generating Functions

Function Argument Type Return Type Description
generate_series (starftint or bigint setof int or setof | Generate a series of
stop) bigint (same as values, from start to
argument type) stop with a step size
of one
generate_series (starftint or bigint setof int or setof Generate a series of
stop, step) bigint (same as values, from start to
argument type) stop with a step size
of step
generate_series (starftybimestamp Or setof timestamp or | Generate a series of
stop, step timestamp with setof timestamp values, from start to
interval) time zone with time zone stop with a step size
(same as argument of step
type)

When step is positive, zero rows are returned if start is greater than st op. Conversely, when step
is negative, zero rows are returned if start is less than stop. Zero rows are also returned for NULL
inputs. It is an error for step to be zero. Some examples follow:

SELECT * FROM generate_series(2,4);
generate_series

(3 rows)

SELECT x= FROM generate_series(5,1,-2);
generate_series

(3 rows)

SELECT * FROM generate_series (4, 3);
generate_series

—— this example relies on the date-plus-integer operator

SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS s(a);
dates

2004-02-05

2004-02-12

2004-02-19

233

Chapter 9. Functions and Operators
(3 rows)

SELECT % FROM generate_series(/2008-03-01 00:00’ ::timestamp,
72008-03-04 12:00”, ’10 hours’);
generate_series
2008-03-01 00:00:00
2008-03-01 10:00:00
2008-03-01 20:00:00
2008-03-02 06:00:00
2008-03-02 16:00:00
2008-03-03 02:00:00
2008-03-03 12:00:00
2008-03-03 22:00:00
2008-03-04 08:00:00
(9 rows)

Table 9-46. Subscript Generating Functions

Function Return Type Description

generate_subscripts (array |setof int Generate a series comprising

anyarray, dim int) the given array’s subscripts.

generate_subscripts (array |setof int Generate a series comprising

anyarray, dim int, the given array’s subscripts.

reverse boolean) When reverse is true, the
series is returned in reverse
order.

generate_subscripts is a convenience function that generates the set of valid subscripts for the
specified dimension of the given array. Zero rows are returned for arrays that do not have the requested
dimension, or for NULL arrays (but valid subscripts are returned for NULL array elements). Some
examples follow:

-— basic usage
select generate_subscripts(’ {NULL,1,NULL,2}"::int[], 1) as s;

4
(4 rows)

—-— presenting an array, the subscript and the subscripted
—-— value requires a subquery
select * from arrays;

{(-1,-2}
{100,200}

(2 rows)

select a as array, s as subscript, als] as value

234

Chapter 9. Functions and Operators

from (select generate_subscripts(a, 1) as s, a from arrays) foo;

array | subscript | value
___________ O T
{-1,-2} | 1] -1
{-1,-2} | 2 -2
{100,200} | 1| 100
{100,200} | 2| 200
(4 rows)

—-— unnest a 2D array
create or replace function unnest2 (anyarray)
returns setof anyelement as $$
select $1[1i][]]
from generate_subscripts($1,1) gl (i),
generate_subscripts($1,2) g2 (J);
$$ language sql immutable;
CREATE FUNCTION
postgres=# select * from unnest2 (array[I[1,2]1,1[3,411);
unnest2

9.23. System Information Functions

Table 9-47 shows several functions that extract session and system information.

In addition to the functions listed in this section, there are a number of functions related to the statistics
system that also provide system information. See Section 26.2.2 for more information.

Table 9-47. Session Information Functions

Name Return Type Description
current_catalog name name of current database
(called “catalog” in the SQL
standard)
current_database () name name of current database
current_schemal ()] name name of current schema
current_schemas (boolean) name [] names of schemas in search

path optionally including
implicit schemas

current_user name user name of current execution
context
current_query text text of the currently executing

query, as submitted by the
client (might contain more than
one statement)

235

Chapter 9. Functions and Operators

Name Return Type Description

pg_backend_pid () int Process ID of the server
process attached to the current
session

inet_client_addr () inet address of the remote
connection

inet_client_port () int port of the remote connection

inet_server_addr () inet address of the local connection

inet_server_port () int port of the local connection

pg_my_temp_schema () oid OID of session’s temporary

schema, or O if none

pg_is_other_temp_schema (oid)boolean is schema another session’s
temporary schema?

pg_postmaster_start_time () |timestamp with time server start time
zone
pg_conf_load_time () timestamp with time configuration load time
zone
session_user name session user name
user name equivalent to current_user
version () text PostgreSQL version
information

The session_user is normally the user who initiated the current database connection; but supe-
rusers can change this setting with SET SESSION AUTHORIZATION. The current_user is the
user identifier that is applicable for permission checking. Normally it is equal to the session user, but
it can be changed with SET ROLE. It also changes during the execution of functions with the attribute
SECURITY DEFINER. In Unix parlance, the session user is the “real user” and the current user is the
“effective user”.

Note: current_catalog, current_schema, current_user, session_user, and user have spe-
cial syntactic status in SQL: they must be called without trailing parentheses (optional in Post-
greSQL in the case of current_schema).

current_schema returns the name of the schema that is first in the search path (or a null value if the
search path is empty). This is the schema that will be used for any tables or other named objects that
are created without specifying a target schema. current_schemas (boolean) returns an array of
the names of all schemas presently in the search path. The Boolean option determines whether or not
implicitly included system schemas such as pg_catalog are included in the returned search path.

Note: The search path can be altered at run time. The command is:

SET search_path TO schema [, schema, ...]

inet_client_addr returns the IP address of the current client, and inet_client_port returns
the port number. inet_server_addr returns the IP address on which the server accepted the current

236

Chapter 9. Functions and Operators

connection, and inet_server_port returns the port number. All these functions return NULL if the
current connection is via a Unix-domain socket.

pg_my_temp_schema returns the OID of the current session’s temporary schema, or zero if it has
none (because it has not created any temporary tables). pg_is_other_temp_schema returns true if
the given OID is the OID of another session’s temporary schema. (This can be useful, for example, to
exclude other sessions’ temporary tables from a catalog display.)

pPg_postmaster_start_time returns the timestamp with time zone when the server started.

pg_conf_load_time returns the timestamp with time zone when the server configuration
files were last loaded. (If the current session was alive at the time, this will be the time when the
session itself re-read the configuration files, so the reading will vary a little in different sessions.
Otherwise it is the time when the postmaster process re-read the configuration files.)

version returns a string describing the PostgreSQL server’s version.

Table 9-48 lists functions that allow the user to query object access privileges programmatically. See
Section 5.6 for more information about privileges.

Table 9-48. Access Privilege Inquiry Functions

Name Return Type Description
has_any_column_privilege (usdagolean does user have privilege for any
table, privilege) column of table
has_any_column_privilege (talddeplean does current user have privilege
privilege) for any column of table
has_column_privilege (user, |boolean does user have privilege for
table, column, privilege) column
has_column_privilege (table,|boolean does current user have privilege
column, privilege) for column
has_database_privilege (user,boolean does user have privilege for
database, privilege) database
has_database_privilege (datadeselean does current user have privilege
privilege) for database
has_foreign_data_wrapper_prjilvodégatuser, does user have priVilege for
fdw, privilege) foreign-data wrapper
has_foreign_data_wrapper_prlilvadeégahfdw, does current user have privilege
privilege) for foreign-data wrapper
has_function_privilege (user,boolean does user have privilege for
function, privilege) function
has_function_privilege (functbhoa}lean does current user have privilege
privilege) for function
has_language_privilege (user,boolean does user have privilege for
language, privilege) language
has_language_privilege (langdagelean does current user have privilege
privilege) for language
has_schema_privilege (user, |boolean does user have privilege for
schema, privilege) schema
has_schema_privilege (schema,boolean does current user have privilege
privilege) for schema

237

Chapter 9. Functions and Operators

Name Return Type Description
has_server_privilege (user, |boolean doesuserhavepﬁvﬂegefbr
server, privilege) foreign server
has_server_privilege (server,boolean does current user have privilege
privilege) for foreign server
has_table_privilege (user, |boolean does user have privilege for
table, privilege) table

has_table_privilege (table, |boolean does current user have privilege
privilege) for table
has_tablespace_privilege (usdrgolean doesuserhave;nivﬂegefor
tablespace, privilege) tabkmpace
has_tablespace_privilege (tadiespeas, does current user have privilege
privilege) for tablespace

pg_has_role (user, role, boolean does user have privilege for role
privilege)

pg_has_role (role, boolean does current user have privilege
privilege) for role

has_table_privilege checks whether a user can access a table in a particular way. The user can
be specified by name or by OID (pg_authid.oid), or if the argument is omitted current_user
is assumed. The table can be specified by name or by OID. (Thus, there are actually six variants of
has_table_privilege, which can be distinguished by the number and types of their arguments.)
When specifying by name, the name can be schema-qualified if necessary. The desired access priv-
ilege type is specified by a text string, which must evaluate to one of the values SELECT, INSERT,
UPDATE, DELETE, TRUNCATE, REFERENCES, or TRIGGER. Optionally, WITH GRANT OPTION can be
added to a privilege type to test whether the privilege is held with grant option. Also, multiple privi-
lege types can be listed separated by commas, in which case the result will be t rue if any of the listed
privileges is held. (Case of the privilege string is not significant, and extra whitespace is allowed
between but not within privilege names.) Some examples:

SELECT has_table_privilege ('myschema.mytable’, ’'select’);
SELECT has_table_privilege (’ joe’, ’'mytable’, ’INSERT, SELECT WITH GRANT OPTION’);

has_any_column_privilege checks whether a user can access any column of a table in a particular
way. Its argument possibilities are analogous to has_table_privilege, except that the desired ac-
cess privilege type must evaluate to some combination of SELECT, INSERT, UPDATE, or REFERENCES.
Note that having any of these privileges at the table level implicitly grants it for each column of the
table, so has_any_column_privilege will always return true if has_table_privilege does
for the same arguments. But has_any_column_privilege also succeeds if there is a column-level
grant of the privilege for at least one column.

has_column_privilege checks whether a user can access a column in a particular way. Its argu-
ment possibilities are analogous to has_table_privilege, with the addition that the column can be
specified either by name or attribute number. The desired access privilege type must evaluate to some
combination of SELECT, INSERT, UPDATE, or REFERENCES. Note that having any of these privileges
at the table level implicitly grants it for each column of the table.

has_database_privilege checks whether a user can access a database in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type
must evaluate to some combination of CREATE, CONNECT, TEMPORARY, or TEMP (which is equivalent

238

Chapter 9. Functions and Operators

to TEMPORARY).

has_function_privilege checks whether a user can access a function in a particular way. Its
argument possibilities are analogous to has_table_privilege. When specifying a function by a
text string rather than by OID, the allowed input is the same as for the regprocedure data type (see
Section 8.16). The desired access privilege type must evaluate to EXECUTE. An example is:

SELECT has_function_privilege (' joeuser’, ’'myfunc(int, text)’, ’execute’);

has_foreign_data_wrapper_privilege checks whether a user can access a foreign-data wrap-
per in a particular way. Its argument possibilities are analogous to has_table_privilege. The
desired access privilege type must evaluate to USAGE.

has_language_privilege checks whether a user can access a procedural language in a partic-
ular way. Its argument possibilities are analogous to has_table_privilege. The desired access
privilege type must evaluate to USAGE.

has_schema_privilege checks whether a user can access a schema in a particular way. Its argu-
ment possibilities are analogous to has_table_privilege. The desired access privilege type must
evaluate to some combination of CREATE or USAGE.

has_server_privilege checks whether a user can access a foreign server in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type
must evaluate to USAGE.

has_tablespace_privilege checks whether a user can access a tablespace in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type
must evaluate to CREATE.

pg_has_role checks whether a user can access a role in a particular way. Its argument possibilities
are analogous to has_table_privilege. The desired access privilege type must evaluate to some
combination of MEMBER or USAGE. MEMBER denotes direct or indirect membership in the role (that is,
the right to do SET ROLE), while USAGE denotes whether the privileges of the role are immediately
available without doing SET ROLE.

Table 9-49 shows functions that determine whether a certain object is visible in the current schema
search path. For example, a table is said to be visible if its containing schema is in the search path
and no table of the same name appears earlier in the search path. This is equivalent to the statement
that the table can be referenced by name without explicit schema qualification. To list the names of
all visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible (oid);

Table 9-49. Schema Visibility Inquiry Functions

Name Return Type Description

pg_conversion_is_visible (codveadéam oid) is conversion visible in search
path

pg_function_is_visible (fundtioalead) is function visible in search
path

pg_operator_is_visible (oper/dtoalend) is operator visible in search
path

239

Chapter 9. Functions and Operators

Name Return Type Description
pg_opclass_is_visible (opcladsoolénn is operator class visible in
search path
pg_table_is_visible (table_dfiidolean is table visible in search path
pg_ts_config_is_visible (confligodédn is text search configuration

visible in search path

pg_ts_dict_is_visible (dict_|ddddlean is text search dictionary visible
in search path

pg_ts_parser_is_visible (pardexodean is text search parser visible in
search path

pPg_ts_template_is_visible (tidmpdieamid) is text search template visible in
search path

pg_type_is_visible (type_oid)boolean is type (or domain) visible in
search path

Each function performs the visibility check for one type of database object. Note
that pg_table_is_visible can also be used with views, indexes and sequences;
Pg_type_is_visible can also be used with domains. For functions and operators, an object in the
search path is visible if there is no object of the same name and argument data type(s) earlier in the
path. For operator classes, both name and associated index access method are considered.

All these functions require object OIDs to identify the object to be checked. If you want to test an
object by name, it is convenient to use the OID alias types (regclass, regtype, regprocedure,
regoperator, regconfig, or regdictionary), for example:

SELECT pg_type_is_visible ('myschema.widget’ ::regtype);

Note that it would not make much sense to test a non-schema-qualified type name in this way — if
the name can be recognized at all, it must be visible.

Table 9-50 lists functions that extract information from the system catalogs.

Table 9-50. System Catalog Information Functions

Name Return Type Description

format_type (type_oid, text get SQL name of a data type

typemod)

pg_get_keywords () setof record get list of SQL keywords and
their categories

Pg_get_constraintdef (constrai@xtoid) get definition of a constraint

pPg_get_constraintdef (constrai@xtoid, get definition of a constraint

pretty_bool)

Pg_get_expr (expr_text, text decompile internal form of an
relation_oid) expression, assuming that any
Vars in it refer to the relation
indicated by the second
parameter

240

Chapter 9. Functions and Operators

Name Return Type Description
Pg_get_expr (expr_text, text decompile internal form of an
relation_oid, pretty_bool) expression, assuming that any

Vars in it refer to the relation
indicated by the second

parameter
pPg_get_functiondef (func_oid)text get definition of a function
pg_get_function_arguments (fiunextid) get argument list of function’s

definition (with default values)

pg_get_function_identity_argoestts (func_oid) get argument list to identify a
function (without default
values)

pg_get_function_result (fund erf get RETURNS clause for
function

pg_get_indexdef (index_oid) |text get CREATE INDEX command
for index

pg_get_indexdef (index_oid, |text get CREATE INDEX command

column_no, pretty_bool) for index, or definition of just

one index column when
column_no iS not zero

pg_get_ruledef (rule_oid) text get CREATE RULE command
for rule

pg_get_ruledef (rule_oid, text get CREATE RULE command

pretty_bool) for rule

pg_get_serial_sequence (tablleL@zrie, get name of the sequence that a

column_name) serial or bigserial column
uses

pg_get_triggerdef(triggen teit) get CREATE [CONSTRAINT]
TRIGGER command for trigger

pg_get_userbyid(role_oid) |name get role name with given OID

pg_get_viewdef (view_name) text get underlying SELECT
command for view
(deprecated)

pg_get_viewdef (view_name, text get underlying SELECT

pretty_bool) command for view
(deprecated)

pg_get_viewdef (view_oid) text get underlying SELECT
command for view

pg_get_viewdef (view_oid, text get underlying SELECT

pretty_bool) command for view

pg_tablespace_databases (tablespbadte odidl) get the set of database OIDs
that have objects in the
tablespace

pg_typeof (any) regtype get the data type of any value

format_type returns the SQL name of a data type that is identified by its type OID and possibly a
type modifier. Pass NULL for the type modifier if no specific modifier is known.

241

Chapter 9. Functions and Operators

pg_get_keywords returns a set of records describing the SQL keywords recognized by the server.
The word column contains the keyword. The catcode column contains a category code: U for un-
reserved, C for column name, T for type or function name, or R for reserved. The catdesc column
contains a possibly-localized string describing the category.

pPg_get_constraintdef, pg_get_indexdef, pg_get_ruledef, and pg_get_triggerdef, re-
spectively reconstruct the creating command for a constraint, index, rule, or trigger. (Note that this is
a decompiled reconstruction, not the original text of the command.) pg_get_expr decompiles the
internal form of an individual expression, such as the default value for a column. It can be useful
when examining the contents of system catalogs. If the expression might contain Vars, specify the
OID of the relation they refer to as the second parameter; if no Vars are expected, zero is sufficient.
pg_get_viewdef reconstructs the SELECT query that defines a view. Most of these functions come
in two variants, one of which can optionally “pretty-print” the result. The pretty-printed format is
more readable, but the default format is more likely to be interpreted the same way by future ver-
sions of PostgreSQL; avoid using pretty-printed output for dump purposes. Passing false for the
pretty-print parameter yields the same result as the variant that does not have the parameter at all.

pg_get_functiondef returns a complete CREATE OR REPLACE FUNCTION statement for a func-
tion. pg_get_function_arguments returns the argument list of a function, in the form it would
need to appear in within CREATE FUNCTION. pg_get_function_result similarly returns the ap-
propriate RETURNS clause for the function. pg_get_function_identity_arguments returns the
argument list necessary to identify a function, in the form it would need to appear in within ALTER
FUNCTION, for instance. This form omits default values.

pg_get_serial_sequence returns the name of the sequence associated with a column, or NULL
if no sequence is associated with the column. The first input parameter is a table name with optional
schema, and the second parameter is a column name. Because the first parameter is potentially a
schema and table, it is not treated as a double-quoted identifier, meaning it is lowercased by default,
while the second parameter, being just a column name, is treated as double-quoted and has its case
preserved. The function returns a value suitably formatted for passing to sequence functions (see
Section 9.15). This association can be modified or removed with ALTER SEQUENCE OWNED BY. (The
function probably should have been called pg_get_owned_sequence; its current name reflects the
fact that it’s typically used with serial or bigserial columns.)

pPg_get_userbyid extracts a role’s name given its OID.

pg_tablespace_databases allows a tablespace to be examined. It returns the set of OIDs of
databases that have objects stored in the tablespace. If this function returns any rows, the tablespace
is not empty and cannot be dropped. To display the specific objects populating the tablespace, you
will need to connect to the databases identified by pg_tablespace_databases and query their
pg_class catalogs.

pg_typeof£ returns the OID of the data type of the value that is passed to it. This can be helpful
for troubleshooting or dynamically constructing SQL queries. The function is declared as returning
regtype, which is an OID alias type (see Section 8.16); this means that it is the same as an OID for
comparison purposes but displays as a type name. For example:

SELECT pg_typeof (33);

pg_typeof

integer
(1 row)

SELECT typlen FROM pg_type WHERE oid = pg_typeof (33);
typlen

242

Chapter 9. Functions and Operators

The functions shown in Table 9-51 extract comments previously stored with the COMMENT com-
mand. A null value is returned if no comment could be found for the specified parameters.

Table 9-51. Comment Information Functions

Name Return Type Description

col_description (table_oid, |text get comment for a table column

column_number)

obj_description (object_oid,|text get comment for a database

catalog_name) object

obj_description (object_oid)| text get comment for a database
object (deprecated)

shobj_description (object_oildext get comment for a shared

catalog_name) database object

col_description returns the comment for a table column, which is specified by the OID of its
table and its column number. obj_description cannot be used for table columns since columns do
not have OIDs of their own.

The two-parameter form of obj_description returns the comment for a database
object specified by its OID and the name of the containing system catalog. For example,
obj_description (123456, ’pg_class’) would retrieve the comment for the table with
OID 123456. The one-parameter form of obj_description requires only the object OID. It
is deprecated since there is no guarantee that OIDs are unique across different system catalogs;
therefore, the wrong comment might be returned.

shobj_description is used just like obj_description except it is used for retrieving comments
on shared objects. Some system catalogs are global to all databases within each cluster and their
descriptions are stored globally as well.

The functions shown in Table 9-52 provide server transaction information in an exportable form.
The main use of these functions is to determine which transactions were committed between two
snapshots.

Table 9-52. Transaction IDs and snapshots

Name Return Type Description

txid_current () bigint get current transaction ID

txid_current_snapshot () txid_snapshot get current snapshot

txid_snapshot_xmin (txid_snadshgtht get xmin of snapshot

txid_snapshot_xmax (txid_snadshgtht get xmax of snapshot

txid_snapshot_xip (txid_snapsdetdf bigint get in-progress transaction IDs
in snapshot

243

Chapter 9. Functions and Operators

Name Return Type Description

txid_visible_in_snapshot (bilddotlean is transaction ID visible in

txid_snapshot) snapshot? (do not use with
subtransaction ids)

The internal transaction ID type (xid) is 32 bits wide and wraps around every 4 billion transac-
tions. However, these functions export a 64-bit format that is extended with an “epoch” counter so
it will not wrap around during the life of an installation. The data type used by these functions,
txid_snapshot, stores information about transaction ID visibility at a particular moment in time.
Its components are described in Table 9-53.

Table 9-53. Snapshot components

Name Description

xmin Earliest transaction ID (txid) that is still active.
All earlier transactions will either be committed
and visible, or rolled back and dead.

xmax First as-yet-unassigned txid. All txids greater
than or equal to this are not yet started as of the
time of the snapshot, and thus invisible.

xip_list Active txids at the time of the snapshot. The list
includes only those active txids between xmin
and xmax; there might be active txids higher than
xmax. A txid that is xmin <= txid < xmax
and not in this list was already completed at the
time of the snapshot, and thus either visible or
dead according to its commit status. The list
does not include txids of subtransactions.

txid_snapshot’s textual representation iS xmin: xmax:xip list. For example 10:20:10,14,15
means xmin=10, xmax=20, xip_list=10, 14, 15.

9.24. System Administration Functions

Table 9-54 shows the functions available to query and alter run-time configuration parameters.

Table 9-54. Configuration Settings Functions

Name Return Type Description

text get current value of setting

current_setting (setting_name)

set_config (setting_name, text set parameter and return new

new_value, is_local) value

The function current_setting yields the current value of the setting setting_name. It corre-
sponds to the SQL command SHOW. An example:

SELECT current_setting(’datestyle’);

244

Chapter 9. Functions and Operators

current_setting

IS0, MDY
(1 row)

set_config sets the parameter setting_name to new_value.If is_local is true, the new value
will only apply to the current transaction. If you want the new value to apply for the current session,
use false instead. The function corresponds to the SQL command SET. An example:

SELECT set_config(’log_statement_stats’, ’'off’, false);

set_config

off
(1 row)

The functions shown in Table 9-55 send control signals to other server processes. Use of these func-
tions is restricted to superusers.

Table 9-55. Server Signalling Functions

Name Return Type Description

pg_cancel_backend (pid boolean Cancel a backend’s current

int) query

pg_terminate_backend (pid boolean Terminate a backend

int)

pg_reload_conf () boolean Cause server processes to
reload their configuration files

pg_rotate_logfile () boolean Rotate server’s log file

Each of these functions returns t rue if successful and false otherwise.

pg_cancel_backend and pg_terminate_backend send signals (SIGINT or SIGTERM respec-
tively) to backend processes identified by process ID. The process ID of an active backend can be
found from the procpid column of the pg_stat_activity view, or by listing the postgres pro-
cesses on the server (using ps on Unix or the Task Manager on Windows).

pg_reload_conf sends a SIGHUP signal to the server, causing configuration files to be reloaded by
all server processes.

pg_rotate_logfile signals the log-file manager to switch to a new output file immediately. This
works only when the built-in log collector is running, since otherwise there is no log-file manager
subprocess.

The functions shown in Table 9-56 assist in making on-line backups. Use of the first three functions

is restricted to superusers.

Table 9-56. Backup Control Functions

Name Return Type Description
pg_start_backup (label text Prepare for performing on-line
text [, fast boolean 1) backup

245

Chapter 9. Functions and Operators

Name Return Type Description
pg_stop_backup () text Finish performing on-line
backup
pg_switch_xlog () text Force switch to a new
transaction log file
text Get current transaction log
pg_current_xlog_location () write location
text Get current transaction log
pg_current_xlog_insert_locajtion () insert location
text, integer Convert transaction log location
pg_xlogfile_name_offset (lodation string to file name and decimal
text) byte offset within file
pg_xlogfile_name (location |text Convert transaction log location
text) string to file name

pg_start_backup accepts an arbitrary user-defined label for the backup. (Typically this would be
the name under which the backup dump file will be stored.) The function writes a backup label file
(backup_label) into the database cluster’s data directory, performs a checkpoint, and then returns
the backup’s starting transaction log location as text. The user can ignore this result value, but it is
provided in case it is useful.

postgres=# select pg_start_backup(’label_goes_here’);
pg_start_backup

0/D4445B8
(1 row)

There is an optional boolean second parameter. If t rue, it specifies executing pg_start_backup as
quickly as possible. This forces an immediate checkpoint which will cause a spike in I/O operations,
slowing any concurrently executing queries.

pg_stop_backup removes the label file created by pg_start_backup, and creates a backup history
file in the transaction log archive area. The history file includes the label given to pg_start_backup,
the starting and ending transaction log locations for the backup, and the starting and ending times of
the backup. The return value is the backup’s ending transaction log location (which again can be
ignored). After recording the ending location, the current transaction log insertion point is automati-
cally advanced to the next transaction log file, so that the ending transaction log file can be archived
immediately to complete the backup.

pg_switch_xlog moves to the next transaction log file, allowing the current file to be archived
(assuming you are using continuous archiving). The return value is the ending transaction log location
+ 1 within the just-completed transaction log file. If there has been no transaction log activity since
the last transaction log switch, pg_switch_xlog does nothing and returns the start location of the
transaction log file currently in use.

pg_current_xlog_location displays the current transaction log write location in the same format
used by the above functions. Similarly, pg_current_xlog_insert_location displays the current
transaction log insertion point. The insertion point is the “logical” end of the transaction log at any
instant, while the write location is the end of what has actually been written out from the server’s
internal buffers. The write location is the end of what can be examined from outside the server, and is
usually what you want if you are interested in archiving partially-complete transaction log files. The

246

Chapter 9. Functions and Operators

insertion point is made available primarily for server debugging purposes. These are both read-only
operations and do not require superuser permissions.

You can use pg_xlogfile_name_offset toextract the corresponding transaction log file name and
byte offset from the results of any of the above functions. For example:

postgres=# SELECT * FROM pg_xlogfile_name_offset (pg_stop_backup());
file_name | file_ offset
__________________________ o
00000001000000000000000D | 4039624
(1 row)

Similarly, pg_xlogfile_name extracts just the transaction log file name. When the given transaction
log location is exactly at a transaction log file boundary, both these functions return the name of
the preceding transaction log file. This is usually the desired behavior for managing transaction log
archiving behavior, since the preceding file is the last one that currently needs to be archived.

For details about proper usage of these functions, see Section 24.3.

The functions shown in Table 9-57 calculate the disk space usage of database objects.

Table 9-57. Database Object Size Functions

Name Return Type Description

pg_column_size (any) int Number of bytes used to store a
particular value (possibly
compressed)

pg_database_size (0id) bigint Disk space used by the database
with the specified OID

pg_database_size (name) bigint Disk space used by the database
with the specified name

pg_relation_size (relation |bigint Disk Space used by the

regclass, fork text) specified fork (' main’, ’ fsm’

or ' vm’) of the table or index
with the specified OID or name

pg_relation_size (relation |bigint Shorthand for

regclass) pg_relation_size (...,
"main’)

pg_size_pretty (bigint) text Converts a size in bytes into a
human-readable format with
size units

pg_tablespace_size (oid) bigint Disk space used by the
tablespace with the specified
OID

pg_tablespace_size (name) bigint Disk space used by the
tablespace with the specified
name

bigint Total disk space used by the

pg_total_relation_size (regdlass) table with the speciﬁed OID or
name, including indexes and
TOAST data

247

Chapter 9. Functions and Operators

pg_column_size shows the space used to store any individual data value.

pg_database_size and pg_tablespace_size accept the OID or name of a database or
tablespace, and return the total disk space used therein.

pg_relation_size accepts the OID or name of a table, index or toast table, and returns the size in
bytes. Specifying 'main’ or leaving out the second argument returns the size of the main data fork of
the relation. Specifying ’ £sm’ returns the size of the Free Space Map (see Section 53.3) associated
with the relation. Specifying ' vm’ returns the size of the Visibility Map (see Section 53.4) associated
with the relation.

pg_size_pretty can be used to format the result of one of the other functions in a human-readable
way, using kB, MB, GB or TB as appropriate.

pg_total_relation_size accepts the OID or name of a table or toast table, and returns the size
in bytes of the data and all associated indexes and toast tables.

The functions shown in Table 9-58 provide native access to files on the machine hosting the server.
Only files within the database cluster directory and the log_directory can be accessed. Use a
relative path for files in the cluster directory, and a path matching the 1og_directory configuration
setting for log files. Use of these functions is restricted to superusers.

Table 9-58. Generic File Access Functions

Name Return Type Description
p9_ls_dir (dirname text) setof text List the contents of a directory
pg_read_file (filename text Return the contents of a text file

text, offset bigint,
length bigint)

pg_stat_file (filename record Return information about a file
text)
pg_ls_dir returns all the names in the specified directory, except the special entries “.” and ““. .”.

pg_read_file returns part of a text file, starting at the given of fset, returning at most length
bytes (less if the end of file is reached first). If of fset is negative, it is relative to the end of the file.

pg_stat_file returns a record containing the file size, last accessed time stamp, last modified time
stamp, last file status change time stamp (Unix platforms only), file creation time stamp (Windows
only), and a boolean indicating if it is a directory. Typical usages include:

SELECT » FROM pg_stat_file(’filename’);
SELECT (pg_stat_file(’filename’)) .modification;

The functions shown in Table 9-59 manage advisory locks. For details about proper use of these
functions, see Section 13.3.4.

Table 9-59. Advisory Lock Functions

Name Return Type Description
pg_advisory_lock (key void Obtain exclusive advisory lock
bigint)

pg_advisory_lock (keyl void Obtain exclusive advisory lock
int, key2 int)

248

Chapter 9. Functions and Operators

Name Return Type Description
void Obtain shared advisory lock

pg_advisory_lock_shared (key]
bigint)

void Obtain shared advisory lock
pg_advisory_lock_shared (keyll
int, key2 int)

pg_try_advisory_lock (key |boolean Obtain exclusive advisory lock
bigint) if available
pg_try_advisory_lock (keyl |boolean Obtain exclusive advisory lock
int, key2 int) if available

boolean Obtain shared advisory lock if
pg_try_advisory_lock_shared|(key available
bigint)

boolean Obtain shared advisory lock if
pg_try_advisory_lock_shared|(keyl available

int, key2 int)

pg_advisory_unlock (key boolean Release an exclusive advisory
bigint) lock
pg_advisory_unlock (keyl boolean Release an exclusive advisory
int, key2 int) lock

boolean Release a shared advisory lock

pg_advisory_unlock_shared (kley
bigint)

boolean Release a shared advisory lock
pg_advisory_unlock_shared (kleyl
int, key2 int)

pg_advisory_unlock_all() |void Release all advisory locks held
by the current session

pg_advisory_lock locks an application-defined resource, which can be identified either by a single
64-bit key value or two 32-bit key values (note that these two key spaces do not overlap). The key type
is specified in pg_locks.objid. If another session already holds a lock on the same resource, the
function will wait until the resource becomes available. The lock is exclusive. Multiple lock requests
stack, so that if the same resource is locked three times it must be also unlocked three times to be
released for other sessions’ use.

pg_advisory_lock_shared works the same as pg_advisory_lock, except the lock can be
shared with other sessions requesting shared locks. Only would-be exclusive lockers are locked out.

pg_try_advisory_lock is similar to pg_advisory_lock, except the function will not wait for
the lock to become available. It will either obtain the lock immediately and return true, or return
false if the lock cannot be acquired immediately.

pg_try_advisory_lock_shared works the same as pg_try_advisory_lock, except it attempts
to acquire a shared rather than an exclusive lock.

pg_advisory_unlock will release a previously-acquired exclusive advisory lock. It returns t rue
if the lock is successfully released. If the lock was not held, it will return false, and in addition, an
SQL warning will be raised by the server.

pg_advisory_unlock_shared works the same as pg_advisory_unlock, except it releases a

249

Chapter 9. Functions and Operators

shared advisory lock.

pg_advisory_unlock_all will release all advisory locks held by the current session. (This func-
tion is implicitly invoked at session end, even if the client disconnects ungracefully.)

9.25. Trigger Functions

Currently PostgreSQL provides one built in trigger function,
suppress_redundant_updates_trigger, which will prevent any update
that does not actually change the data in the row from taking place, in contrast to the normal
behaviour which always performs the update regardless of whether or not the data has changed.
(This normal behaviour makes updates run faster, since no checking is required, and is also useful in
certain cases.)

Ideally, you should normally avoid running updates that don’t actually change the data in the record.
Redundant updates can cost considerable unnecessary time, especially if there are lots of indexes
to alter, and space in dead rows that will eventually have to be vacuumed. However, detecting such
situations in client code is not always easy, or even possible, and writing expressions to detect them
can be error-prone. An alternative is to use suppress_redundant_updates_trigger, which will
skip updates that don’t change the data. You should use this with care, however. The trigger takes a
small but non-trivial time for each record, so if most of the records affected by an update are actually
changed, use of this trigger will actually make the update run slower.

The suppress_redundant_updates_trigger function can be added to a table like this:

CREATE TRIGGER z_min_update
BEFORE UPDATE ON tablename
FOR EACH ROW EXECUTE PROCEDURE suppress_redundant_updates_trigger();

In most cases, you would want to fire this trigger last for each row. Bearing in mind that triggers fire
in name order, you would then choose a trigger name that comes after the name of any other trigger
you might have on the table.

For more information about creating triggers, see CREATE TRIGGER.

250

Chapter 10. Type Conversion

SQL statements can, intentionally or not, require the mixing of different data types in the same ex-
pression. PostgreSQL has extensive facilities for evaluating mixed-type expressions.

In many cases a user does not need to understand the details of the type conversion mechanism.
However, implicit conversions done by PostgreSQL can affect the results of a query. When necessary,
these results can be tailored by using explicit type conversion.

This chapter introduces the PostgreSQL type conversion mechanisms and conventions. Refer to the
relevant sections in Chapter 8 and Chapter 9 for more information on specific data types and allowed
functions and operators.

10.1. Overview

SQL is a strongly typed language. That is, every data item has an associated data type which deter-
mines its behavior and allowed usage. PostgreSQL has an extensible type system that is more general
and flexible than other SQL implementations. Hence, most type conversion behavior in PostgreSQL
is governed by general rules rather than by ad hoc heuristics. This allows the use of mixed-type ex-
pressions even with user-defined types.

The PostgreSQL scanner/parser divides lexical elements into five fundamental categories: integers,
non-integer numbers, strings, identifiers, and key words. Constants of most non-numeric types are
first classified as strings. The SQL language definition allows specifying type names with strings, and
this mechanism can be used in PostgreSQL to start the parser down the correct path. For example, the

query:

SELECT text ’Origin’ AS "label", point ’ (0,0)’ AS "value";

label | value
________ b
Origin | (0,0)
(1 row)

has two literal constants, of type text and point. If a type is not specified for a string literal, then
the placeholder type unknown is assigned initially, to be resolved in later stages as described below.

There are four fundamental SQL constructs requiring distinct type conversion rules in the PostgreSQL
parser:
Function calls

Much of the PostgreSQL type system is built around a rich set of functions. Functions can have
one or more arguments. Since PostgreSQL permits function overloading, the function name
alone does not uniquely identify the function to be called; the parser must select the right function
based on the data types of the supplied arguments.

Operators

PostgreSQL allows expressions with prefix and postfix unary (one-argument) operators, as well
as binary (two-argument) operators. Like functions, operators can be overloaded, so the same
problem of selecting the right operator exists.

251

Chapter 10. Type Conversion

Value Storage

SQL INSERT and UPDATE statements place the results of expressions into a table. The expres-
sions in the statement must be matched up with, and perhaps converted to, the types of the target
columns.

UNION, CASE, and related constructs

Since all query results from a unionized SELECT statement must appear in a single set of
columns, the types of the results of each SELECT clause must be matched up and converted to
a uniform set. Similarly, the result expressions of a CASE construct must be converted to a
common type so that the CASE expression as a whole has a known output type. The same holds
for ARRAY constructs, and for the GREATEST and LEAST functions.

The system catalogs store information about which conversions, or casts, exist between which data
types, and how to perform those conversions. Additional casts can be added by the user with the
CREATE CAST command. (This is usually done in conjunction with defining new data types. The set
of casts between built-in types has been carefully crafted and is best not altered.)

An additional heuristic provided by the parser allows improved determination of the proper cast-
ing behavior among groups of types that have implicit casts. Data types are divided into several
basic type categories, including boolean, numeric, string, bitstring, datetime, timespan,
geometric, network, and user-defined. (For a list see Table 44-43; but note it is also possible to cre-
ate custom type categories.) Within each category there can be one or more preferred types, which are
preferred when there is a choice of possible types. With careful selection of preferred types and avail-
able implicit casts, it is possible to ensure that ambiguous expressions (those with multiple candidate
parsing solutions) can be resolved in a useful way.

All type conversion rules are designed with several principles in mind:

« Implicit conversions should never have surprising or unpredictable outcomes.

« There should be no extra overhead in the parser or executor if a query does not need implicit type
conversion. That is, if a query is well-formed and the types already match, then the query should
execute without spending extra time in the parser and without introducing unnecessary implicit
conversion calls in the query.

Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines a new function with the correct argument types, the parser should use this new function and
no longer do implicit conversion to use the old function.

10.2. Operators

The specific operator that is referenced by an operator expression is determined using the following
procedure. Note that this procedure is indirectly affected by the precedence of the involved operators,
since that will determine which sub-expressions are taken to be the inputs of which operators. See
Section 4.1.6 for more information.

Operator Type Resolution

1. Select the operators to be considered from the pg_operator system catalog. If a non-schema-
qualified operator name was used (the usual case), the operators considered are those with the

252

Chapter 10. Type Conversion

matching name and argument count that are visible in the current search path (see Section 5.7.3).
If a qualified operator name was given, only operators in the specified schema are considered.

a. If the search path finds multiple operators with identical argument types, only the one
appearing earliest in the path is considered. Operators with different argument types are
considered on an equal footing regardless of search path position.

2. Check for an operator accepting exactly the input argument types. If one exists (there can be only
one exact match in the set of operators considered), use it.

a. If one argument of a binary operator invocation is of the unknown type, then assume it is
the same type as the other argument for this check. Invocations involving two unknown
inputs, or a unary operator with an unknown input, will never find a match at this step.

3. Look for the best match.

a. Discard candidate operators for which the input types do not match and cannot be con-
verted (using an implicit conversion) to match. unknown literals are assumed to be con-
vertible to anything for this purpose. If only one candidate remains, use it; else continue
to the next step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candi-
dates if none have exact matches. If only one candidate remains, use it; else continue to
the next step.

c. Run through all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments are unknown, check the type categories accepted at those ar-
gument positions by the remaining candidates. At each position, select the string
category if any candidate accepts that category. (This bias towards string is appropri-
ate since an unknown-type literal looks like a string.) Otherwise, if all the remaining
candidates accept the same type category, select that category; otherwise fail because
the correct choice cannot be deduced without more clues. Now discard candidates that
do not accept the selected type category. Furthermore, if any candidate accepts a pre-
ferred type in that category, discard candidates that accept non-preferred types for that
argument.

e. If only one candidate remains, use it. If no candidate or more than one candidate re-
mains, then fail.

Some examples follow.

Example 10-1. Factorial Operator Type Resolution

There is only one factorial operator (postfix !) defined in the standard catalog, and it takes an argu-
ment of type bigint. The scanner assigns an initial type of integer to the argument in this query
expression:

SELECT 40 ! AS "40 factorial";
40 factorial

815915283247897734345611269596115894272000000000

253

Chapter 10. Type Conversion

(1 row)
So the parser does a type conversion on the operand and the query is equivalent to:
SELECT CAST (40 AS bigint) ! AS "40 factorial";

Example 10-2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types and for working with complex extension
types. Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:

SELECT text ’"abc’ || ’'def’ AS "text and unknown";

text and unknown

abcdef
(1 row)

In this case the parser looks to see if there is an operator taking text for both arguments. Since there
is, it assumes that the second argument should be interpreted as type text.

Here is a concatenation on unspecified types:

SELECT ’abc’ || 'def’ AS "unspecified";

unspecified

abcdef
(1 row)

In this case there is no initial hint for which type to use, since no types are specified in the query.
So, the parser looks for all candidate operators and finds that there are candidates accepting both
string-category and bit-string-category inputs. Since string category is preferred when available, that
category is selected, and then the preferred type for strings, text, is used as the specific type to
resolve the unknown literals as.

Example 10-3. Absolute-Value and Negation Operator Type Resolution

The PostgreSQL operator catalog has several entries for the prefix operator @, all of which implement
absolute-value operations for various numeric data types. One of these entries is for type floats,
which is the preferred type in the numeric category. Therefore, PostgreSQL will use that entry when
faced with an unknown input:

SELECT @ "-4.5" AS "abs";
abs

4.5
(1 row)
Here the system has implicitly resolved the unknown-type literal as type £1oat 8 before applying the

chosen operator. We can verify that f1oat 8 and not some other type was used:
SELECT @ "-4.5e500" AS "abs";

ERROR: "-4.5e500" is out of range for type double precision

254

Chapter 10. Type Conversion

On the other hand, the prefix operator ~ (bitwise negation) is defined only for integer data types, not
for f10at8. So, if we try a similar case with ~, we get:

SELECT ~

ERROR:
HINT:

720’ AS "negation";

operator is not unigque: ~ "unknown"
Could not choose a best candidate operator. You might need to add

explicit type casts.

This happens because the system cannot decide which of the several possible ~ operators should be
preferred. We can help it out with an explicit cast:

SELECT ~ CAST(’20" AS int8) AS "negation";

negation

-21

(1 row)

10.3. Functions

The specific function that is referenced by a function call is determined using the following procedure.

Function Type Resolution

1.

Select

the functions to be considered from the pg_proc system catalog. If a

non-schema-qualified function name was used, the functions considered are those with the
matching name and argument count that are visible in the current search path (see Section 5.7.3).
If a qualified function name was given, only functions in the specified schema are considered.

a.

If the search path finds multiple functions of identical argument types, only the one
appearing earliest in the path is considered. Functions of different argument types are
considered on an equal footing regardless of search path position.

If a function is declared with a VARIADIC array parameter, and the call does not use the
VARIADIC keyword, then the function is treated as if the array parameter were replaced
by one or more occurrences of its element type, as needed to match the call. After
such expansion the function might have effective argument types identical to some non-
variadic function. In that case the function appearing earlier in the search path is used,
or if the two functions are in the same schema, the non-variadic one is preferred.

Functions that have default values for parameters are considered to match any call that
omits zero or more of the defaultable parameter positions. If more than one such func-
tion matches a call, the one appearing earliest in the search path is used. If there are two
or more such functions in the same schema with identical parameter types in the non-
defaulted positions (which is possible if they have different sets of defaultable param-
eters), the system will not be able to determine which to prefer, and so an “ambiguous
function call” error will result if no better match to the call can be found.

Check for a function accepting exactly the input argument types. If one exists (there can be only

one exact match in the set of functions considered), use it. (Cases involving unknown will never
find a match at this step.)

If no exact match is found, see if the function call appears to be a special type conversion request.

This happens if the function call has just one argument and the function name is the same as

255

Chapter 10. Type Conversion

the (internal) name of some data type. Furthermore, the function argument must be either an
unknown-type literal, or a type that is binary-coercible to the named data type, or a type that
could be converted to the named data type by applying that type’s I/O functions (that is, the
conversion is either to or from one of the standard string types). When these conditions are met,
the function call is treated as a form of CAST specification. '

4. Look for the best match.

a. Discard candidate functions for which the input types do not match and cannot be con-
verted (using an implicit conversion) to match. unknown literals are assumed to be con-
vertible to anything for this purpose. If only one candidate remains, use it; else continue
to the next step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candi-
dates if none have exact matches. If only one candidate remains, use it; else continue to
the next step.

c. Run through all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments are unknown, check the type categories accepted at those ar-
gument positions by the remaining candidates. At each position, select the string
category if any candidate accepts that category. (This bias towards string is appropri-
ate since an unknown-type literal looks like a string.) Otherwise, if all the remaining
candidates accept the same type category, select that category; otherwise fail because
the correct choice cannot be deduced without more clues. Now discard candidates that
do not accept the selected type category. Furthermore, if any candidate accepts a pre-
ferred type in that category, discard candidates that accept non-preferred types for that
argument.

e. If only one candidate remains, use it. If no candidate or more than one candidate re-
mains, then fail.

Note that the “best match” rules are identical for operator and function type resolution. Some exam-
ples follow.

Example 10-4. Rounding Function Argument Type Resolution

There is only one round function that takes two arguments; it takes a first argument of type numeric
and a second argument of type integer. So the following query automatically converts the first
argument of type integer to numeric:

SELECT round (4, 4);

(1 row)
That query is actually transformed by the parser to:
SELECT round (CAST (4 AS numeric), 4);

1. The reason for this step is to support function-style cast specifications in cases where there is not an actual cast function.
If there is a cast function, it is conventionally named after its output type, and so there is no need to have a special case. See
CREATE CAST for additional commentary.

256

Chapter 10. Type Conversion

Since numeric constants with decimal points are initially assigned the type numeric, the following
query will require no type conversion and therefore might be slightly more efficient:

SELECT round (4.0, 4);

Example 10-5. Substring Function Type Resolution

There are several substr functions, one of which takes types text and integer. If called with a
string constant of unspecified type, the system chooses the candidate function that accepts an argu-
ment of the preferred category st ring (namely of type text).

SELECT substr (1234, 3);

substr

34
(1 row)

If the string is declared to be of type varchar, as might be the case if it comes from a table, then the
parser will try to convert it to become text:

SELECT substr (varchar 712347, 3);

substr

34
(1 row)

This is transformed by the parser to effectively become:
SELECT substr (CAST (varchar ’1234’ AS text), 3);

Note: The parser learns from the pg_cast catalog that text and varchar are binary-compatible,
meaning that one can be passed to a function that accepts the other without doing any physical
conversion. Therefore, no type conversion call is really inserted in this case.

And, if the function is called with an argument of type integer, the parser will try to convert that to
text:

SELECT substr (1234, 3);

ERROR: function substr (integer, integer) does not exist

HINT: ©No function matches the given name and argument types. You might need
to add explicit type casts.

This does not work because integer does not have an implicit cast to text. An explicit cast will

work, however:
SELECT substr (CAST (1234 AS text), 3);

257

Chapter 10. Type Conversion

10.4. Value Storage

Values to be inserted into a table are converted to the destination column’s data type according to the
following steps.

Value Storage Type Conversion

1. Check for an exact match with the target.

2. Otherwise, try to convert the expression to the target type. This will succeed if there is a registered
cast between the two types. If the expression is an unknown-type literal, the contents of the literal
string will be fed to the input conversion routine for the target type.

3. Check to see if there is a sizing cast for the target type. A sizing cast is a cast from that type
to itself. If one is found in the pg_cast catalog, apply it to the expression before storing into
the destination column. The implementation function for such a cast always takes an extra pa-
rameter of type integer, which receives the destination column’s declared length (actually, its
atttypmod value; the interpretation of atttypmod varies for different data types). The cast
function is responsible for applying any length-dependent semantics such as size checking or
truncation.

Example 10-6. character Storage Type Conversion

For a target column declared as character (20) the following statement ensures that the stored value
is sized correctly:

CREATE TABLE vv (v character(20));
INSERT INTO vv SELECT ’‘abc’ || ’def’;
SELECT v, length(v) FROM vv;

abcdef | 20
(1 row)

What has really happened here is that the two unknown literals are resolved to text by default, al-
lowing the | | operator to be resolved as text concatenation. Then the text result of the operator is
converted to bpchar (“blank-padded char”, the internal name of the character data type) to match
the target column type. (Since the conversion from text to bpchar is binary-coercible, this conver-
sion does not insert any real function call.) Finally, the sizing function bpchar (bpchar, integer)
is found in the system catalog and applied to the operator’s result and the stored column length. This
type-specific function performs the required length check and addition of padding spaces.

10.5. un1ION, cASE, and Related Constructs

SQL UNION constructs must match up possibly dissimilar types to become a single result set. The res-
olution algorithm is applied separately to each output column of a union query. The INTERSECT and
EXCEPT constructs resolve dissimilar types in the same way as UNION. The CASE, ARRAY, VALUES,
GREATEST and LEAST constructs use the identical algorithm to match up their component expressions
and select a result data type.

258

Chapter 10. Type Conversion

Type Resolution for UNION, CASE, and Related Constructs

1.

If all inputs are of the same type, and it is not unknown, resolve as that type. Otherwise, replace
any domain types in the list with their underlying base types.

If all inputs are of type unknown, resolve as type text (the preferred type of the string category).
Otherwise, unknown inputs are ignored.

If the non-unknown inputs are not all of the same type category, fail.

Choose the first non-unknown input type which is a preferred type in that category, if there is
one.

Otherwise, choose the last non-unknown input type that allows all the preceding non-unknown
inputs to be implicitly converted to it. (There always is such a type, since at least the first type in
the list must satisfy this condition.)

Convert all inputs to the selected type. Fail if there is not a conversion from a given input to the
selected type.

Some examples follow.

Example 10-7. Type Resolution with Underspecified Types in a Union

SELECT text ’"a’ AS "text" UNION SELECT ’'b’;

(2 rows)
Here, the unknown-type literal / b’ will be resolved to type text.

Example 10-8. Type Resolution in a Simple Union

SELECT 1.2 AS "numeric" UNION SELECT 1;

numeric

1.2

(2 rows)

The literal 1.2 is of type numeric, and the integer value 1 can be cast implicitly to numeric, so
that type is used.

Example 10-9. Type Resolution in a Transposed Union

SELECT 1 AS "real" UNION SELECT CAST(’2.2’ AS REAL);

259

Chapter 10. Type Conversion
(2 rows)

Here, since type real cannot be implicitly cast to integer, but integer can be implicitly cast to
real, the union result type is resolved as real.

260

Chapter 11. Indexes

Indexes are a common way to enhance database performance. An index allows the database server to
find and retrieve specific rows much faster than it could do without an index. But indexes also add
overhead to the database system as a whole, so they should be used sensibly.

11.1. Introduction

Suppose we have a table similar to this:

CREATE TABLE testl (
id integer,
content wvarchar

)i
and the application issues many queries of the form:
SELECT content FROM testl WHERE id = constant;

With no advance preparation, the system would have to scan the entire test1 table, row by row, to
find all matching entries. If there are many rows in test1 and only a few rows (perhaps zero or one)
that would be returned by such a query, this is clearly an inefficient method. But if the system has
been instructed to maintain an index on the id column, it can use a more efficient method for locating
matching rows. For instance, it might only have to walk a few levels deep into a search tree.

A similar approach is used in most non-fiction books: terms and concepts that are frequently looked
up by readers are collected in an alphabetic index at the end of the book. The interested reader can
scan the index relatively quickly and flip to the appropriate page(s), rather than having to read the
entire book to find the material of interest. Just as it is the task of the author to anticipate the items
that readers are likely to look up, it is the task of the database programmer to foresee which indexes
will be useful.

The following command can be used to create an index on the id column, as discussed:

CREATE INDEX testl_id_index ON testl (id);

The name test1_id_index can be chosen freely, but you should pick something that enables you
to remember later what the index was for.

To remove an index, use the DROP INDEX command. Indexes can be added to and removed from
tables at any time.

Once an index is created, no further intervention is required: the system will update the index when the
table is modified, and it will use the index in queries when it thinks doing so would be more efficient
than a sequential table scan. But you might have to run the ANALYZE command regularly to update
statistics to allow the query planner to make educated decisions. See Chapter 14 for information about
how to find out whether an index is used and when and why the planner might choose not to use an
index.

Indexes can also benefit UPDATE and DELETE commands with search conditions. Indexes can more-
over be used in join searches. Thus, an index defined on a column that is part of a join condition can
also significantly speed up queries with joins.

Creating an index on a large table can take a long time. By default, PostgreSQL allows reads (selects)
to occur on the table in parallel with index creation, but writes (INSERTs, UPDATEs, DELETEs) are

261

Chapter 11. Indexes

blocked until the index build is finished. In production environments this is often unacceptable. It is
possible to allow writes to occur in parallel with index creation, but there are several caveats to be
aware of — for more information see Building Indexes Concurrently.

After an index is created, the system has to keep it synchronized with the table. This adds overhead
to data manipulation operations. Therefore indexes that are seldom or never used in queries should be
removed.

11.2. Index Types

PostgreSQL provides several index types: B-tree, Hash, GiST and GIN. Each index type uses a differ-
ent algorithm that is best suited to different types of queries. By default, the CREATE INDEX command
creates B-tree indexes, which fit the most common situations.

B-trees can handle equality and range queries on data that can be sorted into some ordering. In partic-
ular, the PostgreSQL query planner will consider using a B-tree index whenever an indexed column
is involved in a comparison using one of these operators:

Constructs equivalent to combinations of these operators, such as BETWEEN and IN, can also be im-
plemented with a B-tree index search. Also, an IS NULL condition on an index column can be used
with a B-tree index.

The optimizer can also use a B-tree index for queries involving the pattern matching operators LIKE
and ~ if the pattern is a constant and is anchored to the beginning of the string — for example, col
LIKE ’foo%’ orcol ~ ’'~foo’,butnotcol LIKE ’%bar’.However, if your database does not
use the C locale you will need to create the index with a special operator class to support indexing
of pattern-matching queries; see Section 11.9 below. It is also possible to use B-tree indexes for
ILIKE and ~«, but only if the pattern starts with non-alphabetic characters, i.e., characters that are not
affected by upper/lower case conversion.

Hash indexes can only handle simple equality comparisons. The query planner will consider using
a hash index whenever an indexed column is involved in a comparison using the = operator. (Hash
indexes do not support IS NULL searches.) The following command is used to create a hash index:

CREATE INDEX name ON table USING hash (column);

Note: Hash index operations are not presently WAL-logged, so hash indexes might need to be
rebuilt with REINDEX after a database crash. For this reason, hash index use is presently discour-
aged.

GiST indexes are not a single kind of index, but rather an infrastructure within which many different
indexing strategies can be implemented. Accordingly, the particular operators with which a GiST
index can be used vary depending on the indexing strategy (the operator class). As an example,
the standard distribution of PostgreSQL includes GiST operator classes for several two-dimensional
geometric data types, which support indexed queries using these operators:

262

Chapter 11. Indexes

<<
&<
&>
>>
<<
&<|
| &>
[>>
@>
<@

&&

(See Section 9.11 for the meaning of these operators.) Many other GiST operator classes are available
in the cont rib collection or as separate projects. For more information see Chapter 51.

GIN indexes are inverted indexes which can handle values that contain more than one key, arrays for
example. Like GiST, GIN can support many different user-defined indexing strategies and the partic-
ular operators with which a GIN index can be used vary depending on the indexing strategy. As an
example, the standard distribution of PostgreSQL includes GIN operator classes for one-dimensional
arrays, which support indexed queries using these operators:

<@
@>

&&

(See Section 9.17 for the meaning of these operators.) Many other GIN operator classes are available
in the contrib collection or as separate projects. For more information see Chapter 52.

11.3. Multicolumn Indexes

An index can be defined on more than one column of a table. For example, if you have a table of this
form:
CREATE TABLE test2 (

major int,

minor int,

name varchar

)i

(say, you keep your /dev directory in a database...) and you frequently issue queries like:
SELECT name FROM test2 WHERE major = constant AND minor = constant;

then it might be appropriate to define an index on the columns major and minor together, e.g.:

CREATE INDEX test2_mm_idx ON test2 (major, minor);

Currently, only the B-tree, GiST and GIN index types support multicolumn indexes. Up to 32
columns can be specified. (This limit can be altered when building PostgreSQL; see the file
pg_config_manual.h.)

263

Chapter 11. Indexes

A multicolumn B-tree index can be used with query conditions that involve any subset of the index’s
columns, but the index is most efficient when there are constraints on the leading (leftmost) columns.
The exact rule is that equality constraints on leading columns, plus any inequality constraints on the
first column that does not have an equality constraint, will be used to limit the portion of the index that
is scanned. Constraints on columns to the right of these columns are checked in the index, so they save
visits to the table proper, but they do not reduce the portion of the index that has to be scanned. For
example, given an index on (a, b, c) and a query condition WHERE a = 5 AND b >= 42 AND
c < 77, the index would have to be scanned from the first entry with a =5 and b = 42 up through the
last entry with a = 5. Index entries with ¢ >= 77 would be skipped, but they’d still have to be scanned
through. This index could in principle be used for queries that have constraints on b and/or ¢ with no
constraint on a — but the entire index would have to be scanned, so in most cases the planner would
prefer a sequential table scan over using the index.

A multicolumn GiST index can be used with query conditions that involve any subset of the index’s
columns. Conditions on additional columns restrict the entries returned by the index, but the condition
on the first column is the most important one for determining how much of the index needs to be
scanned. A GiST index will be relatively ineffective if its first column has only a few distinct values,
even if there are many distinct values in additional columns.

A multicolumn GIN index can be used with query conditions that involve any subset of the index’s
columns. Unlike B-tree or GiST, index search effectiveness is the same regardless of which index
column(s) the query conditions use.

Of course, each column must be used with operators appropriate to the index type; clauses that involve
other operators will not be considered.

Multicolumn indexes should be used sparingly. In most situations, an index on a single column is
sufficient and saves space and time. Indexes with more than three columns are unlikely to be helpful
unless the usage of the table is extremely stylized. See also Section 11.5 for some discussion of the
merits of different index configurations.

11.4. Indexes and ORDER BY

In addition to simply finding the rows to be returned by a query, an index may be able to deliver them in
a specific sorted order. This allows a query’s ORDER BY specification to be honored without a separate
sorting step. Of the index types currently supported by PostgreSQL, only B-tree can produce sorted
output — the other index types return matching rows in an unspecified, implementation-dependent
order.

The planner will consider satisfying an ORDER BY specification either by scanning an available index
that matches the specification, or by scanning the table in physical order and doing an explicit sort.
For a query that requires scanning a large fraction of the table, an explicit sort is likely to be faster
than using an index because it requires less disk I/O due to following a sequential access pattern.
Indexes are more useful when only a few rows need be fetched. An important special case is ORDER
BY in combination with LIMIT n: an explicit sort will have to process all the data to identify the first
n rows, but if there is an index matching the ORDER BY, the first n rows can be retrieved directly,
without scanning the remainder at all.

By default, B-tree indexes store their entries in ascending order with nulls last. This means that a
forward scan of an index on column x produces output satisfying ORDER BY x (or more verbosely,
ORDER BY x ASC NULLS LAST). The index can also be scanned backward, producing output sat-
isfying ORDER BY x DESC (or more verbosely, ORDER BY x DESC NULLS FIRST, since NULLS
FIRST is the default for ORDER BY DESC).

264

Chapter 11. Indexes

You can adjust the ordering of a B-tree index by including the options ASC, DESC, NULLS FIRST,
and/or NULLS LAST when creating the index; for example:

CREATE INDEX test2_info_nulls_low ON test2 (info NULLS FIRST);
CREATE INDEX test3_desc_index ON test3 (id DESC NULLS LAST);

An index stored in ascending order with nulls first can satisfy either ORDER BY x ASC NULLS
FIRST or ORDER BY x DESC NULLS LAST depending on which direction it is scanned in.

You might wonder why bother providing all four options, when two options together with the pos-
sibility of backward scan would cover all the variants of ORDER BY. In single-column indexes the
options are indeed redundant, but in multicolumn indexes they can be useful. Consider a two-column
index on (x, y): this can satisfy ORDER BY x, vy if we scan forward, or ORDER BY x DESC, vy
DESC if we scan backward. But it might be that the application frequently needs to use ORDER BY x
Asc, y DESC. There is no way to get that ordering from a plain index, but it is possible if the index
is defined as (x ASC, y DESC) or (x DESC, y ASC).

Obviously, indexes with non-default sort orderings are a fairly specialized feature, but sometimes they
can produce tremendous speedups for certain queries. Whether it’s worth maintaining such an index
depends on how often you use queries that require a special sort ordering.

11.5. Combining Multiple Indexes

A single index scan can only use query clauses that use the index’s columns with operators of its
operator class and are joined with AND. For example, given an index on (a, b) a query condition
like WHERE a = 5 AND b = 6 could use the index, but a query like WHERE a = 5 OR b = 6
could not directly use the index.

Fortunately, PostgreSQL has the ability to combine multiple indexes (including multiple uses of the
same index) to handle cases that cannot be implemented by single index scans. The system can form
AND and OR conditions across several index scans. For example, a query like WHERE x = 42 OR x
= 47 OR x = 53 OR x = 99 could be broken down into four separate scans of an index on x, each
scan using one of the query clauses. The results of these scans are then ORed together to produce the
result. Another example is that if we have separate indexes on x and y, one possible implementation
of aquery like WHERE x = 5 AND y = 6 isto use each index with the appropriate query clause and
then AND together the index results to identify the result rows.

To combine multiple indexes, the system scans each needed index and prepares a bitmap in memory
giving the locations of table rows that are reported as matching that index’s conditions. The bitmaps
are then ANDed and ORed together as needed by the query. Finally, the actual table rows are visited
and returned. The table rows are visited in physical order, because that is how the bitmap is laid out;
this means that any ordering of the original indexes is lost, and so a separate sort step will be needed if
the query has an ORDER BY clause. For this reason, and because each additional index scan adds extra
time, the planner will sometimes choose to use a simple index scan even though additional indexes
are available that could have been used as well.

In all but the simplest applications, there are various combinations of indexes that might be useful,
and the database developer must make trade-offs to decide which indexes to provide. Sometimes
multicolumn indexes are best, but sometimes it’s better to create separate indexes and rely on the
index-combination feature. For example, if your workload includes a mix of queries that sometimes
involve only column x, sometimes only column y, and sometimes both columns, you might choose to
create two separate indexes on x and y, relying on index combination to process the queries that use
both columns. You could also create a multicolumn index on (x, y). This index would typically be
more efficient than index combination for queries involving both columns, but as discussed in Section

265

Chapter 11. Indexes

11.3, it would be almost useless for queries involving only v, so it should not be the only index. A
combination of the multicolumn index and a separate index on y would serve reasonably well. For
queries involving only x, the multicolumn index could be used, though it would be larger and hence
slower than an index on x alone. The last alternative is to create all three indexes, but this is probably
only reasonable if the table is searched much more often than it is updated and all three types of query
are common. If one of the types of query is much less common than the others, you’d probably settle
for creating just the two indexes that best match the common types.

11.6. Unique Indexes

Indexes can also be used to enforce uniqueness of a column’s value, or the uniqueness of the combined
values of more than one column.

CREATE UNIQUE INDEX name ON table (column [, ...]);

Currently, only B-tree indexes can be declared unique.

When an index is declared unique, multiple table rows with equal indexed values are not allowed.
Null values are not considered equal. A multicolumn unique index will only reject cases where all
indexed columns are equal in multiple rows.

PostgreSQL automatically creates a unique index when a unique constraint or primary key is de-
fined for a table. The index covers the columns that make up the primary key or unique constraint (a
multicolumn index, if appropriate), and is the mechanism that enforces the constraint.

Note: The preferred way to add a unique constraint to a table is ALTER TABLE ... ADD
CONSTRAINT. The use of indexes to enforce unique constraints could be considered an
implementation detail that should not be accessed directly. One should, however, be aware that
there’s no need to manually create indexes on unique columns; doing so would just duplicate the
automatically-created index.

11.7. Indexes on Expressions

An index column need not be just a column of the underlying table, but can be a function or scalar
expression computed from one or more columns of the table. This feature is useful to obtain fast
access to tables based on the results of computations.

For example, a common way to do case-insensitive comparisons is to use the 1ower function:
SELECT » FROM testl WHERE lower (coll) = ’'value’;
This query can use an index if one has been defined on the result of the lower (col1) function:

CREATE INDEX testl_lower_coll_idx ON testl (lower (coll));

If we were to declare this index UNIQUE, it would prevent creation of rows whose col1 values differ
only in case, as well as rows whose col1 values are actually identical. Thus, indexes on expressions
can be used to enforce constraints that are not definable as simple unique constraints.

As another example, if one often does queries like:

266

Chapter 11. Indexes
SELECT x= FROM people WHERE (first_name || ’ ' || last_name) = ’John Smith’;

then it might be worth creating an index like this:

CREATE INDEX people_names ON people ((first_name || ' ' || last_name));

The syntax of the CREATE INDEX command normally requires writing parentheses around index
expressions, as shown in the second example. The parentheses can be omitted when the expression is
just a function call, as in the first example.

Index expressions are relatively expensive to maintain, because the derived expression(s) must be
computed for each row upon insertion and whenever it is updated. However, the index expressions are
not recomputed during an indexed search, since they are already stored in the index. In both examples
above, the system sees the query as just WHERE indexedcolumn = ’constant’ and so the speed
of the search is equivalent to any other simple index query. Thus, indexes on expressions are useful
when retrieval speed is more important than insertion and update speed.

11.8. Partial Indexes

A partial index is an index built over a subset of a table; the subset is defined by a conditional expres-
sion (called the predicate of the partial index). The index contains entries only for those table rows
that satisfy the predicate. Partial indexes are a specialized feature, but there are several situations in
which they are useful.

One major reason for using a partial index is to avoid indexing common values. Since a query search-
ing for a common value (one that accounts for more than a few percent of all the table rows) will not
use the index anyway, there is no point in keeping those rows in the index at all. This reduces the size
of the index, which will speed up those queries that do use the index. It will also speed up many table
update operations because the index does not need to be updated in all cases. Example 11-1 shows a
possible application of this idea.

Example 11-1. Setting up a Partial Index to Exclude Common Values

Suppose you are storing web server access logs in a database. Most accesses originate from the IP
address range of your organization but some are from elsewhere (say, employees on dial-up connec-
tions). If your searches by IP are primarily for outside accesses, you probably do not need to index
the IP range that corresponds to your organization’s subnet.

Assume a table like this:
CREATE TABLE access_log (
url varchar,
client_ip inet,
)i
To create a partial index that suits our example, use a command such as this:

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet ’192.168.100.0" AND
client_ip < inet 7192.168.100.255");

A typical query that can use this index would be:

SELECT «

267

Chapter 11. Indexes

FROM access_log

WHERE url = ’/index.html’ AND client_ip = inet ’212.78.10.32';
A query that cannot use this index is:

SELECT «

FROM access_log

WHERE client_ip = inet 7192.168.100.23";

Observe that this kind of partial index requires that the common values be predetermined, so such
partial indexes are best used for data distributions that do not change. The indexes can be recreated
occasionally to adjust for new data distributions, but this adds maintenance effort.

Another possible use for a partial index is to exclude values from the index that the typical query
workload is not interested in; this is shown in Example 11-2. This results in the same advantages as
listed above, but it prevents the “uninteresting” values from being accessed via that index, even if
an index scan might be profitable in that case. Obviously, setting up partial indexes for this kind of
scenario will require a lot of care and experimentation.

Example 11-2. Setting up a Partial Index to Exclude Uninteresting Values

If you have a table that contains both billed and unbilled orders, where the unbilled orders take up a
small fraction of the total table and yet those are the most-accessed rows, you can improve perfor-
mance by creating an index on just the unbilled rows. The command to create the index would look
like this:

CREATE INDEX orders_unbilled_index ON orders (order_nr)
WHERE billed is not true;

A possible query to use this index would be:

SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

However, the index can also be used in queries that do not involve order_nr at all, e.g.:
SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

This is not as efficient as a partial index on the amount column would be, since the system has to scan
the entire index. Yet, if there are relatively few unbilled orders, using this partial index just to find the
unbilled orders could be a win.

Note that this query cannot use this index:

SELECT %= FROM orders WHERE order_nr = 3501;
The order 3501 might be among the billed or unbilled orders.

Example 11-2 also illustrates that the indexed column and the column used in the predicate do not
need to match. PostgreSQL supports partial indexes with arbitrary predicates, so long as only columns
of the table being indexed are involved. However, keep in mind that the predicate must match the
conditions used in the queries that are supposed to benefit from the index. To be precise, a partial
index can be used in a query only if the system can recognize that the WHERE condition of the query
mathematically implies the predicate of the index. PostgreSQL does not have a sophisticated theorem
prover that can recognize mathematically equivalent expressions that are written in different forms.
(Not only is such a general theorem prover extremely difficult to create, it would probably be too
slow to be of any real use.) The system can recognize simple inequality implications, for example
“x < 1”7 implies “x < 27; otherwise the predicate condition must exactly match part of the query’s
WHERE condition or the index will not be recognized as usable. Matching takes place at query planning
time, not at run time. As a result, parameterized query clauses do not work with a partial index. For

268

Chapter 11. Indexes

example a prepared query with a parameter might specify “x < ?7”” which will never imply “x < 2” for
all possible values of the parameter.

A third possible use for partial indexes does not require the index to be used in queries at all. The idea
here is to create a unique index over a subset of a table, as in Example 11-3. This enforces uniqueness
among the rows that satisfy the index predicate, without constraining those that do not.

Example 11-3. Setting up a Partial Unique Index

Suppose that we have a table describing test outcomes. We wish to ensure that there is only one
“successful” entry for a given subject and target combination, but there might be any number of
“unsuccessful” entries. Here is one way to do it:

CREATE TABLE tests (
subject text,
target text,
success boolean,

)i

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
WHERE success;

This is a particularly efficient approach when there are few successful tests and many unsuccessful
ones.

Finally, a partial index can also be used to override the system’s query plan choices. Also, data sets
with peculiar distributions might cause the system to use an index when it really should not. In that
case the index can be set up so that it is not available for the offending query. Normally, PostgreSQL
makes reasonable choices about index usage (e.g., it avoids them when retrieving common values, so
the earlier example really only saves index size, it is not required to avoid index usage), and grossly
incorrect plan choices are cause for a bug report.

Keep in mind that setting up a partial index indicates that you know at least as much as the query
planner knows, in particular you know when an index might be profitable. Forming this knowledge
requires experience and understanding of how indexes in PostgreSQL work. In most cases, the advan-
tage of a partial index over a regular index will be minimal.

More information about partial indexes can be found in The case for partial indexes , Partial indexing
in POSTGRES: research project, and Generalized Partial Indexes (cached version) .

11.9. Operator Classes and Operator Families

An index definition can specify an operator class for each column of an index.

CREATE INDEX name ON table (column opclass [sort options] [, ...1);

The operator class identifies the operators to be used by the index for that column. For example, a B-
tree index on the type int4 would use the int4_ops class; this operator class includes comparison
functions for values of type int4. In practice the default operator class for the column’s data type is
usually sufficient. The main reason for having operator classes is that for some data types, there could
be more than one meaningful index behavior. For example, we might want to sort a complex-number
data type either by absolute value or by real part. We could do this by defining two operator classes for
the data type and then selecting the proper class when making an index. The operator class determines

269

Chapter 11. Indexes

the basic sort ordering (which can then be modified by adding sort options ASC/DESC and/or NULLS
FIRST/NULLS LAST).

There are also some built-in operator classes besides the default ones:

« The operator classes text_pattern_ops, varchar_pattern_ops, and
bpchar_pattern_ops support B-tree indexes on the types text, varchar, and char
respectively. The difference from the default operator classes is that the values are compared
strictly character by character rather than according to the locale-specific collation rules. This
makes these operator classes suitable for use by queries involving pattern matching expressions
(LIKE or POSIX regular expressions) when the database does not use the standard “C” locale. As
an example, you might index a varchar column like this:

CREATE INDEX test_index ON test_table (col varchar_pattern_ops);

Note that you should also create an index with the default operator class if you want queries
involving ordinary <, <=, >, or >= comparisons to use an index. Such queries cannot use the
xxx_pattern_ops operator classes. (Ordinary equality comparisons can use these operator
classes, however.) It is possible to create multiple indexes on the same column with different
operator classes. If you do use the C locale, you do not need the xxx_pattern_ops operator
classes, because an index with the default operator class is usable for pattern-matching queries in
the C locale.

The following query shows all defined operator classes:

SELECT am.amname AS index_method,
opc.opcname AS opclass_name
FROM pg_am am, pg_opclass opc
WHERE opc.opcmethod = am.oid
ORDER BY index_method, opclass_name;

An operator class is actually just a subset of a larger structure called an operator family. In cases where
several data types have similar behaviors, it is frequently useful to define cross-data-type operators
and allow these to work with indexes. To do this, the operator classes for each of the types must be
grouped into the same operator family. The cross-type operators are members of the family, but are
not associated with any single class within the family.

This query shows all defined operator families and all the operators included in each family:

SELECT am.amname AS index_method,
opf.opfname AS opfamily_ name,
amop.amopopr: :regoperator AS opfamily_operator
FROM pg_am am, pg_opfamily opf, pg_amop amop
WHERE opf.opfmethod = am.oid AND
amop.amopfamily = opf.oid
ORDER BY index_method, opfamily_name, opfamily_operator;

11.10. Examining Index Usage

Although indexes in PostgreSQL do not need maintenance or tuning, it is still important to check
which indexes are actually used by the real-life query workload. Examining index usage for an in-

270

Chapter 11. Indexes

dividual query is done with the EXPLAIN command; its application for this purpose is illustrated in
Section 14.1. It is also possible to gather overall statistics about index usage in a running server, as
described in Section 26.2.

It is difficult to formulate a general procedure for determining which indexes to create. There are a
number of typical cases that have been shown in the examples throughout the previous sections. A
good deal of experimentation is often necessary. The rest of this section gives some tips for that:

+ Always run ANALYZE first. This command collects statistics about the distribution of the values in
the table. This information is required to estimate the number of rows returned by a query, which
is needed by the planner to assign realistic costs to each possible query plan. In absence of any real
statistics, some default values are assumed, which are almost certain to be inaccurate. Examining
an application’s index usage without having run ANALYZE is therefore a lost cause.

+ Use real data for experimentation. Using test data for setting up indexes will tell you what indexes
you need for the test data, but that is all.

It is especially fatal to use very small test data sets. While selecting 1000 out of 100000 rows
could be a candidate for an index, selecting 1 out of 100 rows will hardly be, because the 100 rows
probably fit within a single disk page, and there is no plan that can beat sequentially fetching 1 disk
page.

Also be careful when making up test data, which is often unavoidable when the application is not
yet in production. Values that are very similar, completely random, or inserted in sorted order will
skew the statistics away from the distribution that real data would have.

+ When indexes are not used, it can be useful for testing to force their use. There are run-time param-
eters that can turn off various plan types (see Section 18.6.1). For instance, turning off sequential
scans (enable_segscan) and nested-loop joins (enable_nestloop), which are the most basic
plans, will force the system to use a different plan. If the system still chooses a sequential scan or
nested-loop join then there is probably a more fundamental reason why the index is not being used;
for example, the query condition does not match the index. (What kind of query can use what kind
of index is explained in the previous sections.)

- If forcing index usage does use the index, then there are two possibilities: Either the system is
right and using the index is indeed not appropriate, or the cost estimates of the query plans are not
reflecting reality. So you should time your query with and without indexes. The EXPLAIN ANALYZE
command can be useful here.

- If it turns out that the cost estimates are wrong, there are, again, two possibilities. The total cost
is computed from the per-row costs of each plan node times the selectivity estimate of the plan
node. The costs estimated for the plan nodes can be adjusted via run-time parameters (described
in Section 18.6.2). An inaccurate selectivity estimate is due to insufficient statistics. It might be
possible to improve this by tuning the statistics-gathering parameters (see ALTER TABLE).

If you do not succeed in adjusting the costs to be more appropriate, then you might have to resort
to forcing index usage explicitly. You might also want to contact the PostgreSQL developers to
examine the issue.

271

Chapter 12. Full Text Search

12.1. Introduction

Full Text Searching (or just text search) provides the capability to identify natural-language documents
that satisfy a query, and optionally to sort them by relevance to the query. The most common type
of search is to find all documents containing given query terms and return them in order of their
similarity to the query. Notions of query and similarity are very flexible and depend on the
specific application. The simplest search considers query as a set of words and similarity as the
frequency of query words in the document.

Textual search operators have existed in databases for years. PostgreSQL has ~, ~«, LIKE, and ILIKE
operators for textual data types, but they lack many essential properties required by modern informa-
tion systems:

+ There is no linguistic support, even for English. Regular expressions are not sufficient because
they cannot easily handle derived words, e.g., satisfies and satisfy. You might miss docu-
ments that contain satisfies, although you probably would like to find them when searching
for satisfy. It is possible to use OR to search for multiple derived forms, but this is tedious and
error-prone (some words can have several thousand derivatives).

+ They provide no ordering (ranking) of search results, which makes them ineffective when thousands
of matching documents are found.

» They tend to be slow because there is no index support, so they must process all documents for
every search.

Full text indexing allows documents to be preprocessed and an index saved for later rapid searching.
Preprocessing includes:

Parsing documents into tokens. It is useful to identify various classes of tokens, e.g., numbers,
words, complex words, email addresses, so that they can be processed differently. In principle token
classes depend on the specific application, but for most purposes it is adequate to use a predefined
set of classes. PostgreSQL uses a parser to perform this step. A standard parser is provided, and
custom parsers can be created for specific needs.

Converting tokens into lexemes. A lexeme is a string, just like a token, but it has been normalized
so that different forms of the same word are made alike. For example, normalization almost always
includes folding upper-case letters to lower-case, and often involves removal of suffixes (such as s
or es in English). This allows searches to find variant forms of the same word, without tediously
entering all the possible variants. Also, this step typically eliminates stop words, which are words
that are so common that they are useless for searching. (In short, then, tokens are raw fragments of
the document text, while lexemes are words that are believed useful for indexing and searching.)
PostgreSQL uses dictionaries to perform this step. Various standard dictionaries are provided, and
custom ones can be created for specific needs.

Storing preprocessed documents optimized for searching. For example, each document can be rep-
resented as a sorted array of normalized lexemes. Along with the lexemes it is often desirable to
store positional information to use for proximity ranking, so that a document that contains a more
“dense” region of query words is assigned a higher rank than one with scattered query words.

Dictionaries allow fine-grained control over how tokens are normalized. With appropriate dictionaries,
you can:

272

Chapter 12. Full Text Search

+ Define stop words that should not be indexed.

+ Map synonyms to a single word using Ispell.

« Map phrases to a single word using a thesaurus.

« Map different variations of a word to a canonical form using an Ispell dictionary.

« Map different variations of a word to a canonical form using Snowball stemmer rules.

A data type tsvector is provided for storing preprocessed documents, along with a type tsquery
for representing processed queries (Section 8.11). There are many functions and operators available
for these data types (Section 9.13), the most important of which is the match operator @@, which we
introduce in Section 12.1.2. Full text searches can be accelerated using indexes (Section 12.9).

12.1.1. What Is a Document?

A document is the unit of searching in a full text search system; for example, a magazine article
or email message. The text search engine must be able to parse documents and store associations
of lexemes (key words) with their parent document. Later, these associations are used to search for
documents that contain query words.

For searches within PostgreSQL, a document is normally a textual field within a row of a database
table, or possibly a combination (concatenation) of such fields, perhaps stored in several tables or
obtained dynamically. In other words, a document can be constructed from different parts for indexing
and it might not be stored anywhere as a whole. For example:

SELECT title || " " || author || 7 7 || abstract || 7 ' || body AS document
FROM messages
WHERE mid = 12;

SELECT m.title || " " || m.author || 7 ' || m.abstract || ” 7 || d.body AS document
FROM messages m, docs d
WHERE mid = did AND mid = 12;

Note: Actually, in these example queries, coalesce should be used to prevent a single NULL
attribute from causing a NuLL result for the whole document.

Another possibility is to store the documents as simple text files in the file system. In this case, the
database can be used to store the full text index and to execute searches, and some unique identifier
can be used to retrieve the document from the file system. However, retrieving files from outside the
database requires superuser permissions or special function support, so this is usually less convenient
than keeping all the data inside PostgreSQL. Also, keeping everything inside the database allows easy
access to document metadata to assist in indexing and display.

For text search purposes, each document must be reduced to the preprocessed tsvector format.
Searching and ranking are performed entirely on the t svector representation of a document — the
original text need only be retrieved when the document has been selected for display to a user. We
therefore often speak of the tsvector as being the document, but of course it is only a compact
representation of the full document.

273

Chapter 12. Full Text Search

12.1.2. Basic Text Matching

Full text searching in PostgreSQL is based on the match operator @@, which returns true if a
tsvector (document) matches a t squery (query). It doesn’t matter which data type is written first:

SELECT "a fat cat sat on a mat and ate a fat rat’::tsvector @@ ’'cat & rat’::tsquery;

?column?

SELECT "fat & cow’::tsquery @@ 'a fat cat sat on a mat and ate a fat rat’::tsvector;
?column?

As the above example suggests, a tsquery is not just raw text, any more than a tsvector is. A
tsquery contains search terms, which must be already-normalized lexemes, and may combine mul-
tiple terms using AND, OR, and NOT operators. (For details see Section 8.11.) There are functions
to_tsquery and plainto_tsquery that are helpful in converting user-written text into a proper
tsquery, for example by normalizing words appearing in the text. Similarly, to_tsvector is used
to parse and normalize a document string. So in practice a text search match would look more like
this:

SELECT to_tsvector ('’ fat cats ate fat rats’) @@ to_tsquery(’fat & rat’);
?column?

Observe that this match would not succeed if written as

SELECT ’fat cats ate fat rats’::tsvector @@ to_tsquery(’fat & rat’);

?column?

since here no normalization of the word rats will occur. The elements of a t svector are lexemes,
which are assumed already normalized, so rats does not match rat.

The @@ operator also supports text input, allowing explicit conversion of a text string to tsvector
or tsquery to be skipped in simple cases. The variants available are:

tsvector @@ tsquery
tsquery @Q tsvector
text Q@ tsquery

text Q@ text

The first two of these we saw already. The form text @@ tsquery is equivalent to to_tsvector (x)
@R y. The form text @@ text is equivalent to to_tsvector (x) QR plainto_tsquery (y).

274

Chapter 12. Full Text Search

12.1.3. Configurations

The above are all simple text search examples. As mentioned before, full text search functionality
includes the ability to do many more things: skip indexing certain words (stop words), process syn-
onyms, and use sophisticated parsing, e.g., parse based on more than just white space. This function-
ality is controlled by text search configurations. PostgreSQL comes with predefined configurations
for many languages, and you can easily create your own configurations. (psql’s \dF command shows
all available configurations.)

During installation an appropriate configuration is selected and default_text_search_config is set ac-
cordingly in postgresql.conf£. If you are using the same text search configuration for the entire
cluster you can use the value in postgresql.conf. To use different configurations throughout the
cluster but the same configuration within any one database, use ALTER DATABASE ... SET. Other-
wise, you can set default_text_search_config in each session.

Each text search function that depends on a configuration has an optional regconfig argument, so
that the configuration to use can be specified explicitly. default_text_search_config is used
only when this argument is omitted.

To make it easier to build custom text search configurations, a configuration is built up from sim-
pler database objects. PostgreSQL’s text search facility provides four types of configuration-related
database objects:

« Text search parsers break documents into tokens and classify each token (for example, as words or
numbers).

« Text search dictionaries convert tokens to normalized form and reject stop words.

« Text search templates provide the functions underlying dictionaries. (A dictionary simply specifies
a template and a set of parameters for the template.)

« Text search configurations select a parser and a set of dictionaries to use to normalize the tokens
produced by the parser.

Text search parsers and templates are built from low-level C functions; therefore it requires C pro-
gramming ability to develop new ones, and superuser privileges to install one into a database. (There
are examples of add-on parsers and templates in the contrib/ area of the PostgreSQL distribution.)
Since dictionaries and configurations just parameterize and connect together some underlying parsers
and templates, no special privilege is needed to create a new dictionary or configuration. Examples of
creating custom dictionaries and configurations appear later in this chapter.

12.2. Tables and Indexes

The examples in the previous section illustrated full text matching using simple constant strings. This
section shows how to search table data, optionally using indexes.

12.2.1. Searching a Table

It is possible to do a full text search without an index. A simple query to print the title of each row
that contains the word friend in its body field is:

SELECT title
FROM pgweb
WHERE to_tsvector (’english’, body) @@ to_tsquery(’english’, ’friend’);

275

Chapter 12. Full Text Search

This will also find related words such as friends and friendly, since all these are reduced to the
same normalized lexeme.

The query above specifies that the english configuration is to be used to parse and normalize the
strings. Alternatively we could omit the configuration parameters:

SELECT title
FROM pgweb
WHERE to_tsvector (body) @@ to_tsquery(’friend’);

This query will use the configuration set by default_text_search_config.

A more complex example is to select the ten most recent documents that contain create and table
in the title or body:

SELECT title

FROM pgweb

WHERE to_tsvector(title || * ' || body) @@ to_tsquery(’'create & table’)
ORDER BY last_mod_date DESC

LIMIT 10;

For clarity we omitted the coalesce function calls which would be needed to find rows that contain
NULL in one of the two fields.

Although these queries will work without an index, most applications will find this approach too
slow, except perhaps for occasional ad-hoc searches. Practical use of text searching usually requires
creating an index.

12.2.2. Creating Indexes

We can create a GIN index (Section 12.9) to speed up text searches:
CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector (’english’, body));

Notice that the 2-argument version of to_tsvector is used. Only text search functions that specify
a configuration name can be used in expression indexes (Section 11.7). This is because the index
contents must be unaffected by default_text_search_config. If they were affected, the index contents
might be inconsistent because different entries could contain t svectors that were created with dif-
ferent text search configurations, and there would be no way to guess which was which. It would be
impossible to dump and restore such an index correctly.

Because the two-argument version of to_tsvector was used in the index above, only a query ref-
erence that uses the 2-argument version of to_tsvector with the same configuration name will use
that index. That is, WHERE to_tsvector (’english’, body) @Q ’a & b’ can use the index,
but WHERE to_tsvector (body) @@ "a & b’ cannot. This ensures that an index will be used only
with the same configuration used to create the index entries.

It is possible to set up more complex expression indexes wherein the configuration name is specified
by another column, e.g.:

CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector (config_name, body));

where config_name is a column in the pgweb table. This allows mixed configurations in the same
index while recording which configuration was used for each index entry. This would be useful, for
example, if the document collection contained documents in different languages. Again, queries that
are meant to use the index must be phrased to match, e.g., WHERE to_tsvector (config_name,
body) @@ ’a & b’.

276

Chapter 12. Full Text Search

Indexes can even concatenate columns:

CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector (’english’, title || " 7 || body));

Another approach is to create a separate t svector column to hold the output of to_tsvector. This
example is a concatenation of title and body, using coalesce to ensure that one field will still be
indexed when the other is NULL:

ALTER TABLE pgweb ADD COLUMN textsearchable_index_col tsvector;
UPDATE pgweb SET textsearchable_index_col =
to_tsvector (‘english’, coalesce(title,”) || * 7 || coalesce(body,”));

Then we create a GIN index to speed up the search:
CREATE INDEX textsearch_idx ON pgweb USING gin (textsearchable_index_col);
Now we are ready to perform a fast full text search:

SELECT title

FROM pgweb

WHERE textsearchable_index_col @@ to_tsquery(’create & table’)
ORDER BY last_mod_date DESC

LIMIT 10;

When using a separate column to store the t svector representation, it is necessary to create a trigger
to keep the t svector column current anytime title or body changes. Section 12.4.3 explains how
to do that.

One advantage of the separate-column approach over an expression index is that it is not necessary
to explicitly specify the text search configuration in queries in order to make use of the index. As
shown in the example above, the query can depend on default_text_search_config. Another
advantage is that searches will be faster, since it will not be necessary to redo the to_tsvector calls
to verify index matches. (This is more important when using a GiST index than a GIN index; see
Section 12.9.) The expression-index approach is simpler to set up, however, and it requires less disk
space since the t svector representation is not stored explicitly.

12.3. Controlling Text Search

To implement full text searching there must be a function to create a t svector from a document and
a tsquery from a user query. Also, we need to return results in a useful order, so we need a function
that compares documents with respect to their relevance to the query. It’s also important to be able to
display the results nicely. PostgreSQL provides support for all of these functions.

12.3.1. Parsing Documents

PostgreSQL provides the function to_tsvector for converting a document to the tsvector data
type.

to_tsvector ([config regconfig,] document text) returns tsvector

277

Chapter 12. Full Text Search

to_tsvector parses a textual document into tokens, reduces the tokens to lexemes, and returns a
tsvector which lists the lexemes together with their positions in the document. The document is
processed according to the specified or default text search configuration. Here is a simple example:

SELECT to_tsvector(’english’, "a fat cat sat on a mat - it ate a fat rats’

to_tsvector

In the example above we see that the resulting t svector does not contain the words a, on, or it, the
word rats became rat, and the punctuation sign — was ignored.

The to_tsvector function internally calls a parser which breaks the document text into tokens and
assigns a type to each token. For each token, a list of dictionaries (Section 12.6) is consulted, where
the list can vary depending on the token type. The first dictionary that recognizes the token emits one
or more normalized lexemes to represent the token. For example, rat s became rat because one of the
dictionaries recognized that the word rat s is a plural form of rat. Some words are recognized as stop
words (Section 12.6.1), which causes them to be ignored since they occur too frequently to be useful
in searching. In our example these are a, on, and it. If no dictionary in the list recognizes the token
then it is also ignored. In this example that happened to the punctuation sign — because there are in
fact no dictionaries assigned for its token type (Space symbols), meaning space tokens will never be
indexed. The choices of parser, dictionaries and which types of tokens to index are determined by the
selected text search configuration (Section 12.7). It is possible to have many different configurations in
the same database, and predefined configurations are available for various languages. In our example
we used the default configuration english for the English language.

The function setweight can be used to label the entries of a t svector with a given weight, where
a weight is one of the letters A, B, C, or D. This is typically used to mark entries coming from different
parts of a document, such as title versus body. Later, this information can be used for ranking of search
results.

Because to_tsvector(NULL) will return NULL, it is recommended to use coalesce whenever a
field might be null. Here is the recommended method for creating a tsvector from a structured
document:

UPDATE tt SET ti =
setweight (to_tsvector (coalesce(title,”)), ’'A") |
setweight (to_tsvector (coalesce (keyword,”)), 'B’) |
setweight (to_tsvector (coalesce (abstract,”)), 'C") ||
setweight (to_tsvector (coalesce (body,”)), 'D');

(
(
(
(

Here we have used setweight to label the source of each lexeme in the finished tsvector, and
then merged the labeled t svector values using the t svector concatenation operator | |. (Section
12.4.1 gives details about these operations.)

12.3.2. Parsing Queries

PostgreSQL provides the functions to_tsquery and plainto_tsquery for converting a query to
the t squery data type. to_tsquery offers access to more features than plainto_tsquery, but is
less forgiving about its input.

to_tsquery ([config regconfig,] querytext text) returns tsquery

278

Chapter 12. Full Text Search

to_tsquery creates a tsquery value from querytext, which must consist of single tokens sep-
arated by the Boolean operators &« (AND), | (OR) and ! (NOT). These operators can be grouped
using parentheses. In other words, the input to to_tsquery must already follow the general rules
for tsquery input, as described in Section 8.11. The difference is that while basic tsquery input
takes the tokens at face value, to_t squery normalizes each token to a lexeme using the specified or
default configuration, and discards any tokens that are stop words according to the configuration. For
example:

SELECT to_tsquery(’english’, ’'The & Fat & Rats’);
to_tsquery

As in basic tsquery input, weight(s) can be attached to each lexeme to restrict it to match only
tsvector lexemes of those weight(s). For example:

SELECT to_tsquery(’english’, ’'Fat | Rats:AB’);
to_tsquery

Also, » can be attached to a lexeme to specify prefix matching:

SELECT to_tsquery(’supern:*A & star:A*B’);
to_tsquery

"supern’ : A & ’'star’ :«xAB

Such a lexeme will match any word in a t svector that begins with the given string.

to_tsquery can also accept single-quoted phrases. This is primarily useful when the configuration
includes a thesaurus dictionary that may trigger on such phrases. In the example below, a thesaurus
contains the rule supernovae stars : sn:

SELECT to_tsquery (”’supernovae stars” & !crab’);
to_tsquery

Without quotes, to_tsquery will generate a syntax error for tokens that are not separated by an
AND or OR operator.

plainto_tsquery ([config regconfig,] querytext text) returns tsquery

plainto_tsquery transforms unformatted text querytext to t squery. The text is parsed and nor-
malized much as for to_tsvector, then the « (AND) Boolean operator is inserted between surviving
words.

Example:
SELECT plainto_tsquery (’english’, ’The Fat Rats’);

plainto_tsquery

Note that plainto_tsquery cannot recognize Boolean operators, weight labels, or prefix-match
labels in its input:

279

Chapter 12. Full Text Search

SELECT plainto_tsquery (’english’, ’The Fat & Rats:C’);
plainto_tsquery

Here, all the input punctuation was discarded as being space symbols.

12.3.3. Ranking Search Results

Ranking attempts to measure how relevant documents are to a particular query, so that when there are
many matches the most relevant ones can be shown first. PostgreSQL provides two predefined ranking
functions, which take into account lexical, proximity, and structural information; that is, they consider
how often the query terms appear in the document, how close together the terms are in the document,
and how important is the part of the document where they occur. However, the concept of relevancy
is vague and very application-specific. Different applications might require additional information
for ranking, e.g., document modification time. The built-in ranking functions are only examples. You
can write your own ranking functions and/or combine their results with additional factors to fit your
specific needs.

The two ranking functions currently available are:

ts_rank ([weights float4[],] vector tsvector,
query tsquery [, normalization integer]) returns float4

Standard ranking function.

ts_rank_cd ([weights float4[],] vector tsvector,

query tsquery [, normalization integer]) returns float4

This function computes the cover density ranking for the given document vector and query,
as described in Clarke, Cormack, and Tudhope’s "Relevance Ranking for One to Three Term
Queries" in the journal "Information Processing and Management", 1999.

This function requires positional information in its input. Therefore it will not work on “stripped”
tsvector values — it will always return zero.

For both these functions, the optional weights argument offers the ability to weigh word instances
more or less heavily depending on how they are labeled. The weight arrays specify how heavily to
weigh each category of word, in the order:

{D-weight, C-weight, B-weight, A-weight}
If no weights are provided, then these defaults are used:

{0.1, 0.2, 0.4, 1.0}

Typically weights are used to mark words from special areas of the document, like the title or an initial
abstract, so they can be treated with more or less importance than words in the document body.

Since a longer document has a greater chance of containing a query term it is reasonable to take
into account document size, e.g., a hundred-word document with five instances of a search word is
probably more relevant than a thousand-word document with five instances. Both ranking functions
take an integer normalization option that specifies whether and how a document’s length should

280

Chapter 12. Full Text Search

impact its rank. The integer option controls several behaviors, so it is a bit mask: you can specify one

or more behaviors using | (for example, 2 | 4).

+ 0 (the default) ignores the document length

« 1 divides the rank by 1 + the logarithm of the document length

+ 2 divides the rank by the document length

« 4 divides the rank by the mean harmonic distance between extents (this is implemented only by

ts_rank_cd)

8 divides the rank by the number of unique words in document
« 16 divides the rank by 1 + the logarithm of the number of unique words in document

« 32 divides the rank by itself + 1

If more than one flag bit is specified, the transformations are applied in the order listed.

It is important to note that the ranking functions do not use any global information, so it is impos-
sible to produce a fair normalization to 1% or 100% as sometimes desired. Normalization option 32
(rank/ (rank+1)) can be applied to scale all ranks into the range zero to one, but of course this is
just a cosmetic change; it will not affect the ordering of the search results.

Here is an example that selects only the ten highest-ranked matches:

SELECT title, ts_rank_cd(textsearch, query) AS rank
FROM apod, to_tsquery(’'neutrino| (dark & matter)’)

WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;

Neutrinos in the Sun

The Sudbury Neutrino Detector

A MACHO View of Galactic Dark Matter

Hot Gas and Dark Matter

The Virgo Cluster: Hot Plasma and Dark Matter
Rafting for Solar Neutrinos

NGC 4650A: Strange Galaxy and Dark Matter

Hot Gas and Dark Matter

Ice Fishing for Cosmic Neutrinos

Weak Lensing Distorts the Universe

This is the same example using normalized ranking:

SELECT title, ts_rank_cd(textsearch, query, 32

FROM apod, to_tsquery(’'neutrino| (dark & matter)

WHERE query Q@ textsearch
ORDER BY rank DESC
LIMIT 10;

Neutrinos in the Sun

The Sudbury Neutrino Detector

A MACHO View of Galactic Dark Matter

Hot Gas and Dark Matter

The Virgo Cluster: Hot Plasma and Dark Matter
Rafting for Solar Neutrinos

NGC 4650A: Strange Galaxy and Dark Matter

Hot Gas and Dark Matter

Ice Fishing for Cosmic Neutrinos

query

/% rank/ (rank+1l) =*/

14

_ — - - - - - - — 4 —

)

0
0
0

o O O O O

query

.756097569485493
.705882361190954
.668123210574724
0.65655958650282
.656301290640973
.655172410958162
.650072921219637
.617195790024749
.615384618911517

)

AS rank

281

Chapter 12. Full Text Search

Weak Lensing Distorts the Universe | 0.450010798361481

Ranking can be expensive since it requires consulting the tsvector of each matching document,
which can be I/O bound and therefore slow. Unfortunately, it is almost impossible to avoid since
practical queries often result in large numbers of matches.

12.3.4. Highlighting Results

To present search results it is ideal to show a part of each document and how it is related to the query.
Usually, search engines show fragments of the document with marked search terms. PostgreSQL
provides a function ts_headline that implements this functionality.

ts_headline ([config regconfig,] document text, query tsquery [, options text]) returns

ts_headline accepts a document along with a query, and returns an excerpt from the document in
which terms from the query are highlighted. The configuration to be used to parse the document can
be specified by config; if config is omitted, the default_text_search_config configuration
is used.

If an options string is specified it must consist of a comma-separated list of one or more
option=value pairs. The available options are:

« StartsSel, StopSel: the strings with which to delimit query words appearing in the document, to
distinguish them from other excerpted words. You must double-quote these strings if they contain
spaces or commas.

+ MaxWords, MinWords: these numbers determine the longest and shortest headlines to output.

+ ShortWord: words of this length or less will be dropped at the start and end of a headline. The
default value of three eliminates common English articles.

+ HighlightAll: Boolean flag; if t rue the whole document will be used as the headline, ignoring
the preceding three parameters.

+ MaxFragments: maximum number of text excerpts or fragments to display. The default value of
zero selects a non-fragment-oriented headline generation method. A value greater than zero selects
fragment-based headline generation. This method finds text fragments with as many query words
as possible and stretches those fragments around the query words. As a result query words are
close to the middle of each fragment and have words on each side. Each fragment will be of at
most MaxWords and words of length ShortWord or less are dropped at the start and end of each
fragment. If not all query words are found in the document, then a single fragment of the first
MinWords in the document will be displayed.

+ FragmentDelimiter: When more than one fragment is displayed, the fragments will be separated
by this string.

Any unspecified options receive these defaults:
StartSel=, StopSel=,

MaxWords=35, MinWords=15, ShortWord=3, HighlightAll=FALSE,
MaxFragments=0, FragmentDelimiter=" ... "

For example:

SELECT ts_headline(’english’,

282

Chapter 12. Full Text Search

"The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.’,
to_tsquery ('query & similarity’));
ts_headline
containing given query terms
and return them in order of their similarity to the
query.

SELECT ts_headline(’english’,

"The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.’,

to_tsquery (’query & similarity’),

"StartSel = <, StopSel = >');

ts_headline

containing given <query> terms
and return them in order of their <similarity> to the
<query>.

ts_headline uses the original document, not a t svector summary, so it can be slow and should
be used with care. A typical mistake is to call t s_headline for every matching document when only
ten documents are to be shown. SQL subqueries can help; here is an example:

SELECT id, ts_headline (body, g), rank
FROM (SELECT id, body, g, ts_rank_cd(ti, g) AS rank
FROM apod, to_tsquery(’stars’) g
WHERE ti @@ ¢
ORDER BY rank DESC
LIMIT 10) AS foo;

12.4. Additional Features

This section describes additional functions and operators that are useful in connection with text search.

12.4.1. Manipulating Documents

Section 12.3.1 showed how raw textual documents can be converted into tsvector values. Post-
greSQL also provides functions and operators that can be used to manipulate documents that are
already in t svector form.

283

Chapter 12. Full Text Search

tsvector || tsvector

The tsvector concatenation operator returns a vector which combines the lexemes and posi-
tional information of the two vectors given as arguments. Positions and weight labels are retained
during the concatenation. Positions appearing in the right-hand vector are offset by the largest
position mentioned in the left-hand vector, so that the result is nearly equivalent to the result
of performing to_tsvector on the concatenation of the two original document strings. (The
equivalence is not exact, because any stop-words removed from the end of the left-hand argu-
ment will not affect the result, whereas they would have affected the positions of the lexemes in
the right-hand argument if textual concatenation were used.)

One advantage of using concatenation in the vector form, rather than concatenating text before
applying to_tsvector, is that you can use different configurations to parse different sections
of the document. Also, because the setweight function marks all lexemes of the given vector
the same way, it is necessary to parse the text and do setweight before concatenating if you
want to label different parts of the document with different weights.

setweight (vector tsvector, weight "char") returns tsvector

setweight returns a copy of the input vector in which every position has been labeled with the
given weight, either A, B, C, or D. (D is the default for new vectors and as such is not displayed on
output.) These labels are retained when vectors are concatenated, allowing words from different
parts of a document to be weighted differently by ranking functions.

Note that weight labels apply to positions, not lexemes. If the input vector has been stripped of
positions then setweight does nothing.

length (vector tsvector) returns integer

Returns the number of lexemes stored in the vector.
strip (vector tsvector) returns tsvector
Returns a vector which lists the same lexemes as the given vector, but which lacks any position

or weight information. While the returned vector is much less useful than an unstripped vector
for relevance ranking, it will usually be much smaller.

12.4.2. Manipulating Queries

Section 12.3.2 showed how raw textual queries can be converted into tsquery values. PostgreSQL
also provides functions and operators that can be used to manipulate queries that are already in

tsquery form.

tsquery && tsquery

Returns the AND-combination of the two given queries.

tsquery || tsquery

Returns the OR-combination of the two given queries.

284

Chapter 12. Full Text Search

'l tsquery

Returns the negation (NOT) of the given query.

numnode (query tsquery) returns integer

Returns the number of nodes (lexemes plus operators) in a t squery. This function is useful to
determine if the query is meaningful (returns > 0), or contains only stop words (returns 0).
Examples:

SELECT numnode (plainto_tsquery (’the any’));
NOTICE: query contains only stopword(s) or doesn’t contain lexeme(s),
numnode

SELECT numnode (" foo & bar’::tsquery);
numnode

querytree (query tsquery) returns text

Returns the portion of a t squery that can be used for searching an index. This function is useful
for detecting unindexable queries, for example those containing only stop words or only negated
terms. For example:

SELECT querytree (to_tsquery ('’ !defined’));
querytree

12.4.2.1. Query Rewriting

The ts_rewrite family of functions search a given t squery for occurrences of a target subquery,
and replace each occurrence with a substitute subquery. In essence this operation is a tsquery-
specific version of substring replacement. A target and substitute combination can be thought of as a
query rewrite rule. A collection of such rewrite rules can be a powerful search aid. For example, you
can expand the search using synonyms (e.g., new york, big apple, nyc, gotham) or narrow the
search to direct the user to some hot topic. There is some overlap in functionality between this feature
and thesaurus dictionaries (Section 12.6.4). However, you can modify a set of rewrite rules on-the-fly
without reindexing, whereas updating a thesaurus requires reindexing to be effective.

ts_rewrite (query tsquery, target tsquery, substitute tsquery) returns tsquery

This form of ts_rewrite simply applies a single rewrite rule: target is replaced by
substitute wherever it appears in query. For example:

SELECT ts_rewrite(’a & b’::tsquery, ’'a’::tsquery, ’c’::tsquery);
ts_rewrite

285

Chapter 12. Full Text Search

ts_rewrite (query tsquery, select text) returns tsquery

This form of ts_rewrite accepts a starting query and a SQL select command, which is
given as a text string. The select must yield two columns of tsquery type. For each row of
the select result, occurrences of the first column value (the target) are replaced by the second
column value (the substitute) within the current guery value. For example:

CREATE TABLE aliases (t tsquery PRIMARY KEY, s tsquery);
INSERT INTO aliases VALUES('a’, ’'c’);

SELECT ts_rewrite(’a & b’ ::tsquery, ’SELECT t,s FROM aliases’);
ts_rewrite

Note that when multiple rewrite rules are applied in this way, the order of application can be
important; so in practice you will want the source query to ORDER BY some ordering key.

Let’s consider a real-life astronomical example. We’ll expand query supernovae using table-driven
rewriting rules:

CREATE TABLE aliases (t tsquery primary key, s tsquery);
INSERT INTO aliases VALUES (to_tsquery (’supernovae’), to_tsquery (’supernovaelsn’));

SELECT ts_rewrite(to_tsquery ('’ supernovae & crab’), ’'SELECT x FROM aliases’);
ts_rewrite

"crab’ & ('supernova’ | ’sn’)
We can change the rewriting rules just by updating the table:

UPDATE aliases
SET s = to_tsquery ('’ supernovae|sn & !nebulae’)
WHERE t = to_tsquery ('’ supernovae’);

SELECT ts_rewrite (to_tsquery (’supernovae & crab’), ’SELECT % FROM aliases’);
ts_rewrite

"crab’ & ('supernova’ | ’“sn’ & !’nebula’)

Rewriting can be slow when there are many rewriting rules, since it checks every rule for a possi-
ble match. To filter out obvious non-candidate rules we can use the containment operators for the
tsquery type. In the example below, we select only those rules which might match the original
query:

SELECT ts_rewrite(’a & b’ ::tsquery,
"SELECT t,s FROM aliases WHERE "a & b”::tsquery @> t’);
ts_rewrite

286

Chapter 12. Full Text Search

12.4.3. Triggers for Automatic Updates

When using a separate column to store the t svector representation of your documents, it is neces-
sary to create a trigger to update the t svector column when the document content columns change.
Two built-in trigger functions are available for this, or you can write your own.

tsvector_update_trigger (tsvector_column_name, config_name, text_column_name [, ...])

tsvector_update_trigger_column (tsvector_column_name, config_column_name, text_column_name

These trigger functions automatically compute a tsvector column from one or more textual
columns, under the control of parameters specified in the CREATE TRIGGER command. An example
of their use is:

CREATE TABLE messages (

title text,
body text,
tsv tsvector

)i

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
ON messages FOR EACH ROW EXECUTE PROCEDURE
tsvector_update_trigger (tsv, ’'pg_catalog.english’, title, body);

INSERT INTO messages VALUES ('title here’, ’the body text is here’);

SELECT * FROM messages;

title | body | tsv
,,,,,,,,,,,, T
title here | the body text is here | ’"bodi’:4 "text’:5 'titl’:1

SELECT title, body FROM messages WHERE tsv @@ to_tsquery(’'title & body’);
title | body

____________ e

title here | the body text is here

Having created this trigger, any change in title or body will automatically be reflected into tsv,
without the application having to worry about it.

The first trigger argument must be the name of the tsvector column to be updated. The second
argument specifies the text search configuration to be used to perform the conversion. For
tsvector_update_trigger, the configuration name is simply given as the second trigger
argument. It must be schema-qualified as shown above, so that the trigger behavior will not change
with changes in search_path. For tsvector_update_trigger_column, the second trigger
argument is the name of another table column, which must be of type regconfig. This allows a
per-row selection of configuration to be made. The remaining argument(s) are the names of textual
columns (of type text, varchar, or char). These will be included in the document in the order
given. NULL values will be skipped (but the other columns will still be indexed).

A limitation of these built-in triggers is that they treat all the input columns alike. To process columns
differently — for example, to weight title differently from body — it is necessary to write a custom
trigger. Here is an example using PL/pgSQL as the trigger language:

CREATE FUNCTION messages_trigger () RETURNS trigger AS $$
begin
new.tsv :=
setweight (to_tsvector ('pg_catalog.english’, coalesce(new.title,”)), "A") ||

287

Chapter 12. Full Text Search

setweight (to_tsvector (' pg_catalog.english’, coalesce(new.body,”)), ’'D’);
return new;
end
$$ LANGUAGE plpgsql;

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
ON messages FOR EACH ROW EXECUTE PROCEDURE messages_trigger();

Keep in mind that it is important to specify the configuration name explicitly when creating
tsvector values inside triggers, so that the column’s contents will not be affected by changes to
default_text_search_config. Failure to do this is likely to lead to problems such as search
results changing after a dump and reload.

12.4.4. Gathering Document Statistics

The function t s_stat is useful for checking your configuration and for finding stop-word candidates.

ts_stat (sglquery text, [weights text,]
OUT word text, OUT ndoc integer,
OUT nentry integer) returns setof record

sglquery is a text value containing an SQL query which must return a single t svector column.
ts_stat executes the query and returns statistics about each distinct lexeme (word) contained in the
tsvector data. The columns returned are

« word text — the value of a lexeme
+ ndoc integer — number of documents (t svectors) the word occurred in
* nentry integer — total number of occurrences of the word

If weights is supplied, only occurrences having one of those weights are counted.

For example, to find the ten most frequent words in a document collection:

SELECT x FROM ts_stat (' SELECT vector FROM apod’)
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

The same, but counting only word occurrences with weight A or B:
SELECT % FROM ts_stat (' SELECT vector FROM apod’, ’'ab’)

ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

12.5. Parsers

Text search parsers are responsible for splitting raw document text into tokens and identifying each
token’s type, where the set of possible types is defined by the parser itself. Note that a parser does

288

Chapter 12. Full Text Search

not modify the text at all — it simply identifies plausible word boundaries. Because of this limited
scope, there is less need for application-specific custom parsers than there is for custom dictionaries.
At present PostgreSQL provides just one built-in parser, which has been found to be useful for a wide

range of applications.

The built-in parser is named pg_catalog.default. It recognizes 23 token types:

Table 12-1. Default Parser’s Token Types

Alias Description Example
asciiword Word, all ASCII letters elephant

word Word, all letters mafiana

numword Word, letters and digits betal

asciihword Hyphenated word, all ASCII up-to-date

hword Hyphenated word, all letters légico-matematica
numhword Hyphenated word, letters and postgresgl-betal

digits

hword_asciipart

Hyphenated word part, all
ASCII

postgresqgl in the context
postgresqgl-betal

hword_part

Hyphenated word part, all
letters

légico or matematica in the
context 16gico-matematica

hword_numpart

Hyphenated word part, letters
and digits

betal in the context
postgresgl-betal

html

email Email address foolexample.com

protocol Protocol head http://

url URL example.com/stuff/index.]

host Host example.com

url_path URL path /stuff/index.html, in the
context of a URL

file File or path name /usr/local/foo.txt, if not
within a URL

sfloat Scientific notation -1.234e56

float Decimal notation -1.234

int Signed integer -1234

uint Unsigned integer 1234

version Version number 8.3.0

tag XML tag <a
href="dictionaries.html"

entity XML entity samp;

blank Space symbols (any whitespace or punctuation

not otherwise recognized)

Note: The parser’s notion of a “letter” is determined by the database’s locale setting, specifically
1c_ctype. Words containing only the basic ASCII letters are reported as a separate token type,
since it is sometimes useful to distinguish them. In most European languages, token types word

289

Chapter 12. Full Text Search

and asciiword should be treated alike.

It is possible for the parser to produce overlapping tokens from the same piece of text. As an example,
a hyphenated word will be reported both as the entire word and as each component:

SELECT alias, description, token FROM ts_debug(’ foo-bar-betal’);

alias | description | token
_________________ S
numhword | Hyphenated word, letters and digits | foo-bar-betal
hword_asciipart | Hyphenated word part, all ASCII | foo
blank | Space symbols | -
hword_asciipart | Hyphenated word part, all ASCII | bar
blank | Space symbols | -
hword_numpart | Hyphenated word part, letters and digits | betal

This behavior is desirable since it allows searches to work for both the whole compound word and for
components. Here is another instructive example:

SELECT alias, description, token FROM ts_debug(’http://example.com/stuff/index.html’);

alias | description | token
__________ e
protocol | Protocol head | http://
url | URL | example.com/stuff/index.html
host | Host | example.com
url_path | URL path | /stuff/index.html

12.6. Dictionaries

Dictionaries are used to eliminate words that should not be considered in a search (stop words), and
to normalize words so that different derived forms of the same word will match. A successfully nor-
malized word is called a lexeme. Aside from improving search quality, normalization and removal of
stop words reduce the size of the t svector representation of a document, thereby improving perfor-
mance. Normalization does not always have linguistic meaning and usually depends on application
semantics.

Some examples of normalization:

 Linguistic - Ispell dictionaries try to reduce input words to a normalized form; stemmer dictionaries
remove word endings
« URL locations can be canonicalized to make equivalent URLs match:
« http://www.pgsql.ru/db/mw/index.html
« http://www.pgsql.ru/db/mw/
+ http://www.pgsql.ru/db/../db/mw/index.html

« Color names can be replaced by their hexadecimal values, e.g., red, green, blue, magenta
-> FF0000, OOFF00, OOOOFF, FFOOFF

« Ifindexing numbers, we can remove some fractional digits to reduce the range of possible numbers,
so for example 3.14159265359, 3.1415926, 3.14 will be the same after normalization if only two
digits are kept after the decimal point.

290

Chapter 12. Full Text Search

A dictionary is a program that accepts a token as input and returns:

« an array of lexemes if the input token is known to the dictionary (notice that one token can produce
more than one lexeme)

« an empty array if the dictionary knows the token, but it is a stop word

» NULL if the dictionary does not recognize the input token

PostgreSQL provides predefined dictionaries for many languages. There are also several predefined
templates that can be used to create new dictionaries with custom parameters. Each predefined dictio-
nary template is described below. If no existing template is suitable, it is possible to create new ones;
see the contrib/ area of the PostgreSQL distribution for examples.

A text search configuration binds a parser together with a set of dictionaries to process the parser’s
output tokens. For each token type that the parser can return, a separate list of dictionaries is specified
by the configuration. When a token of that type is found by the parser, each dictionary in the list
is consulted in turn, until some dictionary recognizes it as a known word. If it is identified as a
stop word, or if no dictionary recognizes the token, it will be discarded and not indexed or searched
for. The general rule for configuring a list of dictionaries is to place first the most narrow, most
specific dictionary, then the more general dictionaries, finishing with a very general dictionary, like a
Snowball stemmer or simple, which recognizes everything. For example, for an astronomy-specific
search (astro_en configuration) one could bind token type asciiword (ASCII word) to a synonym
dictionary of astronomical terms, a general English dictionary and a Snowball English stemmer:

ALTER TEXT SEARCH CONFIGURATION astro_en
ADD MAPPING FOR asciiword WITH astrosyn, english_ispell, english_stem;

12.6.1. Stop Words

Stop words are words that are very common, appear in almost every document, and have no discrim-
ination value. Therefore, they can be ignored in the context of full text searching. For example, every
English text contains words like a and the, so it is useless to store them in an index. However, stop
words do affect the positions in t svector, which in turn affect ranking:

SELECT to_tsvector(’english’,’in the list of stop words’);
to_tsvector

"list’:3 ’stop’:5 "word’ :6

The missing positions 1,2,4 are because of stop words. Ranks calculated for documents with and
without stop words are quite different:

SELECT ts_rank_cd (to_tsvector(’english’,’in the list of stop words’), to_tsquery(’list
ts_rank_cd

SELECT ts_rank_cd (to_tsvector(’english’,’1list stop words’), to_tsquery(’list & stop’));
ts_rank_cd

291

Chapter 12. Full Text Search

It is up to the specific dictionary how it treats stop words. For example, ispell dictionaries first
normalize words and then look at the list of stop words, while Snowball stemmers first check the list
of stop words. The reason for the different behavior is an attempt to decrease noise.

12.6.2. Simple Dictionary

The simple dictionary template operates by converting the input token to lower case and checking
it against a file of stop words. If it is found in the file then an empty array is returned, causing the
token to be discarded. If not, the lower-cased form of the word is returned as the normalized lexeme.
Alternatively, the dictionary can be configured to report non-stop-words as unrecognized, allowing
them to be passed on to the next dictionary in the list.

Here is an example of a dictionary definition using the simple template:

CREATE TEXT SEARCH DICTIONARY public.simple_dict (
TEMPLATE = pg_catalog.simple,
STOPWORDS = english

)i

Here, english is the base name of a file of stop words. The file’s full name will be
$SHAREDIR/tsearch_data/english.stop, where $SHAREDIR means the PostgreSQL
installation’s shared-data directory, often /usr/local/share/postgresgl (use pg_config
—-sharedir to determine it if you’re not sure). The file format is simply a list of words, one per
line. Blank lines and trailing spaces are ignored, and upper case is folded to lower case, but no other
processing is done on the file contents.

Now we can test our dictionary:

SELECT ts_lexize('public.simple_dict’,’YeS’);
ts_lexize

SELECT ts_lexize('public.simple_dict’,’The’);
ts_lexize

We can also choose to return NULL, instead of the lower-cased word, if it is not found in the stop words
file. This behavior is selected by setting the dictionary’s Accept parameter to false. Continuing the
example:

ALTER TEXT SEARCH DICTIONARY public.simple_dict (Accept = false);

SELECT ts_lexize('public.simple_dict’,’YeS’);
ts_lexize

SELECT ts_lexize('public.simple_dict’,’The’);
ts_lexize

292

Chapter 12. Full Text Search

With the default setting of Accept = true, it is only useful to place a simple dictionary at the end
of a list of dictionaries, since it will never pass on any token to a following dictionary. Conversely,
Accept = false is only useful when there is at least one following dictionary.

Caution

Most types of dictionaries rely on configuration files, such as files of stop words.
These files must be stored in UTF-8 encoding. They will be translated to the
actual database encoding, if that is different, when they are read into the server.

Caution

Normally, a database session will read a dictionary configuration file only once,
when it is first used within the session. If you modify a configuration file and
want to force existing sessions to pick up the new contents, issue an ALTER
TEXT SEARCH DICTIONARY command on the dictionary. This can be a “dummy”
update that doesn’t actually change any parameter values.

12.6.3. Synonym Dictionary

This dictionary template is used to create dictionaries that replace a word with a synonym. Phrases
are not supported (use the thesaurus template (Section 12.6.4) for that). A synonym dictionary can
be used to overcome linguistic problems, for example, to prevent an English stemmer dictionary
from reducing the word ’Paris’ to ’pari’. It is enough to have a Paris paris line in the synonym
dictionary and put it before the english_stem dictionary. For example:

SELECT * FROM ts_debug(’english’, ’'Paris’);

alias | description | token | dictionaries | dictionary | lexemes
77777777777 B s e i
asciiword | Word, all ASCII | Paris | {english_stem} | english_stem | {pari}

CREATE TEXT SEARCH DICTIONARY my_synonym (
TEMPLATE = synonym,
SYNONYMS = my_synonyms

)i

ALTER TEXT SEARCH CONFIGURATION english
ALTER MAPPING FOR asciiword
WITH my_synonym, english_stem;

SELECT * FROM ts_debug(’english’, ’'Paris’);

alias | description | token | dictionaries | dictionary | lexemes
77777777777 Bt e et
asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {paris}

The only parameter required by the synonym template is SYNONYMS, which is the base name
of its configuration file — my_synonyms in the above example. The file’s full name will be
$SHAREDIR/tsearch_data/my_synonyms.syn (where $SHAREDIR means the PostgreSQL
installation’s shared-data directory). The file format is just one line per word to be substituted, with

293

Chapter 12. Full Text Search

the word followed by its synonym, separated by white space. Blank lines and trailing spaces are
ignored.

The synonym template also has an optional parameter CaseSensitive, which defaults to false.
When CaseSensitive is false, words in the synonym file are folded to lower case, as are input
tokens. When it is t rue, words and tokens are not folded to lower case, but are compared as-is.

12.6.4. Thesaurus Dictionary

A thesaurus dictionary (sometimes abbreviated as TZ) is a collection of words that includes infor-
mation about the relationships of words and phrases, i.e., broader terms (BT), narrower terms (NT),
preferred terms, non-preferred terms, related terms, etc.

Basically a thesaurus dictionary replaces all non-preferred terms by one preferred term and, option-
ally, preserves the original terms for indexing as well. PostgreSQL’s current implementation of the
thesaurus dictionary is an extension of the synonym dictionary with added phrase support. A the-
saurus dictionary requires a configuration file of the following format:

this is a comment
sample word(s) : indexed word(s)
more sample word(s) : more indexed word(s)

where the colon (:) symbol acts as a delimiter between a a phrase and its replacement.

A thesaurus dictionary uses a subdictionary (which is specified in the dictionary’s configuration) to
normalize the input text before checking for phrase matches. It is only possible to select one subdic-
tionary. An error is reported if the subdictionary fails to recognize a word. In that case, you should
remove the use of the word or teach the subdictionary about it. You can place an asterisk (x) at the
beginning of an indexed word to skip applying the subdictionary to it, but all sample words must be
known to the subdictionary.

The thesaurus dictionary chooses the longest match if there are multiple phrases matching the input,
and ties are broken by using the last definition.

Specific stop words recognized by the subdictionary cannot be specified; instead use 2 to mark the
location where any stop word can appear. For example, assuming that a and the are stop words
according to the subdictionary:

? one ? two : SWsw

matches a one the two and the one a two; both would be replaced by swsw.

Since a thesaurus dictionary has the capability to recognize phrases it must remember its state and
interact with the parser. A thesaurus dictionary uses these assignments to check if it should handle
the next word or stop accumulation. The thesaurus dictionary must be configured carefully. For ex-
ample, if the thesaurus dictionary is assigned to handle only the asciiword token, then a thesaurus
dictionary definition like one 7 will not work since token type uint is not assigned to the thesaurus
dictionary.

Caution

Thesauruses are used during indexing so any change in the thesaurus dictio-
nary’s parameters requires reindexing. For most other dictionary types, small
changes such as adding or removing stopwords does not force reindexing.

294

Chapter 12. Full Text Search

12.6.4.1. Thesaurus Configuration

To define a new thesaurus dictionary, use the thesaurus template. For example:

CREATE TEXT SEARCH DICTIONARY thesaurus_simple (
TEMPLATE = thesaurus,
DictFile = mythesaurus,
Dictionary = pg_catalog.english_stem

)i

Here:

+ thesaurus_simple is the new dictionary’s name

+ mythesaurus is the base name of the thesaurus configuration file. (Its full name will be
$SHAREDIR/tsearch_data/mythesaurus.ths, where $SHAREDIR means the installation
shared-data directory.)

* pg_catalog.english_stem is the subdictionary (here, a Snowball English stemmer) to use for
thesaurus normalization. Notice that the subdictionary will have its own configuration (for example,
stop words), which is not shown here.

Now it is possible to bind the thesaurus dictionary thesaurus_simple to the desired token types in
a configuration, for example:

ALTER TEXT SEARCH CONFIGURATION russian
ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
WITH thesaurus_simple;

12.6.4.2. Thesaurus Example

Consider a simple astronomical thesaurus thesaurus_astro, which contains some astronomical
word combinations:

supernovae stars : sn
crab nebulae : crab

Below we create a dictionary and bind some token types to an astronomical thesaurus and English
stemmer:

CREATE TEXT SEARCH DICTIONARY thesaurus_astro (
TEMPLATE = thesaurus,
DictFile = thesaurus_astro,
Dictionary = english_stem
)i
ALTER TEXT SEARCH CONFIGURATION russian
ALTER MAPPING FOR asciiword, asciihword, hword_asciipart

WITH thesaurus_astro, english_stem;

Now we can see how it works. ts_1lexize is not very useful for testing a thesaurus, because it treats
its input as a single token. Instead we can use plainto_tsquery and to_tsvector which will
break their input strings into multiple tokens:

SELECT plainto_tsquery (’ supernova star’);

295

Chapter 12. Full Text Search

plainto_tsquery

SELECT to_tsvector (' supernova star’);
to_tsvector

In principle, one can use to_tsquery if you quote the argument:

SELECT to_tsquery (”’supernova star”’);
to_tsquery

Notice that supernova star matches supernovae stars in thesaurus_astro because we
specified the english_stem stemmer in the thesaurus definition. The stemmer removed the e and s.

To index the original phrase as well as the substitute, just include it in the right-hand part of the
definition:

supernovae stars : sn supernovae stars

SELECT plainto_tsquery ('’ supernova star’);
plainto_tsquery

"sn’ & ’supernova’ & ’'star’

12.6.5. Ispell Dictionary

The Ispell dictionary template supports morphological dictionaries, which can normalize many dif-
ferent linguistic forms of a word into the same lexeme. For example, an English Ispell dictionary can
match all declensions and conjugations of the search term bank, e.g., banking, banked, banks,
banks’, and bank’ s.

The standard PostgreSQL distribution does not include any Ispell configuration files. Dictionaries
for a large number of languages are available from Ispell'. Also, some more modern dictionary file
formats are supported — MySpell* (OO < 2.0.1) and Hunspell’ (OO >=2.0.2). A large list of dictio-
naries is available on the OpenOffice Wiki®.

To create an Ispell dictionary, use the built-in ispel1 template and specify several parameters:

CREATE TEXT SEARCH DICTIONARY english_ispell (
TEMPLATE = ispell,
DictFile = english,
AffFile = english,
StopWords = english
)i

Eal e e

http://ficus-www.cs.ucla.edu/geoff/ispell.html
http://en.wikipedia.org/wiki/MySpell
http://sourceforge.net/projects/hunspell
http://wiki.services.openoffice.org/wiki/Dictionaries

296

Chapter 12. Full Text Search

Here, DictFile, AffFile, and StopWords specify the base names of the dictionary, affixes, and
stop-words files. The stop-words file has the same format explained above for the simple dictionary
type. The format of the other files is not specified here but is available from the above-mentioned web
sites.

Ispell dictionaries usually recognize a limited set of words, so they should be followed by another
broader dictionary; for example, a Snowball dictionary, which recognizes everything.

Ispell dictionaries support splitting compound words; a useful feature. Notice that the affix file should
specify a special flag using the compoundwords controlled statement that marks dictionary words
that can participate in compound formation:

compoundwords controlled z
Here are some examples for the Norwegian language:

SELECT ts_lexize('norwegian_ispell’, ’overbuljongterningpakkmesterassistent’);
{over,buljong,terning, pakk, mester,assistent}

SELECT ts_lexize('norwegian_ispell’, ’sjokoladefabrikk’);
{sjokoladefabrikk, sjokolade, fabrikk}

Note: MySpell does not support compound words. Hunspell has sophisticated support for com-
pound words. At present, PostgreSQL implements only the basic compound word operations of
Hunspell.

12.6.6. Snowball Dictionary

The Snowball dictionary template is based on a project by Martin Porter, inventor of the popular
Porter’s stemming algorithm for the English language. Snowball now provides stemming algorithms
for many languages (see the Snowball site’ for more information). Each algorithm understands how
to reduce common variant forms of words to a base, or stem, spelling within its language. A Snowball
dictionary requires a 1anguage parameter to identify which stemmer to use, and optionally can spec-
ify a stopword file name that gives a list of words to eliminate. (PostgreSQL’s standard stopword
lists are also provided by the Snowball project.) For example, there is a built-in definition equivalent
to

CREATE TEXT SEARCH DICTIONARY english_stem (
TEMPLATE = snowball,
Language = english,
StopWords = english

)i

The stopword file format is the same as already explained.

A Snowball dictionary recognizes everything, whether or not it is able to simplify the word, so it
should be placed at the end of the dictionary list. It is useless to have it before any other dictionary
because a token will never pass through it to the next dictionary.

5. http://snowball.tartarus.org

297

Chapter 12. Full Text Search

12.7. Configuration Example

A text search configuration specifies all options necessary to transform a document into a t svector:
the parser to use to break text into tokens, and the dictionaries to use to transform each token into a
lexeme. Every call of to_tsvector or to_tsquery needs a text search configuration to perform its
processing. The configuration parameter default_text_search_config specifies the name of the default
configuration, which is the one used by text search functions if an explicit configuration parameter is
omitted. It can be set in postgresqgl.conf, or set for an individual session using the SET command.

Several predefined text search configurations are available, and you can create custom configurations
easily. To facilitate management of text search objects, a set of SQL commands is available, and there
are several psql commands that display information about text search objects (Section 12.10).

As an example we will create a configuration pg, starting by duplicating the built-in english con-
figuration:

CREATE TEXT SEARCH CONFIGURATION public.pg (COPY = pg_catalog.english);

We will use a PostgreSQL-specific synonym list and store it in
$SHAREDIR/tsearch_data/pg_dict.syn. The file contents look like:

postgres P9
prgsql rg
postgresgl pg

We define the synonym dictionary like this:

CREATE TEXT SEARCH DICTIONARY pg_dict (
TEMPLATE = synonym,
SYNONYMS = pg_dict

)

Next we register the Ispell dictionary english_ispell, which has its own configuration files:

CREATE TEXT SEARCH DICTIONARY english_ispell (
TEMPLATE = ispell,
DictFile = english,
AffFile = english,
StopWords = english
)i

Now we can set up the mappings for words in configuration pg:
ALTER TEXT SEARCH CONFIGURATION pg
ALTER MAPPING FOR asciiword, asciihword, hword_asciipart,
word, hword, hword_part
WITH pg_dict, english_ispell, english_stem;

We choose not to index or search some token types that the built-in configuration does handle:

ALTER TEXT SEARCH CONFIGURATION pg
DROP MAPPING FOR email, url, url_path, sfloat, float;

Now we can test our configuration:

298

Chapter 12. Full Text Search

SELECT = FROM ts_debug (’'public.pg’, '

PostgreSQL, the highly scalable, SQL compliant, open source object-relational
database management system, is now undergoing beta testing of the next
version of our software.

")

The next step is to set the session to use the new configuration, which was created in the public

schema:
=> \dF
List of text search configurations
Schema | Name | Description
_________ e
public | pg

SET default_text_search_config = ’"public.pg’;
SET

SHOW default_text_search_config;
default_text_search_config

public.pg

12.8. Testing and Debugging Text Search

The behavior of a custom text search configuration can easily become confusing. The functions de-
scribed in this section are useful for testing text search objects. You can test a complete configuration,
or test parsers and dictionaries separately.

12.8.1. Configuration Testing

The function ts_debug allows easy testing of a text search configuration.

ts_debug ([config regconfig,] document text,
OUT alias text,
OUT description text,
OUT token text,
OUT dictionaries regdictionaryl[],
OUT dictionary regdictionary,
OUT lexemes text[])
returns setof record

ts_debug displays information about every token of document as produced by the parser
and processed by the configured dictionaries. It uses the configuration specified by config, or
default_text_search_config if that argument is omitted.

ts_debug returns one row for each token identified in the text by the parser. The columns returned
are

299

Chapter 12. Full Text Search

alias text — short name of the token type
description text — description of the token type

token text — text of the token

type

if none did; an empty array ({ }) means it was recognized as a stop word

Here is a simple example:

SELECT x FROM ts_debug(’english’,’a fat cat sat on a mat - it ate a fat rats’);
alias | description | token | dictionaries | dictionary | lexemes

——————————— e S st S

asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}

blank | Space symbols \ | {} |

asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}

blank | Space symbols | | {} |

asciiword | Word, all ASCII | cat | {english_stem} | english_stem | {cat}

blank | Space symbols \ [{} |

asciiword | Word, all ASCII | sat | {english_stem} | english_stem | {sat}

blank | Space symbols \ | {} |

asciiword | Word, all ASCII | on | {english_stem} | english_stem | {}

blank | Space symbols \ | {} |

asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}

blank | Space symbols \ | {} |

asciiword | Word, all ASCII | mat | {english_stem} | english_stem | {mat}

blank | Space symbols | | {} |

blank | Space symbols | - | {} |

asciiword | Word, all ASCII | it | {english_stem} | english_stem | {}

blank | Space symbols \ I {} |

asciiword | Word, all ASCII | ate | {english_stem} | english_stem | {ate}

blank | Space symbols | | {} |

asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}

blank | Space symbols | | {} |

asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}

blank | Space symbols \ | {} |

asciiword | Word, all ASCII | rats | {english_stem} | english_stem | {rat}

dictionaries regdictionary[] — the dictionaries selected by the configuration for this token

dictionary regdictionary — the dictionary that recognized the token, or NULL if none did
lexemes text [] — the lexeme(s) produced by the dictionary that recognized the token, or NULL

For a more extensive demonstration, we first create a public.english configuration and Ispell

dictionary for the English language:

CREATE TEXT SEARCH CONFIGURATION public.english

CREATE TEXT SEARCH DICTIONARY english_ispell

TEMPLATE = ispell,

DictFile = english,
AffFile = english,
StopWords = english

)

(COPY

(

pg_catalog.english);

ALTER TEXT SEARCH CONFIGURATION public.english

ALTER MAPPING FOR asciiword WITH english_ispell, english_stem;

300

Chapter 12. Full Text Search

SELECT % FROM ts_debug(’'public.english’,’The Brightest supernovaes’);

alias | description | token | dictionaries
——————————— e et e
asciiword | Word, all ASCII | The | {english_ispell,english_stem}
blank | Space symbols | | {}
asciiword | Word, all ASCII | Brightest | {english_ispell,english_stem}
blank | Space symbols | | {}
asciiword | Word, all ASCII | supernovaes | {english_ispell,english_stem}

In this example, the word Brightest was recognized by the parser as an ASCII word (alias
asciiword). For this token type the dictionary list is english_ispell and english_stem.
The word was recognized by english_ispell, which reduced it to the noun bright. The word
supernovaes is unknown to the english_ispell dictionary so it was passed to the next
dictionary, and, fortunately, was recognized (in fact, english_stem is a Snowball dictionary which
recognizes everything; that is why it was placed at the end of the dictionary list).

The word The was recognized by the english_ispell dictionary as a stop word (Section 12.6.1)
and will not be indexed. The spaces are discarded too, since the configuration provides no dictionaries
at all for them.

You can reduce the width of the output by explicitly specifying which columns you want to see:

SELECT alias, token, dictionary, lexemes
FROM ts_debug (’public.english’,’The Brightest supernovaes’);

alias | token | dictionary | lexemes
——————————— T T
asciiword | The | english_ispell | {}
blank | | |
asciiword | Brightest | english_ispell | {bright}
blank | | |
asciiword | supernovaes | english_stem | {supernova}

12.8.2. Parser Testing

The following functions allow direct testing of a text search parser.

ts_parse (parser_name text, document text,

OUT tokid integer, OUT token text) returns setof record
ts_parse (parser_oid oid, document text,

OUT tokid integer, OUT token text) returns setof record

ts_parse parses the given document and returns a series of records, one for each token produced
by parsing. Each record includes a tokid showing the assigned token type and a token which is the
text of the token. For example:

SELECT % FROM ts_parse(’'default’, ’123 - a number’);
tokid | token

_______ e
22 | 123
12 |
12 | -
1] a
12 |

301

Chapter 12. Full Text Search

1 | number

ts_token_type (parser_name text, OUT tokid integer,

OUT alias text, OUT description text) returns setof record
ts_token_type (parser_oid oid, OUT tokid integer,

OUT alias text, OUT description text) returns setof record

ts_token_type returns a table which describes each type of token the specified parser can recog-
nize. For each token type, the table gives the integer t ok id that the parser uses to label a token of that
type, the alias that names the token type in configuration commands, and a short description.
For example:

SELECT % FROM ts_token_type ('default’);

tokid | alias | description
_______ o
1 | asciiword | Word, all ASCII
2 | word | Word, all letters
3 | numword | Word, letters and digits
4 | email | Email address
5 | url | URL
6 | host | Host
7 | sfloat | Scientific notation
8 | version | Version number
9 | hword_numpart | Hyphenated word part, letters and digits
10 | hword_part | Hyphenated word part, all letters
11 | hword_asciipart | Hyphenated word part, all ASCII
12 | blank | Space symbols
13 | tag | XML tag
14 | protocol | Protocol head
15 | numhword | Hyphenated word, letters and digits
16 | asciihword | Hyphenated word, all ASCII
17 | hword | Hyphenated word, all letters
18 | url_path | URL path
19 | file | File or path name
20 | float | Decimal notation
21 | int | Signed integer
22 | uint | Unsigned integer
23 | entity | XML entity

12.8.3. Dictionary Testing
The ts_lexize function facilitates dictionary testing.

ts_lexize (dict regdictionary, token text) returns text]]

ts_lexize returns an array of lexemes if the input token is known to the dictionary, or an empty
array if the token is known to the dictionary but it is a stop word, or NULL if it is an unknown word.

Examples:

302

Chapter 12. Full Text Search

SELECT ts_lexize(’english_stem’, ’stars’);
ts_lexize

SELECT ts_lexize(’english_stem’, "a’);
ts_lexize

Note: The ts_lexize function expects a single token, not text. Here is a case where this can be
confusing:

SELECT ts_lexize (’thesaurus_astro’,’supernovae stars’) is null;
?column?

The thesaurus dictionary thesaurus_astro does know the phrase supernovae stars, but
ts_lexize fails since it does not parse the input text but treats it as a single token. Use
plainto_tsquery Or to_tsvector to test thesaurus dictionaries, for example:

SELECT plainto_tsquery (’ supernovae stars’);
plainto_tsquery

12.9. GiST and GIN Index Types

There are two kinds of indexes that can be used to speed up full text searches. Note that indexes are
not mandatory for full text searching, but in cases where a column is searched on a regular basis, an
index is usually desirable.

CREATE INDEX name ON table USING gist (column) ;

Creates a GiST (Generalized Search Tree)-based index. The column can be of tsvector or
tsquery type.

CREATE INDEX name ON table USING gin (column) ;

Creates a GIN (Generalized Inverted Index)-based index. The column must be of tsvector
type.

There are substantial performance differences between the two index types, so it is important to un-
derstand their characteristics.

303

Chapter 12. Full Text Search

A GiST index is lossy, meaning that the index may produce false matches, and it is necessary to
check the actual table row to eliminate such false matches. (PostgreSQL does this automatically when
needed.) GiST indexes are lossy because each document is represented in the index by a fixed-length
signature. The signature is generated by hashing each word into a random bit in an n-bit string, with
all these bits OR-ed together to produce an n-bit document signature. When two words hash to the
same bit position there will be a false match. If all words in the query have matches (real or false)
then the table row must be retrieved to see if the match is correct.

Lossiness causes performance degradation due to unnecessary fetches of table records that turn out
to be false matches. Since random access to table records is slow, this limits the usefulness of GiST
indexes. The likelihood of false matches depends on several factors, in particular the number of unique
words, so using dictionaries to reduce this number is recommended.

GIN indexes are not lossy for standard queries, but their performance depends logarithmically on
the number of unique words. (However, GIN indexes store only the words (lexemes) of tsvector
values, and not their weight labels. Thus a table row recheck is needed when using a query that
involves weights.)

In choosing which index type to use, GiST or GIN, consider these performance differences:

« GIN index lookups are about three times faster than GiST

« GIN indexes take about three times longer to build than GiST

« GIN indexes are moderately slower to update than GiST indexes, but about 10 times slower if
fast-update support was disabled (see Section 52.3.1 for details)

+ GIN indexes are two-to-three times larger than GiST indexes

As a rule of thumb, GIN indexes are best for static data because lookups are faster. For dynamic data,
GiST indexes are faster to update. Specifically, GiST indexes are very good for dynamic data and fast
if the number of unique words (lexemes) is under 100,000, while GIN indexes will handle 100,000+
lexemes better but are slower to update.

Note that GIN index build time can often be improved by increasing maintenance_work_mem, while
GiST index build time is not sensitive to that parameter.

Partitioning of big collections and the proper use of GiST and GIN indexes allows the implemen-
tation of very fast searches with online update. Partitioning can be done at the database level using
table inheritance, or by distributing documents over servers and collecting search results using the
contrib/dblink extension module. The latter is possible because ranking functions use only local
information.

12.10. psql Support

Information about text search configuration objects can be obtained in psql using a set of commands:

\dF{d,p,t}[+] [PATTERN]

An optional + produces more details.

The optional parameter PATTERN can be the name of a text search object, optionally schema-qualified.
If PATTERN is omitted then information about all visible objects will be displayed. PATTERN can be a
regular expression and can provide separate patterns for the schema and object names. The following
examples illustrate this:

304

Chapter 12. Full Text Search

=> \dF *fulltextx*
List of text search configurations
Schema | Name | Description
,,,,,,,, e
public | fulltext_cfg |

=> \dF *.fulltext=*
List of text search configurations

Schema | Name | Description
__________ e
fulltext | fulltext_cfg |

public | fulltext_cfg |

The available commands are:

\dF [+] [PATTERN]

List text search configurations (add + for more detail).

=> \dF russian
List of text search configurations
Schema | Name | Description
____________ +_________+____________________________________

pg_catalog | russian | configuration for russian language

=> \dF+ russian
Text search configuration "pg_catalog.russian"
Parser: "pg_catalog.default"

Token | Dictionaries
asciihword english_stem
asciiword english_stem
email simple
float simple
host simple
hword russian_stem

hword_asciipart english_stem

hword_numpart

+

\

\

\

file | simple

\

\

\

\

| simple
\

\

\

\

\

\

\

\

\

\

hword_part russian_stem
int simple
numhword simple
numword simple
sfloat simple
uint simple
url simple
url_path simple
version simple
word russian_stem

\dFd[+] [PATTERN]

List text search dictionaries (add + for more detail).
=> \dFd
List of text search dictionaries

Schema | Name | Description
____________ +_________________+___.

305

Chapter 12. Full Text Search

pg_catalog | danish_stem | snowball stemmer for danish language
pg_catalog | dutch_stem | snowball stemmer for dutch language
pg_catalog | english_stem | snowball stemmer for english language
pg_catalog | finnish_stem | snowball stemmer for finnish language
pg_catalog | french_stem | snowball stemmer for french language
pg_catalog | german_stem | snowball stemmer for german language
pg_catalog | hungarian_stem | snowball stemmer for hungarian language
pg_catalog | italian_stem | snowball stemmer for italian language
pg_catalog | norwegian_stem | snowball stemmer for norwegian language
pg_catalog | portuguese_stem | snowball stemmer for portuguese language
pg_catalog | romanian_stem | snowball stemmer for romanian language
pg_catalog | russian_stem | snowball stemmer for russian language
pg_catalog | simple | simple dictionary: just lower case and check for
pg_catalog | spanish_stem | snowball stemmer for spanish language
pg_catalog | swedish_stem | snowball stemmer for swedish language
pg_catalog | turkish_stem | snowball stemmer for turkish language
\dFp[+] [PATTERN]

List text search parsers (add + for more detail).

=> \dFp
List of text search parsers

Schema | Name | Description
____________ S
pg_catalog | default | default word parser
=> \dFp+

Text search parser "pg_catalog.default"

Method | Function Description

Start parse prsd_start

Get next token prsd_nexttoken
End parse
Get headline

Get token types

prsd_end
prsd_headline
prsd_lextype

Token types for parser "pg_catalog.default"

Token name

Description

_________________ o
asciihword | Hyphenated word, all ASCII

asciiword | Word, all ASCII

blank | Space symbols

email | Email address

entity | XML entity

file | File or path name

float | Decimal notation

host | Host

hword | Hyphenated word, all letters
hword_asciipart | Hyphenated word part, all ASCII
hword_numpart | Hyphenated word part, letters and digits
hword_part | Hyphenated word part, all letters

int | Signed integer

numhword | Hyphenated word, letters and digits
numword | Word, letters and digits

protocol | Protocol head

sfloat | Scientific notation

tag | XML tag

uint | Unsigned integer

306

stoj

Chapter 12. Full Text Search

url | URL

url_path | URL path

version | Version number
word | Word, all letters
(23 rows)

\dFt[+] [PATTERN]

List text search templates (add + for more detail).

=> \dFt
List of text search templates

Schema | Name | Description
____________ o
pg_catalog | ispell | ispell dictionary
pg_catalog | simple | simple dictionary: just lower case and check for stopword
pg_catalog | snowball | snowball stemmer
pg_catalog | synonym | synonym dictionary: replace word by its synonym
pg_catalog | thesaurus | thesaurus dictionary: phrase by phrase substitution

12.11. Limitations

The current limitations of PostgreSQL’s text search features are:

+ The length of each lexeme must be less than 2K bytes

« The length of a t svector (lexemes + positions) must be less than 1 megabyte

« The number of lexemes must be less than 2%

+ Position values in t svector must be greater than 0 and no more than 16,383

« No more than 256 positions per lexeme

+ The number of nodes (lexemes + operators) in a t squery must be less than 32,768

For comparison, the PostgreSQL 8.1 documentation contained 10,441 unique words, a total of
335,420 words, and the most frequent word “postgresql” was mentioned 6,127 times in 655
documents.

Another example — the PostgreSQL mailing list archives contained 910,989 unique words with
57,491,343 lexemes in 461,020 messages.

12.12. Migration from Pre-8.3 Text Search

Applications that used the contrib/tsearch2 add-on module for text searching will need some
adjustments to work with the built-in features:

» Some functions have been renamed or had small adjustments in their argument lists, and all of
them are now in the pg_catalog schema, whereas in a previous installation they would have been
in public or another non-system schema. There is a new version of contrib/tsearch?2 (see
Section F.35) that provides a compatibility layer to solve most problems in this area.

« The old contrib/tsearch2 functions and other objects must be suppressed when loading
pg_dump output from a pre-8.3 database. While many of them won’t load anyway, a few will and

307

Chapter 12. Full Text Search

then cause problems. One simple way to deal with this is to load the new contrib/tsearch?2
module before restoring the dump; then it will block the old objects from being loaded.

Text search configuration setup is completely different now. Instead of manually inserting rows into
configuration tables, search is configured through the specialized SQL commands shown earlier in
this chapter. There is no automated support for converting an existing custom configuration for 8.3;
you’re on your own here.

Most types of dictionaries rely on some outside-the-database configuration files. These are largely

compatible with pre-8.3 usage, but note the following differences:

- Configuration files now must be placed in a single specified directory
($SHAREDIR/tsearch_data), and must have a specific extension depending on the type of
file, as noted previously in the descriptions of the various dictionary types. This restriction was
added to forestall security problems.

- Configuration files must be encoded in UTF-8 encoding, regardless of what database encoding
is used.

« In thesaurus configuration files, stop words must be marked with 2.

308

Chapter 13. Concurrency Control

This chapter describes the behavior of the PostgreSQL database system when two or more sessions
try to access the same data at the same time. The goals in that situation are to allow efficient access for
all sessions while maintaining strict data integrity. Every developer of database applications should
be familiar with the topics covered in this chapter.

13.1. Introduction

PostgreSQL provides a rich set of tools for developers to manage concurrent access to data. Inter-
nally, data consistency is maintained by using a multiversion model (Multiversion Concurrency Con-
trol, MVCC). This means that while querying a database each transaction sees a snapshot of data (a
database version) as it was some time ago, regardless of the current state of the underlying data. This
protects the transaction from viewing inconsistent data that could be caused by (other) concurrent
transaction updates on the same data rows, providing transaction isolation for each database session.
MVCC, by eschewing explicit locking methodologies of traditional database systems, minimizes lock
contention in order to allow for reasonable performance in multiuser environments.

The main advantage of using the MVCC model of concurrency control rather than locking is that in
MVCC locks acquired for querying (reading) data do not conflict with locks acquired for writing data,
and so reading never blocks writing and writing never blocks reading.

Table- and row-level locking facilities are also available in PostgreSQL for applications that cannot
adapt easily to MVCC behavior. However, proper use of MVCC will generally provide better perfor-
mance than locks. In addition, application-defined advisory locks provide a mechanism for acquiring
locks that are not tied to a single transaction.

13.2. Transaction Isolation

The SQL standard defines four levels of transaction isolation in terms of three phenomena that must
be prevented between concurrent transactions. These undesirable phenomena are:

dirty read
A transaction reads data written by a concurrent uncommitted transaction.
nonrepeatable read

A transaction re-reads data it has previously read and finds that data has been modified by another
transaction (that committed since the initial read).

phantom read

A transaction re-executes a query returning a set of rows that satisfy a search condition and
finds that the set of rows satisfying the condition has changed due to another recently-committed
transaction.

The four transaction isolation levels and the corresponding behaviors are described in Table 13-1.

Table 13-1. SQL Transaction Isolation Levels

309

Chapter 13. Concurrency Control

Isolation Level Dirty Read Nonrepeatable Phantom Read
Read

Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

In PostgreSQL, you can request any of the four standard transaction isolation levels. But internally,
there are only two distinct isolation levels, which correspond to the levels Read Committed and Se-
rializable. When you select the level Read Uncommitted you really get Read Committed, and when
you select Repeatable Read you really get Serializable, so the actual isolation level might be stricter
than what you select. This is permitted by the SQL standard: the four isolation levels only define
which phenomena must not happen, they do not define which phenomena must happen. The reason
that PostgreSQL only provides two isolation levels is that this is the only sensible way to map the
standard isolation levels to the multiversion concurrency control architecture. The behavior of the
available isolation levels is detailed in the following subsections.

To set the transaction isolation level of a transaction, use the command SET TRANSACTION .

13.2.1. Read Committed Isolation Level

Read Committed is the default isolation level in PostgreSQL. When a transaction uses this isolation
level, a SELECT query (without a FOR UPDATE/SHARE clause) sees only data committed before the
query began; it never sees either uncommitted data or changes committed during query execution by
concurrent transactions. In effect, a SELECT query sees a snapshot of the database as of the instant
the query begins to run. However, SELECT does see the effects of previous updates executed within
its own transaction, even though they are not yet committed. Also note that two successive SELECT
commands can see different data, even though they are within a single transaction, if other transactions
commit changes during execution of the first SELECT.

UPDATE, DELETE, SELECT FOR UPDATE, and SELECT FOR SHARE commands behave the same as
SELECT in terms of searching for target rows: they will only find target rows that were committed as
of the command start time. However, such a target row might have already been updated (or deleted
or locked) by another concurrent transaction by the time it is found. In this case, the would-be updater
will wait for the first updating transaction to commit or roll back (if it is still in progress). If the first
updater rolls back, then its effects are negated and the second updater can proceed with updating the
originally found row. If the first updater commits, the second updater will ignore the row if the first
updater deleted it, otherwise it will attempt to apply its operation to the updated version of the row.
The search condition of the command (the WHERE clause) is re-evaluated to see if the updated version
of the row still matches the search condition. If so, the second updater proceeds with its operation
using the updated version of the row. In the case of SELECT FOR UPDATE and SELECT FOR SHARE,
this means it is the updated version of the row that is locked and returned to the client.

Because of the above rule, it is possible for an updating command to see an inconsistent snapshot:
it can see the effects of concurrent updating commands on the same rows it is trying to update, but
it does not see effects of those commands on other rows in the database. This behavior makes Read
Committed mode unsuitable for commands that involve complex search conditions; however, it is just
right for simpler cases. For example, consider updating bank balances with transactions like:

BEGIN;
UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 12345;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum 7534;
COMMIT;

310

Chapter 13. Concurrency Control

If two such transactions concurrently try to change the balance of account 12345, we clearly want the
second transaction to start with the updated version of the account’s row. Because each command is
affecting only a predetermined row, letting it see the updated version of the row does not create any
troublesome inconsistency.

More complex usage can produce undesirable results in Read Committed mode. For example, con-
sider a DELETE command operating on data that is being both added and removed from its restriction
criteria by another command, e.g., assume website is a two-row table with website.hits equaling
9 and 10:

BEGIN;

UPDATE website SET hits = hits + 1;

—-— run from another session: DELETE FROM website WHERE hits = 10;
COMMIT;

The DELETE will have no effect even though there is a website.hits = 10 row before and after the
UPDATE. This occurs because the pre-update row value 9 is skipped, and when the UPDATE completes
and DELETE obtains a lock, the new row value is no longer 10 but 11, which no longer matches the
criteria.

Because Read Committed mode starts each command with a new snapshot that includes all transac-
tions committed up to that instant, subsequent commands in the same transaction will see the effects
of the committed concurrent transaction in any case. The point at issue above is whether or not a
single command sees an absolutely consistent view of the database.

The partial transaction isolation provided by Read Committed mode is adequate for many applica-
tions, and this mode is fast and simple to use; however, it is not sufficient for all cases. Applications
that do complex queries and updates might require a more rigorously consistent view of the database
than Read Committed mode provides.

13.2.2. Serializable Isolation Level

The Serializable isolation level provides the strictest transaction isolation. This level emulates serial
transaction execution, as if transactions had been executed one after another, serially, rather than
concurrently. However, applications using this level must be prepared to retry transactions due to
serialization failures.

When a transaction is using the serializable level, a SELECT query only sees data committed before
the transaction began; it never sees either uncommitted data or changes committed during transaction
execution by concurrent transactions. (However, the query does see the effects of previous updates
executed within its own transaction, even though they are not yet committed.) This is different from
Read Committed in that a query in a serializable transaction sees a snapshot as of the start of the
transaction, not as of the start of the current query within the transaction. Thus, successive SELECT
commands within a single transaction see the same data, i.e., they do not see changes made by other
transactions that committed after their own transaction started. (This behavior can be ideal for report-
ing applications.)

UPDATE, DELETE, SELECT FOR UPDATE, and SELECT FOR SHARE commands behave the same as
SELECT in terms of searching for target rows: they will only find target rows that were committed as
of the transaction start time. However, such a target row might have already been updated (or deleted
or locked) by another concurrent transaction by the time it is found. In this case, the serializable
transaction will wait for the first updating transaction to commit or roll back (if it is still in progress). If
the first updater rolls back, then its effects are negated and the serializable transaction can proceed with
updating the originally found row. But if the first updater commits (and actually updated or deleted
the row, not just locked it) then the serializable transaction will be rolled back with the message

311

Chapter 13. Concurrency Control

ERROR: could not serialize access due to concurrent update

because a serializable transaction cannot modify or lock rows changed by other transactions after the
serializable transaction began.

When an application receives this error message, it should abort the current transaction and retry
the whole transaction from the beginning. The second time through, the transaction will see the
previously-committed change as part of its initial view of the database, so there is no logical con-
flict in using the new version of the row as the starting point for the new transaction’s update.

Note that only updating transactions might need to be retried; read-only transactions will never have
serialization conflicts.

The Serializable mode provides a rigorous guarantee that each transaction sees a wholly consistent
view of the database. However, the application has to be prepared to retry transactions when con-
current updates make it impossible to sustain the illusion of serial execution. Since the cost of redo-
ing complex transactions can be significant, serializable mode is recommended only when updating
transactions contain logic sufficiently complex that they might give wrong answers in Read Com-
mitted mode. Most commonly, Serializable mode is necessary when a transaction executes several
successive commands that must see identical views of the database.

13.2.2.1. Serializable Isolation versus True Serializability

The intuitive meaning (and mathematical definition) of “serializable” execution is that any two suc-
cessfully committed concurrent transactions will appear to have executed strictly serially, one after
the other — although which one appeared to occur first might not be predictable in advance. It is
important to realize that forbidding the undesirable behaviors listed in Table 13-1 is not sufficient to
guarantee true serializability, and in fact PostgreSQL’s Serializable mode does not guarantee serial-
izable execution in this sense. As an example, consider a table mytab, initially containing:

class | value
_______ b
1 10

1 20

2 | 100

2 | 200

Suppose that serializable transaction A computes:
SELECT SUM(value) FROM mytab WHERE class = 1;

and then inserts the result (30) as the value in a new row with class = 2. Concurrently, serializable
transaction B computes:

SELECT SUM(value) FROM mytab WHERE class = 2;

and obtains the result 300, which it inserts in a new row with class = 1. Then both transactions
commit. None of the listed undesirable behaviors have occurred, yet we have a result that could not
have occurred in either order serially. If A had executed before B, B would have computed the sum
330, not 300, and similarly the other order would have resulted in a different sum computed by A.

To guarantee true mathematical serializability, it is necessary for a database system to enforce predi-
cate locking, which means that a transaction cannot insert or modify a row that would have matched
the WHERE condition of a query in another concurrent transaction. For example, once transaction A
has executed the query SELECT ... WHERE class = 1, a predicate-locking system would forbid

312

Chapter 13. Concurrency Control

transaction B from inserting any new row with class 1 until A has committed. ' Such a locking system
is complex to implement and extremely expensive in execution, since every session must be aware of
the details of every query executed by every concurrent transaction. And this large expense is mostly
wasted, since in practice most applications do not do the sorts of things that could result in problems.
(Certainly the example above is rather contrived and unlikely to represent real software.) For these
reasons, PostgreSQL does not implement predicate locking.

In cases where the possibility of non-serializable execution is a real hazard, problems can be prevented
by appropriate use of explicit locking. Further discussion appears in the following sections.

13.3. Explicit Locking

PostgreSQL provides various lock modes to control concurrent access to data in tables. These modes
can be used for application-controlled locking in situations where MVCC does not give the desired
behavior. Also, most PostgreSQL commands automatically acquire locks of appropriate modes to
ensure that referenced tables are not dropped or modified in incompatible ways while the command
executes. (For example, ALTER TABLE cannot safely be executed concurrently with other operations
on the same table, so it obtains an exclusive lock on the table to enforce that.)

To examine a list of the currently outstanding locks in a database server, use the pg_locks system
view. For more information on monitoring the status of the lock manager subsystem, refer to Chapter
26.

13.3.1. Table-Level Locks

The list below shows the available lock modes and the contexts in which they are used automatically
by PostgreSQL. You can also acquire any of these locks explicitly with the command LOCK. Re-
member that all of these lock modes are table-level locks, even if the name contains the word “row”;
the names of the lock modes are historical. To some extent the names reflect the typical usage of each
lock mode — but the semantics are all the same. The only real difference between one lock mode
and another is the set of lock modes with which each conflicts (see Table 13-2). . Two transactions
cannot hold locks of conflicting modes on the same table at the same time. (However, a transaction
never conflicts with itself. For example, it might acquire ACCESS EXCLUSIVE lock and later acquire
ACCESS SHARE lock on the same table.) Non-conflicting lock modes can be held concurrently by
many transactions. Notice in particular that some lock modes are self-conflicting (for example, an
ACCESS EXCLUSIVE lock cannot be held by more than one transaction at a time) while others are not
self-conflicting (for example, an ACCESS SHARE lock can be held by multiple transactions).

Table-level lock modes
ACCESS SHARE
Conflicts with the ACCESS EXCLUSIVE lock mode only.

The SELECT command acquires a lock of this mode on referenced tables. In general, any query
that only reads a table and does not modify it will acquire this lock mode.

1. Essentially, a predicate-locking system prevents phantom reads by restricting what is written, whereas MVCC prevents
them by restricting what is read.

313

Chapter 13. Concurrency Control

ROW SHARE
Conflicts with the EXCLUSIVE and ACCESS EXCLUSIVE lock modes.

The SELECT FOR UPDATE and SELECT FOR SHARE commands acquire a lock of this mode on
the target table(s) (in addition to ACCESS SHARE locks on any other tables that are referenced
but not selected FOR UPDATE/FOR SHARE).

ROW EXCLUSIVE

Conflicts with the SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE
lock modes.

The commands UPDATE, DELETE, and INSERT acquire this lock mode on the target table (in
addition to ACCESS SHARE locks on any other referenced tables). In general, this lock mode will
be acquired by any command that modifies data in a table.

SHARE UPDATE EXCLUSIVE

Conflicts with the SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode protects a table against
concurrent schema changes and VACUUM runs.

Acquired by VACUUM (without FULL), ANALYZE, and CREATE INDEX CONCURRENTLY.
SHARE

Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode protects a table against concur-
rent data changes.

Acquired by CREATE INDEX (without CONCURRENTLY).
SHARE ROW EXCLUSIVE

Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW
EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes.

This lock mode is not automatically acquired by any PostgreSQL command.
EXCLUSIVE

Conflicts with the ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE
ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode allows only
concurrent ACCESS SHARE locks, i.e., only reads from the table can proceed in parallel with a
transaction holding this lock mode.

This lock mode is not automatically acquired on user tables by any PostgreSQL command. How-
ever it is acquired on certain system catalogs in some operations.

ACCESS EXCLUSIVE

Conflicts with locks of all modes (ACCESS SHARE, ROW SHARE, ROW EXCLUSIVE, SHARE
UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS
EXCLUSIVE). This mode guarantees that the holder is the only transaction accessing the table in
any way.

Acquired by the ALTER TABLE, DROP TABLE, TRUNCATE, REINDEX, CLUSTER, and VACUUM
FULL commands. This is also the default lock mode for LOCK TABLE statements that do not
specify a mode explicitly.

Tip: Only an access ExcLUSIVE lock blocks a sELECT (without FOR UPDATE/SHARE) statement.

314

Chapter 13. Concurrency Control

Once acquired, a lock is normally held till end of transaction. But if a lock is acquired after establish-
ing a savepoint, the lock is released immediately if the savepoint is rolled back to. This is consistent
with the principle that ROLLBACK cancels all effects of the commands since the savepoint. The same
holds for locks acquired within a PL/pgSQL exception block: an error escape from the block releases
locks acquired within it.

Table 13-2. Conflicting lock modes

Requestécurrent Lock Mode
Lock
Mode | ACCESS|ROW ROW SHARE |SHARE |SHARE |EXCLUSIWECESS
SHARE |SHARE |EXCLU- | UP- ROW EXCLU-
SIVE DATE EXCLU- SIVE
EXCLU- SIVE
SIVE

ACCESS X
SHARE
ROW X X
SHARE
ROW X X X X
EXCLU-
SIVE
SHARE X X X X X
UPDATE
EXCLU-
SIVE
SHARE X X X X X
SHARE X X X X X X
ROW
EXCLU-
SIVE
EXCLUSIVE X X X X X X X
ACCESS X X X X X X X X
EXCLU-
SIVE

13.3.2. Row-Level Locks

In addition to table-level locks, there are row-level locks, which can be exclusive or shared locks.
An exclusive row-level lock on a specific row is automatically acquired when the row is updated
or deleted. The lock is held until the transaction commits or rolls back, just like table-level locks.
Row-level locks do not affect data querying; they block only writers to the same row.

315

Chapter 13. Concurrency Control

To acquire an exclusive row-level lock on a row without actually modifying the row, select the row
with SELECT FOR UPDATE. Note that once the row-level lock is acquired, the transaction can update
the row multiple times without fear of conflicts.

To acquire a shared row-level lock on a row, select the row with SELECT FOR SHARE. A shared lock
does not prevent other transactions from acquiring the same shared lock. However, no transaction is
allowed to update, delete, or exclusively lock a row on which any other transaction holds a shared
lock. Any attempt to do so will block until the shared lock(s) have been released.

PostgreSQL doesn’t remember any information about modified rows in memory, so there is no limit
on the number of rows locked at one time. However, locking a row might cause a disk write, e.g.,
SELECT FOR UPDATE modifies selected rows to mark them locked, and so will result in disk writes.

In addition to table and row locks, page-level share/exclusive locks are used to control read/write
access to table pages in the shared buffer pool. These locks are released immediately after a row is
fetched or updated. Application developers normally need not be concerned with page-level locks,
but they are mentioned here for completeness.

13.3.3. Deadlocks

The use of explicit locking can increase the likelihood of deadlocks, wherein two (or more) transac-
tions each hold locks that the other wants. For example, if transaction 1 acquires an exclusive lock
on table A and then tries to acquire an exclusive lock on table B, while transaction 2 has already
exclusive-locked table B and now wants an exclusive lock on table A, then neither one can proceed.
PostgreSQL automatically detects deadlock situations and resolves them by aborting one of the trans-
actions involved, allowing the other(s) to complete. (Exactly which transaction will be aborted is
difficult to predict and should not be relied upon.)

Note that deadlocks can also occur as the result of row-level locks (and thus, they can occur even if
explicit locking is not used). Consider the case in which two concurrent transactions modify a table.
The first transaction executes:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 11111;

This acquires a row-level lock on the row with the specified account number. Then, the second trans-
action executes:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 22222;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 11111;

The first UPDATE statement successfully acquires a row-level lock on the specified row, so it succeeds
in updating that row. However, the second UPDATE statement finds that the row it is attempting to
update has already been locked, so it waits for the transaction that acquired the lock to complete.
Transaction two is now waiting on transaction one to complete before it continues execution. Now,
transaction one executes:

UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 22222;

Transaction one attempts to acquire a row-level lock on the specified row, but it cannot: transaction
two already holds such a lock. So it waits for transaction two to complete. Thus, transaction one is
blocked on transaction two, and transaction two is blocked on transaction one: a deadlock condition.
PostgreSQL will detect this situation and abort one of the transactions.

The best defense against deadlocks is generally to avoid them by being certain that all applications
using a database acquire locks on multiple objects in a consistent order. In the example above, if both

316

Chapter 13. Concurrency Control

transactions had updated the rows in the same order, no deadlock would have occurred. One should
also ensure that the first lock acquired on an object in a transaction is the most restrictive mode that
will be needed for that object. If it is not feasible to verify this in advance, then deadlocks can be
handled on-the-fly by retrying transactions that abort due to deadlocks.

So long as no deadlock situation is detected, a transaction seeking either a table-level or row-level lock
will wait indefinitely for conflicting locks to be released. This means it is a bad idea for applications
to hold transactions open for long periods of time (e.g., while waiting for user input).

13.3.4. Advisory Locks

PostgreSQL provides a means for creating locks that have application-defined meanings. These are
called advisory locks, because the system does not enforce their use — it is up to the application to
use them correctly. Advisory locks can be useful for locking strategies that are an awkward fit for the
MVCC model. Once acquired, an advisory lock is held until explicitly released or the session ends.
Unlike standard locks, advisory locks do not honor transaction semantics: a lock acquired during a
transaction that is later rolled back will still be held following the rollback, and likewise an unlock is
effective even if the calling transaction fails later. The same lock can be acquired multiple times by its
owning process: for each lock request there must be a corresponding unlock request before the lock
is actually released. (If a session already holds a given lock, additional requests will always succeed,
even if other sessions are awaiting the lock.) Like all locks in PostgreSQL, a complete list of advisory
locks currently held by any session can be found in the pg_locks system view.

Adpvisory locks are allocated out of a shared memory pool whose size is defined by the configuration
variables max_locks_per_transaction and max_connections. Care must be taken not to exhaust this
memory or the server will be unable to grant any locks at all. This imposes an upper limit on the
number of advisory locks grantable by the server, typically in the tens to hundreds of thousands
depending on how the server is configured.

A common use of advisory locks is to emulate pessimistic locking strategies typical of so called “flat
file” data management systems. While a flag stored in a table could be used for the same purpose,
advisory locks are faster, avoid MVCC bloat, and are automatically cleaned up by the server at the
end of the session. In certain cases using this advisory locking method, especially in queries involving
explicit ordering and LIMIT clauses, care must be taken to control the locks acquired because of the
order in which SQL expressions are evaluated. For example:

SELECT pg_advisory_lock (id) FROM foo WHERE id = 12345; -- ok
SELECT pg_advisory_lock(id) FROM foo WHERE id > 12345 LIMIT 100; -- danger!
SELECT pg_advisory_lock (g.id) FROM

(
SELECT id FROM foo WHERE id > 12345 LIMIT 100;
) q9; —— ok

In the above queries, the second form is dangerous because the LIMIT is not guaranteed to be applied
before the locking function is executed. This might cause some locks to be acquired that the applica-
tion was not expecting, and hence would fail to release (until it ends the session). From the point of
view of the application, such locks would be dangling, although still viewable in pg_locks.

The functions provided to manipulate advisory locks are described in Table 9-59.

317

Chapter 13. Concurrency Control

13.4. Data Consistency Checks at the Application Level

Because readers in PostgreSQL do not lock data, regardless of transaction isolation level, data read
by one transaction can be overwritten by another concurrent transaction. In other words, if a row
is returned by SELECT it doesn’t mean that the row is still current at the instant it is returned (i.e.,
sometime after the current query began). The row might have been modified or deleted by an already-
committed transaction that committed after the SELECT started. Even if the row is still valid “now”,
it could be changed or deleted before the current transaction does a commit or rollback.

Another way to think about it is that each transaction sees a snapshot of the database contents, and
concurrently executing transactions might very well see different snapshots. So the whole concept of
“now” is somewhat ill-defined anyway. This is not normally a big problem if the client applications
are isolated from each other, but if the clients can communicate via channels outside the database then
serious confusion might ensue.

To ensure the current validity of a row and protect it against concurrent updates one must use
SELECT FOR UPDATE, SELECT FOR SHARE, or an appropriate LOCK TABLE statement. (SELECT
FOR UPDATE and SELECT FOR SHARE lock just the returned rows against concurrent updates,
while Lock TABLE locks the whole table.) This should be taken into account when porting
applications to PostgreSQL from other environments.

Global validity checks require extra thought under MVCC. For example, a banking application might
wish to check that the sum of all credits in one table equals the sum of debits in another table, when
both tables are being actively updated. Comparing the results of two successive SELECT sum(. . .)
commands will not work reliably in Read Committed mode, since the second query will likely in-
clude the results of transactions not counted by the first. Doing the two sums in a single serializable
transaction will give an accurate picture of only the effects of transactions that committed before the
serializable transaction started — but one might legitimately wonder whether the answer is still rele-
vant by the time it is delivered. If the serializable transaction itself applied some changes before trying
to make the consistency check, the usefulness of the check becomes even more debatable, since now
it includes some but not all post-transaction-start changes. In such cases a careful person might wish
to lock all tables needed for the check, in order to get an indisputable picture of current reality. A
SHARE mode (or higher) lock guarantees that there are no uncommitted changes in the locked table,
other than those of the current transaction.

Note also that if one is relying on explicit locking to prevent concurrent changes, one should either use
Read Committed mode, or in Serializable mode be careful to obtain locks before performing queries.
A lock obtained by a serializable transaction guarantees that no other transactions modifying the table
are still running, but if the snapshot seen by the transaction predates obtaining the lock, it might
predate some now-committed changes in the table. A serializable transaction’s snapshot is actually
frozen at the start of its first query or data-modification command (SELECT, INSERT, UPDATE, Or
DELETE), so it is possible to obtain locks explicitly before the snapshot is frozen.

13.5. Locking and Indexes

Though PostgreSQL provides nonblocking read/write access to table data, nonblocking read/write ac-
cess is not currently offered for every index access method implemented in PostgreSQL. The various
index types are handled as follows:

B-tree and GiST indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released
immediately after each index row is fetched or inserted. These index types provide the highest

318

Chapter 13. Concurrency Control

concurrency without deadlock conditions.
Hash indexes

Share/exclusive hash-bucket-level locks are used for read/write access. Locks are released after
the whole bucket is processed. Bucket-level locks provide better concurrency than index-level
ones, but deadlock is possible since the locks are held longer than one index operation.

GIN indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released
immediately after each index row is fetched or inserted. But note that insertion of a GIN-indexed
value usually produces several index key insertions per row, so GIN might do substantial work
for a single value’s insertion.

Currently, B-tree indexes offer the best performance for concurrent applications; since they also have
more features than hash indexes, they are the recommended index type for concurrent applications
that need to index scalar data. When dealing with non-scalar data, B-trees are not useful, and GiST or
GIN indexes should be used instead.

319

Chapter 14. Performance Tips

Query performance can be affected by many things. Some of these can be controlled by the user, while
others are fundamental to the underlying design of the system. This chapter provides some hints about
understanding and tuning PostgreSQL performance.

14.1. Using EXPLAIN

PostgreSQL devises a query plan for each query it receives. Choosing the right plan to match the
query structure and the properties of the data is absolutely critical for good performance, so the system
includes a complex planner that tries to choose good plans. You can use the EXPLAIN command to
see what query plan the planner creates for any query. Plan-reading is an art that deserves an extensive
tutorial, which this is not; but here is some basic information.

The structure of a query plan is a tree of plan nodes. Nodes at the bottom level of the tree are table scan
nodes: they return raw rows from a table. There are different types of scan nodes for different table
access methods: sequential scans, index scans, and bitmap index scans. If the query requires joining,
aggregation, sorting, or other operations on the raw rows, then there will be additional nodes above
the scan nodes to perform these operations. Again, there is usually more than one possible way to do
these operations, so different node types can appear here too. The output of EXPLAIN has one line for
each node in the plan tree, showing the basic node type plus the cost estimates that the planner made
for the execution of that plan node. The first line (topmost node) has the estimated total execution cost
for the plan; it is this number that the planner seeks to minimize.

Here is a trivial example, just to show what the output looks like: '

EXPLAIN SELECT % FROM tenkl;

QUERY PLAN

Seqg Scan on tenkl (cost=0.00..458.00 rows=10000 width=244)

The numbers that are quoted by EXPLAIN are (left to right):

« Estimated start-up cost (time expended before the output scan can start, e.g., time to do the sorting
in a sort node)

- Estimated total cost (if all rows are retrieved, though they might not be; e.g., a query with a LIMIT
clause will stop short of paying the total cost of the Limit plan node’s input node)

- Estimated number of rows output by this plan node (again, only if executed to completion)

» Estimated average width (in bytes) of rows output by this plan node

The costs are measured in arbitrary units determined by the planner’s cost parameters (see Section
18.6.2). Traditional practice is to measure the costs in units of disk page fetches; that is, seq_page_cost
is conventionally set to 1.0 and the other cost parameters are set relative to that. (The examples in
this section are run with the default cost parameters.)

1. Examples in this section are drawn from the regression test database after doing a VACUUM ANALYZE, using 8.2 devel-
opment sources. You should be able to get similar results if you try the examples yourself, but your estimated costs and row
counts might vary slightly because ANALYZE’s statistics are random samples rather than exact.

320

Chapter 14. Performance Tips

It’s important to note that the cost of an upper-level node includes the cost of all its child nodes. It’s
also important to realize that the cost only reflects things that the planner cares about. In particular,
the cost does not consider the time spent transmitting result rows to the client, which could be an
important factor in the real elapsed time; but the planner ignores it because it cannot change it by
altering the plan. (Every correct plan will output the same row set, we trust.)

The rows value is a little tricky because it is not the number of rows processed or scanned by the plan
node. It is usually less, reflecting the estimated selectivity of any WHERE-clause conditions that are
being applied at the node. Ideally the top-level rows estimate will approximate the number of rows
actually returned, updated, or deleted by the query.

Returning to our example:

EXPLAIN SELECT % FROM tenkl;

QUERY PLAN

Seqg Scan on tenkl (cost=0.00..458.00 rows=10000 width=244)

This is about as straightforward as it gets. If you do:
SELECT relpages, reltuples FROM pg_class WHERE relname = ’tenkl’;

you will find that tenk1 has 358 disk pages and 10000 rows. The estimated cost is computed as (disk
pages read * seq_page_cost) + (rows scanned * cpu_tuple_cost). By default, seq_page_cost is 1.0
and cpu_tuple_cost is 0.01, so the estimated cost is (358 * 1.0) + (10000 * 0.01) = 458.

Now let’s modify the original query to add a WHERE condition:

EXPLAIN SELECT % FROM tenkl WHERE uniquel < 7000;

QUERY PLAN

Seq Scan on tenkl (cost=0.00..483.00 rows=7033 width=244)
Filter: (uniquel < 7000)

Notice that the EXPLAIN output shows the WHERE clause being applied as a “filter” condition; this
means that the plan node checks the condition for each row it scans, and outputs only the ones that pass
the condition. The estimate of output rows has been reduced because of the WHERE clause. However,
the scan will still have to visit all 10000 rows, so the cost hasn’t decreased; in fact it has gone up a bit
(by 10000 * cpu_operator_cost, to be exact) to reflect the extra CPU time spent checking the WHERE
condition.

The actual number of rows this query would select is 7000, but the rows estimate is only approximate.
If you try to duplicate this experiment, you will probably get a slightly different estimate; moreover,
it will change after each ANALYZE command, because the statistics produced by ANALYZE are taken
from a randomized sample of the table.

Now, let’s make the condition more restrictive:

EXPLAIN SELECT * FROM tenkl WHERE uniquel < 100;

QUERY PLAN

Bitmap Heap Scan on tenkl (cost=2.37..232.35 rows=106 width=244)
Recheck Cond: (uniquel < 100)
-> Bitmap Index Scan on tenkl_uniquel (cost=0.00..2.37 rows=106 width=0)

321

Chapter 14. Performance Tips
Index Cond: (uniquel < 100)

Here the planner has decided to use a two-step plan: the bottom plan node visits an index to find the
locations of rows matching the index condition, and then the upper plan node actually fetches those
rows from the table itself. Fetching the rows separately is much more expensive than sequentially
reading them, but because not all the pages of the table have to be visited, this is still cheaper than
a sequential scan. (The reason for using two plan levels is that the upper plan node sorts the row
locations identified by the index into physical order before reading them, to minimize the cost of
separate fetches. The “bitmap” mentioned in the node names is the mechanism that does the sorting.)

If the wHERE condition is selective enough, the planner might switch to a “simple” index scan plan:

EXPLAIN SELECT % FROM tenkl WHERE uniquel < 3;

QUERY PLAN

Index Scan using tenkl_uniquel on tenkl (cost=0.00..10.00 rows=2 width=244)
Index Cond: (uniquel < 3)

In this case the table rows are fetched in index order, which makes them even more expensive to read,
but there are so few that the extra cost of sorting the row locations is not worth it. You’ll most often see
this plan type for queries that fetch just a single row, and for queries that have an ORDER BY condition
that matches the index order.

Add another condition to the WHERE clause:

EXPLAIN SELECT % FROM tenkl WHERE uniquel < 3 AND stringul = ’xxx’;

QUERY PLAN

Index Scan using tenkl_uniquel on tenkl (cost=0.00..10.01 rows=1 width=244)
Index Cond: (uniquel < 3)
Filter: (stringul = ’xxx’::name)

The added condition stringul = ’xxx’ reduces the output-rows estimate, but not the cost because
we still have to visit the same set of rows. Notice that the stringul clause cannot be applied as
an index condition (since this index is only on the uniquel column). Instead it is applied as a filter
on the rows retrieved by the index. Thus the cost has actually gone up slightly to reflect this extra
checking.

If there are indexes on several columns referenced in WHERE, the planner might choose to use an AND
or OR combination of the indexes:

EXPLAIN SELECT x FROM tenkl WHERE uniquel < 100 AND unique2 > 9000;

QUERY PLAN
Bitmap Heap Scan on tenkl (cost=11.27..49.11 rows=11 width=244)
Recheck Cond: ((uniquel < 100) AND (unique2 > 9000))
-> BitmapAnd (cost=11.27..11.27 rows=11 width=0)
-> Bitmap Index Scan on tenkl_uniquel (cost=0.00..2.37 rows=106 width=0)
Index Cond: (uniquel < 100)
—-> Bitmap Index Scan on tenkl_unique2 (cost=0.00..8.65 rows=1042 width=0)
Index Cond: (unique2 > 9000)

322

Chapter 14. Performance Tips

But this requires visiting both indexes, so it’s not necessarily a win compared to using just one index
and treating the other condition as a filter. If you vary the ranges involved you’ll see the plan change
accordingly.

Let’s try joining two tables, using the columns we have been discussing:

EXPLAIN SELECT =*
FROM tenkl tl, tenk2 t2
WHERE tl.uniquel < 100 AND tl.unique2 = t2.unique2;

QUERY PLAN

Nested Loop (cost=2.37..553.11 rows=106 width=488)
—-> Bitmap Heap Scan on tenkl tl (cost=2.37..232.35 rows=106 width=244)
Recheck Cond: (uniquel < 100)
-> Bitmap Index Scan on tenkl_uniquel (cost=0.00..2.37 rows=106 width=0)
Index Cond: (uniquel < 100)
-> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.00..3.01 rows=1 width=244)
Index Cond: (t2.unique2 = tl.unique?2)

In this nested-loop join, the outer (upper) scan is the same bitmap index scan we saw earlier, and so
its cost and row count are the same because we are applying the WHERE clause uniquel < 100 at
that node. The t1.unique2 = t2.unique2 clause is not relevant yet, so it doesn’t affect the row
count of the outer scan. For the inner (lower) scan, the unique2 value of the current outer-scan row
is plugged into the inner index scan to produce an index condition like t2.unique2 = constant.
So we get the same inner-scan plan and costs that we’d get from, say, EXPLAIN SELECT % FROM
tenk2 WHERE unique2 = 42. The costs of the loop node are then set on the basis of the cost of
the outer scan, plus one repetition of the inner scan for each outer row (106 * 3.01, here), plus a little
CPU time for join processing.

In this example the join’s output row count is the same as the product of the two scans’ row counts,
but that’s not true in all cases because you can have WHERE clauses that mention both tables and so
can only be applied at the join point, not to either input scan. For example, if we added WHERE

AND tl.hundred < t2.hundred, that would decrease the output row count of the join node, but
not change either input scan.

One way to look at variant plans is to force the planner to disregard whatever strategy it thought
was the cheapest, using the enable/disable flags described in Section 18.6.1. (This is a crude tool, but
useful. See also Section 14.3.)

SET enable_nestloop = off;

EXPLAIN SELECT =«

FROM tenkl tl, tenk2 t2

WHERE tl.uniquel < 100 AND tl.unique2 = t2.unique2;

QUERY PLAN
Hash Join (cost=232.61..741.67 rows=106 width=488)
Hash Cond: (t2.unique2 = tl.unique2)
-> Seq Scan on tenk2 t2 (cost=0.00..458.00 rows=10000 width=244)
-> Hash (cost=232.35..232.35 rows=106 width=244)
-> Bitmap Heap Scan on tenkl tl (cost=2.37..232.35 rows=106 width=244)
Recheck Cond: (uniquel < 100)
-> Bitmap Index Scan on tenkl_uniquel (cost=0.00..2.37 rows=106 width=C
Index Cond: (uniquel < 100)

323

Chapter 14. Performance Tips

This plan proposes to extract the 100 interesting rows of tenk1 using that same old index scan, stash
them into an in-memory hash table, and then do a sequential scan of tenk2, probing into the hash
table for possible matches of t1.unique2 = t2.unique2 for each tenk2 row. The cost to read
tenkl and set up the hash table is a start-up cost for the hash join, since there will be no output until
we can start reading tenk2. The total time estimate for the join also includes a hefty charge for the
CPU time to probe the hash table 10000 times. Note, however, that we are not charging 10000 times
232.35; the hash table setup is only done once in this plan type.

It is possible to check the accuracy of the planner’s estimated costs by using EXPLAIN ANALYZE.
This command actually executes the query, and then displays the true run time accumulated within
each plan node along with the same estimated costs that a plain ExPLAIN shows. For example, we
might get a result like this:

EXPLAIN ANALYZE SELECT =*
FROM tenkl tl, tenk2 t2
WHERE tl.uniquel < 100 AND tl.unique2 = t2.unique2;

QUERY PLAN

Nested Loop (cost=2.37..553.11 rows=106 width=488) (actual time=1.392..12.700 rows=100
-> Bitmap Heap Scan on tenkl tl (cost=2.37..232.35 rows=106 width=244) (actual time
Recheck Cond: (uniquel < 100)
-> Bitmap Index Scan on tenkl_uniquel (cost=0.00..2.37 rows=106 width=0) (act
Index Cond: (uniquel < 100)
-> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.00..3.01 rows=1 width=244) (c
Index Cond: (t2.unique2 = tl.unique2)
Total runtime: 14.452 ms

Note that the “actual time” values are in milliseconds of real time, whereas the cost estimates are
expressed in arbitrary units; so they are unlikely to match up. The thing to pay attention to is whether
the ratios of actual time and estimated costs are consistent.

In some query plans, it is possible for a subplan node to be executed more than once. For example,
the inner index scan is executed once per outer row in the above nested-loop plan. In such cases, the
loops value reports the total number of executions of the node, and the actual time and rows values
shown are averages per-execution. This is done to make the numbers comparable with the way that
the cost estimates are shown. Multiply by the 1oops value to get the total time actually spent in the
node.

The Total runtime shown by EXPLAIN ANALYZE includes executor start-up and shut-down time,
as well as time spent processing the result rows. It does not include parsing, rewriting, or planning
time. For a SELECT query, the total run time will normally be just a little larger than the total time
reported for the top-level plan node. For INSERT, UPDATE, and DELETE commands, the total run time
might be considerably larger, because it includes the time spent processing the result rows. For these
commands, the time for the top plan node is essentially the time spent locating the old rows and/or
computing the new ones, but it doesn’t include the time spent applying the changes. Time spent firing
triggers, if any, is also outside the top plan node, and is shown separately for each trigger.

It is worth noting that EXPLAIN results should not be extrapolated to situations other than the one
you are actually testing; for example, results on a toy-sized table cannot be assumed to apply to large
tables. The planner’s cost estimates are not linear and so it might choose a different plan for a larger
or smaller table. An extreme example is that on a table that only occupies one disk page, you’ll nearly
always get a sequential scan plan whether indexes are available or not. The planner realizes that it’s
going to take one disk page read to process the table in any case, so there’s no value in expending
additional page reads to look at an index.

324

Chapter 14. Performance Tips

14.2. Statistics Used by the Planner

As we saw in the previous section, the query planner needs to estimate the number of rows retrieved
by a query in order to make good choices of query plans. This section provides a quick look at the
statistics that the system uses for these estimates.

One component of the statistics is the total number of entries in each table and index, as well as
the number of disk blocks occupied by each table and index. This information is kept in the table
pg_class, in the columns reltuples and relpages. We can look at it with queries similar to this
one:

SELECT relname, relkind, reltuples, relpages
FROM pg_class
WHERE relname LIKE ’'tenkl%’;

relname | relkind | reltuples | relpages
—————————————————————— B et
tenkl | r \ 10000 | 358
tenkl_hundred | i | 10000 | 30
tenkl_thous_tenthous | i | 10000 | 30
tenkl_uniquel |1 | 10000 | 30
tenkl_unique?2 | i | 10000 | 30

(5 rows)

Here we can see that tenk1 contains 10000 rows, as do its indexes, but the indexes are (unsurpris-
ingly) much smaller than the table.

For efficiency reasons, reltuples and relpages are not updated on-the-fly, and so they usually
contain somewhat out-of-date values. They are updated by vAcuuM, ANALYZE, and a few DDL com-
mands such as CREATE INDEX. A stand-alone ANALYZE, that is one not part of VACUUM, generates
an approximate reltuples value since it does not read every row of the table. The planner will
scale the values it finds in pg_class to match the current physical table size, thus obtaining a closer
approximation.

Most queries retrieve only a fraction of the rows in a table, due to WHERE clauses that restrict the rows
to be examined. The planner thus needs to make an estimate of the selectivity of WHERE clauses, that
is, the fraction of rows that match each condition in the WHERE clause. The information used for this
task is stored in the pg_statistic system catalog. Entries in pg_statistic are updated by the
ANALYZE and VACUUM ANALYZE commands, and are always approximate even when freshly updated.

Rather than look at pg_statistic directly, it’s better to look at its view pg_stats when examining
the statistics manually. pg_stats is designed to be more easily readable. Furthermore, pg_stats is
readable by all, whereas pg_statistic is only readable by a superuser. (This prevents unprivileged
users from learning something about the contents of other people’s tables from the statistics. The
pg_stats view is restricted to show only rows about tables that the current user can read.) For
example, we might do:

SELECT attname, n_distinct, most_common_vals
FROM pg_stats
WHERE tablename = ’road’;

attname | n_distinct |

,,,,,,,,, o
name | -0.467008 | {"I- 580 Ramp","I- 880

thepath | 20 | {"[(-122.089,37.71), (-122.0886,37.711)1"}

(2 rows)

325

Chapter 14. Performance Tips

The amount of information stored in pg_statistic by ANALYZE, in particular the maximum number
of entries in the most_common_vals and histogram_bounds arrays for each column, can be set
on a column-by-column basis using the ALTER TABLE SET STATISTICS command, or globally by
setting the default_statistics_target configuration variable. The default limit is presently 100 entries.
Raising the limit might allow more accurate planner estimates to be made, particularly for columns
with irregular data distributions, at the price of consuming more space in pg_statistic and slightly
more time to compute the estimates. Conversely, a lower limit might be sufficient for columns with
simple data distributions.

Further details about the planner’s use of statistics can be found in Chapter 55.

14.3. Controlling the Planner with Explicit Join Clauses

It is possible to control the query planner to some extent by using the explicit JOIN syntax. To see
why this matters, we first need some background.

In a simple join query, such as:
SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;

the planner is free to join the given tables in any order. For example, it could generate a query plan
that joins A to B, using the WHERE condition a.id = b.id, and then joins C to this joined table,
using the other WHERE condition. Or it could join B to C and then join A to that result. Or it could join
A to C and then join them with B — but that would be inefficient, since the full Cartesian product of
A and C would have to be formed, there being no applicable condition in the WHERE clause to allow
optimization of the join. (All joins in the PostgreSQL executor happen between two input tables, so
it’s necessary to build up the result in one or another of these fashions.) The important point is that
these different join possibilities give semantically equivalent results but might have hugely different
execution costs. Therefore, the planner will explore all of them to try to find the most efficient query
plan.

When a query only involves two or three tables, there aren’t many join orders to worry about. But the
number of possible join orders grows exponentially as the number of tables expands. Beyond ten or so
input tables it’s no longer practical to do an exhaustive search of all the possibilities, and even for six
or seven tables planning might take an annoyingly long time. When there are too many input tables,
the PostgreSQL planner will switch from exhaustive search to a genetic probabilistic search through
a limited number of possibilities. (The switch-over threshold is set by the geqo_threshold run-time
parameter.) The genetic search takes less time, but it won’t necessarily find the best possible plan.

When the query involves outer joins, the planner has less freedom than it does for plain (inner) joins.
For example, consider:

SELECT % FROM a LEFT JOIN (b JOIN c¢ ON (b.ref = c.id)) ON (a.id = b.id);

Although this query’s restrictions are superficially similar to the previous example, the semantics are
different because a row must be emitted for each row of A that has no matching row in the join of B
and C. Therefore the planner has no choice of join order here: it must join B to C and then join A to
that result. Accordingly, this query takes less time to plan than the previous query. In other cases, the
planner might be able to determine that more than one join order is safe. For example, given:

SELECT » FROM a LEFT JOIN b ON (a.bid = b.id) LEFT JOIN c¢ ON (a.cid = c.id);

326

Chapter 14. Performance Tips

it is valid to join A to either B or C first. Currently, only FULL JOIN completely constrains the join
order. Most practical cases involving LEFT JOIN or RIGHT JOIN can be rearranged to some extent.

Explicit inner join syntax (INNER JOIN, CROSS JOIN, or unadorned JOIN) is semantically the same
as listing the input relations in FROM, so it does not constrain the join order.

Even though most kinds of JOIN don’t completely constrain the join order, it is possible to instruct
the PostgreSQL query planner to treat all JOIN clauses as constraining the join order anyway. For
example, these three queries are logically equivalent:

SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a CROSS JOIN b CROSS JOIN ¢ WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a JOIN (b JOIN ¢ ON (b.ref = c.id)) ON (a.id = b.id);

But if we tell the planner to honor the JOIN order, the second and third take less time to plan than the
first. This effect is not worth worrying about for only three tables, but it can be a lifesaver with many
tables.

To force the planner to follow the join order laid out by explicit JOINSs, set the join_collapse_limit
run-time parameter to 1. (Other possible values are discussed below.)

You do not need to constrain the join order completely in order to cut search time, because it’s OK to
use JOIN operators within items of a plain FRoM list. For example, consider:

SELECT * FROM a CROSS JOIN b, ¢, d, e WHERE ...;

With join_collapse_limit =1, this forces the planner to join A to B before joining them to other
tables, but doesn’t constrain its choices otherwise. In this example, the number of possible join orders
is reduced by a factor of 5.

Constraining the planner’s search in this way is a useful technique both for reducing planning time
and for directing the planner to a good query plan. If the planner chooses a bad join order by default,
you can force it to choose a better order via JOIN syntax — assuming that you know of a better order,
that is. Experimentation is recommended.

A closely related issue that affects planning time is collapsing of subqueries into their parent query.
For example, consider:

SELECT «
FROM x, vy,

(SELECT % FROM a, b, c¢ WHERE something) AS ss
WHERE somethingelse;

This situation might arise from use of a view that contains a join; the view’s SELECT rule will be
inserted in place of the view reference, yielding a query much like the above. Normally, the planner
will try to collapse the subquery into the parent, yielding:

SELECT « FROM x, vy, a, b, c WHERE something AND somethingelse;

This usually results in a better plan than planning the subquery separately. (For example, the outer
WHERE conditions might be such that joining X to A first eliminates many rows of A, thus avoiding
the need to form the full logical output of the subquery.) But at the same time, we have increased the
planning time; here, we have a five-way join problem replacing two separate three-way join problems.
Because of the exponential growth of the number of possibilities, this makes a big difference. The
planner tries to avoid getting stuck in huge join search problems by not collapsing a subquery if
more than from_collapse_limit FROM items would result in the parent query. You can trade off
planning time against quality of plan by adjusting this run-time parameter up or down.

327

Chapter 14. Performance Tips

from_collapse_limit and join_collapse_limit are similarly named because they do almost the
same thing: one controls when the planner will “flatten out” subqueries, and the other controls
when it will flatten out explicit joins. Typically you would either set join_collapse_limit
equal to from collapse_limit (so that explicit joins and subqueries act similarly) or set
join_collapse_limit to 1 (if you want to control join order with explicit joins). But you might
set them differently if you are trying to fine-tune the trade-off between planning time and run time.

14.4. Populating a Database

One might need to insert a large amount of data when first populating a database. This section contains
some suggestions on how to make this process as efficient as possible.

14.4.1. Disable Autocommit

When using multiple INSERTSs, turn off autocommit and just do one commit at the end. (In plain
SQL, this means issuing BEGIN at the start and COMMIT at the end. Some client libraries might do this
behind your back, in which case you need to make sure the library does it when you want it done.) If
you allow each insertion to be committed separately, PostgreSQL is doing a lot of work for each row
that is added. An additional benefit of doing all insertions in one transaction is that if the insertion of
one row were to fail then the insertion of all rows inserted up to that point would be rolled back, so
you won’t be stuck with partially loaded data.

14.4.2. Use copry

Use COPY to load all the rows in one command, instead of using a series of INSERT commands. The
copY command is optimized for loading large numbers of rows; it is less flexible than INSERT, but
incurs significantly less overhead for large data loads. Since COPY is a single command, there is no
need to disable autocommit if you use this method to populate a table.

If you cannot use COPY, it might help to use PREPARE to create a prepared INSERT statement, and
then use EXECUTE as many times as required. This avoids some of the overhead of repeatedly parsing
and planning INSERT. Different interfaces provide this facility in different ways; look for “prepared
statements” in the interface documentation.

Note that loading a large number of rows using COPY is almost always faster than using INSERT, even
if PREPARE is used and multiple insertions are batched into a single transaction.

COPY is fastest when used within the same transaction as an earlier CREATE TABLE or TRUNCATE
command. In such cases no WAL needs to be written, because in case of an error, the files containing
the newly loaded data will be removed anyway. However, this consideration does not apply when
archive_mode is on, as all commands must write WAL in that case.

14.4.3. Remove Indexes

If you are loading a freshly created table, the fastest method is to create the table, bulk load the table’s
data using COPY, then create any indexes needed for the table. Creating an index on pre-existing data
is quicker than updating it incrementally as each row is loaded.

If you are adding large amounts of data to an existing table, it might be a win to drop the index, load the
table, and then recreate the index. Of course, the database performance for other users might suffer

328

Chapter 14. Performance Tips

during the time the index is missing. One should also think twice before dropping unique indexes,
since the error checking afforded by the unique constraint will be lost while the index is missing.

14.4.4. Remove Foreign Key Constraints

Just as with indexes, a foreign key constraint can be checked “in bulk” more efficiently than row-by-
row. So it might be useful to drop foreign key constraints, load data, and re-create the constraints.
Again, there is a trade-off between data load speed and loss of error checking while the constraint is
missing.

14.4.5. Increase maintenance_work_mem

Temporarily increasing the maintenance_work_mem configuration variable when loading large
amounts of data can lead to improved performance. This will help to speed up CREATE INDEX
commands and ALTER TABLE ADD FOREIGN KEY commands. It won’t do much for copy itself, so
this advice is only useful when you are using one or both of the above techniques.

14.4.6. Increase checkpoint_segments

Temporarily increasing the checkpoint_segments configuration variable can also make large data
loads faster. This is because loading a large amount of data into PostgreSQL will cause checkpoints
to occur more often than the normal checkpoint frequency (specified by the checkpoint_timeout
configuration variable). Whenever a checkpoint occurs, all dirty pages must be flushed to disk. By
increasing checkpoint_segments temporarily during bulk data loads, the number of checkpoints
that are required can be reduced.

14.4.7. Turn off archive_mode

When loading large amounts of data into an installation that uses WAL archiving, you might want to
disable archiving (turn off the archive_mode configuration variable) while loading. It might be faster
to take a new base backup after the load has completed than to process a large amount of incremental
WAL data. But note that turning archive_mode on or off requires a server restart.

Aside from avoiding the time for the archiver to process the WAL data, doing this will actually make
certain commands faster, because they are designed not to write WAL at all if archive_mode is off.
(They can guarantee crash safety more cheaply by doing an £sync at the end than by writing WAL.)
This applies to the following commands:

+ CREATE TABLE AS SELECT
* CREATE INDEX (and variants such as ALTER TABLE ADD PRIMARY KEY)
+ ALTER TABLE SET TABLESPACE

+ CLUSTER

+ COPY FROM, when the target table has been created or truncated earlier in the same transaction

329

Chapter 14. Performance Tips

14.4.8. Run aANALYZE Afterwards

Whenever you have significantly altered the distribution of data within a table, running ANALYZE
is strongly recommended. This includes bulk loading large amounts of data into the table. Running
ANALYZE (or VACUUM ANALYZE) ensures that the planner has up-to-date statistics about the table.
With no statistics or obsolete statistics, the planner might make poor decisions during query planning,
leading to poor performance on any tables with inaccurate or nonexistent statistics.

14.4.9. Some Notes About pg_dump

Dump scripts generated by pg_dump automatically apply several, but not all, of the above guidelines.
To reload a pg_dump dump as quickly as possible, you need to do a few extra things manually. (Note
that these points apply while restoring a dump, not while creating it. The same points apply when
using pg_restore to load from a pg_dump archive file.)

By default, pg_dump uses copy, and when it is generating a complete schema-and-data dump, it is
careful to load data before creating indexes and foreign keys. So in this case several guidelines are
handled automatically. What is left for you to do is to:

« Set appropriate (i.e., larger than normal) values for maintenance_work_mem and

checkpoint_segments.

 Ifusing WAL archiving, consider disabling it during the restore. To do that, turn off archive_mode
before loading the dump script, and afterwards turn it back on and take a fresh base backup.

» Consider whether the whole dump should be restored as a single transaction. To do that, pass
the -1 or -—single-transaction command-line option to psql or pg_restore. When using this
mode, even the smallest of errors will rollback the entire restore, possibly discarding many hours
of processing. Depending on how interrelated the data is, that might seem preferable to manual
cleanup, or not. COPY commands will run fastest if you use a single transaction and have WAL
archiving turned off.

« Run ANALYZE afterwards.

A data-only dump will still use copy, but it does not drop or recreate indexes, and it does not
normally touch foreign keys. > So when loading a data-only dump, it is up to you to drop
and recreate indexes and foreign keys if you wish to use those techniques. It’s still useful
to increase checkpoint_segments while loading the data, but don’t bother increasing
maintenance_work_mem; rather, you’d do that while manually recreating indexes and foreign keys
afterwards. And don’t forget to ANALYZE when you’re done.

2.
eliminates, rather than just postponing, foreign key validation, and so it is possible to insert bad data if you use it.

You can get the effect of disabling foreign keys by using the —-disable-triggers option — but realize that that

330

lll. Server Administration

This part covers topics that are of interest to a PostgreSQL database administrator. This includes
installation of the software, set up and configuration of the server, management of users and databases,
and maintenance tasks. Anyone who runs a PostgreSQL server, even for personal use, but especially
in production, should be familiar with the topics covered in this part.

The information in this part is arranged approximately in the order in which a new user should read
it. But the chapters are self-contained and can be read individually as desired. The information in this
part is presented in a narrative fashion in topical units. Readers looking for a complete description of
a particular command should see Part VI.

The first few chapters are written so they can be understood without prerequisite knowledge, so new
users who need to set up their own server can begin their exploration with this part. The rest of this part
is about tuning and management; that material assumes that the reader is familiar with the general use
of the PostgreSQL database system. Readers are encouraged to look at Part I and Part II for additional
information.

Chapter 15. Installation from Source Code

This chapter describes the installation of PostgreSQL using the source code distribution. (If you are
installing a pre-packaged distribution, such as an RPM or Debian package, ignore this chapter and
read the packager’s instructions instead.)

15.1. Short Version

./configure

gmake

su

gmake install

adduser postgres

mkdir /usr/local/pgsqgl/data

chown postgres /usr/local/pgsql/data

su — postgres

/usr/local/pgsgl/bin/initdb -D /usr/local/pgsql/data
/usr/local/pgsgl/bin/postgres -D /usr/local/pgsqgl/data >logfile 2>&1 &
/usr/local/pgsgl/bin/createdb test
/usr/local/pgsqgl/bin/psql test

The long version is the rest of this chapter.

15.2. Requirements

In general, a modern Unix-compatible platform should be able to run PostgreSQL. The platforms
that had received specific testing at the time of release are listed in Section 15.7 below. In the doc
subdirectory of the distribution there are several platform-specific FAQ documents you might wish to
consult if you are having trouble.

The following software packages are required for building PostgreSQL:

+ GNU make is required; other make programs will not work. GNU make is often installed under
the name gmake; this document will always refer to it by that name. (On some systems GNU make
is the default tool with the name make.) To test for GNU make enter:

gmake —--version

It is recommended to use version 3.76.1 or later.

+ You need an ISO/ANSI C compiler (at least C89-compliant). Recent versions of GCC are rec-
ommendable, but PostgreSQL is known to build using a wide variety of compilers from different
vendors.

- tar is required to unpack the source distribution, in addition to either gzip or bzip2. In addition, gzip
is required to install the documentation.

+ The GNU Readline library is used by default. It allows psql (the PostgreSQL command line
SQL interpreter) to remember each command you type, and allows you to use arrow keys to re-
call and edit previous commands. This is very helpful and is strongly recommended. If you don’t
want to use it then you must specify the ——without-readline option to configure. As an al-
ternative, you can often use the BSD-licensed 1ibedit library, originally developed on NetBSD.
The 1ibedit library is GNU Readline-compatible and is used if 1ibreadline is not found, or

333

Chapter 15. Installation from Source Code

if ——with-libedit-preferred is used as an option to configure. If you are using a package-
based Linux distribution, be aware that you need both the readline and readline-devel pack-
ages, if those are separate in your distribution.

« The zlib compression library will be used by default. If you don’t want to use it then you must spec-
ify the ——without-z1ib option to configure. Using this option disables support for compressed
archives in pg_dump and pg_restore.

The following packages are optional. They are not required in the default configuration, but they are
needed when certain build options are enabled, as explained below:

+ To build the server programming language PL/Perl you need a full Perl installation, including the
libperl library and the header files. Since PL/Perl will be a shared library, the libperl library
must be a shared library also on most platforms. This appears to be the default in recent Perl
versions, but it was not in earlier versions, and in any case it is the choice of whomever installed
Perl at your site.

If you don’t have the shared library but you need one, a message like this will appear during the
PostgreSQL build to point out this fact:

x Cannot build PL/Perl because libperl is not a shared library.
**xx You might have to rebuild your Perl installation. Refer to
x% the documentation for details.

(If you don’t follow the on-screen output you will merely notice that the PL/Perl library object,
plperl.so or similar, will not be installed.) If you see this, you will have to rebuild and install
Perl manually to be able to build PL/Perl. During the configuration process for Perl, request a
shared library.

+ To build the PL/Python server programming language, you need a Python installation with the
header files and the distutils module. The distutils module is included by default with Python 1.6
and later; users of earlier versions of Python will need to install it.

Since PL/Python will be a shared library, the 1ibpython library must be a shared library also on
most platforms. This is not the case in a default Python installation. If after building and installing
PostgreSQL you have a file called plpython.so (possibly a different extension), then everything
went well. Otherwise you should have seen a notice like this flying by:

**% Cannot build PL/Python because libpython is not a shared library.
*%% You might have to rebuild your Python installation. Refer to

**% the documentation for details.

That means you have to rebuild (part of) your Python installation to create this shared library.

If you have problems, run Python 2.3 or later’s configure using the —~—enable-shared flag. On
some operating systems you don’t have to build a shared library, but you will have to convince the
PostgreSQL build system of this. Consult the Makefile in the src/pl/plpython directory for
details.

« If you want to build the PL/Tcl procedural language, you of course need a Tcl installation. If you
are using a pre-8.4 release of Tcl, ensure that it was built without multithreading support.

« To enable Native Language Support (NLS), that is, the ability to display a program’s messages in
a language other than English, you need an implementation of the Gettext API. Some operating
systems have this built-in (e.g., Linux, NetBSD, Solaris), for other systems you can download
an add-on package from http://developer.postgresql.org/~petere/bsd-gettext/. If you are using the
Gettext implementation in the GNU C library then you will additionally need the GNU Gettext
package for some utility programs. For any of the other implementations you will not need it.

334

Chapter 15. Installation from Source Code

« Kerberos, OpenSSL, OpenLDAP, and/or PAM, if you want to support authentication or encryption
using these services.

If you are building from a CVS tree instead of using a released source package, or if you want to do
server development, you also need the following packages:

. GNU Flex and Bison are needed to build from a CVS checkout, or if you changed the actual
scanner and parser definition files. If you need them, be sure to get Flex 2.5.4 or later and Bison
1.875 or later. Other lex and yacc programs cannot be used.

+ Perl is also needed to build from a CVS checkout, or if you changed the input files for any of the
build steps that use Perl scripts. If building on Windows you will need Perl in any case.

If you need to get a GNU package, you can find it at your local GNU mirror site (see
http://www.gnu.org/order/ftp.html for a list) or at ftp://ftp.gnu.org/gnu/.

Also check that you have sufficient disk space. You will need about 65 MB for the source tree during
compilation and about 15 MB for the installation directory. An empty database cluster takes about 25
MB; databases take about five times the amount of space that a flat text file with the same data would
take. If you are going to run the regression tests you will temporarily need up to an extra 90 MB. Use
the df command to check free disk space.

15.3. Getting The Source

The PostgreSQL 8.4.0 sources can be obtained by anonymous FTP from
ftp://ftp.postgresql.org/pub/source/v8.4.0/postgresql-8.4.0.tar.gz. Other download options can be
found on our website: http://www.postgresql.org/download/. After you have obtained the file, unpack
it:

gunzip postgresql-8.4.0.tar.gz
tar xf postgresql-8.4.0.tar

This will create a directory postgresgl-8.4.0 under the current directory with the PostgreSQL
sources. Change into that directory for the rest of the installation procedure.

15.4. Upgrading

These instructions assume that your existing installation is under the /usr/local/pgsql directory,
and that the data area is in /usr/local/pgsqgl/data. Substitute your paths appropriately.

The internal data storage format typically changes in every major release of PostgreSQL. Therefore,
if you are upgrading an existing installation that does not have a version number of “8.4.x”, you must
back up and restore your data. If you are upgrading from PostgreSQL “8.4.x”, the new version can
use your current data files so you should skip the backup and restore steps below because they are
unnecessary.

1. If making a backup, make sure that your database is not being updated. This does not affect
the integrity of the backup, but the changed data would of course not be included. If necessary,

335

Chapter 15. Installation from Source Code

edit the permissions in the file /usr/local/pgsgl/data/pg_hba.conf (or equivalent) to
disallow access from everyone except you.

To back up your database installation, type:

pg_dumpall > outputfile
If you need to preserve OIDs (such as when using them as foreign keys), then use the —o option
when running pg_dumpall.

To make the backup, you can use the pg_dumpall command from the version you are currently
running. For best results, however, try to use the pg_dumpall command from PostgreSQL 8.4.0,
since this version contains bug fixes and improvements over older versions. While this advice
might seem idiosyncratic since you haven’t installed the new version yet, it is advisable to follow
it if you plan to install the new version in parallel with the old version. In that case you can com-
plete the installation normally and transfer the data later. This will also decrease the downtime.

2. Shut down the old server:

pg_ctl stop

On systems that have PostgreSQL started at boot time, there is probably a start-up file that will
accomplish the same thing. For example, on a Red Hat Linux system one might find that this
works:

/etc/rc.d/init .d/postgresql stop

3. If restoring from backup, rename or delete the old installation directory. It is a good idea to
rename the directory, rather than delete it, in case you have trouble and need to revert to it.
Keep in mind the directory might consume significant disk space. To rename the directory, use a
command like this:

mv /usr/local/pgsql /usr/local/pgsql.old
4. Install the new version of PostgreSQL as outlined in Section 15.5.

5. Create a new database cluster if needed. Remember that you must execute these commands while
logged in to the special database user account (which you already have if you are upgrading).

/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
6. Restore your previous pg_hba.conf and any postgresqgl.conf modifications.
7. Start the database server, again using the special database user account:
/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data
8. Finally, restore your data from backup with:
/usr/local/pgsql/bin/psql -d postgres —f outputfile

using the new psql.

Further discussion appears in Section 24.5, including instructions on how the previous installation can
continue running while the new installation is installed.

15.5. Installation Procedure

1. Configuration

The first step of the installation procedure is to configure the source tree for your system and
choose the options you would like. This is done by running the configure script. For a default
installation simply enter:

336

Chapter 15. Installation from Source Code

./configure

This script will run a number of tests to determine values for various system dependent variables
and detect any quirks of your operating system, and finally will create several files in the build
tree to record what it found. (You can also run configure in a directory outside the source tree
if you want to keep the build directory separate.)

The default configuration will build the server and utilities, as well as all client applications and
interfaces that require only a C compiler. All files will be installed under /usr/local/pgsql
by default.

You can customize the build and installation process by supplying one or more of the following
command line options to configure:
——prefix=PREFIX

Install all files under the directory PREFIX instead of /usr/local/pgsql. The actual files
will be installed into various subdirectories; no files will ever be installed directly into the
PREFIX directory.

If you have special needs, you can also customize the individual subdirectories with the
following options. However, if you leave these with their defaults, the installation will be re-
locatable, meaning you can move the directory after installation. (The man and doc locations
are not affected by this.)

For relocatable installs, you might want to use configure’s ——disable-rpath option.
Also, you will need to tell the operating system how to find the shared libraries.

——exec-prefix=EXEC-PREFIX

You can install architecture-dependent files under a different prefix, EXEC-PREFIX, than
what PREFIX was set to. This can be useful to share architecture-independent files between
hosts. If you omit this, then EXEC-PREFIX is set equal to PREFIX and both architecture-
dependent and independent files will be installed under the same tree, which is probably
what you want.

—-bindir=DIRECTORY

Specifies the directory for executable programs. The default is ExEc-PREFIX/bin, which
normally means /usr/local/pgsqgl/bin

——sysconfdir=DIRECTORY
Sets the directory for various configuration files, PREF1x/etc by default.
——1ibdir=DIRECTORY

Sets the location to install libraries and dynamically loadable modules. The default is
EXEC-PREFIX/1ib.

——includedir=DIRECTORY
Sets the directory for installing C and C++ header files. The default is PREFIX/include.
—-—datarootdir=DIRECTORY

Sets the root directory for various types of read-only data files. This only sets the default for
some of the following options. The default is PREFTx/share.

—-—datadir=DIRECTORY

Sets the directory for read-only data files used by the installed programs. The default is
pATAROOTDIR. Note that this has nothing to do with where your database files will be placed.

337

Chapter 15. Installation from Source Code

—-—localedir=DIRECTORY

Sets the directory for installing locale data, in particular message translation catalog files.
The default is pATAROOTDIR/locale.

—-mandir=DIRECTORY

The man pages that come with PostgreSQL will be installed under this directory, in their
respective manx subdirectories. The default is DATAROOTDIR/man.

——docdir=DIRECTORY

Sets the root directory for installing documentation files, except “man” pages. This
only sets the default for the following options. The default value for this option is
DATAROOTDIR/doc/postgresql.

——htmldir=DIRECTORY

The HTML-formatted documentation for PostgreSQL will be installed under this directory.
The default is DATAROOTDIR.

Note: Care has been taken to make it possible to install PostgreSQL into shared installa-
tion locations (such as /usr/local/include) without interfering with the namespace of the
rest of the system. First, the string “/postgresql” is automatically appended to datadir,
sysconfdir, and docdir, unless the fully expanded directory name already contains the
string “postgres” or “pgsql”. For example, if you choose /usr/1local as prefix, the documen-
tation will be installed in /usr/local/doc/postgresql, but if the prefix is /opt /postgres,
then it will be in /opt/postgres/doc. The public C header files of the client interfaces are
installed into inc1ludedir and are namespace-clean. The internal header files and the server
header files are installed into private directories under includedir. See the documentation
of each interface for information about how to access its header files. Finally, a private subdi-
rectory will also be created, if appropriate, under 1ibdir for dynamically loadable modules.

——with-includes=DIRECTORIES

DIRECTORIES is a colon-separated list of directories that will be added to the list the com-
piler searches for header files. If you have optional packages (such as GNU Readline) in-
stalled in a non-standard location, you have to use this option and probably also the corre-
sponding —-with-libraries option.

Example: ~—with-includes=/opt/gnu/include:/usr/sup/include.
——with-libraries=DIRECTORIES

DIRECTORIES is a colon-separated list of directories to search for libraries. You will prob-
ably have to use this option (and the corresponding ——with-includes option) if you have
packages installed in non-standard locations.

Example: --with-libraries=/opt/gnu/lib:/usr/sup/lib.
——enable-nls [=LANGUAGES]

Enables Native Language Support (NLS), that is, the ability to display a program’s messages
in a language other than English. LANGUAGES is an optional space-separated list of codes
of the languages that you want supported, for example ——enable-nls="de fr’. (The
intersection between your list and the set of actually provided translations will be computed
automatically.) If you do not specify a list, then all available translations are installed.

338

Chapter 15. Installation from Source Code

To use this option, you will need an implementation of the Gettext API; see above.
—-with-pgport=NUMBER

Set NUMBER as the default port number for server and clients. The default is 5432. The port
can always be changed later on, but if you specify it here then both server and clients will
have the same default compiled in, which can be very convenient. Usually the only good
reason to select a non-default value is if you intend to run multiple PostgreSQL servers on
the same machine.

——with-perl

Build the PL/Perl server-side language.
-—with-python

Build the PL/Python server-side language.
--with-tcl

Build the PL/Tcl server-side language.
—-with-tclconfig=DIRECTORY

Tcl installs the file tclConfig.sh, which contains configuration information needed to
build modules interfacing to Tcl. This file is normally found automatically at a well-known
location, but if you want to use a different version of Tcl you can specify the directory in
which to look for it.

—-with-gssapi

Build with support for GSSAPI authentication. On many systems, the GSSAPI (usually
a part of the Kerberos installation) system is not installed in a location that is searched by
default (e.g., /usr/include, /usr/1ib), so you must use the options ——with-includes
and --with-libraries in addition to this option. configure will check for the required
header files and libraries to make sure that your GSSAPI installation is sufficient before
proceeding.

——with-krbb5

Build with support for Kerberos 5 authentication. On many systems, the Kerberos system is
not installed in a location that is searched by default (e.g., /usr/include, /usr/1ib), so
you must use the options ——with-includes and —-with-libraries in addition to this
option. configure will check for the required header files and libraries to make sure that
your Kerberos installation is sufficient before proceeding.

—-—-with-krb-srvnam=NAME

The default name of the Kerberos service principal (also used by GSSAPI). postgres is the
default. There’s usually no reason to change this unless you have a Windows environment,
in which case it must be set to uppercase POSTGRES.

—--with-openssl

Build with support for SSL (encrypted) connections. This requires the OpenSSL package to
be installed. configure will check for the required header files and libraries to make sure
that your OpenSSL installation is sufficient before proceeding.

—--with-pam

Build with PAM (Pluggable Authentication Modules) support.

339

Chapter 15. Installation from Source Code

—--with-1ldap

Build with LDAP support for authentication and connection parameter lookup (see Section
30.16 and Section 19.3.7 for more information). On Unix, this requires the OpenLDAP
package to be installed. On Windows, the default WinLDAP library is used. configure
will check for the required header files and libraries to make sure that your OpenLDAP
installation is sufficient before proceeding.

--without-readline

Prevents use of the Readline library (and libedit as well). This option disables command-line
editing and history in psql, so it is not recommended.

——with-libedit-preferred

Favors the use of the BSD-licensed libedit library rather than GPL-licensed Readline. This
option is significant only if you have both libraries installed; the default in that case is to use
Readline.

--with-bonjour

Build with Bonjour support. This requires Bonjour support in your operating system. Rec-
ommended on Mac OS X.

--with-ossp-uuid

Use the OSSP UUID library' when building contrib/uuid-ossp. The library provides
functions to generate UUIDs.

——with-libxml

Build with libxml (enables SQL/XML support). Libxml version 2.6.23 or later is required
for this feature.

Libxml installs a program xml12-config that can be used to detect the required compiler
and linker options. PostgreSQL will use it automatically if found. To specify a libxml instal-
lation at an unusual location, you can either set the environment variable XML2_CONFIG
to point to the xm12-config program belonging to the installation, or use the options

——with-includes and ——with-libraries.
--with-1libxslt

Use libxslt when building contrib/xm12. contrib/xml2 relies on this library to perform
XSL transformations of XML.

—--disable-integer-datetimes

Disable support for 64-bit integer storage for timestamps and intervals, and store datetime
values as floating-point numbers instead. Floating-point datetime storage was the default in
PostgreSQL releases prior to 8.4, but it is now deprecated, because it does not support mi-
crosecond precision for the full range of t imestamp values. However, integer-based date-
time storage requires a 64-bit integer type. Therefore, this option can be used when no such
type is available, or for compatibility with applications written for prior versions of Post-
greSQL. See Section 8.5 for more information.

—--disable-float4-byval

Disable passing float4 values “by value”, causing them to be passed “by reference” instead.
This option costs performance, but may be needed for compatibility with old user-defined
functions that are written in C and use the “version 0” calling convention. A better long-term
solution is to update any such functions to use the “version 1” calling convention.

1. http://www.ossp.org/pkg/lib/uuid/

340

Chapter 15. Installation from Source Code

—--disable-float8-byval

Disable passing float8 values “by value”, causing them to be passed “by reference” instead.
This option costs performance, but may be needed for compatibility with old user-defined
functions that are written in C and use the “version 0" calling convention. A better long-term
solution is to update any such functions to use the “version 1” calling convention. Note that
this option affects not only float8, but also int8 and some related types such as timestamp.
On 32-bit platforms, ——disable-float8-byval is the default and it is not allowed to
select ——enable-float8-byval.

-—-with-segsize=SEGSIZE

Set the segment size, in gigabytes. Large tables are divided into multiple operating-system
files, each of size equal to the segment size. This avoids problems with file size limits that
exist on many platforms. The default segment size, 1 gigabyte, is safe on all supported
platforms. If your operating system has “largefile” support (which most do, nowadays), you
can use a larger segment size. This can be helpful to reduce the number of file descriptors
consumed when working with very large tables. But be careful not to select a value larger
than is supported by your platform and the filesystem(s) you intend to use. Other tools you
might wish to use, such as tar, could also set limits on the usable file size. It is recommended,
though not absolutely required, that this value be a power of 2. Note that changing this value
requires an initdb.

——with-blocksize=BLOCKSIZE

Set the block size, in kilobytes. This is the unit of storage and I/O within tables. The default,
8 kilobytes, is suitable for most situations; but other values may be useful in special cases.
The value must be a power of 2 between 1 and 32 (kilobytes). Note that changing this value
requires an initdb.

——with-wal-segsize=SEGSIZE

Set the WAL segment size, in megabytes. This is the size of each individual file in the WAL
log. It may be useful to adjust this size to control the granularity of WAL log shipping. The
default size is 16 megabytes. The value must be a power of 2 between 1 and 64 (megabytes).
Note that changing this value requires an initdb.

—--with-wal-blocksize=BLOCKSIZE

Set the WAL block size, in kilobytes. This is the unit of storage and I/O within the WAL
log. The default, 8 kilobytes, is suitable for most situations; but other values may be useful
in special cases. The value must be a power of 2 between 1 and 64 (kilobytes). Note that
changing this value requires an initdb.

—--disable-spinlocks

Allow the build to succeed even if PostgreSQL has no CPU spinlock support for the plat-
form. The lack of spinlock support will result in poor performance; therefore, this option
should only be used if the build aborts and informs you that the platform lacks spinlock
support. If this option is required to build PostgreSQL on your platform, please report the
problem to the PostgreSQL developers.

——enable-thread-safety

Make the client libraries thread-safe. This allows concurrent threads in libpq and ECPG
programs to safely control their private connection handles. This option requires adequate
threading support in your operating system.

341

Chapter 15. Installation from Source Code

—--with-system-tzdata=DIRECTORY

PostgreSQL includes its own time zone database, which it requires for date and time opera-
tions. This time zone database is in fact compatible with the “zoneinfo” time zone database
provided by many operating systems such as FreeBSD, Linux, and Solaris, so it would
be redundant to install it again. When this option is used, the system-supplied time zone
database in DIRECTORY is used instead of the one included in the PostgreSQL source dis-
tribution. DTRECTORY must be specified as an absolute path. /usr/share/zoneinfois a
likely directory on some operating systems. Note that the installation routine will not detect
mismatching or erroneous time zone data. If you use this option, you are advised to run the
regression tests to verify that the time zone data you have pointed to works correctly with
PostgreSQL.

This option is mainly aimed at binary package distributors who know their target operating
system well. The main advantage of using this option is that the PostgreSQL package won’t
need to be upgraded whenever any of the many local daylight-saving time rules change.
Another advantage is that PostgreSQL can be cross-compiled more straightforwardly if the
time zone database files do not need to be built during the installation.

--without-zlib

Prevents use of the Zlib library. This disables support for compressed archives in pg_dump
and pg_restore. This option is only intended for those rare systems where this library is not
available.

—-—enable-debug

Compiles all programs and libraries with debugging symbols. This means that you can run
the programs in a debugger to analyze problems. This enlarges the size of the installed
executables considerably, and on non-GCC compilers it usually also disables compiler opti-
mization, causing slowdowns. However, having the symbols available is extremely helpful
for dealing with any problems that might arise. Currently, this option is recommended for
production installations only if you use GCC. But you should always have it on if you are
doing development work or running a beta version.

——enable-coverage

If using GCC, all programs and libraries are compiled with code coverage testing instrumen-
tation. When run, they generate files in the build directory with code coverage metrics. See
Section 29.4 for more information. This option is for use only with GCC and when doing
development work.

—-—enable-profiling

If using GCC, all programs and libraries are compiled so they can be profiled. On backend
exit, a subdirectory will be created that contains the gmon . out file for use in profiling. This
option is for use only with GCC and when doing development work.

—-—enable-cassert

Enables assertion checks in the server, which test for many “cannot happen” conditions.
This is invaluable for code development purposes, but the tests can slow down the server
significantly. Also, having the tests turned on won’t necessarily enhance the stability of
your server! The assertion checks are not categorized for severity, and so what might be a
relatively harmless bug will still lead to server restarts if it triggers an assertion failure. This
option is not recommended for production use, but you should have it on for development
work or when running a beta version.

342

Chapter 15. Installation from Source Code

——enable-depend

Enables automatic dependency tracking. With this option, the makefiles are set up so that
all affected object files will be rebuilt when any header file is changed. This is useful if you
are doing development work, but is just wasted overhead if you intend only to compile once
and install. At present, this option only works with GCC.

—-—enable-dtrace

Compiles PostgreSQL with support for the dynamic tracing tool DTrace. See Section 26.4
for more information.

To point to the dtrace program, the environment variable DTRACE can be set. This will
often be necessary because dtrace is typically installed under /usr/sbin, which might
not be in the path.

Extra command-line options for the dt race program can be specified in the environment
variable DTRACEFLAGS. On Solaris, to include DTrace support in a 64-bit binary, you must
specify DTRACEFLAGS="-64" to configure. For example, using the GCC compiler:

./configure CC=’'gcc -m64’ --enable-dtrace DTRACEFLAGS='-64’
Using Sun’s compiler:

./configure CC=’/opt/SUNWspro/bin/cc —-xtarget=native64’ --enable-dtrace DTRACEFLA

If you prefer a C compiler different from the one configure picks, you can set the environment
variable cC to the program of your choice. By default, configure will pick gcc if available,
else the platform’s default (usually cc). Similarly, you can override the default compiler flags if
needed with the CFLAGS variable.

You can specify environment variables on the configure command line, for example:
./configure CC=/opt/bin/gcc CFLAGS=’'-02 -pipe’

Here is a list of the significant variables that can be set in this manner:

BISON

Bison program
cc

C compiler
CFLAGS

options to pass to the C compiler
CPP

C preprocessor
CPPFLAGS

options to pass to the C preprocessor
DTRACE

location of the dtrace program
DTRACEFLAGS

options to pass to the dtrace program
FLEX

Flex program

343

Chapter 15. Installation from Source Code

LDFLAGS

options to pass to the link editor
LDFLAGS_SL

linker options for shared library linking
MSGFMT

msgfmt program for native language support
PERL

Full path to the Perl interpreter. This will be used to determine the dependencies for building
PL/Perl.

PYTHON

Full path to the Python interpreter. This will be used to determine the dependencies for
building PL/Python.

TCLSH

Full path to the Tcl interpreter. This will be used to determine the dependencies for building
PL/Tcl, and it will be substituted into Tcl scripts.

XML2_CONFIG

xml2-config program used to locate the libxml installation.

Build
To start the build, type:

gmake
(Remember to use GNU make.) The build will take a few minutes depending on your hardware.
The last line displayed should be:

All of PostgreSQL is successfully made. Ready to install.
Regression Tests

If you want to test the newly built server before you install it, you can run the regression tests at
this point. The regression tests are a test suite to verify that PostgreSQL runs on your machine in
the way the developers expected it to. Type:

gmake check

(This won’t work as root; do it as an unprivileged user.) Chapter 29 contains detailed information
about interpreting the test results. You can repeat this test at any later time by issuing the same
command.

Installing the Files

Note: If you are upgrading an existing system and are going to install the new files over the
old ones, be sure to back up your data and shut down the old server before proceeding, as
explained in Section 15.4 above.

To install PostgreSQL enter:

gmake install

344

Chapter 15. Installation from Source Code

This will install files into the directories that were specified in step 1. Make sure that you have
appropriate permissions to write into that area. Normally you need to do this step as root. Alter-
natively, you can create the target directories in advance and arrange for appropriate permissions
to be granted.

You can use gmake install-strip instead of gmake install to strip the executable files
and libraries as they are installed. This will save some space. If you built with debugging support,
stripping will effectively remove the debugging support, so it should only be done if debugging
is no longer needed. install-strip tries to do a reasonable job saving space, but it does not
have perfect knowledge of how to strip every unneeded byte from an executable file, so if you
want to save all the disk space you possibly can, you will have to do manual work.

The standard installation provides all the header files needed for client application development
as well as for server-side program development, such as custom functions or data types written in
C. (Prior to PostgreSQL 8.0, a separate gmake install-all-headers command was needed
for the latter, but this step has been folded into the standard install.)

Client-only installation: If you want to install only the client applications and interface libraries,
then you can use these commands:

gmake -C src/bin install

gmake -C src/include install

gmake -C src/interfaces install

gmake -C doc install

src/bin has a few binaries for server-only use, but they are small.

Registering eventlog on Windows: To register a Windows eventlog library with the operating sys-
tem, issue this command after installation:

regsvr32 pgsql library directory/pgevent.dll

This creates registry entries used by the event viewer.

Uninstallation: To undo the installation use the command gmake uninstall. However, this will
not remove any created directories.

Cleaning: After the installation you can free disk space by removing the built files from the source
tree with the command gmake clean. This will preserve the files made by the configure program,
so that you can rebuild everything with gmake later on. To reset the source tree to the state in which
it was distributed, use gmake distclean. If you are going to build for several platforms within the
same source tree you must do this and re-configure for each platform. (Alternatively, use a separate
build tree for each platform, so that the source tree remains unmodified.)

If you perform a build and then discover that your configure options were wrong, or if you change
anything that configure investigates (for example, software upgrades), then it’s a good idea to do
gmake distclean before reconfiguring and rebuilding. Without this, your changes in configuration
choices might not propagate everywhere they need to.

15.6. Post-Installation Setup

15.6.1. Shared Libraries

On some systems with shared libraries you need to tell the system how to find the newly installed
shared libraries. The systems on which this is not necessary include BSD/OS, FreeBSD, HP-UX,

345

Chapter 15. Installation from Source Code

IRIX, Linux, NetBSD, OpenBSD, Tru64 UNIX (formerly Digital UNIX), and Solaris.

The method to set the shared library search path varies between platforms, but the most widely-used
method is to set the environment variable LD_LIBRARY_PATH like so: In Bourne shells (sh, ksh,
bash, zsh):

LD_LIBRARY_PATH=/usr/local/pgsqgl/lib
export LD_LIBRARY_PATH

or in csh or tcsh:
setenv LD_LIBRARY_PATH /usr/local/pgsgl/lib

Replace /usr/local/pgsql/lib with whatever you set --libdir to in step 1. You should
put these commands into a shell start-up file such as /etc/profile or ~/.bash_profile.
Some good information about the caveats associated with this method can be found at
http://www.visi.com/~barr/ldpath.html.

On some systems it might be preferable to set the environment variable LD_RUN_PATH before build-
ing.

On Cygwin, put the library directory in the PATH or move the .d11 files into the bin directory.

If in doubt, refer to the manual pages of your system (perhaps 1d.so or rld). If you later get a
message like:

psgl: error in loading shared libraries
libpg.so0.2.1: cannot open shared object file: No such file or directory

then this step was necessary. Simply take care of it then.
If you are on BSD/OS, Linux, or SunOS 4 and you have root access you can run:

/sbin/ldconfig /usr/local/pgsqgl/lib

(or equivalent directory) after installation to enable the run-time linker to find the shared libraries
faster. Refer to the manual page of 1dconfig for more information. On FreeBSD, NetBSD, and
OpenBSD the command is:

/sbin/ldconfig -m /usr/local/pgsqgl/lib

instead. Other systems are not known to have an equivalent command.

15.6.2. Environment Variables

If you installed into /usr/local/pgsqgl or some other location that is not searched for programs by
default, you should add /usr/local/pgsgl/bin (or whatever you set —~—bindir to in step 1) into
your PATH. Strictly speaking, this is not necessary, but it will make the use of PostgreSQL much more
convenient.

To do this, add the following to your shell start-up file, such as ~/.bash_profile (or
/etc/profile, if you want it to affect all users):

PATH=/usr/local/pgsql/bin:$PATH
export PATH

If you are using csh or tcsh, then use this command:

346

Chapter 15. Installation from Source Code

set path = (/usr/local/pgsgl/bin S$path)

To enable your system to find the man documentation, you need to add lines like the following to a
shell start-up file unless you installed into a location that is searched by default:

MANPATH=/usr/local/pgsgl/man: SMANPATH
export MANPATH

The environment variables PGHOST and PGPORT specify to client applications the host and port of
the database server, overriding the compiled-in defaults. If you are going to run client applications
remotely then it is convenient if every user that plans to use the database sets PGHOST. This is not
required, however; the settings can be communicated via command line options to most client pro-
grams.

15.7. Supported Platforms

A platform (that is, a CPU architecture and operating system combination) is considered supported
by the PostgreSQL development community if the code contains provisions to work on that platform
and it has recently been verified to build and pass its regression tests on that platform. Currently, most
testing of platform compatibility is done automatically by test machines in the PostgreSQL Build
Farm’. If you are interested in using PostgreSQL on a platform that is not represented in the build
farm, but on which the code works or can be made to work, you are strongly encouraged to set up a
build farm member machine so that continued compatibility can be assured.

In general, PostgreSQL can be expected to work on these CPU architectures: x86, x86_64, 1A64,
PowerPC, PowerPC 64, S/390, S/390x, Sparc, Sparc 64, Alpha, ARM, MIPS, MIPSEL, M68K, and
PA-RISC. Code support exists for M32R, NS32K, and VAX, but these architectures are not known
to have been tested recently. It is often possible to build on an unsupported CPU type by configuring
with —~—disable-spinlocks, but performance will be poor.

PostgreSQL can be expected to work on these operating systems: Linux (all recent distributions),
Windows (Win2000 SP4 and later), FreeBSD, OpenBSD, NetBSD, Mac OS X, AIX, HP/UX, IRIX,
Solaris, Tru64 Unix, and UnixWare. Other Unix-like systems may also work but are not currently be-
ing tested. In most cases, all CPU architectures supported by a given operating system will work. Look
in the Section 15.8 below to see if there is information specific to your operating system, particularly
if using an older system.

If you have installation problems on a platform that is known to be supported according to recent build
farm results, please report it to <pgsgl-bugs@postgresqgl.org>. If you are interested in porting
PostgreSQL to a new platform, <pgsgl-hackers@postgresqgl.org> is the appropriate place to
discuss that.

15.8. Platform-Specific Notes

This section documents additional platform-specific issues regarding the installation and setup of
PostgreSQL. Be sure to read the installation instructions, and in particular Section 15.2 as well. Also,

2. http://buildfarm.postgresql.org/

347

Chapter 15. Installation from Source Code

check Chapter 29 regarding the interpretation of regression test results.

Platforms that are not covered here have no known platform-specific installation issues.

15.8.1. AIX

PostgreSQL works on AIX, but getting it installed properly can be challenging. AIX versions from
4.3.3 to 6.1 are considered supported. You can use GCC or the native IBM compiler xlc. In general,
using recent versions of AIX and PostgreSQL helps. Check the build farm for up to date information
about which versions of AIX are known to work.

Use the following configure flags in addition to your own if you have installed Readline or libz

there: ——with-includes=/usr/local/include --with-libraries=/usr/local/lib.

If you don’t have a PowerPC or use GCC you might see rounding differences in the geometry regres-
sion test. There will probably be warnings about 0.0/0.0 division and duplicate symbols which you
can safely ignore.

Some of the AIX tools may be “a little different” from what you may be accustomed to on other
platforms. If you are looking for a version of 1dd, useful for determining what object code depends
on what libraries, the following URLs may help you: http://www.fags.org/fags/aix-fag/part4/section-
22 .html, http://www.han.de/~jum/aix/ldd.c.

Table 15-1 shows the minimum recommended fix levels for various AIX versions. To check your
current fix level, use oslevel -rin AIX 4.3.3to AIX 5.2 ML 7, 0or oslevel -s in later versions.

Table 15-1. Minimum recommended AIX fix levels

AIX version fix level

AIX 4.3.3 Maintenance Level 11 + post ML11 bundle
AIX 5.1 Maintenance Level 9 + post ML bundle
AIX 5.2 Technology Level 10 Service Pack 3

AIX 5.3 Technology Level 7

AIX 6.1 Base Level

15.8.1.1. GCC issues

On AIX 5.3, there have been some problems getting PostgreSQL to compile and run using GCC.

You will want to use a version of GCC subsequent to 3.3.2, particularly if you use a prepackaged
version. We had good success with 4.0.1. Problems with earlier versions seem to have more to do
with the way IBM packaged GCC than with actual issues with GCC, so that if you compile GCC
yourself, you might well have success with an earlier version of GCC.

15.8.1.2. Unix-domain sockets broken

AIX 5.3 has a problem where sockaddr_storage is not defined to be large enough. In version 5.3,
IBM increased the size of sockaddr_un, the address structure for Unix-domain sockets, but did not
correspondingly increase the size of sockaddr_storage. The result of this is that attempts to use
Unix-domain sockets with PostgreSQL lead to libpq overflowing the data structure. TCP/IP connec-
tions work OK, but not Unix-domain sockets, which prevents the regression tests from working.

The problem was reported to IBM, and is recorded as bug report PMR29657. If you upgrade to main-
tenance level 5300-03 or later, that will include this fix. A quick workaround is to alter _SS_MAXSIZE

348

Chapter 15. Installation from Source Code

to 10251in /usr/include/sys/socket .h. In either case, recompile PostgreSQL once you have the
corrected header file.

15.8.1.3. Internet address issues

PostgreSQL relies on the system’s getaddrinfo function to parse IP addresses in
listen_addresses, pg_hba.conf, etc. Older versions of AIX have assorted bugs in this function.
If you have problems related to these settings, updating to the appropriate fix level shown in Table
15-1 should take care of it.

One user reports:

When implementing PostgreSQL version 8.1 on AIX 5.3, we periodically ran into problems where
the statistics collector would “mysteriously” not come up successfully. This appears to be the result
of unexpected behaviour in the IPv6 implementation. It looks like PostgreSQL and IPv6 do not play
very well together at this time on AIX.

Any of the following actions “fix” the problem.

« Delete the IPv6 address for localhost:

(as root)
ifconfig 1lo0 inet6 ::1/0 delete

+ Remove IPv6 from net services. The file /etc/netsvc.conf on AIX is roughly equivalent to
/etc/nsswitch.conf on Solaris/Linux. The default, on AIX, is thus:

hosts=local, bind
Replace this with:

hosts=local4,bind4
to deactivate searching for IPv6 addresses.

15.8.1.4. Memory management

AIX can be somewhat peculiar with regards to the way it does memory management. You can have
a server with many multiples of gigabytes of RAM free, but still get out of memory or address space
errors when running applications. One example is createlang failing with unusual errors. For ex-
ample, running as the owner of the PostgreSQL installation:

-bash-3.00$ createlang plpgsgl templatel
createlang: language installation failed: ERROR: could not load library "/opt/dbs/pgsql

Running as a non-owner in the group posessing the PostgreSQL installation:

-bash-3.00$ createlang plpgsgl templatel
createlang: language installation failed: ERROR: could not load library "/opt/dbs/pgsql

Another example is out of memory errors in the PostgreSQL server logs, with every memory alloca-
tion near or greater than 256 MB failing.

The overall cause of all these problems is the default bittedness and memory model used by the server
process. By default, all binaries built on AIX are 32-bit. This does not depend upon hardware type or
kernel in use. These 32-bit processes are limited to 4 GB of memory laid out in 256 MB segments
using one of a few models. The default allows for less than 256 MB in the heap as it shares a single
segment with the stack.

349

Chapter 15. Installation from Source Code

In the case of the createlang example, above, check your umask and the permissions of the binaries
in your PostgreSQL installation. The binaries involved in that example were 32-bit and installed as
mode 750 instead of 755. Due to the permissions being set in this fashion, only the owner or a member
of the possessing group can load the library. Since it isn’t world-readable, the loader places the object
into the process’ heap instead of the shared library segments where it would otherwise be placed.

The “ideal” solution for this is to use a 64-bit build of PostgreSQL, but that is not always practical,
because systems with 32-bit processors can build, but not run, 64-bit binaries.

If a 32-bit binary is desired, set LDR_CNTRL to MAXDATA=0xn0000000, where 1 <=n <= 8§,
before starting the PostgreSQL server, and try different values and postgresgl.conf settings
to find a configuration that works satisfactorily. This use of LDR_CNTRL tells AIX that you want
the server to have MAXDATA bytes set aside for the heap, allocated in 256 MB segments. When
you find a workable configuration, 1dedit can be used to modify the binaries so that they
default to using the desired heap size. PostgreSQL can also be rebuilt, passing configure
LDFLAGS="-W1l, -bmaxdata:0xn0000000" to achieve the same effect.

For a 64-bit build, set OBJECT_MODE to 64 and pass CC="gcc -maix64" and
LDFLAGS="-W1, -bbigtoc" to configure. (Options for x1c might differ.) If you omit the export
of OBJECT_MODE, your build may fail with linker errors. When OBJECT_MODE is set, it tells AIX’s
build utilities such as ar, as, and 1d what type of objects to default to handling.

By default, overcommit of paging space can happen. While we have not seen this occur, AIX will kill
processes when it runs out of memory and the overcommit is accessed. The closest to this that we
have seen is fork failing because the system decided that there was not enough memory for another
process. Like many other parts of AIX, the paging space allocation method and out-of-memory kill is
configurable on a system- or process-wide basis if this becomes a problem.

References and resources

1

“Large Program Support
bugging Programs.

, AIX Documentation: General Programming Concepts: Writing and De-

“Program Address Space Overview””

and Debugging Programs.

, AIX Documentation: General Programming Concepts: Writing

“Performance Overview of the Virtual Memory Manager (VMM)*’, AIX Documentation: Perfor-
mance Management Guide.

495

“Page Space Allocation™’, AIX Documentation: Performance Management Guide.

595

“Paging-space thresholds tuning>”, AIX Documentation: Performance Management Guide.

Developing and Porting C and C++ Applications on AIX’, IBM Redbook.

http://publib.boulder.ibm.com/infocenter/pseries/topic/com.ibm.aix.doc/aixprggd/genprogc/Irg_prg_support.htm
http://publib.boulder.ibm.com/infocenter/pseries/topic/com.ibm.aix.doc/aixprggd/genprogc/address_space.htm
http://publib.boulder.ibm.com/infocenter/pseries/vSr3/topic/com.ibm.aix.doc/aixbman/prftungd/resmgmt2.htm
http://publib.boulder.ibm.com/infocenter/pseries/vSr3/topic/com.ibm.aix.doc/aixbman/prftungd/memperf7.htm
http://publib.boulder.ibm.com/infocenter/pseries/vSr3/topic/com.ibm.aix.doc/aixbman/prftungd/memperf6.htm
http://www.redbooks.ibm.com/abstracts/sg245674.htm1?Open

350

Chapter 15. Installation from Source Code

15.8.2. Cygwin

PostgreSQL can be built using Cygwin, a Linux-like environment for Windows, but that method is
inferior to the native Windows build (see Chapter 16) and is no longer recommended.

When building from source, proceed according to the normal installation procedure (i.e.,
./configure; make; etc.), noting the following-Cygwin specific differences:

« Set your path to use the Cygwin bin directory before the Windows utilities. This will help prevent
problems with compilation.

+ The GNU make command is called "make" not "gmake".

+ The adduser command is not supported; use the appropriate user management application on
Windows NT, 2000, or XP. Otherwise, skip this step.

« The su command is not supported; use ssh to simulate su on Windows NT, 2000, or XP. Otherwise,
skip this step.

+ OpenSSL is not supported.

« Start cygserver for shared memory support. To do this, enter the command
/usr/sbin/cygserver &. This program needs to be running anytime you start the PostgreSQL
server or initialize a database cluster (initdb). The default cygserver configuration may need
to be changed (e.g., increase SEMMNS) to prevent PostgreSQL from failing due to a lack of system
resources.

« The parallel regression tests (make check) can generate spurious regression test failures due to
overflowing the 1isten () backlog queue which causes connection refused errors or hangs. You
can limit the number of connections using the make variable MAX_CONNECTIONS thus:

make MAX_CONNECTIONS=5 check
(On some systems you can have up to about 10 simultaneous connections).

It is possible to install cygserver and the PostgreSQL server as Windows NT services. For infor-
mation on how to do this, please refer to the README document included with the PostgreSQL binary
package on Cygwin. It is installed in the directory /usr/share/doc/Cygwin.

15.8.3. HP-UX

PostgreSQL 7.3+ should work on Series 700/800 PA-RISC machines running HP-UX 10.X or 11.X,
given appropriate system patch levels and build tools. At least one developer routinely tests on HP-UX
10.20, and we have reports of successful installations on HP-UX 11.00 and 11.11.

Aside from the PostgreSQL source distribution, you will need GNU make (HP’s make will not do),
and either GCC or HP’s full ANSI C compiler. If you intend to build from CVS sources rather than a
distribution tarball, you will also need Flex (GNU lex) and Bison (GNU yacc). We also recommend
making sure you are fairly up-to-date on HP patches. At a minimum, if you are building 64 bit binaries
on on HP-UX 11.11 you may need PHSS_30966 (11.11) or a successor patch otherwise initdb may
hang:

PHSS_30966 s700_800 1d(1) and linker tools cumulative patch

On general principles you should be current on libc and 1d/dld patches, as well as compiler patches
if you are using HP’s C compiler. See HP’s support sites such as http://itrc.hp.com and ftp://us-
ffs.external.hp.com/ for free copies of their latest patches.

351

Chapter 15. Installation from Source Code

If you are building on a PA-RISC 2.0 machine and want to have 64-bit binaries using GCC, you
must use GCC 64-bit version. GCC binaries for HP-UX PA-RISC and Itanium are available from
http://www.hp.com/go/gcc. Don’t forget to get and install binutils at the same time.

If you are building on a PA-RISC 2.0 machine and want the compiled binaries to run on PA-RISC 1.1
machines you will need to specify +DAportable in CFLAGS.

If you are building on a HP-UX Itanium machine, you will need the latest HP ANSI C compiler with

its dependent patch or successor patches:

PHSS_30848 s700_800 HP C Compiler (A.05.57)
PHSS_30849 s700_800 u2comp/be/plugin library Patch

If you have both HP’s C compiler and GCC'’s, then you might want to explicitly select the compiler
to use when you run configure:

./configure CC=cc
for HP’s C compiler, or
./configure CC=gcc

for GCC. If you omit this setting, then configure will pick gcc if it has a choice.

The default install target location is /usr/local/pgsql, which you might want to change to some-
thing under /opt. If so, use the —~—prefix switch to configure.

In the regression tests, there might be some low-order-digit differences in the geometry tests, which
vary depending on which compiler and math library versions you use. Any other error is cause for
suspicion.

15.8.4. IRIX

PostgreSQL has been reported to run successfully on MIPS r8000, r10000 (both ip25 and ip27) and
r12000(ip35) processors, running IRIX 6.5.5m, 6.5.12, 6.5.13, and 6.5.26 with MIPSPro compilers
version 7.30, 7.3.1.2m, 7.3, and 7.4.4m.

You will need the MIPSPro full ANSI C compiler. There are problems trying to build with GCC.
It is a known GCC bug (not fixed as of version 3.0) related to using functions that return cer-
tain kinds of structures. This bug affects functions like inet_ntoa, inet_lnaof, inet_netof,
inet_makeaddr, and semct 1. It is supposed to be fixed by forcing code to link those functions with
libgcc, but this has not been tested yet.

It is known that version 7.4.1m of the MIPSPro compiler generates incorrect code. The symptom is
“invalid primary checkpoint record” when trying to start the database.) Version 7.4.4m is OK; the
status of intermediate versions is uncertain.

There may be a compilation problem like the following:

cc-1020 cc: ERROR File = pgcomm.c, Line = 427
The identifier "TCP_NODELAY" is undefined.

if (setsockopt (port->sock, IPPROTO_TCP, TCP_NODELAY,

Some versions include TCP definitions in sys/xti.h, so it is necessary to
add #include <sys/xti.h> in src/backend/libpg/pgcomm.c and in

352

Chapter 15. Installation from Source Code

src/interfaces/libpqg/fe-connect.c. If you encounter this, please let us know so we can
develop a proper fix.

In the regression tests, there might be some low-order-digit differences in the geometry tests, depend-
ing on which FPU are you using. Any other error is cause for suspicion.

15.8.5. MinGW/Native Windows

PostgreSQL for Windows can be built using MinGW, a Unix-like build environment for Microsoft
operating systems, or using Microsoft’s Visual C++ compiler suite. The MinGW build variant uses
the normal build system described in this chapter; the Visual C++ build works completely differently
and is described in Chapter 16. There is also a precompiled binary installer which you can find at from
http://pgfoundry.org/projects/pginstaller. It is a fully native build and uses no additional software like
MinGW. The ready-made installer files are available on the main PostgreSQL FTP servers in the
binary/win32 directory.

The native Win32 port requires a 32-bit NT-based Microsoft operating system, like Windows NT 4,
Windows 2000/2003, or Windows XP. (NT 4 is no longer supported.) Earlier operating systems do
not have sufficient infrastructure (but Cygwin may be used on those). MinGW, the Unix-like build
tools, and MSYS, a collection of Unix tools required to run shell scripts like configure, can be
downloaded from http://www.mingw.org/. Neither is required to run the resulting binaries; they are
needed only for creating the binaries.

After you have everything installed, it is suggested that you run psql under cMD . EXE, as the MSYS
console has buffering issues.

15.8.6. SCO OpenServer and SCO UnixWare

PostgreSQL can be built on SCO UnixWare 7 and SCO OpenServer 5. On OpenServer, you can use
either the OpenServer Development Kit or the Universal Development Kit. However, some tweaking
may be needed, as described below.

15.8.6.1. Skunkware

You should locate your copy of the SCO Skunkware CD. The Skunkware CD is included with
UnixWare 7 and current versions of OpenServer 5. Skunkware includes ready-to-install versions of
many popular programs that are available on the Internet. For example, gzip, gunzip, GNU Make,
Flex, and Bison are all included. For UnixWare 7.1, this CD is now labeled "Open License Software
Supplement". If you do not have this CD, the software on it is available via anonymous FTP from
ftp://ftp.sco.com/skunkware.

Skunkware has different versions for UnixWare and OpenServer. Make sure you install the correct
version for your operating system, except as noted below.

On UnixWare 7.1.3 and beyond, the GCC compiler is included on the UDK CD as is GNU Make.

15.8.6.2. GNU Make

You need to use the GNU Make program, which is on the Skunkware CD. By default, it installs as
/usr/local/bin/make. To avoid confusion with the SCO make program, you may want to rename
GNU make to gmake.

353

Chapter 15. Installation from Source Code

As of UnixWare 7.1.3 and above, the GNU Make program is is the OSTK portion of the UDK CD,
and is in /usr/gnu/bin/gmake.

15.8.6.3. Readline

The Readline library is on the Skunkware CD. But it is not included on the UnixWare 7.1 Skunkware
CD. If you have the UnixWare 7.0.0 or 7.0.1 Skunkware CDs, you can install it from there. Otherwise,
try ftp://ftp.sco.com/skunkware.

By default, Readline installs into /usr/local/liband /usr/local/include. However, the Post-
greSQL configure program will not find it there without help. If you installed Readline, then use
the following options to configure:

./configure —--with-libraries=/usr/local/lib --with-includes=/usr/local/include

15.8.6.4. Using the UDK on OpenServer

If you are using the new Universal Development Kit (UDK) compiler on OpenServer, you need to
specify the locations of the UDK libraries:

./configure —--with-libraries=/udk/usr/lib —--with-includes=/udk/usr/include
Putting these together with the Readline options from above:

./configure —--with-libraries="/udk/usr/lib /usr/local/lib" --with-includes="/udk/usr/inc

15.8.6.5. Reading the PostgreSQL man pages

By default, the PostgreSQL man pages are installed into /usr/local/pgsgl/man. By default,
UnixWare does not look there for man pages. To be able to read them you need to modify the MANPATH
variable in /etc/default/man, for example:

MANPATH=/usr/lib/scohelp/%L/man:/usr/dt/man:/usr/man:/usr/share/man:scohelp:/usr/local/m

On OpenServer, some extra research needs to be invested to make the man pages usable, because the
man system is a bit different from other platforms. Currently, PostgreSQL will not install them at all.

15.8.6.6. C99 Issues with the 7.1.1b Feature Supplement

For compilers earlier than the one released with OpenUNIX 8.0.0 (UnixWare 7.1.2), including the
7.1.1b Feature Supplement, you may need to specify —xb in CFLAGS or the CC environment variable.
The indication of this is an error in compiling tuplesort . c referencing inline functions. Apparently
there was a change in the 7.1.2(8.0.0) compiler and beyond.

354

Chapter 15. Installation from Source Code

15.8.6.7. -—enable-thread-safety and UnixWare

If you use the configure option --enable-thread-safety, you must use —-Kpthread
on all libpg-using programs. libpq uses pthread_» calls, which are only available with the
-Kpthread/-Kthread flag.

15.8.7. Solaris

PostgreSQL is well-supported on Solaris. The more up to date your operating system, the fewer issues
you will experience; details below.

Note that PostgreSQL is bundled with Solaris 10 (from update 2). Official packages are also available
on http://pgfoundry.org/projects/solarispackages/. Packages for older Solaris versions (8, 9) you can
be obtained from http://www.sunfreeware.com/ or http://www.blastwave.org/.

15.8.7.1. Required tools

You can build with either GCC or Sun’s compiler suite. For better code optimization, Sun’s compiler
is strongly recommended on the SPARC architecture. We have heard reports of problems when using
GCC 2.95.1; gee 2.95.3 or later is recommended. If you are using Sun’s compiler, be careful not to
select /usr/ucb/cc; use /opt/SUNWspro/bin/cc

You can download Sun Studio from http://developers.sun.com/sunstudio/downloads/. Many of GNU
tools are integrated into Solaris 10, or they are present on the Solaris companion CD. If you like
packages for older version of Solaris, you can find these tools at http://www.sunfreeware.com or
http://www.blastwave.org. If you prefer sources, look at http://www.gnu.org/order/ftp.html.

15.8.7.2. Problems with OpenSSL

When you build PostgreSQL with OpenSSL support you might get compilation errors in the following
files:

¢ src/backend/libpg/crypt.c

¢ src/backend/libpg/password.c

e src/interfaces/libpg/fe-auth.c
 src/interfaces/libpg/fe—-connect.c

This is because of a namespace conflict between the standard /usr/include/crypt .h header and
the header files provided by OpenSSL.

Upgrading your OpenSSL installation to version 0.9.6a fixes this problem. Solaris 9 and above has a
newer version of OpenSSL.

15.8.7.3. configure complains about a failed test program

If configure complains about a failed test program, this is probably a case of the run-time linker
being unable to find some library, probably libz, libreadline or some other non-standard library such

355

Chapter 15. Installation from Source Code

as libssl. To point it to the right location, set the LDFLAGS environment variable on the configure
command line, e.g.,

configure ... LDFLAGS="-R /usr/sfw/lib:/opt/sfw/lib:/usr/local/lib"

See the 1d man page for more information.

15.8.7.4. 64-bit build sometimes crashes

On Solaris 7 and older, the 64-bit version of libc has a buggy vsnprintf routine, which leads to
erratic core dumps in PostgreSQL. The simplest known workaround is to force PostgreSQL to use its
own version of vsnprintf rather than the library copy. To do this, after you run configure edit a file
produced by configure: In src/Makefile.global, change the line

LIBOBJS =
to read
LIBOBJS = snprintf.o

(There might be other files already listed in this variable. Order does not matter.) Then build as usual.

15.8.7.5. Compiling for optimal performance

On the SPARC architecture, Sun Studio is strongly recommended for compilation. Try using the
-x05 optimization flag to generate significantly faster binaries. Do not use any flags that modify
behavior of floating-point operations and errno processing (e.g., —fast). These flags could raise
some nonstandard PostgreSQL behavior for example in the date/time computing.

If you do not have a reason to use 64-bit binaries on SPARC, prefer the 32-bit version. The 64-bit
operations are slower and 64-bit binaries are slower than the 32-bit variants. And on other hand, 32-
bit code on the AMD64 CPU family is not native, and that is why 32-bit code is significant slower on
this CPU family.

Some tricks for tuning PostgreSQL and Solaris for performance can be found at
http://www.sun.com/servers/coolthreads/tnb/applications_postgresql.jsp. This article is primary
focused on T2000 platform, but many of the recommendations are also useful on other hardware
with Solaris.

15.8.7.6. Using DTrace for tracing PostgreSQL

Yes, using DTrace is possible. See Section 26.4 for further information. You can also find more infor-
mation in this article: http://blogs.sun.com/robertlor/entry/user_level dtrace_probes_in.

If you see the linking of the postgres executable abort with an error message like:

Undefined first referenced
symbol in file

AbortTransaction utils/probes.o

CommitTransaction utils/probes.o

1d: fatal: Symbol referencing errors. No output written to postgres
collect2: 1d returned 1 exit status
gmake: xxx [postgres] Error 1

356

Chapter 15. Installation from Source Code

your DTrace installation is too old to handle probes in static functions. You need Solaris 10u4 or
newer.

357

Chapter 16. Installation from Source Code on
Windows

It is recommended that most users download the binary distribution for Windows, available as a
Windows Installer package from the PostgreSQL website. Building from source is only intended for
people developing PostgreSQL or extensions.

There are several different ways of building PostgreSQL on Windows. The complete system can be
built using MinGW or Visual C++ 2005. It can also be built for older versions of Windows using
Cygwin. Finally, the client access library (libpq) can be built using Visual C++ 7.1 or Borland C++
for compatibility with statically linked applications built using these tools.

Building using MinGW or Cygwin uses the normal build system, see Chapter 15 and the specific
notes in Section 15.8.5 and Section 15.8.2. Cygwin is not recommended and should only be used for
older versions of Windows where the native build does not work, such as Windows 98.

16.1. Building with Visual C++ 2005

The tools for building using Visual C++ 2005, are in the src/tools/msvc directory. When building,
make sure there are no tools from MinGW or Cygwin present in your system PATH. Also, make sure
you have all the required Visual C++ tools available in the PATH, usually by starting a Visual Studio
Command Prompt and running the commands from there. All commands should be run from the
src\tools\msvc directory.

Before you build, edit the file config.pl to reflect the configuration options you want set, including
the paths to libraries used. If you need to set any other environment variables, create a file called
buildenv.pl and put the required commands there. For example, to add the path for bison when it’s
not in the PATH, create a file containing:

SENV{PATH}=SENV{PATH} . ’;c:\some\where\bison\bin’;

16.1.1. Requirements

PostgreSQL will build using either the professional versions (any edition) or the free Express edition
of Visual Studio 2005. The following additional products are required to build the complete package.
Use the config.pl file to specify which directories the libraries are available in.

ActiveState Perl

ActiveState Perl is required to run the build generation scripts. MinGW or Cygwin Perl
will not work. It must also be present in the PATH. Binaries can be downloaded from
http://www.activestate.com (Note: version 5.8 is required, the free Standard Distribution is
sufficient).

ActiveState TCL

Required for building PL/TCL (Note: version 8.4 is required, the free Standard Distribution is
sufficient).

358

Chapter 16. Installation from Source Code on Windows

Bison and Flex

Bison and Flex are required to build from CVS, but not required when building from a release
file. Note that only Bison 1.875 or versions 2.2 and later will work. Bison and Flex can be
downloaded from http://gnuwin32.sourceforge.net.

Diff
Diff is required to run the regression tests, and can be downloaded from
http://gnuwin32.sourceforge.net.

Gettext

Gettext is required to build with NLS support, and can be downloaded from
http://gnuwin32.sourceforge.net. Note that binaries, dependencies and developer files are all
needed.

Microsoft Platform SDK

It is recommended that you upgrade to the latest available version of the Microsoft Platform
SDK, available for download from http://www.microsoft.com/downloads/.

MIT Kerberos

Required for Kerberos authentication support. MIT Kerberos can be downloaded from
http://web.mit.edu/Kerberos/dist/index.html.

libxml2 and libxslt

Required for XML support. Binaries can be downloaded from http://zlatkovic.com/pub/libxml
or source from http://xmlsoft.org. Note that libxml2 requires iconv, which is available from the
same download location.

openssl
Required for SSL support. Binaries can be downloaded from
http://www.slproweb.com/products/Win32OpenSSL.html or source from

http://www.openssl.org.
ossp-uuid

Required for UUID-OSSP support (contrib only). Source can be downloaded from
http://www.ossp.org/pkg/lib/uuid/.

Python
Required for building PL/Python. Binaries can be downloaded from http://www.python.org.
zlib

Required for compression support in pg_dump and pg_restore. Binaries can be downloaded from
http://www.zlib.net.

16.1.2. Building

To build all of PostgreSQL in release configuration (the default), run the command:

build

To build all of PostgreSQL in debug configuration, run the command:

359

Chapter 16. Installation from Source Code on Windows

build DEBUG

To build just a single project, for example psql, run the commands:
build psql

build DEBUG psql

To change the default build configuration to debug, put the following in the buildenv.pl file:

SENV{CONFIG}="Debug";

It is also possible to build from inside the Visual Studio GUI. In this case, you need to run:

perl mkvcbuild.pl

from the command prompt, and then open the generated pgsgl.sln (in the root directory of the
source tree) in Visual Studio.

16.1.3. Cleaning and installing

Most of the time, the automatic dependency tracking in Visual Studio will handle changed files. But
if there have been large changes, you may need to clean the installation. To do this, simply run the
clean.bat command, which will automatically clean out all generated files. You can also run it with
the dist parameter, in which case it will behave like make distclean and remove the flex/bison
output files as well.

By default, all files are written into a subdirectory of the debug or release directories. To install
these files using the standard layout, and also generate the files required to initialize and use the
database, run the command:

perl install.pl c:\destination\directory

16.1.4. Running the regression tests

To run the regression tests, make sure you have completed the build of all required parts first. Also,
make sure that the DLLs required to load all parts of the system (such as the Perl and Python
DLLs for the procedural languages) are present in the system path. If they are not, set it through the

360

Chapter 16. Installation from Source Code on Windows

buildenv.pl file. To run the tests, run one of the following commands from the src\tools\msvc
directory:

vcregress check
vcregress installcheck
vcregress plcheck

vcregress contribcheck

To change the schedule used (default is the parallel), append it to the command line like:

vcregress check serial

For more information about the regression tests, see Chapter 29.

16.1.5. Building the documentation

Building the PostgreSQL documentation in HTML format requires several tools and files. Create a
root directory for all these files, and store them in the subdirectories in the list below.

OpenJade 1.3.1-2

Download from http://sourceforge.net/project/downloading.php?groupname=openjade&filename=openjade-
1_3_1-2-bin.zip and uncompress in the subdirectory openjade-1.3.1.

DocBook DTD 4.2

Download from http://www.oasis-open.org/docbook/sgml/4.2/docbook-4.2.zip and uncompress
in the subdirectory docbook.

DocBook DSSSL 1.79

Download from http://sourceforge.net/project/downloading.php?groupname=docbook&filename=docbook-
dsssl-1.79.zip and uncompress in the subdirectory docbook-dsssl-1.79.

ISO character entities

Download from http://www.oasis-open.org/cover/ISOEnts.zip and uncompress in the subdirec-
tory docbook.

Edit the buildenv.pl file, and add a variable for the location of the root directory, for example:

SENV{DOCROOT }=’c:\docbook’;

To build the documentation, run the command builddoc.bat. Note that this will actually run the
build twice, in order to generate the indexes. The generated HTML files will be in doc\src\sgml.

361

Chapter 16. Installation from Source Code on Windows

16.2. Building libpqg with Visual C++ or Borland C++

Using Visual C++ 7.1-8.0 or Borland C++ to build libpq is only recommended if you need a version
with different debug/release flags, or if you need a static library to link into an application. For normal
use the MinGW or Visual Studio 2005 version is recommended.

To build the libpq client library using Visual Studio 7.1 or later, change into the src directory and
type the command:

nmake /f win32.mak

To build a 64-bit version of the libpq client library using Visual Studio 8.0 or later, change into the
src directory and type in the command:

nmake /f win32.mak CPU=AMD64

See the win32.mak file for further details about supported variables.

To build the libpq client library using Borland C++, change into the src directory and type the com-
mand:

make -N -DCFG=Release /f bcc32.mak

16.2.1. Generated files

The following files will be built:

interfaces\libpg\Release\libpg.dll
The dynamically linkable frontend library
interfaces\libpg\Release\libpgdll.1lib
Import library to link your programs to 1ibpg.dl1l
interfaces\libpg\Release\libpg.1lib

Static version of the frontend library

Normally you do not need to install any of the client files. You should place the 1ibpqg.d11 file in the
same directory as your applications executable file. Do not install 1ibpg.d11 into your Windows,
System or System32 directory unless absolutely necessary. If this file is installed using a setup pro-
gram, it should be installed with version checking using the VERSIONINFO resource included in the
file, to ensure that a newer version of the library is not overwritten.

If you are planning to do development using libpq on this machine, you will have to add the
src\include and src\interfaces\1libpg subdirectories of the source tree to the include path in
your compiler’s settings.

To use the library, you must add the 1ibpqgdll.1ib file to your project. (In Visual C++, just right-
click on the project and choose to add it.)

362

Chapter 17. Server Setup and Operation

This chapter discusses how to set up and run the database server and its interactions with the operating
system.

17.1. The PostgreSQL User Account

As with any other server daemon that is accessible to the outside world, it is advisable to run Post-
greSQL under a separate user account. This user account should only own the data that is managed
by the server, and should not be shared with other daemons. (For example, using the user nobody is a
bad idea.) It is not advisable to install executables owned by this user because compromised systems
could then modify their own binaries.

To add a Unix user account to your system, look for a command useradd or adduser. The user
name postgres is often used, and is assumed throughout this book, but you can use another name if
you like.

17.2. Creating a Database Cluster

Before you can do anything, you must initialize a database storage area on disk. We call this a database
cluster. (SQL uses the term catalog cluster.) A database cluster is a collection of databases that is
managed by a single instance of a running database server. After initialization, a database cluster will
contain a database named postgres, which is meant as a default database for use by utilities, users
and third party applications. The database server itself does not require the postgres database to
exist, but many external utility programs assume it exists. Another database created within each cluster
during initialization is called templatel. As the name suggests, this will be used as a template for
subsequently created databases; it should not be used for actual work. (See Chapter 21 for information
about creating new databases within a cluster.)

In file system terms, a database cluster will be a single directory under which all data will be stored.
We call this the data directory or data area. It is completely up to you where you choose to
store your data. There is no default, although locations such as /usr/local/pgsgl/data or
/var/lib/pgsql/data are popular. To initialize a database cluster, use the command initdb,
which is installed with PostgreSQL. The desired file system location of your database cluster is
indicated by the —D option, for example:

$ initdb -D /usr/local/pgsql/data

Note that you must execute this command while logged into the PostgreSQL user account, which is
described in the previous section.

Tip: As an alternative to the -p option, you can set the environment variable pGpaTa.

initdb will attempt to create the directory you specify if it does not already exist. It is likely that
it will not have the permission to do so (if you followed our advice and created an unprivileged
account). In that case you should create the directory yourself (as root) and change the owner to be
the PostgreSQL user. Here is how this might be done:

root# mkdir /usr/local/pgsql/data

363

Chapter 17. Server Setup and Operation

root# chown postgres /usr/local/pgsql/data
root# su postgres
postgres$ initdb -D /usr/local/pgsql/data

initdb will refuse to run if the data directory looks like it has already been initialized.

Because the data directory contains all the data stored in the database, it is essential that it be se-
cured from unauthorized access. initdb therefore revokes access permissions from everyone but the
PostgreSQL user.

However, while the directory contents are secure, the default client authentication setup allows any
local user to connect to the database and even become the database superuser. If you do not trust
other local users, we recommend you use one of initdb’s -W, ——pwprompt Or ——pwfile options
to assign a password to the database superuser. Also, specify -A md5 or -A password so that the
default trust authentication mode is not used; or modify the generated pg_hba.conf file after
running initdb, before you start the server for the first time. (Other reasonable approaches include
using ident authentication or file system permissions to restrict connections. See Chapter 19 for
more information.)

initdb also initializes the default locale for the database cluster. Normally, it will just take the locale
settings in the environment and apply them to the initialized database. It is possible to specify a
different locale for the database; more information about that can be found in Section 22.1. The
default sort order used within the particular database cluster is set by initdb, and while you can
create new databases using different sort order, the order used in the template databases that initdb
creates cannot be changed without dropping and recreating them. There is also a performance impact
for using locales other than ¢ or pOos1x. Therefore, it is important to make this choice correctly the
first time.

initdb also sets the default character set encoding for the database cluster. Normally this should be
chosen to match the locale setting. For details see Section 22.2.

17.2.1. Network File Systems

Many installations create database clusters on network file systems. Sometimes this is done
directly via NFS, or by using a Network Attached Storage (NAS) device that uses NFS internally.
PostgreSQL does nothing special for NFS file systems, meaning it assumes NFS behaves
exactly like locally-connected drives (DAS, Direct Attached Storage). If client and server
NFS implementations have non-standard semantics, this can cause reliability problems (see
http://www.time-travellers.org/shane/papers/NFS_considered_harmful.html). Specifically, delayed
(asynchronous) writes to the NFS server can cause reliability problems; if possible, mount NFS
file systems synchronously (without caching) to avoid this. Also, soft-mounting NFS is not
recommended. (Storage Area Networks (SAN) use a low-level communication protocol rather than
NFS.)

17.3. Starting the Database Server

Before anyone can access the database, you must start the database server. The database server pro-
gram is called postgres. The postgres program must know where to find the data it is supposed
to use. This is done with the —D option. Thus, the simplest way to start the server is:

S postgres -D /usr/local/pgsql/data

364

Chapter 17. Server Setup and Operation

which will leave the server running in the foreground. This must be done while logged into the Post-
greSQL user account. Without -D, the server will try to use the data directory named by the environ-
ment variable PGDATA. If that variable is not provided either, it will fail.

Normally it is better to start postgres in the background. For this, use the usual shell syntax:
S postgres -D /usr/local/pgsql/data >logfile 2>&1 &

It is important to store the server’s stdout and stderr output somewhere, as shown above. It will help
for auditing purposes and to diagnose problems. (See Section 23.3 for a more thorough discussion of
log file handling.)

The postgres program also takes a number of other command-line options. For more information,
see the postgres reference page and Chapter 18 below.

This shell syntax can get tedious quickly. Therefore the wrapper program pg_ctl is provided to sim-
plify some tasks. For example:

pg_ctl start -1 logfile

will start the server in the background and put the output into the named log file. The -D option has
the same meaning here as for postgres. pg_ct1 is also capable of stopping the server.

Normally, you will want to start the database server when the computer boots. Autostart
scripts are operating-system-specific. There are a few distributed with PostgreSQL in the
contrib/start-scripts directory. Installing one will require root privileges.

Different systems have different conventions for starting up daemons at boot time. Many systems have
afile /etc/rc.local or /etc/rc.d/rc.local. Others use rc.d directories. Whatever you do,
the server must be run by the PostgreSQL user account and not by root or any other user. Therefore
you probably should form your commands using su -c ’ ...’ postgres. For example:

su -c 'pg_ctl start -D /usr/local/pgsgl/data -1 serverlog’ postgres

Here are a few more operating-system-specific suggestions. (In each case be sure to use the proper
installation directory and user name where we show generic values.)

« For FreeBSD, look at the file contrib/start-scripts/freebsd in the PostgreSQL source
distribution.

+ On OpenBSD, add the following lines to the file /etc/rc.local:

if [-x /usr/local/pgsgl/bin/pg_ctl -a -x /usr/local/pgsqgl/bin/postgres]; then
su - —-c¢ ’/usr/local/pgsgl/bin/pg_ctl start -1 /var/postgresqgl/log -s’ postgres
echo —n '’ postgresqgl’

fi

+ On Linux systems either add

/usr/local/pgsgl/bin/pg_ctl start -1 logfile -D /usr/local/pgsqgl/data
to /etc/rc.d/rc.local or look at the file contrib/start-scripts/linux in the Post-
greSQL source distribution.

« On NetBSD, either use the FreeBSD or Linux start scripts, depending on preference.
« On Solaris, create a file called /etc/init.d/postgresql that contains the following line:

su - postgres —-c "/usr/local/pgsgl/bin/pg_ctl start -1 logfile -D /usr/local/pgsgl/dat
Then, create a symbolic link to itin /etc/rc3.d as S99postgresql.

365

Chapter 17. Server Setup and Operation

While the server is running, its PID is stored in the file postmaster.pid in the data directory. This
is used to prevent multiple server instances from running in the same data directory and can also be
used for shutting down the server.

17.3.1. Server Start-up Failures

There are several common reasons the server might fail to start. Check the server’s log file, or start it
by hand (without redirecting standard output or standard error) and see what error messages appear.
Below we explain some of the most common error messages in more detail.

LOG: could not bind IPv4 socket: Address already in use
HINT: Is another postmaster already running on port 543272 If not, wait a few seconds an
FATAL: could not create TCP/IP listen socket

This usually means just what it suggests: you tried to start another server on the same port where one
is already running. However, if the kernel error message is not Address already in use Or some
variant of that, there might be a different problem. For example, trying to start a server on a reserved
port number might draw something like:

S postgres -p 666

LOG: could not bind IPv4 socket: Permission denied

HINT: Is another postmaster already running on port 6662 If not, wait a few seconds and
FATAL: could not create TCP/IP listen socket

A message like:

FATAL: could not create shared memory segment: Invalid argument
DETAIL: Failed system call was shmget (key=5440001, size=4011376640, 03600).

probably means your kernel’s limit on the size of shared memory is smaller than the work area
PostgreSQL is trying to create (4011376640 bytes in this example). Or it could mean that you
do not have System-V-style shared memory support configured into your kernel at all. As a
temporary workaround, you can try starting the server with a smaller-than-normal number of buffers
(shared_buffers). You will eventually want to reconfigure your kernel to increase the allowed shared
memory size. You might also see this message when trying to start multiple servers on the same
machine, if their total space requested exceeds the kernel limit.

An error like:

FATAL: could not create semaphores: No space left on device
DETAIL: Failed system call was semget (5440126, 17, 03600).

does not mean you’ve run out of disk space. It means your kernel’s limit on the number of System
V semaphores is smaller than the number PostgreSQL wants to create. As above, you might be able
to work around the problem by starting the server with a reduced number of allowed connections
(max_connections), but you’ll eventually want to increase the kernel limit.

If you get an “illegal system call” error, it is likely that shared memory or semaphores are not sup-
ported in your kernel at all. In that case your only option is to reconfigure the kernel to enable these
features.

Details about configuring System V IPC facilities are given in Section 17.4.1.

366

Chapter 17. Server Setup and Operation

17.3.2. Client Connection Problems

Although the error conditions possible on the client side are quite varied and application-dependent,
a few of them might be directly related to how the server was started up. Conditions other than those
shown below should be documented with the respective client application.

psgl: could not connect to server: Connection refused
Is the server running on host "server.joe.com" and accepting
TCP/IP connections on port 54327

This is the generic “I couldn’t find a server to talk to” failure. It looks like the above when TCP/IP
communication is attempted. A common mistake is to forget to configure the server to allow TCP/IP
connections.

Alternatively, you’ll get this when attempting Unix-domain socket communication to a local server:

psgl: could not connect to server: No such file or directory
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

The last line is useful in verifying that the client is trying to connect to the right place. If there
is in fact no server running there, the kernel error message will typically be either Connection
refused or No such file or directory, as illustrated. (It is important to realize that
Connection refused in this context does not mean that the server got your connection request
and rejected it. That case will produce a different message, as shown in Section 19.4.) Other error
messages such as Connection timed out might indicate more fundamental problems, like lack
of network connectivity.

17.4. Managing Kernel Resources

A large PostgreSQL installation can quickly exhaust various operating system resource limits. (On
some systems, the factory defaults are so low that you don’t even need a really “large” installation.)
If you have encountered this kind of problem, keep reading.

17.4.1. Shared Memory and Semaphores

Shared memory and semaphores are collectively referred to as “System V IPC” (together with mes-
sage queues, which are not relevant for PostgreSQL). Almost all modern operating systems provide
these features, but not all of them have them turned on or sufficiently sized by default, especially sys-
tems with BSD heritage. (On Windows, PostgreSQL provides its own replacement implementation of
these facilities, and so most of this section can be disregarded.)

The complete lack of these facilities is usually manifested by an Illegal system call error upon server
start. In that case there’s nothing left to do but to reconfigure your kernel. PostgreSQL won’t work
without them.

When PostgreSQL exceeds one of the various hard IPC limits, the server will refuse to start and
should leave an instructive error message describing the problem encountered and what to do about
it. (See also Section 17.3.1.) The relevant kernel parameters are named consistently across different
systems; Table 17-1 gives an overview. The methods to set them, however, vary. Suggestions for some

367

Chapter 17. Server Setup and Operation

platforms are given below. Be warned that it is often necessary to reboot your machine, and possibly
even recompile the kernel, to change these settings.

Table 17-1. System V IPC parameters

Name Description Reasonable values

SHMMAX Maximum size of shared at least several megabytes (see
memory segment (bytes) text)

SHMMIN Minimum size of shared 1

memory segment (bytes)

SHMALL Total amount of shared memory | if bytes, same as SHMMAX; if
available (bytes or pages) pages,
ceil (SHMMAX/PAGE_SIZE)

SHMSEG Maximum number of shared only 1 segment is needed, but
memory segments per process | the default is much higher

SHMMN I Maximum number of shared like SHMSEG plus room for
memory segments system-wide | other applications

SEMMNI Maximum number of at least
semaphore identifiers (i.e., sets) | ceil ((max_connections +

autovacuum_max_workers)

/ 16)
SEMMNS Maximum number of ceil ((max_connections +
semaphores system-wide autovacuum_max_workers)

/ 16) * 17 plus room for
other applications

SEMMSL Maximum number of at least 17
semaphores per set

SEMMAP Number of entries in see text
semaphore map

SEMVMX Maximum value of semaphore | at least 1000 (The default is
often 32767, don’t change
unless forced to)

The most important shared memory parameter is SHMMAX, the maximum size, in bytes, of a shared
memory segment. If you get an error message from shmget like Invalid argument, it is likely that
this limit has been exceeded. The size of the required shared memory segment varies depending on
several PostgreSQL configuration parameters, as shown in Table 17-2. (Any error message you might
get will include the exact size of the failed allocation request.) You can, as a temporary solution, lower
some of those settings to avoid the failure. While it is possible to get PostgreSQL to run with SHMMAX
as small as 2 MB, you need considerably more for acceptable performance. Desirable settings are in
the tens to hundreds of megabytes.

Some systems also have a limit on the total amount of shared memory in the system (SHMALL). Make
sure this is large enough for PostgreSQL plus any other applications that are using shared memory
segments. (Caution: SHMALL is measured in pages rather than bytes on many systems.)

Less likely to cause problems is the minimum size for shared memory segments (SHMMIN), which
should be at most approximately 500 kB for PostgreSQL (it is usually just 1). The maximum number
of segments system-wide (SHMMNTI) or per-process (SHMSEG) are unlikely to cause a problem unless
your system has them set to zero.

PostgreSQL uses one semaphore per allowed connection (max_connections) and allowed autovac-

368

Chapter 17. Server Setup and Operation

uum worker process (autovacuum_max_workers), in sets of 16. Each such set will also contain a 17th
semaphore which contains a “magic number”, to detect collision with semaphore sets used by other
applications. The maximum number of semaphores in the system is set by SEMMNS, which conse-
quently must be at least as high as max_connections plus autovacuum_max_workers, plus one
extra for each 16 allowed connections plus workers (see the formula in Table 17-1). The parameter
SEMMNTI determines the limit on the number of semaphore sets that can exist on the system at one time.
Hence this parameter must be at least ceil ((max_connections + autovacuum_max_workers)
/ 16). Lowering the number of allowed connections is a temporary workaround for failures, which
are usually confusingly worded No space left on device, from the function semget.

In some cases it might also be necessary to increase SEMMAP to be at least on the order of SEMMNS.
This parameter defines the size of the semaphore resource map, in which each contiguous block of
available semaphores needs an entry. When a semaphore set is freed it is either added to an existing
entry that is adjacent to the freed block or it is registered under a new map entry. If the map is full, the
freed semaphores get lost (until reboot). Fragmentation of the semaphore space could over time lead
to fewer available semaphores than there should be.

The SEMMSL parameter, which determines how many semaphores can be in a set, must be at least 17
for PostgreSQL.

Various other settings related to “semaphore undo”, such as SEMMNU and SEMUME, are not of concern
for PostgreSQL.

AIX

At least as of version 5.1, it should not be necessary to do any special configuration for such
parameters as SHMMAX, as it appears this is configured to allow all memory to be used as shared
memory. That is the sort of configuration commonly used for other databases such as DB/2.

It might, however, be necessary to modify the global ulimit information in
/etc/security/limits, as the default hard limits for file sizes (fsize) and numbers of files
(nofiles) might be too low.

BSD/OS

Shared Memory. By default, only 4 MB of shared memory is supported. Keep in mind that
shared memory is not pageable; it is locked in RAM. To increase the amount of shared memory
supported by your system, add something like the following to your kernel configuration file:

options "SHMALL=8192"

options "SHMMAX=\ (SHMALL*PAGE_SIZE\)"

SHMALL is measured in 4 kB pages, so a value of 1024 represents 4 MB of shared memory.
Therefore the above increases the maximum shared memory area to 32 MB. For those running
4.3 or later, you will probably also need to increase KERNEL_VIRTUAL_MB above the default
248. Once all changes have been made, recompile the kernel, and reboot.

For those running 4.0 and earlier releases, use bpatch to find the syspt size value in the current
kernel. This is computed dynamically at boot time.

$ bpatch -r sysptsize

0x9 = 9

Next, add sYSPTSIZE as a hard-coded value in the kernel configuration file. Increase the value
you found using bpatch. Add 1 for every additional 4 MB of shared memory you desire.

options "SYSPTSIZE=16"
sysptsize cannot be changed by sysct1.

Semaphores. You will probably want to increase the number of semaphores as well; the default
system total of 60 will only allow about 50 PostgreSQL connections. Set the values you want in
your kernel configuration file, e.g.:

369

Chapter 17. Server Setup and Operation

options "SEMMNI=40"
options "SEMMNS=240"

FreeBSD

The default settings are only suitable for small installations (for example, default SHMMAX is 32
MB). Changes can be made via the sysctl or loader interfaces. The following parameters can
be set using sysctl:

$ sysctl -w kern.ipc.shmall=32768
$ sysctl -w kern.ipc.shmmax=134217728
$ sysctl -w kern.ipc.semmap=256

To have these settings persist over reboots, modify /etc/sysctl.conf.

The remaining semaphore settings are read-only as far as sysctl is concerned, but can be
changed before boot using the 1oader prompt:

(loader) set kern.ipc.semmni=256
(loader) set kern.ipc.semmns=512
(loader) set kern.ipc.semmnu=256

Similarly these can be saved between reboots in /boot /loader.conf.

You might also want to configure your kernel to lock shared memory into RAM and prevent
it from being paged out to swap. This can be accomplished using the sysctl setting
kern.ipc.shm_use_phys.

If running in FreeBSD jails by enabling sysctl’s security. jail.sysvipc_allowed, post-
masters running in different jails should be run by different operating system users. This im-
proves security because it prevents non-root users from interfering with shared memory or
semaphores in a different jail, and it allows the PostgreSQL IPC cleanup code to function prop-
erly. (In FreeBSD 6.0 and later the IPC cleanup code doesn’t properly detect processes in other
jails, preventing the running of postmasters on the same port in different jails.)

FreeBSD versions before 4.0 work like NetBSD and OpenBSD (see below).

NetBSD
OpenBSD

The options SYSVSHM and SYSVSEM need to be enabled when the kernel is compiled. (They are
by default.) The maximum size of shared memory is determined by the option SHMMAXPGS (in
pages). The following shows an example of how to set the various parameters (OpenBSD uses
option instead):

options SYSVSHM
options SHMMAXPGS=4096
options SHMSEG=256
options SYSVSEM
options SEMMNI=256
options SEMMNS=512
options SEMMNU=256
options SEMMAP=256

You might also want to configure your kernel to lock shared memory into RAM and prevent
it from being paged out to swap. This can be accomplished using the sysctl setting
kern.ipc.shm_use_phys.

HP-UX

The default settings tend to suffice for normal installations. On HP-UX 10, the factory default
for SEMMNS is 128, which might be too low for larger database sites.

370

Chapter 17. Server Setup and Operation

IPC parameters can be set in the System Administration Manager (SAM) under Kernel
Configuration—Configurable Parameters. Hit Create A New Kernel when you’re done.

Linux

The default maximum segment size is 32 MB, which is only adequate for small PostgreSQL
installations. However, the remaining defaults are quite generously sized, and usually do not
require changes. The maximum shared memory segment size can be changed via the sysctl
interface. For example, to allow 128 MB, and explicitly set the maximum total shared memory
size to 2097152 pages (the default):

$ sysctl -w kernel.shmmax=134217728
$ sysctl -w kernel.shmall=2097152

In addition these settings can be saved between reboots in /etc/sysctl.conf.

Older distributions might not have the sysct1 program, but equivalent changes can be made by
manipulating the /proc file system:

$ echo 134217728 >/proc/sys/kernel/shmmax
$ echo 2097152 >/proc/sys/kernel/shmall

MacOS X

In OS X 10.2 and earlier, edit the file /System/Library/StartupItems/SystemTuning/SystemTuning
and change the values in the following commands:

sysctl -w kern.sysv.shmmax
sysctl -w kern.sysv.shmmin
sysctl -w kern.sysv.shmmni
sysctl -w kern.sysv.shmseg
sysctl -w kern.sysv.shmall

In OS X 10.3 and later, these commands have been moved to /et c/rc and must be edited there.
Note that /etc/rc is usually overwritten by OS X updates (such as 10.3.6 to 10.3.7) so you
should expect to have to redo your editing after each update.

In OS X 10.3.9 and later, instead of editing /etc/rc you can create a file named
/etc/sysctl.conf, containing variable assignments such as:

kern.sysv.shmmax=4194304

kern.sysv.shmmin=1

kern.sysv.shmmni=32

kern.sysv.shmseg=38

kern.sysv.shmall=1024

This method is better than editing /et c/rc because your changes will be preserved across sys-
tem updates. Note that all five shared-memory parameters must be set in /etc/sysctl.conf,
else the values will be ignored.

Beware that recent releases of OS X ignore attempts to set SHMMAX to a value that isn’t an exact
multiple of 4096.

SHMALL is measured in 4 kB pages on this platform.

In all OS X versions, you’ll need to reboot to make changes in the shared memory parameters
take effect.

SCO OpenServer

In the default configuration, only 512 kB of shared memory per segment is allowed. To in-
crease the setting, first change to the directory /etc/conf/cf.d. To display the current value
of SHMMAX, run:

./configure -y SHMMAX
To set a new value for SHMMAX, run:

371

Chapter 17. Server Setup and Operation

./configure SHMMAX=value
where value is the new value you want to use (in bytes). After setting SHMMAX, rebuild the
kernel:

./link_unix
and reboot.

Solaris

At least in version 2.6, the default maximum size of a shared memory segment is too low for
PostgreSQL. The relevant settings can be changed in /etc/system, for example:

set shmsys:shminfo_shmmax=0x2000000
set shmsys:shminfo_shmmin=1

set shmsys:shminfo_shmmni=256

set shmsys:shminfo_shmseg=256

set semsys:seminfo_semmap=256
set semsys:seminfo_semmni=512
set semsys:seminfo_semmns=512
set semsys:seminfo_semmsl=32

You need to reboot for the changes to take effect.

See also http://sunsite.uakom.sk/sunworldonline/swol-09-1997/swol-09-insidesolaris.html for
information on shared memory under Solaris.

UnixWare

On UnixWare 7, the maximum size for shared memory segments is only 512 kB in the default
configuration. To display the current value of SHMMAX, run:

/etc/conf/bin/idtune -g SHMMAX
which displays the current, default, minimum, and maximum values. To set a new value for
SHMMAX, run:

/etc/conf/bin/idtune SHMMAX value
where value is the new value you want to use (in bytes). After setting SHMMAX, rebuild the
kernel:

/etc/conf/bin/idbuild -B
and reboot.

Table 17-2. PostgreSQL shared memory usage

Usage Approximate shared memory bytes
required (as of 8.3)
Connections (1800 + 270 * max_locks_per_transaction) *

max_connections

Autovacuum workers

(1800 + 270 * max_locks_per_transaction) *
autovacuum_max_workers

Prepared transactions

(770 + 270 * max_locks_per_transaction) *
max_prepared_transactions

Shared disk buffers

(block_size + 208) * shared_buffers

WAL buffers

(wal_block_size + 8) * wal_buffers

Fixed space requirements

770 kB

372

Chapter 17. Server Setup and Operation

17.4.2. Resource Limits

Unix-like operating systems enforce various kinds of resource limits that might interfere with the
operation of your PostgreSQL server. Of particular importance are limits on the number of processes
per user, the number of open files per process, and the amount of memory available to each process.
Each of these have a “hard” and a “soft” limit. The soft limit is what actually counts but it can be
changed by the user up to the hard limit. The hard limit can only be changed by the root user. The
system call setrlimit is responsible for setting these parameters. The shell’s built-in command
ulimit (Bourne shells) or 1imit (csh) is used to control the resource limits from the command line.
On BSD-derived systems the file /etc/login.conf controls the various resource limits set during
login. See the operating system documentation for details. The relevant parameters are maxproc,
openfiles, and datasize. For example:

default:\

:datasize-cur=256M:\
:maxproc—cur=256:\
:openfiles—-cur=256:\

(—cur is the soft limit. Append -max to set the hard limit.)

Kernels can also have system-wide limits on some resources.

+ OnLinux /proc/sys/fs/file-max determines the maximum number of open files that the ker-
nel will support. It can be changed by writing a different number into the file or by adding an as-
signment in /etc/sysctl.conf. The maximum limit of files per process is fixed at the time the
kernel is compiled; see /usr/src/linux/Documentation/proc.txt for more information.

The PostgreSQL server uses one process per connection so you should provide for at least as many
processes as allowed connections, in addition to what you need for the rest of your system. This is
usually not a problem but if you run several servers on one machine things might get tight.

The factory default limit on open files is often set to “socially friendly” values that allow many users
to coexist on a machine without using an inappropriate fraction of the system resources. If you run
many servers on a machine this is perhaps what you want, but on dedicated servers you might want
to raise this limit.

On the other side of the coin, some systems allow individual processes to open large numbers of
files; if more than a few processes do so then the system-wide limit can easily be exceeded. If you
find this happening, and you do not want to alter the system-wide limit, you can set PostgreSQL’s
max_files_per_process configuration parameter to limit the consumption of open files.

17.4.3. Linux Memory Overcommit

In Linux 2.4 and later, the default virtual memory behavior is not optimal for PostgreSQL. Because of
the way that the kernel implements memory overcommit, the kernel might terminate the PostgreSQL
server (the master server process) if the memory demands of another process cause the system to run
out of virtual memory.

If this happens, you will see a kernel message that looks like this (consult your system documentation
and configuration on where to look for such a message):

Out of Memory: Killed process 12345 (postgres).

373

Chapter 17. Server Setup and Operation

This indicates that the postgres process has been terminated due to memory pressure. Although ex-
isting database connections will continue to function normally, no new connections will be accepted.
To recover, PostgreSQL will need to be restarted.

One way to avoid this problem is to run PostgreSQL on a machine where you can be sure that other
processes will not run the machine out of memory. If memory is tight, increasing the swap space
of the operating system can help avoiding the problem, because the out-of-memory (OOM) killer is
invoked whenever physical memory and swap space are exhausted.

On Linux 2.6 and later, an additional measure is to modify the kernel’s behavior so that it will not
“overcommit” memory. Although this setting will not prevent the OOM killer' from being invoked al-
together, it will lower the chances significantly and will therefore lead to more robust system behavior.
This is done by selecting strict overcommit mode via sysct1:

sysctl -w vm.overcommit_memory=2

or placing an equivalent entry in /etc/sysctl.conf. You might also wish to modify
the related setting vm.overcommit_ratio. For details see the kernel documentation file

Documentation/vm/overcommit—-accounting.

Some vendors’ Linux 2.4 kernels are reported to have early versions of the 2.6 overcommit sysct1l
parameter. However, setting vm. overcommit_memory to 2 on a kernel that does not have the relevant
code will make things worse not better. It is recommended that you inspect the actual kernel source
code (see the function vm_enough_memory in the file mm/mmap.c) to verify what is supported in
your copy before you try this in a 2.4 installation. The presence of the overcommit-accounting
documentation file should not be taken as evidence that the feature is there. If in any doubt, consult a
kernel expert or your kernel vendor.

17.5. Shutting Down the Server

There are several ways to shut down the database server. You control the type of shutdown by sending
different signals to the master postgres process.

SIGTERM

This is the Smart Shutdown mode. After receiving SIGTERM, the server disallows new connec-
tions, but lets existing sessions end their work normally. It shuts down only after all of the ses-
sions terminate. If the server is in online backup mode, it additionally waits until online backup
mode is no longer active. While backup mode is active, new connections will still be allowed,
but only to superusers (this exception allows a superuser to connect to terminate online backup
mode).

SIGINT

This is the Fast Shutdown mode. The server disallows new connections and sends all existing
server processes SIGTERM, which will cause them to abort their current transactions and exit
promptly. It then waits for the server processes to exit and finally shuts down. If the server is in
online backup mode, backup mode will be terminated, rendering the backup useless.

SIGQUIT

This is the Immediate Shutdown mode. The master postgres process will send a SIGQUIT
to all child processes and exit immediately, without properly shutting itself down. The child

1. http://lwn.net/Articles/104179/

374

Chapter 17. Server Setup and Operation

processes likewise exit immediately upon receiving SIGQUIT. This will lead to recovery (by
replaying the WAL log) upon next start-up. This is recommended only in emergencies.

The pg_ctl program provides a convenient interface for sending these signals to shut down the server.
Alternatively, you can send the signal directly using ki11 on non-Windows systems. The PID of the
postgres process can be found using the ps program, or from the file postmaster.pid in the data
directory. For example, to do a fast shutdown:

$ kill -INT ‘head -1 /usr/local/pgsql/data/postmaster.pid’

Important: It is best not to use SIGKILL to shut down the server. Doing so will prevent the server
from releasing shared memory and semaphores, which might then have to be done manually be-
fore a new server can be started. Furthermore, SIGKILL kills the postgres process without letting
it relay the signal to its subprocesses, so it will be necessary to kill the individual subprocesses
by hand as well.

To terminate an individual session while allowing other sessions to continue, use
pg_terminate_backend () (see Table 9-55) or send a SIGTERM signal to the child process
associated with the session.

17.6. Preventing Server Spoofing

While the server is running, it is not possible for a malicious user to take the place of the normal
database server. However, when the server is down it is possible for a local user to spoof the normal
server by starting their own server. The spoof server could read passwords and queries sent by clients,
but could not return any data because the PGDATA directory would still be secure because of directory
permissions. Spoofing is possible because any user can start a database server; a client cannot identify
an invalid server unless it is specially configured.

The simplest way to prevent invalid servers for Local connections is to use a Unix domain socket
directory (unix_socket_directory) that has write permission only for a trusted local user. This prevents
a malicious user from creating their own socket file in that directory. If you are concerned that some
applications might still reference /tmp for the socket file and hence be vulnerable to spoofing, during
operating system startup create symbolic link /tmp/.s.PGSQL.5432 that points to the relocated
socket file. You also might need to modify your /tmp cleanup script to preserve the symbolic link.

For TCP connections the server must accept only hostss1 connections (Section 19.1) and have SSL
server.key (key) and server.crt (certificate) files (Section 17.8). The TCP client must connect
using sslmode='verify-ca’ or 'verify-full’ and have the required certificate files present
(Section 30.1).

17.7. Encryption Options

PostgreSQL offers encryption at several levels, and provides flexibility in protecting data from dis-
closure due to database server theft, unscrupulous administrators, and insecure networks. Encryption
might also be required to secure sensitive data such as medical records or financial transactions.

375

Chapter 17. Server Setup and Operation

Password Storage Encryption

By default, database user passwords are stored as MDS5 hashes, so the administrator cannot de-
termine the actual password assigned to the user. If MD5 encryption is used for client authen-
tication, the unencrypted password is never even temporarily present on the server because the
client MDS5 encrypts it before being sent across the network.

Encryption For Specific Columns

The contrib function library pgcrypto allows certain fields to be stored encrypted. This is
useful if only some of the data is sensitive. The client supplies the decryption key and the data is
decrypted on the server and then sent to the client.

The decrypted data and the decryption key are present on the server for a brief time while it is
being decrypted and communicated between the client and server. This presents a brief moment
where the data and keys can be intercepted by someone with complete access to the database
server, such as the system administrator.

Data Partition Encryption

On Linux, encryption can be layered on top of a file system mount using a “loopback device”.
This allows an entire file system partition be encrypted on disk, and decrypted by the operating
system. On FreeBSD, the equivalent facility is called GEOM Based Disk Encryption, or gbde.

This mechanism prevents unencrypted data from being read from the drives if the drives or the
entire computer is stolen. This does not protect against attacks while the file system is mounted,
because when mounted, the operating system provides an unencrypted view of the data. How-
ever, to mount the file system, you need some way for the encryption key to be passed to the
operating system, and sometimes the key is stored somewhere on the host that mounts the disk.

Encrypting Passwords Across A Network

The MD5 authentication method double-encrypts the password on the client before sending it
to the server. It first MDS encrypts it based on the user name, and then encrypts it based on
a random salt sent by the server when the database connection was made. It is this double-
encrypted value that is sent over the network to the server. Double-encryption not only prevents
the password from being discovered, it also prevents another connection from using the same
encrypted password to connect to the database server at a later time.

Encrypting Data Across A Network

SSL connections encrypt all data sent across the network: the password, the queries, and the
data returned. The pg_hba. conf file allows administrators to specify which hosts can use non-
encrypted connections (host) and which require SSL-encrypted connections (hostss1). Also,
clients can specify that they connect to servers only via SSL. Stunnel or SSH can also be used to
encrypt transmissions.

SSL Host Authentication

It is possible for both the client and server to provide SSL certificates to each other. It takes some
extra configuration on each side, but this provides stronger verification of identity than the mere
use of passwords. It prevents a computer from pretending to be the server just long enough to
read the password send by the client. It also helps prevent "man in the middle" attacks where a
computer between the client and server pretends to be the server and reads and passes all data
between the client and server.

Client-Side Encryption

If the system administrator cannot be trusted, it is necessary for the client to encrypt the data;
this way, unencrypted data never appears on the database server. Data is encrypted on the client

376

Chapter 17. Server Setup and Operation

before being sent to the server, and database results have to be decrypted on the client before
being used.

17.8. Secure TCP/IP Connections with SSL

PostgreSQL has native support for using SSL connections to encrypt client/server communications
for increased security. This requires that OpenSSL is installed on both client and server systems and
that support in PostgreSQL is enabled at build time (see Chapter 15).

With SSL support compiled in, the PostgreSQL server can be started with SSL enabled by setting
the parameter ssl to on in postgresqgl.conf. The server will listen for both standard and SSL
connections on the same TCP port, and will negotiate with any connecting client on whether to use
SSL. By default, this is at the client’s option; see Section 19.1 about how to set up the server to require
use of SSL for some or all connections.

PostgreSQL reads the system-wide OpenSSL configuration file. By default, this file is named
openssl.cnf and is located in the directory reported by openssl version -d. This default
can be overridden by setting environment variable OPENSSL_CONF to the name of the desired
configuration file.

OpenSSL supports a wide range of ciphers and authentication algorithms, of varying strength. While a
list of ciphers can be specified in the OpenSSL configuration file, you can specify ciphers specifically
for use by the database server by modifying ssl_ciphers in postgresqgl.conf.

Note: It is possible to have authentication without encryption overhead by using NnuLL-sHA or
NULL-MD5 ciphers. However, a man-in-the-middle could read and pass communications between
client and server. Also, encryption overhead is minimal compared to the overhead of authentica-
tion. For these reasons NULL ciphers are not recommended.

To start in SSL mode, the files server.crt and server.key must exist in the server’s data direc-
tory. These files should contain the server certificate and private key, respectively. On Unix systems,
the permissions on server.key must disallow any access to world or group; achieve this by the
command chmod 0600 server.key. If the private key is protected with a passphrase, the server
will prompt for the passphrase and will not start until it has been entered.

17.8.1. Using client certificates

To require the client to supply a trusted certificate, place certificates of the certificate authorities (CA)
you trust in the file root.crt in the data directory, and set the clientcert parameter to 1 on
the appropriate line(s) in pg_hba.conf. A certificate will then be requested from the client during
SSL connection startup. (See Section 30.17 for a description of how to set up certificates on the
client.) The server will verify that the client’s certificate is signed by one of the trusted certificate
authorities. Certificate Revocation List (CRL) entries are also checked if the file root.crl exists.
(See http://h71000.www7.hp.com/DOC/83final/ BA554_90007/ch04s02.html for diagrams showing
SSL certificate usage.)

The clientcert option in pg_hba.conf is available for all authentication methods, but only for
rows specified as hostss1. Unless specified, the default is not to verify the client certificate.

You can use the authentication method cert to use the client certificate for authenticating users. See
Section 19.3.8 for details.

377

Chapter 17. Server Setup and Operation

17.8.2. SSL Server File Usage

The files server.key, server.crt, root.crt, and root.crl are only examined during server
start; so you must restart the server for changes in them to take effect.

Table 17-3. SSL Server File Usage

File

Contents

Effect

server.crt

server certificate

requested by client

server.key

server private key

proves server certificate sent by
owner; does not indicate
certificate owner is trustworthy

certificate authorities

root.crt trusted certificate authorities checks that client certificate is
signed by a trusted certificate
authority

root.crl certificates revoked by client certificate must not be on

this list

17.8.3. Creating a Self-Signed Certificate

To create a quick self-signed certificate for the server, use the following OpenSSL command:

openssl req —new —-text -out server.req

Fill out the information that openssl asks for. Make sure you enter the local host name as “Com-
mon Name”; the challenge password can be left blank. The program will generate a key that is
passphrase protected; it will not accept a passphrase that is less than four characters long. To remove
the passphrase (as you must if you want automatic start-up of the server), run the commands:

openssl rsa -in privkey.pem -out server.key

rm privkey.pem

Enter the old passphrase to unlock the existing key. Now do:

openssl req -x509 -in server.req -text -key server.key -out server.crt

to turn the certificate into a self-signed certificate and to copy the key and certificate to where the
server will look for them. Finally do:

chmod og-rwx server.key

because the server will reject the file if its permissions are more liberal than this. For more details on
how to create your server private key and certificate, refer to the OpenSSL documentation.

A self-signed certificate can be used for testing, but a certificate signed by a certificate authority (CA)
(either one of the global CAs or a local one) should be used in production so the client can verify the
server’s identity. If all the clients are local to the organization, using a local CA is recommended.

378

Chapter 17. Server Setup and Operation

17.9. Secure TCP/IP Connections with SSH Tunnels

One can use SSH to encrypt the network connection between clients and a PostgreSQL server. Done
properly, this provides an adequately secure network connection, even for non-SSL-capable clients.

First make sure that an SSH server is running properly on the same machine as the PostgreSQL
server and that you can log in using ssh as some user. Then you can establish a secure tunnel with a
command like this from the client machine:

ssh -L 63333:1localhost:5432 joe@foo.com

The first number in the -L argument, 63333, is the port number of your end of the tunnel; it can be
chosen freely. (IANA reserves ports 49152 through 65535 for private use.) The second number, 5432,
is the remote end of the tunnel: the port number your server is using. The name or IP address between
the port numbers is the host with the database server you are going to connect to, as seen from the
host you are logging in to, which is foo.com in this example. In order to connect to the database
server using this tunnel, you connect to port 63333 on the local machine:

psgl -h localhost -p 63333 postgres

To the database server it will then look as though you are really user joe on host foo.com connect-
ing to localhost in that context, and it will use whatever authentication procedure was configured
for connections from this user and host. Note that the server will not think the connection is SSL-
encrypted, since in fact it is not encrypted between the SSH server and the PostgreSQL server. This
should not pose any extra security risk as long as they are on the same machine.

In order for the tunnel setup to succeed you must be allowed to connect via ssh as joe@foo.com,
just as if you had attempted to use ssh to set up a terminal session.

You could also have set up the port forwarding as

ssh —-L 63333:foo.com:5432 joel@foo.com

but then the database server will see the connection as coming in on its foo. com interface, which is
not opened by the default setting 1isten_addresses = ’localhost’. This is usually not what
you want.

If you have to “hop” to the database server via some login host, one possible setup could look like
this:

ssh -L 63333:db.foo.com:5432 joe@shell.foo.com

Note that this way the connection from shell. foo.comto db.foo.com will not be encrypted by
the SSH tunnel. SSH offers quite a few configuration possibilities when the network is restricted in
various ways. Please refer to the SSH documentation for details.

Tip: Several other applications exist that can provide secure tunnels using a procedure similar in
concept to the one just described.

379

Chapter 18. Server Configuration

There are many configuration parameters that affect the behavior of the database system. In the first
section of this chapter, we describe how to set configuration parameters. The subsequent sections
discuss each parameter in detail.

18.1. Setting Parameters

All parameter names are case-insensitive. Every parameter takes a value of one of five types: Boolean,
integer, floating point, string or enum. Boolean values can be written as ON, OFF, TRUE, FALSE, YES,
NO, 1, 0 (all case-insensitive) or any unambiguous prefix of these.

Some settings specify a memory or time value. Each of these has an implicit unit, which is either
kilobytes, blocks (typically eight kilobytes), milliseconds, seconds, or minutes. Default units can be
found by referencing pg_settings.unit. For convenience, a different unit can also be specified
explicitly. Valid memory units are kB (kilobytes), MB (megabytes), and GB (gigabytes); valid time units
are ms (milliseconds), s (seconds), min (minutes), h (hours), and d (days). Note that the multiplier
for memory units is 1024, not 1000.

Parameters of type “enum” are specified in the same way as string parameters, but are restricted
to a limited set of values. The allowed values can be found from pg_settings.enumvals. Enum
parameter values are case-insensitive.

One way to set these parameters is to edit the file postgresqgl.conf, which is normally kept in the
data directory. (initdb installs a default copy there.) An example of what this file might look like is:

This is a comment

log_connections = yes
log_destination = ’'syslog’
search_path = ’""Suser", public’

shared_buffers = 128MB

One parameter is specified per line. The equal sign between name and value is optional. Whitespace
is insignificant and blank lines are ignored. Hash marks (#) introduce comments anywhere. Parameter
values that are not simple identifiers or numbers must be single-quoted. To embed a single quote in a
parameter value, write either two quotes (preferred) or backslash-quote.

In addition to parameter settings, the postgresqgl.conf file can contain include directives, which
specify another file to read and process as if it were inserted into the configuration file at this point.
Include directives simply look like:

include ' filename’

If the file name is not an absolute path, it is taken as relative to the directory containing the referencing
configuration file. Inclusions can be nested.

The configuration file is reread whenever the main server process receives a SIGHUP signal (which is
most easily sent by means of pg_ctl reload). The main server process also propagates this signal
to all currently running server processes so that existing sessions also get the new value. Alternatively,
you can send the signal to a single server process directly. Some parameters can only be set at server
start; any changes to their entries in the configuration file will be ignored until the server is restarted.

A second way to set these configuration parameters is to give them as a command-line option to the
postgres command, such as:

380

Chapter 18. Server Configuration

postgres —-c log_connections=yes -c log_destination=’syslog’

Command-line options override any conflicting settings in postgresql.conf. Note that this means
you won’t be able to change the value on-the-fly by editing postgresgl.conf, so while the
command-line method might be convenient, it can cost you flexibility later.

Occasionally it is useful to give a command line option to one particular session only. The environment
variable PGOPTIONS can be used for this purpose on the client side:

env PGOPTIONS='-c geqo=off’ psqgl

(This works for any libpg-based client application, not just psql.) Note that this won’t work for pa-
rameters that are fixed when the server is started or that must be specified in postgresgl.conf.

Furthermore, it is possible to assign a set of parameter settings to a user or a database. Whenever a
session is started, the default settings for the user and database involved are loaded. The commands
ALTER USER and ALTER DATABASE, respectively, are used to configure these settings. Per-database
settings override anything received from the postgres command-line or the configuration file, and
in turn are overridden by per-user settings; both are overridden by per-session settings.

Some parameters can be changed in individual SQL sessions with the SET command, for example:

SET ENABLE_SEQSCAN TO OFF;

If ST is allowed, it overrides all other sources of values for the parameter. Some parameters cannot be
changed via SET: for example, if they control behavior that cannot be changed without restarting the
entire PostgreSQL server. Also, some parameters can be modified via SET or ALTER by superusers,
but not by ordinary users.

The SHOW command allows inspection of the current values of all parameters.

The virtual table pg_settings (described in Section 44.53) also allows displaying and updating
session run-time parameters. It is equivalent to SHOW and SET, but can be more convenient to use
because it can be joined with other tables, or selected from using any desired selection condition. It
also contains more information about what values are allowed for the parameters.

18.2. File Locations

In addition to the postgresgl.conf file already mentioned, PostgreSQL uses two other manually-
edited configuration files, which control client authentication (their use is discussed in Chapter 19). By
default, all three configuration files are stored in the database cluster’s data directory. The parameters
described in this section allow the configuration files to be placed elsewhere. (Doing so can ease
administration. In particular it is often easier to ensure that the configuration files are properly backed-
up when they are kept separate.)

data_directory (string)

Specifies the directory to use for data storage. This parameter can only be set at server start.

config_file (string)

Specifies the main server configuration file (customarily called postgresqgl.conf). This pa-
rameter can only be set on the postgres command line.

hba_file (string)

Specifies the configuration file for host-based authentication (customarily called pg_hba . conf).
This parameter can only be set at server start.

381

Chapter 18. Server Configuration

ident_file (string)

Specifies the configuration file for ident authentication (customarily called pg_ident.conf).
This parameter can only be set at server start.

external_pid_file (string)

Specifies the name of an additional process-id (PID) file that the server should create for use by
server administration programs. This parameter can only be set at server start.

In a default installation, none of the above parameters are set explicitly. Instead, the data directory is
specified by the -D command-line option or the PGDATA environment variable, and the configuration
files are all found within the data directory.

If you wish to keep the configuration files elsewhere than the data directory, the postgres -D
command-line option or PGDATA environment variable must point to the directory containing the
configuration files, and the data_directory parameter must be set in postgresqgl.conf (or on
the command line) to show where the data directory is actually located. Notice that data_directory
overrides -D and PGDATA for the location of the data directory, but not for the location of the config-
uration files.

If you wish, you can specify the configuration file names and locations individually using the pa-
rameters config_file, hba_file and/or ident_file. config_file can only be specified on
the postgres command line, but the others can be set within the main configuration file. If all three
parameters plus data_directory are explicitly set, then it is not necessary to specify -D or PGDATA.

When setting any of these parameters, a relative path will be interpreted with respect to the directory
in which postgres is started.

18.3. Connections and Authentication

18.3.1. Connection Settings

listen_addresses (string)

Specifies the TCP/IP address(es) on which the server is to listen for connections from client
applications. The value takes the form of a comma-separated list of host names and/or numeric
IP addresses. The special entry » corresponds to all available IP interfaces. If the list is empty,
the server does not listen on any IP interface at all, in which case only Unix-domain sockets
can be used to connect to it. The default value is localhost, which allows only local “loopback™
connections to be made. This parameter can only be set at server start.

port (integer)
The TCP port the server listens on; 5432 by default. Note that the same port number is used for
all IP addresses the server listens on. This parameter can only be set at server start.

max_connections (integer)

Determines the maximum number of concurrent connections to the database server. The default
is typically 100 connections, but might be less if your kernel settings will not support it (as
determined during initdb). This parameter can only be set at server start.

Increasing this parameter might cause PostgreSQL to request more System V shared memory
or semaphores than your operating system’s default configuration allows. See Section 17.4.1 for
information on how to adjust those parameters, if necessary.

382

Chapter 18. Server Configuration

superuser_reserved_connections (integer)

Determines the number of connection “slots” that are reserved for connections by PostgreSQL
superusers. At most max_connections connections can ever be active simultaneously.
Whenever the number of active concurrent connections is at least max_connections minus
superuser_reserved_connections, new connections will be accepted only for superusers.

The default value is three connections. The value must be less than the value of
max_connections. This parameter can only be set at server start.

unix_socket_directory (string)

Specifies the directory of the Unix-domain socket on which the server is to listen for connections
from client applications. The default is normally /tmp, but can be changed at build time. This
parameter can only be set at server start.

unix_socket_group (string)

Sets the owning group of the Unix-domain socket. (The owning user of the socket is always the
user that starts the server.) In combination with the parameter unix_socket_permissions this
can be used as an additional access control mechanism for Unix-domain connections. By default
this is the empty string, which selects the default group for the current user. This parameter can
only be set at server start.

unix_socket_permissions (integer)

Sets the access permissions of the Unix-domain socket. Unix-domain sockets use the usual Unix
file system permission set. The parameter value is expected to be a numeric mode specification
in the form accepted by the chmod and umask system calls. (To use the customary octal format
the number must start with a 0 (zero).)

The default permissions are 0777, meaning anyone can connect. Reasonable alternatives are
0770 (only user and group, see also unix_socket_group) and 0700 (only user). (Note that
for a Unix-domain socket, only write permission matters and so there is no point in setting or
revoking read or execute permissions.)

This access control mechanism is independent of the one described in Chapter 19.
This parameter can only be set at server start.
bonjour_name (string)

Specifies the Bonjour broadcast name. The computer name is used if this parameter is set to the
empty string ” (which is the default). This parameter is ignored if the server was not compiled
with Bonjour support. This parameter can only be set at server start.

tcp_keepalives_idle (integer)

On systems that support the TCP_KEEPIDLE socket option, specifies the number of seconds
between sending keepalives on an otherwise idle connection. A value of zero uses the system de-
fault. If TCP_KEEPIDLE is not supported, this parameter must be zero. This parameter is ignored
for connections made via a Unix-domain socket.

tcp_keepalives_interval (integer)

On systems that support the TCP_KEEPINTVL socket option, specifies how long, in seconds, to
wait for a response to a keepalive before retransmitting. A value of zero uses the system default.
If TCP_KEEPINTVL is not supported, this parameter must be zero. This parameter is ignored for
connections made via a Unix-domain socket.

383

Chapter 18. Server Configuration

tcp_keepalives_count (integer)

On systems that support the TCP_KEEPCNT socket option, specifies how many keepalives can
be lost before the connection is considered dead. A value of zero uses the system default. If
TCP_KEEPCNT is not supported, this parameter must be zero. This parameter is ignored for con-
nections made via a Unix-domain socket.

18.3.2. Security and Authentication

authentication_timeout (integer)

Maximum time to complete client authentication, in seconds. If a would-be client has not com-
pleted the authentication protocol in this much time, the server breaks the connection. This pre-
vents hung clients from occupying a connection indefinitely. The default is one minute (1m). This
parameter can only be set in the postgresqgl.conf file or on the server command line.

ssl (boolean)

Enables SSL connections. Please read Section 17.8 before using this. The default is of£. This
parameter can only be set at server start. SSL. communication is only possible with TCP/IP
connections.

ssl_ciphers (string)

Specifies a list of SSL ciphers that are allowed to be used on secure connections. See the openssl
manual page for a list of supported ciphers.

password_encryption (boolean)

When a password is specified in CREATE USER or ALTER USER without writing either
ENCRYPTED Or UNENCRYPTED, this parameter determines whether the password is to be
encrypted. The default is on (encrypt the password).

krb_server_keyfile (string)

Sets the location of the Kerberos server key file. See Section 19.3.5 or Section 19.3.3 for details.
This parameter can only be set in the postgresqgl.conf file or on the server command line.

krb_srvname (string)

Sets the Kerberos service name. See Section 19.3.5 for details. This parameter can only be set in
the postgresqgl.conf file or on the server command line.

krb_caseins_users (boolean)

Sets whether Kerberos and GSSAPI user names should be treated case-insensitively. The default
is of £ (case sensitive). This parameter can only be set in the postgresgl.conf file or on the
server command line.

db_user_namespace (boolean)

This parameter enables per-database user names. It is off by default. This parameter can only be
set in the postgresql.conf file or on the server command line.

If this is on, you should create users as username@dbname. When username is passed by a
connecting client, @ and the database name are appended to the user name and that database-
specific user name is looked up by the server. Note that when you create users with names
containing @ within the SQL environment, you will need to quote the user name.

384

Chapter 18. Server Configuration

With this parameter enabled, you can still create ordinary global users. Simply append @ when
specifying the user name in the client. The @ will be stripped off before the user name is looked
up by the server.

db_user_namespace causes the client’s and server’s user name representation to differ. Au-
thentication checks are always done with the server’s user name so authentication methods must
be configured for the server’s user name, not the client’s. Because md5 uses the user name as salt
on both the client and server, md5 cannot be used with db_user_namespace.

Note: This feature is intended as a temporary measure until a complete solution is found. At
that time, this option will be removed.

18.4. Resource Consumption

18.4.1. Memory

shared_buffers (integer)

Sets the amount of memory the database server uses for shared memory buffers. The default
is typically 32 megabytes (32MB), but might be less if your kernel settings will not support it
(as determined during initdb). This setting must be at least 128 kilobytes. (Non-default values of
BLCKSZ change the minimum.) However, settings significantly higher than the minimum are usu-
ally needed for good performance. Several tens of megabytes are recommended for production
installations. This parameter can only be set at server start.

Increasing this parameter might cause PostgreSQL to request more System V shared memory
than your operating system’s default configuration allows. See Section 17.4.1 for information on
how to adjust those parameters, if necessary.

temp_buffers (integer)

Sets the maximum number of temporary buffers used by each database session. These are
session-local buffers used only for access to temporary tables. The default is eight megabytes
(8MB). The setting can be changed within individual sessions, but only up until the first use of
temporary tables within a session; subsequent attempts to change the value will have no effect
on that session.

A session will allocate temporary buffers as needed up to the limit given by temp_buffers.
The cost of setting a large value in sessions that do not actually need a lot of temporary buffers
is only a buffer descriptor, or about 64 bytes, per increment in temp_buffers. However if a
buffer is actually used an additional 8192 bytes will be consumed for it (or in general, BLCKSZ
bytes).

max_prepared_transactions (integer)

Sets the maximum number of transactions that can be in the “prepared” state simultaneously
(see PREPARE TRANSACTION). Setting this parameter to zero (which is the default) disables
the prepared-transaction feature. This parameter can only be set at server start.

385

Chapter 18. Server Configuration

If you are not planning to use prepared transactions, this parameter should be set to zero to
prevent accidental creation of prepared transactions. If you are using prepared transactions, you
will probably want max_prepared_transactions to be at least as large as max_connections,
so that every session can have a prepared transaction pending.

Increasing this parameter might cause PostgreSQL to request more System V shared memory
than your operating system’s default configuration allows. See Section 17.4.1 for information on
how to adjust those parameters, if necessary.

work_mem (integer)

Specifies the amount of memory to be used by internal sort operations and hash tables before
switching to temporary disk files. The value defaults to one megabyte (1MB). Note that for a
complex query, several sort or hash operations might be running in parallel; each one will be
allowed to use as much memory as this value specifies before it starts to put data into temporary
files. Also, several running sessions could be doing such operations concurrently. So the total
memory used could be many times the value of work_mem; it is necessary to keep this fact in
mind when choosing the value. Sort operations are used for ORDER BY, DISTINCT, and merge
joins. Hash tables are used in hash joins, hash-based aggregation, and hash-based processing of
IN subqueries.

maintenance_work_mem (integer)

Specifies the maximum amount of memory to be used in maintenance operations, such as
VACUUM, CREATE INDEX, and ALTER TABLE ADD FOREIGN KEY. It defaults to 16 megabytes
(16MB). Since only one of these operations can be executed at a time by a database session, and
an installation normally doesn’t have many of them running concurrently, it’s safe to set this
value significantly larger than work_mem. Larger settings might improve performance for
vacuuming and for restoring database dumps.

Note that when autovacuum runs, up to autovacuum_max_workers times this memory may be
allocated, so be careful not to set the default value too high.

max_stack_depth (integer)

Specifies the maximum safe depth of the server’s execution stack. The ideal setting for this pa-
rameter is the actual stack size limit enforced by the kernel (as set by ulimit -s or local equiv-
alent), less a safety margin of a megabyte or so. The safety margin is needed because the stack
depth is not checked in every routine in the server, but only in key potentially-recursive routines
such as expression evaluation. The default setting is two megabytes (2MB), which is conserva-
tively small and unlikely to risk crashes. However, it might be too small to allow execution of
complex functions. Only superusers can change this setting.

Setting max_stack_depth higher than the actual kernel limit will mean that a runaway re-
cursive function can crash an individual backend process. On platforms where PostgreSQL can
determine the kernel limit, it will not let you set this variable to an unsafe value. However, not
all platforms provide the information, so caution is recommended in selecting a value.

18.4.2. Kernel Resource Usage

max_files_per_process (integer)

Sets the maximum number of simultaneously open files allowed to each server subprocess. The
default is one thousand files. If the kernel is enforcing a safe per-process limit, you don’t need
to worry about this setting. But on some platforms (notably, most BSD systems), the kernel will
allow individual processes to open many more files than the system can really support when a

386

Chapter 18. Server Configuration

large number of processes all try to open that many files. If you find yourself seeing “Too many
open files” failures, try reducing this setting. This parameter can only be set at server start.

shared_preload_libraries (string)

This variable specifies one or more shared libraries that are to be preloaded at server start.
If more than one library is to be loaded, separate their names with commas. For example,
’$libdir/mylib’ would cause mylib. so (or on some platforms, mylib.s1) to be preloaded
from the installation’s standard library directory. This parameter can only be set at server start.

PostgreSQL procedural language libraries can be preloaded in this way, typically by using the
syntax ’ $1ibdir/plXXX’ where xxx is pgsql, perl, tcl, or python.

By preloading a shared library, the library startup time is avoided when the library is first used.
However, the time to start each new server process might increase slightly, even if that process
never uses the library. So this parameter is recommended only for libraries that will be used in
most sessions.

Note: On Windows hosts, preloading a library at server start will not reduce the time required
to start each new server process; each server process will re-load all preload libraries. How-
ever, shared_preload_libraries is still useful on Windows hosts because some shared
libraries may need to perform certain operations that only take place at postmaster start (for
example, a shared library may need to reserve lightweight locks or shared memory and you
can’t do that after the postmaster has started).

If a specified library is not found, the server will fail to start.

Every PostgreSQL-supported library has a “magic block™ that is checked to guarantee compati-
bility. For this reason, non-PostgreSQL libraries cannot be loaded in this way.

18.4.3. Cost-Based Vacuum Delay

During the execution of VACUUM and ANALYZE commands, the system maintains an internal
counter that keeps track of the estimated cost of the various I/O operations that are performed. When
the accumulated cost reaches a limit (specified by vacuum_cost_limit), the process performing
the operation will sleep for a while (specified by vacuum_cost_delay). Then it will reset the
counter and continue execution.

The intent of this feature is to allow administrators to reduce the I/O impact of these commands on
concurrent database activity. There are many situations in which it is not very important that mainte-
nance commands like vACUUM and ANALYZE finish quickly; however, it is usually very important that
these commands do not significantly interfere with the ability of the system to perform other database
operations. Cost-based vacuum delay provides a way for administrators to achieve this.

This feature is disabled by default for manually issued vACUUM commands. To enable it, set the
vacuum_cost_delay variable to a nonzero value.

vacuum_cost_delay (integer)

The length of time, in milliseconds, that the process will sleep when the cost limit has been
exceeded. The default value is zero, which disables the cost-based vacuum delay feature. Positive
values enable cost-based vacuuming. Note that on many systems, the effective resolution of sleep
delays is 10 milliseconds; setting vacuum_cost_delay to a value that is not a multiple of 10
might have the same results as setting it to the next higher multiple of 10.

387

Chapter 18. Server Configuration

When using cost-based vacuuming, appropriate values for vacuum_cost_delay are usually
quite small, perhaps 10 or 20 milliseconds. Adjusting vacuum’s resource consumption is best
done by changing the other vacuum cost parameters.

vacuum_cost_page_hit (integer)

The estimated cost for vacuuming a buffer found in the shared buffer cache. It represents the cost
to lock the buffer pool, lookup the shared hash table and scan the content of the page. The default
value is one.

vacuum_cost_page_miss (integer)

The estimated cost for vacuuming a buffer that has to be read from disk. This represents the effort
to lock the buffer pool, lookup the shared hash table, read the desired block in from the disk and
scan its content. The default value is 10.

vacuum_cost_page_dirty (integer)

The estimated cost charged when vacuum modifies a block that was previously clean. It repre-
sents the extra I/O required to flush the dirty block out to disk again. The default value is 20.

vacuum_cost_limit (integer)

The accumulated cost that will cause the vacuuming process to sleep. The default value is 200.

Note: There are certain operations that hold critical locks and should therefore complete as
quickly as possible. Cost-based vacuum delays do not occur during such operations. Therefore it
is possible that the cost accumulates far higher than the specified limit. To avoid uselessly long de-
lays in such cases, the actual delay is calculated as vacuum_cost_delay * accumulated_balance
/ vacuum_cost_1limit with @ maximum of vacuum_cost_delay * 4.

18.4.4. Background Writer

There is a separate server process called the background writer, whose function is to issue writes
of “dirty” shared buffers. The intent is that server processes handling user queries should seldom or
never have to wait for a write to occur, because the background writer will do it. However there is a net
overall increase in I/O load, because a repeatedly-dirtied page might otherwise be written only once
per checkpoint interval, but the background writer might write it several times in the same interval.
The parameters discussed in this subsection can be used to tune the behavior for local needs.

bgwriter_delay (integer)

Specifies the delay between activity rounds for the background writer. In each round the writer
issues writes for some number of dirty buffers (controllable by the following parameters). It then
sleeps for bgwriter_delay milliseconds, and repeats. The default value is 200 milliseconds
(200ms). Note that on many systems, the effective resolution of sleep delays is 10 millisec-
onds; setting bgwriter_delay to a value that is not a multiple of 10 might have the same
results as setting it to the next higher multiple of 10. This parameter can only be set in the
postgresqgl.conf file or on the server command line.

bgwriter_lru_maxpages (integer)

In each round, no more than this many buffers will be written by the background writer. Setting
this to zero disables background writing (except for checkpoint activity). The default value is 100
buffers. This parameter can only be set in the postgresqgl. conf file or on the server command
line.

388

Chapter 18. Server Configuration

bgwriter_lru_multiplier (floating point)

The number of dirty buffers written in each round is based on the number of new buffers that
have been needed by server processes during recent rounds. The average recent need is multiplied
by bgwriter_lru_multiplier to arrive at an estimate of the number of buffers that will be
needed during the next round. Dirty buffers are written until there are that many clean, reusable
buffers available. (However, no more than bgwriter_lru_maxpages buffers will be written
per round.) Thus, a setting of 1.0 represents a “‘just in time” policy of writing exactly the number
of buffers predicted to be needed. Larger values provide some cushion against spikes in demand,
while smaller values intentionally leave writes to be done by server processes. The default is 2.0.
This parameter can only be set in the postgresqgl.conf file or on the server command line.

Smaller values of bgwriter_lru_maxpages and bgwriter_lru_multiplier reduce the extra
I/0 load caused by the background writer, but make it more likely that server processes will have to
issue writes for themselves, delaying interactive queries.

18.4.5. Asynchronous Behavior

effective_io_concurrency (integer)

Sets the number of concurrent disk I/O operations that PostgreSQL expects can be executed
simultaneously. Raising this value will increase the number of I/O operations that any individual
PostgreSQL session attempts to initiate in parallel. The allowed range is 1 to 1000, or zero to
disable issuance of asynchronous I/O requests.

A good starting point for this setting is the number of separate drives comprising a RAID 0
stripe or RAID 1 mirror being used for the database. (For RAID 5 the parity drive should not
be counted.) However, if the database is often busy with multiple queries issued in concurrent
sessions, lower values may be sufficient to keep the disk array busy. A value higher than needed
to keep the disks busy will only result in extra CPU overhead.

For more exotic systems, such as memory-based storage or a RAID array that is limited by bus
bandwidth, the correct value might be the number of I/O paths available. Some experimentation
may be needed to find the best value.

Asynchronous I/O depends on an effective posix_fadvise function, which some operating
systems lack. If the function is not present then setting this parameter to anything but zero will
result in an error. On some operating systems (e.g., Solaris), the function is present but does not
actually do anything.

18.5. Write Ahead Log

See also Section 28.4 for details on WAL and checkpoint tuning.

18.5.1. Settings

fsync (boolean)

If this parameter is on, the PostgreSQL server will try to make sure that updates are phys-
ically written to disk, by issuing fsync () system calls or various equivalent methods (see

389

Chapter 18. Server Configuration

wal_sync_method). This ensures that the database cluster can recover to a consistent state af-
ter an operating system or hardware crash.

However, using f£sync results in a performance penalty: when a transaction is committed, Post-
greSQL must wait for the operating system to flush the write-ahead log to disk. When £sync
is disabled, the operating system is allowed to do its best in buffering, ordering, and delaying
writes. This can result in significantly improved performance. However, if the system crashes,
the results of the last few committed transactions might be lost in part or whole. In the worst
case, unrecoverable data corruption might occur. (Crashes of the database software itself are not
a risk factor here. Only an operating-system-level crash creates a risk of corruption.)

Due to the risks involved, there is no universally correct setting for £sync. Some administrators
always disable fsync, while others only turn it off during initial bulk data loads, where there is
a clear restart point if something goes wrong. Others always leave fsync enabled. The default
is to enable fsync, for maximum reliability. If you trust your operating system, your hardware,
and your utility company (or your battery backup), you can consider disabling fsync.

In many situations, turning off synchronous_commit for noncritical transactions can provide
much of the potential performance benefit of turning off £sync, without the attendant risks of
data corruption.

This parameter can only be set in the postgresqgl.conf file or on the server command line. If
you turn this parameter off, also consider turning off full_page_writes.

synchronous_commit (boolean)

Specifies whether transaction commit will wait for WAL records to be written to disk before
the command returns a “success” indication to the client. The default, and safe, setting is on.
When off, there can be a delay between when success is reported to the client and when the
transaction is really guaranteed to be safe against a server crash. (The maximum delay is three
times wal_writer_delay.) Unlike fsync, setting this parameter to of£ does not create any risk
of database inconsistency: a crash might result in some recent allegedly-committed transactions
being lost, but the database state will be just the same as if those transactions had been aborted
cleanly. So, turning synchronous_commit off can be a useful alternative when performance is
more important than exact certainty about the durability of a transaction. For more discussion
see Section 28.3.

This parameter can be changed at any time; the behavior for any one transaction is determined
by the setting in effect when it commits. It is therefore possible, and useful, to have some trans-
actions commit synchronously and others asynchronously. For example, to make a single multi-
statement transaction commit asynchronously when the default is the opposite, issue SET LOCAL
synchronous_commit TO OFF within the transaction.

wal_sync_method (enum)

Method used for forcing WAL updates out to disk. If £sync is off then this setting is irrelevant,
since updates will not be forced out at all. Possible values are:

+ open_datasync (write WAL files with open () option O_DSYNC)
+ fdatasync (call fdatasync () at each commit)

« fsync_writethrough (call £sync() at each commit, forcing write-through of any disk
write cache)

« fsync (call fsync () at each commit)

+ open_sync (write WAL files with open () option O_SYNC)

390

Chapter 18. Server Configuration

Not all of these choices are available on all platforms. The default is the first method in the above
list that is supported by the platform. The open_* options also use O_DIRECT if available. This
parameter can only be set in the postgresqgl.conf file or on the server command line.

full_page_writes (boolean)

When this parameter is on, the PostgreSQL server writes the entire content of each disk page
to WAL during the first modification of that page after a checkpoint. This is needed because a
page write that is in process during an operating system crash might be only partially completed,
leading to an on-disk page that contains a mix of old and new data. The row-level change data
normally stored in WAL will not be enough to completely restore such a page during post-crash
recovery. Storing the full page image guarantees that the page can be correctly restored, but at
a price in increasing the amount of data that must be written to WAL. (Because WAL replay
always starts from a checkpoint, it is sufficient to do this during the first change of each page
after a checkpoint. Therefore, one way to reduce the cost of full-page writes is to increase the
checkpoint interval parameters.)

Turning this parameter off speeds normal operation, but might lead to a corrupt database after
an operating system crash or power failure. The risks are similar to turning off £sync, though
smaller. It might be safe to turn off this parameter if you have hardware (such as a battery-
backed disk controller) or file-system software that reduces the risk of partial page writes to an
acceptably low level (e.g., ReiserFS 4).

Turning off this parameter does not affect use of WAL archiving for point-in-time recovery
(PITR) (see Section 24.3).

This parameter can only be set in the postgresqgl.conf file or on the server command line.
The default is on.

wal_buffers (integer)

The amount of memory used in shared memory for WAL data. The default is 64 kilobytes (64kB).
The setting need only be large enough to hold the amount of WAL data generated by one typical
transaction, since the data is written out to disk at every transaction commit. This parameter can
only be set at server start.

Increasing this parameter might cause PostgreSQL to request more System V shared memory
than your operating system’s default configuration allows. See Section 17.4.1 for information on
how to adjust those parameters, if necessary.

wal_writer_delay (integer)

Specifies the delay between activity rounds for the WAL writer. In each round the writer will
flush WAL to disk. It then sleeps for wal_writer_delay milliseconds, and repeats. The default
value is 200 milliseconds (200ms). Note that on many systems, the effective resolution of sleep
delays is 10 milliseconds; setting wal_writer_delay to a value that is not a multiple of 10
might have the same results as setting it to the next higher multiple of 10. This parameter can
only be set in the postgresql . conf file or on the server command line.

commit_delay (integer)

Time delay between writing a commit record to the WAL buffer and flushing the buffer out
to disk, in microseconds. A nonzero delay can allow multiple transactions to be committed with
only one fsync () system call, if system load is high enough that additional transactions become
ready to commit within the given interval. But the delay is just wasted if no other transactions
become ready to commit. Therefore, the delay is only performed if at least commit_siblings
other transactions are active at the instant that a server process has written its commit record.
The default is zero (no delay).

391

Chapter 18. Server Configuration

commit_siblings (integer)

Minimum number of concurrent open transactions to require before performing the
commit_delay delay. A larger value makes it more probable that at least one other transaction
will become ready to commit during the delay interval. The default is five transactions.

18.5.2. Checkpoints

checkpoint_segments (integer)

Maximum number of log file segments between automatic WAL checkpoints (each segment
is normally 16 megabytes). The default is three segments. Increasing this parameter can in-
crease the amount of time needed for crash recovery. This parameter can only be set in the
postgresql.conf file or on the server command line.

checkpoint_timeout (integer)

Maximum time between automatic WAL checkpoints, in seconds. The default is five minutes
(5min). Increasing this parameter can increase the amount of time needed for crash recovery.
This parameter can only be set in the postgresqgl . conf file or on the server command line.

checkpoint_completion_target (floating point)

Specifies the target length of checkpoints, as a fraction of the checkpoint interval. The default
is 0.5. This parameter can only be set in the postgresql.conf file or on the server command
line.

checkpoint_warning (integer)

Write a message to the server log if checkpoints caused by the filling of checkpoint segment files
happen closer together than this many seconds (which suggests that checkpoint_segments
ought to be raised). The default is 30 seconds (30s). Zero disables the warning. This parameter
can only be set in the postgresqgl.conf file or on the server command line.

18.5.3. Archiving

archive_mode (boolean)

When archive_mode is enabled, completed WAL segments can be sent to archive storage by
setting archive_command. archive_mode and archive_command are separate variables so
that archive_command can be changed without leaving archiving mode. This parameter can
only be set at server start.

archive_command (string)

The shell command to execute to archive a completed segment of the WAL file series. Any
$p in the string is replaced by the path name of the file to archive, and any %f is replaced by
the file name only. (The path name is relative to the working directory of the server, i.e., the
cluster’s data directory.) Use %% to embed an actual % character in the command. For more
information see Section 24.3.1. This parameter can only be set in the postgresgl . conf file or
on the server command line. It is ignored unless archive_mode was enabled at server start. If
archive_command is an empty string (the default) while archive_mode is enabled, then WAL
archiving is temporarily disabled, but the server continues to accumulate WAL segment files in
the expectation that a command will soon be provided.

It is important for the command to return a zero exit status if and only if it succeeds. Examples:

392

Chapter 18. Server Configuration

archive_command = 'cp "%p" /mnt/server/archivedir/"%f"’
archive_command = 'copy "%$p" "C:\\server\\archivedir\\%f"’ # Windows

archive_timeout (integer)

The archive_command is only invoked on completed WAL segments. Hence, if your server gen-
erates little WAL traffic (or has slack periods where it does so), there could be a long delay
between the completion of a transaction and its safe recording in archive storage. To put a limit
on how old unarchived data can be, you can set archive_timeout to force the server to switch
to a new WAL segment file periodically. When this parameter is greater than zero, the server will
switch to a new segment file whenever this many seconds have elapsed since the last segment
file switch. Note that archived files that are closed early due to a forced switch are still the same
length as completely full files. Therefore, it is unwise to use a very short archive_timeout —
it will bloat your archive storage. archive_timeout settings of a minute or so are usually rea-
sonable. This parameter can only be set in the postgresqgl. conf file or on the server command
line.

18.6. Query Planning

18.6.1. Planner Method Configuration

These configuration parameters provide a crude method of influencing the query plans chosen by the
query optimizer. If the default plan chosen by the optimizer for a particular query is not optimal,
a temporary solution can be found by using one of these configuration parameters to force the op-
timizer to choose a different plan. Turning one of these settings off permanently is seldom a good
idea, however. Better ways to improve the quality of the plans chosen by the optimizer include ad-
justing the Planner Cost Constants, running ANALYZE more frequently, increasing the value of the
default_statistics_target configuration parameter, and increasing the amount of statistics collected for
specific columns using ALTER TABLE SET STATISTICS.
enable_bitmapscan (boolean)

Enables or disables the query planner’s use of bitmap-scan plan types. The default is on.
enable_hashagg (boolean)

Enables or disables the query planner’s use of hashed aggregation plan types. The default is on.
enable_hashjoin (boolean)

Enables or disables the query planner’s use of hash-join plan types. The default is on.
enable_indexscan (boolean)

Enables or disables the query planner’s use of index-scan plan types. The default is on.
enable_mergejoin (boolean)

Enables or disables the query planner’s use of merge-join plan types. The default is on.

enable_nestloop (boolean)

Enables or disables the query planner’s use of nested-loop join plans. It’s not possible to suppress
nested-loop joins entirely, but turning this variable off discourages the planner from using one if
there are other methods available. The default is on.

393

Chapter 18. Server Configuration

enable_seqgscan (boolean)

Enables or disables the query planner’s use of sequential scan plan types. It’s not possible to
suppress sequential scans entirely, but turning this variable off discourages the planner from
using one if there are other methods available. The default is on.

enable_sort (boolean)

Enables or disables the query planner’s use of explicit sort steps. It’s not possible to suppress
explicit sorts entirely, but turning this variable off discourages the planner from using one if
there are other methods available. The default is on.

enable_tidscan (boolean)

Enables or disables the query planner’s use of TID scan plan types. The default is on.

18.6.2. Planner Cost Constants

The cost variables described in this section are measured on an arbitrary scale. Only their relative
values matter, hence scaling them all up or down by the same factor will result in no change in the
planner’s choices. Traditionally, these variables have been referenced to sequential page fetches as the
unit of cost; that is, seq_page_cost is conventionally set to 1.0 and the other cost variables are set
with reference to that. But you can use a different scale if you prefer, such as actual execution times
in milliseconds on a particular machine.

Note: Unfortunately, there is no well-defined method for determining ideal values for the cost vari-
ables. They are best treated as averages over the entire mix of queries that a particular installation
will get. This means that changing them on the basis of just a few experiments is very risky.

seq_page_cost (floating point)

Sets the planner’s estimate of the cost of a disk page fetch that is part of a series of sequential
fetches. The default is 1.0.

random_page_cost (floating point)

Sets the planner’s estimate of the cost of a non-sequentially-fetched disk page. The default is 4.0.
Reducing this value relative to seq_page_cost will cause the system to prefer index scans;
raising it will make index scans look relatively more expensive. You can raise or lower both
values together to change the importance of disk I/O costs relative to CPU costs, which are
described by the following parameters.

Tip: Although the system will let you set random_page_cost to less than seq_page_cost, it
is not physically sensible to do so. However, setting them equal makes sense if the database
is entirely cached in RAM, since in that case there is no penalty for touching pages out of
sequence. Also, in a heavily-cached database you should lower both values relative to the
CPU parameters, since the cost of fetching a page already in RAM is much smaller than it
would normally be.

cpu_tuple_cost (floating point)

Sets the planner’s estimate of the cost of processing each row during a query. The default is 0.01.

394

Chapter 18. Server Configuration

cpu_index_tuple_cost (floating point)

Sets the planner’s estimate of the cost of processing each index entry during an index scan. The
default is 0.005.

cpu_operator_cost (floating point)

Sets the planner’s estimate of the cost of processing each operator or function executed during a
query. The default is 0.0025.

effective_cache_size (integer)

Sets the planner’s assumption about the effective size of the disk cache that is available to a
single query. This is factored into estimates of the cost of using an index; a higher value makes
it more likely index scans will be used, a lower value makes it more likely sequential scans will
be used. When setting this parameter you should consider both PostgreSQL’s shared buffers and
the portion of the kernel’s disk cache that will be used for PostgreSQL data files. Also, take into
account the expected number of concurrent queries on different tables, since they will have to
share the available space. This parameter has no effect on the size of shared memory allocated
by PostgreSQL, nor does it reserve kernel disk cache; it is used only for estimation purposes.
The default is 128 megabytes (128MB).

18.6.3. Genetic Query Optimizer

The genetic query optimizer (GEQO) is an algorithm that does query planning using heuristic search-
ing. This reduces planning time for complex queries (those joining many relations), at the cost of
producing plans that are sometimes inferior to those found by the normal exhaustive-search algo-
rithm. Also, GEQO’s searching is randomized and therefore its plans may vary nondeterministically.
For more information see Chapter 49.

geqo (boolean)

Enables or disables genetic query optimization. This is on by default. It is usually best not to turn
it off in production; the geqgo_threshold variable provides a more granular way to control use
of GEQO.

gego_threshold (integer)

Use genetic query optimization to plan queries with at least this many FROM items involved.
(Note that a FULL OUTER JOIN construct counts as only one FROM item.) The default is 12. For
simpler queries it is usually best to use the deterministic, exhaustive planner, but for queries with
many tables the deterministic planner takes too long.

geqo_effort (integer)

Controls the trade-off between planning time and query plan quality in GEQO. This variable
must be an integer in the range from 1 to 10. The default value is five. Larger values increase the
time spent doing query planning, but also increase the likelihood that an efficient query plan will
be chosen.

geqo_effort doesn’t actually do anything directly; it is only used to compute the default values
for the other variables that influence GEQO behavior (described below). If you prefer, you can
set the other parameters by hand instead.

gego_pool_size (integer)

Controls the pool size used by GEQO, that is the number of individuals in the genetic population.
It must be at least two, and useful values are typically 100 to 1000. If it is set to zero (the default

395

Chapter 18. Server Configuration

setting) then a suitable value is chosen based on gego_effort and the number of tables in the
query.
gego_generations (integer)

Controls the number of generations used by GEQO, that is the number of iterations of the algo-
rithm. It must be at least one, and useful values are in the same range as the pool size. If it is set
to zero (the default setting) then a suitable value is chosen based on geqo_pool_size.

geqo_selection_bias (floating point)

Controls the selection bias used by GEQO. The selection bias is the selective pressure within the
population. Values can be from 1.50 to 2.00; the latter is the default.

18.6.4. Other Planner Options

default_statistics_target (integer)

Sets the default statistics target for table columns that have not had a column-specific target set
via ALTER TABLE SET STATISTICS. Larger values increase the time needed to do ANALYZE,
but might improve the quality of the planner’s estimates. The default is 100. For more informa-
tion on the use of statistics by the PostgreSQL query planner, refer to Section 14.2.

constraint_exclusion (enum)

Controls the query planner’s use of table constraints to optimize queries. The allowed values
of constraint_exclusion are on (examine constraints for all tables), of f (never examine
constraints), and partition (examine constraints only for inheritance child tables and UNION
ALL subqueries). partition is the default setting.

When this parameter allows it for a particular table, the planner compares query conditions with
the table’s CHECK constraints, and omits scanning tables for which the conditions contradict the
constraints. For example:

CREATE TABLE parent (key integer, ...);
CREATE TABLE childl1000 (check (key between 1000 and 1999)) INHERITS (parent);
CREATE TABLE child2000 (check (key between 2000 and 2999)) INHERITS (parent);

SELECT = FROM parent WHERE key = 2400;
With constraint exclusion enabled, this SELECT will not scan chil1d1000 at all. This can im-
prove performance when inheritance is used to build partitioned tables.

Currently, constraint exclusion is enabled by default only for cases that are often used to imple-
ment table partitioning. Turning it on for all tables imposes extra planning overhead that is quite
noticeable on simple queries, and most often will yield no benefit for simple queries. If you have
no partitioned tables you might prefer to turn it off entirely.

Refer to Section 5.9.4 for more information on using constraint exclusion and partitioning.
cursor_tuple_fraction (floating point)

Sets the planner’s estimate of the fraction of a cursor’s rows that will be retrieved. The default
is 0.1. Smaller values of this setting bias the planner towards using “fast start” plans for cursors,
which will retrieve the first few rows quickly while perhaps taking a long time to fetch all rows.
Larger values put more emphasis on the total estimated time. At the maximum setting of 1.0,
cursors are planned exactly like regular queries, considering only the total estimated time and
not how soon the first rows might be delivered.

396

Chapter 18. Server Configuration

from_collapse_limit (integer)

The planner will merge sub-queries into upper queries if the resulting FROM list would have no
more than this many items. Smaller values reduce planning time but might yield inferior query
plans. The default is eight. For more information see Section 14.3.

Setting this value to geqo_threshold or more may trigger use of the GEQO planner, resulting in
nondeterministic plans. See Section 18.6.3.

join_collapse_limit (integer)

The planner will rewrite explicit JOIN constructs (except FULL JOINS) into lists of FROM items
whenever a list of no more than this many items would result. Smaller values reduce planning
time but might yield inferior query plans.

By default, this variable is set the same as from_collapse_limit, which is appropriate for
most uses. Setting it to 1 prevents any reordering of explicit JOINs. Thus, the explicit join order
specified in the query will be the actual order in which the relations are joined. The query planner
does not always choose the optimal join order; advanced users can elect to temporarily set this
variable to 1, and then specify the join order they desire explicitly. For more information see
Section 14.3.

Setting this value to geqo_threshold or more may trigger use of the GEQO planner, resulting in
nondeterministic plans. See Section 18.6.3.

18.7. Error Reporting and Logging

18.7.1. Where To Log

log_destination (string)

PostgreSQL supports several methods for logging server messages, including stderr, csvlog and
syslog. On Windows, eventlog is also supported. Set this parameter to a list of desired log desti-
nations separated by commas. The default is to log to stderr only. This parameter can only be set
in the postgresqgl.conf file or on the server command line.

If csvlog is included in 1og_destination, log entries are output in “comma separated value”
format, which is convenient for loading them into programs. See Section 18.7.4 for details.
logging_collector must be enabled to generate CSV-format log output.

Note: On most Unix systems, you will need to alter the configuration of your system’s syslog
daemon in order to make use of the syslog option for 1og_destination. PostgreSQL can log
to syslog facilities Locar.o through rocarn7 (see syslog_facility), but the default syslog con-
figuration on most platforms will discard all such messages. You will need to add something
like

localO.* /var/log/postgresqgl

to the syslog daemon’s configuration file to make it work.

logging_collector (boolean)

This parameter allows messages sent to stderr, and CSV-format log output, to be captured and
redirected into log files. This approach is often more useful than logging to syslog, since some

397

Chapter 18. Server Configuration

types of messages might not appear in syslog output (a common example is dynamic-linker
failure messages). This parameter can only be set at server start.

log_directory (string)

When logging_collector is enabled, this parameter determines the directory in which log
files will be created. It can be specified as an absolute path, or relative to the cluster data directory.
This parameter can only be set in the postgresqgl.conf file or on the server command line.

log_filename (string)

When logging_collector is enabled, this parameter sets the file names of the created log
files. The value is treated as a strftime pattern, so %-escapes can be used to specify time-varying
file names. (Note that if there are any time-zone-dependent $-escapes, the computation is done
in the zone specified by log_timezone.) Note that the system’s strftime is not used directly, so
platform-specific (nonstandard) extensions do not work.

If you specify a file name without escapes, you should plan to use a log rotation utility to avoid
eventually filling the entire disk. In releases prior to 8.4, if no % escapes were present, Post-
greSQL would append the epoch of the new log file’s creation time, but this is no longer the
case.

If CSV-format output is enabled in 1og_destination, .csv will be appended to the times-
tamped log file name to create the file name for CSV-format output. (If 1og_filename ends in
. log, the suffix is replaced instead.) In the case of the example above, the CSV file name will
be server_1o0g.1093827753.csv.

This parameter can only be set in the postgresqgl.conf file or on the server command line.
log_rotation_age (integer)

When logging_collector is enabled, this parameter determines the maximum lifetime of
an individual log file. After this many minutes have elapsed, a new log file will be created. Set
to zero to disable time-based creation of new log files. This parameter can only be set in the
postgresql.conf file or on the server command line.

log_rotation_size (integer)

When logging_collector is enabled, this parameter determines the maximum size of an
individual log file. After this many kilobytes have been emitted into a log file, a new log file will
be created. Set to zero to disable size-based creation of new log files. This parameter can only be
set in the postgresqgl . conf file or on the server command line.

log_truncate_on_rotation (boolean)

When logging_collector is enabled, this parameter will cause PostgreSQL to truncate (over-
write), rather than append to, any existing log file of the same name. However, truncation will
occur only when a new file is being opened due to time-based rotation, not during server startup
or size-based rotation. When off, pre-existing files will be appended to in all cases. For example,
using this setting in combination with a 1og_filename like postgresql-%H. log would result
in generating twenty-four hourly log files and then cyclically overwriting them. This parameter
can only be set in the postgresqgl.conf file or on the server command line.

Example: To keep 7 days of logs, one log file per day named server_log.Mon,
server_log.Tue, etc, and automatically overwrite last week’s log with this week’s log,
set log_filename to server_log.%a, log_truncate_on_rotation to on, and

log_rotation_age to 1440.

Example: To keep 24 hours of logs, one log file per hour, but also rotate sooner if the log file
size exceeds 1GB, set 1og_filename to server_log.%HS$M, log_truncate_on_rotation
to on, log_rotation_age to 60, and log_rotation_size to 1000000. Including $M in

398

Chapter 18. Server Configuration

log_filename allows any size-driven rotations that might occur to select a file name different
from the hour’s initial file name.

syslog_facility (enum)

When logging to syslog is enabled, this parameter determines the syslog “facility” to be used.
You can choose from LOCALO, LOCAL1, LOCAL2, LOCAL3, LOCAL4, LOCALS5, LOCAL6, LOCAL7;
the default is LOCALO. See also the documentation of your system’s syslog daemon. This param-
eter can only be set in the postgresqgl.conf file or on the server command line.

syslog_ident (string)

When logging to syslog is enabled, this parameter determines the program name used to identify
PostgreSQL messages in syslog logs. The default is postgres. This parameter can only be set
in the postgresgl.conf file or on the server command line.

18.7.2. When To Log

client_min_messages (enum)

Controls which message levels are sent to the client. Valid values are DEBUGS, DEBUG4, DEBUG3,
DEBUG2, DEBUG1, LOG, NOTICE, WARNING, ERROR, FATAL, and PANIC. Each level includes all
the levels that follow it. The later the level, the fewer messages are sent. The default is NOTICE.
Note that 1.0G has a different rank here than in 1og_min_messages.

log_min_messages (enum)

Controls which message levels are written to the server log. Valid values are DEBUGS5, DEBUG4,
DEBUG3, DEBUG2, DEBUG1, INFO, NOTICE, WARNING, ERROR, LOG, FATAL, and PANIC.
Each level includes all the levels that follow it. The later the level, the fewer messages are
sent to the log. The default is WARNING. Note that 1.0G has a different rank here than in
client_min_messages. Only superusers can change this setting.

log_error_verbosity (enum)

Controls the amount of detail written in the server log for each message that is logged. Valid
values are TERSE, DEFAULT, and VERBOSE, each adding more fields to displayed messages.
Only superusers can change this setting.

log_min_error_statement (enum)

Controls whether or not the SQL statement that causes an error condition will be recorded in the
server log. The current SQL statement is included in the log entry for any message of the spec-
ified severity or higher. Valid values are DEBUGS5, DEBUG4, DEBUG3, DEBUG2, DEBUG1, INFO,
NOTICE, WARNING, ERROR, LOG, FATAL, and PANIC. The default is ERROR, which means state-
ments causing errors, log messages, fatal errors, or panics will be logged. To effectively turn
off logging of failing statements, set this parameter to PANIC. Only superusers can change this
setting.

log_min_duration_statement (integer)

Causes the duration of each completed statement to be logged if the statement ran for at least
the specified number of milliseconds. Setting this to zero prints all statement durations. Minus-
one (the default) disables logging statement durations. For example, if you set it to 250ms then
all SQL statements that run 250ms or longer will be logged. Enabling this parameter can be
helpful in tracking down unoptimized queries in your applications. Only superusers can change
this setting.

399

Chapter 18. Server Configuration

For clients using extended query protocol, durations of the Parse, Bind, and Execute steps are
logged independently.

Note: When using this option together with log_statement, the text of statements that are
logged because of 1og_statement Will not be repeated in the duration log message. If
you are not using syslog, it is recommended that you log the PID or session ID using
log_line_prefix so that you can link the statement message to the later duration message
using the process ID or session ID.

silent_mode (boolean)

Runs the server silently. If this parameter is set, the server will automatically run in background
and any controlling terminals are disassociated. The server’s standard output and standard error
are redirected to /dev/null, so any messages sent to them will be lost. Unless syslog logging
is selected or logging_collector is enabled, using this parameter is discouraged because it

makes it impossible to see error messages. This parameter can only be set at server start.

Table 18-1 explains the message severity levels used by PostgreSQL. If logging output is sent to
syslog or Windows’ eventlog, the severity levels are translated as shown in the table.

Table 18-1. Message severity levels

Severity

Usage

syslog

eventlog

DEBUG1. .DEBUGS

Provides successively-
more-detailed
information for use by
developers.

DEBUG

INFORMATION

INFO

Provides information
implicitly requested by
the user, e.g., output
from vACUUM
VERBOSE.

INFO

INFORMATION

NOTICE

Provides information
that might be helpful to
users, e.g., notice of
truncation of long
identifiers.

NOTICE

INFORMATION

WARNING

Provides warnings of
likely problems, e.g.,
COMMIT outside a
transaction block.

NOTICE

WARNING

ERROR

Reports an error that
caused the current
command to abort.

WARNING

ERROR

LOG

Reports information of
interest to
administrators, e.g.,
checkpoint activity.

INFO

INFORMATION

400

Chapter 18. Server Configuration

Severity

Usage

syslog

eventlog

FATAL

Reports an error that
caused the current
session to abort.

ERR

ERROR

PANIC

Reports an error that
caused all database
sessions to abort.

CRIT

ERROR

18.7.3. What To Log

debug_print_parse (boolean)

debug_print_rewritten (boolean)

debug_print_plan (boolean)

These parameters enable various debugging output to be emitted. When set, they print the result-
ing parse tree, the query rewriter output, or the execution plan for each executed query. These
messages are emitted at LOG message level, so by default they will appear in the server log but
will not be sent to the client. You can change that by adjusting client_min_messages and/or

log_min_messages. These parameters are off by default.

debug_pretty_print (boolean)

When set, debug_pretty_print indents the messages produced by debug_print_parse,
debug_print_rewritten, or debug_print_plan. This results in more readable but much
longer output than the “compact” format used when it is off. It is on by default.

log_checkpoints (boolean)

Causes checkpoints to be logged in the server log. Some statistics about each checkpoint are
included in the log messages, including the number of buffers written and the time spent writing
them. This parameter can only be set in the postgresgl.conf file or on the server command
line. The default is off.

log_connections (boolean)

Causes each attempted connection to the server to be logged, as well as successful completion
of client authentication. This parameter can only be set in the postgresqgl.conf file or on the
server command line. The default is off.

Note: Some client programs, like psql, attempt to connect twice while determining if a pass-
word is required, so duplicate “connection received” messages do not necessarily indicate a

problem.

log_disconnections (boolean)

This outputs a line in the server log similar to 1og_connections but at session termination,
and includes the duration of the session. This is off by default. This parameter can only be set in

the postgresqgl.conf file or on the server command line.

log_duration (boolean)

Causes the duration of every completed statement to be logged. The default is of £. Only supe-
rusers can change this setting.

401

Chapter 18. Server Configuration

For clients using extended query protocol, durations of the Parse, Bind, and Execute steps are

logged independently.

Note: The difference between setting this option and setting log_min_duration_statement

to zero

query to be logged, but this option doesn’t. Thus,
log_min_duration_statement has a positive value, all durations are logged but the query
text is included only for statements exceeding the threshold. This behavior can be useful for
gathering statistics in high-load installations.

log_hostname (boolean)

is that exceeding log_min_duration_statement forces the text of the

if log_duration is on and

By default, connection log messages only show the IP address of the connecting host. Turning
on this parameter causes logging of the host name as well. Note that depending on your host
name resolution setup this might impose a non-negligible performance penalty. This parameter
can only be set in the postgresqgl.conf file or on the server command line.

log_line_prefix (string)

This is a print £-style string that is output at the beginning of each log line. % characters begin
“escape sequences’ that are replaced with status information as outlined below. Unrecognized
escapes are ignored. Other characters are copied straight to the log line. Some escapes are only
recognized by session processes, and do not apply to background processes such as the main
server process. This parameter can only be set in the postgresqgl.conf file or on the server
command line. The default is an empty string.

Escape Effect Session only

$u User name yes

%d Database name yes

$r Remote host name or IP yes
address, and remote port

$h Remote host name or IP yes
address

Sp Process ID no

St Time stamp without no
milliseconds

%m Time stamp with milliseconds | no

$i Command tag: type of yes
session’s current command

$c Session ID: see below no

$1 Number of the log line for no
each session or process,
starting at 1

$s Process start time stamp no

Sv Virtual transaction ID no
(backendID/localXID)

$x Transaction ID (O if none is no
assigned)

402

Chapter 18. Server Configuration

Escape Effect Session only

%$q Produces no output, but tells | no
non-session processes to stop
at this point in the string;

ignored by session processes

Literal % no

oe
oe

The %c escape prints a quasi-unique session identifier, consisting of two 4-byte hexadecimal
numbers (without leading zeros) separated by a dot. The numbers are the process start time and
the process ID, so %c can also be used as a space saving way of printing those items. For example,
to generate the session identifier from pg_stat_activity, use this query:

SELECT to_hex (EXTRACT (EPOCH FROM backend_start) ::integer) || 7.7 ||
to_hex (procpid)
FROM pg_stat_activity;

Tip: If you set a nonempty value for 10og_line_prefix, you should usually make its last
character be a space, to provide visual separation from the rest of the log line. A punctuation
character could be used too.

Tip: Syslog produces its own time stamp and process ID information, so you probably do
not want to use those escapes if you are logging to syslog.

log_lock_waits (boolean)

Controls whether a log message is produced when a session waits longer than deadlock_timeout
to acquire a lock. This is useful in determining if lock waits are causing poor performance. The
default is of £.

log_statement (enum)

Controls which SQL statements are logged. Valid values are none, dd1, mod, and all. dd1 logs
all data definition statements, such as CREATE, ALTER, and DROP statements. mod logs all dd1
statements, plus data-modifying statements such as INSERT, UPDATE, DELETE, TRUNCATE, and
COPY FROM. PREPARE, EXECUTE, and EXPLAIN ANALYZE statements are also logged if their
contained command is of an appropriate type. For clients using extended query protocol, logging
occurs when an Execute message is received, and values of the Bind parameters are included
(with any embedded single-quote marks doubled).

The default is none. Only superusers can change this setting.

Note: Statements that contain simple syntax errors are not logged even by the
log_statement = all setting, because the log message is emitted only after basic parsing
has been done to determine the statement type. In the case of extended query protocol,
this setting likewise does not log statements that fail before the Execute phase (i.e., during
parse analysis or planning). Set 1og_min_error_statement 10 ERROR (0Or lower) to log such
statements.

log_temp_files (integer)

Controls logging of use of temporary files. Temporary files can be created for sorts, hashes, and
temporary query results. A log entry is made for each temporary file when it is deleted. A value

403

Chapter 18. Server Configuration

of zero logs all temporary files, while positive values log only files whose size is greater than
or equal to the specified number of kilobytes. The default setting is -1, which disables such
logging. Only superusers can change this setting.

log_timezone (string)

Sets the time zone used for timestamps written in the log. Unlike timezone, this value is cluster-
wide, so that all sessions will report timestamps consistently. The default is unknown, which
means to use whatever the system environment specifies as the time zone. See Section 8.5.3 for
more information. This parameter can only be set in the postgresql . conf file or on the server
command line.

18.7.4. Using CSV-Format Log Output

Including csvlog in the log_destination list provides a convenient way to import log files into
a database table. This option emits log lines in comma-separated-value format, with these columns:
timestamp with milliseconds, user name, database name, process ID, host:port number, session ID,
per-session or -process line number, command tag, session start time, virtual transaction ID, regular
transaction id, error severity, SQL state code, error message, error message detail, hint, internal query
that led to the error (if any), character count of the error position thereof, error context, user query that
led to the error (if any and enabled by 1og_min_error_statement), character count of the error
position thereof, location of the error in the PostgreSQL source code (if 1og_error_verbosity is
set to verbose). Here is a sample table definition for storing CSV-format log output:

CREATE TABLE postgres_log
(
log_time timestamp(3) with time zone,
user_name text,
database_name text,
process_id integer,
connection_from text,
session_id text,
session_line_num bigint,
command_tag text,
session_start_time timestamp with time zone,
virtual_transaction_id text,
transaction_id bigint,
error_severity text,
sgl_state_code text,
message text,
detail text,
hint text,
internal_query text,
internal_query_pos integer,
context text,
query text,
query_pos integer,
location text,
PRIMARY KEY (session_id, session_line_num)

To import a log file into this table, use the COPY FROM command:

COPY postgres_log FROM ' /full/path/to/logfile.csv’ WITH csv;

404

Chapter 18. Server Configuration

There are a few things you need to do to simplify importing CSV log files easily and automatically:

1.Set log_filename and log_rotation_age to provide a consistent, predictable naming
scheme for your log files. This lets you predict what the file name will be and know when an
individual log file is complete and therefore ready to be imported.

2. Set log_rotation_size to 0 to disable size-based log rotation, as it makes the log file name
difficult to predict.

3.Set log_truncate_on_rotation to on so that old log data isn’t mixed with the new in the
same file.

4. The table definition above includes a primary key specification. This is useful to protect against
accidentally importing the same information twice. The CoPY command commits all of the data
it imports at one time, so any error will cause the entire import to fail. If you import a partial
log file and later import the file again when it is complete, the primary key violation will cause
the import to fail. Wait until the log is complete and closed before importing. This procedure
will also protect against accidentally importing a partial line that hasn’t been completely written,
which would also cause COPY to fail.

18.8. Run-Time Statistics

18.8.1. Query and Index Statistics Collector

These parameters control server-wide statistics collection features. When statistics collection is en-
abled, the data that is produced can be accessed via the pg_stat and pg_statio family of system
views. Refer to Chapter 26 for more information.

track_activities (boolean)

Enables the collection of information on the currently executing command of each session, along
with the time at which that command began execution. This parameter is on by default. Note that
even when enabled, this information is not visible to all users, only to superusers and the user
owning the session being reported on; so it should not represent a security risk. Only superusers
can change this setting.

track_activity_query_size (integer)

Specifies the number of bytes reserved to track the currently executing command for each active
session, for the pg_stat_activity.current_query field. The default value is 1024. This
parameter can only be set at server start.

track_counts (boolean)

Enables collection of statistics on database activity. This parameter is on by default, because the
autovacuum daemon needs the collected information. Only superusers can change this setting.

track_functions (enum)

Enables tracking of function call counts and time used. Specify pl to track only procedural-
language functions, a1l to also track SQL and C language functions. The default is none, which
disables function statistics tracking. Only superusers can change this setting.

405

Chapter 18. Server Configuration

Note: SQL-language functions that are simple enough to be “inlined” into the calling query
will not be tracked, regardless of this setting.

update_process_title (boolean)

Enables updating of the process title every time a new SQL command is received by the server.
The process title is typically viewed by the ps command, or in Windows by using the Process
Explorer. Only superusers can change this setting.

stats_temp_directory (string)

Sets the directory to store temporary statistics data in. This can be a path relative to the data direc-
tory or an absolute path. The default is pg_stat_tmp. Pointing this at a RAM based filesystem
will decrease physical I/0 requirements and can lead to improved performance. This parameter
can only be set in the postgresqgl.conf file or on the server command line.

18.8.2. Statistics Monitoring

log_statement_stats (boolean)
log_parser_stats (boolean)
log_planner_stats (boolean)

log_executor_stats (boolean)

For each query, write performance statistics of the respective module to the server log. This is a
crude profiling instrument. 1og_statement_stats reports total statement statistics, while the
others report per-module statistics. log_statement_stats cannot be enabled together with
any of the per-module options. All of these options are disabled by default. Only superusers can
change these settings.

18.9. Automatic Vacuuming

These settings control the behavior of the autovacuum feature. Refer to Section 23.1.5 for more infor-
mation.

autovacuum (boolean)

Controls whether the server should run the autovacuum launcher daemon. This is on by default;
however, track_counts must also be turned on for autovacuum to work. This parameter can only
be set in the postgresql.conf file or on the server command line.

Note that even when this parameter is disabled, the system will launch autovacuum processes if
necessary to prevent transaction ID wraparound. See Section 23.1.4 for more information.

log_autovacuum_min_duration (integer)

Causes each action executed by autovacuum to be logged if it ran for at least the specified number
of milliseconds. Setting this to zero logs all autovacuum actions. Minus-one (the default) disables
logging autovacuum actions. For example, if you set this to 250ms then all automatic vacuums
and analyzes that run 250ms or longer will be logged. Enabling this parameter can be helpful in
tracking autovacuum activity. This setting can only be set in the postgresql.conf file or on
the server command line.

406

Chapter 18. Server Configuration

autovacuum_max_workers (integer)

Specifies the maximum number of autovacuum processes (other than the autovacuum launcher)
which may be running at any one time. The default is three. This parameter can only be set in
the postgresqgl.conf file or on the server command line.

autovacuum_naptime (integer)

Specifies the minimum delay between autovacuum runs on any given database. In each round
the daemon examines the database and issues VACUUM and ANALYZE commands as needed for
tables in that database. The delay is measured in seconds, and the default is one minute (1m).
This parameter can only be set in the postgresqgl . conf file or on the server command line.

autovacuum_vacuum_threshold (integer)

Specifies the minimum number of updated or deleted tuples needed to trigger a VACUUM in any
one table. The default is 50 tuples. This parameter can only be set in the postgresqgl.conf file
or on the server command line. This setting can be overridden for individual tables by changing
storage parameters.

autovacuum_analyze_threshold (integer)

Specifies the minimum number of inserted, updated or deleted tuples needed to trigger an
ANALYZE in any one table. The default is 50 tuples. This parameter can only be set in the
postgresqgl.conf file or on the server command line. This setting can be overridden for
individual tables by changing storage parameters.

autovacuum_vacuum_scale_factor (floating point)

Specifies a fraction of the table size to add to autovacuum_vacuum_threshold when deciding
whether to trigger a VACUUM. The default is 0.2 (20% of table size). This parameter can only be
setin the postgresgl . conf file or on the server command line. This setting can be overridden
for individual tables by changing storage parameters.

autovacuum_analyze_scale_factor (floating point)

Specifies a fraction of the table size to add to autovacuum_analyze_threshold when decid-
ing whether to trigger an ANALYZE. The default is 0.1 (10% of table size). This parameter can
only be set in the postgresqgl.conf file or on the server command line. This setting can be
overridden for individual tables by changing storage parameters.

autovacuum_freeze_max_age (integer)

Specifies the maximum age (in transactions) that a table’s pg_class.relfrozenxid field can
attain before a VACUUM operation is forced to prevent transaction ID wraparound within the
table. Note that the system will launch autovacuum processes to prevent wraparound even when
autovacuum is otherwise disabled. The default is 200 million transactions. This parameter can
only be set at server start, but the setting can be reduced for individual tables by changing storage
parameters. For more information see Section 23.1.4.

autovacuum_vacuum_cost_delay (integer)

Specifies the cost delay value that will be used in automatic VACUUM operations. If -1 is specified,
the regular vacuum_cost_delay value will be used. The default value is 20 milliseconds. This
parameter can only be set in the postgresqgl.conf file or on the server command line. This
setting can be overridden for individual tables by changing storage parameters.

autovacuum_vacuum_cost_limit (integer)

Specifies the cost limit value that will be used in automatic VACUUM operations. If -1 is specified
(which is the default), the regular vacuum_cost_limit value will be used. Note that the value is
distributed proportionally among the running autovacuum workers, if there is more than one, so

407

Chapter 18. Server Configuration

that the sum of the limits of each worker never exceeds the limit on this variable. This parameter
can only be set in the postgresqgl.conf file or on the server command line. This setting can
be overridden for individual tables by changing storage parameters.

18.10. Client Connection Defaults

18.10.1. Statement Behavior

search_path (string)

This variable specifies the order in which schemas are searched when an object (table, data
type, function, etc.) is referenced by a simple name with no schema component. When there are
objects of identical names in different schemas, the one found first in the search path is used. An
object that is not in any of the schemas in the search path can only be referenced by specifying
its containing schema with a qualified (dotted) name.

The value for search_path has to be a comma-separated list of schema names. If one of the list
items is the special value $user, then the schema having the name returned by SESSION_USER
is substituted, if there is such a schema. (If not, $user is ignored.)

The system catalog schema, pg_catalog, is always searched, whether it is mentioned in the
path or not. If it is mentioned in the path then it will be searched in the specified order. If
pg_catalog is not in the path then it will be searched before searching any of the path items.

Likewise, the current session’s temporary-table schema, pg_temp_nnn, is always searched if it
exists. It can be explicitly listed in the path by using the alias pg_temp. If it is not listed in the
path then it is searched first (before even pg_catalog). However, the temporary schema is only
searched for relation (table, view, sequence, etc) and data type names. It will never be searched
for function or operator names.

When objects are created without specifying a particular target schema, they will be placed in
the first schema listed in the search path. An error is reported if the search path is empty.

The default value for this parameter is ' "$user", public’ (where the second part will be
ignored if there is no schema named public). This supports shared use of a database (where
no users have private schemas, and all share use of public), private per-user schemas, and
combinations of these. Other effects can be obtained by altering the default search path setting,
either globally or per-user.

The current effective value of the search path can be examined via the SQL function
current_schemas (). This is not quite the same as examining the value of search_path,
since current_schemas () shows how the requests appearing in search_path were
resolved.

For more information on schema handling, see Section 5.7.
default_tablespace (string)

This variable specifies the default tablespace in which to create objects (tables and indexes) when
a CREATE command does not explicitly specify a tablespace.

The value is either the name of a tablespace, or an empty string to specify using the default ta-
blespace of the current database. If the value does not match the name of any existing tablespace,
PostgreSQL will automatically use the default tablespace of the current database. If a nondefault
tablespace is specified, the user must have CREATE privilege for it, or creation attempts will fail.

408

Chapter 18. Server Configuration

This variable is not used for temporary tables; for them, temp_tablespaces is consulted instead.
For more information on tablespaces, see Section 21.6.
temp_tablespaces (string)

This variable specifies tablespace(s) in which to create temporary objects (temp tables and in-
dexes on temp tables) when a CREATE command does not explicitly specify a tablespace. Tem-
porary files for purposes such as sorting large data sets are also created in these tablespace(s).

The value is a list of names of tablespaces. When there is more than one name in the list, Post-
greSQL chooses a random member of the list each time a temporary object is to be created;
except that within a transaction, successively created temporary objects are placed in successive
tablespaces from the list. If the selected element of the list is an empty string, PostgreSQL will
automatically use the default tablespace of the current database instead.

When temp_tablespaces is set interactively, specifying a nonexistent tablespace is an er-
ror, as is specifying a tablespace for which the user does not have CREATE privilege. However,
when using a previously set value, nonexistent tablespaces are ignored, as are tablespaces for
which the user lacks CREATE privilege. In particular, this rule applies when using a value set in
postgresgl.conf.

The default value is an empty string, which results in all temporary objects being created in the
default tablespace of the current database.

See also default_tablespace.
check_function_bodies (boolean)

This parameter is normally on. When set to of f, it disables validation of the function body string
during CREATE FUNCTION. Disabling validation is occasionally useful to avoid problems such
as forward references when restoring function definitions from a dump.

default_transaction_isolation (enum)

Each SQL transaction has an isolation level, which can be either “read uncommitted”, “read
committed”, “repeatable read”, or “serializable”. This parameter controls the default isolation
level of each new transaction. The default is “read committed”.

Consult Chapter 13 and SET TRANSACTION for more information.
default_transaction_read_only (boolean)

A read-only SQL transaction cannot alter non-temporary tables. This parameter controls the
default read-only status of each new transaction. The default is of £ (read/write).

Consult SET TRANSACTION for more information.

session_replication_role (enum)

Controls firing of replication-related triggers and rules for the current session. Setting this vari-
able requires superuser privilege and results in discarding any previously cached query plans.
Possible values are origin (the default), replica and local. See ALTER TABLE for more
information.

statement_timeout (integer)

Abort any statement that takes over the specified number of milliseconds, starting from the time
the command arrives at the server from the client. If 1og_min_error_statement is set to
ERROR or lower, the statement that timed out will also be logged. A value of zero (the default)
turns off the limitation.

Setting statement_timeout in postgresqgl.conf is not recommended because it affects all
sessions.

409

Chapter 18. Server Configuration

vacuum_freeze_table_age (integer)

VACUUM performs a whole-table scan if the table’s pg_class.relfrozenxid field has reached
the age specified by this setting. The default is 150 million transactions. Although users can
set this value anywhere from zero to one billion, vAcuuM will silently limit the effective value
to 95% of autovacuum_freeze_max_age, so that a periodical manual VACUUM has a chance to
run before an anti-wraparound autovacuum is launched for the table. For more information see
Section 23.1.4.

vacuum_freeze_min_age (integer)

Specifies the cutoff age (in transactions) that vaAcuuM should use to decide whether to replace
transaction IDs with FrozenXID while scanning a table. The default is 50 million transactions.
Although users can set this value anywhere from zero to one billion, vacuuM will silently limit
the effective value to half the value of autovacuum_freeze_max_age, so that there is not an
unreasonably short time between forced autovacuums. For more information see Section 23.1.4.

xmlbinary (enum)

Sets how binary values are to be encoded in XML. This applies for example when bytea values
are converted to XML by the functions xmlelement or xmlforest. Possible values are base64
and hex, which are both defined in the XML Schema standard. The default is base64. For
further information about XML-related functions, see Section 9.14.

The actual choice here is mostly a matter of taste, constrained only by possible restrictions in
client applications. Both methods support all possible values, although the hex encoding will be
somewhat larger than the base64 encoding.

xmloption (enum)

Sets whether DOCUMENT or CONTENT is implicit when converting between XML and charac-
ter string values. See Section 8.13 for a description of this. Valid values are DOCUMENT and
CONTENT. The default is CONTENT.

According to the SQL standard, the command to set this option is

SET XML OPTION { DOCUMENT | CONTENT };
This syntax is also available in PostgreSQL.

18.10.2. Locale and Formatting

DateStyle (string)

Sets the display format for date and time values, as well as the rules for interpreting ambiguous
date input values. For historical reasons, this variable contains two independent components: the
output format specification (IS0, Postgres, SQL, or German) and the input/output specifica-
tion for year/month/day ordering (DMY, MDY, or YMD). These can be set separately or together.
The keywords Euro and European are synonyms for DMY; the keywords US, NonEuro, and
NonEuropean are synonyms for MDY. See Section 8.5 for more information. The built-in default
is IS0, MDY, but initdb will initialize the configuration file with a setting that corresponds to the
behavior of the chosen 1c_time locale.

IntervalStyle (enum)

Sets the display format for interval values. The value sq1_standard will produce output match-
ing SQL standard interval lit