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Preface

Welcome to the first release of GAP3 from St Andrews. In the two years since the release of
GAP3 3.4.3, most of the efforts of the GAP3 team in Aachen have been devoted to the forth-
coming major release, GAP4.1, which will feature a re-engineered kernel with many extra
facilities, a completely new scheme for structuring the library, many new and enhanced
algorithms and algorithms for new structures such as algebras and semigroups.

While this was going on, however, our users were not idle, and a number of bugs and
blemishes in the system were found, while a substantial number of new or improved share
packages have been submitted and accepted. Once it was decided that the computational
algebra group at St Andrews would take over GAP3 development, we agreed, as a learning
exercise, to release a new upgrade of GAP3 3.4, incorporating the bug fixes and new packages.

Assembling the release has indeed been a learning experience, and has, of course, taken
much longer than we hoped. The release incorporates fixes to all known bugs in the library
and kernel. In addition, there are two large new data libraries:of transitivie permutation
groups up to degree 23; and of all groups of order up to 1000, except those of order 512 or
768 and some others have been extended. This release includes a number of share packages
that are new since 3.4.3:

autag
for computing the automorphism groups of soluble groups;

CHEVIE
for computing with finite Coxeter groups, Hecke algebras, Chevalley groups and re-
lated structures;

CrystGap
for computing with crystallographic groups;

glissando
for comnputing with near-rings and semigroups;

grim
for computing with rational and integer matrix groups;

kbmag
linking to Knuth-Bendix package for monoids and groups;

matrix
for analysing matrix groups over finite fields, replacing smash and classic;

pcqa
linking to a polycyclic quotient program;
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4 PREFACE

specht
for computing the representation theory of the symmetric group and related struc-
tures; and

xmod
for computing with crossed modules.

A number of other share packages have also been updated. Full details of all of these can
be found in the updated manual, which is now also supplied in an HTML version.

Despite the tribulations of this release, we are looking forward to taking over a central role
in GAP3 development in the future, and to working with the users and contributors who are
so essential a part of making GAP3 what it is.

St Andrews, April 18.,1997, Steve Linton.

In the distribution gap3-jm, there are the following additional packages:

anupq
The p-quotient algorithm, to work with p-groups.

anusq
The soluble quotient algorithm.

arep
Constructive representation theory.

cohomolo
Cohomology and extensions of finite groups.

dce
Double coset enumeration.

grape
Computing with graphs and group.
guava
Coding theory algorithms.

meataxe
Splitting modular representations.

monoid
Computing with monoids and semigroups.

nq
The nilpotent quotient algorithm.
sisyphos
Modular group algebras of p-groups.
ve
Vector enumeration, for representations of finitely presented algebras.
algebra
Finite-dimensional algebras.
vkcurve

Fundamental group of the complement of a complex hypersurface. Also provides
multivariate polynomials and rational fractions.



PREFACE )

GAP3 stands for Groups, Algorithms and Programming. The name was chosen to
reflect the aim of the system, which is introduced in this manual.

Until well into the eighties the interest of pure mathematicians in computational group the-
ory was stirred by, but in most cases also confined to the information that was produced by
group theoretical software for their special research problems — and hampered by the uneasy
feeling that one was using black boxes of uncontrollable reliability. However the last years
have seen a rapid spread of interest in the understanding, design and even implementation
of group theoretical algorithms. These are gradually becoming accepted both as standard
tools for a working group theoretician, like certain methods of proof, and as worthwhile
objects of study, like connections between notions expressed in theorems.

GAP3 was started as an attempt to meet this interest. Therefore a primary design goal
has been to give its user full access to algorithms and the data structures used by them,
thus allowing critical study as well as modification of existing methods. We also intend to
relieve the user from unwanted technical chores and to assist him in the programming, thus
supporting invention and implementation of new algorithms as well as experimentation with
them.

We have tried to achieve these goals by a design which in addition makes GAP3 easily
portable, even to computers such as Atari ST and Amiga, and at the same time facilitates
the maintenance of GAP3 with the limited resources of an academic environment.

While I had felt for some time rather strongly the wish for such a truly open system for
computational group theory, the concrete idea of GAP3 was born when, together with a larger
group of students, among whom were Johannes Meier, Werner Nickel, Alice Niemeyer, and
Martin Schonert who eventually wrote the first version of GAP3, I had my first contact with
the Maple system at the EUROCAL meeting in Linz/Austria in 1985. Maple demonstrated
to us the feasibility of a strong and efficient computer algebra system built from a small
kernel, with an interpreted library of routines written in a problem-adapted language. The
discussion of the plan of a system for computational group theory organized in a similar
way started in the fall of 1985, programming only in the second half of 1986. A first
version of GAP3 was operational by the end of 1986. The system was first presented at
the Oberwolfach meeting on computational group theory in May 1988. Version 2.4 was the
first officially to be given away from Aachen starting in December 1988. The strong interest
in this version, in spite of its still rather small collection of group theoretical routines, as
well as constructive criticism by many colleagues, confirmed our belief in the general design
principles of the system. Nevertheless over three years had passed until in April 1992 version
3.1 was released, which was followed in February 1993 by version 3.2, in November 1993 by
version 3.3 and is now in June 1994 followed by version 3.4.

A main reason for the long time between versions 2.4 and 3.1 and the fact that there had not
been intermediate releases was that we had found it advisable to make a number of changes
to basic data structures until with version 3.1 we hoped to have reached a state where we
could maintain upward compatibility over further releases, which were planned to follow
much more frequently. Both goals have been achieved over the last two years. Of course the
time has also been used to extend the scope of the methods implemented in GAP3. A rough
estimate puts the size of the program library of version 3.4 at about sixteen times the size
of that of version 2.4, while for version 3.1 the factor was about eight. Compared to GAP3
3.2, which was the last version with major additions, new features of GAP3 3.4 include the
following:
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- New data types (and extensions of methods) for algebras, modules and characters

- Further methods for working with finite presentations (IMD, a fast size function)

- Some “Almost linear” methods and (rational) conjugacy classes for permutation groups
- Methods based on “special AG systems” for finite soluble groups

- A package for the calculation of Galois groups and field extensions

- Extensions of the library of data (transitive permutation groups, crystallographic groups)
- An X-window based X-GAP3 for display of subgroup lattices

- Five further share libraries (ANU SQ, MEATAXE, SISYPHOS, VECTORENUMERA-
TOR, SMASH)

Work on the extension of GAP3 is going on in Aachen as well as in an increasing number
of other places. We hope to be able to have the next release of GAP3 after about 9 months
again, that is in the first half of 1995.

The system that you are getting now consists of four parts:

1. A comparatively small kernel, written in C, which provides the user with:

automatic dynamic storage management, which the user needn’t bother about in
his programming;

a set of time-critical basic functions, e.g. “arithmetic” operations for integers, finite
fields, permutations and words, as well as natural operations for lists and records;

- an interpreter for the GAP3 language, which belongs to the Pascal family, but, while
allowing additional types for group theoretical objects, does not require type
declarations;

a set of programming tools for testing, debugging, and timing algorithms.

2. A much larger library of GAP3 functions that implement group theoretical and
other algorithms. Since this is written entirely in the GAP3 language, in contrast to
the situation in older group theoretical software, the GAP3 language is both the main
implementation language and the user language of the system. Therefore the user can
as easily as the original programmers investigate and vary algorithms of the library
and add new ones to it, first for own use and eventually for the benefit of all GAP3
users. We hope that moreover the structuring of the library using the concept of
domains and the techniques used for their handling that have been introduced into
GAP3 3.1 by Martin Schonert will be further helpful in this respect.

3. A library of group theoretical data which already contains various libraries of
groups (cf. chapter 38), large libraries of ordinary character tables, including all of
the Cambridge Atlas of Finite Groups and modular tables (cf. chapter 53), and a
library of tables of marks. We hope to extend this collection further with the help
of colleagues who have undertaken larger classifications of groups.



PREFACE 7

4. The documentation. This is available as a file that can either be used for on-line
help or be printed out to form this manual. Some advice for using this manual may
be helpful. The first chapter About GAP is really an introduction to the use of the
system, starting from scratch and, for the beginning, assuming neither much knowledge
about group theory nor much versatility in using a computer. Some of the later
sections of chapter 1 assume more, however. For instance section About Character
Tables definitely assumes familiarity with representation theory of finite groups, while
in particular sections About the Implementation of Domains to About Defining
New Group Elements address more advanced users who want to extend the system
to meet their special needs. The further chapters of the manual give then a full
description of the functions presently available in GAP3.

Together with the system we distribute GAP share libraries, which are separate packages
which have been written by various groups of people and remain under their responsibility.
Some of these packages are written completely in the GAP3 language, others totally or in
parts in C (or even other languages). However the functions in these packages can be called
directly from GAP3 and results are returned to GAP3. At present there are 10 such share
libraries (cf. chapter 57).

The policy for the further development of GAP3 is to keep the kernel as small as possible,
extending the set of basic functions only by very selected ones that have proved to be
time-critical and, wherever feasible, of general use. In the interest of the possibility of
exchanging functions written in the GAP3 language the kernel has to be maintained in a
single place which in the foreseeable future will be Aachen. On the other hand we hoped
from the beginning that the design of GAP3 would allow the library of GAP3 functions and
the library of data to grow not only by continued work in Aachen but, as does any other
part of mathematics, by contributions from many sides, and these hopes have been fulfilled
very well.

There are some other points to make on further policy:

- When we began work on GAP3 the typical user that we had in mind was the one wanting to
implement his own algorithmic ideas. While we certainly hope that we still serve such
users well it has become clear from the experience of the last years that there are even
more users of two different species, on the one hand the established theorist, sometimes
with little experience in the use of computers, who wants an easily understandable tool,
on the other hand the student, often quite familiar with computers, who wants to get
assistance in learning the theory by being able to do nontrivial examples. We think
that in fact GAP3 can well be used by both, but we realize that for each a special
introduction would be desirable. We apologize that we have not had the time yet to
write such, however have learned (through the GAP3 forum) that in a couple of places
work on the development of Laboratory Manuals for the use of GAP3 alongside with
standard Algebra texts is undertaken.

- When we began work on GAP3, we designed it as a system for doing group theory. It
has already turned out that in fact the design of the system is general enough, and
some of its functions are also useful, for doing work in other neighbouring areas. For
instance Leonard Soicher has used GAP3 to develop a system GRAPE for working with
graphs, which meanwhile is available as a share library. We certainly enjoy seeing
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this happen, but we want to emphasize that in Aachen our primary interest is the
development of a group theory system and that we do not plan to try to extend it
beyond our abilities into a general computer algebra system.

Rather we hope to provide tools for linking GAP3 to other systems that represent years of
work and experience in areas such as commutative algebra, or to very efficient special
purpose stand-alone programs. A link of this kind exists e.g. to the MOC system for
the work with modular characters.

We invite you to further extend GAP3. We are willing either to include such extensions
into GAP3 or to make them available through the same channels as GAP3 in the form of
the above mentioned share libraries. Of course, we will do this only if the extension
can be distributed free of charge like GAP3. The copyright for such share libraries
shall remain with you.

Finally to answer an often asked question: The GAP3 language is in principle designed
to be compilable. Work on a compiler is on the way, but this is not yet ready for
inclusion with this release.

GAP3 is given away under the conditions that have always been in use between mathemati-
cians, i.e. in particular completely in source and free of charge. We hope that the
possibility offered by modern technology of depositing GAP3 on a number of computers to
be fetched from them by ftp, will assist us in this policy. We want to emphasize, however,
two points. GAP3 is not public domain software; we want to maintain a copyright that in
particular forbids commercialization of GAP3. Further we ask that use of GAP3 be quoted
in publications like the use of any other mathematical work, and we would be grateful if we
could keep track of where GAP3 is implemented. Therefore we ask you to notify us if you have
got GAP3, e.g., by sending a short e-mail message to gap@samson.math.rwth-aachen.de.
The simple reason, on top of our curiosity, is that as anybody else in an academic environ-
ment we have from time to time to prove that we are doing meaningful work.

We have established a GAP3 forum, where interested users can discuss GAP3 related topics
by e-mail. In particular this forum is for questions about GAP3, general comments, bug
reports, and maybe bug fixes. We will read this forum and answer questions and comments,
and distribute bug fixes. Of course others are also invited to answer questions, etc. We will
also announce future releases of GAP3 in this forum.

To subscribe send an e-mail message to miles@samson.math.rwth-aachen.de containing
the line subscribe gap-forum your-name, where your-name should be your full name,
not your e-mail address. You will receive an acknowledgement, and from then on all e-mail
messages sent to gap-forum@samson.math.rwth-aachen.de.

miles@samson.math.rwth-aachen.de also accepts the following requests. help for a short
help on how to usemiles, unsubscribe gap-forum to unsubscribe, recipients gap-forum
to get a list of subscribers, and statistics gap-forum to see how many e-mail messages
each subscriber has sent so far.

The reliability of large systems of computer programs is a well known general problem and,
although over the past year the record of GAP3 in this respect has not been too bad, of
course GAP3 is not exempt from this problem. We therefore feel that it is mandatory that
we, but also other users, are warned of bugs that have been encountered in GAP3 or when
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doubts have arisen. We ask all users of GAP3 to use the GAP3 forum for issuing such
warnings.

We have also established an e-mail address gap-trouble to which technical problems of
a more local character such as installation problems can be sent. Together with some
experienced GAP3 users abroad we try to give advice on such problems.

GAP3 was started as a joint Diplom project of four students whose names have already been
mentioned. Since then many more finished Diplom projects have contributed to GAP3 as
well as other members of Lehrstuhl D and colleagues from other institutes. Their individual
contributions to the programs and to the manual are documented in the respective files.
To all of them as well as to all who have helped proofreading and improving this manual I
want to express my thanks for their engagement and enthusiasm as well as to many users
of GAP3 who have helped us by pointing out deficiencies and suggesting improvements.
Very special thanks however go to Martin Schénert. Not only does GAP3 owe many of its
basic design features to his profound knowledge of computer languages and the techniques
for their implementation, but in many long discussions he has in the name of future users
always been the strongest defender of clarity of the design against my impatience and the
temptation for “quick and dirty” solutions.

Since 1992 the development of GAP3 has been financially supported by the Deutsche Forschungs-
gemeinschaft in the context of the Forschungsschwerpunkt “Algorithmische Zahlentheorie
und Algebra”. This very important help is gratefully acknowledged.

As with the previous versions we send this version out hoping for further feedback of con-
structive criticism. Of course we ask to be notified about bugs, but moreover we shall
appreciate any suggestion for the improvement of the basic system as well as of the algo-
rithms in the library. Most of all, however, we hope that in spite of such criticism you will
enjoy working with GAP3.

Aachen, June 1.,1994, Joachim Neubiiser.
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Chapter 1

About GAP

This chapter introduces you to the GAP3 system. It describes how to start GAP3 (you may
have to ask your system administrator to install it correctly) and how to leave it. Then a
step by step introduction should give you an impression of how the GAP3 system works.
Further sections will give an overview about the features of GAP3. After reading this chapter
the reader should know what kind of problems can be handled with GAP3 and how they
can be handled.

There is some repetition in this chapter and much of the material is repeated in later
chapters in a more compact and precise way. Yes, there are even some little inaccuracies
in this chapter simplifying things for better understanding. It should be used as a tutorial
introduction while later chapters form the reference manual.

GAP3 is an interactive system. It continuously executes a read—evaluate—print cycle. Each
expression you type at the keyboard is read by GAP3, evaluated, and then the result is
printed.

The interactive nature of GAP3 allows you to type an expression at the keyboard and see
its value immediately. You can define a function and apply it to arguments to see how
it works. You may even write whole programs containing lots of functions and test them
without leaving the program.

When your program is large it will be more convenient to write it on a file and then read that
file into GAP3. Preparing your functions in a file has several advantages. You can compose
your functions more carefully in a file (with your favorite text editor), you can correct errors
without retyping the whole function and you can keep a copy for later use. Moreover you
can write lots of comments into the program text, which are ignored by GAP3, but are very
useful for human readers of your program text.

GAP3 treats input from a file in the same way that it treats input from the keyboard.

The printed examples in this first chapter encourage you to try running GAP3 on your
computer. This will support your feeling for GAP3 as a tool, which is the leading aim of
this chapter. Do not believe any statement in this chapter so long as you cannot verify it
for your own version of GAP3. You will learn to distinguish between small deviations of the
behavior of your personal GAP3 from the printed examples and serious nonsense.

73
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Since the printing routines of GAP3 are in some sense machine dependent you will for
instance encounter a different layout of the printed objects in different environments. But
the contents should always be the same.

In case you encounter serious nonsense it is highly recommended that you send a bug report
to gap—-forum@samson.math.rwth-aachen.de.

If you read this introduction on-line you should now enter 7> to read the next section.

1.1 About Conventions

Throughout this manual both the input given to GAP3 and the output that GAP3 returns
are printed in typewriter font just as if they were typed at the keyboard.

An italic font is used for keys that have no printed representation, such as e.g. the newline
key and the ctl key. This font is also used for the formal parameters of functions that are
described in later chapters.

A combination like ctl-P means pressing both keys, that is holding the control key ctl and
pressing the key P while ctl is still pressed.

New terms are introduced in bold face.

In most places whitespace characters (i.e. spaces, tabs and newlines) are insignificant
for the meaning of GAP3 input. Identifiers and keywords must however not contain any
whitespace. On the other hand, sometimes there must be whitespace around identifiers and
keywords to separate them from each other and from numbers. We will use whitespace to
format more complicated commands for better readability.

A comment in GAP3 starts with the symbol # and continues to the end of the line. Com-
ments are treated like whitespace by GAP3.

Besides of such comments which are part of the input of a GAP3 session, we use additional
comments which are part of the manual description, but not of the respective GAP3 session.
In the printed version of this manual these comments will be printed in a normal font for
better readability, hence they start with the symbol #.

The examples of GAP3 sessions given in any particular chapter of this manual have been
run in one continuous session, starting with the two commands

SizeScreen( [ 72, 1 );
LogTo( "erg.log" );

which are used to set the line length to 72 and to save a listing of the session on some file.
If you choose any chapter and rerun its examples in the given order, you should be able to
reproduce our results except of a few lines of output which we have edited a little bit with
respect to blanks or line breaks in order to improve the readability. However, as soon as
random processes are involved, you may get different results if you extract single examples
and run them separately.

1.2 About Starting and Leaving GAP

If the program is correctly installed then you start GAP3 by simply typing gap at the prompt
of your operating system followed by the return or the newline key.

$ gap
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GAP3 answers your request with its beautiful banner (which you can surpress with the
command line option -b) and then it shows its own prompt gap> asking you for further
input.

gap>
The usual way to end a GAP3 session is to type quit; at the gap> prompt. Do not omit
the semicolon!

gap> quit;

$
On some systems you may as well type ctl-D to yield the same effect. In any situation GAP3
is ended by typing ctl-C twice within a second.

1.3 About First Steps

A simple calculation with GAP3 is as easy as one can imagine. You type the problem just
after the prompt, terminate it with a semicolon and then pass the problem to the program
with the return key. For example, to multiply the difference between 9 and 7 by the sum of
5 and 6, that is to calculate (9 — 7) x (5 + 6), you type exactly this last sequence of symbols
followed by ; and return.

gap> (9 - 7) * (6 + 6);

22

gap>
Then GAP3 echoes the result 22 on the next line and shows with the prompt that it is ready
for the next problem.

If you did omit the semicolon at the end of the line but have already typed return, then
GAP3 has read everything you typed, but does not know that the command is complete.
The program is waiting for further input and indicates this with a partial prompt >. This
little problem is solved by simply typing the missing semicolon on the next line of input.
Then the result is printed and the normal prompt returns.

gap> (9 - 7) * (56 + 6)

>

22

gap>
Whenever you see this partial prompt and you cannot decide what GAP3 is still waiting for,
then you have to type semicolons until the normal prompt returns.

In every situation this is the exact meaning of the prompt gap> : the program is waiting
for a new problem. In the following examples we will omit this prompt on the line after the
result. Considering each example as a continuation of its predecessor this prompt occurs in
the next example.

In this section you have seen how simple arithmetic problems can be solved by GAP3 by
simply typing them in. You have seen that it doesn’t matter whether you complete your
input on one line. GAP3 reads your input line by line and starts evaluating if it has seen
the terminating semicolon and return.

It is, however, also possible (and might be advisable for large amounts of input data) to
write your input first into a file, and then read this into GAP3; see 3.23 and 3.12 for this.

Also in GAP3, there is the possibility to edit the input data, see 3.4.
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1.4 About Help

The contents of the GAP3 manual is also available as on-line help, see 3.5-3.11. If you need
information about a section of the manual, just enter a question mark followed by the header
of the section. E.g., entering 7About Help will print the section you are reading now.

??topic will print all entries in GAP3’s index that contain the substring topic.

1.5 About Syntax Errors

Even if you mistyped the command you do not have to type it all again as GAP3 permits a lot
of command line editing. Maybe you mistyped or forgot the last closing parenthesis. Then
your command is syntactically incorrect and GAP3 will notice it, incapable of computing
the desired result.

gap> (9 - 7) *x (5 + 6;
Syntax error: ) expected
(9 -7 % (5 + 6;

Instead of the result an error message occurs indicating the place where an unexpected
symbol occurred with an arrow sign ~ under it. As a computer program cannot know what
your intentions really were, this is only a hint. But in this case GAP3 is right by claiming
that there should be a closing parenthesis before the semicolon. Now you can type ctl-P
to recover the last line of input. It will be written after the prompt with the cursor in the
first position. Type ctl-E to take the cursor to the end of the line, then ctl-B to move the
cursor one character back. The cursor is now on the position of the semicolon. Enter the
missing parenthesis by simply typing ). Now the line is correct and may be passed to GAP3
by hitting the newline key. Note that for this action it is not necessary to move the cursor
past the last character of the input line.

Each line of commands you type is sent to GAP3 for evaluation by pressing newline regardless
of the position of the cursor in that line. We will no longer mention the newline key from
now on.

Sometimes a syntax error will cause GAP3 to enter a break loop. This is indicated by the
special prompt brk>. You can leave the break loop by either typing return; or by hitting
ctl-D. Then GAP3 will return to its normal state and show its normal prompt again.

In this section you learned that mistyped input will not lead to big confusion. If GAP3
detects a syntax error it will print an error message and return to its normal state. The
command line editing allows you in a comfortable way to manipulate earlier input lines.

For the definition of the GAP3 syntax see chapter 2. A complete list of command line editing
facilities is found in 3.4. The break loop is described in 3.2.

1.6 About Constants and Operators

In an expression like (9 - 7) * (5 + 6) the constants 5, 6, 7, and 9 are being composed
by the operators +, * and - to result in a new value.

There are three kinds of operators in GAP3, arithmetical operators, comparison operators,
and logical operators. You have already seen that it is possible to form the sum, the
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difference, and the product of two integer values. There are some more operators applicable
to integers in GAP3. Of course integers may be divided by each other, possibly resulting in
noninteger rational values.

gap> 12345/25;
2469/5

Note that the numerator and denominator are divided by their greatest common divisor
and that the result is uniquely represented as a division instruction.

We haven’t met negative numbers yet. So consider the following self-explanatory examples.
gap> -3; 17 - 23;
-3
-6
The exponentiation operator is written as ~. This operation in particular might lead to very
large numbers. This is no problem for GAP3 as it can handle numbers of (almost) arbitrary
size.
gap> 37132;
955004950796825236893190701774414011919935138974343129836853841

The mod operator allows you to compute one value modulo another.

gap> 17 mod 3;
2

Note that there must be whitespace around the keyword mod in this example since 17mod3
or 17mod would be interpreted as identifiers.

GAP3 knows a precedence between operators that may be overridden by parentheses.

gap> (9 - 7) *5=9 -7 % 5;

false
Besides these arithmetical operators there are comparison operators in GAP3. A comparison
results in a boolean value which is another kind of constant. Every two objects within
GAP3 are comparable via =, <>, <, <=, > and >=, that is the tests for equality, inequality,
less than, less than or equal, greater than and greater than or equal. There is an ordering
defined on the set of all GAP3 objects that respects orders on subsets that one might expect.
For example the integers are ordered in the usual way.

gap> 1075 < 1074;

false
The boolean values true and false can be manipulated via logical operators, i. e., the
unary operator not and the binary operators and and or. Of course boolean values can be
compared, too.

gap> not true; true and false; true or false;
false

false

true

gap> 10 > 0 and 10 < 100;

true

Another important type of constants in GAP3 are permutations. They are written in cycle
notation and they can be multiplied.
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gap> (1,2,3);

(1,2,3)

gap> (1,2,3) * (1,2);
(2,3

The inverse of the permutation (1,2,3) is denoted by (1,2,3)"-1. Moreover the caret
operator ~ is used to determine the image of a point under a permutation and to conjugate
one permutation by another.

gap> (1,2,3)°-1;
(1,3,2)

gap> 27(1,2,3);

3

gap> (1,2,3)°(1,2);
(1,3,2)

The last type of constants we want to introduce here are the characters, which are simply
objects in GAP3 that represent arbitrary characters from the character set of the operating
system. Character literals can be entered in GAP3 by enclosing the character in single-
quotes .

gap> ’a’;
Ja)
gap> ’*’;
)%

There are no operators defined for characters except that characters can be compared.

In this section you have seen that values may be preceded by unary operators and combined
by binary operators placed between the operands. There are rules for precedence which
may be overridden by parentheses. It is possible to compare any two objects. A comparison
results in a boolean value. Boolean values are combined via logical operators. Moreover you
have seen that GAP3 handles numbers of arbitrary size. Numbers and boolean values are
constants. There are other types of constants in GAP3 like permutations. You are now in a
position to use GAP3 as a simple desktop calculator.

Operators are explained in more detail in 2.9 and 2.10. Moreover there are sections about
operators and comparisons for special types of objects in almost every chapter of this manual.
You will find more information about boolean values in chapters 45 and 29. Permutations
are described in chapter 20 and characters are described in chapter 30.

1.7 About Variables and Assignments

Values may be assigned to variables. A variable enables you to refer to an object via a name.
The name of a variable is called an identifier. The assignment operator is :=. There must
be no white space between the : and the =. Do not confuse the assignment operator :=
with the single equality sign = which is in GAP3 only used for the test of equality.

gap> a:= (9 - 7) * (56 + 6);

22

gap> a;

22

gap> a * (a + 1);
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506

gap> a:= 10;

10

gap> a * (a + 1);
110

After an assignment the assigned value is echoed on the next line. The printing of the value
of a statement may be in every case prevented by typing a double semicolon.

gap> w:= 2;;

After the assignment the variable evaluates to that value if evaluated. Thus it is possible to
refer to that value by the name of the variable in any situation.

This is in fact the whole secret of an assignment. An identifier is bound to a value and
from this moment points to that value. Nothing more. This binding is changed by the next
assignment to that identifier. An identifier does not denote a block of memory as in some
other programming languages. It simply points to a value, which has been given its place
in memory by the GAP3 storage manager. This place may change during a GAP3 session,
but that doesn’t bother the identifier.

The identifier points to the value, not to a place in the memory.

For the same reason it is not the identifier that has a type but the object. This means on
the other hand that the identifier a which now is bound to an integer value may in the same
session point to any other value regardless of its type.

Identifiers may be sequences of letters and digits containing at least one letter. For example
abc and aObcl are valid identifiers. But also 123a is a valid identifier as it cannot be
confused with any number. Just 1234 indicates the number 1234 and cannot be at the same
time the name of a variable.

Since GAP3 distinguishes upper and lower case, al and A1 are different identifiers. Keywords
such as quit must not be used as identifiers. You will see more keywords in the following
sections.

In the remaining part of this manual we will ignore the difference between variables, their
names (identifiers), and the values they point at. It may be useful to think from time to
time about what is really meant by terms such as the integer w.

There are some predefined variables coming with GAP3. Many of them you will find in the
remaining chapters of this manual, since functions are also referred to via identifiers.

This seems to be the right place to state the following rule.
The name of every function in the GAP3 library starts with a capital letter.

Thus if you choose only names starting with a small letter for your own variables you will
not overwrite any predefined function.

But there are some further interesting variables one of which shall be introduced now.
Whenever GAP3 returns a value by printing it on the next line this value is assigned to the
variable last. So if you computed

gap> (9 - 7) * (5 + 6);

22

and forgot to assign the value to the variable a for further use, you can still do it by the
following assignment.
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gap> a:= last;
22

Moreover there are variables last2 and last3, guess their values.

In this section you have seen how to assign values to variables. These values can later
be accessed through the name of the variable, its identifier. You have also encountered the
useful concept of the last variables storing the latest returned values. And you have learned
that a double semicolon prevents the result of a statement from being printed.

Variables and assignments are described in more detail in 2.7 and 2.12. A complete list of
keywords is contained in 2.4.

1.8 About Functions

A program written in the GAP3 language is called a function. Functions are special GAP3
objects. Most of them behave like mathematical functions. They are applied to objects and
will return a new object depending on the input. The function Factorial, for example, can
be applied to an integer and will return the factorial of this integer.

gap> Factorial(17);
355687428096000

Applying a function to arguments means to write the arguments in parentheses following
the function. Several arguments are separated by commas, as for the function Ged which
computes the greatest common divisor of two integers.

gap> Gcd (1234, 5678);
2

There are other functions that do not return a value but only produce a side effect. They
change for example one of their arguments. These functions are sometimes called procedures.
The function Print is only called for the side effect to print something on the screen.

gap> Print (1234, "\n");
1234
In order to be able to compose arbitrary text with Print, this function itself will not produce

a line break after printing. Thus we had another newline character "\n" printed to start a
new line.

Some functions will both change an argument and return a value such as the function Sortex
that sorts a list and returns the permutation of the list elements that it has performed.

You will not understand right now what it means to change an object. We will return to
this subject several times in the next sections.

A comfortable way to define a function is given by the maps—to operator —> consisting of a
minus sign and a greater sign with no whitespace between them. The function cubed which
maps a number to its cube is defined on the following line.

gap> cubed:= x —-> x73;

function ( x ) ... end

After the function has been defined, it can now be applied.

gap> cubed(5);
125
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Not every GAP3 function can be defined in this way. You will see how to write your own
GAP3 functions in a later section.

In this section you have seen GAP3 objects of type function. You have learned how to apply
a function to arguments. This yields as result a new object or a side effect. A side effect
may change an argument of the function. Moreover you have seen an easy way to define a
function in GAP3 with the maps-to operator.

Function calls are described in 2.8 and in 2.13. The functions of the GAP3 library are
described in detail in the remaining chapters of this manual, the Reference Manual.

1.9 About Lists

A list is a collection of objects separated by commas and enclosed in brackets. Let us for
example construct the list primes of the first 10 prime numbers.

gap> primes:= [2, 3, 5, 7, 11, 13, 17, 19, 23, 29];
[2, 3,5, 7, 11, 13, 17, 19, 23, 29 ]

The next two primes are 31 and 37. They may be appended to the existing list by the func-
tion Append which takes the existing list as its first and another list as a second argument.
The second argument is appended to the list primes and no value is returned. Note that
by appending another list the object primes is changed.

gap> Append(primes, [31, 37]);
gap> primes;
[2, 3,5, 7,11, 13, 17, 19, 23, 29, 31, 37 1]

You can as well add single new elements to existing lists by the function Add which takes
the existing list as its first argument and a new element as its second argument. The new
element is added to the list primes and again no value is returned but the list primes is
changed.

gap> Add(primes, 41);
gap> primes;
[ 2,3, 5,7, 11, 13, 17, 19, 23, 29, 31, 37, 41 ]

Single elements of a list are referred to by their position in the list. To get the value of the
seventh prime, that is the seventh entry in our list primes, you simply type

gap> primes[7];
17

and you will get the value of the seventh prime. This value can be handled like any other
value, for example multiplied by 2 or assigned to a variable. On the other hand this mech-
anism allows to assign a value to a position in a list. So the next prime 43 may be inserted
in the list directly after the last occupied position of primes. This last occupied position is
returned by the function Length.

gap> Length(primes);

13

gap> primes[14]:= 43;

43

gap> primes;

[2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43 1]
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Note that this operation again has changed the object primes. Not only the next position
of a list is capable of taking a new value. If you know that 71 is the 20th prime, you can as
well enter it right now in the 20th position of primes. This will result in a list with holes
which is however still a list and has length 20 now.

gap> primes[20]:= 71;

71

gap> primes;

[2, 3 5,7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71 ]
gap> Length(primes);

20

The list itself however must exist before a value can be assigned to a position of the list.
This list may be the empty list [ ].

gap> 111[1]:= 2;
Error, Variable: ’111’ must have a value
gap> 111:= [];

L1
gap> 111[1]:= 2;
2

Of course existing entries of a list can be changed by this mechanism, too. We will not do
it here because primes then may no longer be a list of primes. Try for yourself to change
the 17 in the list into a 9.

To get the position of 17 in the list primes use the function Position which takes the list
as its first argument and the element as its second argument and returns the position of
the first occurrence of the element 17 in the list primes. Position will return false if the
element is not contained in the list.

gap> Position(primes, 17);
7

gap> Position(primes, 20);
false

In all of the above changes to the list primes, the list has been automatically resized. There
is no need for you to tell GAP3 how big you want a list to be. This is all done dynamically.

It is not necessary for the objects collected in a list to be of the same type.

gap> 111:= [true, "This is a String",,, 3];
[ true, "This is a String",,, 3 ]

In the same way a list may be part of another list. A list may even be part of itself.

gap> 111[3]:= [4,5,6];; 111;

[ true, "This is a String", [ 4, 5, 6 1,, 3 1]
gap> 111[4]:= 111;

[ true, "This is a String", [ 4, 5, 6 1, =, 3]

Now the tilde ~ in the fourth position of 111 denotes the object that is currently printed.
Note that the result of the last operation is the actual value of the object 111 on the right
hand side of the assignment. But in fact it is identical to the value of the whole list 111 on
the left hand side of the assignment.
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A string is a very special type of list, which is printed in a different way. A string is simply
a dense list of characters. Strings are used mainly in filenames and error messages. A string
literal can either be entered simply as the list of characters or by writing the characters
between doublequotes ". GAP will always output strings in the latter format.

gap> sl := [’H’,’a’,’1’,’1%,%0’,” ’,’w’,’0%,’r?,%1’,°d”,’.’];
"Hallo world."

gap> s2 := "Hallo world.";

"Hallo world."

gap> sl := [’H’,’a’,’l’,’l’,’o’,’ 7,’W’,’O’,’r’,’l’,’d’,’.’];
"Hallo world."

gap> sl = s2;

true

gap> s2[7];

Jw)

Sublists of lists can easily be extracted and assigned using the operator { }.

gap> s1 :=111{ [ 1, 2, 31 };

[ true, "This is a String", [ 4, 5, 6 1 ]

gap> s1{ [ 2, 3] } := [ "New String", false ];
[ "New String", false ]

gap> sl;

[ true, "New String", false ]

This way you get a new list that contains at position 7 that element whose position is the
ith entry of the argument of { }.

In this long section you have encountered the fundamental concept of a list. You have
seen how to construct lists, how to extend them and how to refer to single elements of a
list. Moreover you have seen that lists may contain elements of different types, even holes
(unbound entries). But this is still not all we have to tell you about lists.

You will find a discussion about identity and equality of lists in the next section. Moreover
you will see special kinds of lists like sets (in 1.11), vectors and matrices (in 1.12) and ranges
(in 1.14). Strings are described in chapter 30.

1.10 About Identical Lists

This second section about lists is dedicated to the subtle difference between equality and
identity of lists. It is really important to understand this difference in order to understand
how complex data structures are realized in GAP3. This section applies to all GAP3 objects
that have subobjects, i. e., to lists and to records. After reading the section about records
(1.13) you should return to this section and translate it into the record context.

Two lists are equal if all their entries are equal. This means that the equality operator =
returns true for the comparison of two lists if and only if these two lists are of the same
length and for each position the values in the respective lists are equal.

gap> numbers:= primes;

[2,3, 5,7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71 ]
gap> numbers = primes;

true
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We assigned the list primes to the variable numbers and, of course they are equal as they
have both the same length and the same entries. Now we will change the third number to
4 and compare the result again with primes.

gap> numbers[3]:= 4;

4

gap> numbers = primes;
true

You see that numbers and primes are still equal, check this by printing the value of primes.
The list primes is no longer a list of primes! What has happened? The truth is that the lists
primes and numbers are not only equal but they are identical. primes and numbers are two
variables pointing to the same list. If you change the value of the subobject numbers[3] of
numbers this will also change primes. Variables do not point to a certain block of storage
memory but they do point to an object that occupies storage memory. So the assignment
numbers:= primes did not create a new list in a different place of memory but only created
the new name numbers for the same old list of primes.

The same object can have several names.

If you want to change a list with the contents of primes independently from primes you will
have to make a copy of primes by the function Copy which takes an object as its argument
and returns a copy of the argument. (We will first restore the old value of primes.)

gap> primes[3]:= 5;

5

gap> primes;

(2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71 ]
gap> numbers:= Copy(primes);

[2, 3 5,7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71 1]
gap> numbers = primes;

true

gap> numbers[3]:= 4;

4

gap> numbers = primes;
false

Now numbers is no longer equal to primes and primes still is a list of primes. Check this
by printing the values of numbers and primes.

The only objects that can be changed this way are records and lists, because only GAP3
objects of these types have subobjects. To clarify this statement consider the following
example.
gap> i:= 1;; j:= 1i;; i:= i+1l;;

By adding 1 to i the value of i has changed. What happens to j7 After the second
statement j points to the same object as i, namely to the integer 1. The addition does
not change the object 1 but creates a new object according to the instruction i+1. It is
actually the assignment that changes the value of i. Therefore j still points to the object
1. Integers (like permutations and booleans) have no subobjects. Objects of these types
cannot be changed but can only be replaced by other objects. And a replacement does not
change the values of other variables. In the above example an assignment of a new value to
the variable numbers would also not change the value of primes.
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Finally try the following examples and explain the results.

[1;

gap> 1:
L]
[11;

Now return to the preceding section 1.9 and find out whether the functions Add and Append
change their arguments.

In this section you have seen the difference between equal lists and identical lists. Lists are
objects that have subobjects and therefore can be changed. Changing an object will change
the values of all variables that point to that object. Be careful, since one object can have
several names. The function Copy creates a copy of a list which is then a new object.

You will find more about lists in chapter 27, and more about identical lists in 27.9.

1.11 About Sets

GAP3 knows several special kinds of lists. A set in GAP3 is a special kind of list. A set
contains no holes and its elements are sorted according to the GAP3 ordering of all its
objects. Moreover a set contains no object twice.

The function IsSet tests whether an object is a set. It returns a boolean value. For any list
there exists a corresponding set. This set is constructed by the function Set which takes the
list as its argument and returns a set obtained from this list by ignoring holes and duplicates
and by sorting the elements.

The elements of the sets used in the examples of this section are strings.

gap> fruits:= ["apple", "strawberry", "cherry", "plum"];
[ "apple", "strawberry", "cherry", "plum" ]

gap> IsSet(fruits);

false

gap> fruits:= Set(fruits);

[ "apple", "cherry", "plum", "strawberry" ]

Note that the original list fruits is not changed by the function Set. We have to make a
new assignment to the variable fruits in order to make it a set.

The in operator is used to test whether an object is an element of a set. It returns a boolean
value true or false.

gap> "apple" in fruits;

true

gap> "banana" in fruits;

false

The in operator may as well be applied to ordinary lists. It is however much faster to
perform a membership test for sets since sets are always sorted and a binary search can be
used instead of a linear search.

New elements may be added to a set by the function AddSet which takes the set fruits as
its first argument and an element as its second argument and adds the element to the set if
it wasn’t already there. Note that the object fruits is changed.
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gap> AddSet(fruits, "banana');

gap> fruits; # The banana is inserted in the right place.
[ "apple", "banana", "cherry", "plum", "strawberry" ]
gap> AddSet(fruits, "apple");

gap> fruits; # fruits has not changed.

[ "apple", "banana", "cherry", "plum", "strawberry" ]

Sets can be intersected by the function Intersection and united by the function Union
which both take two sets as their arguments and return the intersection (union) of the two
sets as a new object.

gap> breakfast:= ["tea", "apple", "egg"l;

[ "tea", "apple", "egg" ]

gap> Intersection(breakfast, fruits);

[ "apple" ]
It is however not necessary for the objects collected in a set to be of the same type. You
may as well have additional integers and boolean values for breakfast.

The arguments of the functions Intersection and Union may as well be ordinary lists,
while their result is always a set. Note that in the preceding example at least one argument
of Intersection was not a set.

The functions IntersectSet and UniteSet also form the intersection resp. union of two
sets. They will however not return the result but change their first argument to be the
result. Try them carefully.

In this section you have seen that sets are a special kind of list. There are functions to
expand sets, intersect or unite sets, and there is the membership test with the in operator.

A more detailed description of strings is contained in chapter 30. Sets are described in more
detail in chapter 28.

1.12 About Vectors and Matrices

A vector is a list of elements from a common field. A matrix is a list of vectors of equal
length. Vectors and matrices are special kinds of lists without holes.

gap> v:= [3, 6, 2, 5/2];
[ 3,6, 2, 5/2]

gap> IsVector(v);

true

Vectors may be multiplied by scalars from their field. Multiplication of vectors of equal
length results in their scalar product.

gap> 2 * v;

[ 6, 12, 4, 5]

gap> v * 1/3;

[1, 2, 2/3, 5/6 ]

gap> v * v;

221/4 # the scalar product of v with itself
Note that the expression v * 1/3 is actually evaluated by first multiplying v by 1 (which

yields again v) and by then dividing by 3. This is also an allowed scalar operation. The
expression v/3 would result in the same value.



1.12. ABOUT VECTORS AND MATRICES 87

A matrix is a list of vectors of equal length.

gap> m:= [[1, -1, 1],

> [2, 0, -1],

> (1, 1, 111;

rri1, -1,11, 02,0, -11,[1,1, 111
gap> m[2] [1];

2

Syntactically a matrix is a list of lists. So the number 2 in the second row and the first
column of the matrix m is referred to as the first element of the second element of the list m
viam[2] [1].

A matrix may be multiplied by scalars, vectors and other matrices. The vectors and matrices
involved in such a multiplication must however have suitable dimensions.

gap> m:= [[1, 2, 3, 4],

> [5, 6, 7, 8],

> [9,10,11,12]7;
(l01,2,3,41,[5,6,7,81, [9, 10, 11, 127 ]
gap> PrintArray(m) ;

cr 1, 2, 3, 41,

[ 5, 6, 7, 81,

[ 9, 10, 11, 12]
gap> [1, 0, 0, 0] * m;
Error, Vector *: vectors must have the same length
gap> [1, 0, O] * m;

[1, 2, 3, 4]

gap> m * [1, 0, 0];

Error, Vector *: vectors must have the same length
gap> m * [1, 0, 0, 0];

[1, 5, 9]

gap> m * [0, 1, 0, 0];

[ 2,6, 10]

]

Note that multiplication of a vector with a matrix will result in a linear combination of
the rows of the matrix, while multiplication of a matrix with a vector results in a linear
combination of the columns of the matrix. In the latter case the vector is considered as a
column vector.

Submatrices can easily be extracted and assigned using the { }{ } operator.

gap> sm :=m{ [ 1, 2] M [3, 411}
(03,41, 07,811

gap> sm{ [ 1, 2 1 ¥{ [2] } := [[1],[-11];
(11, 0-11]1

gap> sm;

(s, 11, 07,-111

The first curly brackets contain the selection of rows, the second that of columns.

In this section you have met vectors and matrices as special lists. You have seen how to
refer to elements of a matrix and how to multiply scalars, vectors, and matrices.
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Fields are described in chapter 6. The known fields in GAP3 are described in chapters 12,
13, 14, 15 and 18. Vectors and matrices are described in more detail in chapters 32 and 34.
Vector spaces are described in chapter 9 and further matrix related structures are described
in chapters 36 and 37.

1.13 About Records

A record provides another way to build new data structures. Like a list a record is a
collection of other objects. In a record the elements are not indexed by numbers but by
names (i.e., identifiers). An entry in a record is called a record component (or sometimes
also record field).

gap> date:= rec(year:= 1992,

> month:= "Jan",
> day:= 13);
rec(

year := 1992,

month := "Jan",

day := 13 )

Initially a record is defined as a comma separated list of assignments to its record com-
ponents. Then the value of a record component is accessible by the record name and the
record component name separated by one dot as the record component selector.

gap> date.year;

1992
gap> date.time:= rec(hour:= 19, minute:= 23, second:= 12);
rec(
hour := 19,
minute := 23,
second := 12 )
gap> date;
rec(
year := 1992,
month := "Jan",
day := 13,
time := rec(
hour := 19,
minute := 23,

second := 12 ) )

Assignments to new record components are possible in the same way. The record is auto-
matically resized to hold the new component.

Most of the complex structures that are handled by GAP3 are represented as records, for
instance groups and character tables.

Records are objects that may be changed. An assignment to a record component changes
the original object. There are many functions in the library that will do such assignments to
a record component of one of their arguments. The function Size for example, will compute
the size of its argument which may be a group for instance, and then store the value in the
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record component size. The next call of Size for this object will use this stored value
rather than compute it again.

Lists and records are the only types of GAP3 objects that can be changed.

Sometimes it is interesting to know which components of a certain record are bound. This
information is available from the function RecFields (yes, this function should be called
RecComponentNames), which takes a record as its argument and returns a list of all bound
components of this record as a list of strings.

gap> RecFields(date);

[ llyearll s Ilmon-thll , Ildayll s lltime n ]
Finally try the following examples and explain the results.

gap> r:= rec();

rec(
)
gap> r:= rec(r:=r);
rec(
r := rec(
) )
gap> r.r:= r;
rec(
r =" )

Now return to section 1.10 and find out what that section means for records.

In this section you have seen how to define and how to use records. Record objects are
changed by assignments to record fields. Lists and records are the only types of objects that
can be changed.

Records and functions for records are described in detail in chapter 46. More about identical
records is found in 46.3.

1.14 About Ranges

A range is a finite sequence of integers. This is another special kind of list. A range is
described by its minimum (the first entry), its second entry and its maximum, separated by
a comma resp. two dots and enclosed in brackets. In the usual case of an ascending list of
consecutive integers the second entry may be omitted.

gap> [1..999999]; # a range of almost a million numbers
[ 1 .. 999999 ]

gap> [1, 2..999999]; # this is equivalent

[ 1 .. 999999 ]

gap> [1, 3..999999]; # here the step is 2

[ 1, 3 .. 999999 ]

gap> Length( last );

500000

gap> [ 999999, 999997 .. 1 1;

[ 999999, 999997 .. 1 ]

This compact printed representation of a fairly long list corresponds to a compact internal
representation. The function IsRange tests whether an object is a range. If this is true for
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a list but the list is not yet represented in the compact form of a range this will be done
then.

gap> a:= [-2,-1,0,1,2,3,4,5];
[ -2, -1, 0, 1, 2, 3, 4, 5]
gap> IsRange(a);

true

gap> a;

[ -2..5]

gap> al5];

2

gap> Length(a);

8

Note that this change of representation does not change the value of the list a. The list a
still behaves in any context in the same way as it would have in the long representation.

In this section you have seen that ascending lists of consecutive integers can be represented
in a compact way as ranges.

Chapter 31 contains a detailed description of ranges. A fundamental application of ranges
is introduced in the next section.

1.15 About Loops

Given a list pp of permutations we can form their product by means of a for loop instead
of writing down the product explicitly.

gap> pp:= [ (1,3,2,6,8)(4,5,9), (1,6)(2,7,8)(4,9), (1,5,7)(2,3,8,6),

> (1,8,9)(2,3,5,6,4), (1,9,8,6,3,4,7,2) 1;;
gap> prod:= ();

O

gap> for p in pp do

> prod:= prod * p;

> od;

gap> prod;

(1,8,4,2,3,6,5)

First a new variable prod is initialized to the identity permutation (). Then the loop variable
p takes as its value one permutation after the other from the list pp and is multiplied with
the present value of prod resulting in a new value which is then assigned to prod.

The for loop has the following syntax.
for war in list do statements od;

The effect of the for loop is to execute the statements for every element of the list. A
for loop is a statement and therefore terminated by a semicolon. The list of statements is
enclosed by the keywords do and od (reverse do). A for loop returns no value. Therefore
we had to ask explicitly for the value of prod in the preceding example.

The for loop can loop over any kind of list, even a list with holes. In many programming
languages (and in former versions of GAP3, too) the for loop has the form

for war from first to last do statements od;
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But this is merely a special case of the general for loop as defined above where the list in
the loop body is a range.

for war in [first..last] do statements od;

You can for instance loop over a range to compute the factorial 15! of the number 15 in the
following way.

gap> ff:= 1;

1

gap> for i in [1..15] do
> ff:= ££f *x i;

> od;

gap> ff;

1307674368000

The following example introduces the while loop which has the following syntax.
while condition do statements od;

The while loop loops over the statements as long as the condition evaluates to true. Like
the for loop the while loop is terminated by the keyword od followed by a semicolon.

We can use our list primes to perform a very simple factorization. We begin by initializing a
list factors to the empty list. In this list we want to collect the prime factors of the number
1333. Remember that a list has to exist before any values can be assigned to positions of
the list. Then we will loop over the list primes and test for each prime whether it divides
the number. If it does we will divide the number by that prime, add it to the list factors
and continue.

gap> n:= 1333;

1333

gap> factors:= [];

L]

gap> for p in primes do

> while n mod p = 0 do
> n:= n/p;

> Add(factors, p);
> od;

> od;

gap> factors;

[ 31, 43 ]

gap> n;

1

As n now has the value 1 all prime factors of 1333 have been found and factors contains
a complete factorization of 1333. This can of course be verified by multiplying 31 and 43.

This loop may be applied to arbitrary numbers in order to find prime factors. But as primes
is not a complete list of all primes this loop may fail to find all prime factors of a number
greater than 2000, say. You can try to improve it in such a way that new primes are added
to the list primes if needed.

You have already seen that list objects may be changed. This holds of course also for the
list in a loop body. In most cases you have to be careful not to change this list, but there are
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situations where this is quite useful. The following example shows a quick way to determine
the primes smaller than 1000 by a sieve method. Here we will make use of the function
Unbind to delete entries from a list.

gap> primes:= [];

L1
gap> numbers:= [2..1000];
[ 2 .. 1000 ]

gap> for p in numbers do

> Add (primes, p);

> for n in numbers do

> if n mod p = 0 then

> Unbind (numbers [n-1]) ;
> fi;

> od;

> od;

The inner loop removes all entries from numbers that are divisible by the last detected
prime p. This is done by the function Unbind which deletes the binding of the list position
numbers [n-1] to the value n so that afterwards numbers[n-1] no longer has an assigned
value. The next element encountered in numbers by the outer loop necessarily is the next
prime.

In a similar way it is possible to enlarge the list which is looped over. This yields a nice and
short orbit algorithm for the action of a group, for example.

In this section you have learned how to loop over a list by the for loop and how to loop
with respect to a logical condition with the while loop. You have seen that even the list in
the loop body can be changed.

The for loop is described in 2.17. The while loop is described in 2.15.

1.16 About Further List Operations

There is however a more comfortable way to compute the product of a list of numbers or
permutations.

gap> Product([1..15]);
1307674368000

gap> Product (pp) ;
(1,8,4,2,3,6,5)

The function Product takes a list as its argument and computes the product of the elements
of the list. This is possible whenever a multiplication of the elements of the list is defined.
So Product is just an implementation of the loop in the example above as a function.

There are other often used loops available as functions. Guess what the function Sum does.
The function List may take a list and a function as its arguments. It will then apply the
function to each element of the list and return the corresponding list of results. A list of
cubes is produced as follows with the function cubed from 1.8.

gap> List([2..10], cubed);
[ 8, 27, 64, 125, 216, 343, 512, 729, 1000 ]
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To add all these cubes we might apply the function Sum to the last list. But we may as well
give the function cubed to Sum as an additional argument.

gap> Sum(last) = Sum([2..10], cubed);
true

The primes less than 30 can be retrieved out of the list primes from section 1.9 by the
function Filtered. This function takes the list primes and a property as its arguments and
will return the list of those elements of primes which have this property. Such a property
will be represented by a function that returns a boolean value. In this example the property
of being less than 30 can be reresented by the function x-> x <30 since x <30 will evaluate
to true for values x less than 30 and to false otherwise.

gap> Filtered(primes, x-> x < 30);
[ 2, 3,5, 7, 11, 13, 17, 19, 23, 29 1]

Another useful thing is the operator { } that forms sublists. It takes a list of positions as
its argument and will return the list of elements from the original list corresponding to these
positions.

gap> primes{ [1 .. 10] };
[2, 3,5, 7, 11, 13, 17, 19, 23, 29 1]

In this section you have seen some functions which implement often used for loops. There
are functions like Product to form the product of the elements of a list. The function List
can apply a function to all elements of a list and the functions Filtered and Sublist create
sublists of a given list.

You will find more predefined for loops in chapter 27.

1.17 About Writing Functions

You have already seen how to use the functions of the GAP3 library, i.e., how to apply them
to arguments. This section will show you how to write your own functions.

Writing a function that prints hello, world. on the screen is a simple exercise in GAP3.

gap> sayhello:= function()
> Print("hello, world.\n");
> end;

function ( ) ... end

This function when called will only execute the Print statement in the second line. This
will print the string hello, world. on the screen followed by a newline character \n that
causes the GAP3 prompt to appear on the next line rather than immediately following the
printed characters.

The function definition has the following syntax.
function(arguments) statements end

A function definition starts with the keyword function followed by the formal parameter
list arguments enclosed in parenthesis. The formal parameter list may be empty as in
the example. Several parameters are separated by commas. Note that there must be no
semicolon behind the closing parenthesis. The function definition is terminated by the
keyword end.
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A GAP3 function is an expression like integers, sums and lists. It therefore may be assigned
to a variable. The terminating semicolon in the example does not belong to the function
definition but terminates the assignment of the function to the name sayhello. Unlike in
the case of integers, sums, and lists the value of the function sayhello is echoed in the
abbreviated fashion function ( ) ... end. This shows the most interesting part of a
function: its formal parameter list (which is empty in this example). The complete value of
sayhello is returned if you use the function Print.

gap> Print(sayhello, "\n");
function ( )
Print( "hello, world.\n" );
end
Note the additional newline character "\n" in the Print statement. It is printed after the
object sayhello to start a new line.

The newly defined function sayhello is executed by calling sayhello() with an empty
argument list.

gap> sayhello();
hello, world.

This is however not a typical example as no value is returned but only a string is printed.
A more useful function is given in the following example. We define a function sign which
shall determine the sign of a number.

gap> sign:= function(n)

> if n < O then

> return -1;

> elif n = 0 then

> return O;

> else

> return 1;

> fi;

> end;

function ( n ) ... end

gap> sign(0); sign(-99); sign(11);
0

-1

1

gap> sign("abc");

1 # strings are defined to be greater than 0

This example also introduces the if statement which is used to execute statements depend-
ing on a condition. The if statement has the following syntax.

if condition then statements elif condition then statements else statements fij;

There may be several elif parts. The elif part as well as the else part of the if statement
may be omitted. An if statement is no expression and can therefore not be assigned to a
variable. Furthermore an if statement does not return a value.

Fibonacci numbers are defined recursively by f(1) = f(2) =1 and f(n) = f(n—1)+ f(n—
2). Since functions in GAP3 may call themselves, a function £ib that computes Fibonacci
numbers can be implemented basically by typing the above equations.
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gap> fib:= function(n)

> if n in [1, 2] then

> return 1;

> else

> return fib(n-1) + fib(n-2);
> fi;

> end;

function ( n ) ... end

gap> £ib(15);

610

There should be additional tests for the argument n being a positive integer. This function
fib might lead to strange results if called with other arguments. Try to insert the tests in
this example.

A function gcd that computes the greatest common divisor of two integers by Euclid’s
algorithm will need a variable in addition to the formal arguments.

gap> gcd:= function(a, b)

> local c;

> while b <> 0 do
> c:= b;

> b:= a mod b;
> a:= c;

> od;

> return c;

> end;

function (a, b ) ... end
gap> gcd (30, 63);

3

The additional variable c is declared as a local variable in the local statement of the
function definition. The local statement, if present, must be the first statement of a
function definition. When several local variables are declared in only one local statement
they are separated by commas.

The variable c is indeed a local variable, that is local to the function ged. If you try to use
the value of ¢ in the main loop you will see that ¢ has no assigned value unless you have
already assigned a value to the variable c in the main loop. In this case the local nature of
c in the function gcd prevents the value of the ¢ in the main loop from being overwritten.

We say that in a given scope an identifier identifies a unique variable. A scope is a lexical
part of a program text. There is the global scope that encloses the entire program text,
and there are local scopes that range from the function keyword, denoting the beginning
of a function definition, to the corresponding end keyword. A local scope introduces new
variables, whose identifiers are given in the formal argument list and the local declaration
of the function. The usage of an identifier in a program text refers to the variable in the
innermost scope that has this identifier as its name.

We will now write a function to determine the number of partitions of a positive integer. A
partition of a positive integer is a descending list of numbers whose sum is the given integer.
For example [4,2,1,1] is a partition of 8. The complete set of all partitions of an integer n
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may be divided into subsets with respect to the largest element. The number of partitions
of n therefore equals the sum of the numbers of partitions of n — i with elements less than
i for all possible 7. More generally the number of partitions of n with elements less than m
is the sum of the numbers of partitions of n — ¢ with elements less than ¢ for i less than m
and n. This description yields the following function.

gap> nrparts:= function(n)
> local np;

> np:= function(n, m)

> local i, res;

> if n = 0 then

> return 1;

> fi;

> res:= 0;

> for i in [1..Minimum(n,m)] do
> res:= res + np(n-i, i);

> od;

> return res;

> end;

> return np(n,n);

> end;

function (n ) ... end

We wanted to write a function that takes one argument. We solved the problem of determin-
ing the number of partitions in terms of a recursive procedure with two arguments. So we
had to write in fact two functions. The function nrparts that can be used to compute the
number of partitions takes indeed only one argument. The function np takes two arguments
and solves the problem in the indicated way. The only task of the function nrparts is to
call np with two equal arguments.

We made np local to nrparts. This illustrates the possibility of having local functions in
GAP3. It is however not necessary to put it there. np could as well be defined on the main
level. But then the identifier np would be bound and could not be used for other purposes.
And if it were used the essential function np would no longer be available for nrparts.

Now have a look at the function np. It has two local variables res and i. The variable res
is used to collect the sum and i is a loop variable. In the loop the function np calls itself
again with other arguments. It would be very disturbing if this call of np would use the
same i and res as the calling np. Since the new call of np creates a new scope with new
variables this is fortunately not the case.

The formal parameters n and m are treated like local variables.

It is however cheaper (in terms of computing time) to avoid such a recursive solution if this
is possible (and it is possible in this case), because a function call is not very cheap.

In this section you have seen how to write functions in the GAP3 language. You have also
seen how to use the if statement. Functions may have local variables which are declared in
an initial local statement in the function definition. Functions may call themselves.

The function syntax is described in 2.18. The if statement is described in more detail in
2.14. More about Fibonacci numbers is found in 47.22 and more about partitions in 47.13.
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1.18 About Groups

In this section we will show some easy computations with groups. The example uses permu-
tation groups, but this is visible for the user only because the output contains permutations.
The functions, like Group, Size or SylowSubgroup (for detailed information, see chapters
4, 7), are the same for all kinds of groups, although the algorithms which compute the
information of course will be different in most cases.

It is not even necessary to know more about permutations than the two facts that they are
elements of permutation groups and that they are written in disjoint cycle notation (see
chapter 20). So let’s construct a permutation group:

gap> s8:= Group( (1,2), (1,2,3,4,5,6,7,8) );
Group( (1,2), (1,2,3,4,5,6,7,8) )

We formed the group generated by the permutations (1,2) and (1,2,3,4,5,6,7,8), which
is well known as the symmetric group on eight points, and assigned it to the identifier s8.
s8 contains the alternating group on eight points which can be described in several ways,
e.g., as group of all even permutations in s8, or as its commutator subgroup.

gap> a8:= CommutatorSubgroup( s8, s8 );

Subgroup( Group( (1,2), (1,2,3,4,5,6,7,8) ),

[ (1,3,2), (2,4,3), (2,3)(4,5), (2,4,6,5,3), (2,5,3)(4,7,6),
(2,3)(5,6,8,7) 1)

The alternating group a8 is printed as instruction to compute that subgroup of the group s8
that is generated by the given six permutations. This representation is much shorter than
the internal structure, and it is completely self-explanatory; one could, for example, print
such a group to a file and read it into GAP3 later. But if one object occurs several times it
is useful to refer to this object; this can be settled by assigning a name to the group.

gap> s8.name:= "s8";
"88"
gap> a8;
Subgroup( s8, [ (1,3,2), (2,4,3), (2,3)(4,5), (2,4,6,5,3),
(2,5,3)(4,7,6), (2,3)(5,6,8,7) 1)
gap> a8.name:= "a8";
Ila81|
gap> a8;
a8
Whenever a group has a component name, GAP3 prints this name instead of the group itself.

Note that there is no link between the name and the identifier, but it is of course useful to
choose name and identifier compatible.

gap> copya8:= Copy( a8 );
a8

We examine the group a8. Like all complex GAP3 structures, it is represented as a record
(see 7.118).

gap> RecFields( a8 );
[ "isDomain", "isGroup", "parent", "identity", "generators",
lloperatlcnsll s lllspermGroupll s lllll s ll2ll s lI3II s II4II s II5II s II6II s
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"stabChainOptions", "stabChain", "orbit", "transversal",
"stabilizer", "name" ]

Many functions store information about the group in this group record, this avoids duplicate
computations. But we are not interested in the organisation of data but in the group, e.g.,
some of its properties (see chapter 7, especially 7.45):

gap> Size( a8 ); IsAbelian( a8 ); IsPerfect( a8 );
20160
false
true

Some interesting subgroups are the Sylow p subgroups for prime divisors p of the group
order; a call of SylowSubgroup stores the required subgroup in the group record:

gap> Set( Factors( Size( a8 ) ) );

[2, 3,5, 7]

gap> for p in last do

> SylowSubgroup( a8, p );

> od;

gap> a8.sylowSubgroups;

[ , Subgroup( s8, [ (1,5)(7,8), (1,5)(2,6), (3,4)(7,8), (2,3)(4,6),

(1,7)(2,3)(4,6)(5,8), (1,2)(3,7)(4,8)(5,6) 1),

Subgroup( s8, [ (3,8,7), (2,6,4)(3,7,8) 1),,
Subgroup( s8, [ (3,7,8,6,4) 1 ),,
Subgroup( s8, [ (2,8,4,5,7,3,6) 1 ) ]

The record component sylowSubgroups is a list which stores at the p—th position, if bound,
the Sylow p subgroup; in this example this means that there are holes at positions 1, 4 and
6. Note that a call of SylowSubgroup for the cyclic group of order 65521 and for the prime
65521 would cause GAP3 to store the group at the end of a list of length 65521, so there are
special situations where it is possible to bring GAP3 and yourselves into troubles.

We now can investigate the Sylow 2 subgroup.

gap> syl2:= last[2];;

gap> Size( syl2 );

64

gap> Normalizer( a8, syl2 );

Subgroup( s8, [ (3,4)(7,8), (2,3)(4,6), (1,2)(3,7)(4,8)(5,6) 1)

gap> last = syl2;

true

gap> Centre( syl2 );

Subgroup( s8, [ (1, 5)( 2, 6)( 3, (7,8 1)

gap> cent:= Centralizer( a8, last );

Subgroup( s8, [ (1, 5)( 2, 6)( 3, (7, 8), (3,4(,8), (3,7(4,8),
(2,3)(4,6), (1,2)(5,6) 1)

gap> Size( cent );

192

gap> DerivedSeries( cent );

[ Subgroup( s8, [ (1, 6)(C2, 6)(3, (7, 8), (3,4)(,8),

(3,7)(4,8), (2,3)(4,6), (1,2)(5,6) 1),
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Subgroup( s8, [ (1, 6, 3)( 2, 4, 5), (1,8, 3)(4, 5,7,
(1, DC2, 34, 6)(5,8), (1,5)(2,6) 1),
Subgroup( s8, [ (1, 3)( 2, 7)( 4, 5)(6, 8),
(1,602, 503,804, 7, (1,503, 4, (1,507, 8 1)
, Subgroup( s8, [ (1, 5)( 2, 6)(3, (7,8 1),
Subgroup( s8, [ 1) 1]
gap> List( last, Size );
[ 192, 96, 32, 2, 1]
gap> low:= LowerCentralSeries( cent );
[ Subgroup( s8, [ (1, 5)( 2, 6)(3, (7, 8), (3,4(,8),
(3,7)(4,8), (2,3)(4,6), (1,2)(5,6) 1),
Subgroup( s8, [ (1, 6, 3)(2, 4, 5), (1,8,3)(4,5, 7)),
(1, nC2, 3)(4,6)(5,8), (1,5((2,6)]1)]

Another kind of subgroups is given by the point stabilizers.

gap> stab:= Stabilizer( a8, 1 );

Subgroup( s8, [ (2,5,6), (2,5)(3,6), (2,5,6,4,3), (2,5,3)(4,6,8),
(2,5)(3,4,7,8) 1)

gap> Size( stab );

2520

gap> Index( a8, stab );

8

We can fetch an arbitrary group element and look at its centralizer in a8, and then get other
subgroups by conjugation and intersection of already known subgroups. Note that we form
the subgroups inside a8, but GAP3 regards these groups as subgroups of s8 because this is
the common “parent” group of all these groups and of a8 (for the idea of parent groups, see
7.6).

gap> Random( a8 );

(1,6,3,2,7)(4,5,8)

gap> Random( a8 );

(1,3,2,4,7,5,6)

gap> cent:= Centralizer( a8, (1,2)(3,4)(5,8)(6,7) );

Subgroup( s8, [ (1,2)(3,4)(5,8)(6,7), (5,6)(7,8), (5,7)(6,8),
(3,4)(6,7), (3,56)(4,8), (1,3)(2,4) 1)

gap> Size( cent );

192

gap> conj:= ConjugateSubgroup( cent, (2,3,4) );

Subgroup( s8, [ (1,3)(2,4)(5,8)(6,7), (5,6)(7,8), (5,7)(6,8),
(2,4)(6,7), (2,8)(4,5), (1,4)(2,3) 1)

gap> inter:= Intersection( cent, conj );

Subgroup( s8, [ (5,6)(7,8), (5,7)(6,8), (1,2)(3,4), (1,3)(2,4) 1)

gap> Size( inter );

16

gap> IsElementaryAbelian( inter );

true

gap> norm:= Normalizer( a8, inter );

Subgroup( s8, [ (6,7,8), (5,6,8), (3,4)(6,8), (2,3)(6,8), (1,2)(6,8),
(1,6)(2,6,3,7,4,8) 1)
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gap> Size( norm );
576

Suppose we do not only look which funny things may appear in our group but want to
construct a subgroup, e.g., a group of structure 2% : L3(2) in a8. One idea is to look for an
appropriate 23 which is specified by the fact that all its involutions are fixed point free, and
then compute its normalizer in a8:

gap> elab:= Group( (1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8),

> (1,5)(2,6)(3,7)(4,8) );;
gap> Size( elab );

8

gap> IsElementaryAbelian( elab );

true

gap> norm:= Normalizer( a8, AsSubgroup( s8, elab ) );

Subgroup( s8, [ (5,6)(7,8), (5,7)(6,8), (3,4)(7,8), (3,5)(4,6),
(2,3)(6,7), (1,2)(7,8) 1)

gap> Size( norm );

1344

Note that elab was defined as separate group, thus we had to call AsSubgroup to achieve
that it has the same parent group as a8. Let’s look at some usual misuses:

Normalizer( a8, elab );

Intuitively, it is clear that here again we wanted to compute the normalizer of elab in a8,
and in fact we would get it by this call. However, this would be a misuse in the sense that
now GAP3 cannot use some clever method for the computation of the normalizer. So, for
larger groups, the computation may be very time consuming. That is the reason why we
used the the function AsSubgroup in the preceding example.

Let’s have a closer look at that function.

gap> IsSubgroup( a8, AsSubgroup( a8, elab ) );
Error, <G> must be a parent group in
AsSubgroup( a8, elab ) called from

main loop

brk> quit;

gap> IsSubgroup( a8, AsSubgroup( s8, elab ) );
true

What we tried here was not correct. Since all our computations up to now are done inside s8
which is the parent of a8, it is easy to understand that IsSubgroup works for two subgroups
with this parent.

By the way, you should not try the operator < instead of the function IsSubgroup. Some-
thing like

gap> elab < a8;
false

or

gap> AsSubgroup( s8, elab ) < a8;
false
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will not cause an error, but the result does not tell anything about the inclusion of one group
in another; < looks at the element lists for the two domains which means that it computes
them if they are not already stored —which is not desirable to do for large groups— and then
simply compares the lists with respect to lexicographical order (see 4.7).

On the other hand, the equality operator = in fact does test the equality of groups. Thus

gap> elab = AsSubgroup( s8, elab );
true

means that the two groups are equal in the sense that they have the same elements. Note
that they may behave differently since they have different parent groups. In our example,
it is necessary to work with subgroups of s8:

gap> elab:= AsSubgroup( s8, elab );;
gap> elab.name:= "elab";;

If we are given the subgroup norm of order 1344 and its subgroup elab, the factor group
can be considered.

gap> f:= norm / elab;

(Subgroup( s8, [ (5,6)(7,8), (5,7)(6,8), (3,4)(7,8), (3,5)(4,6),
(2,3)(6,7), (1,2)(7,8) 1 ) / elab)

gap> Size( f );

168

As the output shows, this is not a permutation group. The factor group and its elements
can, however, be handled in the usual way.

gap> Random( £ );

FactorGroupElement ( elab, (2,8,7)(3,5,6) )
gap> Order( f, last );

3

The natural link between the group norm and its factor group £ is the natural homomorphism
onto f, mapping each element of norm to its coset modulo the kernel elab. In GAP3 you can
construct the homomorphism, but note that the images lie in f since they are elements of
the factor group, but the preimage of each such element is only a coset, not a group element
(for cosets, see the relevant sections in chapter 7, for homomorphisms see chapters 8 and
43).

gap> f.name:= "f";;

gap> hom:= NaturalHomomorphism( norm, f );

NaturalHomomorphism( Subgroup( s8,

[ 5,6)(7,8), (5,7)(6,8), (3,4(7,8), (3,56)(4,6), (2,3)(6,7),
(1,2)(7,8) 1 ), (Subgroup( s8,

[ (6,6)(7,8), (5,7)(6,8), (3,4)(7,8), (3,5)(4,6), (2,3)(6,7),
(1,2)(7,8) 1) / elab) )

gap> Kernel( hom ) = elab;

true

gap> x:= Random( norm ) ;

(1,7,5,8,3,6,2)

gap> Image( hom, x );

FactorGroupElement ( elab, (2,7,3,4,6,8,5) )
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gap> coset:= PreImages( hom, last );
(elabx*(2,7,3,4,6,8,5))
gap> IsCoset( coset );

true
gap> x in coset;
true
gap> coset in f;
false

The group f acts on its elements (not on the cosets) via right multiplication, yielding the
regular permutation representation of £ and thus a new permutation group, namely the
linear group L3(2). A more elaborate discussion of operations of groups can be found in
section 1.19 and chapter 8.

gap> op:= Operation( f, Elements( f ), OnRight );;
gap> IsPermGroup( op );

true

gap> Maximum( List( op.generators, LargestMovedPointPerm ) );
168

gap> IsSimple( op );

true

norm acts on the seven nontrivial elements of its normal subgroup elab by conjugation,
yielding a representation of L3(2) on seven points. We embed this permutation group in
norm and deduce that norm is a split extension of an elementary abelian group 23 with L3(2).

gap> op:= Operation( norm, Elements( elab ), OnPoints );

Group( (5,6)(7,8), (5,7)(6,8), (3,4)(7,8), (3,5)(4,6), (2,3)(6,7),
(3,4)(5,6) )

gap> IsSubgroup( a8, AsSubgroup( s8, op ) );

true

gap> IsSubgroup( norm, AsSubgroup( s8, op ) );

true

gap> Intersection( elab, op );

Group( O )

Yet another kind of information about our a8 concerns its conjugacy classes.

gap> ccl:= ConjugacyClasses( a8 );
[ ConjugacyClass( a8, () ), ConjugacyClass( a8, (1,3)(2,6)(4,7)(5,8) )
, ConjugacyClass( a8, (1,3)(2,8,5)(6,7) ),
ConjugacyClass( a8, (2,5,8) ), ConjugacyClass( a8, (1,3)(6,7) ),
ConjugacyClass( a8, (1,3,2,5,4,7,8) ),
ConjugacyClass( a8, (1,5,8,2,7,3,4) ),
ConjugacyClass( a8, (1,5)(2,8,7,4,3,6) ),
ConjugacyClass( a8, (2,7,3)(4,6,8) ),
ConjugacyClass( a8, (1,6)(3,8,5,4) ),
ConjugacyClass( a8, (1,3,5,2)(4,6,8,7) ),
ConjugacyClass( a8, (1,8,6,2,5) ),
ConjugacyClass( a8, (1,7,2,4,3)(5,8,6) ),
ConjugacyClass( a8, (1,2,3,7,4)(5,8,6) ) 1]
gap> Length( ccl );
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14

gap> reps:= List( ccl, Representative );

[ O, (1,3)(2,6)(4,7)(5,8), (1,3)(2,8,5)(6,7), (2,5
(1,3,2,5,4,7,8), (1,5,8,2,7,3,4), (1,5)(2,8,7,4,3
(2,7,3)4,6,8), (1,6)(3,8,5,4), (1,3,5,2)(4,6,8,7
1,7,2,4,3)(5,8,6), (1,2,3,7,4)(5,8,6) 1

gap> List( reps, r -> Order( a8, r ) );

[1, 2,6,3,2,7,7, 6, 3, 4, 4, 5, 15, 15 ]

gap> List( ccl, Size );

[ 1, 105, 1680, 112, 210, 2880, 2880, 3360, 1120, 2520, 1260, 1344,
1344, 1344 ]

Note the difference between Order (which means the element order), Size (which means
the size of the conjugacy class) and Length (which means the length of a list).

,8), (1,3)(6,7),
6)

>

>

)3 (1,8,6)2’5),

Having the conjugacy classes, we can consider class functions, i.e., maps that are defined
on the group elements, and that are constant on each conjugacy class. One nice example is
the number of fixed points; here we use that permutations act on points via ~.

gap> nrfixedpoints:= function( perm, support )

> return Number( [ 1 .. support ], x -> x"perm = x );
> end;
function ( perm, support ) ... end

Note that we must specify the support since a permutation does not know about the group
it is an element of; e.g. the trivial permutation () has as many fixed points as the support
denotes.

gap> permcharl:= List( reps, x -> nrfixedpoints( x, 8 ) );
[8, 0,1, 5,4,1,1,0,2,2,0,3,0,0]

This is the character of the natural permutation representation of a8 (More about characters
can be found in chapters 49 fI.). In order to get another representation of a8, we consider
another action, namely that on the elements of a conjugacy class by conjugation; note that
this is denoted by OnPoints, too.

gap> class := First( ccl, ¢ -> Size(c) = 112 );
ConjugacyClass( a8, (2,5,8) )
gap> op:= Operation( a8, Elements( class ), OnPoints );;

We get a permutation representation op on 112 points. It is more useful to look for properties
than at the permutations.

gap> IsPrimitive( op, [ 1 .. 112 ] );

false

gap> blocks:= Blocks( op, [ 1 .. 112 ] );

tc1+, 21,066,871, [ 14, 191, [ 17, 201, [ 36, 401, [ 32, 391,
(3,51, (4,71, [10,15], [ 65, 701, [ 60, 691, [ 54, 631,

55, 681, [ 50, 67 1, [ 13, 16 1, [ 27, 341, [ 22, 29 1],

28,31, [ 24,371, (31,31, [9, 12171, [ 106, 1121,

100, 1111, [ 11, 18 1, [ 93, 1041, [ 23, 331, [ 26, 301,

94, 1101, [ 88, 1091, [ 49, 621, [ 44, 611, [ 43, 561,

53, 68 1, [ 48, 571, [ 45, 66 1, [ 69, 64 1, [ 87, 103 1,

81, 1021, [ 80, 961, [ 92, 98 1, [ 47, 521, [ 42, 511,
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[ 41, 46 ], [ 82, 1081, [ 99, 10561, [ 21, 2561, [ 75, 1011,
[ 74, 951, [ 86, 971, [ 76, 107 1, [ 85, 911, [ 73, 89 1,
(72,831, [ 79,9 1, [ 78,841, [ 71, 7711

gap> op2:= Operation( op, blocks, OnSets );;

gap> IsPrimitive( op2, [ 1 .. 56 1 );

true

The action of op on the given block system gave us a new representation on 56 points which
is primitive, i.e., the point stabilizer is a maximal subgroup. We compute its preimage in the
representation on eight points using homomorphisms (which of course are monomorphisms).

gap> ophom := OperationHomomorphism( a8, op );;

gap> Kernel (ophom) ;

Subgroup( s8, [ 1)

gap> ophom2:= OperationHomomorphism( op, op2 );;

gap> stab:= Stabilizer( op2, 1 );;

gap> Size( stab );

360

gap> composition:= ophom * ophom2;;

gap> preim:= PreImage( composition, stab );

Subgroup( s8, [ (1,3,2), (2,4,3), (1,3)(7,8), (2,3)(4,5), (6,8,7) 1)

And this is the permutation character (with respect to the succession of conjugacy classes
in ccl):

gap> permchar2:= List( reps, x->nrfixedpoints(x~composition,56) );
[ 56, 0, 3, 11, 12, 0, 0, 0, 2, 2, 0, 1, 1, 1]

The normalizer of an element in the conjugacy class class is a group of order 360, too. In
fact, it is essentially the same as the maximal subgroup we had found before

gap> sgp:= Normalizer( a8,

> Subgroup( s8, [ Representative(class) ] ) );

Subgroup( s8, [ (2,5)(3,4), (1,3,4), (2,5,8), (1,3,7)(2,5,8),
(1,4,7,3,6)(2,5,8) 1)

gap> Size( sgp );

360

gap> IsConjugate( a8, sgp, preim );

true

The scalar product of permutation characters of two subgroups U, V, say, equals the number
of (U,V)—double cosets (again, see chapters 49 fI. for the details). For example, the norm
of the permutation character permchari of degree eight is two since the action of a8 on the
cosets of a point stabilizer is at least doubly transitive:

gap> stab:= Stabilizer( a8, 1 );;

gap> double:= DoubleCosets( a8, stab, stab );

[ DoubleCoset( Subgroup( s8, [ (3,8,7), (3,4)(7,8), (3,5,4,8,7),
(3,6,5)(4,8,7), (2,6,4,5)(7,8) 1), (O, Subgroup( s8,

[ ¢3,8,7), (3,4)(7,8), (3,5,4,8,7), (3,6,5)(4,8,7),
(2,6,4,5)(7,8) 1) ),
DoubleCoset ( Subgroup( s8, [ (3,8,7), (3,4)(7,8), (3,5,4,8,7),

(3,6,5)(4,8,7), (2,6,4,5(7,8) 1), (1,2)(7,8), Subgroup( s8,
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[ (3,8,7), (3,4)(7,8), (3,5,4,8,7), (3,6,5)(4,8,7),
(2,6,4,5)(7,8) 1) ) 1]
gap> Length( double );
2

We compute the numbers of (sgp, sgp) and (sgp, stab) double cosets.

gap> Length( DoubleCosets( a8, sgp, sgp ) );
4
gap> Length( DoubleCosets( a8, sgp, stab ) );
2

Thus both irreducible constituents of permcharl are also constituents of permchar2, i.e.,
the difference of the two permutation characters is a proper character of a8 of norm two.

gap> permchar2 - permcharl;
[ 48, 0, 2, 6,8, -1, -1, 0, 0, 0, 0, -2, 1, 1]

1.19 About Operations of Groups

One of the most important tools in group theory is the operation or action of a group on
a certain set.

We say that a group G operates on a set D if we have a function that takes each pair (d, g)
with d € D and g € G to another element d9 € D, which we call the image of d under g,
such that d*@"**¥ = d and (d9)" = d9" for each d € D and g,h € G.

This is equivalent to saying that an operation is a homomorphism of the group G into the
full symmetric group on D. We usually call D the domain of the operation and its elements
points.

In this section we will demonstrate how you can compute with operations of groups. For an
example we will use the alternating group on 8 points.

gap> a8 := Group( (1,2,3), (2,3,4,5,6,7,8) );;
gap> a8.name := "a8";;

It is important to note however, that the applicability of the functions from the operation
package is not restricted to permutation groups. All the functions mentioned in this section
can also be used to compute with the operation of a matrix group on the vectors, etc. We
only use a permutation group here because this makes the examples more compact.

The standard operation in GAP3 is always denoted by the caret (*) operator. That means
that when no other operation is specified (we will see below how this can be done) all the
functions from the operations package will compute the image of a point p under an element
g as p~g. Note that this can already denote different operations, depending on the type
of points and the type of elements. For example if the group elements are permutations
it can either denote the normal operation when the points are integers or the conjugation
when the points are permutations themselves (see 20.2). For another example if the group
elements are matrices it can either denote the multiplication from the right when the points
are vectors or again the conjugation when the points are matrices (of the same dimension)
themselves (see 34.1). Which operations are available through the caret operator for a
particular type of group elements is described in the chapter for this type of group elements.

gap> 2 ~ (1,2,3);
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3
gap> 1 ~ a8.2;
1
gap> (2,4) - (1,2,3);
3,4

The most basic function of the operations package is the function Orbit, which computes
the orbit of a point under the operation of the group.

gap> Orbit( a8, 2 );
[2’ 3) 1:4’ 5: 6’ 7)8]

Note that the orbit is not a set, because it is not sorted. See 8.16 for the definition in which
order the points appear in an orbit.

We will try to find several subgroups in a8 using the operations package. One subgroup is
immediately available, namely the stabilizer of one point. The index of the stabilizer must
of course be equal to the length of the orbit, i.e., 8.

gap> u8 := Stabilizer( a8, 1 );

Subgroup( a8, [ (2,3,4,5,6,7,8), (3,8,7) 1)
gap> Index( a8, u8 );

8

This gives us a hint how to find further subgroups. Each subgroup is the stabilizer of a point
of an appropriate transitive operation (namely the operation on the cosets of that subgroup
or another operation that is equivalent to this operation).

So the question is how to find other operations. The obvious thing is to operate on pairs of
points. So using the function Tuples (see 47.9) we first generate a list of all pairs.

gap> pairs := Tuples( [1..8], 2 );

tft, 11,011,211, 01,381,01,471,[01,51,T[1,61,
1,71, 01,81, 02,11, 02,21,02,31,1[2,4]1,
t2,51,[02,6]1,02,7],[02,81,[3,11], 3,21,
(3,31, (3,41, [3,51, (3,61, [3, 71, [3,81,
(4,11, [4,2]1, 04,31, 04,41, 4,51, [4,61,
L4, 71, (4,81, [5, 11, [5,21, [5,31,[5,41],
(6,51, [5,61, 5,71, [5,81,[6,11, [6, 21,
(6,31,[06,41,[6,51]1,[6,61,[6,7], [6,8]1,
t7z,11, (07,21, 07,31, (7,41, [7,561,[7,61,
t7z, 71, (7,81, [8,11,[8,21, 18,31, [8, 41,
(8,5]1,[8,61,[8, 71, [8,81]

domain. But we cannot use the default

Now we would like to have a8 operate on this
operation (denoted by the caret) because list ~ perm is not defined. So we must tell the
functions from the operations package how the group elements operate on the elements of
the domain. In our example we can do this by simply passing OnPairs as optional last
argument. All functions from the operations package accept such an optional argument
that describes the operation. See 8.1 for a list of the available nonstandard operations.

Note that those operations are in fact simply functions that take an element of the domain
and an element of the group and return the image of the element of the domain under the
group element. So to compute the image of the pair [1,2] under the permutation (1,4,5)
we can simply write
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gap> OnPairs( [1,2], (1,4,5) );
[ 4, 2]

As was mentioned above we have to make sure that the operation is transitive. So we check
this.

gap> IsTransitive( a8, pairs, OnPairs );
false

The operation is not transitive, so we want to find out what the orbits are. The function
Orbits does that for you. It returns a list of all the orbits.

gap> orbs := Orbits( a8, pairs, OnPairs );

tccf1,121,02,21,03,31, [4,41,[5,51, [6,61,
L7, 71, [8,811,

1+, 21,02,31, 01,31, (3,11,[3,41,[2,11,
(1,41, 04,11, (4,51, 03,21, [2,41, 1,51,
(4,21, (5,11, (5,61, 04,31, [3,51,[2,51,
(1,61, [5,31, (5,211,006, 11, [6,71, [5,4]1,
(4,61, [3,61,[2,61, [1,7]1,0[6,41, [6,31],
re,21, 7,11, (7,81, [6,51,[5, 71, [4,7]1,
(3,71, 02,71, (1,81, (7,51, [7,41, 7,31,
t7,21,08,11, (8,21, (7,61, [6,81, [5,81,
(4,81, (3,81, [2,81,[8,61,[8,51, [8, 41,
(8,31, [8, 7111

The operation of a8 on the first orbit is of course equivalent to the original operation, so we
ignore it and work with the second orbit.

gap> ub6 := Stabilizer( a8, [1,2], OnPairs );
Subgroup( a8, [ (3,8,7), (3,6)(4,7,5,8), (6,7,8) 1)
gap> Index( a8, ub6 );

56

So now we have found a second subgroup. To make the following computations a little bit
easier and more efficient we would now like to work on the points [1..56] instead of the list
of pairs. The function Operation does what we need. It creates a new group that operates
on [1..56] in the same way that a8 operates on the second orbit.

gap> a8_56 := Operation( a8, orbs[2], OnPairs );

Group( ( 1, 2, 4)( 3, 6,100( 5, 7,11)( 8,13,16)(12,18,17) (14,21,20)
(19,27,26) (22,31,30) (28,38,37) (32,43,42) (39,51,50) (44,45,55) ,

(1, 3, 7,12,19,28,39)( 2, 5, 9,15,23,33,45)( 4, 8,14,22,32,44, 6)
(10,16,24,34,46,56,51) (11,17,25,35,47,43,55) (13,20,29,40,52,38,50)
(18,26,36,48,31,42,54) (21,30,41,53,27,37,49) )

gap> a8_56.name := "a8_56";;

We would now like to know if the subgroup u56 of index 56 that we found is maximal or
not. Again we can make use of a function from the operations package. Namely a subgroup
is maximal if the operation on the cosets of this subgroup is primitive, i.e., if there is no
partition of the set of cosets into subsets such that the group operates setwise on those
subsets.

gap> IsPrimitive( a8_56, [1..56] );
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false

Note that we must specify the domain of the operation. You might think that in the last
example IsPrimitive could use [1..56] as default domain if no domain was given. But
this is not so simple, for example would the default domain of Group( (2,3,4) ) be [1..4]
or [2..4]7 To avoid confusion, all operations package functions require that you specify
the domain of operation.

We see that a8_56 is not primitive. This means of course that the operation of a8 on orb[2]
is not primitive, because those two operations are equivalent. So the stabilizer u56 is not
maximal. Let us try to find its supergroups. We use the function Blocks to find a block
system. The (optional) third argument in the following example tells Blocks that we want
a block system where 1 and 10 lie in one block. There are several other block systems, which
we could compute by specifying a different pair, it just turns out that [1,10] makes the
following computation more interesting.

gap> blocks := Blocks( a8_56, [1..56], [1,10] );
[C1, 10, 13, 21, 31, 43, 451, [ 2, 3, 16, 20, 30, 42, 551,
[ 4, 6, 8, 14, 22, 32, 44 ], [ 5, 7, 11, 24, 29, 41, 54 1],
[ 9, 12, 17, 18, 34, 40, 53 1, [ 15, 19, 25, 26, 27, 46, 52 ],
[ 23, 28, 35, 36, 37, 38, 56 1, [ 33, 39, 47, 48, 49, 50, 51 1 ]

The result is a list of sets, i.e., sorted lists, such that a8_56 operates on those sets. Now we
would like the stabilizer of this operation on the sets. Because we wanted to operate on the
sets we have to pass OnSets as third argument.

gap> u8_56 := Stabilizer( a8_56, blocks[1], OnSets );

Subgroup( a8_56,

[ (15,35,48)(19,28,39) (22,32,44) (23,33,52) (25,36,49) (26,37,50)
(27,38,51) (29,41,54) (30,42,55) (31,43,45) (34,40,53) (46,56,47) ,

( 9,25)(12,19) (14,22) (15,34) (17,26) (18,27) (20,30) (21,31) (23,48)
(24,29) (28,39) (32,44) (33,56) (35,47) (36,49) (37,50) (38,51) (40,52)
(41,54) (42,55) (43,45) (46,53), ( 5,17)( 7,12)( 8,14)( 9,24)(11,18)
(13,21) (15,25) (16,20) (23,47) (28,39) (29,34) (32,44) (33,56) (35,49)
(36,48) (37,50) (38,51) (40,54) (41,53) (42,55) (43,45) (46,52),

(2,11)C3, (4, 8(5,16)( 9,17)(10,13) (20,24) (23,47) (25,26)
(28,39) (29,30) (32,44) (33,56) (35,48) (36,50) (37,49) (38,51) (40,53)
(41,55) (42,54) (43,45) (46,52), ( 1,100( 2, 6)( 3, 4)( 5, 7)( 8,16)
(12,17) (14,20) (19,26) (22,30) (23,47) (28,50) (32,55) (33,56) (35,48)
(36,49) (37,39) (38,51) (40,53) (41,54) (42,44) (43,45) (46,52) 1 )

gap> Index( a8_56, u8_56 );
8

Now we have a problem. We have found a new subgroup, but not as a subgroup of a8,
instead it is a subgroup of a8 56. We know that a8_56 is isomorphic to a8 (in general
the result of Operation is only isomorphic to a factor group of the original group, but in
this case it must be isomorphic to a8, because a8 is simple and has only the full group as
nontrivial factor group). But we only know that an isomorphism exists, we do not know it.

Another function comes to our rescue. OperationHomomorphism returns the homomorphism
of a group onto the group that was constructed by Operation. A later section in this chapter
will introduce mappings and homomorphisms in general, but for the moment we can just
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regard the result of OperationHomomorphism as a black box that we can use to transfer
information from a8 to a8_56 and back.

gap> h56 := OperationHomomorphism( a8, a8_56 );

OperationHomomorphism( a8, a8_56 )

gap> u8b := PrelImages( h56, u8_56 );

Subgroup( a8, [ (6,7,8), (5,6)(7,8), (4,5)(7,8), (3,4)(7,8),
(1,3)(7,8) 1)

gap> Index( a8, u8b );

8

gap> u8 = u8b;

false

So we have in fact found a new subgroup. However if we look closer we note that u8b is not
totally new. It fixes the point 2, thus it lies in the stabilizer of 2, and because it has the
same index as this stabilizer it must in fact be the stabilizer. Thus u8b is conjugated to u8.
A nice way to check this is to check that the operation on the 8 blocks is equivalent to the
original operation.

gap> IsEquivalentOperation( a8, [1..8], a8_56, blocks, OnSets );
true

Now the choice of the third argument [1,10] of Blocks becomes clear. Had we not given
that argument we would have obtained the block system that has [1,3,7,12,19,28,39] as
first block. The preimage of the stabilizer of this set would have been u8 itself, and we would
not have been able to introduce IsEquivalentOperation. Of course we could also use the
general function IsConjugate, but we want to demonstrate IsEquivalentOperation.

Actually there is a third block system of a8_56 that gives rise to a third subgroup.

gap> blocks := Blocks( a8_56, [1..56], [1,6] );
(1,61, 02,101, (3,41, (5,161, (7,81, [09, 2],
[ 11, 131, [ 12, 147, [ 15, 341, [ 17, 201, [ 18, 21 1,
[19, 221, [ 23, 461, [ 25, 291, [ 26, 301, [ 27, 311,
[ 28, 321, [ 33,561, [ 35, 401, [ 36, 411, [ 37, 421,
[ 38,431, [ 39, 441, [ 45, 511, [ 47, 521, [ 48, 531,
[ 49, 541, [ 50, 551 ]
gap> u28_56 := Stabilizer( a8_56, [1,6], OnSets );
Subgroup( a8_56,
[ (2,38,51)( 3,28,39)( 4,32,44)( 5,41,54)(10,43,45) (16,36,49)
(17,40,53) (20,35,48) (23,47,30) (26,46,52) (33,55,37) (42,56,50) ,
( 5,17,26,37,50)( 7,12,19,28,39) ( 8,14,22,32,44) ( 9,15,23,33,54)
(11,18,27,38,51) (13,21,31,43,45) (16,20,30,42,55) (24,34,46,56,49)
(265,35,47,41,53) (29,40,52,36,48),
(1, 6)( 2,39,38,19,18, 7)( 3,51,28,27,12,11)( 4,45,32,31,14,13)
( 5,55,33,23,15, 9)( 8,10,44,43,22,21)(16,50,56,46,34,24)
(17,54,42,47,35,25) (20,49,37,52,40,29) (26,53,41,30,48,36) 1 )
gap> u28 := Prelmages( h56, u28_56 );
Subgroup( a8, [ (3,7,8), (4,5,6,7,8), (1,2)(3,8,7,6,5,4) 1)
gap> Index( a8, u28 );
28
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We know that the subgroup u28 of index 28 is maximal, because we know that a8 has no
subgroups of index 2, 4, or 7. However we can also quickly verify this by checking that
a8_56 operates primitively on the 28 blocks.

gap> IsPrimitive( a8_56, blocks, OnSets );
true

There is a different way to obtain u28. Instead of operating on the 56 pairs [ [1,2],
[1,3], ..., [8,7] 1 we could operate on the 28 sets of two elements from [1..8]. But
suppose we make a small mistake.

gap> OrbitLength( a8, [2,1], OnSets );
Error, OnSets: <tuple> must be a set

It is your responsibility to make sure that the points that you pass to functions
from the operations package are in normal form. That means that they must be sets
if you operate on sets with OnSets, they must be lists of length 2 if you operate on pairs
with OnPairs, etc. This also applies to functions that accept a domain of operation, e.g.,
Operation and IsPrimitive. All points in such a domain must be in normal form. It is
not guaranteed that a violation of this rule will signal an error, you may obtain
incorrect results.

Note that Stabilizer is not only applicable to groups like a8 but also to their subgroups
like u56. So another method to find a new subgroup is to compute the stabilizer of another
point in u56. Note that u56 already leaves 1 and 2 fixed.

gap> u336 := Stabilizer( ub6, 3 );

Subgroup( a8, [ (4,6,5), (5,6)(7,8), (6,7,8) 1)
gap> Index( a8, u336 );

336

Other functions are also applicable to subgroups. In the following we show that u336
operates regularly on the 60 triples of [4..8] which contain no element twice, which means
that this operation is equivalent to the operations of u336 on its 60 elements from the right.
Note that OnTuples is a generalization of OnPairs.

gap> IsRegular( u336, Orbit( u336, [4,5,6], OnTuples ), OnTuples );
true

Just as we did in the case of the operation on the pairs above, we now construct a new
permutation group that operates on [1..336] in the same way that a8 operates on the
cosets of u336. Note that the operation of a group on the cosets is by multiplication from
the right, thus we have to specify OnRight.

gap> a8_336 := Operation( a8, Cosets( a8, u336 ), OnRight );;
gap> a8_336.name := "a8_336";;

To find subgroups above u336 we again check if the operation is primitive.

gap> blocks := Blocks( a8_336, [1..336], [1,43] );
[[1, 43,81, [ 2, 102, 2061, [ 3, 95, 1651, [ 4, 106, 251 1],
[ 5, 117, 334 ], [ 6, 110, 294 1, [ 7, 122, 127 1, [ 8, 144, 247 1],
[ 9, 137, 207 1, [ 10, 148, 293 1, [ 11, 45, 159 ],
[ 12, 152, 336 1, [ 13, 164, 169 1, [ 14, 186, 289 ],
[ 15, 179, 249 1, [ 16, 190, 335 1, [ 17, 124, 201 ],
[ 18, 44, 194 1, [ 19, 206, 211 1, [ 20, 228, 331 1,
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21, 221, 291 1, [ 22, 46, 232 1, [ 23, 166, 243 1],
24, 126, 236 1, [ 25, 248, 253 1, [ 26, 48, 270 1,
27, 263, 333 1, [ 28, 125, 274 1, [ 29, 208, 285 1],
30, 168, 278 1, [ 31, 290, 295 1, [ 32, 121, 312 1],
33, 47, 305 1, [ 34, 167, 316 1, [ 35, 250, 327 1,
36, 210, 320 1, [ 37, 74, 3321, [ 38, 49, 163 1, [ 39, 81, 123 1],
40, 59, 209 1, [ 41, 70, 2921, [ 42, 66, 252 1, [ 50, 142, 230 1],
51, 138, 196 1, [ 52, 146, 266 1, [ 53, 87, 131 1],
54, 153, 302 1, [ 55, 160, 174 1, [ 56, 182, 268 ],
57, 178, 234 1, [ 58, 189, 304 1, [ 60, 86, 199 1,
61, 198, 214 1, [ 62, 225, 306 1, [ 63, 218, 269 1],
64, 88, 235 1, [ 65, 162, 245 ], [ 67, 233, 254 ],
68, 90, 271 1, [ 69, 261, 3011, [ 71, 197, 288 1,
72, 161, 281 1, [ 73, 265, 297 1, [ 75, 89, 307 1,
76, 157, 317 1, [ 77, 229, 328 1, [ 78, 193, 324 1],
79, 116, 303 1, [ 80, 91, 158 1, [ 82, 101, 195 1,
83, 112, 267 1, [ 84, 108, 231 1, [ 92, 143, 237 1],
93, 133, 200 1, [ 94, 150, 273 1, [ 96, 154, 309 1],
97, 129, 173 1, [ 98, 184, 272 1, [
100, 188, 308 103, 202, 216
105, 220, 276 107, 128, 241
111, 260, 311 113, 204, 287
115, 275, 296 118, 132, 313
120, 203, 323 134, 185, 279
136, 192, 315 139, 171, 215
141, 222, 280 145, 244, 258
149, 170, 283 151, 282, 298
156, 172, 319 176, 227, 321
181, 213, 257 183, 264, 322 187, 286, 300 1,
191, 212, 325 219, 259, 326 223, 255, 299 ] ]

To find the subgroup of index 112 that belongs to this operation we could use the same
methods as before, but we actually use a different trick. From the above we see that the
subgroup is the union of u336 with its 43rd and its 85th coset. Thus we simply add a
representative of the 43rd coset to the generators of u336.

gap> ull2 := Closure( u336, Representative( Cosets(a8,u336)[43] ) );
Subgroup( a8, [ (4,6,5), (5,6)(7,8), (6,7,8), (1,3,2) 1)

gap> Index( a8, ull2 );

112
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Above this subgroup of index 112 lies a subgroup of index 56, which is not conjugate to
u56. In fact, unlike u56 it is maximal. We obtain this subgroup in the same way that we
obtained u112, this time forcing two points, namely 39 and 43 into the first block.

gap> blocks := Blocks( a8_336, [1..336], [1,39,43] );;

gap> Length( blocks );

56

gap> ub6b := Closure( ull2, Representative( Cosets(a8,u336)[39] ) );
Subgroup( a8, [ (4,6,5), (5,6)(7,8), (6,7,8), (1,3,2), (2,3)(7,8) 1)
gap> Index( a8, ub6b );
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56
gap> IsPrimitive( a8_336, blocks, OnSets );
true

We already mentioned in the beginning that there is another standard operation of permuta-
tions, namely the conjugation. E.g., because no other operation is specified in the following
example OrbitLength simply operates using the caret operator and because permI ~perm2
is defined as the conjugation of perm2 on permi1 we effectively compute the length of the
conjugacy class of (1,2)(3,4)(5,6)(7,8). (In fact elementl”element2 is always defined
as the conjugation if element! and element2 are group elements of the same type. So
the length of a conjugacy class of any element elm in an arbitrary group G can be com-
puted as OrbitLength( G, elm ). In general however this may not be a good idea, Size(
ConjugacyClass( G, elm ) ) is probably more efficient.)

gap> OrbitLength( a8, (1,2)(3,4)(5,6)(7,8) );

105

gap> orb := Orbit( a8, (1,2)(3,4)(5,6)(7,8) );;

gap> ul05 := Stabilizer( a8, (1,2)(3,4)(5,6)(7,8) );

Subgroup( a8, [ (5,6)(7,8), (1,2)(3,4)(5,6)(7,8), (5,7)(6,8),
(3,4)(7,8), (3,5)(4,6), (1,3)(2,4) 1)

gap> Index( a8, ul05 );

105

Of course the last stabilizer is in fact the centralizer of the element (1,2) (3,4) (5,6) (7,8).
Stabilizer notices that and computes the stabilizer using the centralizer algorithm for
permutation groups.

In the usual way we now look for the subgroups that lie above u105.

gap> blocks := Blocks( a8, orb );;

gap> Length( blocks );

15

gap> blocks[1];

[ (1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8), (1,4)(2,3)(5,8)(6,7),
(1,5)(2,6)(3,7)(4,8), (1,6)(2,5)(3,8)(4,7), (1,7)(2,8)(3,5)(4,6),
(1,8)(2,7)(3,6) (4,5) 1

To find the subgroup of index 15 we again use closure. Now we must be a little bit careful
to avoid confusion. u105 is the stabilizer of (1,2) (3,4) (5,6) (7,8). We know that there
is a correspondence between the points of the orbit and the cosets of u105. The point
(1,2)(3,4)(5,6) (7,8) corresponds to ul05. To get the subgroup of index 15 we must add
to ul05 an element of the coset that corresponds to the point (1,3)(2,4)(5,7)(6,8) (or
any other point in the first block). That means that we must use an element of a8 that
maps (1,2)(3,4)(5,6)(7,8) to (1,3)(2,4)(5,7)(6,8). The important thing is that
(1,3)(2,4)(5,7)(6,8) will not do, in fact (1,3)(2,4) (5,7) (6,8) lies in ul05.

The function RepresentativeOperation does what we need. It takes a group and two
points and returns an element of the group that maps the first point to the second. In fact
it also allows you to specify the operation as optional fourth argument as usual, but we do
not need this here. If no such element exists in the group, i.e., if the two points do not lie
in one orbit under the group, RepresentativeOperation returns false.

gap> rep := RepresentativeOperation( a8, (1,2)(3,4)(5,6)(7,8),
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> (1,3)(2,4)(5,7)(6,8) );

(2,3)(6,7)

gap> uls := Closure( ul05, rep );

Subgroup( a8, [ (5,6)(7,8), (1,2)(3,4)(5,6)(7,8), (5,7)(6,8),
(3,4)(7,8), (3,6)(4,6), (1,3)(2,4), (2,3)(6,7) 1)

gap> Index( a8, ulb );

15

ulb is of course a maximal subgroup, because a8 has no subgroups of index 3 or 5.

There is in fact another class of subgroups of index 15 above u105 that we get by adding
(2,3)(6,8) to ul0s.

gap> ulbb := Closure( ul05, (2,3)(6,8) );

Subgroup( a8, [ (5,6)(7,8), (1,2)(3,4)(5,6)(7,8), (5,7)(6,8),
(3,4)(7,8), (3,6)(4,6), (1,3)(2,4), (2,3)(6,8) 1)

gap> Index( a8, ulbb );

15

We now show that ul5 and ul5b are not conjugate. We showed that u8 and u8b are
conjugate by showing that the operations on the cosets where equivalent. We could show
that u15 and ul5b are not conjugate by showing that the operations on their cosets are not
equivalent. Instead we simply call RepresentativeOperation again.

gap> RepresentativeOperation( a8, ulb, ulbb );
false

RepresentativeOperation tells us that there is no element ¢ in a8 such that uis~g =
ul5b. Because ~ also denotes the conjugation of subgroups this tells us that ul15 and u15b
are not conjugate. Note that this operation should only be used rarely, because it is usually
not very efficient. The test in this case is however reasonable efficient, and is in fact the one
employed by IsConjugate (see 7.54).

This concludes our example. In this section we demonstrated some functions from the
operations package. There is a whole class of functions that we did not mention, namely
those that take a single element instead of a whole group as first argument, e.g., Cycle and
Permutation. All functions are described in the chapter 8.

1.20 About Finitely Presented Groups and Presenta-
tions

In this section we will show you the investigation of a Coxeter group that is given by its
presentation. You will see that finitely presented groups and presentations are different
kinds of objects in GAP3. While finitely presented groups can never be changed after they
have been created as factor groups of free groups, presentations allow manipulations of
the generators and relators by Tietze transformations. The investigation of the example
will involve methods and algorithms like Todd-Coxeter, Reidemeister-Schreier, Nilpotent
Quotient, and Tietze transformations.

We start by defining a Coxeter group c on five generators as a factor group of the free group
of rank 5, whose generators we already call c.1, ..., c.5.

gap> ¢ := FreeGroup( 5, "c" );;
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gap> r := List( c.generators, x -> x°2 );;

gap> Append( r, [ (c.1*c.2)73, (c.1%c.3)"2, (c.1*c.4)"3,
> (c.1%c.5)"3, (c.2%c.3)"3, (c.2%c.4)"2, (c.2%c.5)"3,

> (c.3*c.4)"3, (c.3*c.5)"3, (c.4*c.5)"3,

> (c.1xc.2*xc.5*%c.2)"2, (c.3*c.4*c.5%c.4)"2 ] );

gap> ¢ := c / r;

Group( c¢.1, c.2, ¢.3, c.4, c.5)

If we call the function Size for this group GAP3 will invoke the Todd-Coxeter method,
which however will fail to get a result going up to the default limit of defining 64000 cosets:

gap> Size(c);

Error, the coset enumeration has defined more than 64000 cosets:

type ’return;’ if you want to continue with a new limit of
128000 cosets,

type ’quit;’ if you want to quit the coset enumeration,

type ’maxlimit := O; return;’ in order to continue without a limit,
in

AugmentedCosetTableMtc( G, H, -1, "_x" ) called from

D.operations.Size( D ) called from

Size( ¢ ) called from

main loop

brk> quit;

In fact, as we shall see later, our finitely presented group is infinite and hence we would get
the same answer also with larger limits. So we next look for subgroups of small index, in
our case limiting the index to four.

gap> lis := LowIndexSubgroupsFpGroup( c, TrivialSubgroup(c), 4 );;
gap> Length(lis);
10

The LowIndexSubgroupsFpGroup function in fact determines generators for the subgroups,
written in terms of the generators of the given group. We can find the index of these
subgroups by the function Index, and the permutation representation on the cosets of these
subgroups by the function OperationCosetsFpGroup, which use a Todd-Coxeter method.
The size of the image of this permutation representation is found using Size which in this
case uses a Schreier-Sims method for permutation groups.

gap> List(lis, x -> [Index(c,x),Size(OperationCosetsFpGroup(c,x))]);
[ [ 1, 1 ]’ [ 4’ 24 ]’ [ 4’ 24 ]) [ 4’ 24 ], [ 4, 24 ]’ [ 4’ 24 ])
(4,241, [4,24]1, (3,61, [2,21]1

We next determine the commutator factor groups of the kernels of these permutation
representations. Note that here the difference of finitely presented groups and presenta-
tions has to be observed: We first determine the kernel of the permutation representa-
tion by the function Core as a subgroup of ¢, then a presentation of this subgroup using
PresentationSubgroup, which has to be converted into a finitely presented group of its
own right using FpGroupPresentation, before its commutator factor group and the abelian
invariants can be found using integer matrix diagonalisation of the relators matrix by an
elementary divisor algorithm. The conversion is necessary because Core computes a sub-
group given by words in the generators of ¢ but CommutatorFactorGroup needs a parent
group given by generators and relators.
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gap> List( lis, x -> AbelianInvariants( CommutatorFactorGroup(
>  FpGroupPresentation( PresentationSubgroup( c, Core(c,x) ) ) ) ) );

[r21,102,2,2,2,2,2,2,21,102,2,2,2,2,2,2,2],
[2,2,2,2,2,2,2,21,102,2,2,2,2,2,2,2],
[2,2,2,2,2,2,2,21,10[2,2,2,2,2,2,2,21]1,
[o,0,0,0,0,01,[2,2,2,2,2,21]1, [31]1

[[21,
[2,2,2,2,2,2,2,21,
[2,2,2,2,2,2,2,21,
[2,2,2,2,2,2,2,21,
[2,2,2,2,2,2,2,21,
[2,2,2,2,2,2,2,21,
[2,2,2,2,2,2,2,21,
[0, 0, 0,0,0,01,
[2,2,2,2, 2,21,
[31]]

Note that there is another function AbelianInvariantsSubgroupFpGroup which we could
have used to obtain this list which will do an abelianized Reduced Reidemeister-Schreier.
This function is much faster because it does not compute a complete presentation for the
core.

The output obtained shows that the third last of the kernels has a free abelian commutator
factor group of rank 6. We turn our attention to this kernel which we call n, while we call
the associated presentation pr.

gap> 1lis[8];
Subgroup( Group( c.1, c.2, c.3, c.4, c.5 ),
[ c.1, c.2, c.3*%c.2*xc.5"-1, c.3*c.4*c.3"-1, c.4*c.1*c.5"-1 ] )
gap> pr := PresentationSubgroup( c, Core( c, 1is[8] ) );
<< presentation with 22 gens and 41 rels of total length 156 >>
gap> n := FpGroupPresentation(pr);;
We first determine p-factor groups for primes 2, 3, 5, and 7.
gap> InfoPQ1l:= Ignore;;
gap> List( [2,3,5,7], p —> PrimeQuotient(n,p,5).dimensions );
[[e6, 10, 18, 30, 541, [ 6, 10, 18, 30, 541, [ 6, 10, 18, 30, 54 1,
[ 6, 10, 18, 30, 54 ] ]
Observing that the ranks of the lower exponent-p central series are the same for these primes

we suspect that the lower central series may have free abelian factors. To investigate this
we have to call the package "nq”.

gap> RequirePackage('"nq");

gap> NilpotentQuotient( n, 5 );

rto, 0, 0,0,0,01,[0,0,0,01, [0, 0,0,0,0,0,0,0T1,
(o, 0o, 0,0 000, 0,b0,0,0,0,0,01,
o, o, o, o0 0, 0,0 0, 0, 0, 0, 0, 0, O, 0, O, O, O, O, O, O, O, O,

0, 011
gap> List( last, Length );
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[ 6, 4, 8, 12, 24 ]

The ranks of the factors except the first are divisible by four, and we compare them with
the corresponding ranks of a free group on two generators.

gap> f2 := FreeGroup(2);

Group( f.1, £.2 )

gap> PrimeQuotient( f2, 2, 5 ).dimensions;

[2,3,5,8, 14 ]

gap> NilpotentQuotient( £f2, 5 );

rto,o01l1,cto0o1l,to,01,[0,0,01, [0, 0,0,0,0,01]1

gap> List( last, Length );

[ 2,1, 2, 3, 6]
The result suggests a close relation of our group to the direct product of four free groups of
rank two. In order to study this we want a simple presentation for our kernel n and obtain
this by repeated use of Tietze transformations, using first the default simplification function
TzGoGo and later specific introduction of new generators that are obtained as product of two
of the existing ones using the function TzSubstitute. (Of course, this latter sequence of
Tietze transformations that we display here has only been found after some trial and error.)

gap> pr := PresentationSubgroup( c, Core( c, 1is[8] ) );

<< presentation with 22 gens and 41 rels of total length 156 >>
gap> TzGoGo (pr) ;

#I there are 6 generators and 14 relators of total length 74
gap> TzGoGo (pr) ;

#I there are 6 generators and 13 relators of total length 66
gap> TzGoGo (pr) ;

gap> TzPrintPairs(pr);

#I 1. 3 occurrences of _x6 * _x11°-1

#I 2. 3 occurrences of _x3 * _x15

#I 3. 2 occurrences of _x11°-1 *x _x157-1
#I 4. 2 occurrences of _x6 * _x15

#I 5. 2 occurrences of _x67-1 *x _x157-1
#I 6. 2 occurrences of _x4 * _x15

#I 7. 2 occurrences of _x4°-1 *x _x157-1
#I 8. 2 occurrences of _x47-1 * _x11

#I 9. 2 occurrences of _x4 * _x6

#I 10. 2 occurrences of _x37-1 * _x11

gap> TzSubstitute(pr,10,2);

#I substituting new generator _x26 defined by _x3"-1x_x11

#I eliminating _x11 = _x3*_x26

#I there are 6 generators and 13 relators of total length 70
gap> TzGoGo (pr) ;

#I there are 6 generators and 12 relators of total length 62
#I there are 6 generators and 12 relators of total length 60
gap> TzGoGo (pr) ;

gap> TzSubstitute(pr,9,2);

#I substituting new generator _x27 defined by _x17-1x_x15

#I eliminating _x15 = _x27*_x1

#I there are 6 generators and 12 relators of total length 64
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gap> TzGoGo (pr) ;

#I there are 6 generators and 11 relators of total length 56
gap> TzGoGo (pr) ;

gap> p2 := Copy(pr);

<< presentation with 6 gens and 11 rels of total length 56 >>
gap> TzPrint(p2);

#I generators: [ _x1, _x3, _x4, _x6, _x26, _x27 ]

#I relators:

#1 1. 4 [ -6, -1, 6, 1]
#I 2. 4 [ 4, 6, -4, -6 ]
#I 3. 4 [ 5, 4, -5, -4 1]
#I 4. 4 [ 4, -2, -4, 2]
#I 5. 4 [ -3, 2, 3, -21]
#1 6. 4 [ -3, -1, 3, 1]
#1 7. 6 [ -4, 3, 4, 6, -3, -6 ]
#1 8. 6 [ -1, -6, -2, 6, 1, 2]
#I 9. 6 [ -6, -2, -5, 6, 2, 5]
#I 10. 6 [ 2, 5, 1, -5, -2, -1 1]

#1 11. 8 [ -1, -6, -5, 3, 6, 1, 5, -3 ]
gap> TzPrintPairs(p2);

#I 1. 5 occurrences of _x17-1 *x _x27°-1
#I 2. 3 occurrences of _x6 *x _x27

#I 3. 3 occurrences of _x3 * _x26

#I 4. 2 occurrences of _x3 * _x27

#I 5. 2 occurrences of _x1 * _x4

#I 6. 2 occurrences of _x1 * _x3

#I 7. 1 occurrence of _x26 *x _x27

#I 8. 1 occurrence of _x26 x _x27°-1
#I 9. 1 occurrence of _x267-1 *x _x27

#I 10. 1 occurrence of _x6 *x _x277-1

gap> TzSubstitute(p2,1,2);

#I substituting new generator _x28 defined by _x17-1%_x27"-1
#I eliminating _x27 = _x17-1%_x28"-1

#I there are 6 generators and 11 relators of total length 58
gap> TzGoGo (p2);

#I there are 6 generators and 11 relators of total length 54
gap> TzGoGo (p2) ;

gap> p3 := Copy(p2);

<< presentation with 6 gens and 11 rels of total length 54 >>
gap> TzSubstitute(p3,3,2);

#I substituting new generator _x29 defined by _x3*_x26

#I eliminating _x26 = _x37-1x_x29

gap> TzGoGo (p3) ;

#I there are 6 generators and 11 relators of total length 52
gap> TzGoGo (p3);

gap> TzPrint(p3);

#I generators: [ _x1, _x3, _x4, _x6, _x28, _x29 ]

#I relators:

117
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#I1 1. 4 [ 6, 4, -6, -4 1]
#I 2. 4 [ 1, -6, -1, 6]
#I 3. 4 [ -5, -1, 5, 1]
#I 4. 4 [ -2, -5, 2, 5]
#I 5. 4 [ 4, -2, -4, 2]
#I 6. 4 [ -3, 2, 3, 21
#1 7. 4 [ -3, -1, 3, 11
#I 8. 6 [ -2, 5, -6, 2, -5, 6]
#I 9. 6 [ 4, -1, -5, -4, 5, 1]
#1 10. 6 [ -6, 3, -5, 6, -3, 5]

#I 11. 6 [ 3, -5, 4, -3, -4, 51

The resulting presentation could further be simplified by Tietze transformations using
TzSubstitute and TzGoGo until one reaches finally a presentation on 6 generators with
11 relators, 9 of which are commutators of the generators. Working by hand from these,
the kernel can be identified as a particular subgroup of the direct product of four copies of
the free group on two generators.

1.21 About Fields

In this section we will show you some basic computations with fields. GAP3 supports at
present the following fields. The rationals, cyclotomic extensions of rationals and their
subfields (which we will refer to as number fields in the following), and finite fields.

Let us first take a look at the infinite fields mentioned above. While the set of rational
numbers is a predefined domain in GAP3 to which you may refer by its identifier Rationals,
cyclotomic fields are constructed by using the function CyclotomicField, which may be
abbreviated as CF.

gap> IsField( Rationals );

true

gap> Size( Rationals );
"infinity"

gap> f := CyclotomicField( 8 );
CF(8)

gap> IsSubset( f, Rationals );
true

The integer argument n of the function call to CF specifies that the cyclotomic field containing
all n-th roots of unity should be returned.

Cyclotomic fields are constructed as extensions of the Rationals by primitive roots of unity.
Thus a primitive n-th root of unity is always an element of CF(n), where n is a natural
number. In GAP3, one may construct a primitive n-th root of unity by calling E(n).

gap> (E(8) + E(8)73)72;

-2

gap> E(8) in f;

true
For every field extension you can compute the Galois group, i.e., the group of automorphisms
that leave the subfield fixed. For an example, cyclotomic fields are an extension of the
rationals, so you can compute their Galois group over the rationals.
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gap> Galf := GaloisGroup( f );

Group( NFAutomorphism( CF(8) , 7 ), NFAutomorphism( CF(8) , 5 ) )
gap> Size( Galf );

4

The above cyclotomic field is a small example where the Galois group is not cyclic.

gap> IsCyclic( Galf );

false

gap> IsAbelian( Galf );

true

gap> AbelianInvariants( Galf );
[2, 2]

This shows us that the 8th cyclotomic field has a Galois group which is isomorphic to group
Vy.

The elements of the Galois group are GAP3 automorphisms, so they may be applied to the
elements of the field in the same way as all mappings are usually applied to objects in GAP3.

gap> g := Galf.generators[1];

NFAutomorphism( CF(8) , 7 )

gap> E(8) " g;

-E(8)"3
There are two functions, Norm and Trace, which compute the norm and the trace of elements
of the field, respectively. The norm and the trace of an element a are defined to be the
product and the sum of the images of a under the Galois group. You should usually specify
the field as a first argument. This argument is however optional. If you omit a default field
will be used. For a cyclotomic a this is the smallest cyclotomic field that contains a (note
that this is not the smallest field that contains a, which may be a number field that is not
a cyclotomic field).

gap> orb := List( Elements( Galf ), x -> E(8) ~ x );
[ E(8), E(8)"3, -E(8), -E(8)"3 1]
gap> Sum( orb ) = Trace( f, E(8) );

true

gap> Product( orb ) = Norm( £, E(8) );
true

gap> Trace( £, 1 );

4

The basic way to construct a finite field is to use the function GaloisField which may be
abbreviated, as usual in algebra, as GF. Thus

gap> k := GF( 3, 4 );
GF(374)

or

gap> k := GaloisField( 81 );
GF(374)

will assign the finite field of order 3* to the variable k.

In fact, what GF does is to set up a record which contains all necessary information, telling
that it represents a finite field of degree 4 over its prime field with 3 elements. Of course, all
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arguments to GF others than those which represent a prime power are rejected — for obvious
reasons.

Some of the more important entries of the field record are zero, one and root, which hold
the corresponding elements of the field. All elements of a finite field are represented as a
certain power of an appropriate primitive root, which is written as Z(g). As can be seen
below the smallest possible primitive root is used.

gap> k.one + k.root + k.root”10 - k.zero;
Z(374)°52

gap> k.root;

Z(374)

gap> k.root = 20;

Z(372)"2

gap> k.one;

z(3)°0

Note that of course elements from fields of different characteristic cannot be combined in
operations.

gap> Z(372) * k.root + k.zero + Z(378);

Z(3°8)"6534

gap> Z(2) * k.one;

Error, Finite field *: operands must have the same characteristic

In this example we tried to multiply a primitive root of the field with two elements with the
identity element of the field k. As the characteristic of k equals 3, there is no way to perform
the multiplication. The first statement of the example shows, that if all the elements of the
expression belong to fields of the same characteristic, the result will be computed.

As soon as a primitive root is demanded, GAP3 internally sets up all relevant data struc-
tures that are necessary to compute in the corresponding finite field. Each finite field is
constructed as a splitting field of a Conway polynomial. These polynomials, as a set, have
special properties that make it easy to embed smaller fields in larger ones and to convert
the representation of the elements when doing so. All Conway polynomials for fields up to
an order of 65536 have been computed and installed in the GAP3 kernel.

But now look at the following example.

gap> Z(373) * Z(374);
Error, Finite field *: smallest common superfield to large

Although both factors are elements of fields of characteristic 3, the product can not be
evaluated by GAP3. The reason for this is very easy to explain:In order to compute the
product, GAP3 has to find a field in which both of the factors lie. Here in our example the
smallest field containing Z(33) and Z(3%) is GF(312), the field with 531441 elements. As we
have mentioned above that the size of finite fields in GAP3 is limited at present by 65536
we now see that there is no chance to set up the internal data structures for the common
field to perform the computation.

As before with cyclotomic fields, the Galois group of a finite field and the norm and trace
of its elements may be computed. The calling conventions are the same as for cyclotomic
fields.

gap> Galk := GaloisGroup( k );
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Group( FrobeniusAutomorphism( GF(37°4) ) )
gap> Size( Galk );

4

gap> IsCyclic( Galk );

true

gap> Norm( k, k.root ~ 20 );

Z(3)"0

gap> Trace( k, k.root ~ 20 );

0%Z(3)

So far, in our examples, we were always interested in the Galois group of a field extension k
over its prime field. In fact it often will occur that, given a subfield [ of k£ the Galois group
of k over [ is desired. In GAP3 it is possible to change the structure of a field by using the
/ operator. So typing

gap> 1 := GF(372);
GF(372)

gap> IsSubset( k, 1 );
true

gap> k / 1;
GF(374)/GF(3°2)

changes the representation of k from a field extension of degree 4 over GF(3) to a field given
as an extension of degree 2 over GF(3?). The actual elements of the fields are still the same,
only the structure of the field has changed.

gap> k = k / 1;

true

gap> Galkl := GaloisGroup( k / 1 );

Group( FrobeniusAutomorphism( GF(374)/GF(3°2) )"2 )
gap> Size( Galkl );

2

Of course, all the relevant functions behave in a different way when they refer to k / 1
instead of k

gap> Norm( k / 1, k.root = 20 );

Z(3)

gap> Trace( k / 1, k.root = 20 );

Z(3°2)°6
This feature, to change the structure of the field without changing the underlying set of
elements, is also available for cyclotomic fields, which we have seen at the beginning of this
chapter.

gap> g := CyclotomicField( 4 );

GaussianRationals

gap> IsSubset( f, g );

true

gap> £ / g;

CF(8)/GaussianRationals

gap> Galfg := GaloisGroup( f / g );

Group( NFAutomorphism( CF(8)/GaussianRationals , 5 ) )
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gap> Size( Galfg );
2

The examples should have shown that, although the structure of finite fields and cyclotomic
fields is rather different, there is a similar interface to them in GAP3, which makes it easy
to write programs that deal with both types of fields in the same way.

1.22 About Matrix Groups

This section intends to show you the things you could do with matrix groups in GAP3.
In principle all the set theoretic functions mentioned in chapter 4 and all group functions
mentioned in chapter 7 can be applied to matrix groups. However, you should note that at
present only very few functions can work efficiently with matrix groups. Especially infinite
matrix groups (over the rationals or cyclotomic fields) can not be dealt with at all.

Matrix groups are created in the same way as the other types of groups, by using the function
Group. Of course, in this case the arguments have to be invertable matrices over a field.

gap> ml := [ [ 2(3)70, 2(3)70, Z(3) 1,

> [ 2(3), 0%xz(3), Z(3) 1,

> [ 0%Z(3), Z2(3), 0xZ(3) 1 1;;
gap> m2 := [ [ 2(3), Z(3), 2(3)"0 1,

> [ 2(3), 0%2(3), Z2(3) 1,

> [ 2(3)"0, 0xZ(3), Z2(3) 1 1;;

gap> m := Group( ml, m2 );
Group( [ [ Z2(3)70, Z(3)70, Z(3) 1, [ Z2(3), 0%Z(3), Z(3) 1,
[ 0xZ(3), Z(3), 0xZ(3) ] 1,
[ [2Z(3), 2(3), 2(3)"0 1, [ 2(3), 0%2(3), Z(3) 1,
[ Z(3)"0, 0%xz(3), z(3) 1 1)
As usual for groups, the matrix group that we have constructed is represented by a record
with several entries. For matrix groups, there is one additional entry which holds the field
over which the matrix group is written.
gap> m.field;
GF(3)
Note that you do not specify the field when you construct the group. Group automatically
takes the smallest field over which all its arguments can be written.

At this point there is the question what special functions are available for matrix groups.
The size of our group, for example, may be computed using the function Size.

gap> Size( m );
864

If we now compute the size of the corresponding general linear group

gap> (373 - 3°0) * (373 - 3°1) * (3°3 - 3°2);
11232

we see that we have constructed a proper subgroup of index 13 of GL(3, 3).
Let us now set up a subgroup of m, which is generated by the matrix m2.

gap> n := Subgroup( m, [ m2 ] );
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Subgroup( Group( [ [ Z(3)"0, Z(3)"0, Z(3) 1, [ Z(3), 0%Z(3), z(3) 1,
[ 0xZ(3), Z(3), 0%Z(3) ] 1],
[ [z, z2(3), 2(3)70 1, [ Z(3), 0%2(3), z(3) 1,
[ Zz(3)"0, 0%Z(3), 2(3) 1 1),
[ [ [ZM@, 23, 23)°0 1, [ Z2(3), 0xZ(3), Z(3) 1,
[ Z(3)70, 0%Z(3), 2(3) 11 1)
gap> Size( n );
6
And to round up this example we now compute the centralizer of this subgroup in m.
gap> ¢ := Centralizer( m, n );
Subgroup( Group( [ [ Z(3)"0, Z(3)"0, z(3) 1, [ Z(3), 0%xz(3), z(3) 1,
[ 0%xZ(3), Z(3), 0%Z(3) 1 1,
[ [z, 2(3), 2(3)70 1, [ Z2(3), 0%Z(3), Z2(3) 1,
[ 2(3)°0, 0%Z(3), Z2(3) 1 1),
[ L[z, 23, 2(3)70 1, [ 2(3), 0xZ(3), Z(3) 1,
[ 2(3)"0, 0%Z(3), Z2(3) ] 1,
[ [ 2(3), 0x2(3), 0%Z(3) 1, [ 0*Z(3), Z(3), 0*Z(3) 1,
[ 0x2(3), 0%Z(3), z(3) 11 1)
gap> Size( c );
12
In this section you have seen that matrix groups are constructed in the same way that all
groups are constructed. You have also been warned that only very few functions can work
efficiently with matrix groups. See chapter 37 to read more about matrix groups.

1.23 About Domains and Categories

Domain is GAP3’s name for structured sets. We already saw examples of domains in
the previous sections. For example, the groups s8 and a8 in sections 1.18 and 1.19 are
domains. Likewise the fields in section 1.21 are domains. Categories are sets of domains.
For example, the set of all groups forms a category, as does the set of all fields.

In those sections we treated the domains as black boxes. They were constructed by special
functions such as Group and GaloisField, and they could be passed as arguments to other
functions such as Size and Orbits.

In this section we will also treat domains as black boxes. We will describe how domains are
created in general and what functions are applicable to all domains. Next we will show how
domains with the same structure are grouped into categories and will give an overview of
the categories that are available. Then we will discuss how the organization of the GAP3
library around the concept of domains and categories is reflected in this manual. In a later
section we will open the black boxes and give an overview of the mechanism that makes all
this work (see 1.27).

The first thing you must know is how you can obtain domains. You have basically three
possibilities. You can use the domains that are predefined in the library, you can create new
domains with domain constructors, and you can use the domains returned by many library
functions. We will now discuss those three possibilities in turn.

The GAP3 library predefines some domains. That means that there is a global variable
whose value is this domain. The following example shows some of the more important
predefined domains.
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gap> Integers;
Integers # the ring of all integers
gap> Size( Integers );

"infinity"
gap> GaussianRationals;
GaussianRationals # the field of all Gaussian

gap> (1/2+E(4)) in GaussianRationals;

true # E(4) is GAP3’s name for the complex root of -1
gap> Permutations;

Permutations # the domain of all permutations

Note that GAP3 prints those domains using the name of the global variable.

You can create new domains using domain constructors such as Group, Field, etc. A
domain constructor is a function that takes a certain number of arguments and returns the
domain described by those arguments. For example, Group takes an arbitrary number of
group elements (of the same type) and returns the group generated by those elements.

gap> gfl16 := GaloisField( 16 );

GF(274) # the finite field with 16 elements

gap> Intersection( gf16, GaloisField( 64 ) );

GF(272)

gap> ab := Group( (1,2,3), (3,4,5) );

Group( (1,2,3), (3,4,5) ) # the alternating group on 5 points
gap> Size( ab );

60

Again GAP3 prints those domains using more or less the expression that you entered to
obtain the domain.

As with groups (see 1.18) a name can be assigned to an arbitrary domain D with the
assignment D .name := string;, and GAP3 will use this name from then on in the output.

Many functions in the GAP3 library return domains. In the last example you already saw
that Intersection returned a finite field domain. Below are more examples.

gap> GaloisGroup( gfl6 );

Group( FrobeniusAutomorphism( GF(274) ) )

gap> SylowSubgroup( a5, 2 );

Subgroup( Group( (1,2,3), (3,4,5) ), [ (2,4)(3,5), (2,3)(4,5) 1)

The distinction between domain constructors and functions that return domains is a little
bit arbitrary. It is also not important for the understanding of what follows. If you are
nevertheless interested, here are the principal differences. A constructor performs no com-
putation, while a function performs a more or less complicated computation. A constructor
creates the representation of the domain, while a function relies on a constructor to create
the domain. A constructor knows the dirty details of the domain’s representation, while a
function may be independent of the domain’s representation. A constructor may appear as
printed representation of a domain, while a function usually does not.

After showing how domains are created, we will now discuss what you can do with domains.
You can assign a domain to a variable, put a domain into a list or into a record, pass a
domain as argument to a function, and return a domain as result of a function. In this
regard there is no difference between an integer value such as 17 and a domain such as
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Group( (1,2,3), (3,4,5) ). Of course many functions will signal an error when you
call them with domains as arguments. For example, Ged does not accept two groups as
arguments, because they lie in no Euclidean ring.

There are some functions that accept domains of any type as their arguments. Those
functions are called the set theoretic functions. The full list of set theoretic functions is
given in chapter 4.

Above we already used one of those functions, namely Size. If you look back you will see
that we applied Size to the domain Integers, which is a ring, and the domain a5, which
is a group. Remember that a domain was a structured set. The size of the domain is the
number of elements in the set. Size returns this number or the string "infinity" if the
domain is infinite. Below are more examples.

gap> Size( GaussianRationals );

"infinity" # this string is returned for infinite domains
gap> Size( SylowSubgroup( a5, 2 ) );

4

IsFinite( D ) returns true if the domain D is finite and false otherwise. You could also
test if a domain is finite using Size( D ) < "infinity" (GAP3 evaluates n < "infinity"
to true for any number n). IsFinite is more efficient. For example, if D is a permutation
group, IsFinite( D ) can immediately return true, while Size( D ) may take quite a
while to compute the size of D.

The other function that you already saw is Intersection. Above we computed the inter-
section of the field with 16 elements and the field with 64 elements. The following example
is similar.

gap> Intersection( a5, Group( (1,2), (1,2,3,4) ) );

Group( (2,3,4), (1,2)(3,4) ) # alternating group on 4 points

In general Intersection tries to return a domain. In general this is not possible however.
Remember that a domain is a structured set. If the two domain arguments have different
structure the intersection may not have any structure at all. In this case Intersection re-
turns the result as a proper set, i.e., as a sorted list without holes and duplicates. The follow-
ing example shows such a case. ConjugacyClass returns the conjugacy class of (1,2,3,4,5)
in the alternating group on 6 points as a domain. If we intersect this class with the sym-
metric group on 5 points we obtain a proper set of 12 permutations, which is only one half
of the conjugacy class of 5 cycles in s5.

gap> a6 := Group( (1,2,3), (2,3,4,5,6) );

Group( (1,2,3), (2,3,4,5,6) )

gap> class := ConjugacyClass( a6, (1,2,3,4,5

ConjugacyClass( Group( (1,2,3), (2,3,4,5,6)

gap> Size( class );

72

gap> sb5 := Group( (1,2), (2,3,4,5) );

Group( (1,2), (2,3,4,5) )

gap> Intersection( class, s5 );

[ (1,2,3,4,5), (1,2,4,5,3), (1,2,5,3,4
(1,3,4,2,5), (1,4,3,5,2), (1,4,5,2,3
(1,5,2,4,3), (1,5,3,2,4) ]

)

)
): (1:2,3’4:5) )

~—
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You can intersect arbitrary domains as the following example shows.

gap> Intersection( Integers, ab );
[ ] # the empty set

Note that we optimized Intersection for typical cases, e.g., computing the intersection of
two permutation groups, etc. The above computation is done with a very simple-minded
method, all elements of a5 are listed (with Elements, described below), and for each element
Intersection tests whether it lies in Integers (with in, described below). So the same
computation with the alternating group on 10 points instead of a5 will probably exhaust
your patience.

Just as Intersection returns a proper set occasionally, it also accepts proper sets as ar-
guments. Intersection also takes an arbitrary number of arguments. And finally it also
accepts a list of domains or sets to intersect as single argument.

gap> Intersection( a5, [ (1,2), (1,2,3), (1,2,3,4), (1,2,3,4,5) 1 );
[ 1,2,3), (1,2,3,4,5) ]

gap> Intersection( [2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25] );
L1

gap> Intersection( [ [1,2,4], [2,3,4], [1,3,4]1 1 );

[ 4]

The function Union is the obvious counterpart of Intersection. Note that Union usually
does not return a domain. This is because the union of two domains, even of the same
type, is usually not again a domain of that type. For example, the union of two subgroups
is a subgroup if and only if one of the subgroups is a subset of the other. Of course this is
exactly the reason why Union is less important than Intersection in algebra.

Because domains are structured sets there ought to be a membership test that tests whether
an object lies in this domain or not. This is not implemented by a function, instead the
operator in is used. elm in D returns true if the element elm lies in the domain D and
false otherwise. We already used the in operator above when we tested whether 1/2 +
E(4) lies in the domain of Gaussian integers.

gap> (1,2,3) in a5;

true

gap> (1,2) in ab;

false

gap> (1,2,3,4,5,6,7) in ab;

false

gap> 17 in ab;

false # of course an integer does not lie in a permutation group
gap> ab in ab;

false

As you can see in the last example, in only implements the membership test. It does not
allow you to test whether a domain is a subset of another domain. For such tests the
function IsSubset is available.

gap> IsSubset( a5, a5 );
true

gap> IsSubset( a5, Group( (1,2,3) ) );
true



1.23. ABOUT DOMAINS AND CATEGORIES 127

gap> IsSubset( Group( (1,2,3) ), a5 );
false

In the above example you can see that IsSubset tests whether the second argument is
a subset of the first argument. As a general rule GAP3 library functions take as first
arguments those arguments that are in some sense larger or more structured.

Suppose that you want to loop over all elements of a domain. For example, suppose that you
want to compute the set of element orders of elements in the group a5. To use the for loop
you need a list of elements in the domain D, because for var in D do statements od will
not work. The function Elements does exactly that. It takes a domain D and returns the
proper set of elements of D.

gap> Elements( Group( (1,2,3), (2,3,4) ) );

[ O, (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2),
(1,3,4), (1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3) 1]

gap> ords := [1;;

gap> for elm in Elements( a5 ) do

> Add( ords, Order( a5, elm ) );

> od;

gap> Set( ords );

[1, 2, 3, 51

gap> Set( List( Elements( a5 ), elm -> Order( a5, elm ) ) );

[1, 2, 3, 5] # an easier way to compute the set of orders

Of course, if you apply Elements to an infinite domain, Elements will signal an error. It is
also not a good idea to apply Elements to very large domains because the list of elements
will take much space and computing this large list will probably exhaust your patience.

gap> Elements( GaussianIntegers );

Error, the ring <R> must be finite to compute its elements in
D.operations.Elements( D ) called from

Elements( GaussianIntegers ) called from

main loop

brk> quit;

There are a few more set theoretic functions. See chapter 4 for a complete list.

All the set theoretic functions treat the domains as if they had no structure. Now a domain
is a structured set (excuse us for repeating this again and again, but it is really important
to get this across). If the functions ignore the structure than they are effectively viewing a
domain only as the set of elements.

In fact all set theoretic functions also accept proper sets, i.e., sorted lists without holes and
duplicates as arguments (we already mentioned this for Intersection). Also set theoretic
functions may occasionally return proper sets instead of domains as result.

This equivalence of a domain and its set of elements is particularly important for the defi-
nition of equality of domains. Two domains D and E are equal (in the sense that D = F
evaluates to true) if and only if the set of elements of D is equal to the set of elements of
E (as returned by Elements( D ) and Elements( F )). As a special case either of the
operands of = may also be a proper set, and the value is true if this set is equal to the set
of elements of the domain.

gap> a4 := Group( (1,2,3), (2,3,4) );
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Group( (1,2,3), (2,3,4) )

gap> elms := Elements( a4 );

[ O, (2,3,9), (2,4,3), (1,2)(3,4, (1,2,3), (1,2,4, (1,3,2),
(1,3,4), (1,3)(2,4), (1,4,2), (1,4,3), (1,4(2,3) ]

gap> elms = a4;

true

However the following example shows that this does not imply that all functions return the
same answer for two domains (or a domain and a proper set) that are equal. This is because
those function may take the structure into account.

gap> IsGroup( a4 );

true

gap> IsGroup( elms );

false

gap> Intersection( a4, Group( (1,2), (1,2,3) ) );
Group( (1,2,3) )

gap> Intersection( elms, Group( (1,2), (1,2,3) ) );
[ O, 1,2,3), (1,3,2) ] # this is not a group
gap> last = last2;

true # but it is equal to the above result
gap> Centre( a4 );

Subgroup( Group( (1,2,3), (2,3,4) ), [ 1)

gap> Centre( elms );

Error, <struct> must be a record in

Centre( elms ) called from

main loop

brk> quit;

Generally three things may happen if you have two domains D and E that are equal but
have different structure (or a domain D and a set E that are equal). First a function that
tests whether a domain has a certain structure may return true for D and false for F.
Second a function may return a domain for D and a proper set for £. Third a function may
work for D and fail for F, because it requires the structure.

A slightly more complex example for the second case is the following.

gap> v4 := Subgroup( a4, [ (1,2)(3,4), (1,3)(2,4) 1 );
Subgroup( Group( (1,2,3), (2,3,4) ), [ (1,2)(3,4), (1,3)(2,4) 1)

gap> v4.name := "v4";;
gap> rc := v4 * (1,2,3);
(v4*(2,4,3))

gap> lc := (1,2,3) * v4;
((1,2,3)*v4)

gap> rc = lc;

true

gap> rc * (1,3,2);
(vax())

gap> lc * (1,3,2);
[ (1,3)(2,4, O, (1,2)(3,4), (1,4)(2,3) ]
gap> last = last2;
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false

The two domains rc and 1c (yes, cosets are domains too) are equal, because they have the
same set of elements. However if we multiply both with (1,3,2) we obtain the trivial right
coset for rc and a list for 1c. The result for 1c is not a proper set, because it is not sorted,
therefore = evaluates to false. (For the curious. The multiplication of a left coset with an
element from the right will generally not yield another coset, i.e., nothing that can easily be
represented as a domain. Thus to multiply 1c with (1,3,2) GAP3 first converts 1c to the
set of its elements with Elements. But the definition of multiplication requires that a list [
multiplied by an element e yields a new list n such that each element n[i] in the new list
is the product of the element [[i] at the same position of the operand list [ with e.)

Note that the above definition only defines what the result of the equality comparison of
two domains D and F should be. It does not prescribe that this comparison is actually
performed by listing all elements of D and E. For example, if D and F are groups, it is
sufficient to check that all generators of D lie in £ and that all generators of F lie in D.
If GAP3 would really compute the whole set of elements, the following test could not be
performed on any computer.

gap> Group( (1,2, 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18) )
> = Group( (17,18, (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18) );
true

If we could only apply the set theoretic functions to domains, domains would be of little
use. Luckily this is not so. We already saw that we could apply GaloisGroup to the finite
field with 16 elements, and SylowSubgroup to the group a5. But those functions are not
applicable to all domains. The argument of GaloisGroup must be a field, and the argument
of SylowSubgroup must be a group.

A category is a set of domains. So we say that the argument of GaloisGroup must
be an element of the category of fields, and the argument of SylowSubgroup must be an
element of the category of groups. The most important categories are rings, fields, groups,
and vector spaces. Which category a domain belongs to determines which functions are
applicable to this domain and its elements. We want to emphasize the each domain belongs
to one and only one category. This is necessary because domains in different categories
have, sometimes incompatible, representations.

Note that the categories only exist conceptually. That means that there is no GAP3 object
for the categories, e.g., there is no object Groups. For each category there exists a function
that tests whether a domain is an element of this category.

gap> IsRing( gf16 );

false

gap> IsField( gf16 );

true

gap> IsGroup( gfi6 );

false

gap> IsVectorSpace( gf16 );
false

Note that of course mathematically the field gf16 is also a ring and a vector space. However
in GAP3 a domain can only belong to one category. So a domain is conceptually a set of
elements with one structure, e.g., a field structure. That the same set of elements may also
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support a different structure, e.g., a ring or vector space structure, can not be represented
by this domain. So you need a different domain to represent this different structure. (We
are planning to add functions that changes the structure of a domain, e.g. AsRing( field )
should return a new domain with the same elements as field but with a ring structure.)

Domains may have certain properties. For example a ring may be commutative and a group
may be nilpotent. Whether a domain has a certain property Property can be tested with
the function IsProperty.

gap> IsCommutativeRing( GaussianIntegers );
true

gap> IsNilpotent( ab );

false

There are also similar functions that test whether a domain (especially a group) is repre-
sented in a certain way. For example IsPermGroup tests whether a group is represented as
a permutation group.

gap> IsPermGroup( a5 );

true
gap> IsPermGroup( a4 / v4 );
false # a4 / v4 is represented as a generic factor group

There is a slight difference between a function such as IsNilpotent and a function such
as IsPermGroup. The former tests properties of an abstract group and its outcome is
independent of the representation of that group. The latter tests whether a group is given
in a certain representation.

This (rather philosophical) issue is further complicated by the fact that sometimes repre-
sentations and properties are not independent. This is especially subtle with IsSolvable
(see 7.61) and IsAgGroup (see 25.26). IsSolvable tests whether a group G is solvable.
IsAgGroup tests whether a group G is represented as a finite polycyclic group, i.e., by a
finite presentation that allows to efficiently compute canonical normal forms of elements
(see 25). Of course every finite polycyclic group is solvable, so IsAgGroup( G ) implies
IsSolvable( G ). On the other hand IsSolvable( G ) does not imply IsAgGroup( G
), because, even though each solvable group can be represented as a finite polycyclic group,
it need not, e.g., it could also be represented as a permutation group.

The organization of the manual follows the structure of domains and categories.

After the description of the programming language and the environment chapter 4 describes
the domains and the functions applicable to all domains.

Next come the chapters that describe the categories rings, fields, groups, and vector spaces.

The remaining chapters describe GAP3’s data-types and the domains one can make with
those elements of those data-types. The order of those chapters roughly follows the order of
the categories. The data—types whose elements form rings and fields come first (e.g., integers
and finite fields), followed by those whose elements form groups (e.g., permutations), and so
on. The data—types whose elements support little or no algebraic structure come last (e.g.,
booleans). In some cases there may be two chapters for one data—type, one describing the
elements and the other describing the domains made with those elements (e.g., permutations
and permutation groups).
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The GAP3 manual not only describes what you can do, it also gives some hints how GAP3
performs its computations. However, it can be tricky to find those hints. The index of this
manual can help you.

Suppose that you want to intersect two permutation groups. If you read the section that
describes the function Intersection (see 4.12) you will see that the last paragraph describes
the default method used by Intersection. Such a last paragraph that describes the default
method is rather typical. In this case it says that Intersection computes the proper set
of elements of both domains and intersect them. It also says that this method is often
overlaid with a more efficient one. You wonder whether this is the case for permutation
groups. How can you find out? Well you look in the index under Intersection. There you
will find a reference Intersection, for permutation groups to section Set Functions
for Permutation Groups (see 21.20). This section tells you that Intersection uses a
backtrack for permutation groups (and cites a book where you can find a description of the
backtrack).

Let us now suppose that you intersect two factor groups. There is no reference in the
index for Intersection, for factor groups. But there is a reference for Intersection, for
groups to the section Set Functions for Groups (see 7.114). Since this is the next best
thing, look there. This section further directs you to the section Intersection for Groups
(see 7.116). This section finally tells you that Intersection computes the intersection of
two groups G and H as the stabilizer in G of the trivial coset of H under the operation of
G on the right cosets of H.

In this section we introduced domains and categories. You have learned that a domain is
a structured set, and that domains are either predefined, created by domain constructors,
or returned by library functions. You have seen most functions that are applicable to all
domains. Those functions generally ignore the structure and treat a domain as the set of
its elements. You have learned that categories are sets of domains, and that the category a
domain belongs to determines which functions are applicable to this domain.

More information about domains can be found in chapter 4. Chapters 5, 6, 7, and 9 define
the categories known to GAP3. The section 1.27 opens that black boxes and shows how all
this works.

1.24 About Mappings and Homomorphisms

A mapping is an object which maps each element of its source to a value in its range.
Source and range can be arbitrary sets of elements. But in most applications the source
and range are structured sets and the mapping, in such applications called homomorphism,
is compatible with this structure.

In the last sections you have already encountered examples of homomorphisms, namely
natural homomorphisms of groups onto their factor groups and operation homomorphisms
of groups into symmetric groups.

Finite fields also bear a structure and homomorphisms between fields are always bijections.
The Galois group of a finite field is generated by the Frobenius automorphism. It is very
easy to construct.

gap> f := FrobeniusAutomorphism( GF(81) );
FrobeniusAutomorphism( GF(374) )
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gap> Image( f, Z(374) );

Z(374)"°3

gap> A := Group( f );

Group( FrobeniusAutomorphism( GF(37°4) ) )

gap> Size( A );

4

gap> IsCyclic( A );

true

gap> Order( Mappings, f );

4

gap> Kernel( f );

[ 0%xZ(3) ]
For finite fields and cyclotomic fields the function GaloisGroup is an easy way to construct
the Galois group.

gap> GaloisGroup( GF(81) );

Group( FrobeniusAutomorphism( GF(37°4) ) )

gap> Size( last );

4

gap> GaloisGroup( CyclotomicField( 18 ) );

Group( NFAutomorphism( CF(9) , 2 ) )

gap> Size( last );

6
Not all group homomorphisms are bijections of course, natural homomorphisms do have a
kernel in most cases and operation homomorphisms need neither be surjective nor injective.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> s4.name := "s4";;

gap> v4 := Subgroup( s4, [ (1,2)(3,4), (1,3)(2,4) 1 );

Subgroup( s4, [ (1,2)(3,4), (1,3)(2,4) 1)

gap> v4.name := "v4";;
gap> s3 := s4 / v4;
(s4 / v4)

gap> f := NaturalHomomorphism( s4, s3 );
NaturalHomomorphism( s4, (s4 / v4) )
gap> IsHomomorphism( f );

true

gap> IsEpimorphism( f );
true

gap> Image( f );

(s4 / v4)

gap> IsMonomorphism( f );
false

gap> Kernel( f );

vé

The image of a group homomorphism is always one element of the range but the preimage
can be a coset. In order to get one representative of this coset you can use the function
PreImagesRepresentative
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gap> Image( f, (1,2,3,4) );

FactorGroupElement ( v4, (2,4) )

gap> PrelImages( f, s3.generators[1] );

(v4*(2,4))

gap> PrelmagesRepresentative( f, s3.generators[1] );
(2,4)

But even if the homomorphism is a monomorphism but not surjective you can use the
function PreImagesRepresentative in order to get the preimage of an element of the range.

gap> A :=Z(3) x [ [0, 11, [1,011;;
gap> B :=Z(3) * [ [0, 11, [ -1, 01 1;;
gap> G := Group( A, B );
Group( [ [ 0xZ(3), Z(3) 1, [ Z(3), 0%z(3) 1 1,
[ [ 0%x2(3), 2(3) 1, [ Z2(3)70, 0%xZ(3) 1 1)
gap> Size( G );
8
gap> G.name := "G";;
gap> d8 := Operation( G, Orbit( G, Z(3)*[1,0] ) );
Group( (1,2)(3,4), (1,2,3,4) )
gap> e := OperationHomomorphism( Subgroup( G, [B] ), d8 );
OperationHomomorphism( Subgroup( G,
[ [ [0*xZ(3), 2(3) 1, [ Z(3)"0, 0xz(3) 1 1 1), Group( (1,2)(3,4),
(1,2,3,4) ) )
gap> Kernel( e );
Subgroup( G, [ 1 )
gap> IsSurjective( e );
false
gap> PreImages( e, (1,3)(2,4) );
(Subgroup( G, [ 1 )*[ [ Z2(3), 0%Z(3) 1, [ 0%Z(3), Z(3) 1 1)
gap> PreImage( e, (1,3)(2,4) );
Error, <bij> must be a bijection, not an arbitrary mapping in
bij.operations.PreImageElm( bij, img ) called from
PreImage( e, (1,3)(2,4) ) called from
main loop
brk> quit;
gap> PrelmagesRepresentative( e, (1,3)(2,4) );
[ [2(3), 0x2(3) 1, [ 0%Z(3), Z(3) 11
Only bijections allow PreImage in order to get the preimage of an element of the range.
gap> Operation( G, Orbit( G, Z(3)*[1,0] ) );
Group( (1,2)(3,4), (1,2,3,4) )
gap> d := OperationHomomorphism( G, last );
OperationHomomorphism( G, Group( (1,2)(3,4), (1,2,3,4) ) )
gap> Prelmage( d, (1,3)(2,4) );
[ [2(3), 0¢2(3) 1, [ 0%Z(3), Z(3) 11

Both PreImage and PreImages can also be applied to sets. They return the complete
preimage.

gap> PrelImages( d, Group( (1,2)(3,4), (1,3)(2,4) ) );
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Subgroup( G, [ [ [ 0*%z(3), Z(3) 1, [ z(3), 0%z(3) 1 1,
[ 023, 02(3) 1, [ 0%2(3), 2(3) 11 1)
gap> Size( last );
4
gap> f := NaturalHomomorphism( s4, s3 );
NaturalHomomorphism( s4, (s4 / v4) )
gap> PreImages( f, s3 );
Subgroup( s4, [ (1,2)(3,4), (1,3)(2,4), (2,4, (3,4 1)
gap> Size( last );
24

Another way to construct a group automorphism is to use elements in the normalizer of a
subgroup and construct the induced automorphism. A special case is the inner automor-
phism induced by an element of a group, a more general case is a surjective homomorphism
induced by arbitrary elements of the parent group.

gap> d12 := Group((1,2,3,4,5,6),(2,6)(3,5));; dl2.name := "d12";;
gap> il := InnerAutomorphism( d12, (1,2,3,4,5,6) );
InnerAutomorphism( d12, (1,2,3,4,5,6) )

gap> Image( i1, (2,6)(3,5) );

(1,3)(4,6)

gap> IsAutomorphism( il );

true

Mappings can also be multiplied, provided that the range of the first mapping is a subgroup
of the source of the second mapping. The multiplication is of course defined as the com-
position. Note that, in line with the fact that mappings operate from the right, Image(
mapl * map2, elm ) is defined as Image( map2, Image( mapl, elm ) ).

gap> i2 := InnerAutomorphism( d12, (2,6)(3,5) );
InnerAutomorphism( di12, (2,6)(3,5) )

gap> i1 * 1i2;

InnerAutomorphism( d12, (1,6)(2,5)(3,4) )

gap> Image( last, (2,6)(3,5) );

(1,5)(2,4)

Mappings can also be inverted, provided that they are bijections.
gap> i1 = -1;
InnerAutomorphism( d12, (1,6,5,4,3,2) )

gap> Image( last, (2,6)(3,5) );
(1,5)(2,4)

Whenever you have a set of bijective mappings on a finite set (or domain) you can construct
the group generated by those mappings. So in the following example we create the group
of inner automorphisms of d12.

gap> autdl2 := Group( i1, i2 );

Group( InnerAutomorphism( di2,

(1,2,3,4,5,6) ), InnerAutomorphism( di2, (2,6)(3,5) ) )
gap> Size( autdl2 );

6

gap> Index( di12, Centre( di12 ) );
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6

Note that the computation with such automorphism groups in their present implementation
is not very efficient. For example to compute the size of such an automorphism group all
elements are computed. Thus work with such automorphism groups should be restricted to
very small examples.

The function ConjugationGroupHomomorphism is a generalization of InnerAutomorphism.
It accepts a source and a range and an element that conjugates the source into the range.
Source and range must lie in a common parent group, and the conjugating element must
also lie in this parent group.

gap> c2 := Subgroup( di12, [ (2,6)(3,5) 1 );

Subgroup( d12, [ (2,6)(3,5) 1)

gap> v4 := Subgroup( d12, [ (1,2)(3,6)(4,5), (1,4)(2,5)(3,6) 1 );
Subgroup( d12, [ (1,2)(3,6)(4,5), (1,4)(2,5)(3,6) 1)

gap> x := ConjugationGroupHomomorphism( c2, v4, (1,3,5)(2,4,6) );
ConjugationGroupHomomorphism( Subgroup( di2,

[ (2,6)(3,5) 1 ), Subgroup( di12, [ (1,2)(3,6)(4,5), (1,4)(2,5)(3,6)
1), (1,3,5)(2,4,6) )

gap> IsSurjective( x );

false

gap> Image( x );

Subgroup( d12, [ (1,5)(2,4) 1)

But how can we construct homomorphisms which are not induced by elements of the parent
group? The most general way to construct a group homomorphism is to define the source,
range and the images of the generators under the homomorphism in mind.

gap> c¢ := GroupHomomorphismByImages( G, s4, [A,B]l, [(1,2),(3,4)] );
GroupHomomorphismByImages( G, s4,
[ [[oxz(3), z(3) 1, [ Zz(3), 0%z(3) 1 1,
[ [0xz(3), 2(3) 1, [ z(3)"0, 0%xz(3) 111, [ (1,2), (3,4 1)
gap> Kernel( c );
Subgroup( G, [ [ [ Z(3), 0%xZ(3) 1, [ 0%Z(3), Z2(3) 1 1 1)
gap> Image( c );
Subgroup( s4, [ (1,2), (3,4) 1)
gap> IsHomomorphism( c );
true
gap> Image( c, A );
(1,2)
gap> Prelmages( c, (1,2) );
(Subgroup( G, [ [ [ z2(3), 0xZ(3) 1, [ 0xZ(3), 2(3) 11 1 )«
[ [ 0%z(3), Z(3) 1, [ Z2(3), 0xZ(3) 1 1)

Note that it is possible to construct a general mapping this way that is not a homomorphism,
because GroupHomomorphismByImages does not check if the given images fulfill the relations
of the generators.

gap> b := GroupHomomorphismByImages( G, s4, [A,B], [(1,2,3),(3,4)] );
GroupHomomorphismByImages( G, s4,
L[ Loxz(3), 23 1, [ Z(3), 0%x2(3) 1 1,
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[ [ 0%2(3), Z(3) 1, [ z(3)"0, 0xz(3) 1 11, [ (1,2,3), (3,4) 1)
gap> IsHomomorphism( b );
false
gap> Images( b, A );
(Subgroup( s4, [ (1,3,2), (2,3,4), (1,3,4), (1,4)(2,3), (1,4,2)
1)x0)

The result is a multi valued mapping, i.e., one that maps each element of its source to a
set of elements in its range. The set of images of A under b is defined as follows. Take all
the words of two letters w(z,y) such that w(A, B) = A, e.g., x and xyxyx. Then the set of
images is the set of elements that you get by inserting the images of A and B in those words,
ie, w((1,2,3),(3,4)), e.g., (1,2,3) and (1,4,2). One can show that the set of images of the
identity under a multi valued mapping such as b is a subgroup and that the set of images
of other elements are cosets of this subgroup.

1.25 About Character Tables

This section contains some examples of the use of GAP3 in character theory. First a few
very simple commands for handling character tables are introduced, and afterwards we will
construct the character tables of (A5 x 3):2 and of Ag.22.

GAP3 has a large library of character tables, so let us look at one of these tables, e.g., the
table of the Mathieu group Mi;:

gap> mll:= CharTable( "M11" );
CharTable( "M11" )

Character tables contain a lot of information. This is not printed in full length since the
internal structure is not easy to read. The next statement shows a more comfortable output
format.

gap> DisplayCharTable( mll );
M11

= 0w N
=R N D

la 2a 3a 4a ba 6a 8a 8b 11la 11b
2P 1a la 3a 2a ba 3a 4a 4a 11b 11a
3P 1a 2a la 4a ba 2a 8a 8b 11a 11b
5P l1a 2a 3a 4a la 6a 8b 8a 11a 11b
11P 1a 2a 3a 4a 5a 6a 8a 8 1la 1la

X.1 11 1 1 1 1 1 1 1
X.2 10 2 1 2 - . -1 -1
X.3 10 -2 1 A-A -1 -1
X.4 10 -2 1 1-A A -1 -1
X.5 11 3 2-1 1 .-1-1 . .
X.6 6 .-2 . 1 . . . B /B
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X.7 6 .-2 . 1 . . . /B B
X.8 4 4 -1 . -1 1 . . . .
X.9 45 -3 . 1 . . -1-1 1 1
X.10 56 -1 1 -1 . -1 1 1
A = E(8)+E(8)"3

= ER(-2) = i2
B = E(11)+E(11) "3+E(11) "4+E(11) "5+E(11) "9

(-1+ER(-11))/2 = b1l

We are not too much interested in the internal structure of this character table (see 49.2);
but of course we can access all information about the centralizer orders (first four lines),
element orders (next line), power maps for the prime divisors of the group order (next four
lines), irreducible characters (lines parametrized by X.1 ...X.10) and irrational character
values (last four lines), see 49.37 for a detailed description of the format of the displayed
table. E.g., the irreducible characters are a list with name m11.irreducibles, and each
character is a list of cyclotomic integers (see chapter 13). There are various ways to describe
the irrationalities; e.g., the square root of —2 can be entered as E(8) + E(8) "3 or ER(-2),
the famous ATLAS of Finite Groups [CCN'85] denotes it as i2.

gap> mll.irreducibles[3];

[ 10, -2, 1, 0, 0, 1, E(8)+E(8)"3, -E(8)-E(8)"3, -1, -1 ]
We can for instance form tensor products of this character with all irreducibles, and compute
the decomposition into irreducibles.

gap> tens:= Tensored( [ last ], mll.irreducibles );;
gap> MatScalarProducts( mll, mll.irreducibles, tens );

rco, 0,1 0,0,0,0,0,0,01, [0,0,0,0,0,0,0,0, 1,11,
ro,o0,o0,0,1,0,0,1,1,01,[1,0,0,0,0,0,0,1,0,11,
ro,o0,o0,1,0,0,0,0,1, 11, [0,0,0,0,0,0, 1,1, 1, 11,
o,o0,o0,0,0,1,0,1, 1,11, [0,0,1,1,0,1,1, 2,3, 3],
ro,1o0,1,1,1,1,3,2,31,[0,1,1,0,1,1,1,3,3,41]1

The decomposition means for example that the third character in the list tens is the sum
of the irreducible characters at positions 5, 8 and 9.

gap> tens[3];

[ 100, 4, 1, 0, 0, 1, -2, -2, 1, 1]

gap> tens[3] = Sum( Sublist( mil.irreducibles, [ 5, 8, 91 ) );
true

Or we can compute symmetrizations, e.g., the characters x>+, defined by x**(g) = %(X2 (9)+
x(g?)), for all irreducibles.

gap> sym:= SymmetricParts( mll, mll.irreducibles, 2 );;
gap> MatScalarProducts( mll, mll.irreducibles, sym );

tct+ o0,o0,0,0,0,0,0,0,01,1,10,0,0,0,0,1,0,01],
(o, o,o,0,1,0,0,10,01, [0,0,0,0,1,0,0,1,0,01,
r+«+ 1 o0,0,1,0,0,1,0,01,[0,1,0,0,1,0, 1,1, 0, 11,
ro,1:+o0,0,11,0,1,0,11,[1,3,0,0,3,2,2,8,4,°6],
(1, 2,0,0,3,2,2,8,4,71],
(1, 3,1,1,4,3,3, 11,7, 1011
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gap> sym[2];

[55)7: 1’3,0: 1} 1, 1:0;()]

gap> sym[2] = Sum( Sublist( mill.irreducibles, [ 1, 2, 81 ) );
true

If the subgroup fusion into a supergroup is known, characters can be induced to this group,
e.g., to obtain the permutation character of the action of Mo on the cosets of M.

gap> ml12:= CharTable( "M12" );;

gap> permchar:= Induced( ml11l, ml12, [ mil.irreducibles[1] ] );
[[12, 0, 4, 3, 0, 0, 4, 2, 0, 1, 0, 2,0, 1, 11 ]

gap> MatScalarProducts( m12, ml12.irreducibles, last );

(s 1,0,0,0,0,0,0,0,0,0,0,0,0,01]1

gap> DisplayCharTable( m12, rec( chars:= permchar ) );

M12

= 0w N
== W o
oD
= o
w =
NN

la 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a 1la 11b
2P la la la 3a 3b 2b 2b 5a 3b 3a 4a 4b b5a 11b 1lla
3P la 2a 2b la la 4a 4b 5a 2a 2b 8a 8b 10a 11la 11b
5P 1a 2a 2b 3a 3b 4a 4b la 6a 6b 8a 8b 2a 1la 11b
11P l1a 2a 2b 3a 3b 4a 4b ba 6a 6b 8a 8b 10a 1la 1la

Y.1 2 .. 4 3 . . 4 2 . 1 . 2 . 1 1

It should be emphasized that the heart of character theory is dealing with lists. Characters
are lists, and also the maps which occur are represented as lists. Note that the multiplication
of group elements is not available, so we neither have homomorphisms. All we can talk of
are class functions, and the lists are regarded as such functions, being the lists of images
with respect to a fixed order of conjugacy classes. Therefore we do not write chi( ¢l )
or cl1chi for the value of the character chi on the class c1, but chi[i] where i is the
position of the class c1.

Since the data structures are so basic, most calculations involve compositions of maps; for
example, the embedding of a subgroup in a group is described by the so—called subgroup
fusion which is a class function that maps each class ¢ of the subgroup to that class of the
group that contains c¢. Consider the symmetric group S5 = As.2 as subgroup of My;. (Do
not worry about the names that are used to get library tables, see 49.12 for an overview.)

gap> sb:= CharTable( "A5.2" );;
gap> map:= GetFusionMap( s5, mll );
[1,2,3,5,2,4,6]

The subgroup fusion is already stored on the table. We see that class 1 of s5 is mapped to
class 1 of m11 (which means that the identity of S5 maps to the identity of Mj;), classes 2
and 5 of s5 both map to class 2 of m11 (which means that all involutions of S5 are conjugate
in Mj;), and so on.
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The restriction of a character of m11 to s5 is just the composition of this character with
the subgroup fusion map. Viewing this map as list one would call this composition an
indirection.

gap> chi:= mll.irreducibles[3];

[ 10, -2, 1, 0, 0, 1, E(8)+E(8)"3, -E(8)-E(8)"3, -1, -1 ]

gap> rest:= List( map, x -> chilx] );

[ 10, -2, 1, 0, -2, 0, 1]
This looks very easy, and many GAP3 functions in character theory do such simple cal-
culations. But note that it is not always obvious that a list is regarded as a map, where
preimages and/or images refer to positions of certain conjugacy classes.

gap> alt:= sb.irreducibles[2];

[1, 1,1, 1, -1, -1, -1 1]

gap> kernel:= KernelChar( last );

[1, 2, 3, 4]
The kernel of a character is represented as the list of (positions of) classes lying in the kernel.
We know that the kernel of the alternating character alt of s5 is the alternating group As.
The order of the kernel can be computed as sum of the lengths of the contained classes from
the character table, using that the classlengths are stored in the classes component of the
table.

gap> sb.classes;

[ 1, 15, 20, 24, 10, 30, 20 1]
gap> last{ kernel };

[ 1, 15, 20, 24 ]

gap> Sum( last );

60

We chose those classlengths of s5 that belong to the Ss—classes contained in the alternating
group. The same thing is done in the following command, reflecting the view of the kernel
as map.

gap> List( kernel, x -> sb.classes[x] );
[ 1, 15, 20, 24 ]

gap> Sum( kernel, x -> sb.classes[x] );
60

This small example shows how the functions List and Sum can be used. These functions
as well as Filtered were introduced in 1.16, and we will make heavy use of them; in many
cases such a command might look very strange, but it is just the translation of a (hardly
less complicated) mathematical formula to character theory.

And now let us construct some small character tables!

The group G = (A5 x 3):2 is a maximal sub- S5 x Ss

group of the alternating group As; G extends
to S5 x S3 in Sg. We want to construct the
character table of G.

First the tables of the subgroup As x 3 and
the supergroup S5 x Ss are constructed; the
tables of the factors of each direct product are
again got from the table library using admis-
sible names, see 49.12 for this.
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gap> ab:= CharTable( "A5" );;

gap> c3:= CharTable( "Cyclic", 3 );;

gap> abxc3:= CharTableDirectProduct( a5, c3 );;
gap> sb:= CharTable( "A5.2" );;

gap> s3:= CharTable( "Symmetric", 3 );;

gap> s3.irreducibles;
(rs,-1,11,02,0,-11,[1,1,11]1

# The trivial character shall be the first one.

gap> SortCharactersCharTable( s3 ); # returns the applied permutation
(1,2,3)

gap> sbxs3:= CharTableDirectProduct( s5, s3 );;

G is the normal subgroup of index 2 in S5 x S3 which contains neither S5 nor the normal
S3. We want to find the classes of sbxs3 whose union is G. For that, we compute the
set of kernels of irreducibles —remember that they are given simply by lists of numbers of
contained classes— and then choose those kernels belonging to normal subgroups of index 2.

gap> kernels:= Set( List( sbxs3.irreducibles, KernelChar ) );
rft+31,01,2,31,I[1,2,3,4,°5,6,7,8,9, 10, 11, 1217,
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 211, [ 1, 31,
[1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21 1],
[1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 201, [ 1, 4, 7, 10 1],
[ 1, 4, 7, 10, 13, 16, 191 ]
gap> sizes:= List( kernels, x -> Sum( Sublist( sbxs3.classes, x ) ) );
[1, 6, 360, 720, 3, 360, 360, 60, 120 ]
gap> sbxs3.size;
720
gap> index2:= Sublist( kernels, [ 3, 6, 7] );
[C1, 2,3, 45,6, 7,8, 9, 10, 11, 121,
L1, 3, 4,6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21 ],
(1, 3, 4,6, 7,9, 10, 12, 14, 17, 20 ] ]
In order to decide which kernel describes G, we consider the embeddings of s5 and s3 in

s5xs3, given by the subgroup fusions.

gap> sbinsbxs3:= GetFusionMap( s5, sbxs3 );
[1, 4, 7, 10, 13, 16, 19 ]
gap> s3insbxs3:= GetFusionMap( s3, sbxs3 );

(1,2, 3]
gap> Filtered( index2, x->Intersection(x,sbinsbxs3)<>s5insbxs3 and
> Intersection(x,s3ins5xs3)<>s3insbxs3 )

[t 3, 4, 6, 7, 9, 10, 12, 14, 17, 20 1 ]
gap> nsg:= last[1];
[1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 20 ]
We now construct a first approximation of the character table of this normal subgroup,

namely the restriction of sbxs3 to the classes given by nsg.

gap> sub:= CharTableNormalSubgroup( sbxs3, nsg );;
#I CharTableNormalSubgroup: classes in [ 8 ] necessarily split
gap> PrintCharTable( sub );
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rec( identifier := "Rest(A5.2xS3,[ 1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 2\
01", size :=
360, name := "Rest(A5.2xS3,[ 1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 20 1)",\

order := 360, centralizers := [ 360, 180, 24, 12, 18, 9, 15, 15/2,
12, 4, 6 ], orders := [ 1, 3, 2, 6, 3, 3, 5, 15, 2, 4, 6

], powermap := [ , [ 1, 2, 1, 2, 5,6, 7,8, 1, 3,51,
[+, 1,3,3,1,1,7,7,9, 10, 91,,
[1, 2, 3, 4, 5, 6, 1, 2, 9, 10, 11 ] 1, classes :=

[1, 2, 15, 30, 20, 40, 24, 48, 30, 90, 60

1, operations := CharTableOps, irreducibles :=
[C1, 1,1, 1, 1,1, 1,1, 1,1, 117,
(1,1, 1,1,1,1, 1,1, -1, -1, -1 1,
(2, -1, 2, -1, 2, -1, 2, -1, 0, 0, 01,
[6, 6, -2, -2, 0, 0, 1, 1, 0, 0, O 1],
[ 4, 4, 0,0, 1,1, -1, -1, 2, 0, -1 17,
[ 4, 4, 0,0, 1,1, -1, -1, -2, 0, 117,
(8, 4,0, 0,2, -1, -2, 1, 0, 0, 01,
[5,5,1,1, -1, -1, 0, 0, 1, -1, 11,
[5,5,1,1, -1, -1, 0, O, -1, 1, -1 1,
[ 10, -5, 2, -1, -2, 1, 0, O, O, 0, 0] 1, fusions := [ rec(
name := [ )A), )5), ).)’ )2)’ )XJ, )SJ, )3) ],

map := [ 1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 201 ) 1)

Not all restrictions of irreducible characters of s5xs3 to sub remain irreducible. We compute
those restrictions with norm larger than 1.

gap> red:= Filtered( Restricted( sbxs3, sub, sbxs3.irreducibles ),
> x -> ScalarProduct( sub, x, x ) > 1 );
([12, 6, 4, 2,0,0,2,-1,0,0,0171]1]

gap> Filtered( [ 1 .. Length( nsg ) 1,

> x —=> not IsInt( sub.centralizers([x] ) );

[ 8]

Note that sub is not actually a character table in the sense of mathematics but only a
record with components like a character table. GAP3 does not know about this subtleties
and treats it as a character table.

As the list centralizers of centralizer orders shows, at least class 8 splits into two conjugacy
classes in G, since this is the only possibility to achieve integral centralizer orders.

Since 10 restrictions of irreducible characters remain irreducible for G (sub contains 10
irreducibles), only one of the 11 irreducibles of S5 x S3 splits into two irreducibles of G, in
other words, class 8 is the only splitting class.

Thus we create a new approximation of the desired character table (which we call split)
where this class is split; 8th and 9th column of the known irreducibles are of course equal,
and due to the splitting the second powermap for these columns is ambiguous.

gap> splitting:= [ 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11 1;;

gap> split:= CharTableSplitClasses( sub, splitting );;

gap> PrintCharTable( split );

rec( identifier := "Split(Rest(A5.2x83,[ 1, 3, 4, 6, 7, 9, 10, 12, 14,\
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17, 20 ),[ 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11 1)", size :=
360, order :=
360, name := "Split(Rest(A5.2xS3,[ 1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 2\
on,l(1, 2, 3, 4,5, 6,7, 8, 8,9, 10, 11 1)", centralizers :=
[ 360, 180, 24, 12, 18, 9, 15, 15, 15, 12, 4, 6 ], classes :=
[1, 2, 15, 30, 20, 40, 24, 24, 24, 30, 90, 60 ], orders :=
[1, 3, 2,6, 3, 3, 5, 15, 15, 2, 4, 6 ], powermap :=
[ 1, 2,1,2,5,6,7,[08,91,[8,971,1,3,51,
,1,3,3, 1,1, 7,7, 7, 10, 11, 10 1,,
, 2, 3, 4, 5,6, 1, 2, 2, 10, 11, 12 ] ], irreducibles :=
, 1,1, 1, 1, 1,1, 1,1, 1, 1, 11,
1, 1,1, 1, 1,1, 1,1, -1, -1, -1 17,
2, -1, -1, 0, 0, 01,

[
1
1
1
1, 1, 1,
2, -1, 2, -1, 2, -1,
6, 6 , 0, ]
4, 4, 0, 0, 1, 1, -1, -1, -1, 2, 0, -1
4, 4, 0, 0, 1, 1 1
8, -4, 0, 0, 2, -1, -2, 1, 1, 0, 0
5,5,1,1, -1, -1, 0, 0, O, 1, -1,
5, 5, 1, 1, -1, -1, 0, O, O, -1, 1,
10, -5, 2, -1, -2, 1, 0, O, O, O, O, O 1, fusions := [ rec(
name := "Rest(A5.2xS3,[ 1, 3, 4, 6, 7, 9, 10, 12, 14, 17, 20 ])"
map := [1, 2, 3, 4, 5, 6, 7,8, 8,9, 10, 11 1)
1, operations := CharTableOps )
gap> Restricted( sub, split, red );
[C12, -6, -4, 2, 0, 0, 2, -1, -1, 0, 0, 01 1

L IO e T e IO s N s T e T s O e e O s B s B s B

To complete the table means to find the missing two irreducibles and to complete the
powermaps. For this, there are different possibilities. First, one can try to embed G in Ag.

gap> a8:= CharTable( "A8" );;
gap> fus:= SubgroupFusions( split, a8 );
[[1, 4, 3,9, 4,5, 8, 13, 14, 3, 7, 91,
[1, 4, 3, 9, 4, 5, 8, 14, 13, 3, 7, 91 ]
gap> fus:= RepresentativesFusions( split, fus, a8 );
#I RepresentativesFusions: no subtable automorphisms stored
[[1, 4, 3,9, 4, 5, 8, 13, 14, 3, 7, 91 1]
gap> StoreFusion( split, a8, fus[1] );

The subgroup fusion is unique up to table automorphisms. Now we restrict the irreducibles
of Ag to G and reduce.

gap> rest:= Restricted( a8, split, a8.irreducibles );;
gap> red:= Reduced( split, split.irreducibles, rest );
rec(
remainders := [ 1],
irreducibles :=
[ [6, -3, -2, 1, 0, 0, 1, -E(15)-E(15)"2-E(15)"4-E(15) "8,
-E(15)"7-E(15)~"11-E(15)"13-E(15)"14, 0, 0, 0 1,
[6, -3, -2, 1, 0, 0, 1, -E(15)"7-E(15)"11-E(15)"13-E(15)"14,
-E(15)-E(15)"2-E(15)"4-E(15)"8, 0, 0, 01 1)
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gap> Append( split.irreducibles, red.irreducibles );

The list of irreducibles is now complete, but the powermaps are not yet adjusted.
complete the 2nd powermap, we transfer that of Ag to G using the subgroup fusion.

gap> split.powermap;

[, [01,2,1,2,5,6,7,

(8,91,

[ 8) 9 ]’ 1, 3) 5 ])

r+ 13,3,1,1,7,7,7, 10, 11, 101,,
[1, 2, 3, 4,5,6,1, 2,2, 10, 11, 12 ] ]

gap> TransferDiagram( split.powermap[2], fus[1], a8.powermap[2] );;

And this is the complete table.

gap> split.identifier:= "(Abx3):2";;
gap> DisplayCharTable( split );

Split(Rest(A5.2x83,[ 1, 3, 4, 6, 7, 9, 10,

, 4,5,6,7,8,8,9,
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To

12, 14, 17, 20 1D,[ 1, 2, 3\

There are many ways around the block, so two further methods to complete the table split
shall be demonstrated; but we will not go into details.

Without use of GAP3 one could work as follows:

The irrationalities —and there must be irrational entries in the character table of (G, since
the outer 2 can conjugate at most two of the four Galois conjugate classes of elements of
order 15— could also have been found from the structure of G and the restriction of the
irreducible S5 x S3 character of degree 12.
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On the classes that did not split the values of this character must just be divided by 2. Let
2 be one of the irrationalities. The second orthogonality relation tells us that = - T = 4 (at
class 15a) and x 4+ z* = —1 (at classes 1la and 15a); here x* denotes the nontrivial Galois
conjugate of x. This has no solution for x = T, otherwise it leads to the quadratic equation
2% 4+ z + 4 = 0 with solutions b15 = 1(—1+ /=15) and —1 — b15.

The third possibility to complete the table is to embed As x 3:

gap> split.irreducibles := split.irreducibles{ [ 1 .. 10 1] };;

gap> SubgroupFusions( abxc3, split );

(rt,2,2,8,4,4,5,6,6,7,[8,9]1,[8,91,7,[8,91,
(88,9111

The images of the four classes of element order 15 are not determined, the returned list
parametrizes the 24 possibilities.

gap> fus:= ContainedMaps( last[1] );;

gap> Length( fus );

16

gap> fus[1];

[1, 2, 2,3, 4, 4,5,6,6,7,8,8,7, 8, 8]

Most of these 16 possibilities are excluded using scalar products of induced characters. We
take a suitable character chi of abxc3 and compute the norm of the induced character with
respect to each possible map.

gap> chi:= abxc3.irreducibles[5];

[ 3, 3*E(3), 3%E(3)"2, -1, -E(3), -E(3)"2, 0, 0, 0, -E(5)-E(5)"4,
-E(15)"2-E(15)"8, -E(15)"7-E(15)"13, -E(5)"2-E(5)"3,
-E(15)"11-E(15)"14, -E(15)-E(15)7°4 ]

gap> List( fus, x -> List( Induced( abxc3, split, [ chi ], x

> y —> ScalarProduct( split, y, y )

[ 8/15, -2/3%E(5)-11/16%E(5) "2-11/15%E(5) "3-2/3*E(5) "4,
-2/3%E(5)-11/15*%E(5) "2-11/15*%E(5) "3-2/3*E(5) "4, 2/3,
-11/15%E(5)-2/3+E(5) "2-2/3*E(5) "3-11/15%E(5) "4, 3/5, 1,
-11/15%E(5)-2/3*E(5) "2-2/3*E(5) "3-11/15%E(5) "4,
-11/15%E(5)-2/3*E(5) "2-2/3*E(5) "3-11/15%E(5) "4, 1, 3/5,
-11/15%E(5)-2/3*E(5) "2-2/3*E(5) "3-11/15%E(5) "4, 2/3,
-2/3*E(5)-11/15%E(5) "2-11/15%E(5) "3-2/3*E(5) "4,
-2/3*E(5)-11/15+E(5) "2-11/15+E(5) "3-2/3*E(5) "4, 8/15 ]

gap> Filtered( [ 1 .. Length( fus ) ], x -> IsInt( last([x] ) );

[ 7, 101

),
Y11 )

So only fusions 7 and 10 may be possible. They are equivalent (with respect to table
automorphisms), and the list of induced characters contains the missing irreducibles of G:

gap> Sublist( fus, last );
[[1, 2,2, 3, 4, 4, 5,6,6,7,8,9,7,9, 81,
(1,2, 2,3,4,4,5,6,6,7,9,8,7,8,91]1]1
gap> ind:= Induced( abxc3, split, abxc3.irreducibles, last[1] );;
gap> Reduced( split, split.irreducibles, ind );
rec(
remainders := [ ],
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irreducibles :
[[e6, -3, -2, 1, 0, 0, 1, -E(15)-E(15)"2-E(15)"4-E(15)"8,

L6,

-E(15)"7-E(15) "11-E(15) "13-E(15)"14, 0, 0, 0 1,

-3,

-2, 1, 0, 0, 1, -E(15)"7-E(15)"11-E(15)"13-E(15)"14,
-E(15)-E(15)"2-E(15)"4-E(15)°8, 0, 0, 01 1)
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The following example is thought mainly for experts. It shall demonstrate how one can work
together with GAP3 and the ATLAS [CCNT85], so better leave out the rest of this section
if you are not familiar with the ATLAS.

We shall construct the character table of the group G =
Ag.2% =2 Aut(Ag) from the tables of the normal subgroups
A6.21 = 86, A6.22 = PGL(2,9) and A6.23 = MlO-
We regard G as a downward extension of the Klein four-
group 2% with Ag. The set of classes of all preimages of
cyclic subgroups of 22 covers the classes of G, but it may
happen that some representatives are conjugate in G, i.e.,
the classes fuse.
The ATLAS denotes the character tables of G, G.21, G.29
and (.23 as follows:
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; ; @ @ e @ @ H ; @ @ Q@

10 4 4 5 b5 2 4 4

A A A BD AD A A A

A A A AD BD A A A

fus ind 2D 8A Bx* 10A Bx* fus ind 4C 8C Dx*x*
++ 1 1 1 1 1 o+ 1 1 1 x1
+ 0 0 O 0 O + 0 0 0 x2
X3
++ 2 0 0 bs % + 0 0 0 xa
++ 2 0 0 *x bb X5
++ -1 1 1 -1 -1 o+ 1 -1 -1 xs
++ 0 r2 -r2 0 0 : oo 0 1i2 -i2 X7

First we construct a table whose classes are those of the three subgroups. Note that the
exponent of Ag is 60, so the representative orders could become at most 60 times the value
in 22.

gap> sl:= CharTable( "A6.2_1" );;

gap> s2:= CharTable( "A6.2_2" );;

gap> s3:= CharTable( "A6.2_3" );;

gap> c2:= CharTable( "Cyclic", 2 );;

gap> v4:= CharTableDirectProduct( c2, c2 );;

#I CharTableDirectProduct: existing subgroup fusion on <tbl2> replaced
#I by actual one
gap> for tbl in [ s1, s2, s3 ] do

> Print( tbl.irreducibles[2], "\n" );

> od;

[1, 1, 1,1, 1, 1, -1, -1, -1, -1, -1 1]

[1, 1, 1,1, 1,1, -1, -1, -1, -1, -1 1]

[1, 1,1, 1, 1, -1, -1, -1 1]

gap> split:= CharTableSplitClasses( v4,

> (1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4], 60 );;

gap> PrintCharTable( split );

rec( identifier := "Split(C2xC2,[ 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, \
3, 3, 3, 4, 4, 4 ])", size := 4, order :=

4, name := "Split(C2xC2,[ 1, 1 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,\

» 1, 3, 3, 3
4, 4, 4 1)", centralizers := [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4 ], classes := [ 1/5, 1/5, 1/5, 1/5, 1/5, 1/5, 1/5,
i/5, 1/5, 1/5, 1/5, 1/5, 1/5, 1/5, 1/5, 1/3, 1/3, 1/3 1, orders :=
[1, [ 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 ],
[2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 1,
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—/
- Lo T s I e Y s N s Y s T s N s Y s Y s N e I s Y s B e B |

[ B e B e B |

2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 1,
2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 1,
2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120 1],
2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120 1],
2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120 1,
2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120 1,
2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120 1],
2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120 1],
2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120 1],
2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120 1,
2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120 1,
2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120 1,
2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120 1],
2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120 1],
2, 4, 6, 8, 10, 12, 20, 24, 30, 40, 60, 120 ] ], powermap :=
[ 1, 1, 2,3,4,51, 01, 2,3,4,51,[1,2,3, 4,51,
[1, 2, 3,4,51,[1,2,3,4,51,[1, 2,3, 4,51,
[1, 2, 3,4,51,[1,2,3,4,51,[1, 2,3, 4,51,
(1, 2,3,4,51,[1,2,3,4,51,[1,2,3,4°51],
(1,2, 3,4,51,[1,2,3,4,51,[1,2,3,4,°51],
[1, 2, 3, 4,51, [1, 2, 3, 4, 51 11, irreducibles :=
1,1, 1, 1,1, 1, 1,1, 1, 1,1, 1, 1,1, 1, 1,1, 117,
1, 1,1, 1,1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1 17,
1, 1,1, 1,1, 1, 1, 1,1, 1, -1, -1, -1, -1, -1, -1, -1, -1 17,
1, 1,1, 1,1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1]
fusions := [ rec(
name := [ Q. 00, 0xr G, 0 ],
map := [ 1, 1,1, 1,1, 2,2,2,2,2,3,3,3,3,3,4,4,4]
) 1, operations := CharTableOps )
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Now we embed the subgroups and adjust the classlengths, order, centralizers, powermaps
and thus the representative orders.

gap>
gap>
gap>
gap>
>

\/\/OQQJVVV\/V
ie)
v

%
[l ®)
- \%

StoreFusion( si,
StoreFusion( s2,
StoreFusion( s3,
for tbl in [ si,

fus:=

split,
split,
split,
s3 ] do
= GetFusionMap( tbl, split );

s2,

[1,2
[1,2
[1,

>

>

2,

3
3
3

for class in Difference( [ 1

KernelChar (tbl.irreducibles[2]) ) do

B

B

B

3
4
4

>

B

B

4,5
5,5
5

’

>

>

,6,7,8,9,101);

,11,12,13,14,15]);

16,17,181);

. Length( tbl.classes ) 1],

split.classes[ fus[ class ] ]:

od;
od;
for class in [ 1

split.classes[ class ]:

od;
split.classes;
45, 80, 90, 144,

90, 90 1]

. 5] do

15,

tbl.classes[ class ];

s3.classes[ class ];

15, 90,

120,

120, 36, 90, 90, 72, 72,

180,



148 CHAPTER 1. ABOUT GAP

gap> split.size:= Sum( last );
1440
gap> split.order:= last;
gap> split.centralizers:= List( split.classes, x -> split.order / x );
[ 1440, 32, 18, 16, 10, 96, 96, 16, 12, 12, 40, 16, 16, 20, 20, 8,
16, 16 1]
gap> split.powermap[3]:= InitPowermap( split, 3 );;
gap> split.powermap[5]:= InitPowermap( split, 5 );;
gap> for tbl in [ s1, s2, s3 ] do
> fus:= GetFusionMap( tbl, split );

> for pin [ 2, 3, 5] do

> TransferDiagram( tbl.powermap[p]l, fus, split.powermapl[p] );
> od;

> od;

gap> split.powermap;

[ 1, 1,3, 2,5,1,1,2, 3,3, 1, 4, 4, 5, 5, 2, 4, 41,

, L1,

(1, 2,1, 4,5,6, 7,8, 6, 7, 11, 13, 12, 15, 14, 16, 17, 18 1,,
(1, 2, 3, 4, 1,6, 7,38, 9, 10, 11, 13, 12, 11, 11, 16, 18, 17 ] ]
gap> split.orders:= ElementOrdersPowermap( split.powermap ) ;

[1, 2,3, 4,5, 2,2, 4,6, 6, 2,8, 8, 10, 10, 4, 8, 81

>

In order to decide which classes fuse in GG, we look at the norms of suitable induced charac-
ters, first the 4+ extension of xo to Ag.21.

gap> ind:= Induced( s1, split, [ sl.irreducibles[3] 1 )I[1];
[ 10, 2: 1’ _2, O: 6’ _2; 2, O’ _2’ O, O: 0, O: O’ O, O: O]
gap> ScalarProduct( split, ind, ind );

3/2

The inertia group of this character is Ag.21, thus the norm of the induced character must
be 1. If the classes 2B and 2C fuse, the contribution of these classes is changed from
15-62+15-(—2)2 to 3022, the difference is 480. But we have to subtract 720 which is half
the group order, so also 6A and 6B fuse. This is not surprising, since it reflects the action of
the famous outer automorphism of Sg. Next we examine the 4+ extension of y4 to Ag.25.

gap> ind:= Induced( s2, split, [ s2.irreducibles[4] 1 )I[1];

[ 16, 0, -2, 0, 1, O, O, O, O, O, 4, 0, 0, 2+«E(B)+2*E(5) "4,
2*E(5)"2+2*E(5)"3, 0, 0, 0 ]

gap> ScalarProduct( split, ind, ind );

3/2

Again, the norm must be 1, 10A and 10B fuse.
gap> collaps:= CharTableCollapsedClasses( split,

> [1,2,3,4,5,6,6,7,8,8,9,10,11,12,12,13,14,15] );;
gap> PrintCharTable( collaps );

rec( identifier := "Collapsed(Split(C2xC2,[ 1, 1, 1, 1, 1, 2, 2, 2, 2,\
2,3,3,3,3,3,4,4,41,[1, 2, 3, 4, 5, 6,6, 7,8, 8,9, 10, 1\

1, 12, 12, 13, 14, 15 ])", size := 1440, order :=

1440, name := "Collapsed(Split(C2xC2,[ 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3\
,3,3,3,3,4,4,41,[1, 2,3, 4,5, 6,6, 7,8, 8,9, 10, 11, 12\
, 12, 13, 14, 15 1)", centralizers := [ 1440, 32, 18, 16, 10, 48, 16,
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6, 40, 16, 16, 10, 8, 16, 16 1, orders :=
1 3,4, 5,2, 4,6, 2,8, 8, 10, 4, 8, 8 ], powermap :=
, 1,1, 3, 2,5,1, 2, 3,1, 4, 4, 5, 2, 4, 417,
[1, 2, 1, 4, 5, 6, 7, 6, 9, 11, 10, 12, 13, 14, 15 1,,
[1, 2, 3, 4, 1, 6, 7, 8, 9, 11, 10, 9, 13, 15, 14 ]
], fusionsource :=
[ "split(C2xC2,[ 1, 1,
1)" 1, irreducibles :=
rr+, 1,1, 1,1, 1,1, 1, 1, 1,1, 1, 1, 1, 11,

[1, 1, 1, 1,1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1 17,
(1,1, 1, 1,1, 1, 1,1, -1, -1, -1, -1, -1, -1, -1 1,
[1 1, 1

1, 1,1, 2, 2, 2,2, 2,3, 3,3, 3, 3, 4, 4, 4\

, 1, 1, , -1, -1, -1, -1, -1, -1, -1, 1, 1, 1]
1, classes := [ 1, 45, 80, 90, 144, 30, 90, 240, 36, 90, 90, 144,
180, 90, 90 ], operations := CharTableOps )
gap> split.fusions;

>

[ rec(
name := [ ’C’, ;27, ’X’, ’C’, 190 ]’
map := [ 1, 1, 1, 1, 1, 2, 2, 2,2, 2,3, 3,3, 3,3, 44,4]
), rec(
name :=

"Collapsed(Split(C2xC2,[ 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3,\
3,3, 4,4,41),[1, 2,3, 4, 5,6, 6, 7,8,8,9, 10, 11, 12, 12, 1\
3, 14, 15 )",

map := [ 1, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 12, 13,

14, 156 1) ]
gap> for tbl in [ s1, s2, s3 ] do
> StoreFusion( tbl, collaps,
> CompositionMaps( GetFusionMap( split, collaps ),
> GetFusionMap( tbl, split ) ) );

> od;

gap> ind:= Induced( sl1, collaps, [ sl.irreducibles[10] ] )[1];
[ 20, -4, 2, 0,0,0,0,0,0,0,0,0,0,0,0]

gap> ScalarProduct( collaps, ind, ind );

1

This character must be equal to any induced character of an irreducible character of degree
10 of Ag.25 and Ag.23. That means, 8A fuses with 8B, and 8C with 8D.

gap> a6v4:= CharTableCollapsedClasses( collaps,

> (1,2,3,4,5,6,7,8,9,10,10,11,12,13,13] );;

gap> PrintCharTable( a6v4 );

rec( identifier := "Collapsed(Collapsed(Split(C2xC2,[ 1, 1, 1, 1, 1, 2\
, 2,2,2,2,3,3,3,3,3,4,4,41,[1, 2,3, 4,5, 6, 6,7, 8, 8\

, 9, 10, 11, 12, 12, 13, 14, 15 1D,[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10\
, 11, 12, 13, 13 ]1)", size := 1440, order :=

1440, name := "Collapsed(Collapsed(Split(C2xC2,[ 1, 1, 1, 1, 1

2,2,2,3,3,3,3,3,4,4,41,[1, 2, 3, 4, 5, 6,6, 7, 8, s
10, 11, 12, 12, 13, 14, 15 1),[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11,
12, 13, 13 1)", centralizers := [ 1440, 32, 18, 16, 10, 48, 16, 6,
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40, 8, 10, 8, 8 1, orders := [ 1, 2, 3, 4, 5, 2, 4, 6, 2, 8, 10, 4,
8], powermap := [, [ 1, 1, 3, 2, 5, 1, 2, 3, 1, 4, 5, 2, 41,
[1, 2,1, 4, 5,6, 7, 6,9, 10, 11, 12, 13 1,,
L1, 2,3, 4, 1,6, 7,8, 9, 10, 9, 12, 13 ] 1, fusionsource :=
[ "Collapsed(Split(C2xC2,[ 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3\
,4,4,41),[1,2,3,4,5,6,6,7,8,8,9, 10, 11, 12, 12, 13, 14\
15 1)" ], irreducibles :=
1, 1, 1,1, 1, 1, 1,1, 1, 1,1, 1, 117,
1, 1,1, 1,1, -1, -1, -1, 1, 1, 1, -1, -1 1,
1, 1, 1,1, 1,1, 1,1, -1, -1, -1, -1, -1 1,
1,1, 1, 1,1, -1, -1, -1, -1, -1, -1, 1, 1 1 1, classes :=
[ 1, 45, 80, 90, 144, 30, 90, 240, 36, 180, 144, 180, 180
1, operations := CharTableOps )
gap> for tbl in [ s1, s2, s3 ] do
> StoreFusion( tbl, a6v4,
> CompositionMaps( GetFusionMap( collaps, a6v4 ),
> GetFusionMap( tbl, collaps ) ) );
> od;

-

Now the classes of G are known, the only remaining work is to compute the irreducibles.

gap> a6v4.irreducibles;
rri,1,1,1,1,1, 1,1, 1,1, 1, 1, 117,
(1, 1,1, 1,1, -1, -1, -1, 1, 1, 1, -1, -1 1,
(41, 1,1, 1,1, 1,1, 1, -1, -1, -1, -1, -1 1],
[+, 1,1, 1,1, -1, -1, -1, -1, -1, -1, 1, 11 ]
gap> for tbl in [ s1, s2, s3 ] do

> ind:= Set( Induced( tbl, a6v4, tbl.irreducibles ) );

> Append( a6v4.irreducibles,

> Filtered( ind, x -> ScalarProduct( a6vd,x,x ) =1 ) );
> od;

gap> abv4.irreducibles:= Set( abv4.irreducibles );

rras+,1¢,1,1,1, -1, -1, -1, -1, -1, -1, 1, 117,
L+, 1,1,1,1, -1, -1, -1, 1, 1, 1, -1, -1 17,
L1, 1,1,1,1,14, 1,1, -1, -1, -1, -1, -1 17,
(1,1, 1,14, 1,1, 1,1, 1,1, 1,1, 11,

[ 10, 2, 1, -2, 0, -2, -2, 1, 0, O, O, O, O],
[ 10, 2, 1, -2, 0, 2, 2, -1, 0, O, O, O, O 1],
[ 16, 0, -2, 0, 1, O, O, O, -4, 0, 1, 0, O 1],
[ 6, 0, -2, 0, 1, 0, O, O, 4, 0, -1, 0, 01,

[ 20, -4, 2, 0, 0, 0, O, 0, 0, O, 0, 0, 011

gap> sym:= Symmetrizations( a6v4, [ abv4.irreducibles[5] 1, 2 );

[ [45, -3,0,1,0,-3,1,0, -5,1, 0, -1, 11,
[55,7,1,3,0,7,3,1,5, -1, 0,1, -11]1]

gap> Reduced( a6v4, a6v4.irreducibles, sym );

rec(
remainders := [ [ 27, 3, 0, 3, -3, 3, -1, 0, 1, -1, 1, 1, -1 1 1,
irreducibles := [ [ 9, 1, 0, 1, -1, -3, 1, 0, -1, 1, -1, -1, 1]

gap> Append( a6v4.irreducibles,



1.26. ABOUT GROUP LIBRARIES

>
>

>

gap> a6v4.identifier:= "A6.272";;
gap> DisplayCharTable( a6v4 );

Collapsed(Collapsed(Split(C2xC2,[ 1,
3,3,3,4,4,40D,0[1, 2,3, 4,5,
13, 14, 15 1),[ 1, 2, 3, 4, 5, 6, 7
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Tensored( last.irreducibles,
Sublist( a6v4.irreducibles,
gap> SortCharactersCharTable( a6v4,

(1,4)(2,3)(5,6)(7,8)(9,13,10,11,12) );;

1, 1, 1, 1
6, 6, 7, 8
, 8, 9, 10,
3 1 3 3
1
8a 10a 4c 8b
4a ba 2a 4a
8a 10a 4c 8b
8a 2c 4c 8b
1 1 1 1
-1 -1 -1-1
1 1 -1 -1
-1 -1 1 1
-1
. 1 . .
-1 1 1 -1
1 -1-1 1
-1 1 -1 1
1 -1 1-1

About Group Libraries

[1..41)));

= O N
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b 2, 2’ 2, 3) 3) \
10, 11, 12, 12,\

When you start GAP3 it already knows several groups. For example, some basic groups
such as cyclic groups or symmetric groups, all primitive permutation groups of degree at
most 50, and all 2-groups of size at most 256.

Each of the sets above is called a group library. The set of all groups that GAP3 knows
initially is called the collection of group libraries.

In this section we show you how you can access the groups in those libraries and how you

can extract groups with certain properties from those libraries.

Let us start with the basic groups, because they are not accessed in the same way as the

groups in the other libraries.

To access such a basic group you just call a function with an appropriate name, such as
CyclicGroup or SymmetricGroup.
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gap> c13 := CyclicGroup( 13 );

Group( ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13) )

gap> Size( c13 );

13

gap> s8 := SymmetricGroup( 8 );

Group( (1,8), (2,8), (3,8), (4,8), (5,8), (6,8), (7,8) )

gap> Size( s8 );

40320
The functions above also accept an optional first argument that describes the type of group.
For example you can pass AgWords to CyclicGroup to get a cyclic group as a finite polycyclic
group (see 25).

gap> c13 := CyclicGroup( AgWords, 13 );

Group( c13 )
Of course you cannot pass AgWords to SymmetricGroup, because symmetric groups are in
general not polycyclic.

The default is to construct the groups as permutation groups, but you can also explicitly pass
Permutations. Other possible arguments are AgWords for finite polycyclic groups, Words
for finitely presented groups, and Matrices for matrix groups (however only Permutations
and AgWords currently work).

Let us now turn to the other libraries. They are all accessed in a uniform way. For a first
example we will use the group library of primitive permutation groups.

To extract a group from a group library you generally use the extraction function. In
our example this function is called PrimitiveGroup. It takes two arguments. The first is
the degree of the primitive permutation group that you want and the second is an integer
that specifies which of the primitive permutation groups of that degree you want.

gap> g := PrimitiveGroup( 12, 3 );

M(11)

gap> g.generators;

[ C2,6)(3,5)(4, (9,100, (1,5, 7)(2,9, 4(3, 8,10),

(1,11)C2, 7)(3,5)(4,6), (2,53, 6)(4, 7)(11,12) ]

gap> Size( g );

7920

gap> IsSimple( g );

true

gap> h := PrimitiveGroup( 16, 19 );

274 . A(T)

gap> Size( h );

40320
The reason for the extraction function is as follows. A group library is usually not stored as
a list of groups. Instead a more compact representation for the groups is used. For example
the groups in the library of 2-groups are represented by 4 integers. The extraction function
hides this representation from you, and allows you to access the group library as if it was a
table of groups (two dimensional in the above example).
What arguments the extraction function accepts, and how they are interpreted is described

in the sections that describe the individual group libraries in chapter 38. Those functions
will of course signal an error when you pass illegal arguments.
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Suppose that you want to get a list of all primitive permutation groups that have a degree
10 and are simple but not cyclic. It would be very difficult to use the extraction function to
extract all groups in the group library, and test each of those. It is much simpler to use the
selection function. The name of the selection function always begins with A11 and ends
with Groups, in our example it is thus called A11PrimitiveGroups.

gap> AllPrimitiveGroups( DegreeOperation, 10,

> IsSimple, true,

> IsCyclic, false );
[ A(5), PSL(2,9), A(10) 1]

A11PrimitiveGroups takes a variable number of argument pairs consisting of a function
(e.g. DegreeOperation) and a value (e.g. 10). To understand what A11PrimitiveGroups
does, imagine that the group library was stored as a long list of permutation groups.
A11PrimitiveGroups takes all those groups in turn. To each group it applies each func-
tion argument and compares the result with the corresponding value argument. It selects
a group if and only if all the function results are equal to the corresponding value. So in
our example A11PrimitiveGroups selects those groups g for which DegreeOperation(g) =
10 and IsSimple(g) = true and IsCyclic(g) = false. Finally A11PrimitiveGroups
returns the list of the selected groups.

Next suppose that you want all the primitive permutation groups that have degree at
most 10, are simple but are not cyclic. You could obtain such a list with 10 calls to
Al11PrimitiveGroups (i.e., one call for the degree 1 groups, another for the degree 2 groups
and so on), but there is a simple way. Instead of specifying a single value that a function
must return you can simply specify a list of such values.

gap> AllPrimitiveGroups( DegreeOperation, [1..10],

> IsSimple, true,

> IsCyclic, false );

[ A(B), PSL(2,5), A(6), PSL(3,2), A(7), PSL(2,7), A(8), PSL(2,8),
A(9), A(B), PSL(2,9), AC(10) ]

Note that the list that you get contains A(5) twice, first in its primitive presentation on 5
points and second in its primitive presentation on 10 points.

Thus giving several argument pairs to the selection function allows you to express the logical
and of properties that a group must have to be selected, and giving a list of values allows
you to express a (restricted) logical or of properties that a group must have to be selected.

There is no restriction on the functions that you can use. It is even possible to use functions
that you have written yourself. Of course, the functions must be unary, i.e., accept only one
argument, and must be able to deal with the groups.

gap> NumberConjugacyClasses := function ( g )

> return Length( ConjugacyClasses( g ) );

> end;

function ( g ) ... end

gap> AllPrimitiveGroups( DegreeQOperation, [1..10],
> IsSimple, true,

> IsCyclic, false,

> NumberConjugacyClasses, 9);

[ A(7), PSL(2,8) ]
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Note that in some cases a selection function will issue a warning. For example if you call
A11PrimitiveGroups without specifying the degree, it will issue such a warning.

gap> AllPrimitiveGroups( Size, [100..400],
> IsSimple, true,
> IsCyclic, false );

#W AllPrimitiveGroups: degree automatically restricted to [1..50]
[ A(6), PSL(3,2), PSL(2,7), PSL(2,9), A(6) ]

If selection functions would really run over the list of all groups in a group library and apply
the function arguments to each of those, they would be very inefficient. For example the
2-groups library contains 58760 groups. Simply creating all those groups would take a very
long time.

Instead selection functions recognize certain functions and handle them more efficiently. For
example A11PrimitiveGroups recognizes DegreeOperation. If you pass DegreeOperation
to Al1PrimitiveGroups it does not create a group to apply DegreeOperation to it. In-
stead it simply consults an index and quickly eliminates all groups that have a different
degree. Other functions recognized by Al1PrimitiveGroups are IsSimple, Size, and
Transitivity.

So in our examples Al11PrimitiveGroups, recognizing DegreeOperation and IsSimple,
eliminates all but 16 groups. Then it creates those 16 groups and applies IsCyclic to
them. This eliminates 4 more groups (C(2), C(3), C(5), and C(7)). Then in our last
example it applies NumberConjugacyClasses to the remaining 12 groups and eliminates all
but A(7) and PSL(2,8).

The catch is that the selection functions will take a large amount of time if they cannot rec-
ognize any special functions. For example the following selection will take a large amount of
time, because only IsSimple is recognized, and there are 116 simple groups in the primitive
groups library.

A11PrimitiveGroups( IsSimple, true, NumberConjugacyClasses, 9 );

So you should specify a sufficiently large set of recognizable functions when you call a
selection function. It is also advisable to put those functions first (though in some group
libraries the selection function will automatically rearrange the argument pairs so that the
recognized functions come first). The sections describing the individual group libraries in
chapter 38 tell you which functions are recognized by the selection function of that group
library.

There is another function, called the example function that behaves similar to the selection
function. Instead of returning a list of all groups with a certain set of properties it only
returns one such group. The name of the example function is obtained by replacing A1l by
One and stripping the s at the end of the name of the selection function.

gap> OnePrimitiveGroup( Degreelperation, [1..10],
> IsSimple, true,

> IsCyclic, false,

> NumberConjugacyClasses, 9 );
ACT)

The example function works just like the selection function. That means that all the above
comments about the special functions that are recognized also apply to the example function.
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Let us now look at the 2-groups library. It is accessed in the same way as the primitive groups
library. There is an extraction function TwoGroup, a selection function A11TwoGroups, and
an example function OneTwoGroup.

gap> g := TwoGroup( 128, 5 );
Group( al, a2, a3, a4, ab, a6, a7 )
gap> Size( g );

128

gap> NumberConjugacyClasses( g );

80
The groups are all displayed as Group( al, a2, ..., an ), where 2" is the size of the
group.

gap> Al1lTwoGroups( Size, 256,

> Rank, 3,

> pClass, 2 );

[ Group( al, a2, a3, a4, ab, a6, a7, a8 ),
Group( al, a2, a3, a4, a5, a6, a7, a8 ),
Group( al, a2, a3, a4, ab, a6, a7, a8 ),
Group( al, a2, a3, a4, ab, a6, a7, a8 ) 1]

gap> 1 := Al1TwoGroups( Size, 256,
> Rank, 3,

> pClass, 5,

> g -> Length( DerivedSeries( g ) ), 4 );;
gap> Length( 1 );

28

The selection and example function of the 2-groups library recognize Size, Rank, and
pClass. Note that Rank and pClass are functions that can in fact only be used in this
context, i.e., they can not be applied to arbitrary groups.

The following discussion is a bit technical and you can ignore it safely.

For very big group libraries, such as the 2-groups library, the groups (or their compact
representations) are not stored on a single file. This is because this file would be very large
and loading it would take a long time and a lot of main memory.

Instead the groups are stored on a small number of files (27 in the case of the 2-groups).
The selection and example functions are careful to load only those files that may actually
contain groups with the specified properties. For example in the above example the files
containing the groups of size less than 256 are never loaded. In fact in the above example
only one very small file is loaded.

When a file is loaded the selection and example functions also unload the previously loaded
file. That means that they forget all the groups in this file again (except those selected of
course). Thus even if the selection or example functions have to search through the whole
group library, only a small part of the library is held in main memory at any time. In
principle it should be possible to search the whole 2-groups library with as little as 2 MByte
of main memory.

If you have sufficient main memory available you can explicitly load files from the 2-groups
library with ReadTwo ( filename ), e.g., Read( "twogp64") to load the file with the groups
of size 64. Those files will then not be unloaded again. This will take up more main memory,
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but the selection and example function will work faster, because they do not have to load
those files again each time they are needed.

In this section you have seen the basic groups library and the group libraries of primitive
groups and 2-groups. You have seen how you can extract a single group from such a
library with the extraction function. You have seen how you can select groups with certain
properties with the selection and example function. Chapter 38 tells you which other group
libraries are available.
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1.27 About the Implementation of Domains

In this section we will open the black boxes and describe how all this works. This is complex
and you do not need to understand it if you are content to use domains only as black boxes.
So you may want to skip this section (and the remainder of this chapter).

Domains are represented by records, which we will call domain records in the following.
Which components have to be present, which may, and what those components hold, differs
from category to category, and, to a smaller extent, from domain to domain. It is possible,
though, to generally distinguish four types of components.

The first type of components are called the category components. They determine to
which category a domain belongs. A domain D in a category Cat has a component isCat
with the value true. For example, each group has the component isGroup. Also each
domain has the component isDomain (again with the value true). Finally a domain may
also have components that describe the representation of this domain. For example, each
permutation group has a component isPermGroup (again with the value true). Functions
such as IsPermGroup test whether such a component is present, and whether it has the
value true.

The second type of components are called the identification components. They distin-
guish the domain from other domains in the same category. The identification components
uniquely identify the domain. For example, for groups the identification components are
generators, which holds a list of generators of the group, and identity, which holds the
identity of the group (needed for the trivial group, for which the list of generators is empty).

The third type of components are called knowledge components. They hold all the
knowledge GAP3 has about the domain. For example the size of the domain D is stored
in the knowledge component D.size, the commutator subgroup of a group is stored in
the knowledge component D .commutatorSubgroup, etc. Of course, the knowledge about
a certain domain will usually increase as you work with a domain. For example, a group
record may initially hold only the knowledge that the group is finite, but may later hold all
kinds of knowledge, for example the derived series, the Sylow subgroups, etc.

Finally each domain record contains an operations record. The operations record is
discussed below.

We want to emphasize that really all information that GAP3 has about a domain is stored
in the knowledge components. That means that you can access all this information, at least
if you know where to look and how to interpret what you see. The chapters describing
categories and domains will tell you what knowledge components a domain may have, and
how the knowledge is represented in those components.

For an example let us return to the permutation group a5 from section 1.23. If we print the
record using the function PrintRec we see all the information. GAP3 stores the stabilizer
chain of a5 in the components orbit, transversal, and stabilizer. It is not important
that you understand what a stabilizer chain is (this is discussed in chapter 21), the important
point here is that it is the vital information that GAP3 needs to work efficiently with a5 and
that you can access it.

gap> ab := Group( (1,2,3), (3,4,5) );
Group( (1,2,3), (3,4,5) )
gap> Size( ab );
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60
gap> PrintRec( a5 ); Print( "\n" );
rec(
isDomain 1= true,
isGroup := true,
identity =0,
generators =[ (1,2,3), (3,4,5 1,
operations =L,
isPermGroup := true,
isFinite 1= true,
1 = (1,2,3),
2 := (3,4,5),
orbit :=[1, 3, 2,5, 41,
transversal =[O, (1,2,3), (1,2,3), (3,4,5), (3,4,5) 1,
stabilizer := rec(
identity =0,
generators := [ (3,4,5), (2,5,3) 1],
orbit :=[2,3,5,41],
transversal := [ , (), (2,5,3), (3,4,5), (3,4,5) 1,
stabilizer := rec(
identity =0,
generators := [ (3,4,5) 1,
orbit =[3,5,4],
transversal := [ ,, O, (3,4,5), (3,4,5) 1,
stabilizer := rec(
identity = Q,
generators := [ ],
operations := ... ),
operations := ... ),
operations := ... ),
isParent 1= true,
stabChainOptions := rec(
random := 1000,
operations := ... ),
stabChain := rec(
generators := [ (1,2,3), (3,4,5) 1,
identity = 0,
orbit :=[1,3,2,5,41,
transversal := [ O, (1,2,3), (1,2,3), (3,4,5), (3,4,5) 1,
stabilizer := rec(
identity = Q,
generators := [ (3,4,5), (2,5,3) 1,
orbit :=[2,3,5,41],
transversal := [ , ), (2,5,3), (3,4,5), (3,4,5) 1,
stabilizer := rec(
identity = Q,
generators := [ (3,4,5) ],
orbit =[3,5,41,
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transversal := [ ,, O, (3,4,5), (3,4,5) 1,

stabilizer := rec(
identity := O,
generators := [ 1],
operations := ... ),
operations = ),
operations := ... ),
operations := ... ),
size 1= 60 )

Note that you can not only read this information, you can also modify it. However, unless
you truly understand what you are doing, we discourage you from playing around. All GAP3
functions assume that the information in the domain record is in a consistent state, and
everything will go wrong if it is not.

gap> ab.size := 120;

120
gap> Size( ConjugacyClass( a5, (1,2,3,4,5) ) );
24 # this is of course wrong

As was mentioned above, each domain record has an operations record. We have already
seen that functions such as Size can be applied to various types of domains. It is clear that
there is no general method that will compute the size of all domains efficiently. So Size
must somehow decide which method to apply to a given domain. The operations record
makes this possible.

The operations record of a domain D is the component with the name D .operations, its
value is a record. For each function that you can apply to D this record contains a function
that will compute the required information (hopefully in an efficient way).

To understand this let us take a look at what happens when we compute Size( a5 ). Not
much happens. Size simply calls a5.operations.Size( a5 ). ab5.operations.Size is a
function written especially for permutation groups. It computes the size of ab and returns
it. Then Size returns this value.

Actually Size does a little bit more than that. It first tests whether a5 has the knowledge
component ab.size. If this is the case, Size simply returns that value. Otherwise it
calls ab.operations.Size( ab ) to compute the size. Size remembers the result in the
knowledge component a5.size so that it is readily available the next time Size( a5 ) is
called. The complete definition of Size is as follows.

gap> Size := function ( D )

> local size;

> if IsSet( D ) then

> size := Length( D );

> elif IsRec( D ) and IsBound( D.size ) then
> size := D.size;

> elif IsDomain( D ) then

> D.size := D.operations.Size( D );

> size := D.size;

> else

> Error( "<D> must be a domain or a set" );
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> fi;
> return size;
> end;;

Because functions such as Size only dispatch to the functions in the operations record, they
are called dispatcher functions. Almost all functions that you call directly are dispatcher
functions, and almost all functions that do the hard work are components in an operations
record.

Which function is called by a dispatcher obviously depends on the domain and its oper-
ations record (that is the whole point of having an operations record). In principle each
domain could have its own Size function. In practice however, this would require too many
functions. So different domains share the functions in their operations records, usually all
domains with the same representation share all their operations record functions. For exam-
ple all permutation groups share the same Size function. Because this shared Size function
must be able to access the information in the domain record to compute the correct result,
the Size dispatcher function (and all other dispatchers as well) pass the domain as first
argument

In fact the domains not only have the same functions in their operations record, they share
the operations record. So for example all permutation groups share a common operations
record, which is called PermGroupOps. This means that changing a function in the operations
record for a domain D in the following way D .operations.function := new-function;
will also change this function for all domains of the same type, even those that do not
yet exist at the moment of the assignment and will only be constructed later. This is
usually not desirable, since supposedly new-function uses some special properties of the
domain D to work more efficiently. We suggest therefore that you first make a copy of the
operations record with D.operations := Copy( D.operations ); and only afterwards
do D .operations. function := new-function;.

If a programmer that implements a new domain D, a new type of groups say, would have
to write all functions applicable to D, this would require a lot of effort. For example, there
are about 120 functions applicable to groups. Luckily many of those functions are inde-
pendent of the particular type of groups. For example the following function will compute
the commutator subgroup of any group, assuming that TrivialSubgroup, Closure, and
NormalClosure work. We say that this function is generic.

gap> GroupOps.CommutatorSubgroup := function ( U, V )
> local C, u, v, c;

> C := TrivialSubgroup( U );

> for u in U.generators do

> for v in V.generators do

> c := Comm( u, v );

> if not ¢ in C then

> C := Closure( C, c );
> fi;

> od;

> od;

> return NormalClosure( Closure( U, V), C );
> end;;

So it should be possible to use this function for the new type of groups. The mechanism to do
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this is called inheritance. How it works is described in 1.28, but basically the programmer
just copies the generic functions from the generic group operations record into the operations
record for his new type of groups.

The generic functions are also called default functions, because they are used by default,
unless the programmer overlaid them for the new type of groups.

There is another mechanism through which work can be simplified. It is called delegation.
Suppose that a generic function works for the new type of groups, but that some special
cases can be handled more efficiently for the new type of groups. Then it is possible to
handle only those cases and delegate the general cases back to the generic function. An
example of this is the function that computes the orbit of a point under a permutation
group. If the point is an integer then the generic algorithm can be improved by keeping a
second list that remembers which points have already been seen. The other cases (remember
that Orbit can also be used for other operations, e.g., the operation of a permutation group
on pairs of points or the operations on subgroups by conjugation) are delegated back to the
generic function. How this is done can be seen in the following definition.

gap> PermGroupOps.0Orbit := function ( G, d, opr )

> local orb, # orbit of d under G, result
max, # largest point moved by the group G
new, # boolean list indicating if a point is new
gen, # one generator of the group G
pnt, # one point in the orbit orb
img; # image of pnt under gen

# standard operation
if  opr = OnPoints and IsInt(d) then

# get the largest point maz moved by the group G
max := 0;
for gen 1in G.generators do
if max < LargestMovedPointPerm(gen) then
max := LargestMovedPointPerm(gen);
fi;
od;

# handle fixpoints

if not d in [1..max] then
return [ d ];

fi;

# start with the singleton orbit

orb := [ d ];
new := BlistList( [1..max], [1..max] );
newl[d] := false;

# loop over all points found
for pnt in orb do
for gen 1in G.generators do

VVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYV
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img := pnt " gen;
if new[img] then
Add( orb, img );
new[img] := false;
fi;
od;
od;

# other operation, delegate back on default function
else

orb := GroupOps.Orbit( G, d, opr );
fi;

# return the orbit orb
return orb;
end;;

VVVVVVVVVYVVYVVYVVYV

Inheritance and delegation allow the programmer to implement a new type of groups by
merely specifying how those groups differ from generic groups. This is far less work than
having to implement all possible functions (apart from the problem that in this case it is
very likely that the programmer would forget some of the more exotic functions).

To make all this clearer let us look at an extended example to show you how a computation
in a domain may use default and special functions to achieve its goal. Suppose you defined
g, x, and y as follows.

gap> g := SymmetricGroup( 8 );;
gap> x := [ (2,7,4)(3,5), (1,2,6)(4,8) 1;;
gap> y := [ (2,5,7)(4,6), (1,5)(3,8,7) 1;;

Now you ask for an element of g that conjugates x to y, i.e., a permutation on 8 points that
takes (2,7,4)(3,5) to (2,5,7)(4,6) and (1,2,6)(4,8) to (1,5)(3,8,7). This is done
as follows (see 8.25 and 8.1).

gap> RepresentativeOperation( g, x, y, OnTuples );
(1,8)(2,7)(3,4,5,6)

Now lets look at what happens step for step. First RepresentativeOperation is called. Af-
ter checking the arguments it calls the function g.operations.RepresentativeOperation,
which is the function SymmetricGroupOps.RepresentativeOperation, passing the argu-
ments g, x, y, and OnTuples.

SymmetricGroupOps.RepresentativeOperation handles a lot of cases special, but the op-
eration on tuples of permutations is not among them. Therefore it delegates this problem
to the function that it overlays, which is PermGroupOps.RepresentativeOperation.

PermGroupOps.RepresentativeOperation also does not handle this special case, and del-
egates the problem to the function that it overlays, which is the default function called
GroupOps.RepresentativeOperation.

GroupOps .RepresentativeOperation views this problem as a general tuples problem, i.e.,
it does not care whether the points in the tuples are integers or permutations, and decides
to solve it one step at a time. So first it looks for an element taking (2,7,4) (3,5) to
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(2,5,7) (4,6) by calling RepresentativeOperation( g, (2,7,4)(3,5), (2,5,7)(4,6)
).

RepresentativeOperation calls g.operations.RepresentativeOperation next, which is
the function SymmetricGroupOps.RepresentativeOperation, passing the arguments g,
(2,7,4)(3,5), and (2,5,7) (4,6).

SymmetricGroupOps.RepresentativeOperation can handle this case. It knows that g
contains every permutation on 8 points, so it contains (3,4,7,5,6), which obviously does
what we want, namely it takes x[1] to y[1]. We will call this element t.

Now GroupOps.RepresentativeOperation (see above) looks for an s in the stabilizer of
x[1] taking x[2] to y[2]~(t"-1), since then for r=s*t we have x[1]"r = (x[1]"s)"t
= x[1]17t = y[1] and also x[2]"r = (x[2]"s)"t = (y[2]"(t"-1))"t = y[2]. So the
next step is to compute the stabilizer of x[1] in g. To do this it calls Stabilizer( g,
(2,7,4)(3,5) ).

Stabilizer calls g.operations.Stabilizer, which is SymmetricGroupOps.Stabilizer,
passing the arguments g and (2,7,4) (3,5). SymmetricGroupOps.Stabilizer detects that
the second argument is a permutation, i.e., an element of the group, and calls Centralizer(
g, (2,7,4)(3,5) ). Centralizer calls the function g.operations.Centralizer, which
is SymmetricGroupOps.Centralizer, again passing the arguments g, (2,7,4) (3,5).

SymmetricGroupOps.Centralizer again knows how centralizer in symmetric groups look,
and after looking at the permutation (2,7,4) (3,5) sharply for a short while returns the
centralizer as Subgroup( g, [ (1,6), (6,8), (2,7,4), (3,5) 1 ), which we will call c.
Note that c is of course not a symmetric group, therefore SymmetricGroupOps.Subgroup
gives it PermGroupOps as operations record and not SymmetricGroupOps.

As explained above GroupOps.RepresentativeOperation needs an element of c¢ taking
x[2] ((1,2,6)(4,8)) to y[21~(t~-1) ((1,7)(4,6,8)). So RepresentativeOperation(
c, (1,2,6)(4,8), (1,7)(4,6,8) ) is called. RepresentativeOperation in turn calls
the function c.operations.RepresentativeOperation, which is, since c is a permutation
group, the function PermGroupOps.RepresentativeOperation, passing the arguments c,
(1,2,6)(4,8), and (1,7)(4,6,8).

PermGroupOps .RepresentativeOperation detects that the points are permutations and
and performs a backtrack search through c. It finds and returns (1,8)(2,4,7)(3,5),
which we call s.

Then GroupOps.RepresentativeOperation returns r = s*t = (1,8)(2,7)(3,6) (4,5),
and we are done.

In this example you have seen how functions use the structure of their domain to solve
a problem most efficiently, for example SymmetricGroupOps.RepresentativeOperation
but also the backtrack search in PermGroupOps.RepresentativeOperation, how they use
other functions, for example SymmetricGroupOps.Stabilizer called Centralizer, and
how they delegate cases which they can not handle more efficiently back to the func-
tion they overlaid, for example SymmetricGroupOps.RepresentativeOperation delegated
to PermGroupOps .RepresentativeOperation, which in turn delegated to to the function
GroupOps.RepresentativeOperation.

If you think this whole mechanism using dispatcher functions and the operations record is
overly complex let us look at some of the alternatives. This is even more technical than the
previous part of this section so you may want to skip the remainder of this section.
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One alternative would be to let the dispatcher know about the various types of domains,
test which category a domain lies in, and dispatch to an appropriate function. Then we
would not need an operations record. The dispatcher function CommutatorSubgroup would
then look as follows. Note this is not how CommutatorSubgroup is implemented in GAP3.

CommutatorSubgroup := function ( G )
local C;
if IsAgGroup( G ) then
C := CommutatorSubgroupAgGroup( G );
elif IsMatGroup( G ) then
C := CommutatorSubgroupMatGroup( G );
elif IsPermGroup( G ) then
C := CommutatorSubgroupPermGroup( G );
elif IsFpGroup( G ) then
C := CommutatorSubgroupFpGroup( G );
elif IsFactorGroup( G ) then
C := CommutatorSubgroupFactorGroup( G );
elif IsDirectProduct( G ) then
C := CommutatorSubgroupDirectProduct( G );
elif IsDirectProductAgGroup( G ) then
C := CommutatorSubgroupDirectProductAgGroup( G );
elif IsSubdirectProduct( G ) then
C := CommutatorSubgroupSubdirectProduct( G );
elif IsSemidirectProduct( G ) then
C := CommutatorSubgroupSemidirectProduct( G );
elif IsWreathProduct( G ) then
C := CommutatorSubgroupWreathProduct( G );
elif IsGroup( G ) then
C := CommutatorSubgroupGroup( G );
else
Error("<G> must be a group");
fi;
return C;
end;

You already see one problem with this approach. The number of cases that the dispatcher
functions would have to test is simply to large. It is even worse for set theoretic functions,
because they would have to handle all different types of domains (currently about 30).

The other problem arises when a programmer implements a new domain. Then he would
have to rewrite all dispatchers and add a new case to each. Also the probability that the
programmer forgets one dispatcher is very high.

Another problem is that inheritance becomes more difficult. Instead of just copying one
operations record the programmer would have to copy each function that should be inherited.
Again the probability that he forgets one is very high.

Another alternative would be to do completely without dispatchers. In this case there would
be the functions CommutatorSugroupAgGroup, CommutatorSubgroupPermGroup, etc., and it
would be your responsibility to call the right function. For example to compute the size of
a permutation group you would call SizePermGroup and to compute the size of a coset you
would call SizeCoset (or maybe even SizeCosetPermGroup).
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The most obvious problem with this approach is that it is much more cumbersome. You
would always have to know what kind of domain you are working with and which function
you would have to call.

Another problem is that writing generic functions would be impossible. For example the
above generic implementation of CommutatorSubgroup could not work, because for a con-
crete group it would have to call ClosurePermGroup or ClosureAgGroup etc.

If generic functions are impossible, inheritance and delegation can not be used. Thus for
each type of domain all functions must be implemented. This is clearly a lot of work, more
work than we are willing to do.

So we argue that our mechanism is the easiest possible that serves the following two goals.
It is reasonably convenient for you to use. It allows us to implement a large (and ever
increasing) number of different types of domains.

This may all sound a lot like object oriented programming to you. This is not surprising
because we want to solve the same problems that object oriented programming tries to solve.
Let us briefly discuss the similarities and differences to object oriented programming, taking
C++ as an example (because it is probably the widest known object oriented programming
language nowadays). This discussion is very technical and again you may want to skip the
remainder of this section.

Let us first recall the problems that the GAP3 mechanism wants to handle.

1 How can we represent domains in such a way that we can handle domains of different
type in a common way?

2 How can we make it possible to allow functions that take domains of different type
and perform the same operation for those domains (but using different methods)?

3 How can we make it possible that the implementation of a new type of domains
only requires that one implements what distinguishes this new type of domains from
domains of an old type (without the need to change any old code)?

For object oriented programming the problems are the same, though the names used are
different. We talk about domains, object oriented programming talks about objects, and
we talk about categories, object oriented programming talks about classes.

1 How can we represent objects in such a way that we can handle objects of different
classes in a common way (e.g., declare variables that can hold objects of different
classes)?

2 How can we make it possible to allow functions that take objects of different classes

(with a common base class) and perform the same operation for those objects (but
using different methods)?

3 How can we make it possible that the implementation of a new class of objects only
requires that one implements what distinguishes the objects of this new class from
the objects of an old (base) class (without the need to change any old code)?

In GAP3 the first problem is solved by representing all domains using records. Actually
because GAP3 does not perform strong static type checking each variable can hold objects
of arbitrary type, so it would even be possible to represent some domains using lists or
something else. But then, where would we put the operations record?
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C++ does something similar. Objects are represented by struct-s or pointers to structures.
C++ then allows that a pointer to an object of a base class actually holds a pointer to an
object of a derived class.

In GAP3 the second problem is solved by the dispatchers and the operations record. The
operations record of a given domain holds the methods that should be applied to that
domain, and the dispatcher does nothing but call this method.

In C++ it is again very similar. The difference is that the dispatcher only exists conceptu-
ally. If the compiler can already decide which method will be executed by a given call to the
dispatcher it directly calls this function. Otherwise (for virtual functions that may be over-
laid in derived classes) it basically inlines the dispatcher. This inlined code then dispatches
through the so—called virtual method table (vmt). Note that this virtual method table
is the same as the operations record, except that it is a table and not a record.

In GAP3 the third problem is solved by inheritance and delegation. To inherit functions you
simply copy them from the operations record of domains of the old category to the operations
record of domains of the new category. Delegation to a method of a larger category is done
by calling super-category-operations-record . function

C++ also supports inheritance and delegation. If you derive a class from a base class,
you copy the methods from the base class to the derived class. Again this copying is
only done conceptually in C++. Delegation is done by calling a qualified function base-
class: : function.

Now that we have seen the similarities, let us discuss the differences.

The first differences is that GAP3 is not an object oriented programming language. We only
programmed the library in an object oriented way using very few features of the language
(basically all we need is that GAP3 has no strong static type checking, that records can
hold functions, and that records can grow dynamically). Following Stroustrup’s convention
we say that the GAP3 language only enables object oriented programming, but does not
support it.

The second difference is that C+4 adds a mechanism to support data hiding. That means
that fields of a struct can be private. Those fields can only be accessed by the functions
belonging to this class (and friend functions). This is not possible in GAP3. Every field of
every domain is accessible. This means that you can also modify those fields, with probably
catastrophic results.

The final difference has to do with the relation between categories and their domains and
classes and their objects. In GAP3 a category is a set of domains, thus we say that a
domain is an element of a category. In C++ (and most other object oriented programming
languages) a class is a prototype for its objects, thus we say that an object is an instance
of the class. We believe that GAP3’s relation better resembles the mathematical model.

In this section you have seen that domains are represented by domain records, and that you
can therefore access all information that GAP3 has about a certain domain. The following
sections in this chapter discuss how new domains can be created (see 1.28, and 1.29) and
how you can even define a new type of elements (see 1.30).

1.28 About Defining New Domains

In this section we will show how one can add a new domain to GAP3. All domains are
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implemented in the library in this way. We will use the ring of Gaussian integers as our
example.

Note that everything defined here is already in the library file LIBNAME/"gaussian.g", so
there is no need for you to type it in. You may however like to make a copy of this file and
modify it.

The elements of this domain are already available, because Gaussian integers are just a
special case of cyclotomic numbers. As is described in chapter 13 E(4) is GAP3’s name for
the complex root of -1. So all Gaussian integers can be represented as a + b*E(4), where
a and b are ordinary integers.

As was already mentioned each domain is represented by a record. So we create a record to
represent the Gaussian integers, which we call GaussianIntegers.

gap> GaussianIntegers := rec();;

The first components that this record must have are those that identify this record as a
record denoting a ring domain. Those components are called the category components.

gap> Gaussianlntegers.isDomain := true;;
gap> GaussianIntegers.isRing := true;;

The next components are those that uniquely identify this ring. For rings this must be
generators, zero, and one. Those components are called the identification components
of the domain record. We also assign a name component. This name will be printed when
the domain is printed.

gap> GaussianIntegers.generators := [ 1, E(4) 1;;
gap> GaussianIntegers.zero := 0;;
gap> GaussianlIntegers.one := 1;;
gap> GaussianIntegers.name := "GaussianIntegers";;

Next we enter some components that represent knowledge that we have about this domain.
Those components are called the knowledge components. In our example we know that
the Gaussian integers form a infinite, commutative, integral, Euclidean ring, which has an
unique factorization property, with the four units 1, -1, E(4), and -E(4).

gap> GaussianlIntegers.size := "infinity";;
gap> GaussianlIntegers.isFinite = false;;
gap> GaussianIntegers.isCommutativeRing = true;;
gap> GaussianIntegers.isIntegralRing 1= true;;
gap> GaussianlIntegers.isUniqueFactorizationRing := true;;
gap> GaussianlIntegers.isEuclideanRing = true;;

gap> GaussianIntegers.units [1,-1,E(4),-ED)];;

This was the easy part of this example. Now we have to add an operations record to
the domain record. This operations record (GaussianIntegers.operations) shall con-
tain functions that implement all the functions mentioned in chapter 5, e.g., DefaultRing,
IsCommutativeRing, Gcd, or QuotientRemainder.

Luckily we do not have to implement all this functions. The first class of functions that we
need not implement are those that can simply get the result from the knowledge components.
E.g., IsCommutativeRing looks for the knowledge component isCommutativeRing, finds it
and returns this value. So GaussianIntegers.operations.IsCommutativeRing is never
called.
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gap> IsCommutativeRing( GaussianIntegers );
true

gap> Units( GaussianIntegers );

(1, -1, E(4), -E(4) ]

The second class of functions that we need not implement are those for which there is a gen-
eral algorithm that can be applied for all rings. For example once we can do a division with
remainder (which we will have to implement) we can use the general Euclidean algorithm
to compute the greatest common divisor of elements.

So the question is, how do we get those general functions into our operations record. This is
very simple, we just initialize the operations record as a copy of the record RingOps, which
contains all those general functions. We say that GaussianIntegers.operations inherits
the general functions from RingQOps.

gap> GaussianIntegersOps := OperationsRecord(
> "GaussianIntegersOps", RingOps );;
gap> GaussianIntegers.operations := GaussianIntegersOps;;

So now we have to add those functions whose result can not (easily) be derived from the
knowledge components and that we can not inherit from RingOps.

The first such function is the membership test. This function must test whether an object is
an element of the domain GaussianIntegers. IsCycInt(z) tests whether z is a cyclotomic
integer and NofCyc(z) returns the smallest n such that the cyclotomic z can be written
as a linear combination of powers of the primitive n-th root of unity E(n). If NofCyc(z)
returns 1, z is an ordinary rational number.

gap> GaussianIntegersOps.\in := function ( x, GaussInt )
> return IsCycInt( x ) and (NofCyc( x ) = 1 or NofCyc( x ) = 4);
> end;;

Note that the second argument GaussInt is not used in the function. Whenever this function
is called, the second argument must be GaussianIntegers, because GaussianIntegers
is the only domain that has this particular function in its operations record. This also
happens for most other functions that we will write. This argument can not be dropped
though, because there are other domains that share a common in function, for example all
permutation groups have the same in function. If the operator in would not pass the second
argument, this function could not know for which permutation group it should perform the
membership test.

So now we can test whether a certain object is a Gaussian integer or not.

gap> E(4) in GaussianIntegers;

true

gap> 1/2 in GaussianIntegers;

false

gap> GaussianIntegers in GaussianIntegers;
false

Another function that is just as easy is the function Random that should return a random
Gaussian integer.

gap> GaussianIntegersOps.Random := function ( GaussInt )
> return Random( Integers ) + Random( Integers ) * E( 4 );
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> end;;

Note that actually a Random function was inherited from RingOps. But this function can
not be used. It tries to construct the sorted list of all elements of the domain and then
picks a random element from that list. Therefor this function is only applicable for finite
domains, and can not be used for GaussianIntegers. So we overlay this default function
by simply putting another function in the operations record.

Now we can already test whether a Gaussian integer is a unit or not. This is because the
default function inherited from RingOps tests whether the knowledge component units is
present, and it returns true if the element is in that list and false otherwise.

gap> IsUnit( GaussianIntegers, E(4) );
true

gap> IsUnit( GaussianIntegers, 1 + E(4) );
false

Now we finally come to more interesting stuff. The function Quotient should return the
quotient of its two arguments z and y. If the quotient does not exist in the ring (i.e., if it is
a proper Gaussian rational), it must return false. (Without this last requirement we could
do without the Quotient function and always simply use the / operator.)

gap> GaussianIntegersOps.Quotient := function ( GaussInt, x, y )
> local q;

q:=x/7y;

if not IsCycInt( q ) then
q := false;

>

>

>

> fi;

> return q;
> end;;
The next function is used to test if two elements are associate in the ring of Gaussian
integers. In fact we need not implement this because the function that we inherit from
RingOps will do fine. The following function is a little bit faster though that the inherited

one.

gap> GaussianIntegersOps.IsAssociated := function ( GaussInt, x, y )
> return x =y or x = -y or x = E(4)*xy or x = -E(4)*y;
> end;;

We must however implement the function StandardAssociate. It should return an associate
that is in some way standard. That means, whenever we apply StandardAssociate to two
associated elements we must obtain the same value. For Gaussian integers we return that
associate that lies in the first quadrant of the complex plane. That is, the result is that
associated element that has positive real part and nonnegative imaginary part. 0 is its
own standard associate of course. Note that this is a generalization of the absolute value
function, which is StandardAssociate for the integers. The reason that we must implement
StandardAssociate is of course that there is no general way to compute a standard associate
for an arbitrary ring, there is not even a standard way to define this!

gap> GaussianIntegersOps.StandardAssociate := function ( GaussInt, x )
> if IsRat(x) and O <= x then
> return Xx;

> elif IsRat(x) then
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> return -Xx;

> elif 0 < COEFFSCYC(x) [1] and 0 <= COEFFSCYC(x) [2] then
> return Xx;

> elif COEFFSCYC(x) [1] <= 0 and 0 < COEFFSCYC(x) [2] then
> return - E(4) * x;

> elif COEFFSCYC(x) [1] < O and COEFFSCYC(x) [2] <= 0O then
> return - Xx;

> else

> return E(4) * x;

> fi;

> end;;

Note that COEFFSCYC is an internal function that returns the coefficients of a Gaussian
integer (actually of an arbitrary cyclotomic) as a list.

Now we have implemented all functions that are necessary to view the Gaussian integers
plainly as a ring. Of course there is not much we can do with such a plain ring, we can
compute with its elements and can do a few things that are related to the group of units.

gap> Quotient( GaussianIntegers, 2, 1+E(4) );

1-E(4)

gap> Quotient( GaussianIntegers, 3, 1+E(4) );

false

gap> IsAssociated( GaussianIntegers, 1+E(4), 1-E(4) );
true

gap> StandardAssociate( GaussianIntegers, 3 - E(4) );
1+3*E(4)

The remaining functions are related to the fact that the Gaussian integers are an Euclidean
ring (and thus also a unique factorization ring).

The first such function is EuclideanDegree. In our example the Euclidean degree of a
Gaussian integer is of course simply its norm. Just as with StandardAssociate we must
implement this function because there is no general way to compute the Euclidean degree
for an arbitrary Euclidean ring. The function itself is again very simple. The Euclidean
degree of a Gaussian integer z is the product of z with its complex conjugate, which is
denoted in GAP3 by GaloisCyc( z, -1 ).

gap> GaussianIntegersOps.EuclideanDegree := function ( GaussInt, x )
> return x * GaloisCyc( x, -1 );
> end;;

Once we have defined the Euclidean degree we want to implement the QuotientRemainder
function that gives us the Euclidean quotient and remainder of a division.

gap> GaussianIntegersOps.QuotientRemainder := function ( GaussInt, x, y )
> return [ RoundCyc( x/y ), x - RoundCyc( x/y ) * y 1;
> end;;

Note that in the definition of QuotientRemainder we must use the function RoundCyc, which
views the Gaussian rational z/y as a point in the complex plane and returns the point of
the lattice spanned by 1 and E(4) closest to the point z/y. If we would truncate towards
the origin instead (this is done by the function IntCyc) we could not guarantee that the
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result of EuclideanRemainder always has Euclidean degree less than the Euclidean degree
of y as the following example shows.

gap> x := 2 - E(4);; EuclideanDegree( GaussianIntegers, x );
5
gap> y := 2 + E(4);; EuclideanDegree( GaussianIntegers, y );
5

gap> q :=x / y; q := IntCyc( q );

3/5-4/5%E(4)

0

gap> EuclideanDegree( GaussianIntegers, x — q * y );
5

Now that we have implemented the QuotientRemainder function we can compute greatest
common divisors in the ring of Gaussian integers. This is because we have inherited from
RingOps the general function Ged that computes the greatest common divisor using Euclid’s
algorithm, which only uses QuotientRemainder (and StandardAssociate to return the
result in a normal form). Of course we can now also compute least common multiples,
because that only uses Ged.

gap> Gcd( GaussianIntegers, 2, 5 - E(4) );
1+E(4)

gap> Lcm( GaussianIntegers, 2, 5 - E(4) );
6+4+E(4)

Since the Gaussian integers are a Euclidean ring they are also a unique factorization ring.
The next two functions implement the necessary operations. The first is the test for pri-
mality. A rational integer is a prime in the ring of Gaussian integers if and only if it is
congruent to 3 modulo 4 (the other rational integer primes split into two irreducibles), and
a Gaussian integer that is not a rational integer is a prime if its norm is a rational integer
prime.

gap> GaussianIntegersOps.IsPrime := function ( GaussInt, x )
> if IsInt( x ) then

> return x mod 4 = 3 and IsPrimeInt( x );

> else

> return IsPrimeInt( x * GaloisCyc( x, -1 ) );

> fi;

> end;;

The factorization is based on the same observation. We compute the Euclidean degree of
the number that we want to factor, and factor this rational integer. Then for every rational
integer prime that is congruent to 3 modulo 4 we get one factor, and we split the other
rational integer primes using the function TwoSquares and test which irreducible divides.

gap> GaussianIntegersOps.Factors := function ( GaussInt, x )

> local facs, # factors (result)

> prm, # prime factors of the norm

> tsq; # representation of prm as x"2 + y~2
>

> # handle trivial cases

> if x in [ 0, 1, -1, E(4), -E(4) ] then
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return [ x ];
fi;

# loop over all factors of the norm of x
facs := [];
for prm in Set( FactorsInt( EuclideanDegree( x ) ) ) do

# p = 2 and primes p = 1 mod 4 split according to p = x"2+y~2
if prm = 2 or prm mod 4 = 1 then
tsq := TwoSquares( prm );
while IsCycInt( x / (tsql[1l+tsq[2]*E(4)) ) do
Add( facs, (tsql[1l+tsq[2]*E(4)) );
x := x / (tsql[1l+tsq[2]1*E(4));
od;
while IsCycInt( x / (tsql[2]+tsq[1]1*E(4)) ) do
Add( facs, (tsql[2]+tsq[11*E(4)) );
x := x / (tsq[2]+tsq[1]1*E(4));
od;

# primes p = 3 mod 4 stay prime
else
while IsCycInt( x / prm ) do
Add( facs, prm );
X := x / prm;
od;
fi;

od;

# the first factor takes the unit
facs[1] := x * facs[1];

VVVVVVVVVVVVVVVVVVVVVVVVVVYVYVVVYVYVYV

# return the result
> return facs;
> end;;
So now we can factorize numbers in the ring of Gaussian integers.

gap> Factors( GaussianIntegers, 10 );
[ -1-E(4), 1+E(4), 1+2xE(4), 2+E(4) ]
gap> Factors( GaussianIntegers, 103 );
[ 103 ]

Now we have written all the functions for the operations record that implement the oper-
ations. We would like one more thing however. Namely that we can simply write Ged(
2, 5 - E(4) ) without having to specify GaussianIntegers as first argument. Gcd and
the other functions should be clever enough to find out that the arguments are Gaussian
integers and call GaussianIntegers.operations.Gcd automatically.

To do this we must first understand what happens when Gcd is called without a ring as
first argument. For an example suppose that we have called Ged( 66, 123 ) (and want to
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compute the ged over the integers).

First Ged calls DefaultRing( [ 66, 123 ] ), to obtain a ring that contains 66 and 123.
DefaultRing then calls Domain( [ 66, 123 ] ) to obtain a domain, which need not be
a ring, that contains 66 and 123. Domain is the only function in the whole GAP3 library
that knows about the various types of elements. So it looks at its argument and decides
to return the domain Integers (which is in fact already a ring, but it could in princi-
ple also return Rationals). DefaultRing now calls Integers.operations.DefaultRing(
[ 66, 123 ] ) and expects a ring in which the requested gcd computation can be per-
formed. Integers.operations.DefaultRing( [ 66, 123 ] ) also returns Integers. So
DefaultRing returns Integers to Gecd and Ged finally calls Integers.operations.Ged(
Integers, 66, 123 ).

So the first thing we must do is to tell Domain about Gaussian integers. We do this by
extending Domain with the two lines

elif ForAll( elms, IsGaussInt ) then
return GaussianIntegers;

so that it now looks as follows.

gap> Domain := function ( elms )

> local elm;

if ForAll( elms, IsInt ) then
return Integers;

elif ForAll( elms, IsRat ) then
return Rationals;

elif ForAll( elms, ISFFE ) then
return FiniteFieldElements;

elif ForAll( elms, IsPerm ) then
return Permutations;

elif ForAll( elms, IsMat ) then
return Matrices;

elif ForAll( elms, IsWord ) then
return Words;

elif ForAll( elms, IsAgWord ) then
return AgWords;

elif ForAll( elms, IsGaussInt ) then
return GaussianIntegers;

elif ForAll( elms, IsCyc ) then
return Cyclotomics;

else

for elm in elms do

if IsRec(elm) and IsBound(elm.domain)
and ForAll( elms, 1 -> 1 in elm.domain )
then
return elm.domain;

fi;

od;

Error("sorry, the elements lie in no common domain");
fi;

VVVVVVVVVVVVVVVVVVYVVVVVVYVYVYVYV
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> end;;

Of course we must define a function IsGaussInt, otherwise this could not possibly work.
This function is similar to the membership test we already defined above.

gap> IsGaussInt := function ( x )
> return IsCycInt( x ) and (NofCyc( x ) = 1 or NofCyc( x ) = 4);
> end;;

Then we must define a function DefaultRing for the Gaussian integers that does nothing
but return GaussianIntegers.

gap> GaussianIntegersOps.DefaultRing := function ( elms )
> return GaussianIntegers;
> end;;

Now we can call Ged with two Gaussian integers without having to pass GaussianIntegers
as first argument.

gap> Ged( 2, 5 - E(4) );
1+E(4)

Of course GAP3 can not read your mind. In the following example it assumes that you
want to factor 10 over the ring of integers, not over the ring of Gaussian integers (because
Integers is the default ring containing 10). So if you want to factor a rational integer over
the ring of Gaussian integers you must pass GaussianIntegers as first argument.

gap> Factors( 10 );

[2, 5]

gap> Factors( GaussianIntegers, 10 );
[ -1-E(4), 1+E(4), 1+2+%E(4), 2+E(4) 1]

This concludes our example. In the file LIBNAME/"gaussian.g" you will also find the defini-
tion of the field of Gaussian rationals. It is so similar to the above definition that there is no
point in discussing it here. The next section shows you what further considerations are nec-
essary when implementing a type of parametrized domains (demonstrated by implementing
full symmetric permutation groups). For further details see chapter 14 for a description of
the Gaussian integers and rationals and chapter 5 for a list of all functions applicable to
rings.

1.29 About Defining New Parametrized Domains

In this section we will show you an example that is slightly more complex than the example
in the previous section. Namely we will demonstrate how one can implement parametrized
domains. As an example we will implement symmetric permutation groups. This works
similar to the implementation of a single domain. Therefore we can be very brief. Of course
you should have read the previous section.

Note that everything defined here is already in the file GRPNAME/"permgrp.grp", so there is
no need for you to type it in. You may however like to make a copy of this file and modify
it.

In the example of the previous section we simply had a variable (GaussianIntegers), whose
value was the domain. This can not work in this example, because there is not one sym-
metric permutation group. The solution is obvious. We simply define a function that takes
the degree and returns the symmetric permutation group of this degree (as a domain).
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gap> SymmetricPermGroup := function ( n )

> local G; # symmetric group on <n> points, result
>

> # make the group generated by (1,n), (2,n), .., (n-1,n)
> G := Group( List( [1..n-11, i -> (i,n) ), O );

> G.degree := n;

>

> # give it the correct operations record

> G.operations := SymmetricPermGroupOps;

>

> # return the symmetric group

> return G;

> end;;

The key is of course to give the domains returned by SymmetricPermGroup a new operations
record. This operations record will hold functions that are written especially for symmetric
permutation groups. Note that all symmetric groups created by SymmetricPermGroup share
one operations record.

Just as we inherited in the example in the previous section from the operations record
RingOps, here we can inherit from the operations record PermGroupOps (after all, each
symmetric permutation group is also a permutation group).

gap> SymmetricPermGroupOps := Copy( PermGroupOps );

We will now overlay some of the functions in this operations record with new functions
that make use of the fact that the domain is a full symmetric permutation group. The first
function that does this is the membership test function.

gap> SymmetricPermGroupOps.\in := function ( g, G )

> return IsPerm( g )

> and ( g= 0

> or LargestMovedPointPerm( g ) <= G.degree);
> end;;

The most important knowledge for a permutation group is a base and a strong generating
set with respect to that base. It is not important that you understand at this point what
this is mathematically. The important point here is that such a strong generating set with
respect to an appropriate base is used by many generic permutation group functions, most
of which we inherit for symmetric permutation groups. Therefore it is important that we
are able to compute a strong generating set as fast as possible. Luckily it is possible to
simply write down such a strong generating set for a full symmetric group. This is done by
the following function.

gap> SymmetricPermGroupOps.MakeStabChain := function ( G, base )

> local sgs, # strong generating system of G wrt. base
> last; # last point of the base

>

> # remove all unwanted points from the base

> base := Filtered( base, i -> i <= G.degree );

>

> # extend the base with those points not already in the base
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> base := Concatenation( base, Difference( [1..G.degree], base ) );
>

> # take the last point

> last := base[ Length(base) ];

>

> # make the strong generating set

> sgs := List( [1..Length(base)-1], i -> ( basel[i], last ) );
>

> # make the stabilizer chain

> MakeStabChainStrongGenerators( G, base, sgs );

> end;;

One of the things that are very easy for symmetric groups is the computation of centralizers
of elements. The next function does this. Again it is not important that you understand
this mathematically. The centralizer of an element ¢ in the symmetric group is generated
by the cycles ¢ of g and an element z for each pair of cycles of ¢ of the same length that
maps one cycle to the other.

gap> SymmetricPermGroupOps.Centralizer := function ( G, g )
local C, # centralizer of g in G, result
sgs, # strong generating set of C
gen, # one generator in sgs
cycles, # cycles of g
cycle, # one cycle from cycles
lasts, # lasts[1l] is the last cycle of length 1
last, # one cycle from lasts
i; # loop variable

# handle special case
if IsPerm( g ) and g in G then

# start with the empty strong generating system
sgs := [1;

# compute the cycles and find for each length the last one
cycles := Cycles( g, [1..G.degree] );
lasts := [];
for cycle 1in cycles do
lasts[Length(cycle)] := cycle;
od;

# loop over the cycles
for cycle in cycles do

# add that cycle itself to the strong generators
if Length( cycle ) <> 1 then
gen := [1..G.degree];
for i in [1..Length(cycle)-1] do
genl[cycle[i]l] := cycle[i+1];

VVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYV
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od;
gen[cycle[Length(cycle)]] := cyclel[l];
gen := PermList( gen );
Add( sgs, gen );
fi;

# and it can be mapped to the last cycle of this length
if cycle <> lasts[ Length(cycle) ] then
last := lasts[ Length(cycle) 1;

gen := [1..G.degree];

for i in [1..Length(cycle)] do
genlcycle[i]] := last[i];
gen[last[i]l] := cyclelil;

od;

gen := PermList( gen );

Add( sgs, gen );

fi;

od;

# make the centralizer
C := Subgroup( G, sgs );

# make the stabilizer chain
MakeStabChainStrongGenerators( C, [1..G.degreel, sgs );

# delegate general case
else

C := PermGroupOps.Centralizer( G, g );
fi;

# return the centralizer
return C;
end;;

VVVVVVVVVVVVVVVVVVVVVVVVVVYVVVVVYVYVYV

Note that the definition C := Subgroup( G, sgs ); defines a subgroup of a symmetric
permutation group. But this subgroup is usually not a full symmetric permutation group
itself. Thus C must not have the operations record SymmetricPermGroupOps, instead it
should have the operations record PermGroupOps. And indeed C will have this operations
record. This is because Subgroup calls G.operations.Subgroup, and we inherited this
function from PermGroupOps.

Note also that we only handle one special case in the function above. Namely the compu-
tation of a centralizer of a single element. This function can also be called to compute the
centralizer of a whole subgroup. In this case SymmetricPermGroupOps.Centralizer simply
delegates the problem by calling PermGroupOps.Centralizer.

The next function computes the conjugacy classes of elements in a symmetric group. This
is very easy, because two elements are conjugated in a symmetric group when they have the
same cycle structure. Thus we can simply compute the partitions of the degree, and for
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each degree we get one conjugacy class.

gap> SymmetricPermGroupOps.ConjugacyClasses := function ( G )
> local classes, # conjugacy classes of G, result
prt, # partition of G
sum, # partial sum of the entries in prt
rep, # representative of a conjugacy class of G
i, # loop variable

# loop over the partitionms
classes := [];
for prt in Partitions( G.degree ) do

# compute the representative of the conjugacy class
rep := [2..G.degree];

sum := 1;

for i in prt do
rep[sum+i-1] := sum;
sum := sum + 1i;

od;

rep := PermList( rep );

# add the new class to the list of classes
Add( classes, ConjugacyClass( G, rep ) );

od;
# return the classes

return classes;
end;;

VVVVVVVVVVVVVVVVVVVVVVYVYVYVYV

This concludes this example. You have seen that the implementation of a parametrized
domain is not much more difficult than the implementation of a single domain. You have
also seen how functions that overlay generic functions may delegate problems back to the
generic function. The library file for symmetric permutation groups contain some more
functions for symmetric permutation groups.

1.30 About Defining New Group Elements

In this section we will show how one can add a new type of group elements to GAP3. A lot
of group elements in GAP3 are implemented this way, for example elements of generic factor
groups, or elements of generic direct products.

We will use prime residue classes modulo an integer as our example. They have the advan-
tage that the arithmetic is very simple, so that we can concentrate on the implementation
without being carried away by mathematical details.

Note that everything we define is already in the library in the file LIBNAME/"numtheor.g",
so there is no need for you to type it in. You may however like to make a copy of this file
and modify it.
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We will represent residue classes by records. This is absolutely typical, all group elements
not built into the GAP3 kernel are realized by records.

To distinguish records representing residue classes from other records we require that residue
class records have a component with the name isResidueClass and the value true. We
also require that they have a component with the name isGroupElement and again the
value true. Those two components are called the tag components.

Next each residue class record must of course have components that tell us which residue
class this record represents. The component with the name representative contains the
smallest nonnegative element of the residue class. The component with the name modulus
contains the modulus. Those two components are called the identifying components.

Finally each residue class record must have a component with the name operations that
contains an appropriate operations record (see below). In this way we can make use of the
possibility to define operations for records (see 46.4 and 46.5).

Below is an example of a residue class record.

r13mod43 := rec(

isGroupElement := true,
isResidueClass := true,
representative := 13,

modulus 1= 43,

domain := GroupElements,
operations := ResidueClassOps );

The first function that we have to write is very simple. Its only task is to test whether an
object is a residue class. It does this by testing for the tag component isResidueClass.

gap> IsResidueClass := function ( obj )

> return IsRec( obj )

> and IsBound( obj.isResidueClass )
> and obj.isResidueClass;

> end;;

Our next function takes a representative and a modulus and constructs a new residue class.
Again this is not very difficult.

gap> ResidueClass := function ( representative, modulus )
> local res;

> res := rec();

> res.isGroupElement := true;

> res.isResidueClass := true;

> res.representative := representative mod modulus;
> res.modulus := modulus;

> res.domain := GroupElements;

> res.operations := ResidueClassOps;

> return res;

> end;;

Now we have to define the operations record for residue classes. Remember that this record
contains a function for each binary operation, which is called to evaluate such a binary
operation (see 46.4 and 46.5). The operations =, <, *, /, mod, ~, Comm, and Order are the
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ones that are applicable to all group elements. The meaning of those operations for group
elements is described in 7.2 and 7.3.

Luckily we do not have to define everything. Instead we can inherit a lot of those functions
from generic group elements. For example, for all group elements g/h should be equivalent
to gxh~-1. So the function for / could simply be function(g,h) return g+*h~-1; end.
Note that this function can be applied to all group elements, independently of their type,
because all the dependencies are in * and ~.

The operations record GroupElementOps contains such functions that can be used by all
types of group elements. Note that there is no element that has GroupElementsOps as its
operations record. This is impossible, because there is for example no generic method to
multiply or invert group elements. Thus GroupElementsOps is only used to inherit general
methods as is done below.

gap> ResidueClassOps := Copy( GroupElementOps );;

Note that the copy is necessary, otherwise the following assignments would not only change
ResidueClassOps but also GroupElementOps.

The first function we are implementing is the equality comparison. The required operation
is described simply enough. = should evaluate to true if the operands are equal and false
otherwise. Two residue classes are of course equal if they have the same representative and
the same modulus. One complication is that when this function is called either operand
may not be a residue class. Of course at least one must be a residue class otherwise this
function would not have been called at all.

gap> ResidueClassOps.\= := function ( 1, r )
> local isEql;
if IsResidueClass( 1 ) then
if IsResidueClass( r ) then
isEql := 1l.representative = r.representative
and 1.modulus r.modulus;

else
isEql := false;
fi;
else
if IsResidueClass( r ) then
isEql := false;
else
Error("panic, neither <1> nor <r> is a residue class");
fi;
fi;
return isEql;
end;;

VVVVVVVVVYVVYVVYVVYV

Note that the quotes around the equal sign = are necessary, otherwise it would not be taken
as a record component name, as required, but as the symbol for equality, which must not
appear at this place.

Note that we do not have to implement a function for the inequality operator <>, because
it is in the GAP3 kernel implemented by the equivalence [ <> risnot [ = 7.
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The next operation is the comparison. We define that one residue class is smaller than
another residue class if either it has a smaller modulus or, if the moduli are equal, it has a
smaller representative. We must also implement comparisons with other objects.

gap> ResidueClassOps.\< := function ( 1, r )

>

VVVVVVVVVVVVVVVVVVYVYVYV

local isLess;
if IsResidueClass( 1 ) then
if IsResidueClass( r ) then
isLess := 1l.representative < r.representative
or (l.representative = r.representative
and 1.modulus < r.modulus);

else
isLess := not IsInt( r ) and not IsRat( r )
and not IsCyc( r ) and not IsPerm( r )
and not IsWord( r ) and not IsAgWord( r );
fi;
else
if IsResidueClass( r ) then
isLess := IsInt( 1 ) or IsRat( 1)
or IsCyc( 1 ) or IsPerm( 1 )
or IsWord( 1 ) or IsAgWord( 1 );
else
Error("panic, neither <1> nor <r> is a residue class");
fi;
fi;
return islLess;

end;;

The next operation that we must implement is the multiplication *. This function is quite
complex because it must handle several different tasks. To make its implementation easier
to understand we will start with a very simple-minded one, which only multiplies residue
classes, and extend it in the following paragraphs.

gap> ResidueClassOps.\* := function ( 1, r )

>

VVVVVVVVVVYVVYVVYV

local prd; # product of 1 and r, result
if IsResidueClass( 1 ) then
if IsResidueClass( r ) then
if 1l.modulus <> r.modulus then
Error("<1> and <r> must have the same modulus");
fi;
prd := ResidueClass/(
1l.representative * r.representative,
1.modulus );
else
Error ("product of <1> and <r> must be defined");
fi;
else
if IsResidueClass( r ) then
Error ("product of <1> and <r> must be defined");
else
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> Error("panic, neither <1> nor <r> is a residue class");
> fi;

> fi;

> return prd;

> end;;

This function correctly multiplies residue classes, but there are other products that must
be implemented. First every group element can be multiplied with a list of group elements,
and the result shall be the list of products (see 7.3 and 27.13). In such a case the above
function would only signal an error, which is not acceptable. Therefore we must extend this
definition.

gap> ResidueClassOps.\* := function ( 1, r )
> local prd; # product of 1 and r, result
if IsResidueClass( 1 ) then
if IsResidueClass( r ) then
if 1.modulus <> r.modulus then
Error( "<1> and <r> must have the same modulus" );
fi;
prd := ResidueClass(
1l.representative * r.representative,
1.modulus );
elif IsList( r ) then
prd := List( r, x => 1 * x );
else
Error("product of <1> and <r> must be defined");
fi;
elif IsList( 1 ) then
if IsResidueClass( r ) then
prd := List( 1, x => x * r );
else
Error("panic: neither <1> nor <r> is a residue class");
fi;
else
if IsResidueClass( r ) then
Error( "product of <1> and <r> must be defined" );

VVVVVVVVVVVVVVVVVVVVVVVYVVYV

else
Error("panic, neither <1> nor <r> is a residue class");
fi;
fi;
> return prd;
> end;;

This function is almost complete. However it is also allowed to multiply a group element
with a subgroup and the result shall be a coset (see 7.86). The operations record of sub-
groups, which are of course also represented by records (see 7.118), contains a function that
constructs such a coset. The problem is that in an expression like subgroup * residue-class,
this function is not called. This is because the multiplication function in the operations
record of the right operand is called if both operands have such a function (see 46.5). Now
in the above case both operands have such a function. The left operand subgroup has the
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operations record GroupOps (or some refinement thereof), the right operand residue-class
has the operations record ResidueClassOps. Thus ResidueClassOps.* is called. But it
does not and also should not know how to construct a coset. The solution is simple. The
multiplication function for residue classes detects this special case and simply calls the
multiplication function of the left operand.

gap> ResidueClassOps.\* := function ( 1, r )
> local prd; # product of 1 and r, result
if IsResidueClass( 1 ) then
if IsResidueClass( r ) then
if 1.modulus <> r.modulus then
Error( "<1> and <r> must have the same modulus" );
fi;
prd := ResidueClass(
1l.representative * r.representative,
1.modulus );
elif IsList( r ) then
prd := List( r, x => 1 * x );
else
Error ("product of <1> and <r> must be defined");
fi;
elif IsList( 1 ) then
if IsResidueClass( r ) then
prd := List( 1, x => x * r );
else
Error("panic: neither <1> nor <r> is a residue class");
fi;
else
if IsResidueClass( r ) then
if IsRec( 1 ) and IsBound( l.operations )
and IsBound( 1l.operations.\* )
and l.operations.\* <> ResidueClassOps.\*

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYV

then
prd := l.operations.\x( 1, r );
else
Error("product of <1> and <r> must be defined");
fi;
else
Error("panic, neither <1> nor <r> is a residue class");
fi;
fi;
return prd;
end;;

Now we are done with the multiplication.

Next is the powering operation ~. It is not very complicated. The PowerMod function (see
5.25) does most of what we need, especially the inversion of elements with the Euclidean
algorithm when the exponent is negative. Note however, that the definition of operations
(see 7.3) requires that the conjugation is available as power of a residue class by another
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residue class. This is of course very easy since residue classes form an abelian group.

gap> ResidueClassOps.\”~ := function ( 1, r )
> local pow;
if IsResidueClass( 1 ) then
if IsResidueClass( r ) then
if 1.modulus <> r.modulus then
Error("<1> and <r> must have the same modulus");
fi;
if GcdInt( r.representative, r.modulus ) <> 1 then
Error ("<r> must be invertable");
fi;
pow := 1;
elif IsInt( r ) then
pow := ResidueClass(
PowerMod( l.representative, r, l.modulus ),
1.modulus );
else
Error ("power of <1> and <r> must be defined");
fi;
else
if IsResidueClass( r ) then
Error ("power of <1> and <r> must be defined");
else
Error("panic, neither <1> nor <r> is a residue class");

VVVVVVVVVVVVVVVVVVYVVYVYVY

fi;
fi;
> return pow;
> end;;

The last function that we have to write is the printing function. This is called to print
a residue class. It prints the residue class in the form ResidueClass( representative,
modulus ). It is fairly typical to print objects in such a form. This form has the advantage
that it can be read back, resulting in exactly the same element, yet it is very concise.

gap> ResidueClassOps.Print := function ( r )
> Print ("ResidueClass( ",r.representative,", ",r.modulus," )");
> end;;

Now we are done with the definition of residue classes as group elements. Try them. We
can at this point actually create groups of such elements, and compute in them.

However, we are not yet satisfied. There are two problems with the code we have imple-
mented so far. Different people have different opinions about which of those problems is the
graver one, but hopefully all agree that we should try to attack those problems.
The first problem is that it is still possible to define objects via Group (see 7.9) that are not
actually groups.

gap> G := Group( ResidueClass(13,43), ResidueClass(13,41) );

Group( ResidueClass( 13, 43 ), ResidueClass( 13, 41 ) )

The other problem is that groups of residue classes constructed with the code we have
implemented so far are not handled very efficiently. This is because the generic group
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algorithms are used, since we have not implemented anything else. For example to test
whether a residue class lies in a residue class group, all elements of the residue class group
are computed by a Dimino algorithm, and then it is tested whether the residue class is an
element of this proper set.

To solve the first problem we must first understand what happens with the above code if we
create a group with Group( resi, res2... ). Group tries to find a domain that contains
all the elements res!, res2, etc. It first calls Domain( [ res, res2... 1 ) (see 4.5).
Domain looks at the residue classes and sees that they all are records and that they all
have a component with the name domain. This is understood to be a domain in which the
elements lie. And in fact res! in GroupElements is true, because GroupElements accepts
all records with tag isGroupElement. So Domain returns GroupElements. Group then calls
GroupElements.operations.Group(GroupElements, [res! ,res2...],4d), where id is the
identity residue class, obtained by res? ~ 0, and returns the result.

GroupElementsOps.Group is the function that actually creates the group. It does this by
simply creating a record with its second argument as generators list, its third argument
as identity, and the generic GroupOps as operations record. It ignores the first argument,
which is passed only because convention dictates that a dispatcher passes the domain as
first argument.

So to solve the first problem we must achieve that another function instead of the generic
function GroupElementsOps.Group is called. This can be done by persuading Domain to
return a different domain. And this will happen if the residue classes hold this other domain
in their domain component.

The obvious choice for such a domain is the (yet to be written) domain ResidueClasses.
So ResidueClass must be slightly changed.

gap> ResidueClass := function ( representative, modulus )
> local res;

> res := rec();

> res.isGroupElement := true;

> res.isResidueClass := true;

> res.representative := representative mod modulus;
> res.modulus := modulus;

> res.domain := ResidueClasses;

> res.operations := ResidueClassOps;

> return res;

> end;;

The main purpose of the domain ResidueClasses is to construct groups, so there is very
little we have to do. And in fact most of that can be inherited from GroupElements.

gap> ResidueClasses := Copy( GroupElements );;

gap> ResidueClasses.name := "ResidueClasses";;
gap> ResidueClassesOps := Copy( GroupElementsOps );;
gap> ResidueClasses.operations := ResidueClassesOps;;

So now we must implement ResidueClassesOps.Group, which should check whether the
passed elements do in fact form a group. After checking it simply delegates to the generic
function GroupElementsOps.Group to create the group as before.

gap> ResidueClassesOps.Group := function ( ResidueClasses, gens, id )
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> local g; # one generator from gens

> for g in gens do

> if g.modulus <> id.modulus then

> Error("the generators must all have the same modulus");
> fi;

> if GedInt( g.representative, g.modulus ) <> 1 then

> Error("the generators must all be prime residue classes");
> fi;

> od;

> return GroupElementOps.Group( ResidueClasses, gens, id );

> end;;

This solves the first problem. To solve the second problem, i.e., to make operations with
residue class groups more efficient, we must extend the function ResidueClassesOps.Group.
It now enters a new operations record into the group. It also puts the modulus into the
group record, so that it is easier to access.

gap> ResidueClassesOps.Group := function ( ResidueClasses, gens, id )
> local G, # group G, result
gen; # one generator from gens
for gen in gens do
if gen.modulus <> id.modulus then
Error("the generators must all have the same modulus");
fi;
if GcdInt( gen.representative, gen.modulus ) <> 1 then
Error("the generators must all be prime residue classes");
fi;
od;
G := GroupElementsOps.Group( ResidueClasses, gens, id );
G.modulus := id.modulus;
G.operations := ResidueClassGroupOps;
return G;
end;;

VVV VYV VVVVVYVYVVYV

Of course now we must build such an operations record. Luckily we do not have to implement
all functions, because we can inherit a lot of functions from GroupOps. This is done by
copying GroupOps as we have done before for ResidueClassOps and ResidueClassesOps.

gap> ResidueClassGroupOps := Copy( GroupOps );;

Now the first function that we must write is the Subgroup function to ensure that not only
groups constructed by Group have the correct operations record, but also subgroups of those
groups created by Subgroup. As in Group we only check the arguments and then leave the
work to GroupOps . Subgroup.

gap> ResidueClassGroupOps.Subgroup := function ( G, gens )

> local S, # subgroup of G, result

> gen; # one generator from gens

> for gen in gens do

> if gen.modulus <> G.modulus then

> Error("the generators must all have the same modulus");
> fi;
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> if GcdInt( gen.representative, gen.modulus ) <> 1 then

> Error("the generators must all be prime residue classes");
> fi;

> od;

> S := GroupOps.Subgroup( G, gens );

> S.modulus := G.modulus;

> S.operations := ResidueClassGroupOps;

> return S;

> end;;

The first function that we write especially for residue class groups is SylowSubgroup. Since
residue class groups are abelian we can compute a Sylow subgroup of such a group by simply
taking appropriate powers of the generators.

gap> ResidueClassGroupOps.SylowSubgroup := function ( G, p )

> local 8§, # Sylow subgroup of G, result
> gen, # one generator of G

> ord, # order of gen

> gens; # generators of S

> gens := [];

> for gen in G.generators do

> ord := OrderMod( gen.representative, G.modulus );
> while ord mod p = 0 do ord := ord / p; od;
> Add( gens, gen ~ ord );

> od;

> S := Subgroup( Parent( G ), gens );

> return S;

> end;;

To allow the other functions that are applicable to residue class groups to work efficiently
we now want to make use of the fact that residue class groups are direct products of cyclic
groups and that we know what those factors are and how we can project onto those factors.

To do this we write ResidueClassGroupOps . MakeFactors that adds the components facts,
roots, sizes, and sgs to the group record G. This information, detailed below, will enable
other functions to work efficiently with such groups. Creating such information is a fairly
typical thing, for example for permutation groups the corresponding information is the
stabilizer chain computed by MakeStabChain.

G .facts will be the list of prime power factors of G'.modulus. Actually this is a little bit
more complicated, because the residue class group modulo the largest power ¢ of 2 that
divides G .modulus need not be cyclic. So if ¢ is a multiple of 4, G.facts[1] will be 4,
corresponding to the projection of G into (Z/42)* (of size 2), furthermore if ¢ is a multiple of
8, G.facts[2] will be ¢, corresponding to the projection of G into the subgroup generated
by 5 in (Z/qZ)* (of size q/4).

G .roots will be a list of primitive roots, i.e., of generators of the corresponding factors in
G .facts. G.sizes will be a list of the sizes of the corresponding factors in G .facts, i.e.,
G .sizes[i] = Phi( G.facts[i] ). (If G.modulus is a multiple of 8, G .roots[2] will
be 5, and G.sizes[2] will be ¢/4.)

Now we can represent each element g of the group G by a list e, called the exponent
vector, of the length of G.facts, where e[i] is the logarithm of ¢g.representative mod
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G .facts[i] with respect to G.roots[i]. The multiplication of elements of G corresponds
to the componentwise addition of their exponent vectors, where we add modulo G .sizes[i]
in the i-th component. (Again special consideration are necessary if G .modulus is divisible
by 8.)

Next we compute the exponent vectors of all generators of G, and represent this information
as a matrix. Then we bring this matrix into upper triangular form, with an algorithm that
is very much like the ordinary Gaussian elimination, modified to account for the different
sizes of the components. This upper triangular matrix of exponent vectors is the component
G .sgs. This new matrix obviously still contains the exponent vectors of a generating system
of G, but a much nicer one, which allows us to tackle problems one component at a time. (It
is not necessary that you fully check this, the important thing here is not the mathematical
side.)

gap> ResidueClassGroupOps.MakeFactors := function ( G )

local p, q, # prime factor of modulus and largest power
r, s, # two rows of the standard generating system
g, # extended gcd of leading entries in r, s
X, ¥, # two entries in r and s
i, k, 1; # loop variables

# find the factors of the direct product
G.facts := [];

G.roots := []1;

G.sizes := [];

for p in Set( Factors( G.modulus ) ) do
q = Pp;

while G.modulus mod (p*q) = O do q := pxq; od;
if q mod 4 = 0 then

Add( G.facts, 4 );
Add( G.roots, 3 );
Add( G.sizes, 2 );

fi;

if q mod 8 = 0 then
Add( G.facts, q );
Add( G.roots, 5 );
Add( G.sizes, q/4 );

fi;

if p <> 2 then
Add( G.facts, q );
Add( G.roots, PrimitiveRootMod( q ) );
Add( G.sizes, (p-1)*q/p );
fi;
od;

# represent each generator in this factorization

G.sgs := []1;

for k in [ 1 .. Length( G.generators ) ] do
G.sgs[k] := [1;

VVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV
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for i in [ 1 .. Length( G.facts ) ] do
if G.facts[i] mod 8 = 0 then
if G.generators[k].representative mod 4 = 1
G.sgs[k][i] := LogMod(
G.generators[k] .representative,
G.roots[i], G.facts[i] );
else
G.sgs[k][i] := LogMod(
-G.generators [k] .representative,
G.roots[i], G.facts[i] );
fi;
else
G.sgs[k][i] := LogMod(
G.generators [k] .representative,
G.roots[i], G.facts[i] );
fi;
od;
od;
for i in [ Length( G.sgs ) + 1 .. Length( G.facts ) ]
G.sgs[i] := 0 x G.facts;
od;

# bring this matrix to diagonal form
for i in [ 1 .. Length( G.facts ) ] do
r := G.sgs[il;
for k¥ in [ i+l .. Length( G.sgs ) ] do
s := G.sgs[k];
g := Gedex( r[i], s[i] );
for in [ i .. Length( r ) ] do
x :=r[1]; vy := s[1];

od;
od;
s := [1;
x := G.sizes[i] / GecdInt( G.sizes[i], rl[i] );

for 1 in [ 1 .. Length( r ) 1 do
s[1] := (x * r[1]) mod G.sizes[1l];
od;
Add( G.sgs, s );

od;

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVVVYVVYVYVVVYVYV

end;;
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then

do

r[1] := (g.coeffl * x + g.coeff2 * y) mod G.sizes[1];
s[1] := (g.coeff3 * x + g.coeff4 * y) mod G.sizes[1];

With the information computed by MakeFactors it is now of course very easy to compute
the size of a residue class group. We just look at the G.sgs, and multiply the orders of the

leading exponents of the nonzero exponent vectors.

gap> ResidueClassGroupOps.Size := function ( G )
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local s, # size of G, result
i, # loop variable
if not IsBound( G.facts ) then
G.operations.MakeFactors( G );

for i in [ 1 .. Length( G.facts ) ] do

s := s x G.sizes[i] / GcdInt( G.sizes[i], G.sgs[i][i] );
od;
return s;

end;;

The membership test is a little bit more complicated. First we test that the first argument
is really a residue class with the correct modulus. Then we compute the exponent vector of
this residue class and reduce this exponent vector using the upper triangular matrix G.sgs.

gap> ResidueClassGroupOps.\in := function ( res, G )

> local s, # exponent vector of res
g, # extended gcd
X, V, # two entries in s and G.sgs[i]
i, 1; # loop variables

VVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYV

if not IsResidueClass( res )

or res.modulus <> G.modulus

or GedInt( res.representative, res.modulus ) <> 1
then

return false;
fi;
if not IsBound( G.facts ) then

G.operations.MakeFactors( G );
fi;
s := [1;
for i in [ 1 .. Length( G.facts ) ] do

if G.facts[i] mod 8 = 0 then

if res.representative mod 4 = 1 then
s[i] := LogMod( res.representative,
G.roots[i], G.facts[i] );

else
s[i] := LogMod( -res.representative,
G.roots[i], G.facts[i] );
fi;
else
s[i] := LogMod( res.representative,
G.roots[i], G.facts[i] );
fi;

od;
for i in [ 1 .. Length( G.facts ) ] do
if s[i] mod GecdInt( G.sizes[i], G.sgs[i][i] ) <> O then
return false;
fi;
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> g := Gedex( s[i], G.sgs[i][i] );

> for 1 in [ i .. Length( G.facts ) ] do

> x := s[1l]; y := G.sgs[i][1];

> s[1] := (g.coeff3 * x + g.coeff4 * y) mod G.sizes[1];
> od;

> od;

> return true;

> end;;

We also add a function Random that works by creating a random exponent as a random
linear combination of the exponent vectors in G .sgs, and converts this exponent vector to
a residue class. (The main purpose of this function is to allow you to create random test
examples for the other functions.)

gap> ResidueClassGroupOps.Random := function ( G )

> local s, # exponent vector of random element
r, # vector of remainders in each factor
i, k, 1; # loop variables

if not IsBound( G.facts ) then
G.operations.MakeFactors( G );
fi;
s := 0 % G.facts;
for i in [ 1 .. Length( G.facts ) ] do
1 := G.sizes[i] / GcdInt( G.sizes[i], G.sgs[i][i] );
k := Random( [ 0 .. 1-1 1 );
for 1 in [ i .. Length( s ) ] do
s[1] := (s[1] + k * G.sgs[i]1[1]) mod G.sizes[1];
od;
od;
r := [];
for 1 in [ 1 .. Length( s ) ] do
r[1] := PowerModInt( G.roots[1], s[1], G.facts[1l] );
if G.facts[1l] mod 8 = 0 and r[1] = 3 then
r[1] := G.facts[1] - r[1];

VVVVVVVVVVVVVVVVVVYVYVYVYV

fi;
od;
return ResidueClass( ChineseRem( G.facts, r ), G.modulus );
end;;

There are a lot more functions that would benefit from being implemented especially for
residue class groups. We do not show them here, because the above functions already
displayed how such functions can be written.

To round things up, we finally add a function that constructs the full residue class group
given a modulus m. This function is totally independent of the implementation of residue
classes and residue class groups. It only has to find a (minimal) system of generators of the
full prime residue classes group, and to call Group to construct this group. It also adds the
information entry size to the group record, of course with the value ¢(n).

gap> PrimeResidueClassGroup := function ( m )
> local G, # group Z/mZ, result
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gens, # generators of G

P> 9> # prime and prime power dividing m
r, # primitive root modulo q

g; # is = r mod q and = 1 mod m/q

# add generators for each prime power factor q of m
gens := [];
for p in Set( Factors( m ) ) do

q = Pps

while m mod (g * p) = 0 do q :=q * p; od;

# (Z/4Z2)"*% = < 3 >
if q =4 then

r := 3;
g :=r +qx* (((1/qg mod (m/q)) * (1 - r)) mod (m/q));
Add( gens, ResidueClass( g, m ) );

# (Z/8nZ)"* = < 5, -1 > is not cyclic

elif q mod 8 = 0 then
r :=q-1;
g :=r +qx* (((1/q mod (m/q)) * (1 - r)) mod (m/q));
Add( gens, ResidueClass( g, m ) );
r := b;
g :=r +q* (((1/qg mod (m/q)) * (1 - r)) mod (m/q));
Add( gens, ResidueClass( g, m ) );

# for odd q, (Z/qZ)"* is cyclic

elif q <> 2 then
r := PrimitiveRootMod( q );
g :=r +q* (((1/g mod (m/q)) * (1 - r)) mod (m/q));
Add( gens, ResidueClass( g, m ) );

fi;

od;

# return the group generated by gens
G := Group( gens, ResidueClass( 1, m ) );
G.size := Phi( n );
return G;
end;;

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

There is one more thing that we can learn from this example. Mathematically a residue
class is not only a group element, but a set as well. We can reflect this in GAP3 by turning
residue classes into domains (see 4). Section 1.28 gives an example of how to implement a
new domain, so we will here only show the code with few comments.

First we must change the function that constructs a residue class, so that it enters the
necessary fields to tag this record as a domain. It also adds the information that residue
classes are infinite.
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gap> ResidueClass := function ( representative, modulus )
> local res;

> res := rec();

> res.isGroupElement := true;

> res.isDomain := true;

> res.isResidueClass := true;

> res.representative := representative mod modulus;
> res.modulus := modulus;

> res.isFinite := false;

> res.size := "infinity";

> res.domain := ResidueClasses;

> res.operations := ResidueClassOps;

> return res;

> end;;

The initialization of the ResidueClassOps record must be changed too, because now we
want to inherit both from GroupElementsOps and DomainOps. This is done by the func-
tion MergedRecord, which takes two records and returns a new record that contains all
components from either record.

Note that the record returned by MergedRecord does not have those components that appear
in both arguments. This forces us to explicitly write down from which record we want to
inherit those functions, or to define them anew. In our example the components common to
GroupElementOps and DomainOps are only the equality and ordering functions, which we
have to define anyhow. (This solution for the problem of which definition to choose in the
case of multiple inheritance is also taken by C++.)

With this function definition we can now initialize ResidueClassOps.
gap> ResidueClassOps := MergedRecord( GroupElementOps, DomainOps );;
Now we add all functions to this record as described above.

Next we add a function to the operations record that tests whether a certain object is in a
residue class.

gap> ResidueClassOps.\in := function ( element, class )

> if IsInt( element ) then

> return (element mod class.modulus = class.representative);
> else

> return false;

> fi;

> end;;

Finally we add a function to compute the intersection of two residue classes.

gap> ResidueClassOps.Intersection := function ( R, S )

> local I, # intersection of R and S, result
> ged; # gcd of the moduli

> if IsResidueClass( R ) then

> if IsResidueClass( S ) then

> gcd := GecdInt( R.modulus, S.modulus );

> if R.representative mod gcd

> <> S.representative mod gcd
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> then

> I:=1[];

> else

> I := ResidueClass(

> ChineseRem(

> [ R.modulus, S.modulus ] ,
> [ R.representative, S.representative ]),
> Lem(  R.modulus, S.modulus ) );
> fi;

> else

> I := DomainOps.Intersection( R, S );

> fi;

> else

> I := DomainOps.Intersection( R, S );

> fi;

> return I;

> end;;

There is one further thing that we have to do. When Group is called with a single argument
that is a domain, it assumes that you want to create a new group such that there is a
bijection between the original domain and the new group. This is not what we want here.
We want that in this case we get the cyclic group that is generated by the single residue
class. (This overloading of Group is probably a mistake, but so is the overloading of residue
classes, which are both group elements and domains.) The following definition solves this
problem.

gap> ResidueClassOps.Group := function ( R )
> return ResidueClassesOps.Group( ResidueClasses, [R], R70 );
> end;;

This concludes our example. There are however several further things that you could do.
One is to add functions for the quotient, the modulus, etc. Another is to fix the functions
so that they do not hang if asked for the residue class group mod 1. Also you might try
to implement residue class rings analogous to residue class groups. Finally it might be
worthwhile to improve the speed of the multiplication of prime residue classes. This can be
done by doing some precomputation in ResidueClass and adding some information to the
residue class record for prime residue classes ([Mon85]).



Chapter 2

The Programming Language

This chapter describes the GAP3 programming language. It should allow you in principle to
predict the result of each and every input. In order to know what we are talking about, we
first have to look more closely at the process of interpretation and the various representations
of data involved.

First we have the input to GAP3, given as a string of characters. How those characters enter
GAP3 is operating system dependent, e.g., they might be entered at a terminal, pasted
with a mouse into a window, or read from a file. The mechanism does not matter. This
representation of expressions by characters is called the external representation of the
expression. Every expression has at least one external representation that can be entered
to get exactly this expression.

The input, i.e., the external representation, is transformed in a process called reading to
an internal representation. At this point the input is analyzed and inputs that are not legal
external representations, according to the rules given below, are rejected as errors. Those
rules are usually called the syntax of a programming language.

The internal representation created by reading is called either an expression or a state-
ment. Later we will distinguish between those two terms, however now we will use them
interchangeably. The exact form of the internal representation does not matter. It could be
a string of characters equal to the external representation, in which case the reading would
only need to check for errors. It could be a series of machine instructions for the processor
on which GAP3 is running, in which case the reading would more appropriately be called
compilation. It is in fact a tree-like structure.

After the input has been read it is again transformed in a process called evaluation or
execution. Later we will distinguish between those two terms too, but for the moment
we will use them interchangeably. The name hints at the nature of this process, it replaces
an expression with the value of the expression. This works recursively, i.e., to evaluate an
expression first the subexpressions are evaluated and then the value of the expression is
computed according to rules given below from those values. Those rules are usually called
the semantics of a programming language.

The result of the evaluation is, not surprisingly, called a value. The set of values is of course
a much smaller set than the set of expressions; for every value there are several expressions
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that will evaluate to this value. Again the form in which such a value is represented internally
does not matter. It is in fact a tree-like structure again.

The last process is called printing. It takes the value produced by the evaluation and
creates an external representation, i.e., a string of characters again. What you do with this
external representation is up to you. You can look at it, paste it with the mouse into another
window, or write it to a file.

Lets look at an example to make this more clear. Suppose you type in the following string
of 8 characters

1+ 2 % 3

GAP3 takes this external representation and creates a tree like internal representation, which
we can picture as follows

+
/\
1 *
/ \
2 3

This expression is then evaluated. To do this GAP3 first evaluates the right subexpression
2x3. Again to do this GAP3 first evaluates its subexpressions 2 and 3. However they are
so simple that they are their own value, we say that they are self-evaluating. After this
has been done, the rule for * tells us that the value is the product of the values of the two
subexpressions, which in this case is clearly 6. Combining this with the value of the left
operand of the +, which is self-evaluating too gives us the value of the whole expression 7.
This is then printed, i.e., converted into the external representation consisting of the single
character 7.

In this fashion we can predict the result of every input when we know the syntactic rules that
govern the process of reading and the semantic rules that tell us for every expression how
its value is computed in terms of the values of the subexpressions. The syntactic rules are
given in sections 2.1, 2.2, 2.3, 2.4, 2.5, and 2.20, the semantic rules are given in sections 2.6,
2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, and the chapters describing
the individual data types.

2.1 Lexical Structure

The input of GAP3 consists of sequences of the following characters.

Digits, uppercase and lowercase letters, space, tab, newline, and the special characters

" ’ ( ) * + s _
. / : ; < = > ~
[ \ ] - _ { } #

Other characters will be signalled as illegal. Inside strings and comments the full character
set supported by the computer is allowed.

2.2 Language Symbols

The process of reading, i.e., of assembling the input into expressions, has a subprocess,
called scanning, that assembles the characters into symbols. A symbol is a sequence of
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characters that form a lexical unit. The set of symbols consists of keywords, identifiers,
strings, integers, and operator and delimiter symbols.

A keyword is a reserved word consisting entirely of lowercase letters (see 2.4). An identifier
is a sequence of letters and digits that contains at least one letter and is not a keyword
(see 2.5). An integer is a sequence of digits (see 10). A string is a sequence of arbitrary
characters enclosed in double quotes (see 30).

Operator and delimiter symbols are

_ * / ~ ~
= <> < <= > >=
= . . -> s ;
[ ] { } ( )

Note that during the process of scanning also all whitespace is removed (see 2.3).

2.3 Whitespaces

The characters space, tab, newline, and return are called whitespace characters. Whites-
pace is used as necessary to separate lexical symbols, such as integers, identifiers, or key-
words. For example Thorondor is a single identifier, while Th or ondor is the keyword or
between the two identifiers Th and ondor. Whitespace may occur between any two sym-
bols, but not within a symbol. Two or more adjacent whitespaces are equivalent to a single
whitespace. Apart from the role as separator of symbols, whitespaces are otherwise insignif-
icant. Whitespaces may also occur inside a string, where they are significant. Whitespaces
should also be used freely for improved readability.

A comment starts with the character #, which is sometimes called sharp or hatch, and
continues to the end of the line on which the comment character appears. The whole
comment, including # and the newline character is treated as a single whitespace. Inside a
string, the comment character # looses its role and is just an ordinary character.

For example, the following statement
if i<0 then a:=-i;else a:=i;fi;

is equivalent to

if 1 < 0 then # if 1 is negative

a := -i; # take its inverse
else # otherwise

a = i; # take itself
fi;

(which by the way shows that it is possible to write superfluous comments). However the
first statement is not equivalent to

ifi<Othena:=-i;elsea:=i;fi;

since the keyword if must be separated from the identifier i by a whitespace, and similarly
then and a, and else and a must be separated.
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2.4 Keywords

Keywords are reserved words that are used to denote special operations or are part of
statements. They must not be used as identifiers. The keywords are

and do elif else end fi
for function if in local mod
not od or repeat return then
until while quit

Note that all keywords are written in lowercase. For example only else is a keyword; Else,
eLsE, ELSE and so forth are ordinary identifiers. Keywords must not contain whitespace,
for example el if is not the same as elif.

2.5 Identifiers

An identifier is used to refer to a variable (see 2.7). An identifier consists of letters, digits,
and underscores _, and must contain at least one letter or underscore. An identifier is
terminated by the first character not in this class. Examples of valid identifiers are

a foo aLongldentifier
hello Hello HELLO
x100 100x _100

some_people_prefer_underscores_to_separate_words
WePreferMixedCaseToSeparateWords

Note that case is significant, so the three identifiers in the second line are distinguished.

The backslash \ can be used to include other characters in identifiers; a backslash followed
by a character is equivalent to the character, except that this escape sequence is considered
to be an ordinary letter. For example G\ (2\,5\) is an identifier, not a call to a function G.

An identifier that starts with a backslash is never a keyword, so for example \* and \mod
are identifier.

The length of identifiers is not limited, however only the first 1023 characters are significant.
The escape sequence \newline is ignored, making it possible to split long identifiers over
multiple lines.

2.6 Expressions

An expression is a construct that evaluates to a value. Syntactic constructs that are
executed to produce a side effect and return no value are called statements (see 2.11).
Expressions appear as right hand sides of assignments (see 2.12), as actual arguments in
function calls (see 2.8), and in statements.

Note that an expression is not the same as a value. For example 1 + 11 is an expression,
whose value is the integer 12. The external representation of this integer is the character
sequence 12, i.e., this sequence is output if the integer is printed. This sequence is another
expression whose value is the integer 12. The process of finding the value of an expression
is done by the interpreter and is called the evaluation of the expression.

Variables, function calls, and integer, permutation, string, function, list, and record literals
(see 2.7, 2.8, 10, 20, 30, 2.18, 27, 46), are the simplest cases of expressions.
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Expressions, for example the simple expressions mentioned above, can be combined with
the operators to form more complex expressions. Of course those expressions can then be
combined further with the operators to form even more complex expressions. The operators
fall into three classes. The comparisons are =, <>, <=, > >= and in (see 2.9 and 27.14).
The arithmetic operators are +, -, *, /, mod, and ~ (see 2.10). The logical operators
are not, and, and or (see 45.2).

gap> 2 * 2; # a very simple expression with value

4

gap> 2 * 2 + 9 = Fibonacci(7) and Fibonacci(13) in Primes;
true # a more complex expression

2.7 Variables

A variable is a location in a GAP3 program that points to a value. We say the variable is
bound to this value. If a variable is evaluated it evaluates to this value.

Initially an ordinary variable is not bound to any value. The variable can be bound to a
value by assigning this value to the variable (see 2.12). Because of this we sometimes say
that a variable that is not bound to any value has no assigned value. Assignment is in fact
the only way by which a variable, which is not an argument of a function, can be bound to
a value. After a variable has been bound to a value an assignment can also be used to bind
the variable to another value.

A special class of variables are arguments of functions. They behave similarly to other
variables, except they are bound to the value of the actual arguments upon a function call
(see 2.8).

Each variable has a name that is also called its identifier. This is because in a given scope
an identifier identifies a unique variable (see 2.5). A scope is a lexical part of a program text.
There is the global scope that encloses the entire program text, and there are local scopes
that range from the function keyword, denoting the beginning of a function definition, to
the corresponding end keyword. A local scope introduces new variables, whose identifiers
are given in the formal argument list and the local declaration of the function (see 2.18).
Usage of an identifier in a program text refers to the variable in the innermost scope that
has this identifier as its name. Because this mapping from identifiers to variables is done
when the program is read, not when it is executed, GAP3 is said to have lexical scoping. The
following example shows how one identifier refers to different variables at different points in
the program text.

g = 0; # global variable g
x := function ( a, b, c )
local Vs
g 1= c; # c refers to argument c of function x

y := function ( y )
local d, e, f;

d :=y; # y refers to argument y of function y
e := b; # b refers to argument b of function x
f :=g; # g refers to global variable g

return d + e + £f;
end;
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return y( a ); # y refers to local y of function x
end;

It is important to note that the concept of a variable in GAP3 is quite different from the
concept of a variable in programming languages like PASCAL. In those languages a variable
denotes a block of memory. The value of the variable is stored in this block. So in those
languages two variables can have the same value, but they can never have identical values,
because they denote different blocks of memory. (Note that PASCAL has the concept of
a reference argument. It seems as if such an argument and the variable used in the actual
function call have the same value, since changing the argument’s value also changes the value
of the variable used in the actual function call. But this is not so; the reference argument is
actually a pointer to the variable used in the actual function call, and it is the compiler that
inserts enough magic to make the pointer invisible.) In order for this to work the compiler
needs enough information to compute the amount of memory needed for each variable in a
program, which is readily available in the declarations PASCAL requires for every variable.

In GAP3 on the other hand each variable justs points to a value.

2.8 Function Calls

function-var ()

function-var C arg-expr {, arg-ezpr} )

The function call has the effect of calling the function function-var. The precise semantics
are as follows.

First GAP3 evaluates the function-var. Usually function-var is a variable, and GAP3 does
nothing more than taking the value of this variable. It is allowed though that function-var
is a more complex expression, namely it can for example be a selection of a list element
list-var [int-expr], or a selection of a record component record-var . ident. In any case GAP3
tests whether the value is a function. If it is not, GAP3 signals an error.

Next GAP3 checks that the number of actual arguments arg-exprs agrees with the number
of formal arguments as given in the function definition. If they do not agree GAP3 signals
an error. An exception is the case when there is exactly one formal argument with the name
arg, in which case any number of actual arguments is allowed.

Now GAP3 allocates for each formal argument and for each formal local a new variable.
Remember that a variable is a location in a GAP3 program that points to a value. Thus for
each formal argument and for each formal local such a location is allocated.

Next the arguments arg-ezprs are evaluated, and the values are assigned to the newly created
variables corresponding to the formal arguments. Of course the first value is assigned to
the new variable corresponding to the first formal argument, the second value is assigned to
the new variable corresponding to the second formal argument, and so on. However, GAP3
does not make any guarantee about the order in which the arguments are evaluated. They
might be evaluated left to right, right to left, or in any other order, but each argument is
evaluated once. An exception again occurs if the function has only one formal argument
with the name arg. In this case the values of all the actual arguments are stored in a list
and this list is assigned to the new variable corresponding to the formal argument arg.

The new variables corresponding to the formal locals are initially not bound to any value.
So trying to evaluate those variables before something has been assigned to them will signal
an error.
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Now the body of the function, which is a statement, is executed. If the identifier of one of
the formal arguments or formal locals appears in the body of the function it refers to the
new variable that was allocated for this formal argument or formal local, and evaluates to
the value of this variable.

If during the execution of the body of the function a return statement with an expression
(see 2.19) is executed, execution of the body is terminated and the value of the function call
is the value of the expression of the return. If during the execution of the body a return
statement without an expression is executed, execution of the body is terminated and the
function call does not produce a value, in which case we call this call a procedure call (see
2.13). If the execution of the body completes without execution of a return statement, the
function call again produces no value, and again we talk about a procedure call.

gap> Fibonacci( 11 );
# a call to the function Fibonacci with actual argument 11
89

gap> G.operations.RightCosets( G, Intersection( U, V) );;
# a call to the function in G.operations.RightCosets
# where the second actual argument is another function call

2.9 Comparisons

left-expr = right-expr
left-expr <> right-expr

The operator = tests for equality of its two operands and evaluates to true if they are equal
and to false otherwise. Likewise <> tests for inequality of its two operands. Note that
any two objects can be compared, i.e., = and <> will never signal an error. For each type
of objects the definition of equality is given in the respective chapter. Objects of different
types are never equal, i.e., = evaluates in this case to false, and <> evaluates to true.

left-expr < right-expr
left-expr > right-expr
left-expr <= right-expr
left-expr >= right-expr

< denotes less than, <= less than or equal, > greater than, and >= greater than or equal
of its two operands. For each type of objects the definition of the ordering is given in the
respective chapter. The ordering of objects of different types is as follows. Rationals are
smallest, next are cyclotomics, followed by finite field elements, permutations, words, words
in solvable groups, boolean values, functions, lists, and records are largest.

Comparison operators, which includes the operator in (see 27.14) are not associative, i.e.,
it is not allowed to write @ = b <> ¢ = d, you must use (a = b) <> (¢ = d) instead.
The comparison operators have higher precedence than the logical operators (see 45.2), but
lower precedence than the arithmetic operators (see 2.10). Thus, for example, a * b = ¢
and d is interpreted, ((a * b) = ¢) and d).

gap> 2 * 2 + 9 = Fibonacci(7); # a comparison where the left
true # operand is an expression
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2.10 Operations

+ right-expr

- right-expr

left-expr + right-expr
left-expr - right-expr
left-expr * right-expr
left-expr / right-expr
left-expr mod right-expr
left-expr = right-expr

The arithmetic operators are +, -, *, /, mod, and . The meanings (semantic) of those
operators generally depend on the types of the operands involved, and they are defined in
the various chapters describing the types. However basically the meanings are as follows.

+ denotes the addition, and - the subtraction of ring and field elements. * is the multi-
plication of group elements, / is the multiplication of the left operand with the inverse of
the right operand. mod is only defined for integers and rationals and denotes the modulo
operation. + and - can also be used as unary operations. The unary + is ignored and unary
- is equivalent to multiplication by -1. ~ denotes powering of a group element if the right
operand is an integer, and is also used to denote operation if the right operand is a group
element.

The precedence of those operators is as follows. The powering operator ~ has the highest
precedence, followed by the unary operators + and -, which are followed by the multiplica-
tive operators *, /, and mod, and the additive binary operators + and - have the lowest
precedence. That means that the expression -2 =~ -2 * 3 + 1 is interpreted as (-(2 ~
(-2)) * 3) + 1. If in doubt use parentheses to clarify your intention.

The associativity of the arithmetic operators is as follows.” is not associative, i.e., it is
illegal to write 27374, use parentheses to clarify whether you mean (2°3) ~ 4or2 ~ (374).
The unary operators + and - are right associative, because they are written to the left of
their operands. *, /, mod, +, and - are all left associative, i.e., 1-2-3 is interpreted as
(1-2)-3 not as 1-(2-3). Again, if in doubt use parentheses to clarify your intentions.

The arithmetic operators have higher precedence than the comparison operators (see 2.9
and 27.14) and the logical operators (see 45.2). Thus, for example, a * b = ¢ and d is
interpreted, (Ca * b) = ¢) and d.

gap> 2 * 2 + 9; # a very simple arithmetic expression
13

2.11 Statements

Assignments (see 2.12), Procedure calls (see 2.13), if statements (see 2.14), while (see
2.15), repeat (see 2.16) and for loops (see 2.17), and the return statement (see 2.19) are
called statements. They can be entered interactively or be part of a function definition.
Every statement must be terminated by a semicolon.

Statements, unlike expressions, have no value. They are executed only to produce an effect.
For example an assignment has the effect of assigning a value to a variable, a for loop has
the effect of executing a statement sequence for all elements in a list and so on. We will
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talk about evaluation of expressions but about execution of statements to emphasize this
difference.

It is possible to use expressions as statements. However this does cause a warning.

gap> if i <> 0 then k = 16/i; f£fi;
Syntax error: warning, this statement has no effect
if i <> 0 then k = 16/i; fi;

As you can see from the example this is useful for those users who are used to languages
where = instead of := denotes assignment.

A sequence of one or more statements is a statement sequence, and may occur everywhere
instead of a single statement. There is nothing like PASCAL’s BEGIN-END, instead each
construct is terminated by a keyword. The most simple statement sequence is a single
semicolon, which can be used as an empty statement sequence.

2.12 Assignments

var = exrpr;

The assignment has the effect of assigning the value of the expressions ezpr to the variable
var.

The variable var may be an ordinary variable (see 2.7), a list element selection list-var Lint-
expr] (see 27.6) or a record component selection record-var.ident (see 46.2). Since a list
element or a record component may itself be a list or a record the left hand side of an
assignment may be arbitrarily complex.

Note that variables do not have a type. Thus any value may be assigned to any variable.
For example a variable with an integer value may be assigned a permutation or a list or
anything else.

If the expression ezpr is a function call then this function must return a value. If the
function does not return a value an error is signalled and you enter a break loop (see 3.2).
As usual you can leave the break loop with quit;. If you enter return return-expr; the
value of the expression return-ezpr is assigned to the variable, and execution continues after
the assignment.

gap> S6 := rec( size := 720 );; S6;
rec(
size := 720 )
gap> S6.generators := [ (1,2), (1,2,3,4,5) 1;; S6;

rec(

size := 720,

generators := [ (1,2), (1,2,3,4,5) 1)
gap> S6.generators[2] := (1,2,3,4,5,6);; S6;
rec(

size := 720,

generators := [ (1,2), (1,2,3,4,5,6) 1)
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2.13 Procedure Calls

procedure-var () ;
procedure-var ( arg-expr {, arg-expr} );

The procedure call has the effect of calling the procedure procedure-var. A procedure call is
done exactly like a function call (see 2.8). The distinction between functions and procedures
is only for the sake of the discussion, GAP3 does not distinguish between them.

A function does return a value but does not produce a side effect. As a convention the name
of a function is a noun, denoting what the function returns, e.g., Length, Concatenation
and Order.

A procedure is a function that does not return a value but produces some effect. Procedures
are called only for this effect. As a convention the name of a procedure is a verb, denoting
what the procedure does, e.g., Print, Append and Sort.

gap> Read( "myfile.g" ); # a call to the procedure Read
gap> 1 := [ 1, 2 1;;
gap> Append( 1, [3,4,5] ); # a call to the procedure Append

214 If

if bool-exprl then statementsl

{ elif bool-expr2 then statements?2 }

[ else statements3 ]

fi;

The if statement allows one to execute statements depending on the value of some boolean
expression. The execution is done as follows.

First the expression bool-exprl following the if is evaluated. If it evaluates to true the
statement sequence statements! after the first then is executed, and the execution of the
if statement is complete.

Otherwise the expressions bool-expr2 following the elif are evaluated in turn. There may
be any number of elif parts, possibly none at all. As soon as an expression evaluates to
true the corresponding statement sequence statements?2 is executed and execution of the
if statement is complete.

If the if expression and all, if any, elif expressions evaluate to false and there is an else
part, which is optional, its statement sequence statements3 is executed and the execution of
the if statement is complete. If there is no else part the if statement is complete without
executing any statement sequence.

Since the if statement is terminated by the £i keyword there is no question where an else
part belongs, i.e., GAP3 has no dangling else.

In if expri then if expr2 then statsl else stats? fi; fi;

the else part belongs to the second if statement, whereas in

if exprl then if expr?2 then statsl fi; else stats2 fi;

the else part belongs to the first if statement.

Since an if statement is not an expression it is not possible to write

abs := if x > 0 then x; else -x; fi;
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which would, even if legal syntax, be meaningless, since the if statement does not produce
a value that could be assigned to abs.

If one expression evaluates neither to true nor to false an error is signalled and a break
loop (see 3.2) is entered. As usual you can leave the break loop with quit;. If you enter
return true;, execution of the if statement continues as if the expression whose evaluation
failed had evaluated to true. Likewise, if you enter return false;, execution of the if
statement continues as if the expression whose evaluation failed had evaluated to false.
gap> 1 := 10;;
gap> if 0 < i then
> s = 1;
elif i < 0 then
s := -1;
else
s := 0;
fi;
ap> s;

—0Q V V V V.V

# the sign of i
2.15 Wihile

while bool-expr do statements od;

The while loop executes the statement sequence statements while the condition bool-expr
evaluates to true.

First bool-expr is evaluated. If it evaluates to false execution of the while loop terminates
and the statement immediately following the while loop is executed next. Otherwise if it
evaluates to true the statements are executed and the whole process begins again.

The difference between the while loop and the repeat until loop (see 2.16) is that the
statements in the repeat until loop are executed at least once, while the statements in
the while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see 3.2)
is entered. As usual you can leave the break loop with quit;. If you enter return false;,
execution continues with the next statement immediately following the while loop. If you
enter return true;, execution continues at statements, after which the next evaluation of
bool-expr may cause another error.

gap> i := 0;; s := 0;;

gap> while s <= 200 do

> i:=1i+1; s :=s8+ 1i72;

> od;

gap> s;

204 # first sum of the first i squares larger than 200

2.16 Repeat

repeat statements until bool-expr;

The repeat loop executes the statement sequence statements until the condition bool-expr
evaluates to true.
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First statements are executed. Then bool-expr is evaluated. If it evaluates to true the
repeat loop terminates and the statement immediately following the repeat loop is executed
next. Otherwise if it evaluates to false the whole process begins again with the execution
of the statements.

The difference between the while loop (see 2.15) and the repeat until loop is that the
statements in the repeat until loop are executed at least once, while the statements in
the while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false a error is signalled and a break loop (see 3.2)
is entered. As usual you can leave the break loop with quit;. If you enter return true;,
execution continues with the next statement immediately following the repeat loop. If you
enter return false;, execution continues at statements, after which the next evaluation of
bool-expr may cause another error.

gap> i := 0;; s :=0;;

gap> repeat

> i:=1i+1; s :=s8+ i"2;

> until s > 200;

gap> s;

204 # first sum of the first i squares larger than 200
2.17 For

for simple-var in list-expr do statements od;

The for loop executes the statement sequence statements for every element of the list list-
expr.

The statement sequence statements is first executed with simple-var bound to the first
element of the list list, then with simple-var bound to the second element of list and so on.
simple-var must be a simple variable, it must not be a list element selection list-var [int-
expr] or a record component selection record-var . ident.

The execution of the for loop is exactly equivalent to the while loop

loop-list := list;

loop-index := 1;

while loop-index <= Length(loop-list) do
variable := loop-list [loop-index] ;
statements
loop-index := loop-indexr + 1;

od;

with the exception that loop-list and loop-index are different variables for each for loop
that do not interfere with each other.

The list list is very often a range.

for wariable in [from..to]l do statements od;
corresponds to the more common

for wariable from from to to do statements od;
in other programming languages.

gap> s := 0;;
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gap> for
>

> od;
gap> s;
5050

i
s

in [1..100] do

s + i,

207

Note in the following example how the modification of the list in the loop body causes the

loop body also to be executed for the new values

gap> 1 := [ 1, 2, 3, 4, 5, 6 1;;

gap> for
>
>

i

if i mod 2 =0 then Add( 1, 3 xi / 2 );

in 1 do
Print( i, " " );

> od; Print( "\n" );

123456362929

gap> 1;

[ 1, 2’ 3’ 4’ 5’ 6, 3’ 6’ 9, 9 ]

fi;

Note in the following example that the modification of the variable that holds the list has

no influence on the loop

gap> 1 := [1, 2, 3, 4, 5, 6 1;;

"n.n ) ;

gap> for i in 1 do
> Print( i,
> 1:=[1;

> od; Print( "\n" );
123456

gap> 1;

L]

2.18 Functions

function ( [ arg-ident {, arg-ident} | )

[ local
statements
end

loc-ident {, loc-ident} ; ]

A function is in fact a literal and not a statement. Such a function literal can be assigned

to a variable or to a list element or a record component. Later this function can be called
as described in 2.8.

The following is an example of a function definition. It is a function to compute values of
the Fibonacci sequence (see 47.22)

gap> fib
>

vV V. V V V Vv

:= function ( n )
local f1, f2, f£3,

f1 :=
for i
f1

od;

2 :

in
£3 :

f2 = 1;
[3..n] do
f1 + £2;
£2;

£3;
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> return f2;

> end;;

gap> List( [1..10], fib );

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ]
Because for each of the formal arguments arg-ident and for each of the formal locals loc-
ident a new variable is allocated when the function is called (see 2.8), it is possible that a
function calls itself. This is usually called recursion. The following is a recursive function
that computes values of the Fibonacci sequence

gap> fib := function ( n )

> if n < 3 then

> return 1;

> else

> return fib(n-1) + fib(n-2);
> fi;

> end; ;

gap> List( [1..10], fib );
[1,1, 2, 3, 5, 8, 13, 21, 34, 55 ]

Note that the recursive version needs 2 * fib(n)-1 steps to compute fib(n), while the
iterative version of fib needs only n-2 steps. Both are not optimal however, the library
function Fibonacci only needs on the order of Log(n) steps.

arg-ident -> expr

This is a shorthand for

function ( arg-ident ) return ezrpr; end.

arg-ident must be a single identifier, i.e., it is not possible to write functions of several
arguments this way. Also arg is not treated specially, so it is also impossible to write
functions that take a variable number of arguments this way.

The following is an example of a typical use of such a function

gap> Sum( List( [1..100], x -> x°2 ) );
338350

When a function funi definition is evaluated inside another function fun2, GAP3 binds
all the identifiers inside the function fun! that are identifiers of an argument or a local of
fun2 to the corresponding variable. This set of bindings is called the environment of the
function funi. When funl is called, its body is executed in this environment. The following
implementation of a simple stack uses this. Values can be pushed onto the stack and then
later be popped off again. The interesting thing here is that the functions push and pop in
the record returned by Stack access the local variable stack of Stack. When Stack is called
a new variable for the identifier stack is created. When the function definitions of push and
pop are then evaluated (as part of the return statement) each reference to stack is bound
to this new variable. Note also that the two stacks A and B do not interfere, because each
call of Stack creates a new variable for stack.

gap> Stack := function ()

> local stack;

> stack := [];

> return rec(

> push := function ( value )
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> Add( stack, value );

> end,

> pop := function ()

> local value;

> value := stack[Length(stack)];
> Unbind( stack[Length(stack)] );
> return value;

> end

> );

> end;;

gap> A := StackQ);;

gap> B := Stack(Q);;

gap> A.push( 1 ); A.push( 2 ); A.push( 3 );
gap> B.push( 4 ); B.push( 5 ); B.push( 6 )
gap> A.pop(); A.pop(); A.popQ);

>

gap> B.pop(); B.pop(); B.popQ);

This feature should be used rarely, since its implementation in GAP3 is not very efficient.

2.19 Return

return;

In this form return terminates the call of the innermost function that is currently executing,
and control returns to the calling function. An error is signalled if no function is currently
executing. No value is returned by the function.

return expr;

In this form return terminates the call of the innermost function that is currently executing,
and returns the value of the expression expr. Control returns to the calling function. An
error is signalled if no function is currently executing.

Both statements can also be used in break loops (see 3.2). return; has the effect that the
computation continues where it was interrupted by an error or the user hitting ctrC. return
expr; can be used to continue execution after an error. What happens with the value expr
depends on the particular error.

2.20 The Syntax in BNF

This section contains the definition of the GAP3 syntax in Backus-Naur form.

A BNF is a set of rules, whose left side is the name of a syntactical construct. Those names
are enclosed in angle brackets and written in italics. The right side of each rule contains
a possible form for that syntactic construct. Each right side may contain names of other
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syntactic constructs, again enclosed in angle brackets and written in italics, or character
sequences that must occur literally; they are written in typewriter style.

Furthermore each righthand side can contain the following metasymbols written in bold-
face. If the right hand side contains forms separated by a pipe symbol (|) this means that
one of the possible forms can occur. If a part of a form is enclosed in square brackets ([ ])
this means that this part is optional, i.e. might be present or missing. If part of the form
is enclosed in curly braces ({ }) this means that the part may occur arbitrarily often, or
possibly be missing.



2.20. THE SYNTAX IN BNF

Ident
Var

List

Record

Permutation :

Function

Char
String
Int
Atom

Factor
Term
Arith
Rel
And
Log
Ezpr

Statement

Statements

al...|z|Al...|Z|- {a]...|z|Al...|Z|0]...|9]-}
Ident

Var . Ident

Var . ( Ezpr)

Var [ Expr ]

Var { Expr }

Var ([ Ezpr { , Ezpr }])

([ Bapr ] {, [ Eapr] } ]

[ Expr |, Expr] .. Expr]

rec( [ Ident := Expr {, Ident := Expr } |)
( Expr {, Ezpr } ) { ( Expr {, Ezpr } ) }
function ([ Ident {, Ident }])

[ local Ident {, Ident } ; ]
Statements

end

> any character ’

" { any character } "

0|1]...|]9 { 0|1]...]9 }

Int

Var

( BExpr)

Permutation

Char

String

Function

List

Record

{+|=} Atom [ = {+|-} Atom |
Factor { *|/|mod Factor }

Term { +|- Term }

{ not } Arith { =|<>|<|>|<=|>=|in Arith }
Rel { and Rel }

And { or And }

Log

Var [ => Log |
FExpr

Var := Expr

if Fzpr then Statements
{ elif Expr then Statements }
[ else Statements | £i
for Var in Ezpr do Statements od
while Expr do Statements od
repeat Statements until Fxpr
return [ Ezpr |
quit

Statement ; }

’

211
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Chapter 3

Environment

This chapter describes the interactive environment in which you use GAP3.

The first sections describe the main read eval print loop and the break loop (see 3.1, 3.2,
and 3.3).

The next section describes the commands you can use to edit the current input line (see
3.4).

The next sections describe the GAP3 help system (see 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11).

The next sections describe the input and output functions (see 3.12, 3.13, 3.14, 3.15, 3.16,
3.17, 3.18, and 3.19).

The next sections describe the functions that allow you to collect statistics about a compu-
tation (see 3.20, 3.21).

The last sections describe the functions that allow you to execute other programs as sub-
processes from within GAP3 (see 3.22 and 3.23).

3.1 Main Loop

The normal interaction with GAP3 happens in the so—called read eval print loop. This
means that you type an input, GAP3 first reads it, evaluates it, and prints the result. The
exact sequence is as follows.

To show you that it is ready to accept your input, GAP3 displays the prompt gap> . When
you see this, you know that GAP3 is waiting for your input.

Note that every statement must be terminated by a semicolon. You must also enter return
before GAP3 starts to read and evaluate your input. Because GAP3 does not do anything
until you enter return, you can edit your input to fix typos and only when everything is
correct enter return and have GAP3 take a look at it (see 3.4). It is also possible to enter
several statements as input on a single line. Of course each statement must be terminated
by a semicolon.

It is absolutely acceptable to enter a single statement on several lines. When you have
entered the beginning of a statement, but the statement is not yet complete, and you enter
return, GAP3 will display the partial prompt > . When you see this, you know that GAP3

213
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is waiting for the rest of the statement. This happens also when you forget the semicolon ;
that terminates every GAP3 statement.

When you enter return, GAP3 first checks your input to see if it is syntactically correct
(see chapter 2 for the definition of syntactically correct). If it is not, GAP3 prints an error
message of the following form

gap> 1 * ;

Syntax error: expression expected

1 % ;
The first line tells you what is wrong about the input, in this case the * operator takes two
expressions as operands, so obviously the right one is missing. If the input came from a file
(see 3.12), this line will also contain the filename and the line number. The second line is a
copy of the input. And the third line contains a caret pointing to the place in the previous
line where GAP3 realized that something is wrong. This need not be the exact place where
the error is, but it is usually quite close.

Sometimes, you will also see a partial prompt after you have entered an input that is
syntactically incorrect. This is because GAP3 is so confused by your input, that it thinks
that there is still something to follow. In this case you should enter ;return repeatedly,
ignoring further error messages, until you see the full prompt again. When you see the full
prompt, you know that GAP3 forgave you and is now ready to accept your next — hopefully
correct — input.

If your input is syntactically correct, GAP3 evaluates or executes it, i.e., performs the re-
quired computations (see chapter 2 for the definition of the evaluation).

If you do not see a prompt, you know that GAP3 is still working on your last input. Of
course, you can type ahead, i.e., already start entering new input, but it will not be
accepted by GAP3 until GAP3 has completed the ongoing computation.

When GAP3 is ready it will usually print the result of the computation, i.e., the value
computed. Note that not all statements produce a value, for example, if you enter a for
loop, nothing will be printed, because the for loop does not produce a value that could be
printed.

Also sometimes you do not want to see the result. For example if you have computed a
value and now want to assign the result to a variable, you probably do not want to see the
value again. You can terminate statements by two semicolons to suppress the printing of
the result.

If you have entered several statements on a single line GAP3 will first read, evaluate, and
print the first one, then read evaluate, and print the second one, and so on. This means
that the second statement will not even be checked for syntactical correctness until GAP3
has completed the first computation.

After the result has been printed GAP3 will display another prompt, and wait for your next
input. And the whole process starts all over again. Note that a new prompt will only be
printed after GAP3 has read, evaluated, and printed the last statement if you have entered
several statements on a single line.

In each statement that you enter the result of the previous statement that produced a value
is available in the variable last. The next to previous result is available in 1last2 and the
result produced before that is available in last3.
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gap> 1; 2; 3;

1

2

3

gap> last3 + last2 * last;
7

Also in each statement the time spent by the last statement, whether it produced a value
or not, is available in the variable time. This is an integer that holds the number of
milliseconds.

3.2 Break Loops

When an error has occurred or when you interrupt GAP3, usually by hitting ctr-C, GAP3
enters a break loop, that is in most respects like the main read eval print loop (see 3.1).
That is, you can enter statements, GAP3 reads them, evaluates them, and prints the result
if any. However those evaluations happen within the context in which the error occurred.
So you can look at the arguments and local variables of the functions that were active when
the error happened and even change them. The prompt is changed from gap> to brk> to
indicate that you are in a break loop.

There are two ways to leave a break loop.

The first is to quit the break loop and continue in the main loop. To do this you enter quit;
or hit the eof (end of file) character, which is usually ctr-D. In this case control returns to
the main loop, and you can enter new statements.

The other way is to return from a break loop. To do this you enter return; or return
expr;. If the break loop was entered because you interrupted GAP3, then you can continue
by entering return;. If the break loop was entered due to an error, you usually have to
return a value to continue the computation. For example, if the break loop was entered
because a variable had no assigned value, you must return the value that this variable
should have to continue the computation.

3.3 Error

Error( messages... )

Error signals an error. First the messages messages are printed, this is done exactly as if
Print (see 3.14) were called with these arguments. Then a break loop (see 3.2) is entered,
unless the standard error output is not connected to a terminal. You can leave this break
loop with return; to continue execution with the statement following the call to Error.

3.4 Line Editing

GAP3 allows you to edit the current input line with a number of editing commands. Those
commands are accessible either as control keys or as escape keys. You enter a control
key by pressing the ctr key, and, while still holding the ctr key down, hitting another key
key. You enter an escape key by hitting esc and then hitting another key key. Below we
denote control keys by ctr-key and escape keys by esc-key. The case of key does not matter,
i.e., ctr-A and ctr-a are equivalent.
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Characters not mentioned below always insert themselves at the current cursor position.
The first few commands allow you to move the cursor on the current line.

ctr-A move the cursor to the beginning of the line.

esc-B move the cursor to the beginning of the previous word.
ctr-B move the cursor backward one character.

ctr-F move the cursor forward one character.

esc-F move the cursor to the end of the next word.

ctr-E move the cursor to the end of the line.

The next commands delete or kill text. The last killed text can be reinserted, possibly at a
different position with the yank command.

ctr-H or del delete the character left of the cursor.

ctr-D delete the character under the cursor.

ctr-K kill up to the end of the line.

esc-D kill forward to the end of the next word.

esc-del kill backward to the beginning of the last word.
ctr-X kill entire input line, and discard all pending input.
ctr-Y insert (yank) a just killed text.

The next commands allow you to change the input.

ctr-T exchange (twiddle) current and previous character.
esc-U uppercase next word.
esc-L lowercase next word.
esc-C capitalize next word.

The tab character, which is in fact the control key ctr-I, looks at the characters before the
cursor, interprets them as the beginning of an identifier and tries to complete this identifier.
If there is more than one possible completion, it completes to the longest common prefix of all
those completions. If the characters to the left of the cursor are already the longest common
prefix of all completions hitting tab a second time will display all possible completions.

tab complete the identifier before the cursor.

The next commands allow you to fetch previous lines, e.g., to correct typos, etc. This history
is limited to about 8000 characters.

ctr-L insert last input line before current character.

ctr-P redisplay the last input line, another ctr-P will redisplay the line before that, etc. If
the cursor is not in the first column only the lines starting with the string to the left of the
cursor are taken.

ctr-N Like ctr-P but goes the other way round through the history.

esc-< goes to the beginning of the history.

esc-> goes to the end of the history.

ctr-0 accepts this line and perform a ctr-N.

Finally there are a few miscellaneous commands.

ctr-V enter next character literally, i.e., enter it even if it is one of the control keys.
ctr-U execute the next command 4 times.

esc-num execute the next command num times.

esc-ctr-L repaint input line.
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3.5 Help

This section describes together with the following sections the GAP3 help system. The help
system lets you read the manual interactively.

?section

The help command ? displays the section with the name section on the screen. For example
7Help will display this section on the screen. You should not type in the single quotes, they
are only used in help sections to delimit text that you should enter into GAP3 or that GAP3
prints in response. When the whole section has been displayed the normal GAP3 prompt
gap> is shown and normal GAP3 interaction resumes.

The section 3.6 tells you what actions you can perform while you are reading a section. You
command GAP3 to display this section by entering 7Reading Sections, without quotes.
The section 3.7 describes the format of sections and the conventions used, 3.8 lists the
commands you use to flip through sections, 3.9 describes how to read a section again, 3.10
tells you how to avoid typing the long section names, and 3.11 describes the index command.

3.6 Reading Sections

If the section is longer than 24 lines GAP3 stops after 24 lines and displays
-- <space> for more --

If you press space GAP3 displays the next 24 lines of the section and then stops again.
This goes on until the whole section has been displayed, at which point GAP3 will return
immediately to the main GAP3 loop. Pressing f has the same effect as space.

You can also press b or the key labeled del which will scroll back to the previous 24 lines
of the section. If you press b or del when GAP3 is displaying the top of a section GAP3 will
ring the bell.

You can also press q to quit and return immediately back to the main GAP3 loop without
reading the rest of the section.

Actually the 24 is only a default, if you have a larger screen that can display more lines of
text you may want to tell this to GAP3 with the -y rows option when you start GAP3.

3.7 Format of Sections

This section describes the format of sections when they are displayed on the screen and the
special conventions used.

As you can see GAP3 indents sections 4 spaces and prints a header line containing the name
of the section on the left and the name of the chapter on the right.

<text>

Text enclosed in angle brackets is used for arguments in the descriptions of functions and
for other placeholders. It means that you should not actually enter this text into GAP3 but
replace it by an appropriate text depending on what you want to do. For example when
we write that you should enter ?section to see the section with the name section, section
servers as a placeholder, indicating that you can enter the name of the section that you
want to see at this place. In the printed manual such text is printed in italics.
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‘text’

Text enclosed in single quotes is used for names of variables and functions and other text
that you may actually enter into your computer and see on your screen. The text enclosed
in single quotes may contain placeholders enclosed in angle brackets as described above. For
example when the help text for IsPrime says that the form of the call is >IsPrime( <n>
)’ this means that you should actually enter the IsPrime( and ), without the quotes, but
replace the n with the number (or expression) that you want to test. In the printed manual
this text is printed in a monospaced (all characters have the same width) typewriter font.

n teXt n

Text enclosed in double quotes is used for cross references to other parts of the manual. So
the text inside the double quotes is the name of another section of the manual. This is used
to direct you to other sections that describe a topic or a function used in this section. So
for example 3.10 is a cross reference to the next section. In the printed manual the text is
replaced by the number of the section.

_and "

In mathematical formulas the underscore and the caret are used to denote subscription and
superscription. Ordinarily they apply only to the very next character following, unless a
whole expression enclosed in parentheses follows. So for example x_1~(i+1) denotes the
variable x with subscript 1 raised to the i+1 power. In the printed manual mathematical
formulas are typeset in italics (actually mathitalics) and subscripts and superscripts are
actually lowered and raised.

Longer examples are usually paragraphs of their own that are indented 8 spaces from the
left margin, i.e. 4 spaces further than the surrounding text. Everything on the lines with
the prompts gap> and >, except the prompts themselves of course, is the input you have to
type, everything else is GAP3’s response. In the printed manual examples are also indented
4 spaces and are printed in a monospaced typewriter font.

gap> 7Format of Sectiomns

Format of Sections _____________________________ _________ Environment
This section describes the format of sections when they are displayed
on the screen and the special conventions used.

3.8 Browsing through the Sections

The help sections are organized like a book into chapters. This should not surprise you,
since the same source is used both for the printed manual and the online help. Just as you
can flip through the pages of a book there are special commands to browse through the help
sections.

7>

7<

The two help commands 7< and 7> correspond to the flipping of pages. 7< takes you to

the section preceding the current section and displays it, and 7> takes you to the section
following the current section.
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7<<
?>>

7<< is like 7<, only more so. It takes you back to the first section of the current chapter,
which gives an overview of the sections described in this chapter. If you are already in this
section 7<< takes you to the first section of the previous chapter. 7>> takes you to the first
section of the next chapter.

?_

7+

GAP3 remembers the sections that you have read. 7- takes you to the one that you have
read before the current one, and displays it again. Further ?- takes you further back in this
history. 7+ reverses this process, i.e., it takes you back to the section that you have read
after the current one. It is important to note, that ?- and 7+ do not alter the history like
the other help commands.

3.9 Redisplaying a Section

?

The help command ? followed by no section name redisplays the last help section again. So
if you reach the bottom of a long help section and already forgot what was mentioned at
the beginning, or, for example, the examples do not seem to agree with your interpretation
of the explanations, use 7 to read the whole section again from the beginning.

When 7 is used before any section has been read GAP3 displays the section Welcome to
GAP.

3.10 Abbreviating Section Names

Upper and lower case in section are not distinguished, so typing either 7Abbreviating
Section Names or 7abbreviating section names will show this very section.

Each word in section may be abbreviated. So instead of typing ?abbreviating section
names you may also type 7abb sec nam, or even 7a s n. You must not omit the spaces
separating the words. For each word in the section name you must give at least the first
character. As another example you may type Toper for int instead of 7operations for
integers, which is especially handy when you can not remember whether it was operations
or operators.

If an abbreviation matches multiple section names a list of all these section names is dis-
played.

3.11 Help Index

??topic
77 looks up topic in GAP3’s index and prints all the index entries that contain the substring
topic. Then you can decide which section is the one you are actually interested in and
request this one.
gap> ?7help
help Index
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Help

Reading Sections (help!scrolling)

Format of the Sections (help!format)

Browsing through the Sections (help!browsing)

Redisplaying a Section (help!redisplaying)

Abbreviating Section Names (help!abbreviating)

Help Index

gap>

The first thing on each line is the name of the section. If the name of the section matches
topic nothing more is printed. Otherwise the index entry that matched topic is printed in
parentheses following the section name. For each section only the first matching index entry
is printed. The order of the sections corresponds to their order in the GAP3 manual, so that
related sections should be adjacent.

3.12 Read

Read( filename )
Read reads the input from the file with the filename filename, which must be a string.

Read first opens the file filename. If the file does not exist, or if GAP3 can not open it, e.g.,
because of access restrictions, an error is signalled.

Then the contents of the file are read and evaluated, but the results are not printed. The
reading and printing happens exactly as described for the main loop (see 3.1).

If an input in the file contains a syntactical error, a message is printed, and the rest of this
statement is ignored, but the rest of the file is read.

If a statement in the file causes an error a break loop is entered (see 3.2). The input for this
break loop is not taken from the file, but from the input connected to the stderr output of
GAP3. If stderr is not connected to a terminal, no break loop is entered. If this break loop
is left with quit (or ctr-D) the file is closed and GAP3 does not continue to read from it.

Note that a statement may not begin in one file and end in another, i.e., eof (end of
file) is not treated as whitespace, but as a special symbol that must not appear inside any
statement.

Note that one file may very well contain a read statement causing another file to be read,
before input is again taken from the first file. There is an operating system dependent
maximum on the number of files that may be open at once, usually it is 15.

The special file name "*stdin*" denotes the standard input, i.e., the stream through which
the user enters commands to GAP3. The exact behaviour of Read( "*stdinx") is operating
system dependent, but usually the following happens. If GAP3 was started with no input
redirection, statements are read from the terminal stream until the user enters the end of file
character, which is usually ctr-D. Note that terminal streams are special, in that they may
yield ordinary input after an end of file. Thus when control returns to the main read eval
print loop the user can continue with GAP3. If GAP3 was started with an input redirection,
statements are read from the current position in the input file up to the end of the file.
When control returns to the main read eval print loop the input stream will still return
end of file, and GAP3 will terminate. The special file name "*errin*" denotes the stream
connected with the stderr output. This stream is usually connected to the terminal, even
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if the standard input was redirected, unless the standard error stream was also redirected,
in which case opening of "*errin*" fails, and Read will signal an error.

Read is implemented in terms of the function READ, which behaves exactly like Read, except
that READ does not signal an error when it can not open the file. Instead it returns true or
false to indicate whether opening the file was successful or not.

3.13 ReadLib

ReadLib( name )

ReadLib reads input from the library file with the name name. ReadLib prefixes name with
the value of the variable LIBNAME and appends the string ".g" and calls Read (see 3.12)
with this file name.

3.14 Print

Print( objl, obj2... )

Print prints the objects obj1, 0bj2... etc. to the standard output. The output looks exactly
like the printed representation of the objects printed by the main loop. The exception are
strings, which are printed without the enclosing quotes and a few other transformations (see
30). Note that no space or newline is printed between the objects. PrintTo can be used to
print to a file (see 3.15).

gap> for i in [1..5] do
> Print( i, " ", i"2, " ", i3, "\n" );
> od;

111

248

3927

4 16 64

5 25 125

3.15 PrintTo

PrintTo( filename, objl, obj2... )

PrintTo works like Print, except that the output is printed to the file with the name
filename instead of the standard output. This file must of course be writable by GAP3,
otherwise an error is signalled. Note that PrintTo will overwrite the previous contents of
this file if it already existed. AppendTo can be used to append to a file (see 3.16).

The special file name "*stdout*" can be used to print to the standard output. This is
equivalent to a plain Print, except that a plain Print that is executed while evaluating an
argument to a PrintTo call will also print to the output file opened by the last PrintTo call,
while PrintTo( "*stdout*", objl, obj2... ) always prints to the standard output.
The special file name "*errout*" can be used to print to the standard error output file,
which is usually connected with the terminal, even if the standard output was redirected.

There is an operating system dependent maximum to the number of output files that may
be open at once, usually this is 14.
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3.16 AppendTo

AppendTo( filename, objl, o0bj2... )

AppendTo works like PrintTo (see 3.15), except that the output does not overwrite the
previous contents of the file, but is appended to the file.

3.17 LogTo

LogTo( filename )

LogTo causes the subsequent interaction to be logged to the file with the name filename,
i.e., everything you see on your terminal will also appear in this file. This file must of course
be writable by GAP3, otherwise an error is signalled. Note that LogTo will overwrite the
previous contents of this file if it already existed.

LogTo ()
In this form LogTo stops logging again.

3.18 LogInputTo

LogInputTo( filename )

LogInputTo causes the subsequent input lines to be logged to the file with the name filename,
i.e., every line you type will also appear in this file. This file must of course be writable
by GAP3, otherwise an error is signalled. Note that LogInputTo will overwrite the previous
contents of this file if it already existed.

LogInputTo()
In this form LogInputTo stops logging again.

3.19 SizeScreen

SizeScreen()

In this form SizeScreen returns the size of the screen as a list with two entries. The first
is the length of each line, the second is the number of lines.

SizeScreen( [ z, y 1 )

In this form SizeScreen sets the size of the screen. z is the length of each line, y is the
number of lines. Either value may be missing, to leave this value unaffected. Note that
those parameters can also be set with the command line options -x z and -y y (see 56).

3.20 Runtime

Runtime ()

Runtime returns the time spent by GAP3 in milliseconds as an integer. This is usually the
cpu time, i.e., not the wall clock time. Also time spent by subprocesses of GAP3 (see 3.22)
is not counted.



3.21. PROFILE 223
3.21 Profile

Profile( true )

In this form Profile turns the profiling on. Subsequent computations will record the time
spent by each function and the number of times each function was called. Old profiling
information is cleared.

Profile( false )

In this form Profile turns the profiling off again. Recorded information is still kept, so you
can display it even after turning the profiling off.

Profile()
In this form Profile displays the collected information in the following format.

gap> Factors( 10721+1 );; # make sure that the library is loaded
gap> Profile( true );

gap> Factors( 10742+1 );

[ 29, 101, 281, 9901, 226549, 121499449, 4458192223320340849 ]
gap> Profile( false );

gap> Profile();

count time percent time/call child function
4 1811 76 452 2324 FactorsRho
18 171 7 9 237 PowerModInt
127 94 3 0 94 GcdInt
41 83 3 2 415 IsPrimelnt
91 59 2 0 59 TraceModQF
511 47 1 0 39 Quolnt
22 23 0 1 23 Jacobi
116 20 0 0 31 log
3 20 0 6 70 SmallestRootInt
1 19 0 19 2370 FactorsInt
26 15 0 0 39 Loglnt
4 4 0 1 4 Concatenation
5 4 0 0 20 RootInt
7 0 0 0 0 Add
26 0 0 0 0 Length
13 0 0 0 0 NextPrimelnt
4 0 0 0 0 AddSet
4 0 0 0 0 IslList
4 0 0 0 0 Sort
8 0 0 0 0 Append
2369 100 TOTAL

The last column contains the name of the function. The first column contains the number of
times each function was called. The second column contains the time spent in this function.
The third column contains the percentage of the total time spent in this function. The fourth
column contains the time per call, i.e., the quotient of the second by the first number. The
fifth column contains the time spent in this function and all other functions called, directly
or indirectly, by this function.
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3.22 Exec

Exec( command )

Exec executes the command given by the string command in the operating system. How this
happens is operating system dependent. Under UNIX, for example, a new shell is started
and command is passed as a command to this shell.

gap> Exec( "date" );
Fri Dec 13 17:00:29 MET 1991

Edit (see 3.23) should be used to call an editor from within GAP3.

3.23 Edit

Edit( filename )

Edit starts an editor with the file whose filename is given by the string filename, and
reads the file back into GAP3 when you exit the editor again. You should set the GAP3
variable EDITOR to the name of the editor that you usually use, e.g., /usr/ucb/vi. This can
for example be done in your .gaprc file (see the sections on operating system dependent
features in chapter 56).



Chapter 4

Domains

Domain is GAP3’s name for structured sets. The ring of Gaussian integers Z[I] is an
example of a domain, the group Di5 of symmetries of a regular hexahedron is another.

The GAP3 library predefines some domains. For example the ring of Gaussian integers
is predefined as GaussianIntegers (see 14) and the field of rationals is predefined as
Rationals (see 12). Most domains are constructed by functions, which are called do-
main constructors. For example the group D15 is constructed by the construction Group (
(1,2,3,4,5,6), (2,6)(3,5) ) (see7.9) and the finite field with 16 elements is constructed
by GaloisField( 16 ) (see 18.10).

The first place where you need domains in GAP3 is the obvious one. Sometimes you simply
want to talk about a domain. For example if you want to compute the size of the group
D15, you had better be able to represent this group in a way that the Size function can
understand.

The second place where you need domains in GAP3 is when you want to be able to specify
that an operation or computation takes place in a certain domain. For example suppose you
want to factor 10 in the ring of Gaussian integers. Saying Factors( 10 ) will not do, be-
cause this will return the factorization in the ring of integers [ 2, 5 1. To allow operations
and computations to happen in a specific domain, Factors, and many other functions as
well, accept this domain as optional first argument. Thus Factors( GaussianIntegers,
10 ) yields the desired result [ 1+E(4), 1-E(4), 2+E(4), 2-E(4) ].

Each domain in GAP3 belongs to one or more categories, which are simply sets of domains.
The categories in which a domain lies determine the functions that are applicable to this
domain and its elements. Examples of domains are rings (the functions applicable to a
domain that is a ring are described in 5), fields (see 6), groups (see 7), vector spaces (see
9), and of course the category domains that contains all domains (the functions applicable
to any domain are described in this chapter).

This chapter describes how domains are represented in GAP3 (see 4.1), how functions that
can be applied to different types of domains know how to solve a problem for each of those
types (see 4.2, 4.3, and 4.4), how domains are compared (see 4.7), and the set theoretic
functions that can be applied to any domain (see 4.6, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14,
4.16).

The functions described in this chapter are implemented in the file LIBNAME/"domain.g".

225
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4.1 Domain Records

Domains are represented by records (see 46), which are called domain records in the
following. Which components need to be present, which may, and what those components
hold, differs from category to category, and, to a smaller extent, from domain to domain.
It is generally possible though to distinguish four types of components.

Each domain record has the component isDomain, which has the value true. Furthermore,
most domains also have a component that specifies which category this domain belongs
to. For example, each group has the component isGroup, holding the value true. Those
components are called the category components of the domain record. A domain that
only has the component isDomain is a member only of the category Domains and only the
functions described in this chapter are applicable to such a domain.

Every domain record also contains enough information to identify uniquely the domain in
the so called identification components. For example, for a group the domain record,
called group record in this case, has a component called generators containing a system
of generators (and also a component identity holding the identity element of the group,
needed if the generator list is empty, as is the case for the trivial group).

Next the domain record holds all the knowledge GAP3 has about the domain, for example
the size of the domain, in the so called knowledge components. Of course, the knowledge
about a certain domain will usually increase as time goes by. For example, a group record
may initially hold only the knowledge that the group is finite, but may end holding all kinds
of knowledge, for example the derived series, the Sylow subgroups, etc.

Finally each domain record has a component, which is called its operations record (be-
cause it is the component with the name operations and it holds a record), that tells
functions like Size how to compute this information for this domain. The exact mechanism
is described later (see 4.2).

4.2 Dispatchers

In the previous section it was mentioned that domains are represented by domain records,
and that each domain record has an operations record. This operations record is used by
functions like Size to find out how to compute this information for the domain. Let us
discuss this mechanism using the example of Size. Suppose you call Size with a domain
D.

First Size tests whether D has a component called size, i.e., if D.size is bound. If it is,
Size assumes that it holds the size of the domain and returns this value.

Let us suppose that this component has no assigned value. Then Size looks at the compo-
nent D .operations, which must be a record. Size takes component D .operations.Size
of this record, which must be a function. Size calls this function passing D as argument.
If a domain record has no Size function in its operations record, an error is signalled.

Finally Size stores the value returned by D.operations.Size( D ) in the component
D .size, where it is available for the next call of Size( D ).

Because functions like Size do little except dispatch to the function in the operations record
they are called dispatcher functions.
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Which function is called through this mechanism obviously depends on the domain and its
operations record. In principle each domain could have its own Size function. In practice
however this is not the case. For example all permutation groups share the operations record
PermGroupOps so they all use the same Size function PermGroupOps.Size.

Note that in fact domains of the same type not only share the functions, in fact they share
the operations record. So for example all permutation groups have the same operations
record. This means that changing such a function for a domain D in the following way
D .operations. function := new-function; will also change this function for all domains of
the same type, even those that do not yet exist at the moment of the assignment and will
only be constructed later. This is usually not desirable, since supposedly new-function uses
some special properties of the domain D to work efficiently. We suggest therefore, that you
use the following assignments instead:

D .operations := Copy( D.operations );

D .operations. function := new-function;.

Some domains do not provide a special Size function, either because no efficient method
is known or because the author that implemented the domain simply was too lazy to write
one. In those cases the domain inherits the default function, which is DomainOps.Size.
Such inheritance is uncommon for the Size function, but rather common for the Union
function.

4.3 More about Dispatchers

Usually you need not care about the mechanism described in the previous section. You just
call the dispatcher functions like Size. They will call the function in the operations record,
which is hopefully implementing an algorithm that is well suited for their domain, by using
the structure of this domain.

There are three reasons why you might want to avoid calling the dispatcher function and
call the dispatched to function directly.

The first reason is efficiency. The dispatcher functions don’t do very much. They only check
the types of their arguments, check if the requested information is already present, and
dispatch to the appropriate function in the operations record. But sometimes, for example
in the innermost loop of your algorithm, even this little is too much. In those cases you
can avoid the overhead introduced by the dispatcher function by calling the function in the
operations record directly. For example, you would use G.operations.Size((G) instead
of Size((@).

The second reason is flexibility. Sometimes you do not want to call the function in the
operations record, but another function that performs the same task, using a different algo-
rithm. In that case you will call this different function. For example, if G is a permutation
group, and the orbit of p under G is very short, GroupOps.0rbit (G, p), which is the default
function to compute an orbit, may be slightly more efficient than Orbit (G, p), which calls
G .operations.0Orbit (G, p), which is the same as PermGroupOps.Orbit (G, p).

The third has to do with the fact that the dispatcher functions check for knowledge com-
ponents like D.size or D.elements and also store their result in such components. For
example, suppose you know that the result of a computation takes up quite some space, as is
the case with Elements (D), and that you will never need the value again. In this case you
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would not want the dispatcher function to enter the value in the domain record, and there-
fore would call D .operations.Elements (D) directly. On the other hand you may not want
to use the value in the domain record, because you mistrust it. In this case you should call
the function in the operations record directly, e.g., you would use G .operations.Size(G)
instead of Size(G) (and then compare the result with G.size).

4.4 An Example of a Computation in a Domain

This section contains an extended example to show you how a computation in a domain
may use default and special functions to achieve its goal. Suppose you defined G, x, and y
as follows.

gap> G := SymmetricGroup( 8 );;
gap> x := [ (2,7,4)(3,5), (1,2,6)(4,8) 1;;
gap> y := [ (2,5,7)(4,6), (1,5)(3,8,7) 1;;

Now you ask for an element of G that conjugates x to y, i.e., a permutation on 8 points that
takes (2,7,4)(3,5) to (2,5,7)(4,6) and (1,2,6)(4,8) to (1,5)(3,8,7). This is done
as follows (see 8.25 and 8.1).

gap> RepresentativeOperation( G, x, y, OnTuples );
(1,8)(2,7)(3,4,5,6)

Let us look at what happens step by step. First RepresentativeOperation is called. Af-
ter checking the arguments it calls the function G.operations.RepresentativeOperation,
which is the function SymmetricGroupOps.RepresentativeOperation, passing the argu-
ments G, x, y, and OnTuples.

SymmetricGroupOps.RepresentativeOperation handles a lot of cases specially, but the
operation on tuples of permutations is not among them. Therefore it delegates this problem
to the function that it overlays, which is PermGroupOps .RepresentativeOperation.

PermGroupOps .RepresentativeOperation also does not handle this special case, and del-
egates the problem to the function that it overlays, which is the default function called
GroupOps.RepresentativeOperation.

GroupOps .RepresentativeOperation views this problem as a general tuples problem, i.e.,
it does not care whether the points in the tuples are integers or permutations, and decides
to solve it one step at a time. So first it looks for an element taking (2,7,4) (3,5) to
(2,5,7) (4,6) by calling RepresentativeOperation( G, (2,7,4)(3,5), (2,5,7)(4,6)
).

RepresentativeOperation calls G.operations.RepresentativeOperation next, which is
the function SymmetricGroupOps.RepresentativeOperation, passing the arguments G,
(2,7,4)(3,5), and (2,5,7)(4,6).

SymmetricGroupOps.RepresentativeOperation can handle this case. It knows that G
contains every permutation on 8 points, so it contains (3,4,7,5,6), which obviously does
what we want, namely it takes x[1] to y[1]. We will call this element t.

Now GroupOps.RepresentativeOperation (see above) looks for an s in the stabilizer of
x[1] taking x[2] to y[2]~(t"-1), since then for r=s*t we have x[1]°r = (x[1]"s)"t
= x[11°t = y[1] and also x[2]"r = (x[2]"s)"t = (y[21"(t"-1))"t = y[2]. So the
next step is to compute the stabilizer of x[1] in G. To do this it calls Stabilizer( G,
(2,7,4)(3,5) ).
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Stabilizer calls G.operations.Stabilizer, which is SymmetricGroupOps.Stabilizer,
passing the arguments G and (2,7,4) (3,5). SymmetricGroupOps.Stabilizer detects that
the second argument is a permutation, i.e., an element of the group, and calls Centralizer(
G, (2,7,4)(3,5) ). Centralizer calls the function G.operations.Centralizer, which
is SymmetricGroupOps.Centralizer, again passing the arguments G, (2,7,4) (3,5).

SymmetricGroupOps.Centralizer again knows how centralizers in symmetric groups look,
and after looking at the permutation (2,7,4) (3,5) sharply for a short while returns the
centralizer as Subgroup( G, [ (1,6), (1,6,8), (2,7,4), (3,5) 1 ), which we will call
S. Note that S is of course not a symmetric group, therefore SymmetricGroupOps . Subgroup
gives it PermGroupOps as operations record and not SymmetricGroupOps.

As explained above GroupOps.RepresentativeOperation needs an element of S taking
x[2] ((1,2,6)(4,8)) to y[2]1~(t~-1) ((1,7)(4,6,8)). So RepresentativeOperation(
S, (1,2,6)(4,8), (1,7)(4,6,8) ) is called. RepresentativeOperation in turn calls
the function S.operations.RepresentativeOperation, which is, since S is a permutation
group, the function PermGroupOps.RepresentativeOperation, passing the arguments S,
(1,2,6)(4,8), and (1,7)(4,6,8).

PermGroupOps .RepresentativeOperation detects that the points are permutations and
and performs a backtrack search through S. It finds and returns (1,8) (2,4,7) (3,5), which
we call s.

Then GroupOps.RepresentativeOperation returns r = s*t = (1,8)(2,7)(3,6) (4,5),
and we are done.

In this example you have seen how functions use the structure of their domain to solve
a problem most efficiently, for example SymmetricGroupOps.RepresentativeOperation
but also the backtrack search in PermGroupOps.RepresentativeOperation, how they use
other functions, for example SymmetricGroupOps.Stabilizer called Centralizer, and
how they delegate cases which they can not handle more efficiently back to the func-
tion they overlaid, for example SymmetricGroupOps.RepresentativeOperation delegated
to PermGroupOps .RepresentativeOperation, which in turn delegated to to the function
GroupOps.RepresentativeOperation.

4.5 Domain

Domain( list )

Domain returns a domain that contains all the elements in list and that knows how to make
the ring, field, group, or vector space that contains those elements.

Note that the domain returned by Domain need in general not be a ring, field, group, or
vector space itself. For example if passed a list of elements of finite fields Domain will return
the domain FiniteFieldElements. This domain contains all finite field elements, no matter
of which characteristic. This domain has a function FiniteFieldElementsOps.Field that
knows how to make a finite field that contains the elements in list. This function knows
that all elements must have the same characteristic for them to lie in a common field.

gap> D := Domain( [ Z(4), Z(8) 1 );
FiniteFieldElements

gap> IsField( D );

false
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gap> D.operations.Field( [ Z(4), Z(8) 1 );
GF(276)

Domain is the only function in the whole GAP3 library that knows about the various types of
elements. For example, when Norm is confronted by a field element z, it does not know what
to do with it. Soit callsF := DefaultField( [ z ] ) to get a field in which z lies, because
this field (more precisely F.operations.Norm) will know better. However, DefaultField
also does not know what to do with z. So it calls D := Domain( [ z ] ) to get a domain
in which z lies, because it (more precisely D.operations.DefaultField) will know how to
make a default field in which z lies.

4.6 Elements

Elements( D )

Elements returns the set of elements of the domain D. The set is returned as a new proper
set, i.e., as a new sorted list without holes and duplicates (see 28). D may also be a list, in
which case the set of elements of this list is returned. An error is signalled if D is an infinite
domain.

gap> Elements( GaussianIntegers );

Error, the ring <R> must be finite to compute its elements

gap> D12 := Group( (2,6)(3,5), (1,2)(3,6)(4,5) );;

gap> Elements( D12 );

[ O, (2,6)(3,5), (1,2)(3,6)(4,5), (1,2,3,4,5,6), (1,3)(4,6),
(1,3,5)(2,4,6), (1,4)(2,3)(5,6), (1,4)(2,5)(3,6), (1,5)(2,4),
(1,5,3)(2,6,4), (1,6,5,4,3,2), (1,6)(2,5)(3,4) ]

Elements remembers the set of elements in the component D.elements and will return
a shallow copy (see 46.12) next time it is called to compute the elements of D. If you
want to avoid this, for example for a large domain, for which you know that you will
not need the list of elements in the future, either unbind (see 46.10) D.elements or call
D .operation.Elements (D) directly.

Since there is no general method to compute the elements of a domain the default function
DomainOps.Elements just signals an error. This default function is overlaid for each special
finite domain. In fact, implementors of domains, must implement this function for new
domains, since it is, together with IsFinite (see 4.9) the most basic function for domains,
used by most of the default functions in the domain package.

In general functions that return a set of elements are free, in fact encouraged, to return a
domain instead of the proper set of elements. For one thing this allows to keep the structure,
for another the representation by a domain record is usually more space efficient. Elements
must not do this, its only purpose is to create the proper set of elements.

4.7 Comparisons of Domains
D=E
D <> FE

= evaluates to true if the two domains D and E are equal, to false otherwise. <> evaluates
to true if the two domains D and F are different and to false if they are equal.
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Two domains are considered equal if and only if the sets of their elements as computed by
Elements (see 4.6) are equal. Thus, in general = behaves as if each domain operand were
replaced by its set of elements. Except that = will also sometimes, but not always, work
for infinite domains, for which it is of course difficult to compute the set of elements. Note
that this implies that domains belonging to different categories may well be equal. As a
special case of this, either operand may also be a proper set, i.e., a sorted list without holes
or duplicates (see 28.2), and the result will be true if and only if the set of elements of the
domain is, as a set, equal to the set. It is also possible to compare a domain with something
else that is not a domain or a set, but the result will of course always be false in this case.

gap> GaussianIntegers = D12;

false # GAP3 knows that those domains cannot be equal because
# GaussianIntegers is infinite and D12 is finite

gap> GaussianIntegers = Integers;

false # GAP3 knows how to compare those two rings

gap> GaussianlIntegers = Rationals;

Error, sorry, cannot compare the infinite domains <D> and <E>

gap> D12 = Group( (2,6)(3,5), (1,2)(3,6)(4,5) );

true

gap> D12 = [(),(2,6)(3,5),(1,2)(3,6)(4,5),(1,2,3,4,5,6),(1,3)(4,6),

> (1,3,5)(2,4,6),(1,4)(2,3)(5,6),(1,4)(2,5)(3,6),

> 1,5)(2,4),1,5,3)(2,6,4),(1,6,5,4,3,2),(1,6)(2,5)(3,4)];
true

gap> D12 = [(1,6,5,4,3,2),(1,6)(2,5)(3,4),(1,5,3)(2,6,4),(1,5)(2,4),
> (1,4)(2,5)(3,6),(1,4)(2,3)(5,6),(1,3,5)(2,4,6),(1,3)(4,6),
> (1,2,3,4,5,6),(1,2)(3,6)(4,5),(2,6)(3,5),01;

false # since the left operand behaves as a set

# while the right operand is not a set

The default function DomainOps.’=’ checks whether both domains are infinite. If they are,
an error is signalled. Otherwise, if one domain is infinite, false is returned. Otherwise
the sizes (see 4.10) of the domains are compared. If they are different, false is returned.
Finally the sets of elements of both domains are computed (see 4.6) and compared. This
default function is overlaid by more special functions for other domains.

<, <=, >, and >= evaluate to true if the domain D is less than, less than or equal to, greater
than, and greater than or equal to the domain E and to false otherwise.

A domain D is considered less than a domain F if and only if the set of elements of D is
less than the set of elements of the domain E. Generally you may just imagine that each
domain operand is replaced by the set of its elements, and that the comparison is performed
on those sets (see 27.12). This implies that, if you compare a domain with an object that
is not a list or a domain, this other object will be less than the domain, except if it is a
record, in which case it is larger than the domain (see 2.9).

Note that < does not test whether the left domain is a subset of the right operand, even
though it resembles the mathematical subset notation.
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gap> GaussianIntegers < Rationals;
Error, sorry, cannot compare <E> with the infinite domain <D>
gap> Group( (1,2), (1,2,3,4,5,6) ) < D12;
true # since (5,6), the second element of the left operand,
# is less than (2,6) (3,5), the second element of D12.
gap> D12 < [(1,6,5,4,3,2),(1,6)(2,5)(3,4),(1,5,3)(2,6,4),(1,5)(2,4),

> (1,4)(2,5)(3,6),(1,4)(2,3)(5,6),(1,3,5)(2,4,6),(1,3) (4,6),
> (1,2,3,4,5,6),(1,2)(3,6)(4,5),(2,6)(3,5),01;
true # since (), the first element of D12, is less than

# (1,6,5,4,3,2), the first element of the right operand.
gap> 17 < D12;
true # objects that are not lists or records are smaller

# than domains, which behave as if they were a set

The default function DomainOps. <’ checks whether either domain is infinite. If one is, an
error is signalled. Otherwise the sets of elements of both domains are computed (see 4.6)
and compared. This default function is only very seldom overlaid by more special functions
for other domains. Thus the operators <, <=, >, and >= are quite expensive and their use
should be avoided if possible.

4.8 Membership Test for Domains

elm in D

in returns true if the element elm, which may be an object of any type, lies in the domain
D, and false otherwise.

gap> 13 in GaussianIntegers;

true

gap> GaussianIntegers in GaussianIntegers;
false

gap> (1,2) in D12;

false

gap> (1,2)(3,6)(4,5) in D12;

true

The default function for domain membership tests is DomainOps.’in’, which computes the
set of elements of the domain with the function Elements (see 4.6) and tests whether elm
lies in this set. Special domains usually overlay this function with more efficient membership
tests.

4.9 IsFinite

IsFinite( D )

IsFinite returns true if the domain D is finite and false otherwise. D may also be a
proper set (see 28.2), in which case the result is of course always true.

gap> IsFinite( GaussianIntegers );
false

gap> IsFinite( D12 );

true
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The default function DomainOps.IsFinite just signals an error, since there is no general
method to determine whether a domain is finite or not. This default function is overlaid
for each special domain. In fact, implementors of domains must implement this function
for new domains, since it is, together with Elements (see 4.6), the most basic function for
domains, used by most of the default functions in the domain package.

4.10 Size

Size( D )

Size returns the size of the domain D. If D is infinite, Size returns the string "infinity".
D may also be a proper set (see 28.2), in which case the result is the length of this list. Size
will, however, signal an error if D is a list that is not a proper set, i.e., that is not sorted,
or has holes, or contains duplicates.

gap> Size( GaussianIntegers );
"infinity"

gap> Size( D12 );

12

The default function to compute the size of a domain is DomainOps.Size, which computes
the set of elements of the domain with the function Elements (see 4.6) and returns the
length of this set. This default function is overlaid in practically every domain.

4.11 IsSubset

IsSubset( D, F )
IsSubset returns true if the domain E is a subset of the domain D and false otherwise.

E is considered a subset of D if and only if the set of elements of E is as a set a subset of
the set of elements of D (see 4.6 and 28.9). That is IsSubset behaves as if implemented
as IsSubsetSet( Elements(D), Elements(FE) ), except that it will also sometimes, but
not always, work for infinite domains, and that it will usually work much faster than the
above definition. Either argument may also be a proper set.

gap> IsSubset( GaussianIntegers, [1,E(4)] );

true

gap> IsSubset( GaussianIntegers, Rationals );

Error, sorry, cannot compare the infinite domains <D> and <E>
gap> IsSubset( Group( (1,2), (1,2,3,4,5,6) ), D12 );

true

gap> IsSubset( D12, [ O, (1,2)(3,4)(5,6) 1 );

false

The default function DomainOps.IsSubset checks whether both domains are infinite. If
they are it signals an error. Otherwise if the F is infinite it returns false. Otherwise if
D is infinite it tests if each element of E is in D (see 4.8). Otherwise it tests whether the
proper set of elements of E is a subset of the proper set of elements of D (see 4.6 and 28.9).

4.12 Intersection

Intersection( DI, D2... )
Intersection( list )
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In the first form Intersection returns the intersection of the domains D1, D2, etc. In the
second form list must be a list of domains and Intersection returns the intersection of
those domains. Each argument D or element of list respectively may also be an arbitrary
list, in which case Intersection silently applies Set (see 28.2) to it first.

The result of Intersection is the set of elements that lie in every of the domains D1, D2,
etc. Functions called by the dispatcher function Intersection however, are encouraged to
keep as much structure as possible. So if DI and D2 are elements of a common category
and if this category is closed under taking intersections, then the result should be a domain
lying in this category too. So for example the intersection of permutation groups will again
be a permutation group.

gap> Intersection( CyclotomicField(9), CyclotomicField(12) );
CF(3) # CF is a shorthand for CyclotomicField
# this is one of the rare cases where the intersection
# of two infinite domains works
gap> Intersection( GaussianIntegers, Rationals );
Error, sorry, cannot intersect infinite domains <D> and <E>
gap> Intersection( D12, Group( (1,2), (1,2,3,4,5) ) );
Group( (1,5)(2,4) )
gap> Intersection( D12, [ (1,3)(4,6), (1,2)(3,4) 1 );
[ (1,3)(4,6) 1] # note that the second argument is not a set
gap> Intersection( D12, [ (O, (1,2)(3,4), (1,3)(4,6), (1,4)(5,6) 1 );
[ O, (1,3)4,6) 1] # although the result is mathematically a
# group it is returned as a proper set
# Dbecause the second argument was not a group
gap> Intersection( [2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25] );

[ ] # two or more domains or sets as arguments are legal
gap> Intersection( [ [1,2,4], [2,3,4], [1,3,4] 1 );
[ 4] # or a list of domains or sets

gap> Intersection( [ ] );
Error, List Element: <list>[1] must have a value

The dispatcher function (see 4.2) Intersection is slightly different from other dispatcher
functions. It does not simply call the function in the operations record passings its argu-
ments. Instead it loops over its arguments (or the list of domains or sets) and calls the
function in the operations record repeatedly, and passes each time only two domains. This
obviously makes writing the function for the operations record simpler.

The default function DomainOps.Intersection checks whether both domains are infinite.
If they are it signals an error. Otherwise, if one of the domains is infinite it loops over the
elements of the other domain, and tests for each element whether it lies in the infinite domain.
If both domains are finite it computes the proper sets of elements of both and intersects
them (see 4.6 and 28.9). This default method is overlaid by more special functions for most
other domains. Those functions usually are faster and keep the structure of the domains if
possible.

4.13 Union

Union( DI, D2... )
Union( list )
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In the first form Union returns the union of the domains D1, D2, etc. In the second form
list must be a list of domains and Union returns the union of those domains. Each argument
D or element of list respectively may also be an arbitrary list, in which case Union silently
applies Set (see 28.2) to it first.

The result of Union is the set of elements that lie in any the domains D1, D2, etc. Functions
called by the dispatcher function Union however, are encouraged to keep as much structure
as possible. However, currently GAP3 does not support any category that is closed under
taking unions except the category of all domains. So the only case that structure will be
kept is when one argument D or element of list respectively is a superset of all the other
arguments or elements of list.

gap> Union( GaussianIntegers, Rationals );

Error, sorry, cannot unite <E> with the infinite domain <D>

gap> Union( D12, Group( (1,2), (1,2,3) ) );

[ O, 2,3, (2,6)(3,5), (1,2), (1,2)(3,6)(4,5), (1,2,3),
(1,2,3,4,5,6), (1,3,2), (1,3), (1,3)4,6), (1,3,5)(2,4,6),
(1,4)(2,3)(5,6), (1,4)(2,5)(3,6), (1,5)(2,4), (1,5,3)(2,6,4),
(1,6,5,4,3,2), (1,6)(2,5)(3,4) ]

gap> Union( [2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25] );

(2,3, 4,5, 6,8,9, 10, 12, 15, 20, 25 ]

# two or more domains or sets as arguments are legal

gap> Union( [ [1,2,4], [2,3,4], [1,3,4] 1 );

[1, 2, 3, 4] # or a list of domains or sets

gap> Union( [ ] );

L1

The dispatcher function (see 4.2) Union is slightly different from other dispatcher functions.
It does not simply call the function in the operations record passings its arguments. Instead
it loops over its arguments (or the list of domains or sets) and calls the function in the
operations record repeatedly, and passes each time only two domains. This obviously makes
writing the function for the operations record simpler.

The default function DomainOps.Union checks whether either domain is infinite. If one is
it signals an error. If both domains are finite it computes the proper sets of elements of
both and unites them (see 4.6 and 28.9). This default method is overlaid by more special
functions for some other domains. Those functions usually are faster.

4.14 Difference

Difference( D, F )

Difference returns the set difference of the domains D and FE. Either argument may also
be an arbitrary list, in which case Difference silently applies Set (see 28.2) to it first.

The result of Difference is the set of elements that lie in D but not in F. Note that F
need not be a subset of D. The elements of E, however, that are not element of D play no
role for the result.

gap> Difference( D12, [0, (1,2,3,4,5,6),(1,3,5)(2,4,6),

> (1,4)(2,5)(3,6),(1,6,5,4,3,2),(1,5,3)(2,6,4)] );
[ (2,6)(3,5), (1,2)(3,6)(4,5), (1,3)(4,6), (1,4)(2,3)(5,6),
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(1,5)(2,4), (1,6)(2,5)(3,4) 1]

The default function DomainOps.Difference checks whether D is infinite. If it is it signals
an error. Otherwise Difference computes the proper sets of elements of D and E and
returns the difference of those sets (see 4.6 and 28.8). This default function is currently not
overlaid for any domain.

4.15 Representative

Representative( D )
Representative returns a representative of the domain D.

The existence of a representative, and the exact definition of what a representative is,
depends on the category of D. The representative should be an element that, within a given
context, identifies the domain D. For example if D is a cyclic group, its representative would
be a generator of D, or if D is a coset, its representative would be an arbitrary element of
the coset.

Note that Representative is pretty free in choosing a representative if there are several.
It is not even guaranteed that Representative returns the same representative if it is
called several times for one domain. Thus the main difference between Representative
and Random (see 4.16) is that Representative is free to choose a value that is cheap to
compute, while Random must make an effort to randomly distribute its answers.

gap> C := Coset( Subgroup( G, [(1,4)(2,5)(3,6)] ), (1,6,5,4,3,2) );;
gap> Representative( C );
(1,3,5)(2,4,6)

Representative first tests whether the component D.representative is bound. If the
field is bound it returns its value. Otherwise it calls D.operations.Representative( D
), remembers the returned value in D .representative, and returns it.

The default function called this way is DomainOps.Representative, which simply signals
an error, since there is no default way to find a representative.

4.16 Random

Random( D )

Random returns a random element of the domain D. The distribution of elements returned
by Random depends on the domain D. For finite domains all elements are usually equally
likely. For infinite domains some reasonable distribution is used. See the chapters of the
various domains to find out which distribution is being used.

gap> Random( GaussianIntegers ) ;
1-4%E(4)

gap> Random( GaussianIntegers ) ;
1+2%E(4)

gap> Random( D12 );

O

gap> Random( D12 );
(1,4)(2,5)(3,6)
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The default function for random selection is DomainOps.Random, which computes the set of
elements using Elements and selects a random element of this list using RandomList (see
27.48 for a description of the pseudo random number generator used). This default function
can of course only be applied to finite domains. It is overlaid by other functions for most
other domains.

All random functions called this way rely on the low level random number generator provided
by RandomList (see 27.48).
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Chapter 5
Rings

Rings are important algebraic domains. Mathematically a ring is a set R with two oper-
ations + and * called addition and multiplication. (R, +) must be an abelian group. The
identity of this group is called Og. (R — {Og}, *) must be a monoid. If this monoid has an
identity element it is called 1g.

Important examples of rings are the integers (see 10), the Gaussian integers (see 14), the
integers of a cyclotomic field (see 15), and matrices (see 34).

This chapter contains sections that describe how to test whether a domain is a ring (see
5.1), and how to find the smallest and the default ring in which a list of elements lies (see
5.2 and 5.3).

The next sections describe the operations applicable to ring elements (see 5.4, 5.5, 5.6).

The next sections describe the functions that test whether a ring has certain properties (5.7,
5.8, 5.9, and 5.10).

The next sections describe functions that are related to the units of a ring (see 5.11, 5.12,
5.13, 5.14, and 5.15).

Then come the sections that describe the functions that deal with the irreducible and prime
elements of a ring (see 5.16, 5.17, and 5.18).

Then come the sections that describe the functions that are applicable to elements of rings
(see 5.19, 5.20, 5.21, 5.22, 5.24, 5.25, 5.26, 5.27, 5.28).

The last section describes how ring records are represented internally (see 5.29).

Because rings are a category of domains all functions applicable to domains are also appli-
cable to rings (see chapter 4) .

All functions described in this chapter are in LIBNAME/"ring.g".

5.1 IsRing

IsRing( domain )

IsRing returns true if the object domain is a ring record, representing a ring (see 5.29),
and false otherwise.

239



240 CHAPTER 5. RINGS

More precisely IsRing tests whether domain is a ring record (see 5.29). So for example a
matrix group may in fact be a ring, yet IsRing would return false.

gap> IsRing( Integers );

true
gap> IsRing( Rationals );
false # Rationals is a field record not a ring record
gap> IsRing( rec( isDomain := true, isRing := true ) );
true # it is possible to fool IsRing
5.2 Ring
Ring( 7, s... )

Ring( list )

In the first form Ring returns the smallest ring that contains all the elements r, s... etc. In
the second form Ring returns the smallest ring that contains all the elements in the list list.
If any element is not an element of a ring or if the elements lie in no common ring an error
is raised.

gap> Ring( 1, -1 );
Integers

gap> Ring( [10..20] );
Integers

Ring differs from DefaultRing (see 5.3) in that it returns the smallest ring in which the
elements lie, while DefaultRing may return a larger ring if that makes sense.

5.3 DefaultRing

DefaultRing( r, s... )
DefaultRing( list )

In the first form DefaultRing returns the default ring that contains all the elements 7, s...
etc. In the second form DefaultRing returns the default ring that contains all the elements
in the list list. If any element is not an element of a ring or if the elements lie in no common
ring an error is raised.

The ring returned by DefaultRing need not be the smallest ring in which the elements
lie. For example for elements from cyclotomic fields DefaultRing may return the ring of
integers of the smallest cyclotomic field in which the elements lie, which need not be the
smallest ring overall, because the elements may in fact lie in a smaller number field which
is not a cyclotomic field.

For the exact definition of the default ring of a certain type of elements read the chapter
describing this type.
DefaultRing is used by the ring functions like Quotient, IsPrime, Factors, or Gcd if no
explicit ring is given.

gap> DefaultRing( 1, -1 );

Integers

gap> DefaultRing( [10..20] );
Integers
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Ring (see 5.2) differs from DefaultRing in that it returns the smallest ring in which the
elements lie, while DefaultRing may return a larger ring if that makes sense.

5.4 Comparisons of Ring Elements

r=s

r<>s

The equality operator = evaluates to true if the two ring elements r and s are equal, and
to false otherwise. The inequality operator <> evaluates to true if the two ring elements
r and s are not equal, and to false otherwise. Note that any two ring elements can be
compared, even if they do not lie in compatible rings. In this case they can, of course, never
be equal. For each type of rings the equality of those ring elements is given in the respective
chapter.

Ring elements can also be compared with objects of other types. Of course they are never
equal.

<s

S %30
v
»

The operators <, <=, >, and >= evaluate to true if the ring element 7 is less than, less than
or equal to, greater than, or greater than or equal to the ring element s, and to false
otherwise. For each type of rings the definition of the ordering of those ring elements is
given in the respective chapter. The ordering of ring elements is as follows. Rationals are
smallest, next are cyclotomics, followed by finite ring elements.

Ring elements can also be compared with objects of other types. They are smaller than
everything else.

5.5 Operations for Ring Elements

The following operations are always available for ring elements. Of course the operands must
lie in compatible rings, i.e., the rings must be equal, or at least have a common superring.

r+ s

The operator + evaluates to the sum of the two ring elements r and s, which must lie in
compatible rings.

ro-s

The operator - evaluates to the difference of the two ring elements r and s, which must lie
in compatible rings.

ok S

The operator * evaluates to the product of the two ring elements r and s, which must lie
in compatible rings.

r n

The operator ~ evaluates to the n-th power of the ring element r. If n is a positive integer
then r~n is rxr*. .*r (n factors). If n is a negative integer r~n is defined as 1/r=". If 0
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is raised to a negative power an error is signalled. Any ring element, even 0, raised to the
0-th power yields 1.

For the precedence of the operators see 2.10.

Note that the quotient operator / usually performs the division in the quotient field of the
ring. To compute a quotient in a ring use the function Quotient (see 5.6).

5.6 Quotient

Quotient( r, s )
Quotient( R, r, s )

In the first form Quotient returns the quotient of the two ring elements r and s in their
default ring (see 5.3). In the second form Quotient returns the quotient of the two ring
elements r and s in the ring R. It returns false if the quotient does not exist.

gap> Quotient( 4, 2 );

2

gap> Quotient( Integers, 3, 2 );
false

Quotient calls R.operations.Quotient( R, 7, s ) and returns the value.

The default function called this way is RingOps.Quotient, which just signals an error,
because there is no generic method to compute the quotient of two ring elements. Thus
special categories of rings must overlay this default function with other functions.

5.7 IsCommutativeRing

IsCommutativeRing( R )
IsCommutativeRing returns true if the ring R is commutative and false otherwise.
A ring R is called commutative if for all elements r and s of R we have rs = sr.

gap> IsCommutativeRing( Integers );
true

IsCommutativeRing first tests whether the flag R.isCommutativeRing is bound. If the flag
is bound, it returns this value. Otherwise it calls R.operations.IsCommutativeRing( R
), remembers the returned value in R.isCommutativeRing, and returns it.

The default function called this way is RingOps.IsCommutativeRing, which tests whether
all the generators commute if the component R.generators is bound, and tests whether all
elements commute otherwise, unless R is infinite. This function is seldom overlaid, because
most rings already have the flag bound.

5.8 IsIntegralRing

IsIntegralRing( R )
IsIntegeralRing returns true if the ring R is integral and false otherwise.

A ring R is called integral if it is commutative and if for all elements r and s of R we have
rs = Ogr implies that either r or s is Op.
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gap> IsIntegralRing( Integers );
true

IsIntegralRing first tests whether the flag R.isIntegralRing is bound. If the flag is
bound, it returns this value. Otherwise it calls R.operations.IsIntegralRing( R ),
remembers the returned value in R.isIntegralRing, and returns it.

The default function called this way is RingOps.IsIntegralRing, which tests whether the
product of each pair of nonzero elements is unequal to zero, unless R is infinite. This
function is seldom overlaid, because most rings already have the flag bound.

5.9 IsUniqueFactorizationRing

IsUniqueFactorizationRing( R )

IsUniqueFactorizationRing returns true if R is a unique factorization ring and false
otherwise.

A ring R is called a unique factorization ring if it is an integral ring, and every element
has a unique factorization into irreducible elements, i.e., a unique representation as product
of irreducibles (see 5.16). Unique in this context means unique up to permutations of the
factors and up to multiplication of the factors by units (see 5.12).

gap> IsUniqueFactorizationRing( Integers );
true

IsUniqueFactorizationRing tests whether R.isUniqueFactorizationRing is bound. If
the flag is bound, it returns this value. If this flag has no assigned value it calls the func-
tion R.operations.IsUniqueFactorizationRing( R ), remembers the returned value in
R.isUniqueFactorizationRing, and returns it.

The default function called this way is RingOps.IsUniqueFactorizationRing, which just
signals an error, since there is no generic method to test whether a ring is a unique factor-
ization ring. Special categories of rings thus must either have the flag bound or overlay this
default function.

5.10 IsEuclideanRing

IsEuclideanRing( R )
IsEuclideanRing returns true if the ring R is a Euclidean ring and false otherwise.

A ring R is called a Euclidean ring if it is an integral ring and there exists a function §,
called the Euclidean degree, from R — {0} to the nonnegative integers, such that for every
pair r € R and s € R — {Og} there exists an element ¢ such that either r — gs = Og or
d(r — gs) < 0(s). The existence of this division with remainder implies that the Euclidean
algorithm can be applied to compute a greatest common divisor of two elements, which in
turn implies that R is a unique factorization ring.

gap> IsEuclideanRing( Integers );
true

IsEuclideanRing first tests whether the flag R.isEuclideanRing is bound. If the flag is
bound, it returns this value. Otherwise it calls R.operations.IsEuclideanRing( R ),
remembers the returned value in R.isEuclideanRing, and returns it.
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The default function called this way is RingOps.IsEuclideanRing, which just signals an
error, because there is no generic way to test whether a ring is a Euclidean ring. This
function is seldom overlaid because most rings already have the flag bound.

5.11 IsUnit

IsUnit( r )
IsUnit( R, r )

In the first form IsUnit returns true if the ring element r is a unit in its default ring (see
5.3). In the second form IsUnit returns true if r is a unit in the ring R.

An element 7 is called a unit in a ring R, if r has an inverse in R.

gap> IsUnit( Integers, 2 );
false
gap> IsUnit( Integers, -1 );
true

IsUnit calls R.operations.IsUnit( R, r ) and returns the value.

The default function called this way is RingOps.IsUnit, which tries to compute the inverse
of r with R.operations.Quotient( R, R.one, r ) and returns true if the result is not
false, and false otherwise. Special categories of rings overlay this default function with
more efficient functions.

5.12 Units

Units( R )

Units returns the group of units of the ring R. This may either be returned as a list or as
a group described by a group record (see 7).

An element r is called a unit of a ring R, if r has an inverse in R. It is easy to see that the
set of units forms a multiplicative group.

gap> Units( Integers );
[ -1, 1]

Units first tests whether the component R.units is bound. If the component is bound, it
returns this value. Otherwise it calls R.operations.Units( R ), remembers the returned
value in R.units, and returns it.

The default function called this way is RingOps.Units, which runs over all elements of R
and tests for each whether it is a unit, provided that R is finite. Special categories of rings
overlay this default function with more efficient functions.

5.13 IsAssociated

IsAssociated( 7, s )
IsAssociated( R, r, s )

In the first form IsAssociated returns true if the two ring elements r and s are associated
in their default ring (see 5.3) and false otherwise. In the second form IsAssociated returns
true if the two ring elements r and s are associated in the ring R and false otherwise.
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Two elements r and s of a ring R are called associates if there is a unit u of R such that
ru = S.

gap> IsAssociated( Integers, 2, 3 );

false

gap> IsAssociated( Integers, 17, -17 );

true

IsAssociated calls R.operations.IsAssociated( R, r, s ) and returns the value.

The default function called this way is RingOps.IsAssociated, which tries to compute the
quotient of 7 and s and returns true if the quotient exists and is a unit. Special categories
of rings overlay this default function with more efficient functions.

5.14 StandardAssociate

StandardAssociate( r )
StandardAssociate( R, 7 )

In the first form StandardAssociate returns the standard associate of the ring element r
in its default ring (see 5.3). In the second form StandardAssociate returns the standard
associate of the ring element r in the ring R.

The standard associate of an ring element r of R is an associated element of r which is,
in a ring dependent way, distinguished among the set of associates of . For example, in the
ring of integers the standard associate is the absolute value.

gap> StandardAssociate( Integers, -17 );
17

StandardAssociate calls R.operations.StandardAssociate( R, r ) and returns the
value.

The default function called this way is RingOps.StandardAssociate, which just signals an
error, because there is no generic way even to define the standard associate. Thus special
categories of rings must overlay this default function with other functions.

5.15 Associates

Associates( r )
Associates( R, 7 )

In the first form Associates returns the set of associates of the ring element r in its default
ring (see 5.3). In the second form Associates returns the set of associates of r in the ring
R.

Two elements r and s of a ring R are called associate if there is a unit u of R such that
ru = S.
gap> Associates( Integers, 17 );
[ -17, 17 ]
Associates calls R.operations.Associates( R, r ) and returns the value.
The default function called this way is RingOps.Associates, which multiplies the set of

units of R with the element r, and returns the set of those elements. Special categories of
rings overlay this default function with more efficient functions.
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5.16 Islrreducible

IsIrreducible( 7 )
IsIrreducible( R, 7 )

In the first form IsIrreducible returns true if the ring element r is irreducible in its default
ring (see 5.3) and false otherwise. In the second form IsIrreducible returns true if the
ring element r is irreducible in the ring R and false otherwise.

An element r of a ring R is called irreducible if there is no nontrivial factorization of r in
R, i.e., if there is no representation of r as product st such that neither s nor ¢ is a unit (see
5.11). Each prime element (see 5.17) is irreducible.

gap> IsIrreducible( Integers, 4 );
false
gap> IsIrreducible( Integers, 3 );
true

IsIrreducible calls R.operations.IsIrreducible( R, r ) and returns the value.

The default function called this way is RingOps.IsIrreducible, which justs signals an
error, because there is no generic way to test whether an element is irreducible. Thus
special categories of rings must overlay this default function with other functions.

5.17 IsPrime

IsPrime( r )
IsPrime( R, r )

In the first form IsPrime returns true if the ring element r is a prime in its default ring
(see 5.3) and false otherwise. In the second form IsPrime returns true if the ring element
r is a prime in the ring R and false otherwise.

An element r of a ring R is called prime if for each pair s and ¢ such that r divides st
the element r divides either s or ¢. Note that there are rings where not every irreducible
element (see 5.16) is a prime.

gap> IsPrime( Integers, 4 );
false
gap> IsPrime( Integers, 3 );
true

IsPrime calls R.operations.IsPrime( R, r ) and returns the value.

The default function called this way is RingOps.IsPrime, which just signals an error, be-
cause there is no generic way to test whether an element is prime. Thus special categories
of rings must overlay this default function with other functions.

5.18 Factors

Factors( r )
Factors( R, 7 )

In the first form Factors returns the factorization of the ring element r in its default ring
(see 5.3). In the second form Factors returns the factorization of the ring element r in
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the ring R. The factorization is returned as a list of primes (see 5.17). Each element in the
list is a standard associate (see 5.14) except the first one, which is multiplied by a unit as
necessary to have Product ( Factors( R, r ) ) = r. This list is usually also sorted, thus
smallest prime factors come first. If r is a unit or zero, Factors( R, r ) = [ r ].

gap> Factors( -Factorial(6) );

[ -2, 2,2,2,3,3,5]

gap> Set( Factors( Factorial(13)/11 ) );

[ 2, 3,5, 7, 13]

gap> Factors( 2763 - 1 );

L7, 7, 73, 127, 337, 92737, 649657 ]

gap> Factors( 10742 + 1 );

[ 29, 101, 281, 9901, 226549, 121499449, 4458192223320340849 ]

Factors calls R.operations.Factors( R, r ) and returns the value.

The default function called this way is RingOps.Factors, which just signals an error, be-
cause there is no generic way to compute the factorization of ring elements. Thus special
categories of ring elements must overlay this default function with other functions.

5.19 EuclideanDegree

EuclideanDegree( r )
EuclideanDegree( R, 7 )

In the first form EuclideanDegree returns the Euclidean degree of the ring element r in its
default ring. In the second form EuclideanDegree returns the Euclidean degree of the ring
element in the ring R. R must of course be an Euclidean ring (see 5.10).

A ring R is called a Fuclidean ring, if it is an integral ring, and there exists a function §,
called the Euclidean degree, from R — {0} to the nonnegative integers, such that for every
pair » € R and s € R — {Og} there exists an element ¢ such that either r — gs = Og or
d(r — gs) < 6(s). The existence of this division with remainder implies that the Euclidean
algorithm can be applied to compute a greatest common divisors of two elements, which in
turn implies that R is a unique factorization ring.

gap> EuclideanDegree( Integers, 17 );
17
gap> EuclideanDegree( Integers, -17 );
17

EuclideanDegree calls R.operations.EuclideanDegree( R, r ) and returns the value.

The default function called this way is RingOps.EuclideanDegree, which justs signals an
error, because there is no default way to compute the Euclidean degree of an element. Thus
Euclidean rings must overlay this default function with other functions.

5.20 FEuclideanRemainder

EuclideanRemainder( r, m )
EuclideanRemainder( R, r, m )

In the first form EuclideanRemainder returns the remainder of the ring element r modulo
the ring element m in their default ring. In the second form EuclideanRemainder returns
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the remainder of the ring element r modulo the ring element m in the ring R. The ring R
must be a Euclidean ring (see 5.10) otherwise an error is signalled.

A ring R is called a Fuclidean ring, if it is an integral ring, and there exists a function §,
called the Euclidean degree, from R —{0g} to the nonnegative integers, such that for every
pair » € R and s € R — {Og} there exists an element ¢ such that either r — gs = O or
d(r — gs) < 6(s). The existence of this division with remainder implies that the Euclidean
algorithm can be applied to compute a greatest common divisors of two elements, which
in turn implies that R is a unique factorization ring. EuclideanRemainder returns this
remainder r — ¢s.

gap> EuclideanRemainder( 16, 3 );

1

gap> EuclideanRemainder( Integers, 201, 11 );
3

EuclideanRemainder calls R.operations.EuclideanRemainder( R, r, m ) in order to
compute the remainder and returns the value.

The default function called this way uses QuotientRemainder in order to compute the
remainder.

5.21 EuclideanQuotient

EuclideanQuotient( r, m )
EuclideanQuotient( R, r, m )

In the first form EuclideanQuotient returns the Euclidean quotient of the ring elements r
and m in their default ring. In the second form EuclideanQuotient returns the Euclidean
quotient of the ring elements rand m in the ring R. The ring R must be a Euclidean ring
(see 5.10) otherwise an error is signalled.

A ring R is called a Euclidean ring, if it is an integral ring, and there exists a function ¢,
called the Euclidean degree, from R —{0g} to the nonnegative integers, such that for every
pair r € R and s € R — {Og} there exists an element ¢ such that either r — gs = O or
d(r — qs) < 0(s). The existence of this division with remainder implies that the Euclidean
algorithm can be applied to compute a greatest common divisors of two elements, which in
turn implies that R is a unique factorization ring. EuclideanQuotient returns the quotient
q.

gap> EuclideanQuotient( 16, 3 );

5

gap> EuclideanQuotient( Integers, 201, 11 );

18

EuclideanQuotient calls R.operations.EuclideanQuotient( R, r, m ) and returns
the value.

The default function called this way uses QuotientRemainder in order to compute the
quotient.

5.22 QuotientRemainder

QuotientRemainder( r, m )
QuotientRemainder( R, r, m )
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In the first form QuotientRemainder returns the Euclidean quotient and the Euclidean
remainder of the ring elements r and m in their default ring as pair of ring elements. In
the second form QuotientRemainder returns the Euclidean quotient and the Euclidean
remainder of the ring elements r and m in the ring R. The ring R must be a Euclidean ring
(see 5.10) otherwise an error is signalled.

A ring R is called a Euclidean ring, if it is an integral ring, and there exists a function §,
called the Euclidean degree, from R — {0Og} to the nonnegative integers, such that for every
pair 7 € R and s € R — {0Ogr} there exists an element ¢ such that either » — ¢gs = Og or
d(r — ¢qs) < 0(s). The existence of this division with remainder implies that the Euclidean
algorithm can be applied to compute a greatest common divisors of two elements, which in
turn implies that R is a unique factorization ring. QuotientRemainder returns this quotient
q and the remainder r — gs.

gap> qr := QuotientRemainder( 16, 3 );

[ 5, 1]

gap> 3 * qr[1] + qr[2];

16

gap> QuotientRemainder( Integers, 201, 11 );
[ 18, 3]

QuotientRemainder calls R.operations.QuotientRemainder( R, 7, m ) and returns
the value.

The default function called this way is RingOps.QuotientRemainder, which just signals an
error, because there is no default function to compute the Euclidean quotient or remainder
of one ring element modulo another. Thus Euclidean rings must overlay this default function
with other functions.

5.23 Mod

Mod( 7, m )
Mod( R, r, m )

Mod is a synonym for EuclideanRemainder and is obsolete, see 5.20.

5.24 QuotientMod

QuotientMod( r, s, m )
QuotientMod( R, 7, s, m )

In the first form QuotientMod returns the quotient of the ring elements r and s modulo the
ring element m in their default ring (see 5.3). In the second form QuotientMod returns the
quotient of the ring elements r and s modulo the ring element m in the ring R. R must be
a BEuclidean ring (see 5.10) so that EuclideanRemainder (see 5.20) can be applied. If the
modular quotient does not exist, false is returned.

The quotient g of r and s modulo m is an element of R such that ¢s = r modulo m, i.e.,
such that gs — r is divisable by m in R and that ¢ is either 0 (if r is divisable by m) or the
Euclidean degree of ¢ is strictly smaller than the Euclidean degree of m.

gap> QuotientMod( Integers, 13, 7, 11 );
5
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gap> QuotientMod( Integers, 13, 7, 21 );
false

QuotientMod calls R.operations.QuotientMod( R, r, s, m ) and returns the value.

The default function called this way is RingOps.QuotientMod, which applies the Euclidean
ged algorithm to compute the ged g of s and m, together with the representation of this
gcd as linear combination in s and m, g = a * s + b * m. The modular quotient exists
if and only if r is divisible by g, in which case the quotient is ¢ * Quotient( R, 7, g ).
This default function is seldom overlaid, because there is seldom a better way to compute
the quotient.

5.25 PowerMod

PowerMod( r, ¢, m )
PowerMod( R, 7, e, m )

In the first form PowerMod returns the e-th power of the ring element r modulo the ring
element m in their default ring (see 5.3). In the second form PowerMod returns the e-th
power of the ring element r modulo the ring element m in the ring R. e must be an integer.
R must be a Euclidean ring (see 5.10) so that EuclideanRemainder (see 5.20) can be applied
to its elements.

If e is positive the result is ¢ modulo m. If e is negative then PowerMod first tries to find
the inverse of r modulo m, i.e.; ¢ such that ir = 1 modulo m. If the inverse does not exist
an error is signalled. If the inverse does exist PowerMod returns PowerMod( R, i, -e, m

).

PowerMod reduces the intermediate values modulo m, improving performance drastically
when e is large and m small.

gap> PowerMod( Integers, 2, 20, 100 );

76 # 220 = 1048576

gap> PowerMod( Integers, 3, 2732, 2732+1 );

3029026160 # which proves that 232 4+ 1 is not a prime
gap> PowerMod( Integers, 3, -1, 22 );

15 # 3*15 = 45 = 1 modulo 22

PowerMod calls R.operations.PowerMod( R, r, e, m ) and returns the value.

The default function called this way is RingOps.PowerMod, which uses QuotientMod (see
5.24) if necessary to invert r, and then uses a right-to-left repeated squaring, reducing the
intermediate results modulo m in each step. This function is seldom overlaid, because there
is seldom a better way of computing the power.

5.26 Gecd

Ged( r1, r2... )
Ged( R, 71, r2... )

In the first form Ged returns the greatest common divisor of the ring elements r1, r2... etc.
in their default ring (see 5.3). In the second form Ged returns the greatest common divisor
of the ring elements r1, r2... etc. in the ring R. R must be a Euclidean ring (see 5.10) so
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that QuotientRemainder (see 5.22) can be applied to its elements. Ged returns the standard
associate (see 5.14) of the greatest common divisors.

A greatest common divisor of the elements ry, ra... etc. of the ring R is an element of
largest Euclidean degree (see 5.19) that is a divisor of r1, ro... etc. We define ged(r,0r) =
gcd(Og,r) = StandardAssociate(r) and ged(0g,0r) = Og.

gap> Gcd( Integers, 123, 66 );
3

Gcd calls R.operations.Ged repeatedly, each time passing the result of the previous call
and the next argument, and returns the value of the last call.

The default function called this way is RingOps .Gcd, which applies the Euclidean algorithm
to compute the greatest common divisor. Special categories of rings overlay this default
function with more efficient functions.

5.27 GcdRepresentation

GcdRepresentation( r1, 72... )
GcdRepresentation( R, r1, r2... )

In the first form GcdRepresentation returns the representation of the greatest common
divisor of the ring elements r1, r2... etc. in their default ring (see 5.3). In the second form
GcdRepresentation returns the representation of the greatest common divisor of the ring
elements 71, 72... etc. in the ring R. R must be a Euclidean ring (see 5.10) so that Ged
(see 5.26) can be applied to its elements. The representation is returned as a list of ring
elements.

The representation of the ged g of the elements r1, ry... etc. of a ring R is a list of ring
elements s1, So... etc. of R, such that g = s171 + sar2.... That this representation exists can
be shown using the Euclidean algorithm, which in fact can compute those coefficients.

gap> GcdRepresentation( 123, 66 );

[ 7, -13 1] # 3 =T7*123 - 13*66

gap> Gecd( 123, 66 ) = last * [ 123, 66 ];
true

GcdRepresentation calls R.operations.GcdRepresentation repeatedly, each time pass-
ing the ged result of the previous call and the next argument, and returns the value of the
last call.

The default function called this way is RingOps.GcdRepresentation, which applies the
Euclidean algorithm to compute the greatest common divisor and its representation. Special
categories of rings overlay this default function with more efficient functions.

5.28 Lcm

Lem( 71, r2... )
Lem( R, r1, 72... )

In the first form Lem returns the least common multiple of the ring elements r1, r2... etc.
in their default ring (see 5.3). In the second form Lcm returns the least common multiple
of the ring elements 71, r2,... etc. in the ring R. R must be a Euclidean ring (see 5.10) so



252 CHAPTER 5. RINGS

that Ged (see 5.26) can be applied to its elements. Lem returns the standard associate (see
5.14) of the least common multiples.

A least common multiple of the elements 71, 7o... etc. of the ring R is an element of smallest
Euclidean degree (see 5.19) that is a multiple of r1, ro... etc. We define lem(r,0r) =
lem(0g,7) = StandardAssociate(r) and Lem(0g,0r) = Og.

Lem uses the equality lem(m,n) = m xn/ged(m,n) (see 5.26).

gap> Lem( Integers, 123, 66 );
2706

Lem calls R.operations.Lem repeatedly, each time passing the result of the previous call
and the next argument, and returns the value of the last call.

The default function called this way is RingOps.Lcm, which simply returns the product of
r with the quotient of s and the greatest common divisor of r and s. Special categories of
rings overlay this default function with more efficient functions.

5.29 Ring Records

A ring R is represented by a record with the following entries.

isDomain

is of course always the value true.
isRing

is of course always the value true.
isCommutativeRing

is true if the multiplication is known to be commutative, false if the multiplication
is known to be noncommutative, and unbound otherwise.

isIntegralRing
is true if R is known to be a commutative domain with 1 without zero divisor, false
if R is known to lack one of these properties, and unbound otherwise.

isUniqueFactorizationRing
is true if R is known to be a domain with unique factorization into primes, false if
R is known to have a nonunique factorization, and unbound otherwise.

isEuclideanRing
is true if R is known to be a Euclidean domain, false if it is known not to be a
Euclidean domain, and unbound otherwise.

zero
is the additive neutral element.
units
is the list of units of the ring if it is known.
size
is the size of the ring if it is known. If the ring is not finite this is the string ”infinity”.
one

is the multiplicative neutral element, if the ring has one.
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integralBase
if the ring is, as additive group, isomorphic to the direct product of a finite number
of copies of Z this contains a base.

As an example of a ring record, here is the definition of the ring record Integers.

rec(

# category components

isDomain = true,
isRing := true,
# identity components
generators :=[11,
Zero =0,
one =1,
name := "Integers",
# knowledge components
size := "infinity",
isFinite .= false,
isCommutativeRing := true,
isIntegralRing := true,
isUniqueFactorizationRing := true,
isFuclideanRing := true,
units :=[-1,11,
# operations record
operations 1= rec(
IsPrime := function ( Integers, n )
return IsPrimeInt( n );
end,
’mod’ = function ( Integers, n, m )
return n mod m;
end,

) )
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Chapter 6

Fields

Fields are important algebraic domains. Mathematically a field is a commutative ring F'
(see chapter 5), such that every element except 0 has a multiplicative inverse. Thus F has
two operations + and * called addition and multiplication. (F,+) must be an abelian group,
whose identity is called Op. (F'—{0p}, *) must be an abelian group, whose identity element
is called 1p.

GAP3 supports the field of rationals (see 12), subfields of cyclotomic fields (see 15), and
finite fields (see 18).

This chapter begins with sections that describe how to test whether a domain is a field (see
6.1), how to find the smallest field and the default field in which a list of elements lies (see
6.2 and 6.3), and how to view a field over a subfield (see 6.4).

The next sections describes the operation applicable to field elements (see 6.5 and 6.6).

The next sections describe the functions that are applicable to fields (see 6.7) and their
elements (see 6.12, 6.10, 6.11, 6.9, and 6.8).

The following sections describe homomorphisms of fields (see 6.13, 6.14, 6.15, 6.16).
The last section describes how fields are represented internally (see 6.17).

Fields are domains, so all functions that are applicable to all domains are also applicable to
fields (see chapter 4).

All functions for fields are in LIBNAME/"field.g".

6.1 IsField

IsField( D )
IsField returns true if the object D is a field and false otherwise.

More precisely IsField tests whether D is a field record (see 6.17). So, for example, a
matrix group may in fact be a field, yet IsField would return false.

gap> IsField( GaloisField(16) );
true
gap> IsField( CyclotomicField(9) );

255
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true

gap> IsField( rec( isDomain := true, isField := true ) );
true # it is possible to fool IsField

gap> IsField( AsRing( Ratiomals ) );

false # though this ring is, as a set, still Rationals

6.2 Field

Field( z,.. ) Field( list )

In the first form Field returns the smallest field that contains all the elements z,.. etc. In
the second form Field returns the smallest field that contains all the elements in the list
list. If any element is not an element of a field or the elements lie in no common field an
error is raised.

gap> Field( Z(4) );

GF(272)

gap> Field( E(9) );

CF(9)

gap> Field( [ Z(4), Z(9) 1);

Error, CharFFE: <z> must be a finite field element, vector, or matrix
gap> Field( [ E(4), E(9) 1 );

CF(36)

Field differs from DefaultField (see 6.3) in that it returns the smallest field in which the
elements lie, while DefaultField may return a larger field if that makes sense.

6.3 DefaultField

DefaultField( z,.. ) DefaultField( list )

In the first form DefaultField returns the default field that contains all the elements z,..
etc. In the second form DefaultField returns the default field that contains all the elements
in the list list. If any element is not an element of a field or the elements lie in no common
field an error is raised.

The field returned by DefaultField need not be the smallest field in which the elements
lie. For example for elements from cyclotomic fields DefaultField may return the smallest
cyclotomic field in which the elements lie, which need not be the smallest field overall,
because the elements may in fact lie in a smaller number field which is not a cyclotomic

field.

For the exact definition of the default field of a certain type of elements read the chapter
describing this type (see 18 and 15).

DefaultField is used by Conjugates, Norm, Trace, CharPol, and MinPol (see 6.12, 6.10,
6.11, 6.9, and 6.8) if no explicit field is given.

gap> DefaultField( Z(4) );

GF(2°2)

gap> DefaultField( E(9) );

CF(9)

gap> DefaultField( [ Z(4), Z2(9) 1 );
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Error, CharFFE: <z> must be a finite field element, vector, or matrix
gap> DefaultField( [ E(4), E(9) 1 );
CF(36)

Field (see 6.2) differs from DefaultField in that it returns the smallest field in which the
elements lie, while DefaultField may return a larger field if that makes sense.

6.4 Fields over Subfields

F /G

The quotient operator / evaluates to a new field H. This field has the same elements as F',
i.e., is a domain equal to F. However H is viewed as a field over the field G, which must be
a subfield of F'.

What subfield a field is viewed over determines its Galois group. As described in 6.7 the
Galois group is the group of field automorphisms that leave the subfield fixed. It also
influences the results of 6.10, 6.11, 6.9, and 6.8, because they are defined in terms of the
Galois group.

gap> F := GF(2712);
GF(2712)
gap> G := GF(272);
GF(2°2)
gap> Q :=F / G;
GF(2712)/GF(272)
gap> Norm( F, Z(2°6) );
Z(2)"0
gap> Norm( Q, Z(276) );
Z(2°2)"2

The operator / calls G.operations./( F, G ).

The default function called this way is FieldOps./, which simply makes a copy of F' and
enters G into the record component F.field (see 6.17).

6.5 Comparisons of Field Elements

f=y

[ <y

The equality operator = evaluates to true if the two field elements f and ¢ are equal, and
to false otherwise. The inequality operator <> evaluates to true if the two field elements
f and g are not equal, and to false otherwise. Note that any two field elements can be
compared, even if they do not lie in compatible fields. In this case they cn, of course, never
be equal. For each type of fields the equality of those field elements is given in the respective
chapter.

Note that you can compare field elements with elements of other types; of course they are
never equal.

f<y
f<=y
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f>y

f>=y

The operators <, <=, > and >= evaluate to true if the field element f is less than, less than
or equal to, greater than, or greater than or equal to the field element g. For each type of
fields the definition of the ordering of those field elements is given in the respective chapter.
The ordering of field elements is as follows. Rationals are smallest, next are cyclotomics,
followed by finite field elements.

Note that you can compare field elements with elements of other types; they are smaller
than everything else.

6.6 Operations for Field Elements

The following operations are always available for field elements. Of course the operands must
lie in compatible fields, i.e., the fields must be equal, or at least have a common superfield.
f+y

The operator + evaluates to the sum of the two field elements f and g, which must lie in
compatible fields.

f-9

The operator - evaluates to the difference of the two field elements f and ¢, which must lie
in compatible fields.

f*y

The operator * evaluates to the product of the two field elements f and g, which must lie
in compatible fields.

f7g

The operator / evaluates to the quotient of the two field elements f and g, which must lie
in compatible fields. If the divisor is 0 an error is signalled.

f - n
The operator ~ evaluates to the n-th power of the field element f. If n is a positive integer
then f~n is fxf*..*f (n factors). If n is a negative integer f~n is defined as 1/f~". If 0

is raised to a negative power an error is signalled. Any field element, even 0, raised to the
0-th power yields 1.

For the precedence of the operators see 2.10.

6.7 (GaloisGroup

GaloisGroup( F' )

GaloisGroup returns the Galois group of the field F' as a group (see 7) of field automorphisms
(see 6.13).

The Galois group of a field F' over a subfield F'.field is the group of automorphisms of
F that leave the subfield F'.field fixed. This group can be interpreted as a permutation
group permuting the zeroes of the characteristic polynomial of a primitive element of F.
The degree of this group is equal to the number of zeroes, i.e., to the dimension of F' as
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a vector space over the subfield F'.field. It operates transitively on those zeroes. The
normal divisors of the Galois group correspond to the subfields between F' and F.field.

gap> G := GaloisGroup( GF(4096)/GF(4) );;

gap> Size( G );

6

gap> IsCyclic( G );

true # the Galois group of every finite field is
# generated by the Frobenius automorphism

gap> H := GaloisGroup( CF(60) );;

gap> Size( H );

16

gap> IsAbelian( H );

true

The default function FieldOps.GaloisGroup just raises an error, since there is no general
method to compute the Galois group of a field. This default function is overlaid by more
specific functions for special types of domains (see 18.13 and 15.8).

6.8 MinPol

MinPol( 2z )
MinPol( F, z )

In the first form MinPol returns the coefficients of the minimal polynomial of the element
z in its default field over its prime field (see 6.3). In the second form MinPol returns the
coefficients of the minimal polynomial of the element z in the field F' over the subfield
F.field.

Let F'/S be a field extension and L a minimal normal extension of S, containing F'. The
minimal polynomial of z in F' over S is the squarefree polynomial whose roots are precisely
the conjugates of z in L (see 6.12). Because the set of conjugates is fixed under the Galois
group of L over S (see 6.7), so is the polynomial. Thus all the coefficients of the minimal
polynomial lie in S.

gap> MinPol( Z(276) );

[ 2(2)70, 2(2)70, 0*Z(2), Z(2)70, Z(2)70, 0%Z(2), Z(2)"0 ]
gap> MinPol( GF(2712), Z(276) );

[ Z(2)70, Z(2)"0, 0%Z(2), Z(2)°0, Z(2)"0, 0*Z(2), Z(2)70 ]
gap> MinPol( GF(2712)/GF(2°2), Z(276) );

[ Z(272), 2(2)70, Z2(2)"0, Z(2)"0 ]

The default function FieldOps.MinPol, which works only for extensions with abelian Galois
group, multiplies the linear factors x — ¢ with ¢ ranging over the set of conjugates of z in
F (see 6.12). For generic algebraic extensions, it is overlayed by solving a system of linear
equations, given by the coefficients of powers of z in respect to a given base.

6.9 CharPol

CharPol( z )
CharPol( F, z )
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In the first form CharPol returns the coefficients of the characteristic polynomial of the
element z in its default field over its prime field (see 6.3). In the second form CharPol
returns the coefficients of the characteristic polynomial of the element z in the field F' over
the subfield F'.field. The characteristic polynomial is returned as a list of coefficients, the
i-th entry is the coefficient of 2~ !.

The characteristic polynomial of an element z in a field F' over a subfield S is the [(fzgsu] -th

power of u, where p denotes the minimal polynomial of z in F over S. It is fixed under
the Galois group of the normal closure of F. Thus all the coefficients of the characteristic
polynomial lie in S. The constant term is (—1)F-degree/S-degree — (_1)[F:S] times the norm
of z (see 6.10), and the coefficient of the second highest degree term is the negative of the
trace of z (see 6.11). The roots (including their multiplicities) in F' of the characteristic
polynomial of z in F are the conjugates (see 6.12) of z in F.

gap> CharPol( Z(276) );

[ Z(2)70, Z(2)°0, 0%Z(2), Z(2)°0, Z(2)°0, 0*Z(2), Z(2)"0 ]

gap> CharPol( GF(2712), Z(276) );

[ Z(2)"0, 0%Z(2), Z(2)°0, 0%Z(2), 0%Z(2), 0*Z(2), Z(2)"0, 0%Z(2),
Z(2)°0, 0%Z(2), 0%xZ(2), 0*Z(2), Z(2)"0 ]

gap> CharPol( GF(2°12)/GF(2°2), Z(2°6) );

[ Z(272)"2, 0%Z(2), Z(2)"0, 0*Z(2), Z(2)"0, 0*Z(2), Z(2)"0 ]

The default function FieldOps.CharPol multiplies the linear factors x — ¢ with ¢ ranging
over the conjugates of z in F (see 6.12). For nonabelian extensions, it is overlayed by a
function, which computes the appropriate power of the minimal polynomial.

6.10 Norm

Norm( z )
Norm( F, z )

In the first form Norm returns the norm of the field element z in its default field over its
prime field (see 6.3). In the second form Norm returns the norm of z in the field F' over the
subfield F'.field.

The norm of an element z in a field F over a subfield S is (—1)F-degree/S-degree — (_1)[F:5]
times the constant term of the characteristic polynomial of z (see 6.9). Thus the norm lies
in S. The norm is the product of all conjugates of z in the normal closure of F' over S (see
6.12).

gap> Norm( Z(276) );

Z(2)"0

gap> Norm( GF(2°12), Z(276) );

2(2)70

gap> Norm( GF(2712)/GF(27°2), Z(276) );
z(2°2)"2

The default function FieldOps.Norm multiplies the conjugates of z in F' (see 6.12). For
nonabelian extensions, it is overlayed by a function, which obtains the norm from the char-
acteristic polynomial.
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6.11 Trace

Trace( z )
Trace( F, z )

In the first form Trace returns the trace of the field element z in its default field over its
prime field (see 6.3). In the second form Trace returns the trace of the element z in the
field F' over the subfield F'.field.

The trace of an element z in a field F' over a subfield S is the negative of the coefficient
of the second highest degree term of the characteristic polynomial of z (see 6.9). Thus the
trace lies in S. The trace is the sum over all conjugates of z in the normal closure of F' over
S (see 6.12).

gap> Trace( Z(276) );

0%Z(2)

gap> Trace( GF(2712), Z(276) );

0%Z(2)

gap> Trace( GF(2712)/GF(272), Z(276) );
0%Z(2)

The default function FieldOps.Trace adds the conjugates of z in F (see 6.12). For non-
abelian extensions, this is overlayed by a function, which obtains the trace from the char-
acteristic polynomial.

6.12 Conjugates

Conjugates( z )
Conjugates( F', z )

In the first form Conjugates returns the list of conjugates of the field element z in its
default field over its prime field (see 6.3). In the second form Conjugates returns the list
of conjugates of the field element z in the field F' over the subfield F'.field. In either case
the list may contain duplicates if z lies in a proper subfield of its default field, respectively
of F.

The conjugates of an element z in a field F' over a subfield S are the roots in F' of the
characteristic polynomial of z in F' (see 6.9). If F' is a normal extension of S, then the
conjugates of z are the images of z under all elements of the Galois group of F' over S
(see 6.7), i.e., under those automorphisms of F' that leave S fixed. The number of different
conjugates of z is given by the degree of the smallest extension of S in which z lies.

For a normal extension F', Norm (see 6.10) computes the product, Trace (see 6.11) the sum of
all conjugates. CharPol (see 6.9) computes the polynomial that has precisely the conjugates
with their corresponding multiplicities as roots, MinPol (see 6.8) the squarefree polynomial
that has precisely the conjugates as roots.

gap> Conjugates( Z(276) );

[ z(276), 2(276)"2, Z(27°6)°4, Z(276)"8, Z(276)"16, Z(276)"32 ]

gap> Conjugates( GF(2712), Z(276) );

[ Zz(276), Z2(276)"2, Z(276)"4, Z(276)"8, Z(2°6)"16, Z2(276)"32, Z(276),
2(276)°2, 2(276)"4, Z(276)78, Z(276)"16, Z(276)"32 ]

gap> Conjugates( GF(2°12)/GF(2°2), Z(276) );
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[ z(276), Z(276)"4, Z(276)"16, Z(2°6), Z(276)"4, Z(276)"16 ]

The default function FieldOps.Conjugates applies the automorphisms of the Galois group
of F' (see 6.7) to z and returns the list of images. For nonabelian extensions, this is overlayed
by a factorization of the characteristic polynomial.

6.13 Field Homomorphisms

Field homomorphisms are an important class of homomorphisms in GAP3 (see chapter 44).

A field homomorphism ¢ is a mapping that maps each element of a field F', called the
source of ¢, to an element of another field G, called the range of ¢, such that for each pair
z,y € F we have (z +1)? = 2% + 3% and (zy)? = 2%y®. We also require that ¢ maps the
one of F to the one of G (that ¢ maps the zero of F' to the zero of G is implied by the above
relations).

An Example of a field homomorphism is the Frobinius automorphism of a finite field (see
18.11). Look under field homomorphisms in the index for a list of all available field
homomorphisms.

Since field homomorphisms are just a special case of homomorphisms, all functions described
in chapter 44 are applicable to all field homomorphisms, e.g., the function to test if a
homomorphism is a an automorphism (see 44.6). More general, since field homomorphisms
are just a special case of mappings all functions described in chapter 43 are also applicable,
e.g., the function to compute the image of an element under a homomorphism (see 43.8).

The following sections describe the functions that test whether a mapping is a field homo-
morphism (see 6.14), compute the kernel of a field homomorphism (see 6.15), and how the
general mapping functions are implemented for field homomorphisms.

6.14 IsFieldHomomorphism

IsFieldHomomorphism( map )

IsFieldHomomorphism returns true if the mapping map is a field homomorphism and false
otherwise. Signals an error if map is a multi valued mapping.

A mapping map is a field homomorphism if its source F' and range G are both fields and if for
each pair of elements z,y € F' we have (x4 y)™% = g™ 4 y™% and (zy)™P = gMm*®Py™mP,

We also require that 17" = 1.
gap> £ := GF( 16 );
GF(274)
gap> fun := FrobeniusAutomorphism( f );

FrobeniusAutomorphism( GF(2°4) )
gap> IsFieldHomomorphism( fun ) ;
true

IsFieldHomomorphism first tests if the flag map.isFieldHomomorphism is bound. If the
flag is bound, IsFieldHomomorphism returns its value. Otherwise it calls

map . source.operations.IsFieldHomomorphism( map ), remembers the returned value
in map . isFieldHomomorphism, and returns it. Note that of course all functions that create
field homomorphism set the flag map.isFieldHomomorphism to true, so that no function
is called for those field homomorphisms.
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The default function called this way is MappingOps.IsFieldHomomorphism. It computes
all the elements of the source of map and for each pair of elements z,y tests whether
(x + y)™meP = gMm?P 4 ™% and (xy)™® = 2™Py"* . Look under IsHomomorphism in
the index to see for which mappings this function is overlaid.

6.15 KernelFieldHomomorphism

KernelFieldHomomorphism( hom )
KernelFieldHomomorphism returns the kernel of the field homomorphism hom.

Because the kernel must be a ideal in the source and it can not be the full source (because
we require that the one of the source is mapped to the one of the range), it must be the
trivial ideal. Therefor the kernel of every field homomorphism is the set containing only the
zero of the source.

6.16 Mapping Functions for Field Homomorphisms

This section describes how the mapping functions defined in chapter 43 are implemented for
field homomorphisms. Those functions not mentioned here are implemented by the default
functions described in the respective sections.

IsInjective( hom )

Always returns true (see 6.15).

IsSurjective( hom )

The field homomorphism hom is surjective if the size of the image Size( Image( hom ) )
is equal to the size of the range Size( hom.range ).

homl = hom?2

The two field homomorphism homI and hom2 are are equal if the have the same source and
range and if the images of the generators of the source under hom1 and hom2 are equal.

Image( hom )

Image( hom, H )

Images( hom, H )

The image of a subfield under a field homomorphism is computed by computing the images
of a set of generators of the subfield, and the result is the subfield generated by those images.

PreImage( hom )

PreImage( hom, H )

PreImages( hom, H )

The preimages of a subfield under a field homomorphism are computed by computing the
preimages of all the generators of the subfield, and the result is the subfield generated by
those elements.

Look in the index under IsInjective, IsSurjective, Image, Images, PreImage, PreIm-
ages, and equality to see for which field homomorphisms these functions are overlaid.
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6.17 Field Records

A field is represented by a record that contains important information about this field.
The GAP3 library predefines some field records, for example Rationals (see 12). Field
constructors construct others, for example Field (see 6.2), and GaloisField (see 18.10).
Of course you may also create such a record by hand.

All field records contain the components isDomain, isField, char, degree, generators,
zero, one, field, base, and dimension. They may also contain the optional components
isFinite, size, galoisGroup. The contents of all components of a field F' are described
below.

isDomain

is always true. This indicates that F' is a domain.
isField

is always true. This indicates that F' is a field.

char
is the characteristic of F'. For finite fields this is always a prime, for infinite fields this
is 0.

degree
is the degree of F' as extension of the prime field, not as extension of the subfield
S. For finite fields the order of F' is given by F'.char”F .degree.

generators
a list of elements that together generate F. That is F' is the smallest field over the
prime field given by F'.char that contains the elements of F'.generators.

zero
is the additive neutral element of the finite field.

one
is the multiplicative neutral element of the finite field.

field
is the subfield S over which F' was constructed. This is either a field record for S, or
the same value as F'.char, denoting the prime field (see 6.4).

base
is a list of elements of F' forming a base for F' as vector space over the subfield S.

dimension
is the dimension of F' as vector space over the subfield §.
isFinite
if present this is true if the field F' is finite and false otherwise.
size
if present this is the size of the field F'. If F is infinite this holds the string ”infinity”.

galoisGroup
if present this holds the Galois group of F (see 6.7).



Chapter 7

Groups

Finitely generated groups and their subgroups are important domains in GAP3. They are
represented as permutation groups, matrix groups, ag groups or even more complicated
constructs as for instance automorphism groups, direct products or semi-direct products
where the group elements are represented by records.

Groups are created using Group (see 7.9), they are represented by records that contain
important information about the groups. Subgroups are created as subgroups of a given
group using Subgroup, and are also represented by records. See 7.6 for details about the
distinction between groups and subgroups.

Because this chapter is very large it is split into several parts. Each part consists of several
sections.

Note that some functions will only work if the elements of a group are represented in an
unique way. This is not true in finitely presented groups, see 23.3 for a list of functions
applicable to finitely presented groups.

The first part describes the operations and functions that are available for group ele-
ments, e.g., Order (see 7.1). The next part tells your more about the distinction of par-
ent groups and subgroups (see 7.6). The next parts describe the functions that compute
subgroups, e.g., SylowSubgroup (7.14), and series of subgroups, e.g., DerivedSeries (see
7.36). The next part describes the functions that compute and test properties of groups, e.g.,
AbelianInvariants and IsSimple (see 7.45), and that identify the isomorphism type. The
next parts describe conjugacy classes of elements and subgroups (see 7.67) and cosets (see
7.84). The next part describes the functions that create new groups, e.g., DirectProduct
(see 7.98). The next part describes group homomorphisms, e.g., NaturalHomomorphism (see
7.106). The last part tells you more about the implementation of groups, e.g., it describes
the format of group records (see 7.114).

The functions described in this chapter are implemented in the following library files.
LIBNAME/"grpelms.g" contains the functions for group elements, LIBNAME/"group.g" con-
tains the dispatcher and default group functions, LIBNAME/"grpcoset.g" contains the func-
tions for cosets and factor groups, LIBNAME/"grphomonm.g" implements the group homomor-
phisms, and LIBNAME/"grpprods.g" implements the group constructions.

265
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7.1 Group Elements

The following sections describe the operations and functions available for group elements
(see 7.2, 7.3, 7.4, and 7.5).

Note that group elements usually exist independently of a group, e.g., you can write down
two permutations and compute their product without ever defining a group that contains
them.

7.2 Comparisons of Group Elements

g=nh

g <> h

The equality operator = evaluates to true if the group elements g and h are equal and to
false otherwise. The inequality operator <> evaluates to true if the group elements g and
h are not equal and to false otherwise.

You can compare group elements with objects of other types. Of course they are never
equal. Standard group elements are permutations, ag words and matrices. For examples of
generic group elements see for instance 7.99.

h

e @
A

<= h
>= h
q > h
The operators <, <=, >= and > evaluate to true if the group element g¢ is strictly less than,

less than or equal to, greater than or equal to and strictly greater than the group element
h. There is no general ordering on group elements.

Standard group elements may be compared with objects of other types while generic group
elements may disallow such a comparison.

7.3 Operations for Group Elements

g *h
g/ h
The operators * and / evaluate to the product and quotient of the two group elements g

and h. The operands must of course lie in a common parent group, otherwise an error is
signaled.

g~ h
The operator ~ evaluates to the conjugate I g * h of g under h for two group elements

elements g and h. The operands must of course lie in a common parent group, otherwise
an error is signaled.
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The powering operator ~ returns the i-th power of a group element g and an integer 4. If 4
is zero the identity of a parent group of g is returned.

list x g

g * list

In this form the operator * returns a new list where each entry is the product of g and the
corresponding entry of list. Of course multiplication must be defined between g and each
entry of list.

list / g

In this form the operator / returns a new list where each entry is the quotient of g and the
corresponding entry of list. Of course division must be defined between g and each entry of
list.

Comm( g, h )

Comm returns the commutator g~ % h ™" % g h of two group elements g and k. The operands
must of course lie in a common parent group, otherwise an error is signaled.

LeftNormedComm( g7, ..., gn )
LeftNormedComm returns the left normed commutator Comm( LeftNormedComm( g1, ...,
gn-1 ), gn ) of group elements g1, ..., gn. The operands must of course lie in a common

parent group, otherwise an error is signaled.

RightNormedComm( ¢I, ¢2, ..., gn )

RightNormedComm returns the right normed commutator Comm( g7, RightNormedComm /(
g2, ..., gn ) ) of group elements gI, ..., gn. The operands must of course lie in a
common parent group, otherwise an error is signaled.

LeftQuotient( g, h )

LeftQuotient returns the left quotient ¢ ~* %k of two group elements ¢ and h. The operands
must of course lie in a common parent group, otherwise an error is signaled.

7.4 IsGroupElement

IsGroupElement ( obj )

IsGroupElement returns true if obj, which may be an object of arbitrary type, is a group
element, and false otherwise. The function will signal an error if 0bj is an unbound variable.

gap> IsGroupElement( 10 );
false

gap> IsGroupElement( (11,10) );
true

gap> IsGroupElement( IdWord );
true
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7.5 Order

Order( G, g )
Order returns the order of a group element ¢ in the group G.

The order is the smallest positive integer ¢ such that ¢° is the identity. The order of the
identity is one.

gap> Order( Group( (1,2), (1,2,3,4) ), (1,2,3) );
3

gap> Order( Group( (1,2), (1,2,3,4) ), O );

1

7.6 More about Groups and Subgroups

GAP3 distinguishs between parent groups and subgroups of parent groups. Each subgroup
belongs to a unique parent group. We say that this parent group is the parent of the
subgroup. We also say that a parent group is its own parent.

Parent groups are constructed by Group and subgroups are constructed by Subgroup. The
first argument of Subgroup must be a parent group, i.e., it must not be a subgroup of a
parent group, and this parent group will be the parent of the constructed subgroup.

Those group functions that take more than one argument require that the arguments have a
common parent. Take for instance CommutatorSubgroup. It takes two arguments, a group
G and a group H, and returns the commutator subgroup of H with G. So either G is a
parent group, and H is a subgroup of this parent group, or G and H are subgroups of a
common parent group P.

gap> s4 := Group( (1,2), (1,2,3,4) );

Group( (1,2), (1,2,3,4) )

gap> c3 := Subgroup( s4, [ (1,2,3) 1 );

Subgroup( Group( (1,2), (1,2,3,4) ), [ (1,2,3) 1)

gap> CommutatorSubgroup( s4, c3 );

Subgroup( Group( (1,2), (1,2,3,4) ), [ (1,3,2), (1,2,4) 1)
# ok, c3 is a subgroup of the parent group s4

gap> a4 := Subgroup( s4, [ (1,2,3), (2,3,4) 1 );

Subgroup( Group( (1,2), (1,2,3,4) ), [ (1,2,3), (2,3,4) 1)
gap> CommutatorSubgroup( a4, c3 );

Subgroup( Group( (1,2), (1,2,3,4) ), [ (1,4(2,3), (1,3)(2,4) 1)
# also ok, c3 and a4 are subgroups of the parent group s4

gap> x3 := Group( (1,2,3) );

Group( (1,2,3) )

gap> CommutatorSubgroup( s4, x3 );

Error, <G> and <H> must have the same parent group

# not ok, s4 is its own parent and x3 is its own parent

Those functions that return new subgroups, as with CommutatorSubgroup above, return
this subgroup as a subgroup of the common parent of their arguments. Note especially that
the commutator subgroup of ¢3 with a4 is returned as a subgroup of their common parent
group s4, not as a subgroup of a4. It can not be a subgroup of a4, because subgroups must
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be subgroups of parent groups, and a4 is not a parent group. Of course, mathematically
the commutator subgroup is a subgroup of a4.

Note that a subgroup of a parent group need not be a proper subgroup, as can be seen in
the following example.

gap> s4 := Group( (1,2), (1,2,3,4) );

Group( (1,2), (1,2,3,4) )

gap> x4 := Subgroup( s4, [ (1,2,3,4), (3,4) 1);

Subgroup( Group( (1,2), (1,2,3,4) ), [ (1,2,3,4), (3,4) 1)
gap> Index( s4, x4 );

1

One exception to the rule are functions that construct new groups such as DirectProduct.
They accept groups with different parents. If you want rename the function DirectProduct
to OuterDirectProduct.

Another exception is Intersection (see 4.12), which allows groups with different parent
groups, it computes the intersection in such cases as if the groups were sets of elements.
This is because Intersection is not a group function, but a domain function, i.e., it accepts
two (or more) arbitrary domains as arguments.

Whenever you have two subgroups which have different parent groups but have a common
supergroup G you can use AsSubgroup (see 7.13) in order to construct new subgroups which
have a common parent group G.

gap> s4 := Group( (1,2), (1,2,3,4) );

Group( (1,2), (1,2,3,4) )

gap> x3 := Group( (1,2,3) );

Group( (1,2,3) )

gap> CommutatorSubgroup( s4, x3 );

Error, <G> and <H> must have the same parent group

# not ok, s4 is its own parent and x3 is its own parent

gap> c¢3 := AsSubgroup( s4, x3 );

Subgroup( Group( (1,2), (1,2,3,4) ), [ (1,2,3) 1)

gap> CommutatorSubgroup( s4, c3 );

Subgroup( Group( (1,2), (1,2,3,4) ), [ (1,3,2), (1,2,4) 1)
The following sections describe the functions related to this concept (see 7.7, 7.8, 7.9, 7.10,
7.11, 7.12, 7.13).

7.7 IsParent

IsParent( G )

IsParent returns true if G is a parent group, and false otherwise (see 7.6).

7.8 Parent

Parent( Uy, ..., U, )
Parent returns the common parent group of its subgroups and parent group arguments.

In case more than one argument is given, all groups must have the same parent group. Oth-
erwise an error is signaled. This can be used to ensure that a collection of given subgroups
have a common parent group.
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7.9 Group

Group( U )

Let U be a parent group or a subgroup. Group returns a new parent group G which is
isomorphic to U. The generators of G need not be the same elements as the generators of
U. The default group function uses the same generators, while the ag group function may
create new generators along with a new collector.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> s3 := Subgroup( s4, [ (1,2,3), (1,2) 1 );
Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2,3), (1,2) 1)
gap> Group( s3 ); # same elements

Group( (1,2,3), (1,2) )

gap> s4.1 * s3.1;

(1,3,4,2)

gap> s4 := AgGroup( s4 );

Group( gl, g2, g3, g4 )

gap> a4 := DerivedSubgroup( s4 );

Subgroup( Group( g1, g2, g3, g4 ), [ g2, g3, g4 1)
gap> a4 := Group( a4 ); # different elements

Group( gl, g2, g3 )

gap> s4.1 * a4.1;

Error, AgWord op: agwords have different groups

Group( list, id )

Group returns a new parent group G generated by group elements g1, ..., g, of list. id must
be the identity of this group.

Group( g1, --.5 Gn )
Group returns a new parent group G generated by group elements g1, ..., gn.

The generators of this new parent group need not be the same elements as g1, ..., g,. The
default group function however returns a group record with generators g1, ..., g, and identity
id, while the ag group function may create new generators along with a new collector.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> z4 := Group( s4.1 ); # same element

Group( (1,2,3,4) )

gap> s4.1 x z4.1;

(1,3)(2,4)

gap> s4 := AgGroup( s4 );

Group( gl, g2, g3, g4 )

gap> z4 := Group( s4.1 * s4.3 ); # different elements
Group( gl, g2 )

gap> s4.1 x z4.1;

Error, AgWord op: agwords have different groups

Let ¢iy,...,gi, be the set of nontrivial generators in all four cases. Groups sets record
components G .1, ..., G.m to these generators.
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7.10 AsGroup

AsGroup( D )

Let D be a domain. AsGroup returns a group G such that the set of elements of D is the
same as the set of elements of G if this is possible.

If D is a list of group elements these elements must form a group. Otherwise an error is
signaled.

Note that this function returns a parent group or a subgroup of a parent group depending
on D. In order to convert a subgroup into a parent group you must use Group (see 7.9).

gap> s4 := AgGroup( Group( (1,2,3,4), (2,3) ) );

Group( gl, g2, g3, g4 )

gap> Elements( last );

[ IdAgWord, g4, g3, g3*gd, g2, g2+gd, g2xg3, g2*xg3*xgd, g272, g2 2xg4,
g2"2%g3, g272xg3xgd, gl, glxgd, glxg3, gl*g3*gd, glxg2, glkxgl*gd,
glxg2xgl3, gl¥xg2xg3+gd, glxg2™2, glxg2™2xgd, glxgl~2*xg3,
gl*xg22%g3*xgl ]

gap> AsGroup( last );

Group( gl, g2, g3, g4 )

The default function GroupOps.AsGroup for a group D returns a copy of D. If D is a
subgroup then a subgroup is returned. The default function GroupElementsOps.AsGroup
expects a list D of group elements forming a group and uses successively Closure in order
to compute a reduced generating set.

7.11 IsGroup

IsGroup( obj )

IsGroup returns true if obj, which can be an object of arbitrary type, is a parent group
or a subgroup and false otherwise. The function will signal an error if obj is an unbound
variable.

gap> IsGroup( Group( (1,2,3) ) );
true

gap> IsGroup( 1/2 );

false

7.12 Subgroup

Subgroup( G, L)

Let G be a parent group and L be a list of elements g1, ...,g, of G. Subgroup returns the
subgroup U generated by g1, ..., g, with parent group G.

Note that this function is the only group function in which the name Subgroup does not refer
to the mathematical terms subgroup and supergroup but to the implementation of groups
as subgroups and parent groups. IsSubgroup (see 7.62) is not the negation of IsParent
(see 7.7) but decides subgroup and supergroup relations.

Subgroup always binds a copy of L to U .generators, so it is safe to modify L after calling
Subgroup because this will not change the entries in U.
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Let gi,, ..., 9i,, be the nontrivial generators. Subgroups binds these generators to U .1, ...,
U.n.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> v4 := Subgroup( s4, [ (1,2), (1,2)(3,4) 1 );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2), (1,2)(3,4) 1)
gap> IsParent( v4 );

false

7.13 AsSubgroup

AsSubgroup( G, U )

Let G be a parent group and U be a parent group or a subgroup with a possibly different
parent group, such that the generators g1, ..., g, of U are elements of G. AsSubgroup returns
a new subgroup S such that S has parent group G and is generated by g1, ..., gn.

gap> d8 := Group( (1,2,3,4), (1,2)(3,4) );

Group( (1,2,3,4), (1,2)(3,4) )

gap> z := Centre( d8 );

Subgroup( Group( (1,2,3,4), (1,2)(3,4) ), [ (1,3)(2,4) 1)

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> Normalizer( s4, AsSubgroup( s4, z ) );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (2,4), (1,2,3,4), (1,3)(2,4)
1)

7.14 Subgroups

The following sections describe functions that compute certain subgroups of a given group,
e.g., SylowSubgroup computes a Sylow subgroup of a group (see 7.16, 7.17, 7.18, 7.19, 7.20,
7.21, 7.22, 7.23, 7.24, 7.25, 7.26, 7.27, 7.28, 7.29, 7.30, 7.31, 7.32).

They return group records as described in 7.118 for the computed subgroups. Some functions
may not terminate if the given group has an infinite set of elements, while other functions
may signal an error in such cases.

Here the term “subgroup” is used in a mathematical sense. But in GAP3, every group is
either a parent group or a subgroup of a unique parent group. If you compute a Sylow
subgroup S of a group U with parent group G then S is a subgroup of U but its parent
group is G (see 7.6).

Further sections describe functions that return factor groups of a given group (see 7.33 and
7.35).

7.15 Agemo

Agemo( G, p )

G must be a p-group. Agemo returns the subgroup of G generated by the p.th powers of
the elements of G.
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gap> d8 := Group( (1,3)(2,4), (1,2) );

Group( (1,3)(2,4), (1,2) )

gap> Agemo( d8, 2 );

Subgroup( Group( (1,3)(2,4), (1,2) ), [ (1,2)(3,4) 1)
The default function GroupOps.Agemo computes the subgroup of G generated by the p.th
powers of the generators of G if G is abelian. Otherwise the function computes the normal
closure of the p.th powers of the representatives of the conjugacy classes of G.

7.16 Centralizer

Centralizer( G, z )

Centralizer returns the centralizer of an element z in G where z must be an element of
the parent group of G.

The centralizer of an element z in G is defined as the set C' of elements ¢ of G such that
c and z commute.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> v4 := Centralizer( s4, (1,2) );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (3,4, (1,2) 1)
The default function GroupOps.Centralizer uses Stabilizer (see 8.24) in order to com-
pute the centralizer of z in G acting by conjugation.
Centralizer( G, U )

Centralizer returns the centralizer of a group U in G as group record. Note that G and
U must have a common parent group.
The centralizer of a group U in G is defined as the set C of elements ¢ of C such ¢
commutes with every element of U.
If G is the parent group of U then Centralizer will set and test the record component
U.centralizer.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> v4 := Centralizer( s4, (1,2) );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (3,4), (1,2) 1)

gap> c2 := Subgroup( s4, [ (1,3) 1 );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,3) 1)

gap> Centralizer( v4, c2 );

Subgroup( Group( (1,2,3,4), (1,2) ), [ 1)
The default function GroupOps.Centralizer uses Stabilizer in order to compute succes-
sively the stabilizer of the generators of U.

7.17 Centre

Centre( G )
Centre returns the centre of G.

The centre of a group G is defined as the centralizer of G in G.
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Note that Centre sets and tests the record component G.centre.

gap> d8 := Group( (1,2,3,4), (1,2)(3,4) );

Group( (1,2,3,4), (1,2)(3,4) )

gap> Centre( d8 );

Subgroup( Group( (1,2,3,4), (1,2)(3,4) ), [ (1,3(2,4) 1)

The default group function GroupOps.Centre uses Centralizer (see 7.16) in order to com-
pute the centralizer of G in G.

7.18 Closure

Closure( U, g )

Let U be a group with parent group G and let g be an element of G. Then Closure returns
the closure C of U and g as subgroup of G. The closure C' of U and g is the subgroup
generated by U and g¢.

gap> s4 := Group( (1,2,3,4), (1,2 ) );

Group( (1,2,3,4), (1,2) )

gap> s2 := Subgroup( s4, [ (1,2) 1 );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2) 1)

gap> Closure( s2, (3,4) );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2), (3,4 1)

The default function GroupOps.Closure returns U if U is a parent group, or if g or its
inverse is a generator of U, or if the set of elements is known and ¢ is in this set, or if g
is trivial. Otherwise the function constructs a new subgroup C which is generated by the
generators of U and the element g¢.

Note that if the set of elements of U is bound to U.elements then GroupOps.Closure
computes the set of elements for C' and binds it to C'.elements.

If U is known to be non-abelian or infinite so is C. If U is known to be abelian the function
checks whether g commutes with every generator of U.

Closure( U, S )

Let U and S be two group with a common parent group G. Then Closure returns the
subgroup of GG generated by U and S.

gap> s4 := Group( (1,2,3,4), (1,2 ) );

Group( (1,2,3,4), (1,2) )

gap> s2 := Subgroup( s4, [ (1,2) 1 );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2) 1)

gap> z3 := Subgroup( s4, [ (1,2,3) 1 );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2,3) 1)

gap> Closure( z3, s2 );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2,3), (1,2) 1)

The default function GroupOps.Closure returns the parent of U and S if U or S is a parent
group. Otherwise the function computes the closure of U under all generators of S.

Note that if the set of elements of U is bound to U.elements then GroupOps.Closure
computes the set of elements for the closure C' and binds it to C'.elements.
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7.19 CommutatorSubgroup

CommutatorSubgroup( G, H )

Let G and H be groups with a common parent group. CommutatorSubgroup returns the
commutator subgroup [G, H].

The commutator subgroup of G and H is the group generated by all commutators [g, h]
with g € G and h € H.

See also DerivedSubgroup (7.22).

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> d8 := Group( (1,2,3,4), (1,2)(3,4) );

Group( (1,2,3,4), (1,2)(3,4) )

gap> CommutatorSubgroup( s4, AsSubgroup( s4, d8 ) );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,3)(2,4), (1,3,2) 1)

Let G be generated by g¢1,...,9, and H be generated by hq, ..., ;. The normal closure
of the subgroup S generated by Comm(g;,h;) for 1 < i < nand 1 < j < m under
G and H is the commutator subgroup of G and H (see [Hup67]). The default function
GroupOps . CommutatorSubgroup returns the normal closure of S under the closure of G and
H.

7.20 ConjugateSubgroup

ConjugateSubgroup( U, g )

ConjugateSubgroup returns the subgroup UY conjugate to U under g, which must be an
element of the parent group of G.

If present, the flags U .isAbelian, U.isCyclic, U.isElementaryAbelian, U.isFinite,
U.isNilpotent, U.isPerfect, U.isSimple, U.isSolvable, and U .size are copied to
U”s.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> c2 := Subgroup( s4, [ (1,2)(3,4) 1 );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2)(3,4) 1)
gap> ConjugateSubgroup( c2, (1,3) );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,4)(2,3) 1)

The default function GroupOps.ConjugateSubgroup returns U if the set of elements of U
is known and ¢ is an element of this set or if ¢ is a generator of U. Otherwise it conjugates
the generators of U with g.

If the set of elements of U is known the default function also conjugates and binds it to the
conjugate subgroup.

7.21 Core

Core( S, U )
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Let S and U be groups with a common parent group GG. Then Core returns the core of U
under conjugation of §.

The core of a group U under a group S Coreg(U) is the intersection (), g U” of all groups
conjugate to U under conjugation by elements of §.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> s4.name := "s4";;

gap> d8 := Subgroup( s4, [ (1,2,3,4), (1,2)(3,4) 1 );
Subgroup( s4, [ (1,2,3,4), (1,2)(3,4) 1)

gap> Core( s4, d8 );

Subgroup( s4, [ (1,2)(3,4), (1,3)(2,4) 1)

gap> Core( d8, s4 );

s4

The default function GroupOps.Core starts with U and replaces U with the intersection of
U and a conjugate subgroup of U under a generator of G until the subgroup is normalized
by G.

7.22 DerivedSubgroup

DerivedSubgroup( G )
DerivedSubgroup returns the derived subgroup G’ =[G, G] of G.
The derived subgroup of G is the group generated by all commutators [g, h] with g,h € G.
Note that DerivedSubgroup sets and tests G .derivedSubgroup. CommutatorSubgroup
(see 7.19) allows you to compute the commutator group of two subgroups.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> DerivedSubgroup( s4 );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,3,2), (2,4,3) 1)

Let G be generated by g1, ...,g,. Then the default function GroupOps.DerivedSubgroup
returns the normal closure of S under G where S is the subgroup of G generated by
Comm(g;, g;) for 1 <j<i<n.

7.23 FittingSubgroup

FittingSubgroup( G )

FittingSubgroup returns the Fitting subgroup of G.

The Fitting subgroup of a group G is the biggest nilpotent normal subgroup of G.
gap> s4;
Group( (1,2,3,4), (1,2) )
gap> FittingSubgroup( s4 );
Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,3)(2,4), (1,4)(2,3) 1)
gap> IsNilpotent( last );
true

Let G be a finite group. Then the default group function GroupOps.FittingSubgroup
computes the subgroup of G generated by the cores of the Sylow subgroups in G.
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7.24 FrattiniSubgroup

FrattiniSubgroup( G )
FrattiniSubgroup returns the Frattini subgroup of group G.
The Frattini subgroup of a group G is the intersection of all maximal subgroups of G.
gap> s4 := SymmetricGroup( AgWords, 4 );;
gap> ss4 := SpecialAgGroup( s4 );;
gap> FrattiniSubgroup( ss4 );
Subgroup( Group( gl, g2, g3, g4 ), [ 1)

The generic method computes the Frattini subgroup as intersection of the cores (see 7.21)
of the representatives of the conjugacy classes of maximal subgroups (see 7.80).

7.25 NormalClosure

NormalClosure( S, U )

Let S and U be groups with a common parent group G. Then NormalClosure returns the
normal closure of U under S as a subgroup of G.

The normal closure N of a group U under the action of a group § is the smallest subgroup
in G that contains U and is invariant under conjugation by elements of S. Note that N is
independent of G.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> s4.name := "s4";;

gap> d8 := Subgroup( s4, [ (1,2,3,4), (1,2)(3,4) 1 );

Subgroup( s4, [ (1,2,3,4), (1,2)(3,4) 1)

gap> NormalClosure( s4, d8 );

Subgroup( s4, [ (1,2,3,4), (1,2)(3,4), (1,3,4,2) 1)

gap> last = s4;

true

7.26 Normallntersection

NormalIntersection( N, U )

Let N and U be two subgroups with a common parent group. NormalIntersection returns
the intersection in case U normalizes N.

Depending on the domain this may be faster than the general intersection algorithm (see

4.12). The default function GroupOps.NormalIntersection however uses Intersection.

7.27 Normalizer

Normalizer( S, U )

Let S and U be groups with a common parent group G. Then Normalizer returns the
normalizer of U in S.
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The normalizer Ng(U) of U in S is the biggest subgroup of S which leaves U invariant
under conjugation.

If S is the parent group of U then Normalizer sets and tests U .normalizer.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> c2 := Subgroup( s4, [ (1,2) 1 );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2) 1)

gap> Normalizer( s4, c2 );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (3,4), (1,2) 1)

The default function GroupOps . Normalizer uses Stabilizer (see 8.24) in order to compute
the stabilizer of U in S acting by conjugation (see 7.20).

7.28 PCore

PCore( G, p )
PCore returns the p-core of the finite group G for a prime p.

The p-core is the largest normal subgroup whose size is a power of p. This is the core of
the Sylow-p-subgroups (see 7.21 and 7.31).

Note that PCore sets and tests G.pCores[ p ].

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> PCore( s4, 2 );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,4)(2,3), (1,3)(2,4 1)
gap> PCore( s4, 3 );

Subgroup( Group( (1,2,3,4), (1,2) ), [ 1)

The default function GroupOps . PCore computes the p-core as the core of a Sylow-p-subgroup

(see 7.21 and 7.31).

7.29 PrefrattiniSubgroup

PrefrattiniSubgroup( G )
PrefrattiniSubgroup returns a Prefrattini subgroup of the group G.

A factor M/N of G is called a Frattini factor if M/N < ¢(G/N) holds. The group P is a
Prefrattini subgroup of G if P covers each Frattini chief factor of GG, and if for each maximal
subgroup of G there exists a conjugate maximal subgroup, which contains P.

gap> s4 := SymmetricGroup( AgWords, 4 );;
gap> ss4 := SpecialAgGroup( s4 );;

gap> PrefrattiniSubgroup( ss4 );
Subgroup( Group( gl, g2, g3, g4 ), [ 1)

Currently PrefrattiniSubgroup can only be applied to special Ag groups (see 26).
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7.30 Radical

Radical( G )
Radical returns the radical of the finite group G.
The radical is the largest normal solvable subgroup of G.

gap> g := Group( (1,5), (1,5,6,7,8)(2,3,4) );

Group( (1,5), (1,5,6,7,8)(2,3,4) )

gap> Radical( g );

Subgroup( Group( (1,5), (1,5,6,7,8)(2,3,4) ), [ (2, 3, 4 1)

The default function GroupOps.Radical tests if G is solvable and signals an error if not.

7.31 SylowSubgroup

SylowSubgroup( G, p )
SylowSubgroup returns a Sylow-p-subgroup of the finite group G for a prime p.

Let p be a prime and G be a finite group of order p™m where m is relative prime to p. Then
by Sylow’s theorem there exists at least one subgroup S of G of order p™.

Note that SylowSubgroup sets and tests G .sylowSubgroups[ p ].
gap> s4 := Group( (1,2,3,4), (1,2) );
Group( (1,2,3,4), (1,2) )
gap> SylowSubgroup( s4, 2 );
Subgroup( Group( (1,2,3,4), (1,2) ), [ (3,4), (1,2), (1,3)(2,4) 1)
gap> SylowSubgroup( s4, 3 );
Subgroup( Group( (1,2,3,4), (1,2) ), [ (2,3,4) 1)

The default function GroupOps.SylowSubgroup computes the set of elements of p power
order of G, starts with such an element of maximal order and computes the closure (see
7.18) with normalizing elements of p power order until a Sylow group is found.

7.32 TrivialSubgroup

TrivialSubgroup( U )

Let U be a group with parent group G. Then TrivialSubgroup returns the trivial subgroup
T of U. Note that the parent group of T is G not U (see 7.14).

The default function GroupOps.TrivialSubgroup binds the set of elements of U, namely
[U.identity], to T .elements,

7.33 FactorGroup

FactorGroup( G, N )

FactorGroup returns the factor group G/N where N must be a normal subgroup of G (see
7.58). This is the same as G / N (see 7.117).

NaturalHomomorphism returns the natural homomorphism from G (or a subgroup thereof)
onto the factor group (see 7.110).
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It is not specified how the factor group N is represented.

gap> a4 := Group( (1,2,3), (2,3,4) );; ad.name := "ad";

Ila4l|

gap> v4 := Subgroup(a4,[(1,2)(3,4),(1,3)(2,4)]1);; v4.name := "v4";
llv4ll

gap> f := FactorGroup( a4, v4 );

(ad / v4)

gap> Size( f );

3

gap> Elements( f );
[ FactorGroupElement( v4, () ), FactorGroupElement( v4, (2,3,4) ),
FactorGroupElement ( v4, (2,4,3) ) ]

If G is the parent group of N, FactorGroup first checks for the knowledge component
N .factorGroup. If this component is bound, FactorGroup returns its value. Otherwise,
FactorGroup calls G.operations.FactorGroup( G, N ), remembers the returned value
in N.factorGroup, and returns it. If G is not the parent group of N, FactorGroup calls
G .operations.FactorGroup( G, N ) and returns this value.

The default function called this way is GroupOps.FactorGroup. It returns the factor group
as a group of factor group elements (see 7.34). Look under FactorGroup in the index to
see for which groups this function is overlaid.

7.34 FactorGroupElement

FactorGroupElement( N, g )

FactorGroupElement returns the coset N * g as a group element. It is not tested whether
g normalizes N, but ¢ must be an element of the parent group of N.

Factor group elements returned by FactorGroupElement are represented by records. Those
records contain the following components.

isGroupElement
contains true.

isFactorGroupElement
contains true.

element
contains a right coset of N (see 7.86).

domain
contains FactorGroupElements (see 4.5).

operations
contains the operations record FactorGroupElementOps.

All operations for group elements (see 7.3) are available for factor group elements, e.g., two
factor group elements can be multiplied (provided that they have the same subgroup N).

gap> a4 := Group( (1,2,3), (2,3,4) );; ad.name := "ad";;

gap> v4 := Subgroup(a4,[(1,2)(3,4),(1,3)(2,4)]);; vé4.name := "v4";;
gap> x := FactorGroupElement( v4, (1,2,3) );

FactorGroupElement ( v4, (2,4,3) )
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gap> y := FactorGroupElement( v4, (2,3,4) );
FactorGroupElement ( v4, (2,3,4) )

gap> X * y;

FactorGroupElement( v4, () )

7.35 CommutatorFactorGroup

CommutatorFactorGroup( G )

CommutatorFactorGroup returns a group isomorphic to G/ G’ where G’ is the derived sub-
group of G (see 7.22).

gap> s4 := AgGroup( Group( (1,2,3,4), (1,2) ) );
Group( gl, g2, g3, g4 )

gap> CommutatorFactorGroup( s4 );

Group( gl )

The default group function GroupOps . CommutatorFactorGroup uses DerivedSubgroup (see
7.22) and FactorGroup (see 7.33) in order to compute the commutator factor group.

7.36 Series of Subgroups

The following sections describe functions that compute and return series of subgroups of a
given group (see 7.37, 7.41, 7.43, and 7.44). The series are returned as lists of subgroups of
the group (see 7.6).

These functions print warnings if the argument is an infinite group, because they may run
forever.

7.37 DerivedSeries

DerivedSeries( G )
DerivedSeries returns the derived series of G.

The derived series is the series of iterated derived subgroups. The group G is solvable if
and only if this series reaches {1} after finitely many steps.

Note that this function does not terminate if G is an infinite group with derived series of
infinite length.

gap> s4 := Group( (1,2,3,4), (1,2) );
Group( (1,2,3,4), (1,2) )
gap> DerivedSeries( s4 );
[ Group( (1,2,3,4), (1,2) ), Subgroup( Group( (1,2,3,4), (1,2) ),
[ (1,3,2), (1,4,3) 1 ), Subgroup( Group( (1,2,3,4), (1,2) ),
[ (1,4)(2,3), (1,3)(2,4) 1),
Subgroup( Group( (1,2,3,4), (1,2) ), [ 1)1

The default function GroupOps.DerivedSeries uses DerivedSubgroup (see 7.22) in order
to compute the derived series of G.
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7.38 CompositionSeries

CompositionSeries( G )
CompositionSeries returns a composition series of G as list of subgroups.

gap> s4 := SymmetricGroup( 4 );

Group( (1,4), (2,4), (3,4 )

gap> s4.name := "s4";;

gap> CompositionSeries( s4 );

[ Subgroup( s4, [ (1,2), (1,3,2), (1,3)(2,4), (1,2)(3,4) 1),
Subgroup( s4, [ (1,3,2), (1,3)(2,4), (1,2)(3,4) 1),
Subgroup( s4, [ (1,3)(2,4), (1,2)(3,4) 1),

Subgroup( s4, [ (1,2)(3,4) 1 ), Subgroup( s4, [ 1 ) 1]

gap> d8 := SylowSubgroup( s4, 2 );

Subgroup( s4, [ (1,2), (3,4), (1,3)(2,4) 1)

gap> CompositionSeries( d8 );

[ Subgroup( s4, [ (1,3)(2,4), (1,2), (3,4) 1),

Subgroup( s4, [ (1,2), (3,4) 1 ), Subgroup( s4, [ (3,4) 1),
Subgroup( s4, [ 1) 1]

Note that there is no default function. GroupOps.CompositionSeries signals an error if
called.

7.39 ElementaryAbelianSeries

ElementaryAbelianSeries( G )

Let G be a solvable group (see 7.61). Then the functions returns a normal series G =
Ey, Ey,...,E, = {1} of G such that the factor groups E;/FE;;1 are elementary abelian
groups.

gap> s5 := SymmetricGroup( 5 );; s5.name := "s5";;

gap> s4 := Subgroup( s5, [ (2,3,4,5), (2,3) 1 );

Subgroup( s5, [ (2,3,4,5), (2,3) 1)

gap> ElementaryAbelianSeries( s4 );

[ Subgroup( s5, [ (2,3), (2,4,3), (2,5)(3,4), (2,3)(4,5) 1),
Subgroup( s5, [ (2,4,3), (2,5)(3,4), (2,3)(4,5) 1),
Subgroup( s5, [ (2,5)(3,4), (2,3)(4,5) 1 ), Subgroup( s5, [ 1) 1]

The default function GroupOps.ElementaryAbelianSeries uses AgGroup (see 25.25) in
order to convert G into an isomorphic ag group and computes the elementary abelian series
in this group. (see 25.9).

7.40 JenningsSeries

JenningsSeries( G, p )
JenningsSeries returns the Jennings series of a p-group G.

The Jennings series of a p-group G is defined as follows. S; = G and S,, = [S,,—1, G| S;?
where i is the smallest integer equal or greater than n/p. The length [ of S is the smallest
integer such that S; = {1}.
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Note that S,, = Sj,4+1 is possible.
gap> G := CyclicGroup( AgWords, 27 );
Group( c27_1, c27_2, c27_3 )
gap> G.name := "G";;
gap> JenningsSeries( G );

[ G, Subgroup( G, [ c27_2, c27_3 1 ), Subgroup( G, [ c27_2, c27_3 1] ),
Subgroup( G, [ ¢c27_3 ] ), Subgroup( G, [ c27_3 ] ),
Subgroup( G, [ ¢c27_3 ] ), Subgroup( G, [ ¢c27_3 ] ),
Subgroup( G, [ ¢27_3 1 ), Subgroup( G, [ c27_.3 1 ),

Subgroup( G, [ 1) ]

7.41 LowerCentralSeries

LowerCentralSeries( G )
LowerCentralSeries returns the lower central series of G as a list of group records.

The lower central series is the series defined by S; = G and S; = [G, S;—1]. The group
G is nilpotent if this series reaches {1} after finitely many steps.

Note that this function may not terminate if G is an infinite group. LowerCentralSeries
sets and tests the record component G.lowerCentralSeries in the group record of G.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> LowerCentralSeries( s4 );

[ Group( (1,2,3,4), (1,2) ), Subgroup( Group( (1,2,3,4), (1,2) ),

[ (1,3,2), (2,4,3) 1) ]

The default group function GroupOps.LowerCentralSeries uses CommutatorSubgroup (see
7.19) in order to compute the lower central series of G.

7.42 PCentralSeries

PCentralSeries( G, p )
PCentralSeries returns the p-central series of a group G for a prime p.

The p-central series of a group G is defined as follows. S; = G and S;;1 is set to
(G, S;] * SP. The length of this series is n, where n = maxz{i; S; > Si41}.

gap> s4 := Group( (1,2,3,4), (1,2) );; s4.name := "sd";;
gap> PCentralSeries( s4, 3 );
[ s4]

gap> PCentralSeries( s4, 2 );
[ s4, Subgroup( s4, [ (1,2,3), (1,3,4) 1) 1]

7.43 SubnormalSeries

SubnormalSeries( G, U )

Let U be a subgroup of G, then SubnormalSeries returns a subnormal series G = G; >
... > G, of groups such that U is contained in G,, and there exists no proper subgroup V
between G,, and U which is normal in G,,.
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G, is equal to U if and only if U is subnormal in G.
Note that this function may not terminate if G is an infinite group.

gap> s4 := Group( (1,2,3,4), (1,2) );
Group( (1,2,3,4), (1,2) )
gap> c2 := Subgroup( s4, [ (1,2) 1 );
Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2) 1)
gap> SubnormalSeries( s4, c2 );
[ Group( (1,2,3,4), (1,2) ) 1]
gap> IsSubnormal( s4, c2 );
false
gap> c2 := Subgroup( s4, [ (1,2)(3,4) 1 );
Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2)(3,4) 1)
gap> SubnormalSeries( s4, c2 );
[ Group( (1,2,3,4), (1,2) ), Subgroup( Group( (1,2,3,4), (1,2) ),
[ (1,2)(3,4), (1,3)(2,4) 1),
Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2)(3,4) 1) 1
gap> IsSubnormal( s4, c2 );
true

The default function GroupOps.SubnormalSeries constructs the subnormal series as fol-
lows. G; = G and G;41 is set to the normal closure (see 7.25) of U under G;. The length
of the series is n, where n = maxz{i; G; > G;41}.

7.44 UpperCentralSeries

UpperCentralSeries( G )
UpperCentralSeries returns the upper central series of G as a list of subgroups.

The upper central series is the series S, ..., Sg defined by Sp = {1} < G and S;/S;—1 =
Z(G/S;—1) where n = min{i;S; = Sit1}

Note that this function may not terminate if G is an infinite group. UpperCentralSeries
sets and tests G .upperCentralSeries in the group record of G.

gap> d8 := AgGroup( Group( (1,2,3,4), (1,2)(3,4) ) );

Group( gl, g2, g3 )

gap> UpperCentralSeries( d8 );

[ Group( gl, g2, g3 ), Subgroup( Group( gl, g2, g3 ), [ g3 1),
Subgroup( Group( gi, g2, g3 ), [ 1) 1]

7.45 Properties and Property Tests

The following sections describe the functions that computes or test properties of groups (see
7.46, 7.47,7.48, 7.49, 7.50, 7.51, 7.52, 7.53, 7.54, 7.55, 7.56, 7.57, 7.58, 7.59, 7.60, 7.61, 7.62,
7.63, 7.64, 7.65, 7.66).

All tests expect a parent group or subgroup and return true if the group has the property
and false otherwise. Some functions may not terminate if the given group has an infinite
set of elements. A warning may be printed in such cases.
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In addition the set theoretic functions Elements, Size and IsFinite, which are described
in chapter 4, can be used for groups. Size (see 4.10) returns the order of a group, this is
either a positive integer or the string “infinity”. IsFinite (see 4.9) returns true if a group
is finite and false otherwise.

7.46 AbelianInvariants

AbelianInvariants( G )

Let G be an abelian group. Then AbelianInvariants returns the abelian invariants of G
as a list of integers. If G is not abelian then the abelian invariants of the commutator factor
group of G are returned.

Let G be a finitely generated abelian group. Then there exist n nontrivial subgroups A; of
prime power order p;’ and m infinite cyclic subgroups Z; such that G = A; x ... X A, %
Z1... X Zy,. The invariants of G are the integers p{*, ..., pS" together with m zeros.

Note that AbelianInvariants tests and sets G .abelianInvariants.
gap> AbelianInvariants( AbelianGroup( AgWords, [2,3,4,5,6,9] ) );
[2,2,3,3,4,5, 9]

The default function GroupOps.AbelianInvariants requires that G is finite.

Let G be a finite abelian group of order p7*...pS» where p; are distinct primes. The default

function constructs for every prime p; the series G, GP*, GP ?, ... and computes the abelian
invariants using the indices of these groups.

7.47 DimensionsLoewyFactors

DimensionsLoewyFactors( G )

Let G be p-group. Then DimensionsLoewyFactors returns the dimensions ¢; of the Loewy
factors of F,G.

The Loewy series of F,G is defined as follows. Let R be the Jacobson radical of the
group ring F,G. The series R = F,G > R' > ... > R'™! = {1} is the Loewy series. The
dimensions ¢; are the dimensions of R!/R*!.

gap> f6 := FreeGroup( 6, "f6" );;

gap> g := f6 / [ £6.1°3, £6.273, £6.373, £6.473, £6.573, £6.673,
> Comm(£f6.3,£f6.2)/£f6.672, Comm(f6.3,f6.1)/(£6.6*£6.5),
> Comm(£f6.2,£6.1)/(£6.5%£6.472) 1;;

gap> a := AgGroupFpGroup(g);

Group( f6.1, f6.2, 6.3, f6.4, £f6.5, £f6.6 )

gap> DimensionsLoewyFactors(a);

[1, 3, 9, 16, 30, 42, 62, 72, 87, 85, 87, 72, 62, 42, 30, 16, 9, 3,

1]

The default function GroupOps.DimensionsLoewyFactors computes the Jennings series of
G and uses Jennings thereom in order to calculate the dimensions of the Loewy factors.
Let G =X > X3 > ... > X; > X;11 = {1} be the Jennings series of G (see 7.40) and let d;
be the dimensions of X;/X;;1. Then the Jennings polynomial is

l l
D et = [+ 2" 42+ 2l DRy
=0 k=1
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7.48 FEulerianFunction

EulerianFunction( G, n )

EulerianFunction returns the number of n-tuples (g1, g2, ...gn) of elements of the group
G that generate the whole group G. The elements of a tuple need not be different.

gap> s4 := SymmetricGroup( AgWords, 4 );;
gap> ss4 := SpecialAgGroup( s4 );;

gap> EulerianFunction( ss4, 1 );

0

gap> EulerianFunction( ss4, 2 );

216

gap> EulerianFunction( ss4, 3 );

10080

Currently EulerianFunction can only be applied to special Ag groups (see 26).

7.49 Exponent

Exponent( G )
Let G be a finite group. Then Exponent returns the exponent of G.
Note that Exponent tests and sets G .exponent.

gap> Exponent( Group( (1,2,3,4), (1,2) ) );
12

The default function GroupOps .Exponent computes all elements of G and their orders.

7.50 Factorization

Factorization( G, g )

Let G be a group with generators g1, ..., g, and let g be an element of G. Factorization
returns a representation of g as word in the generators of G.

The group record of G must have a component G .abstractGenerators which contains a
list of n abstract words hq, ..., h,. Otherwise a list of n abstract generators is bound to
G .abstractGenerators. The function returns an abstract word h = hfll * L.,k hf:n" such
that gi! * ... x gi™ = g.

gap> s4 := Group( (1,2,3,4), (1,2) );
Group( (1,2,3,4), (1,2) )
gap> Factorization( s4, (1,2,3) );
x173*x2*x1*x2
gap> (1,2,3,4)°3 * (1,2) * (1,2,3,4) * (1,2);
(1,2,3)
The default group function GroupOps.Factorization needs a finite group G. It computes

the set of elements of G using a Dimino algorithm, together with a representation of these
elements as words in the generators of G.
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7.51 Index

Index( G, U )
Let U be a subgroup of G. Then Index returns the index of U in G as an integer.
Note that Index sets and checks U .index if G is the parent group of U.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> Index( s4, DerivedSubgroup( s4 ) );

2

The default function GroupOps.Index needs a finite group G. It returns the quotient of
Size( G ) and Size( U ).

7.52 IsAbelian

IsAbelian( G )
IsAbelian returns true if the group G is abelian and false otherwise.
A group G is abelian if and only if for every g,h € G the equation g * h = h * g holds.

Note that IsAbelian sets and tests the record component G.isAbelian. If G is abelian it
also sets G .centre.

gap> s4 := Group( (1,2,3,4), (1,2) );;

gap> IsAbelian( s4 );

false

gap> IsAbelian( Subgroup( s4, [ (1,2) 1) );
true

The default group function GroupOps.IsAbelian returns true for a group G generated by
g1, ---» gn if g; commutes with g; for i > j.

7.53 IsCentral

IsCentral( G, U )
IsCentral returns true if the group G centralizes the group U and false otherwise.

A group G centralizes a group U if and only if for all g € G and for all w € U the equation
g*u = u* g holds. Note that U need not to be a subgroup of G but they must have a
common parent group.

Note that IsCentral sets and tests U.isCentral if G is the parent group of U.

gap> s4 := Group( (1,2,3,4), (1,2) );;

gap> d8 := Subgroup( s4, [ (1,2,3,4), (1,2)(3,4) 1);;
gap> c2 := Subgroup( s4, [ (1,3)(2,4) 1 );;

gap> IsCentral( s4, c2 );

false

gap> IsCentral( d8, c2 );

true

The default function GroupOps. IsCentral tests whether G centralizes U by testing whether
the generators of G commutes with the generators of U.
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7.54 IsConjugate

IsConjugate( G, z, y )

Let z and y be elements of the parent group of G. Then IsConjugate returns true if z is
conjugate to y under an element g of G and false otherwise.

gap> sb := Group( (1,2,3,4,5), (1,2) );

Group( (1,2,3,4,5), (1,2) )

gap> a5 := Subgroup( s5, [ (1,2,3), (2,3,4), (3,4,5) 1 );

Subgroup( Group( (1,2,3,4,5), (1,2) ), [ (1,2,3), (2,3,4), (3,4,5) 1)

gap> IsConjugate( a5, (1,2,3,4,5), (1,2,3,4,5)72 );

false

gap> IsConjugate( s5, (1,2,3,4,5), (1,2,3,4,5)°2 );

true
The default function GroupOps.IsConjugate uses Representative (see 4.15) in order to
check whether z is conjugate to y under G.

7.55 IsCyclic

IsCyclic( G )
IsCyclic returns true if G is cyclic and false otherwise.
A group G is cyclic if and only if there exists an element g € G such that G is generated
by g.
Note that IsCyclic sets and tests the record component G.isCyclic.
gap> z6 := Group( (1,2,3), (4,5) );;
gap> IsCyclic( z6 );
true
gap> z36 := AbelianGroup( AgWords, [ 9, 4 1 );;

gap> IsCyclic( 236 );
true

The default function GroupOps.IsCyclic returns false if G is not an abelian group. Oth-
erwise it computes the abelian invariants (see 7.46) if G is infinite. If G is finite of order

pit...pSr, where p; are distinct primes, then G is cyclic if and only if each GP* has index p;
in G.

7.56 IsElementaryAbelian

IsElementaryAbelian( G )

IsElementaryAbelian returns true if the group G is an elementary abelian p-group for a
prime p and false otherwise.

A p-group G is elementary abelian if and only if for every g, h € G the equations g+ h =
h* g and gP = 1 hold.

Note that the IsElementaryAbelian sets and tests G .isElementaryAbelian.
gap> z4 := Group( (1,2,3,4) );;
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gap> IsElementaryAbelian( z4 );

false

gap> v4 := Group( (1,2)(3,4), (1,3)(2,4) );;
gap> IsElementaryAbelian( v4 );

true

The default function GroupOps . IsElementaryAbelian returns true if G is abelian and for
some prime p each generator is of order p.

7.57 IsNilpotent

IsNilpotent( G )
IsNilpotent returns true if the group G is nilpotent and false otherwise.

A group G is nilpotent if and only if the lower central series of G is of finite length and
reaches {1}.
Note that IsNilpotent sets and tests the record component G.isNilpotent.

gap> s4 := Group( (1,2,3,4), (1,2) );;

gap> IsNilpotent( s4 );

false

gap> v4 := Group( (1,2)(3,4), (1,3)(2,4) );;

gap> IsNilpotent( v4 );

true
The default group function GroupOps.IsNilpotent computes the lower central series using
LowerCentralSeries (see 7.41) in order to check whether G is nilpotent.

If G has an infinite set of elements a warning is given, as this function does not stop if G
has a lower central series of infinite length.

7.58 IsNormal

IsNormal( G, U )
IsNormal returns true if the group G normalizes the group U and false otherwise.

A group G normalizes a group U if and only if for every g € G and u € U the element u9
is a member of U. Note that U need not be a subgroup of G but they must have a common
parent group.

Note that IsNormal tests and sets U .isNormal if G is the parent group of U.

gap> s4 := Group( (1,2,3,4), (1,2) );;

gap> d8 := Subgroup( s4, [ (1,2,3,4), (1,2)(3,4) 1 );;
gap> c2 := Subgroup( s4, [ (1,3)(2,4) 1 );;

gap> IsNormal( s4, c2 );

false

gap> IsNormal( d8, c2 );

true

Let G be a finite group. Then the default function GroupOps.IsNormal checks whether the
conjugate of each generator of U under each generator of G is an element of U.
If G is an infinite group, then the default function GroupOps.IsNormal checks whether the

conjugate of each generator of U under each generator of G and its inverse is an element of
U.
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7.59 IsPerfect

IsPerfect( G )
IsPerfect returns true if G is a perfect group and false otherwise.
A group G is perfect if G is equal to its derived subgroup. See 7.22.
Note that IsPerfect sets and tests G.isPerfect.
gap> a4 := Group( (1,2,3), (2,3,4) );
Group( (1,2,3), (2,3,4) )
gap> IsPerfect( a4 );
false
gap> ab := Group( (1,2,3), (2,3,4), (3,4,5) );
Group( (1,2,3), (2,3,4), (3,4,5) )
gap> IsPerfect( a5 );
true
The default group function GroupOps . IsPerfect checks for a finite group G the index of G’
(see 7.22) in G. For an infinite group it computes the abelian invariants of the commutator
factor group (see 7.46 and 7.35).

7.60 IsSimple

IsSimple( G )
IsSimple returns true if G is simple and false otherwise.

A group G is simple if and only if G and the trivial subgroup are the only normal subgroups
of G.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> IsSimple( DerivedSubgroup( s4 ) );

false

gap> sb := Group( (1,2,3,4,5), (1,2) );

Group( (1,2,3,4,5), (1,2) )

gap> IsSimple( DerivedSubgroup( s5 ) );

true

7.61 IsSolvable

IsSolvable( G )

IsSolvable returns true if the group G is solvable and false otherwise.

A group G is solvable if and only if the derived series of G is of finite length and reaches
{1}

Note that IsSolvable sets and tests G.isSolvable.

gap> s4 := Group( (1,2,3,4), (1,2) );;
gap> IsSolvable( s4 );
true
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The default function GroupOps.IsSolvable computes the derived series using the function
DerivedSeries (see 7.37) in order to see whether G is solvable.

If G has an infinite set of elements a warning is given, as this function does not stop if G
has a derived series of infinite length.

7.62 IsSubgroup

IsSubgroup( G, U )
IsSubgroup returns true if U is a subgroup of G and false otherwise.

Note that G and U must have a common parent group. This function returns true if and
only if the set of elements of U is a subset of the set of elements of G, it is not the inverse
of IsParent (see 7.7).

gap> s6 := Group( (1,2,3,4,5,6), (1,2) );;

gap> s4 := Subgroup( s6, [ (1,2,3,4), (1,2) 1 );;

gap> z2 := Subgroup( s6, [ (5,6) 1 );;

gap> IsSubgroup( s4, z2 );

false

gap> v4 := Subgroup( s6, [ (1,2)(3,4), (1,3)(2,4) 1 );;
gap> IsSubgroup( s4, v4 );

true

If the elements of G are known, then the default function GroupOps.IsSubgroup checks
whether the set of generators of U is a subset of the set of elements of G. Otherwise the
function checks whether each generator of U is an element of G using in.

7.63 IsSubnormal

IsSubnormal( G, U )
IsSubnormal returns true if the subgroup U of G is subnormal in G and false otherwise.

A subgroup U of G is subnormal if and only if there exists a series of subgroups G = Gy >
G1 > ... > G, = U such that G; is normal in G;_; for all i € {1,...,n}.

Note that U must be a subgroup of G. The function sets and checks U .isSubnormal if G
is the parent group of G.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> c2 := Subgroup( s4, [ (1,2) 1);

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2) 1)

gap> IsSubnormal( s4, c2 );

false

gap> c2 := Subgroup( s4, [ (1,2)(3,4) 1 );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2)(3,4) 1)
gap> IsSubnormal( s4, c2 );

true

The default function GroupOps.IsSubnormal uses SubnormalSeries (see 7.43) in order to
check if U is subnormal in G.
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7.64 IsTrivial for Groups

GroupOps.IsTrivial( G )
GroupOps.IsTrivial returns true if G is the trivial group and false otherwise.

Note that G is trivial if and only if the component generators of the group record of G is
the empty list. It is faster to check this than to call IsTrivial.

7.65 Groupld

GroupId( G )

For certain small groups the function returns a record which will identify the isomorphism
type of G with respect to certain classifications. This record contains the components
described below.

The function will work for all groups of order at most 100 or whose order is a product of
at most three primes. Moreover if the ANU pq is installed and loaded (see 57.1 and 57.2)
you can also use GroupId to identify groups of order 128, 256, 243 and 729. In this case a
standard presentation for G is computed (see 58.6) and the returned record will only contain
the components size, pGroupId, and possibly abelianInvariants. For 2- or 3-groups of
order at most 100 GroupId will return the pGroupId identifier even if the ANU pq is not
installed.

catalogue
a pair [0, n] where o is the size of G and n is the catalogue number of G following the
catalogue of groups of order at most 100. See 38.7 for further details. This catalogue
uses the Neubueser list for groups of order at most 100, excluding groups of orders
64 and 96 (see [Neu67]). It uses the lists developed by [HS64] and [Lau82] for orders
64 and 96 respectively.

Note that there are minor discrepancies between n and the number in [Neu67] for
abelian groups and groups of type D(p,q)xr. However, a solvable group G is iso-
morphic to SolvableGroup(o, n), i.e., GroupId(SolvableGroup(o,n)).catalogue
will be [o,n].

If G is a 2- or 3-group of order at most 100, its number in the appropriate p-group
library is also returned. Note that, for such groups, the number n usually differs from
the p-group identifier returned in pGroupId (see below).

3primes
if G is non-abelian and its size is a product of at most three primes then 3primes
holds an identifier for G. The following isomorphisms are returned in 3primes:
["A",p] = A(p~3), ["B",p] = B(p~3), ["D",p,q,r] = D(p,q)xr,
["D",p,q] =D(p,q), ["G",p,q] =G(p~2,9), ["G",p,q,r,s] = G(p,q,r,s),
["H",p,q] = H(p~2,q9), ["H",p,q,r] = H(p,q,r), ["K",p,q] = K(p,q~2),
("L",p,q,s] = L(p,q"2,s), ["M",p,q] = M(p,q~2), ["N",p,q] = N(p,q"2)
(see names below for a definition of A ... N).

pGroupld
if G is a 2- or 3-group, this will be the number of G in the list of 2-groups of order
at most 256, prepared by Newman and O’Brien, or 3-groups of order at most 729,
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prepared by O’Brien and Rhodes. In particular, for an integer n and for o a power
of 2 at most 256, GroupId(TwoGroup(o,n)) .pGroupld is always n (and similarly for
3-groups). See 38.8 and 38.9 for details about the libraries of 2- and 3-groups. Note
that if G is a 2- or 3-group of order at most 100 its pGroupId usually differs from
its GAP solvable library number returned in catalogue.

abelianInvariants
if G is abelian, this is a list of abelian invariants.

names
a list of names of G. For non-abelian groups of order 96 this name is that used in the
Laue catalogue (see [Lau82]). For the other groups the following symbols are used.
Note that this list of names is neither complete, i.e., most of the groups of order 64
do not have a name even if they are of one of the types described below, nor does it
uniquely determine the group up to isomorphism in some cases.

m is the cyclic group of order m,

Dm is the dihedral group of order m,

Qm is the quaternion group of order m,

QDm is the quasi-dihedral group of order m,

Sm is the symmetric group on m points,

Am is the alternating group on m points,

SL(d,q) is the special linear group,

GL(d,q) is the general linear group,

PSL(d,q) is the projective special linear group,

K"n is the direct power of m copies of K,

K$H is a wreath product of K and H,

K:H is a split extension of K by H,

K.H is a non-split extension of K and H,

K+H is a subdirect product with identified factor groups of K and H,
KYH is a central amalgamated product of the groups K and H,
KxH is the direct product of K and H,

A(p~3) is (A,B,C; AP =BP =CP =[A,B]=[A,C] =1,[B,C] = A),

B(p~3) is (A,B,C;BP =C?P = A, AP = [A,B] =[A,C] = 1,[B,C] = A),

D(p,q) is (A, B; A = BP =1, AB = A%) such that pl¢ — 1, x # 1 mod ¢, and 2P =1
mod g,

G(p~2,q) is (A, B,C; AP = B4 =1,CP = A, [A,B] = [A,C] = 1, B¢ = B®) such that
plg—1, x # 1 mod ¢, and 2P = 1 mod g,

G(p,q,r,s) is (A,B,C; A" = BY = CP = [A,B] = 1,A° = A*, B¢ = BW") such
that plg — 1, p|r — 1,  minimal with  # 1 mod r and 2 = 1 mod r, y minimal with
y# 1 mod g and y?» =1 mod ¢, and 0 < s < p,

H(p~2,q) is (A, B; A7 = BP*) = 1, AP = A%) such that p?|q — 1, 2P # 1 mod ¢, and
) =1 mod q,

H(p,q,r) is (A, B; A" = BP? = 1, AP = A%) such that pg|r — 1, 2P # 1 mod r, 29 # 1
mod r, and 2P? = 1 mod r,

K(p,q~2) is (A,B,C; A9 = B1 = CP = [A,B] = 1, A = A*, B® = B®) such that
plg—1, x # 1 mod ¢, and 2 = 1 mod g,

L(p,q°2,s) is (A, B,C; A9 = BY = C? = [A,B] = 1,A° = A*, B¢ = B(=")) such
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that pl¢ — 1,  # 1 mod ¢, 2 = 1 mod ¢, and 1 < s < p, note that L(q,p"2,s) =
L(q,p"2,t) iff st =1 mod p,

M(p,q~2) is <A,B;A(q2) = BP =1, AP = A?%) such that p|¢ — 1, z # 1 mod ¢?, and
2P =1 mod ¢2,

N(p,q~2) is (A,B,C; A9 =BY=CP = [A,B] =1,A° = A™1B,BY = A-1peite—l)
such that 2 < p, plg + 1, x is an element of order p mod ¢,

~ has the strongest, x the weakest binding.

gap> g8 := SolvableGroup( 8, 5 );;
gap> s4 := SymmetricGroup(4);;
gap> d8 := SylowSubgroup( s4, 2 );;
gap> GroupId(g8);
rec(

catalogue := [ 8, 5 1],

names := [ "Q8" 1,

3primes := [ "B", 2 1],

size := 8,

pGroupld := 4 )
gap> GroupId(ds);

rec(
catalogue := [ 8, 4 1,
names := [ "D8" ],
3primes := [ "A", 2 1],
size := 8,

pGroupId := 3 )

gap> GroupId(s4);

rec(
catalogue := [ 24, 15 ],
names := [ "S4" ],

size := 24 )
gap> GroupId(DirectProduct(d8,d8));
rec(

catalogue := [ 64, 154 ],

names := [ "D8xD8" ],

size := 64,

pGroupId := 226 )
gap> GroupId(DirectProduct(q8,d8));
rec(

catalogue := [ 64, 155 1],

names := [ "D8xQ8" 1],

size := 64,

pGroupId := 230 )
gap> GroupId( WreathProduct( CyclicGroup(2), CyclicGroup(4) ) );
rec(

catalogue := [ 64, 250 ],

names := [ ],

size := 64,

pGroupId := 32 )
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gap> f := FreeGroup("c","b","a");; a:=f.3;;b:=f.2;;c:=f.1;;
gap> r := [ ¢”5, b°31, a”31, Comm(b,c)/b~7, Comm(a,c)/a, Comm(a,b) 1;;
gap> g := AgGroupFpGroup( f / r );
Group( c, b, a )
gap> GroupId(g);
rec(

3primes := [ "L", 5, 31, 2 1],

names := [ "L(5,31°2,2)" 1],

size := 4805 )
gap> RequirePackage("anupq") ;
gap> g := TwoGroup(256,4);
Group( al, a2, a3, a4, ab, a6, a7, a8 )
gap> Groupld(g);
rec(

size := 256,

pGroupId := 4 )
gap> g := TwoGroup(256,232);
Group( al, a2, a3, a4, ab, a6, a7, a8 )
gap> GroupId(g);
rec(

size := 256,

pGroupId := 232 )

7.66 PermutationCharacter

PermutationCharacter( G, U )

computes the permutation character of the operation of G on the cosets of U. The permu-
tation character is returned as list of integers such that the i.th position contains the value
of the permutation character on the i.th conjugacy class of G (see 7.68).

The value of the permutation character of U in G on a class ¢ of G is the number of
right cosets invariant under the action of an element of c.

gap> G := SymmetricPermGroup(5);;
gap> PermutationCharacter( G, SylowSubgroup(G,2) );
(15, 3,3, 0,0, 1,01

For small groups the default function GroupOps.PermutationCharacter calculates the per-
mutation character by inducing the trivial character of U. For large groups it counts the
fixed points by examining double cosets of U and the subgroup generated by a class element.

7.67 Conjugacy Classes

The following sections describe how one can compute conjugacy classes of elements and
subgroups in a group (see 7.68 and 7.74). Further sections describe how conjugacy classes
of elements are created (see 7.69 and 7.71), and how they are implemented (see 7.72 and
7.73). Further sections describe how classes of subgroups are created (see 7.76 and 7.77),
and how they are implemented (see 7.78 and 7.79). Another section describes the function
that returns a conjugacy class of subgroups as a list of subgroups (see 7.83).
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7.68 ConjugacyClasses

ConjugacyClasses( G )

ConjugacyClasses returns a list of the conjugacy classes of elements of the group G. The
elements in the list returned are conjugacy class domains as created by ConjugacyClass
(see 7.69). Because conjugacy classes are domains, all set theoretic functions can be applied
to them (see 4).

gap> a5 := Group( (1,2,3), (3,4,5) );; a5.name := "ab";;

gap> ConjugacyClasses( ab );

[ ConjugacyClass( a5, () ), ConjugacyClass( a5, (3,4,5) ),
ConjugacyClass( a5, (2,3)(4,5) ), ConjugacyClass( a5, (1,2,3,4,5) ),
ConjugacyClass( ab, (1,2,3,5,4) ) 1]

ConjugacyClasses first checks if G.conjugacyClasses is bound. If the component is
bound, it returns that value. Otherwise it calls G.operations.ConjugacyClasses( G ),
remembers the returned value in G.conjugacyClasses, and returns it.

The default function called this way is GroupOps.ConjugacyClasses. This function takes
random elements in G and tests whether such a random element g lies in one of the already
known classes. If it does not it adds the new class ConjugacyClass( G, g ) (see 7.69).
Also after adding a new class it tests whether any power of the representative gives rise to
a new class. It returns the list of classes when the sum of the sizes is equal to the size of G.

7.69 ConjugacyClass

ConjugacyClass( G, ¢ )

ConjugacyClass returns the conjugacy class of the element ¢ in the group G. Signals an
error if g is not an element in G. The conjugacy class is returned as a domain, so that all
set theoretic functions are applicable (see 4).

gap> ab := Group( (1,2,3), (3,4,5) );; ab.name := "ab";;
gap> c¢ := ConjugacyClass( a5, (1,2,3,4,5) );
ConjugacyClass( a5, (1,2,3,4,5) )

gap> Size( ¢ );

12

gap> Representative( c );

(1,2,3,4,5)

gap> Elements( c );

[ (1,2’3’4’5)’ (1)2!4’5’3), (1’2’5!3,4)’ (1!335’4’2)’ (1)3,2,5,4),
(1,3’4,2’5), (1)4)3’5,2): (1’4,5’2)3)) (1)4)2,3’5), (1,5’4’3,2>)
(1,5,2,4,3), (1,5,3,2,4) 1]

ConjugacyClass calls G.operations.ConjugacyClass( G, g ) and returns that value.

The default function called this way is GroupOps.ConjugacyClass, which creates a conju-
gacy class record (see 7.73) with the operations record ConjugacyClassOps (see 7.72). Look
in the index under ConjugacyClass to see for which groups this function is overlaid.
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7.70 PositionClass

PositionClass( G, ¢ )

G must be a domain for which ConjugacyClasses is defined and g must be an element of
G. This functions returns a positive integer i such that g in ConjugacyClasses( G ) [i].

gap> G := Group( (1,2)(3,4), (1,2,3,4,5) );;

gap> ConjugacyClasses( G );

[ ConjugacyClass( Group( (1,2)(3,4), (1,
ConjugacyClass( Group( (1,2)(3,4), (1,

2,3,4,5) ), O ),
2,3,4,5)
ConjugacyClass( Group( (1,2)(3,4), (1,2,3,4,5)
2,3,4,5)
2,3,4,5)

)
), (3,4,5) ),
), (2,3)(4,5) ),
ConjugacyClass( Group( (1,2)(3,4), (1, )
ConjugacyClass( Group( (1,2)(3,4), (1, )
gap> g := Random( G );
1,2,5,4,3)
gap> PositionClass( G, g );
5

s (1’2,3,4)5) )’
b (1’2’3,5,4) ) ]

7.71 IsConjugacyClass

IsConjugacyClass( obj )

IsConjugacyClass returns true if 0bj is a conjugacy class as created by ConjugacyClass
(see 7.69) and false otherwise.

gap> ab := Group( (1,2,3), (3,4,5) );; ab.name := "ab";;
gap> ¢ := ConjugacyClass( a5, (1,2,3,4,5) );
ConjugacyClass( a5, (1,2,3,4,5) )

gap> IsConjugacyClass( c );

true

gap> IsConjugacyClass(

> [ (1,2,3,4,5), (1,2,4,5,3), (1,2,5,3,4), (1,3,5,4,2),

> (1,3,2,5,4), (1,3,4,2,5), (1,4,3,5,2), (1,4,5,2,3),

> (1,4,2,3,5), (1,5,4,3,2), (1,5,2,4,3), (1,5,3,2,4) 1 );
false # even though this is as a set equal to ¢

7.72 Set Functions for Conjugacy Classes

As mentioned above, conjugacy classes are domains, so all domain functions are applicable
to conjugacy classes (see 4). This section describes the functions that are implemented
especially for conjugacy classes. Functions not mentioned here inherit the default functions
mentioned in the respective sections.

In the following let C' be the conjugacy class of the element ¢ in the group G.

Elements( C )

The elements of the conjugacy class C' are computed as the orbit of ¢ under G, where G
operates by conjugation.
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Size( C )

The size of the conjugacy class C is computed as the index of the centralizer of g in G.

h in C

To test whether an element & lies in C, in tests whether there is an element of G that takes
h to g. This is done by calling RepresentativeOperation(G,h,g) (see 8.25).

Random( C )

A random element of the conjugacy class C is computed by conjugating g with a random
element of G.

7.73 Conjugacy Class Records

A conjugacy class C of an element ¢g in a group G is represented by a record with the
following components.

isDomain
always true.

isConjugacyClass
always true.

group
holds the group G.
representative
holds the representative g.

The following component is optional. It is computed and assigned when the size of a
conjugacy class is computed.

centralizer
holds the centralizer of ¢ in G.

7.74 ConjugacyClassesSubgroups

ConjugacyClassesSubgroups( G )

ConjugacyClassesSubgroups returns a list of all conjugacy classes of subgroups of the
group G. The elements in the list returned are conjugacy class domains as created by
ConjugacyClassSubgroups (see 7.76). Because conjugacy classes are domains, all set the-
oretic functions can be applied to them (see 4).

In fact, ConjugacyClassesSubgroups computes much more than it returns, for it calls (indi-
rectly via the function G.operations.ConjugacyClassesSubgroups( G )) the Lattice
command (see 7.75), constructs the whole subgroup lattice of G, stores it in the record
component G.lattice, and finally returns the list G.lattice.classes. This means, in
particular, that it will fail if G is non-solvable and its maximal perfect subgroup is not in
the built-in catalogue of perfect groups (see the description of the Lattice command 7.75
for details).

gap> # Conjugacy classes of subgroups of S4
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gap> s4 := Group( (1,2,3,4), (1,2) );;
gap> s4.name := "s4";;
gap> cl := ConjugacyClassesSubgroups( s4 );
[ ConjugacyClassSubgroups( s4, Subgroup( s4,
ConjugacyClassSubgroups( s4, Subgroup( s4, )
ConjugacyClassSubgroups( s4, Subgroup( s4, )
ConjugacyClassSubgroups( s4, Subgroup( s4, ,4
ConjugacyClassSubgroups( s4, Subgroup( s4, [ (1,2)(
1 ) ), ConjugacyClassSubgroups( s4, Subgroup( s4,
[ (3,4), (1,2) 1 ) ), ConjugacyClassSubgroups( s4, Subgroup( s4,
[ (1,2)(3,4), (1,4,2,3) 1)),
ConjugacyClassSubgroups( s4, Subgroup( s4, [ (2,3,4), (3,4) 1)),
ConjugacyClassSubgroups( s4, Subgroup( s4,
[ 3,4, (1,2), (1,3)(2,4) 1)),
ConjugacyClassSubgroups( s4, Subgroup( s4,
[ (1,2)(3,4), (1,3)(2,4), (2,3,4) 1) ),
ConjugacyClassSubgroups( s4, s4 ) ]

1))
(1,2)(
(3,4 ),
(2,3 ) ),

), (1,3)(2,4)

[ B e B e Bl |

>

W~ =~
D= D

H

Each entry of the resulting list is a domain. As an example, let us take the seventh class in
the above list of conjugacy classes of Sy.

gap> # Conjugacy classes of subgroups of S4 (continued)
gap> class7 := cl[7];;

gap> # Print the class representative subgroup.

gap> rep7 := Representative( class7 );

Subgroup( s4, [ (1,2)(3,4), (1,4,2,3) 1)

gap> # Print the order of the class representative subgroup.
gap> Size( rep7 );

4

gap> # Print the number of conjugates.

gap> Size( class7 );

3

7.75 Lattice

Lattice( G )

Lattice returns the lattice of subgroups of the group G in the form of a record L, say, which
contains certain lists with some appropriate information on the subgroups of G and their
conjugacy classes. In particular, in its component L.classes, L provides the same list of all
conjugacy classes of all subgroups of G as is returned by the ConjugacyClassesSubgroups
command (see 7.74).

The construction of the subgroup lattice record L of a group G may be very time consuming.
Therefore, as soon as L has been computed for the first time, it will be saved as a component
G .lattice in the group record G to avoid any duplication of that effort.

The underlying routines are a reimplementation of the subgroup lattice routines which have
been developed since 1958 by several people in Kiel and Aachen under the supervision of
Joachim Neubiiser. Their final version, written by Volkmar Felsch in 1984, has been available
since then in Cayley (see [BC92]) and has also been used in SOGOS (see [Leh89a]). The
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current implementation in GAP3 by Jiirgen Mnich is described in [Mni92], a summary of
the method and references to all predecessors can be found in [FS84].

The Lattice command invokes the following procedure. In a first step, the solvable residu-
um P, say, of G is computed and looked up in a built-in catalogue of perfect groups which is
given in the file LIBNAME/"lattperf.g". A list of subgroups is read off from that catalogue
which contains just one representative of each conjugacy class of perfect subgroups of P
and hence at least one representative of each conjugacy class of perfect subgroups of G.
Then, starting from the identity subgroup and the conjugacy classes of perfect subgroups,
the so called cyclic extension method is used to compute the non-perfect subgroups of
G by forming for each class representative all its not yet involved cyclic extensions of prime
number index and adding their conjugacy classes to the list.

It is clear that this procedure cannot work if the catalogue of perfect groups does not contain
a group isomorphic to P. At present, it contains only all perfect groups of order less than
5000 and, in addition, the groups PSL(3,3), My, and Ag. If the Lattice command is
called for a group G with a solvable residuum P not in the catalogue, it will provide an
error message. As an example we handle the group SL(2,19) of order 6840.

gap> s := [ [4,0], [0,6] ] * Z( 19 )~0;;
gap> t := [ [4,4], [-9,-4]1 1 * Z(19)70;;

gap> G := Group( s, t );;
gap> Size( G );
6840

gap> Lattice( G );
Error, sorry, can’ t identify the group’s solvable residuum

However, if you know the perfect subgroups of G, you can use the Lattice command to
compute the whole subgroup lattice of G even if the solvable residuum of G is not in the
catalogue. All you have to do in such a case is to create a list of subgroups of G which
contains at least one representative of each conjugacy class of proper perfect subgroups
of G, attach this list to the group record as a new component G .perfectSubgroups, and
then call the Lattice command. The existence of that record component will prevent GAP3
from looking up the solvable residuum of G in the catalogue. Instead, it will insert the given
subgroups into the lattice, leaving it to you to guarantee that in fact all conjugacy classes
of proper perfect subgroups are involved.

If you miss classes, the resulting lattice will be incomplete, but you will not get any warning.
As long as you are aware of this fact, you may use this possibility to compute a sublattice
of the subgroup lattice of G without getting the above mentioned error message even if the
solvable residuum of G is not in the catalogue. In particular, you will get at least the classes
of all proper solvable subgroups of G if you define G.perfectSubgroups to be an empty
list.

As an example for the computation of the complete lattice of subgroups of a group which
is not covered by the catalogue, we handle the Mathieu group M.

gap> # Define the Mathieu group Mi12.

gap> a := (2,3,5,7,11,9,8,12,10,6,4);;

gap> b := (3,6)(5,8)(9,11)(10,12);;

gap> ¢ := (1,2)(3,4)(5,9)(6,8)(7,12) (10,11);;
gap> M12 := Group( a, b, ¢ );;
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gap> Print( "#I M12 has order ", Size( M12 ), "\n" );

#I M12 has order 95040

gap> # Define a list of proper perfect subgroups of M_12 and attach
gap> # it to the group record M12 as component M12.perfectSubgroups.
gap> L2_11a := Subgroup( M12, [ a, b ] );;

gap> Mlla  := Subgroup( M12, [ a, b, c*a"-1lxb*a*xc ] );;
gap> M11b  := Subgroup( M12, [ a, b, cxaxbxa™-1xc ] );;
gap> x 1= axbxa”2;;

gap> y 1= axc*a”-1xbxaxc*a”6;;

gap> A6a := Subgroup( M12, [ x, y 1 );;

gap> Abc := Subgroup( M12, [ x*y, x"3%y~2*x"2xy ] );;
gap> x 1= a"2x%b*a;;

gap> y 1= a"6*cxaxb*a"-1%c*a;;

gap> A6b := Subgroup( M12, [ x, y 1 );;

gap> Abd := Subgroup( M12, [ xxy, x 3%y 2*x"2%y ] );;
gap> x 1= aj;

gap> y := b*c*b;;

gap> z 1= cj;

gap> L2_11b := Subgroup( M12, [ x, y, z 1 );;

gap> A5b := Subgroup( M12, [y, x*z ] );;

gap> x 1= cj;

gap> y 1= bxa”-1xc*axb; ;

gap> z 1= a”2xb*xa”-1*c*a*xbxa"-2;;

gap> Aba := Subgroup( M12, [ (x*z)°2, (y*z)°2 1 );;

gap> M12.perfectSubgroups := [

> L2_11a, L2_11b, Milla, M1lb, A6a, A6b, Aba, ABb, AbBc, A5d 1;;
gap> # Now compute the subgroup lattice of Mi12.

gap> lat := Lattice( M12 );

LatticeSubgroups( Group( ( 2, 3, 5, 7,11, 9, 8,12,10, 6, 4), ( 3, 6)
(5, 809,11)(10,12), (1, 20( 3, (5, (6, 8)(7,12)(10,11) ) )

The Lattice command returns a record which represents a very complicated structure.

gap> # Subgroup lattice of M12 (continued)
gap> RecFields( lat );
[ "isLattice", "classes", "group", "printLevel", "operations" ]

Probably the most important component of the lattice record is the list lat.classes. Its
elements are domains. They are described in section 7.74. We can use this list, for instance,
to print the number of conjugacy classes of subgroups and the number of subgroups of M.

gap> # Subgroup lattice of M12 (continued)
gap> nl := Length( lat.classes );;
gap> n2 := Sum( [ 1 .. nl ], i -> Size( lat.classes[i] ) );;
gap> Print( "#I M12 has ", nl, " classes of altogether ", n2,
> " subgroups\n" );
#I M12 has 147 classes of altogether 214871 subgroups
It would not make sense to get all components of a subgroup lattice record printed in full

detail whenever we ask GAP3 to print the lattice. Therefore, as you can see in the above
example, the default printout is just an expression of the form "Lattice ( group )”. However,
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you can ask GAP3 to display some additional information in any subsequent printout of the
lattice by increasing its individual print level. This print level is stored (in the form of a
list of several print flags) in the lattice record and can be changed by an appropriate call of
the SetPrintLevel command described below

The following example demonstrates the effect of the subgroup lattice print level.

gap> # Subgroup lattice of S4
gap> s4 :
gap> lat
LatticeSubgroups( Group( (1,2,3,4), (1,2) ) )

Group( (1,2,3,4), (1,2) );;

:= Lattice( s4 );

The default subgroup lattice print level is 0. In this case, the print command provides just
the expression mentioned above.

gap> # Subgroup lattice of S4 (continued)
gap> SetPrintLevel( lat, 1 );

gap> lat;
#I class
#I class
#I class
#I class
#I class
#I class
#I class
#I class
#I class
#I class

#I

class

1, size 1, length 1
2, size 2, length 3
3, size 2, length 6
4, size 3, length 4
5, size 4, length 1
6, size 4, length 3
7, size 4, length 3
8, size 6, length 4
9, size 8, length 3
10, size 12, length 1

11, size 24, length 1

LatticeSubgroups( Group( (1,2,3,4), (1,2) ) )

If the print level is set to a value greater than 0, you get, in addition, for each class a kind of
heading line. This line contains the position number and the length of the respective class
as well as the order of the subgroups in the class.

gap> # Subgroup lattice of S4 (continued)
gap> SetPrintLevel( lat, 2 );
gap> lat;

#1
#I
#I
#I
#I
#1
#I
#I
#I
#I
#1
#I
#I
#I

class

1, size 1, length 1

representative [ ]
maximals

class

2, size 2, length 3

representative [ (1,2)(3,4) ]
maximals [ 1, 1 ]

class

3, size 2, length 6

representative [ (3,4) ]
maximals [ 1, 1 1]

class

4, size 3, length 4

representative [ (2,3,4) ]
maximals [ 1, 1 ]

class

5, size 4, length 1

representative [ (1,2)(3,4), (1,3)(2,4) ]
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#I maximals [ 2, 1] [ 2, 21 [ 2, 31

#I class 6, size 4, length 3

#1 representative [ (3,4), (1,2) ]

#1I maximals [ 3, 11 [ 3,41 [2, 1]

#I class 7, size 4, length 3

#I representative [ (1,2)(3,4), (1,4,2,3) ]

#I maximals [ 2, 1 ]

#I class 8, size 6, length 4

#I representative [ (2,3,4), (3,4) ]

#1I maximals [ 4, 11 [ 3,11 0[3,211[3, 3]

#I class 9, size 8, length 3

#I representative [ (3,4), (1,2), (1,3)(2,4) ]

#1 maximals [ 7, 11 [ 6, 11 [ 5, 1]

#I class 10, size 12, length 1

#I representative [ (1,2)(3,4), (1,3)(2,4), (2,3,4) ]
#I maximals [ 5, 11 [ 4, 11 [ 4,21 0[4, 31104, 4]
#I class 11, size 24, length 1

#I representative [ (1,2,3,4), (1,2) 1]

#I maximals [ 10, 11 [ 9, 11 [ 9,21 [9,3]11[8, 1]
[8,2]1[8,3]11[8, 4]

LatticeSubgroups( Group( (1,2,3,4), (1,2) ) )

gap> PrintClassSubgrouplattice( lat, 8 );

#I class 8, size 6, length 4

#1 representative [ (2,3,4), (3,4) ]

#I maximals [ 4, 1] [ 3,11 [3,21]11[3, 31

If the subgroup lattice print level is at least 2, GAP3 prints, in addition, for each class repre-
sentative subgroup a set of generators and a list of its maximal subgroups, where each max-
imal subgroup is represented by a pair of integers consisting of its class number and its posi-
tion number in that class. As this information blows up the output, it may be convenient to
restrict it to a particular class. We can do this by calling the PrintClassSubgroupLattice
command described below.

gap> # Subgroup lattice of S4 (continued)

gap> SetPrintLevel( lat, 3 );

gap> PrintClassSubgrouplLattice( lat, 8 );

#I class 8, size 6, length 4

#I representative [ (2,3,4), (3,4) ]

#1I maximals [ 4, 1] [ 3,11 [3,2]1T1[3,3

#I conjugate 2 by (1,4,3,2) is [ (1,2,3), (2,3)

#I conjugate 3 by (1,2) is [ (1,3,4), (3,4) ]

#I conjugate 4 by (1,3)(2,4) is [ (1,2,4), (1,2) ]
If the subgroup lattice print level has been set to at least 3, GAP3 displays, in addition,
for each non-representative subgroup of a class its number in the class, an element which
transforms the class representative subgroup into that subgroup, and a set of generators.

]
]

gap> # Subgroup lattice of S4 (continued)
gap> SetPrintLevel( lat, 4 );
gap> PrintClassSubgrouplattice( lat, 8 );
#I class 8, size 6, length 4
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#I representative [ (2,3,4), (3,4) 1]

#1 maximals [ 4, 11 [ 3, 11 [3,21T1[3, 3]
#I conjugate 2 by (1,4,3,2) is [ (1,2,3), (2,3) ]
#I maximals [ 4, 2] [ 3,21 [3,4]1T1[3, 5]
#I conjugate 3 by (1,2) is [ (1,3,4), (3,4) 1]

#1I maximals [ 4, 31 [ 3, 11 [3,5]11[3, 6]
#I conjugate 4 by (1,3)(2,4) is [ (1,2,4), (1,2) ]
#1I maximals [ 4, 41 [ 3,41 [3,611[3, 3]

A subgroup lattice print level value of at least 4 causes GAP3 to list the maximal subgroups
not only for the class representatives, but also for the other subgroups.

gap> # Subgroup lattice of S4 (continued)
gap> SetPrintLevel( lat, 5 );

gap> PrintClassSubgrouplattice( lat, 8 );
#I class 8, size 6, length 4

#I representative [ (2,3,4), (3,4) ]

#1 maximals [ 4, 1] [ 3, 11 [3,2]11[3, 3]
#I minimals [ 11, 1 ]

#I conjugate 2 by (1,4,3,2) is [ (1,2,3), (2,3) ]
#I maximals [ 4, 2] [ 3,21 [3,4]1T1[3, 5]
#I minimals [ 11, 1 ]

#I conjugate 3 by (1,2) is [ (1,3,4), (3,4) ]

#1 maximals [ 4, 3] [ 3, 11 [3,5]11[3, 6]
#I minimals [ 11, 1 ]

#1 conjugate 4 by (1,3)(2,4) is [ (1,2,4), (1,2) ]
#1I maximals [ 4, 41 [ 3,41 0[3,61T1[3, 3]
#I minimals [ 11, 1 ]

The maximal valid value of the subgroup lattice print level is 5. If it is set, GAP3 displays
not only the maximal subgroups, but also the minimal supergroups of each subgroup. This
is the most extensive output of a subgroup lattice record which you can get with the Print
command, but of course you can use the RecFields command (see 46.13) to list all record
components and then print them out individually in full detail.

If the computation of some subgroup lattice is very time consuming (as in the above example
of the Mathieu group Mjs), you might wish to see some intermediate printout which informs
you about the progress of the computation. In fact, you can get such messages by activating
a print mechanism which has been inserted into the subgroup lattice routines for diagnostic
purposes. All you have to do is to replace the call

lat := Lattice( M12 );
by the three calls

InfolLatticel := Print;
lat := Lattice( M12 );
Infolatticel := Ignore;

Note, however, that the final numbering of the conjugacy classes of subgroups will differ
from the order in which they occur in the intermediate listing because they will be reordered
by increasing subgroup orders at the end of the construction.
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PrintClassSubgrouplattice( lattice, n )

PrintClassSubgroupLattice prints information on the nth conjugacy class of subgroups
in the subgroup lattice lattice. The amount of this information depends on the current
value of the subgroup lattice print level of lattice. Note that the default of that print level is
zero which means that you will not get any output from the PrintClassSubgrouplLattice
command without increasing it (see SetPrintLevel below). Examples are given in the
above description of the Lattice command.

SetPrintLevel ( lattice, level )

SetPrintLevel changes the subgroup lattice print level of the subgroup lattice lattice to
the specified value level by an appropriate alteration of the list of print flags which is stored
in lattice .printLevel. The argument level is expected to be an integer between 0 and 5.

Examples of the effect of the subgroup lattice print level are given in the above description
of the Lattice command.

7.76 ConjugacyClassSubgroups

ConjugacyClassSubgroups( G, U )

ConjugacyClassSubgroups returns the conjugacy class of the subgroup U in the group G.
Signals an error if U is not a subgroup of G. The conjugacy class is returned as a domain,
so all set theoretic functions are applicable (see 4).

gap> s5 := Group( (1,2), (1,2,3,4,5) );; s5.name := "s5";;
gap> ab := DerivedSubgroup( s5 );

Subgroup( s5, [ (1,2,3), (2,3,4), (3,4,5) 1)

gap> C := ConjugacyClassSubgroups( s5, ab );
ConjugacyClassSubgroups( s5, Subgroup( s5,

[ (1,2,3), (2,3,4), (3,4,5) 1))

gap> Size( C );

1

Another example of such domains is given in section 7.74.

ConjugacyClassSubgroups calls
G .operations.ConjugacyClassSubgroups( G, U ) and returns this value.

The default function called is GroupOps . ConjugacyClassSubgroups, which creates a conju-
gacy class record (see 7.79) with the operations record ConjugacyClassSubgroupsOps (see
7.78). Look in the index under ConjugacyClassSubgroups to see for which groups this
function is overlaid.

7.77 IsConjugacyClassSubgroups

IsConjugacyClassSubgroups( obj )

IsConjugacyClassSubgroups returns true if obj is a conjugacy class of subgroups as cre-
ated by ConjugacyClassSubgroups (see 7.76) and false otherwise.

gap> sb := Group( (1,2), (1,2,3,4,5) );; sb.name := "sb";;

gap> ab := DerivedSubgroup( sb5 );
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Subgroup( s5, [ (1,2,3), (2,3,4), (2,4)(3,5) 1)
gap> ¢ := ConjugacyClassSubgroups( s5, a5 );
ConjugacyClassSubgroups( s5, Subgroup( sb5,

[ (1,2,3), (2,3,4), (2,4)(3,5) 1))

gap> IsConjugacyClassSubgroups( c );

true
gap> IsConjugacyClassSubgroups( [ a5 ] );
false # even though this is as a set equal to ¢

7.78 Set Functions for Subgroup Conjugacy Classes

As mentioned above, conjugacy classes of subgroups are domains, so all set theoretic func-
tions are also are applicable to conjugacy classes (see 4). This section describes the functions
that are implemented especially for conjugacy classes. Functions not mentioned here inherit
the default functions mentioned in the respective sections.

Elements( C )

The elements of the conjugacy class C with representative U in the group G are computed
by first finding a right transversal of the normalizer of U in G and by computing the
conjugates of U with the elements in the right transversal.

V in C

Membership of a group V is tested by comparing the set of contained cyclic subgroups of
prime power order of V with those of the groups in C.

Size( C )

The size of the conjugacy class C' with representative U in the group G is computed as the
index of the normalizer of U in G.

7.79 Subgroup Conjugacy Class Records

Each conjugacy class of subgroups C' is represented as a record with at least the following
components.

isDomain
always true, because conjugacy classes of subgroups are domains.

isConjugacyClassSubgroups
as well, this entry is always set to true.

group
The group in which the members of this conjugacy class lie. This is not necessarily a
parent group; it may also be a subgroup.

representative
The representative of the conjugacy class of subgroups as domain.

The following components are optional and may be bound by some functions which compute
or make use of their value.



7.80. CONJUGACYCLASSESMAXIMALSUBGROUPS 307

normalizer
The normalizer of C'.representative in C'.group.

normalizerLattice
A special entry that is used when the conjugacy classes of subgroups are computed
by ConjugacyClassesSubgroups. It determines the normalizer of the subgroup
C.representative. It is a list of length 2. The first element is another conju-
gacy class D (in the same group), the second is an element g in C.group. The
normalizer of C.representative is then D.representative ~ g.

conjugands
A right transversal of the normalizer of C'.representative in C.group. Thus the
elements of the class C' can be computed by conjugating C'.representative with
those elements.

7.80 ConjugacyClassesMaximalSubgroups

ConjugacyClassesMaximalSubgroups( G )

ConjugacyClassesMaximalSubgroups returns a list of conjugacy classes of maximal sub-
groups of the group G.

A subgroup H of G is maximal if H is a proper subgroup and for all subgroups I of G
with H < I < G the equality I = G holds.

gap> s4 := SymmetricGroup( AgWords, 4 );;
gap> ss4 := SpecialAgGroup( s4 );;
gap> ConjugacyClassesMaximalSubgroups( ss4 );
[ ConjugacyClassSubgroups( Group( gl, g2, g3, g4 ), Subgroup( Group(
gl, g2, g3, g4 ), [ g2, g3, g41)),
ConjugacyClassSubgroups( Group( gl, g2, g3, g4 ), Subgroup( Group(
gl, g2, g3, g4 ), [ gl, g3, 841)),
ConjugacyClassSubgroups( Group( gl, g2, g3, g4 ), Subgroup( Group(
gl, g2, g3, g4 ), [gl, g21) )1

The generic method computes the entire lattice of conjugacy classes of subgroups (see 7.75)
and returns the maximal ones.

MaximalSubgroups (see 7.81) computes the list of all maximal subgroups.

7.81 MaximalSubgroups

MaximalSubgroups( G )
MaximalSubgroups calculates all maximal subroups of the special ag group G.

gap> s4 := SymmetricGroup( AgWords, 4 );;

gap> ss4 := SpecialAgGroup( s4 );;

gap> MaximalSubgroups( ss4 );

[ Subgroup( Group( gl, g2, g3, g4 ), [ g2, g3, g4 1),
Subgroup( Group( gl, g2, g3, g4 ), [ g1, g3, g4 1),
Subgroup( Group( gl, g2, g3, g4 ), [ gl*g2°2, g3, g4 1),
Subgroup( Group( gl, g2, g3, g4 ), [ gl*g2, g3, g4 1),
Subgroup( Group( gl, g2, g3, g4 ), [ gl, g2 1),
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Subgroup( Group( gl, g2, g3, g4 ), [ gl, g2*g3*xg4 1 ),
Subgroup( Group( gl, g2, g3, g4 ), [ glxg4, g2xg4 1 ),
Subgroup( Group( gl, g2, g3, g4 ), [ gixgd, g2xg3 1 ) ]

ConjugacyClassesMaximalSubgroups (see 7.80) computes the list of conjugacy classes of
maximal subgroups.

7.82 NormalSubgroups

NormalSubgroups( G )

NormalSubgroups returns a list of all normal subgroups of G. The subgroups are sorted
according to their sizes.

gap> s4 := Group( (1,2,3,4), (1,2) );; s4.name := "s4";;

gap> NormalSubgroups( s4 );

[ Subgroup( s4, [ 1 ), Subgroup( s4, [ (1,2)(3,4), (1,4)(2,3) 1),
Subgroup( s4, [ (2,3,4), (1,3,4) 1),
Subgroup( s4, [ (3,4, (1,4, (1,2,4) 1) 1

The default function GroupOps.NormalSubgroups uses the conjugacy classes of G and nor-
mal closures in order to compute the normal subgroups.

7.83 ConjugateSubgroups

ConjugateSubgroups( G, U )

ConjugateSubgroups returns the orbit of U under G acting by conjugation (see 7.20) as
list of subgroups. U and G must have a common parent group.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> s3 := Subgroup( s4, [ (1,2,3), (1,2) 1 );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2,3), (1,2) 1)
gap> ConjugateSubgroups( s4, s3 );

[ Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2,3), (1,2) 1),
Subgroup( Group( (1,2,3,4), (1,2) ), [ (2,3,4), (2,3) 1),
Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,3,4), (3,4) 1),
Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,2,4), (1,4 1) 1]

7.84 Cosets of Subgroups

The following sections describe how one can compute the right, left, and double cosets of
subgroups (see 7.85, 7.90, 7.93). Further sections describe how cosets are created (see 7.86,
7.87, 7.91, 7.92, 7.94, and 7.95), and their implementation (see 7.88, 7.89, 7.96, and 7.97).

A coset is a GAP3 domain, which is different from a group. Altough the set of elements
of a group and its trivial coset are equal, the group functions do not take trivial cosets as
arguments. A trivial coset must be convert into a group using AsGroup (see 7.10) in order
to be used as group.
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7.85 RightCosets

Cosets( G, U )
RightCosets( G, U )

Cosets and RightCosets return a list of the right cosets of the subgroup U in the group
G. The list is not sorted, i.e., the right cosets may appear in any order. The right cosets
are domains as constructed by RightCoset (see 7.86).

gap> G := Group( (1,2), (1,2,3,4) );;

gap> G.name := "G";;

gap> U := Subgroup( G, [ (1,2), (3,4) 1 );;
gap> RightCosets( G, U );

[ (Subgroup( G, [ (1,2), (3,4) 1 )*0)),
(Subgroup( G, [ (1,2), (3,4) 1 )*(2,4,3)),
(Subgroup( G, [ (1,2), (3,4) 1 )*(2,3)),
(Subgroup( G, [ (1,2), (3,4) 1 )*(1,2,4,3)),
(Subgroup( G, [ (1,2), (3,4) 1 )*(1,2,3)),
(Subgroup( G, [ (1,2), (3,4) 1 )*(1,3)(2,4)) ]

If G is the parent of U, the dispatcher RightCosets first checks whether U has a compo-
nent rightCosets. If U has this component, it returns that value. Otherwise it calls
G .operations.RightCosets(G, U), remembers the returned value in U.rightCosets
and returns it. If G is not the parent of U, RightCosets directly calls the function
G .operations.RightCosets(G, U) and returns that value.

The default function called this way is GroupOps.RightCosets, which calls Orbit( G,
RightCoset( U ), OnRight ). Look up RightCosets in the index, to see for which groups
this function is overlaid.

7.86 RightCoset

U * u

Coset( U, u )
RightCoset( U, u )
Coset( U )
RightCoset( U )

The first three forms return the right coset of the subgroup U with the representative u. u
must lie in the parent group of U, otherwise an error is signalled. In the last two forms the
right coset of U with the identity element of the parent of U as representative is returned.
In each case the right coset is returned as a domain, so all domain functions are applicable
to right cosets (see chapter 4 and 7.88).

gap> G := Group( (1,2), (1,2,3,4) );;

gap> U := Subgroup( G, [ (1,2), (3,4) 1);;

gap> U * (1,2,3);

(Subgroup( Group( (1,2), (1,2,3,4) ), [ (1,2), (3,4) 1 )*(1,2,3))

RightCosets (see 7.85) computes the set of all right cosets of a subgroup in a group.
LeftCoset (see 7.91) constructs left cosets.

RightCoset calls U.operations.RightCoset( U, u ) and returns that value.
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The default function called this way is GroupOps.RightCoset, which creates a right coset
record (see 7.89) with the operations record RightCosetGroupOps (see 7.88). Look up the
entries for RightCoset in the index to see for which groups this function is overlaid.

7.87 IsRightCoset

IsRightCoset( obj )
IsCoset( obj )

IsRightCoset and IsCoset return true if the object obj is a right coset, i.e., a record with
the component isRightCoset with value true, and false otherwise. Will signal an error
if obj is an unbound variable.

gap> C := Subgroup( Group( (1,2), (1,2,3) ), [ (1,2,3) 1) * (1,2);;
gap> IsRightCoset( C );

true

gap> D := (1,2) * Subgroup( Group( (1,2), (1,2,3) ), [ (1,2,3) 1 );;
gap> IsCoset( D );

false # note that D is a left coset record,

gap> C = D;

true # though as a set, it is of course also a right coset
gap> IsCoset( 17 );

false

7.88 Set Functions for Right Cosets

Right cosets are domains, thus all set theoretic functions are applicable to cosets (see chapter
4). The following describes the functions that are implemented especially for right cosets.
Functions not mentioned here inherit the default function mentioned in the respective sec-
tions.

More technically speaking, all right cosets of generic groups have the operations record
RightCosetGroupOps, which inherits its functions from DomainOps and overlays the com-
ponents mentioned below with more efficient functions.

In the following let C' be the coset U * .

Elements( C )

To compute the proper set of elements of a right coset C' the proper set of elements of the
subgroup U is computed, each element is multiplied by w, and the result is sorted.

IsFinite( C )
This returns the result of applying IsFinite to the subgroup U.

Size( C )
This returns the result of applying Size to the subgroup U.

¢ =D
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If ¢ and D are both right cosets of the same subgroup, = returns true if the quotient of
the representatives lies in the subgroup U, otherwise the test is delegated to DomainOps.=.

h in U

If h is an element of the parent group of U, this returns true if the quotient A / wu lies in
the subgroup U, otherwise the test is delegated to DomainOps. in.

Intersection( C, D )

If C and D are both right cosets of subgroups U and V with the same parent group the
result is a right coset of the intersection of U and V. The representative is found by a
random search for a common element. In other cases the computation of the intersection is
delegated to DomainOps.Intersection.

Random( C )

This takes a random element of the subgroup U and returns the product of this element by
the representative u.

Print( C )

A right coset C is printed as (U * u) (the parenthesis are used to avoid confusion about
the precedence, which could occur if the coset is part of a larger object).

C x

If v is an element of the parent group of the subgroup U, the result is a new right coset of
U with representative v * v. Otherwise the result is obtained by multiplying the proper
set of elements of C' with the element v, which may signal an error.

v * C

The result is obtained by multiplying the proper set of elements of the coset C' with the
element v, which may signal an error.

7.89 Right Cosets Records

A right coset is represented by a domain record with the following tag components.

isDomain
always true.

isRightCoset
always true.

The right coset is determined by the following identity components, which every right coset
record has.

group
the subgroup U of which this right coset is a right coset.
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representative
an element of the right coset. It is unspecified which element.

In addition, a right coset record may have the following optional information components.

elements
if present the proper set of elements of the coset.

isFinite
if present this is true if the coset is finite, and false if the coset is infinite. If not
present it is not known whether the coset is finite or infinite.

size
if present the size of the coset. Is ”infinity” if the coset is infinite. If not present the
size of the coset is not known.

7.90 LeftCosets

LeftCosets( G, U )

LeftCosets returns a list of the left cosets of the subgroup U in the group G. The list is
not sorted, i.e., the left cosets may appear in any order. The left cosets are domains as
constructed by LeftCosets (see 7.90).

gap> G := Group( (1,2), (1,2,3,4) );;

gap> G.name := "G";;

gap> U := Subgroup( G, [ (1,2), (3,4) 1 );;

gap> LeftCosets( G, U );

[ (O#*Subgroup( G, [ (1,2), (3,4) 1)),
((2,3,4)*Subgroup( G, [ (1,2), (3,4) 1 ),
((2,3)*Subgroup( G, [ (1,2), (3,4 1)),
((1,3,4,2)*Subgroup( G, [ (1,2), (3,4 1)),
((1,3,2)*Subgroup( G, [ (1,2), (3,4) 1)),
((1,3)(2,4)*Subgroup( G, [ (1,2), (3,4) 1 )) ]

If G is the parent of U, the dispatcher LeftCosets first checks whether U has a component
leftCosets. If U has this component, it returns that value. Otherwise LeftCosets calls
G .operations.LeftCosets(G, U), remembers the returned value in U.leftCosets and
returns it. If G is not the parent of U, LeftCosets calls G.operations.LeftCosets(G, U)
directly and returns that value.

The default function called this way is GroupOps.LeftCosets, which calls RightCosets(
G, U ) and turns each right coset U * u into the left coset -1 * U. Look up the
entries for LeftCosets in the index, to see for which groups this function is overlaid.

7.91 LeftCoset

u *x U
LeftCoset( U, u )
LeftCoset( U )

LeftCoset is exactly like RightCoset, except that it constructs left cosets instead of right
cosets. So everything that applies to RightCoset applies also to LeftCoset, with right
replaced by left (see 7.86, 7.88, 7.89).
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gap> G := Group( (1,2), (1,2,3,4) );;

gap> U := Subgroup( G, [ (1,2), (3,4) 1 );;

gap> (1,2,3) * U;

((1,2,3)*Subgroup( Group( (1,2), (1,2,3,4) ), [ (1,2), (3,4 1))

LeftCosets (see 7.90) computes the set of all left cosets of a subgroup in a group.

7.92 IsLeftCoset

IsLeftCoset( obj )

IsLeftCoset returns true if the object obj is a left coset, i.e., a record with the component
isLeftCoset with value true, and false otherwise. Will signal an error if 0bj is an unbound
variable.

gap> C := (1,2) * Subgroup( Group( (1,2), (1,2,3) ), [ (1,2,3) 1 );;
gap> IsLeftCoset( C );

true

gap> D := Subgroup( Group( (1,2), (1,2,3) ), [ (1,2,3) 1) * (1,2);;
gap> IsLeftCoset( D );

false # note that D is a right coset record,

gap> C = D;

true # though as a set, it is of course also a left coset
gap> IsLeftCoset( 17 );

false

IsRightCoset (see 7.87) tests if an object is a right coset.

7.93 DoubleCosets

DoubleCosets( G, U, V )

DoubleCosets returns a list of the double cosets of the subgroups U and V in the group
G. The three groups GG, U and V must have a common parent. The list is not sorted, i.e.,
the double cosets may appear in any order. The double cosets are domains as constructed
by DoubleCoset (see 7.94).

gap> G := Group( (1,2), (1,2,3,4) );;

gap> U := Subgroup( G, [ (1,2), (3,4) ] );; U.name := "U";;

gap> DoubleCosets( G, U, U );

[ DoubleCoset( U, (), U ), DoubleCoset( U, (2,3), U ),
DoubleCoset( U, (1,3)(2,4), U ) 1]

DoubleCosets calls GG.operations.DoubleCoset( G, U, V ) and returns that value.

The default function called this way is GroupOps.DoubleCosets, which takes random ele-
ments from G, tests if this element lies in one of the already found double cosets, adds the
double coset if this is not the case, and continues this until the sum of the sizes of the found
double cosets equals the size of G. Look up DoubleCosets in the index, to see for which
groups this function is overlaid.
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7.94 DoubleCoset

DoubleCoset( U, u, V )

DoubleCoset returns the double coset with representative u and left group U and right
group V. U and V must have a common parent and v must lie in this parent, otherwise
an error is signaled. Double cosets are domains, so all domain function are applicable to
double cosets (see chapter 4 and 7.96).

gap> G := Group( (1,2), (1,2,3,4) );;

gap> U := Subgroup( G, [ (1,2), (3,4) 1 );;

gap> D := DoubleCoset( U, (1,2,3), U );

DoubleCoset ( Subgroup( Group( (1,2), (1,2,3,4) ), [ (1,2), (3,4) 1),
(1,2,3), Subgroup( Group( (1,2), (1,2,3,4) ), [ (1,2), (3,4 1))
gap> Size( D );

16

DoubleCosets (see 7.93) computes the set of all double cosets of two subgroups in a group.
DoubleCoset calls U .operations.DoubleCoset(U,u, V) and returns that value.

The default function called this way is GroupOps.DoubleCoset, which creates a double
coset record (see 7.97) with the operations record DoubleCosetGroupOps (see 7.96). Look
up DoubleCosets in the index to see for which groups this function is overlaid.

7.95 IsDoubleCoset

IsDoubleCoset( 0bj )

IsDoubleCoset returns true if the object obj is a double coset, i.e., a record with the
component isDoubleCoset with value true, and false otherwise. Will signal an error if
obj is an unbound variable.

gap> G := Group( (1,2), (1,2,3,4) );;

gap> U := Subgroup( G, [ (1,2), (3,4) 1);;

gap> D := DoubleCoset( U, (1,2,3), U );;

gap> IsDoubleCoset( D );

true

7.96 Set Functions for Double Cosets

Double cosets are domains, thus all set theoretic functions are applicable to double cosets
(see chapter 4). The following describes the functions that are implemented especially for
double cosets. Functions not mentioned here inherit the default functions mentioned in the
respective sections.

More technically speaking, double cosets of generic groups have the operations record
DoubleCosetGroupOps, which inherits its functions from DomainOps and overlays the com-
ponents mentioned below with more efficient functions.

Most functions below use the component D .rightCosets that contains a list of right cosets
of the left group U whose union is this double coset. If this component is unbound they will
compute it by computing the orbit of the right group V on the right coset U * wu, where u
is the representative of the double coset (see 7.97).
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Elements( D )

To compute the proper set of elements the union of the right cosets D.rightCosets is
computed.

IsFinite( D )
This returns the result of IsFinite( U ) and IsFinite( V ).

Size( D )

This returns the size of the left group U times the number of cosets in D.rightCosets.

C =D

If C and D are both double cosets with the same left and right groups this returns the result
of testing whether the representative of C' lies in D. In other cases the test is delegated to
DomainOps.=.

g in D
If g is an element of the parent group of the left and right group of D, this returns true if

g lies in one of the right cosets in D.rightCosets. In other cases the the test is delegated
to DomainOps. in.

Intersection( C, D )

If ¢ and D are both double cosets that are equal, this returns C. If C' and D are both
double cosets with the same left and right groups that are not equal, this returns [1. In all
other cases the computation is delegated to DomainsOps.Intersection.

Random( D )

This takes a random right coset from D.rightCosets and returns the result of applying
Random to this right coset.

Print( D )
This prints the double coset in the form DoubleCoset( U, u, V ).

D * g
g * D

Those returns the result of multiplying the proper set of element of D with the element g,
which may signal an error.

7.97 Double Coset Records

A double coset is represented by a domain record with the following tag components.
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isDomain
always true.

isDoubleCoset
always true.

The double coset is determined by the following identity components, which every double
coset must have.

leftGroup
the left subgroup U.

rightGroup
the right subgroup V.

representative
an element of the double coset. It is unspecified which element.

In addition, a double coset record may have the following optional information components.

rightCosets
a list of disjoint right cosets of the left subgroup U, whose union is the double coset.

elements
if present the proper set of elements of the double coset.

isFinite
if present this is true if the double coset is finite and false if the double coset is
infinite. If not present it is not known whether the double coset is finite or infinite.

size
if present the size of the double coset. Is ”infinity” if the coset is infinite. If not
present the size of the double coset is not known.

)

7.98 Group Constructions

The following functions construct new parent groups from given groups (see 7.99, 7.101,
7.103 and 7.104).

7.99 DirectProduct

DirectProduct( Gy, ..., G, )

DirectProduct returns a group record of the direct product D of the groups Gy, ...., G,
which need not to have a common parent group, it is even possible to construct the direct
product of an ag group with a permutation group.

Note that the elements of the direct product may be just represented as records. But more
complicate constructions, as for instance installing a new collector, may be used. The choice
of method strongly depends on the type of group arguments.

Embedding( U, D, i)

Let U be a subgroup of G;. Embedding returns a homomorphism of U into D which
describes the embedding of U in D.
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Projection( D, U, i )

Let U be a supergroup of G;. Projection returns a homomorphism of D into U which
describes the projection of D onto G;.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> S4 := AgGroup( s4 );

Group( g1, g2, g3, g4 )

gap> D := DirectProduct( s4, S4 );

Group( DirectProductElement (

(1,2,3,4), IdAgWord ), DirectProductElement (
(1,2), IdAgWord ), DirectProductElement( (),
gl ), DirectProductElement( (), g2 ), DirectProductElement( (),
g3 ), DirectProductElement( (), g4 ) )

gap> pr := Projection( D, s4, 1 );;

gap> Image( pr );

Group( (1,2,3,4), (1,2) )

7.100 DirectProduct for Groups

GroupOps.DirectProduct( L )

Let L be a list of groups G1,...,G,. Then a group element g of the direct product D is
represented as record containing the following components.

element
alist g1 € Gy, ..., gn € G, describing g.

domain
contains GroupElements.

isGroupElement
contains true.

isDirectProductElement
contains true.

operations
contains the operations record DirectProductElementOps (see 4.5).

7.101 SemidirectProduct

SemidirectProduct( G, a, H )

SemidirectProduct returns the semidirect product of G with H. a must be a homomor-
phism that from G onto a group A that operates on H via the caret (*) operator. A may
either be a subgroup of the parent group of H that normalizes H, or a subgroup of the
automorphism group of H, i.e., a group of automorphisms (see 7.106).

The semidirect product of G and H is a the group of pairs (g,h) with g € G and h € H,

a

where the product of (gi,h1)(ge, k) is defined as (g1g2, hi*hs). Note that the elements
(1g, h) form a normal subgroup in the semidirect product.
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Embedding( U, S, 1)

Let U be a subgroup of (. Embedding returns the homomorphism of U into the semidirect
product S where u is mapped to (u,1).

Embedding( U, S, 2 )

Let U be a subgroup of H. Embedding returns the homomorphism of U into the semidirect
product S where w is mapped to (1,u).

Projection( S, G, 1)
Projection returns the homomorphism of S onto G, where (g,h) is mapped to g.
Projection( S, H, 2 )
Projection returns the homomorphism of S onto H, where (g,h) is mapped to h.

It is not specified how the elements of the semidirect product are represented. Thus
Embedding and Projection are the only general possibility to relate G and H with the
semidirect product.

gap> s4 := Group( (1,2), (1,2,3,4) );; s4.name := "s4";;

gap> 83 := Subgroup( s4, [ (1,2), (1,2,3) 1 );; s3.name := "s3";;
gap> a4 := Subgroup( s4, [ (1,2,3), (2,3,4) 1 );; ad.name := "a4d";;
gap> a := IdentityMapping( s3 );;

gap> s := SemidirectProduct( s3, a, a4 );

Group( SemidirectProductElement( (1,2),

(1,2), OO ), SemidirectProductElement( (1,2,3),

(1,2,3), O ), SemidirectProductElement( (), (),
(1,2,3) ), SemidirectProductElement( (), (O, (2,3,4) ) )
gap> Size( s );

72

Note that the three arguments of SemidirectProductElement are the element g, its image
under a, and the element h.

SemidirectProduct calls the function G.operations.SemidirectProduct with the argu-
ments G, a, and H, and returns the result.

The default function called this way is GroupOps.SemidirectProduct. This function con-
structs the semidirect product as a group of semidirect product elements (see 7.102). Look
in the index under SemidirectProduct to see for which groups this function is overlaid.

7.102 SemidirectProduct for Groups

The function GroupOps.SemidirectProduct constructs the semidirect product as a group
of semidirect product elements. In the following let G, a, and H be the arguments of
SemidirectProduct.
Each such element (g,h) is represented by a record with the following components.
element

thelist [ g, h 1].
automorphism

contains the image of g under a.
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isGroupElement
always true.
isSemidirectProductElement
always true.
domain
contains GroupElements.

operations
contains the operations record SemidirectProductOps.

The operations of semidirect product elements in done in the obvious way.

7.103 SubdirectProduct

SubdirectProduct( GI1, G2, hl, h2 )

SubdirectProduct returns the subdirect product of the groups GI and G2. hi and h2
must be homomorphisms from G1 and G2 into a common group H.

The subdirect product of G; and Gs is the subgroup of the direct product of G; and G2 of
those elements (g1, g2) with ¢! = gh2. This subgroup is generated by the elements (gy, Zg,),
where 91 loops over the generators of G1 and x4, € Gy is an arbitrary element such that
g? = m 2 together with the element (1, k2) where ko loops over the generators of the
kernel Of hg

Projection( S, GI, 1)
Projection returns the projection of S onto G1, where (g1 ,¢2) is mapped to gI.
Projection( S, G2, 2 )
Projection returns the projection of S onto G2, where (g1 ,¢2) is mapped to g2.

It is not specified how the elements of the subdirect product are represented. Therefor
Projection is the only general possibility to relate G1 and G2 with the subdirect product.

gap> s3 := Group( (1,2,3), (1,2) );;

gap> c3 := Subgroup( s3, [ (1,2,3) 1 );;

gap> x1 := Operation( s3, Cosets( s3, c3 ), OnRight );;
gap> hl := OperationHomomorphism( s3, x1 );;

gap> d8 := Group( (1,2,3,4), (2,4) );;

gap> c4 := Subgroup( 48, [ (1,2,3,4) 1 );;

gap> x2 := Operation( d8, Cosets( d8, c4 ), OnRight );;
gap> h2 := OperationHomomorphism( d8, x2 );;

gap> s := SubdirectProduct( s3, d8, hl, h2 );

Group( (1,2,3), (1,2)(5,7), (4,5,6,7) )

gap> Size( s );

24

SubdirectProduct calls the function GI.operations.SubdirectProduct with the argu-
ments G1, G2, h1, and h2.

The default function called this way is GroupOps.SubdirectProduct. This function con-
structs the subdirect product as a subgroup of the direct product. The generators for this
subgroup are computed as described above.
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7.104 WreathProduct

WreathProduct( G, H )
WreathProduct( G, H, « )

In the first form of WreathProduct the right regular permutation representation of H on its
elements is used as the homomorphism «. In the second form a must be a homomorphism
of H into a permutation group. Let d be the degree of the range of . Then WreathProduct
returns the wreath product of G by H with respect to «, that is the semi-direct product of
the direct product of d copies of G which are permuted by H through application of « to
H.

gap> s3 := Group( (1,2,3), (1,2) );

Group( (1,2,3), (1,2) )

gap> z2 := CyclicGroup( AgWords, 2 );

Group( c2 )

gap> f := IdentityMapping( s3 );

IdentityMapping( Group( (1,2,3), (1,2) ) )

gap> w := WreathProduct( z2, s3, f );

Group( WreathProductElement (

c2, IdAgWord, IdAgWord, (), () ), WreathProductElement( IdAgWord,
c2, IdAgWord, (O, () ), WreathProductElement( IdAgWord, IdAgWord,
c2, O, O ), WreathProductElement( IdAgWord, IdAgWord, IdAgWord,
(1,2,3),

(1,2,3) ), WreathProductElement( IdAgWord, IdAgWord, IdAgWord, (1,2),
(1,2) ) )

gap> Factors( Size( w ) );

[2, 2,2, 2, 3]

7.105 WreathProduct for Groups

GroupOps.WreathProduct( G, H, « )

Let d be the degree of a..range. A group element of the wreath product W is represented
as a record containing the following components.

element
a list of d elements of G followed by an element h of H.

permutation
the image of A under a.

domain
contains GroupElements.

isGroupElement
contains true.

isWreathProductElement
contains true.

operations
contains the operations record WreathProductElementOps (see 4.5).
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7.106 Group Homomorphisms

Since groups is probably the most important category of domains in GAP3 group homomor-
phisms are probably the most important homomorphisms (see chapter 44)

A group homomorphism ¢ is a mapping that maps each element of a group G, called
the source of ¢, to an element of another group H, called the range of ¢, such that for each
pair z,y € G we have (y)? = 2%y®.

Examples of group homomorphisms are the natural homomorphism of a group into a factor
group (see 7.110) and the homomorphism of a group into a symmetric group defined by an
operation (see 8.21). Look under group homomorphisms in the index for a list of all
available group homomorphisms.

Since group homomorphisms are just a special case of homomorphisms, all functions de-
scribed in chapter 44 are applicable to all group homomorphisms, e.g., the function to test
if a homomorphism is an automorphism (see 44.6). More general, since group homomor-
phisms are just a special case of mappings all functions described in chapter 43 are also
applicable, e.g., the function to compute the image of an element under a group homomor-
phism (see 43.8).

The following sections describe the functions that test whether a mapping is a group ho-
momorphism (see 7.107), compute the kernel of a group homomorphism (see 7.108), how
the general mapping functions are implemented for group homomorphisms (see 7.109), the
natural homomorphism of a group onto a factor group (see 7.110), homomorphisms by con-
jugation (see 7.111, 7.112), and the most general group homomorphism, which is defined by
simply specifying the images of a set of generators (see 7.113).

7.107 IsGroupHomomorphism

IsGroupHomomorphism( map )

IsGroupHomomorphism returns true if the function map is a group homomorphism and
false otherwise. Signals an error if map is a multi value mapping.

A mapping map is a group homomorphism if its source G and range H are both groups and
if for every pair of elements x,y € G it holds that (xy)™?? = g™Py™meP,

gap> s4 := Group( (1,2), (1,2,3,4) );;

gap> v4 := Subgroup( s4, [ (1,2)(3,4), (1,3)(2,4) 1 );;
gap> phi := NaturalHomomorphism( s4, s4/v4 );;

gap> IsGroupHomomorphism( phi ) ;

true
gap> IsHomomorphism( phi );
true # since the source is a group this is equivalent to the above

gap> IsGroupHomomorphism( FrobeniusAutomorphism( GF(16) ) );
false # it is a field automorphism

IsGroupHomomorphism first tests if the flag map.isGroupHomomorphism is bound. If the
flag is bound, IsGroupHomomorphism returns its value. Otherwise it calls

map . source.operations.IsGroupHomomorphism( map ), remembers the returned value
in map . isGroupHomomorphism, and returns it. Note that of course all functions that create
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group homomorphisms set the flag map . isGroupHomomorphism to true, so that no function
is called for those group homomorphisms.

The default function called this way is MappingOps.IsGroupHomomorphism. It computes
all the elements of the source of map and for each such element = and each generator y
tests whether (xy)™ = gm*y™  Look under IsHomomorphism in the index to see
for which mappings this function is overlaid.

7.108 KernelGroupHomomorphism

KernelGroupHomomorphism( hom )

KernelGroupHomomorphism returns the kernel of the group homomorphism hom as a sub-
group of the group hom.source.

The kernel of a group homomorphism hom is the subset of elements x of the source G that
are mapped to the identity of the range H, i.e., "°™ = H.identity.

gap> s4 := Group( (1,2), (1,2,3,4) );;

gap> v4 := Subgroup( s4, [ (1,2)(3,4), (1,3)(2,4) 1 );;

gap> phi := NaturalHomomorphism( s4, s4/v4 );;

gap> KernelGroupHomomorphism( phi );

Subgroup( Group( (1,2), (1,2,3,4) ), [ (1,2)(3,4), (1,3)(2,4) 1)

gap> Kernel( phi );

Subgroup( Group( (1,2), (1,2,3,4) ), [ (1,2)(3,4), (1,3)(2,4) 1)
# since the source is a group this is equivalent to the above

gap> rho := GroupHomomorphismByImages( s4, Group( (1,2) ),

> [ (1,2, (1,2,3,4 1, [ (1,2), (1,2) 1 );;

gap> Kernel( rho );

Subgroup( Group( (1,2), (1,2,3,4) ), [ (2,4,3), (1,4,3) 1)

KernelGroupHomomorphism first tests if hom .kernelGroupHomomorphism is bound. If it is
bound, KernelGroupHomomorphisms returns that value. Otherwise it calls

hom .operations.KernelGroupHomomorphism( hom ), remembers the returned value in
hom .kernelGroupHomomorphism, and returns it.

The default function for this is Mapping0Ops .KernelGroupHomomorphism, which simply tries
random elements of the source of hom, until the subgroup generated by those that map
to the identity has the correct size, i.e., Size( hom.source ) / Size( Image( hom ) ).
Note that this implies that the image of hom and its size are computed. Look under Kernel
in the index to see for which group homomorphisms this function is overlaid.

7.109 Mapping Functions for Group Homomorphisms

This section describes how the mapping functions defined in chapter 43 are implemented
for group homomorphisms. Those functions not mentioned here are implemented by the
default functions described in the respective sections.

IsInjective( hom )

The group homomorphism hom is injective if the kernel of hom KernelGroupHomomorphism(
hom ) (see 7.108) is trivial.
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IsSurjective( hom )

The group homomorphism hom is surjective if the size of the image Size( Image( hom )
) (see 43.8 and below) is equal to the size of the range Size( hom.range ).

homl = hom?2

The two group homomorphisms hom1 and hom2 are equal if the have the same source and
range and if the images of the generators of the source under hom1 and hom2 are equal.

hom! < hom?2

By definition hom1 is smaller than hom2 if either the source of hom is smaller than the
source of hom2, or, if the sources are equal, if the range of hom is smaller than the range
of hom2, or, if sources and ranges are equal, the image of the smallest element z of the
source for that the images are not equal under hom1 is smaller than the image under hom?2.
Therefor GroupHomomorphismOps.< first compares the sources and the ranges. For group
homomorphisms with equal sources and ranges only the images of the smallest irredundant
generating system are compared. A generating system g1, g, ..., gn is called irredundant if
no g; lies in the subgroup generated by g¢i,...,g9;_1. The smallest irredundant generating
system is simply the smallest such generating system with respect to the lexicographical
ordering.

Image( hom )
Image( hom, H )
Images( hom, H )

The image of a subgroup under a group homomorphism is computed by computing the
images of a set of generators of the subgroup, and the result is the subgroup generated by
those images.

PreImages( hom, elm )

The preimages of an element under a group homomorphism are computed by computing a
representative with PreImagesRepresentative( hom, elm ) and the result is the coset
of Kernel( hom ) containing this representative.

PreImage( hom )
PreImage( hom, H )
PreImages( hom, H )

The preimages of a subgroup under a group homomorphism are computed by computing
representatives of the preimages of all the generators of the subgroup, adding the generators
of the kernel of hom, and the result is the subgroup generated by those elements.

Look under IsInjective, IsSurjective, equality, ordering, Image, Images, PreImage,
and PreImages in the index to see for which group homomorphisms these functions are
overlaid.
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7.110 NaturalHomomorphism

NaturalHomomorphism( G, F )

NaturalHomomorphism returns the natural homomorphism of the group G into the factor
group F. F must be a factor group, i.e., the result of FactorGroup(H ,N) (see 7.33) or
H/N (see 7.117), and G must be a subgroup of H.

Mathematically the factor group H/N consists of the cosets of N, and the natural homomor-
phism ¢ maps each element h of H to the coset Nh. Note that in GAP3 the representation
of factor group elements is unspecified, but they are never cosets (see 7.87), because cosets
are domains and not group elements in GAP3. Thus the natural homomorphism is the only
connection between a group and one of its factorgroups.

G is the source of the natural homomorphism ¢, F' is its range. Note that because G may be
a proper subgroup of the group H of which F' is a factor group ¢ need not be surjective, i.e.,
the image of ¢ may be a proper subgroup of F'. The kernel of ¢ is of course the intersection
of N and G.

gap> s4 := Group( (1,2), (1,2,3,4) );;

gap> v4 := Subgroup( s4, [ (1,2)(3,4), (1,3)(2,4) 1 );;
gap> v4.name := "v4";;

gap> phi := NaturalHomomorphism( s4, s4/v4d );;

gap> (1,2,3) ~ phi;

FactorGroupElement ( v4, (2,4,3) )

gap> PreImages( phi, last );

(v4*(2,4,3))

gap> (1,2,3) in last;

true

gap> rho :=

> NaturalHomomorphism( Subgroup( s4, [ (1,2), (1,2,3) 1 ), s4/vd );;
gap> Kernel( rho );

Subgroup( Group( (1,2), (1,2,3,4) ), [ 1)

gap> IsIsomorphism( rho );

true

NaturalHomomorphism calls
F .operations.NaturalHomomorphism( G, F ) and returns that value.

The default function called this way is GroupOps.NaturalHomomorphism. The homomor-
phism constructed this way has the operations record NaturalHomomorphismOps. It com-
putes the image of an element g of G by calling FactorGroupElement( N, ¢ ), the preim-
ages of an factor group element f as Coset( Kernel(phi), f.element.representative
), and the kernel by computing Intersection( G, N ). Look under NaturalHomo-
morphism in the index to see for which groups this function is overlaid.

7.111 ConjugationGroupHomomorphism

ConjugationGroupHomomorphism( G, H, z )

ConjugationGroupHomomorphism returns the homomorphism from G into H that takes
each element g in G to the element ¢ ~ z. G and H must have a common parent group P
and z must lie in this parent group. Of course G ~ z must be a subgroup of H.
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gap> d12 := Group( (1,2,3,4,5,6), (2,6)(3,5) );; dl2.name := "d12";;
gap> c2 := Subgroup( d12, [ (2,6)(3,5) 1 );

Subgroup( d12, [ (2,6)(3,5) 1)

gap> v4 := Subgroup( d12, [ (1,2)(3,6)(4,5), (1,4)(2,5)(3,6) 1 );
Subgroup( d12, [ (1,2)(3,6)(4,5), (1,4)(2,5)(3,6) 1 )

gap> x := ConjugationGroupHomomorphism( c2, v4, (1,3,5)(2,4,6) );
ConjugationGroupHomomorphism( Subgroup( d12,

[ (2,6)(3,5) 1 ), Subgroup( d12, [ (1,2)(3,6)(4,5), (1,4)(2,5)(3,6)
1), (1,3,56)(2,4,6) )

gap> IsSurjective( x );

false

gap> Image( x );

Subgroup( d12, [ (1,5)(2,4) 1)

ConjugationGroupHomomorphism calls
G .operations.ConjugationGroupHomomorphism( G, H, z ) and returns that value.

The default function called is GroupOps.ConjugationGroupHomomorphism. It just creates
a homomorphism record with range G, source H, and the component element with the
value z. It computes the image of an element g of G as g ~ z. If the sizes of the range
and the source are equal the inverse of such a homomorphism is computed as a conjugation
homomorphism from H to G by z~-1. To multiply two such homomorphisms their elements
are multiplied. Look under ConjugationGroupHomomorphism in the index to see for
which groups this default function is overlaid.

7.112 InnerAutomorphism

InnerAutomorphism( G, g )

InnerAutomorphism returns the automorphism on the group G that takes each element h
to h ~ g. g must be an element in the parent group of G (but need not actually be in G)
that normalizes G.

gap> s5 := Group( (1,2), (1,2,3,4,5) );; s5.name := "s5";;

gap> i := InnerAutomorphism( s5, (1,2) );

InnerAutomorphism( s5, (1,2) )

gap> (1,2,3,4,5) ~ i;

(1,3,4,5,2)
InnerAutomorphism( G, g ) calls ConjugationGroupHomomorphism( G, G, g ) (see
7.111).

7.113 GroupHomomorphismBylImages

GroupHomomorphismByImages( G, H, gens, imgs )

GroupHomomorphismByImages returns the group homomorphism with source G and range
H that is defined by mapping the list gens of generators of G to the list imgs of images in
H.

gap> g := Group( (1,2,3,4), (1,2) );;
gap> h := Group( (2,3), (1,2) );;
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gap> m := GroupHomomorphismByImages(g,h,g.generators,h.generators);
GroupHomomorphismByImages( Group( (1,2,3,4), (1,2) ), Group( (2,3),
(1,2) ), [ (1,2,3,4), (1,2) 1, [ (2,3, (1,20 1)

gap> Image( m, (1,3,4) );

(1,3,2)

gap> Kernel( m );

Subgroup( Group( (1,2,3,4), (1,2) ), [ (1,4)(2,3), (1,2)(3,4) 1)

Note that the result need not always be a single value mapping, even though the name
seems to imply this. Namely if the elements in imgs do not satisfy all relations that hold
for the generators gens, no element of G has a unique image under the mapping. This is
demonstrated in the following example.

gap> g := Group( (1,2,3,4,5,6,7,8,9,10) );;
gap> h := Group( (1,2,3,4,5,6) );;
gap> m := GroupHomomorphismByImages(g,h,g.generators,h.generators);
GroupHomomorphismByImages( Group( ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10
) ), Group( (1,2,3,4,5,6) ), [ (1, 2, 3, 4, 5, 6, 7, 8, 9,10) 1],
[ (1,2,3,4,5,6) 1)
gap> IsMapping( m );
false
gap> Images( m, () );
(Subgroup( Group( (1,2,3,4,5,6) ), [ (1, 3, 5)( 2, 4, 6) 1 )*x0)
gap> g.1710;
O # the generator of g satisfies this relation
gap> h.1710;
(1,5,3)(2,6,4) # but its image does not

The set of images of the identity returned by Images is the set of elements h.1"n such that
g.17n is the identity in g.

The test whether a mapping constructed by GroupHomomorphismByImages is a single valued
mapping, is usually quite expensive. Note that this test is automatically performed the
first time that you apply a function that expects a single valued mapping, e.g., Image or
Images. There are two possibilities to avoid this test. When you know that the mapping
constructed is really a single valued mapping, you can set the flag map . isMapping to true.
Then the functions assume that map is indeed a mapping and do not test it again. On
the other hand if you are not certain whether the mapping is single valued, you can use
ImagesRepresentative instead of Image (see 43.10). ImagesRepresentative returns just
one possible image, without testing whether there might actually be more than one possible
image.

GroupHomomorphismByImages calls

G .operations.GroupHomomorphismByImages( G, H, gens, imgs )

and returns this value.

The default function called this way is GroupOps . GroupHomomorphismByImages. Below we
describe how the mapping functions are implemented for such a mapping. The functions
not mentioned below are implemented by the default functions described in 7.109.

All the function below first compute the list of elements of G with an orbit algorithm, sorts
this list, and stores this list in hom.elements. In parallel they computes and sort a list of
images, and store this list in hom .images.
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IsMapping( map )

The mapping constructed by GroupHomomorphismByImages is a single valued mapping if for
each ¢ and for each k the following equation holds

map . images [Position(map.elements, map.elements [i]*gens[k])]

= map.images[:] * imgs[k].

Image( map, elm )

If the mapping map is a single valued mapping, the image of an element elm is computed
as map .images[ Position(map.elements,elm) 1.

ImagesRepresentative( map, elm )

The representative of the images of an element elm under the mapping map is computed as
map .images[ Position(map.elements,elm) ].

InverseMapping( map )

The inverse of the mapping map is constructed as GroupHomomorphismByImages( H, G,
mgs, gens ).

CompositionMapping( mapl, map2 )
If map2 is a mapping constructed by GroupHomomorphismByImages the composition is con-

structed by making a copy of map2 and replacing every element in map2 . images with its
image under map1.

Look under GroupHomomorphismByImages in the index to see for which groups this
function is overlaid.

7.114 Set Functions for Groups

As already mentioned in the introduction of the chapter, groups are domains. Thus all set
theoretic functions, for example Intersection and Size can be applied to groups. This and
the following sections give further comments on the definition and implementations of those
functions for groups. All set theoretic functions not mentioned here not treated specially
for groups. The last section describes the format of the records that describe groups (see
7.118).

Elements( G )

The elements of a group G are constructed using a Dimino algorithm. See 7.115.

IsSubset( G, H )

If G and H are groups then IsSubset tests whether the generators of H are elements of G.
Otherwise DomainOps.IsSubset is used.

Intersection( G, H )

The intersection of groups G and H is computed using an orbit algorithm. See 7.116.
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7.115 Elements for Groups

GroupOps.Elements( G )

GroupOps.Elements returns the sets of elements of G (see 4.6). The function starts with the
trivial subgroup of G, for which the set of elements is known and constructs the successive
closures with the generators of G using GroupOps.Closure (see 7.18).

Note that this function neither checks nor sets the record component G.elements. It
recomputes the set of elements even it is bound to G.elements.
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7.116 Intersection for Groups

GroupOps.Intersection( G, H )

GroupOps. Intersection returns the intersection of G and H either as set of elements or
as a group record (see 4.12).

If one argument, say G, is a set and the other a group, say H, then GroupOps. Intersection
returns the subset of elements of G which lie in H.

If G and H have different parent groups then GroupOps.Intersection uses the function
DomainOps.Intersection in order to compute the intersection.

Otherwise GroupOps . Intersection computes the stabilizer of the trivial coset of the bigger
group in the smaller group using Stabilizer and Coset.

7.117 Operations for Groups

G "~ s
The operator ~ evaluates to the subgroup conjugate to G under a group element s of the
parent group of G. See 7.20.

gap> s4 := Group( (1,2,3,4), (1,2) );

Group( (1,2,3,4), (1,2) )

gap> s4.name := "s4";;

gap> v4 := Subgroup( s4, [ (1,2), (1,2)(3,4) 1 );
Subgroup( s4, [ (1,2), (1,2)(3,4) 1)

gap> v4 - (2,3);

Subgroup( s4, [ (1,3), (1,3)(2,4) 1)

gap> v4 ~ (2,5);

Error, <g> must be an element of the parent group of <G>

s in G
The operator in evaluates to true if s is an element of G and false otherwise. s must be
an element of the parent group of G.

gap> (1,2,3,4) in v4;
false

gap> (2,4) in v4°(2,3);
true

G *x s

The operator * evaluates to the right coset of G with representative s. s must be an element
of the parent group of G. See 7.86 for details about right cosets.

s *x G

The operator * evaluates to the left coset of G with representative s. s must be an element
of the parent group of G. See 7.91 for details about left cosets.
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gap> v4 * (1,2,3,4);

(Subgroup( s4, [ (1,2), (1,2)(3,4) 1 )*(1,2,3))
gap> (1,2,3,4) * v4;

((1,2,3,4)*Subgroup( s4, [ (1,2), (1,2)(3,4) 1))

G/ N

The operator / evaluates to the factor group G/N where N must be a normal subgroup of
G. This is the same as FactorGroup(G,N) (see 7.33).

7.118 Group Records

As for all domains (see 4 and 4.1) groups and their subgroups are represented by records
that contain important information about groups. Most of the following functions return
such records. Of course it is possible to create a group record by hand but generally Group
(see 7.9) and Subgroup (see 7.12) should be used for such tasks.

Once a group record is created you may add record components to it but you must not alter
informations already present, especially not generators and identity.

Group records must always contain the components generators, identity, isDomain and
isGroup. Subgroups contain an additional component parent. The contents of all compo-
nents of a group G are described below.

The following two components are the so-called category components used to identify
the category this domain belongs to.

isDomain
is always true as a group is a domain.

isGroup
is of course true as G is a group.

The following three components determine a group domain. These are the so-called iden-
tification components.

generators
is a list group generators. Duplicate generators are allowed but none of the generators
may be the group identity. The group G is the trivial group if and only if generators
is the empty list. Note that once created this entry must never be changed, as most
of the other entries depend on generators.

identity
is the group identity of G.
parent

if present this contains the group record of the parent group of a subgroup G, other-
wise G itself is a parent group.

The following components are optional and contain knowledge about the group G.

abelianlInvariants
a list of integers containing the abelian invariants of an abelian group G.

centralizer
contains the centralizer of G in its parent group.
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centre
contains the centre of G. See 7.17.

commutatorFactorGroup
contains the commutator factor group of G. See 7.35 for details.

conjugacyClasses
contains a list of the conjugacy classes of G. See 7.68 for details.

core
contains the core of G under the action of its parent group. See 7.21 for details.
derivedSubgroup
contains the derived subgroup of G. See 7.22.
elements
is the set of all elements of G. See 4.6.
fittingSubgroup
contains the Fitting subgroup of G. See 7.23.
frattiniSubgroup
contains the Frattini subgroup of G. See 7.24.
index
contains the index of G in its parent group. See 7.51.
lowerCentralSeries
contains the lower central series of G as list of subgroups. See 7.41.
normalizer
contains the normalizer of G in its parent group. See 7.27 for details.
normalClosure
contains the normal closure of G in its parent group. See 7.25 for details.
upperCentralSeries
contains the upper central series of G as list of subgroups. See 7.44.
subnormalSeries
contains a subnormal series from the parent of G down to GG. See 7.43 for details.
sylowSubgroups
contains a list of Sylow subgroups of G. See 7.31 for details.
size
is either an integer containing the size of a finite group or the string “infinity” if the
group is infinite. See 4.10.
perfectSubgroups
contains the a list of subgroups which includes at least one representative of each
class of conjugate proper perfect subgroups of G. See 7.75.
lattice

contains the subgroup lattice of G. See 7.75.

conjugacyClassesSubgroups
identical to the list G.lattice.classes, contains the conjugacy classes of subgroups
of G. See 7.74.
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tableOfMarks
contains the table of narks of GG. See 48.4.

The following components are true if the group G has the property, false if not, and are
not present if it is unknown whether the group has the property or not.

isAbelian
is true if the group G is abelian. See 7.52.

isCentral
is true if the group G is central in its parent group. See 7.53.
isCyclic
is true if the group G is cyclic. See 7.55.
isElementaryAbelian
is true if the group G is elementary abelian. See 7.56.
isFinite
is true if the group G is finite. If you know that a group for which you want to

use the generic low level group functions is infinite, you should set this component to
false. This will avoid attempts to compute the set of elements.

isNilpotent
is true if the group G is nilpotent. See 7.57.

isNormal
is true if the group G is normal in its parent group. See 7.58.

isPerfect
is true if the group G is perfect. See 7.59.

isSimple
is true if the group G is simple. See 7.60.

isSolvable
is true if the group G is solvable. See 7.61.

isSubnormal
is true if the group G is subnormal in its parent group. See 7.63.

The component operations contains the operations record (see 4.1 and 4.2).



Chapter 8

Operations of Groups

One of the most important tools in group theory is the operation or action of a group on
a certain set.

We say that a group G operates on a set D if we have a function that takes each d € D
and each g € G to another element d9 € D, which we call the image of d under g, such that
dientity = d and (d9)" = d9" for each d € D and g,h € G.

This is equivalent to saying that an operation is a homomorphism of the group G into the
full symmetric group on D. We usually call D the domain of the operation and its elements
points.

An example of the usage of the functions in this package can be found in the introduction
to GAP3 (see 1.19).

In GAP3 group elements usually operate through the power operator, which is denoted by
the caret ~. It is possible however to specify other operations (see 8.1).

First this chapter describes the functions that take a single element of the group and compute
cycles of this group element and related information (see 8.2, 8.3, 8.4, and 8.5), and the
function that describes how a group element operates by a permutation that operates the
same way on [1..n] (see 8.8).

Next come the functions that test whether an orbit has minimal or maximal length and
related functions (see 8.9, 8.10, 8.11, 8.12, and 8.13).

Next this chapter describes the functions that take a group and compute orbits of this group
and related information (see 8.16, 8.17, 8.18, and 8.19).

Next are the functions that compute the permutation group P that operates on [ 1 ..
Length(D) ] in the same way that G operates on D, and the corresponding homomorphism
from G to P (see 8.20, 8.21).

Next is the functions that compute block systems, i.e., partitions of D such that G operates
on the sets of the partition (see 8.22), and the function that tests whether D has such a
nontrivial partitioning under the operation of G (see 8.23).

Finally come the functions that relate an orbit of G on D with the subgroup of G that fixes
the first point in the orbit (see 8.24), and the cosets of this subgroup in G (see 8.25 and
8.26).

All functions described in this chapter are in LIBNAME/"operatio.g".

333
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8.1 Other Operations

The functions in the operation package generally compute with the operation of group
elements defined by the canonical operation that is denoted with the caret (*) in GAPS3.
However they also allow you to specify other operations. Such operations are specified by
functions, which are accepted as optional argument by all the operations package functions.

This function must accept two arguments. The first argument will be the point and the
second will be the group element. The function must return the image of the point under
the group element.

As an example, the function OnPairs that specifies the operation on pairs could be defined
as follows
OnPairs := function ( pair, g )
return [ pair[1] ~ g, pair[2] "~ g ];
end;

The following operations are predefined.

OnPoints
specifies the canonical default operation. Passing this function is equivalent to speci-
fying no operation. This function exists because there are places where the operation
in not an option.

OnPairs
specifies the componentwise operation of group elements on pairs of points, which are
represented by lists of length 2.

OnTuples
specifies the componentwise operation of group elements on tuples of points, which
are represented by lists. OnPairs is the special case of OnTuples for tuples with two
elements.

OnSets
specifies the operation of group elements on sets of points, which are represented by
sorted lists of points without duplicates (see 28).

OnRight
specifies that group elements operate by multiplication from the right.

OnLeftInverse
specifies that group elements operate by multiplication by their inverses from the left.
This is an operation, unlike OnLeftAntiOperation (see below).

OnRightCosets
specifies that group elements operate by multiplication from the right on sets of
points, which are represented by sorted lists of points without duplicates (see 28).

OnLeftCosets
specifies that group elements operate by multiplication from the left on sets of points,
which are represented by sorted lists of points without duplicates (see 28).

OnLines
specifies that group elements, which must be matrices, operate on lines, which are
represented by vectors with first nonzero coefficient one. That is, OnLines multiplies
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the vector by the group element and then divides the vector by the first nonzero
coefficient.

Note that it is your responsibility to make sure that the elements of the domain D on which
you are operating are already in normal form. The reason is that all functions will compare
points using the = operation. For example, if you are operating on sets with OnSets, you
will get an error message it not all elements of the domain are sets.

gap> Cycle( (1,2), [2,1], OnSets );
Error, OnSets: <tuple> must be a set

The former function OnLeft which operated by mulitplication from the left has been renamed
OnLeftAntiOperation, to emphasise the point that it does not satisify the axioms of an
operation, and may cause errors if supplied where an operation is expected.

8.2 Cycle

Cycle( g, d )
Cycle( g, d, operation )

Cycle returns the orbit of the point d, which may be an object of arbitrary type, under the
group element ¢ as a list of points.

The points e in the cycle of d under the group element g are those for which a power g°
exists such that d9" = e.

The first point in the list returned by Cycle is the point d itself, the ordering of the other
points is such that each point is the image of the previous point.

Cycle accepts a function operation of two arguments d and ¢ as optional third argument,
which specifies how the element g operates (see 8.1).

gap> Cycle( (1,5,3,8)(4,6,7), 3 );

[ 3,8, 1, 51

gap> Cycle( (1,5,3,8)(4,6,7), [3,4], OnPairs );

[r3,41,08,61, [1,7]1,[5,41,[3,61, [8, 71,
(1,41, [5,61, 03, 71,[8,41,[1,61, [5,71]1

Cycle calls

Domain([g]) .operations.Cycle( g, d, operation )

and returns the value. Note that the third argument is not optional for the functions called
this way.

The default function called this way is GroupElementsOps.Cycle, which starts with d and
applies g to the last point repeatedly until d is reached again. Special categories of group
elements overlay this default function with more efficient functions.

8.3 CycleLength

CycleLength( g, d )
CycleLength( g, d, operation )

CycleLength returns the length of the orbit of the point d, which may be an object of
arbitrary type, under the group elements g. See 8.2 for the definition of cycles.
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CycleLength accepts a function operation of two arguments d and ¢ as optional third
argument, which specifies how the group element g operates (see 8.1).

gap> CyclelLength( (1,5,3,8)(4,6,7), 3 );

4

gap> CycleLength( (1,5,3,8)(4,6,7), [3,4], OnPairs );
12

CycleLength calls

Domain([g]) .operations.CycleLength( g, d, operation )

and returns the value. Note that the third argument is not optional for the functions called
this way.

The default function called this way is GroupElementsOps.CycleLength, which starts with
d and applies ¢ to the last point repeatedly until d is reached again. Special categories of
group elements overlay this default function with more efficient functions.

8.4 Cycles

Cycles( g, D )
Cycles( g, D, operation )

Cycles returns the set of cycles of the group element ¢ on the domain D, which must be a
list of points of arbitrary type, as a set of lists of points. See 8.2 for the definition of cycles.

It is allowed that D is a proper subset of a domain, i.e., that D is not invariant under the
operation of ¢g. In this case D is silently replaced by the smallest superset of D which is
invariant.

The first point in each cycle is the smallest point of D in this cycle. The ordering of the
other points is such that each point is the image of the previous point. If D is invariant
under g, then because Cycles returns a set of cycles, i.e., a sorted list, and because cycles
are compared lexicographically, and because the first point in each cycle is the smallest point
in that cycle, the list returned by Cycles is in fact sorted with respect to the smallest point
in the cycles.

Cycles accepts a function operation of two arguments d and g as optional third argument,
which specifies how the element g operates (see 8.1).

gap> Cycles( (1,5,3,8)(4,6,7), [3,5,7]1 );

[[3,8,1,51, [7,4,61]

gap> Cycles( (1,5,3,8)(4,6,7), [[1,3],[4,6]], OnPairs );

(rccf1, 31, 05,81, 03,11, [8,511,
[[4,61,[6, 71, [7,411]1

Cycles calls

Domain([g¢]) .operations.Cycles( g, D, operation )

and returns the value. Note that the third argument is not optional for the functions called
this way.

B

The default function called this way is GroupElementsOps.Cycles, which takes elements
from D, computes their orbit, removes all points in the orbit from D, and repeats this until
D has been emptied. Special categories of group elements overlay this default function with
more efficient functions.
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8.5 CycleLengths

CyclelLengths( ¢, D )
CycleLengths( g, D, operation )

CycleLengths returns a list of the lengths of the cycles of the group element g on the domain
D, which must be a list of points of arbitrary type. See 8.2 for the definition of cycles.

It is allowed that D is a proper subset of a domain, i.e., that D is not invariant under the
operation of g. In this case D is silently replaced by the smallest superset of D which is
invariant.

The ordering of the lengths of cycles in the list returned by CycleLengths corresponds to
the list of cycles returned by Cycles, which is ordered with respect to the smallest point in
each cycle.

CycleLengths accepts a function operation of two arguments d and g as optional third
argument, which specifies how the element g operates (see 8.1).

gap> Cyclelengths( (1,5,3,8)(4,6,7), [3,5,7] );

[ 4, 31

gap> Cyclelengths( (1,5,3,8)(4,6,7), [[1,3],[4,6]], OnPairs );
[ 4, 3]

CycleLengths calls

Domain([g]) .operations.CycleLengths( g, D, operation )

and returns the value. Note that the third argument is not optional for the functions called
this way.

The default function called this way is GroupElementsOps.CycleLengths, which takes el-
ements from D, computes their orbit, removes all points in the orbit from D, and repeats
this until D has been emptied. Special categories of group elements overlay this default
function with more efficient functions.

8.6 MovedPoints

MovedPoints( ¢ )

gap> MovedPoints( (1,7)(2,3,8) );
[ 1, 2’ 3, 7, 8 ]

8.7 NrMovedPoints

NrMovedPoints( p )

NrMovedPoints returns the number of points moved by the permutation g, the group ele-
ment g, or the group g.

gap> NrMovedPoints( (1,7)(2,3,8) );
5
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8.8 Permutation

Permutation( ¢, D )
Permutation( g, D, operation )

Permutation returns a permutation that operates on the points [1..Length(D)] in the
same way that the group element g operates on the domain D, which may be a list of
arbitrary type.

It is not allowed that D is a proper subset of a domain, i.e., D must be invariant under the
element g.

Permutation accepts a function operation of two arguments d and g as optional third
argument, which specifies how the element g operates (see 8.1).

gap> Permutation( (1,5,3,8)(4,6,7), [4,7,6] );

(1,3,2)
gap> D := [ [1,4], [1,61, [1,71, [3,41, (3,61, [3,71,
> (4,51, [5,61, [5,71, [4,8], [6,8], [7,8] 1;;

gap> Permutation( (1,5,3,8)(4,6,7), D, OnSets );
(1, 8, 6,10, 2, 9, 4,11, 3, 7, 5,12)

Permutation calls

Domain([g]) .operations.Permutation( g, D, operation )

and returns the value. Note that the third argument is not optional for the functions called
this way.

The default function called this way is GroupElementsOps.Permutation, which simply ap-
plies g to all the points of D, finds the position of the image in D, and finally applies
PermList (see 20.9) to the list of those positions. Actually this is not quite true. Because
finding the position of an image in a sorted list is so much faster than finding it in D,
GroupElementsOps.Permutation first sorts a copy of D and remembers how it had to re-
arrange the elements of D to achieve this. Special categories of group elements overlay this
default function with more efficient functions.

8.9 IsFixpoint

IsFixpoint( G, d )
IsFixpoint( G, d, operation )

IsFixpoint returns true if the point d is a fixpoint under the operation of the group G.

We say that d is a fixpoint under the operation of G if every element g of G maps d to
itself. This is equivalent to saying that each generator of G maps d to itself.

As a special case it is allowed that the first argument is a single group element, though this
does not make a lot of sense, since in this case IsFixpoint simply has to test d~¢g = d.
IsFixpoint accepts a function operation of two arguments d and ¢ as optional third argu-
ment, which specifies how the elements of G operate (see 8.1).

gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;

gap> IsFixpoint( g, 1 );

false

gap> IsFixpoint( g, [6,7,8], OnSets );
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true

IsFixpoint is so simple that it does all the work by itself, and, unlike the other functions
described in this chapter, does not dispatch to another function.

8.10 IsFixpointFree

IsFixpointFree( G, D )
IsFixpointFree( G, D, operation )

IsFixpointFree returns true if the group G operates without a fixpoint (see 8.9) on the
domain D, which must be a list of points of arbitrary type.

We say that G operates fixpoint free on the domain D if each point of D is moved by at
least one element of G. This is equivalent to saying that each point of D is moved by at
least one generator of G. This definition also applies in the case that D is a proper subset
of a domain, i.e., that D is not invariant under the operation of G.

As a special case it is allowed that the first argument is a single group element.

IsFixpointFree accepts a function operation of two arguments d and g as optional third
argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;

gap> IsFixpointFree( g, [1..8] );

true

gap> sets := Combinations( [1..8], 3 );; Length( sets );
56 # a list of all three element subsets of [1..8]

gap> IsFixpointFree( g, sets, OnSets );

false

IsFixpointFree calls

G .operations.IsFixpointFree( G, D, operation )

and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps . IsFixpointFree, which simply loops over
the elements of D and applies to each all generators of G, and tests whether each is moved
by at least one generator. This function is seldom overlaid, because it is very difficult to
improve it.

8.11 DegreeOperation

DegreeOperation( G, D )
DegreeOperation( G, D, operation )

DegreeOperation returns the degree of the operation of the group G on the domain D,
which must be a list of points of arbitrary type.

The degree of the operation of G on D is defined as the number of points of D that are
properly moved by at least one element of G. This definition also applies in the case that
D is a proper subset of a domain, i.e., that D is not invariant under the operation of G.

DegreeOperation accepts a function operation of two arguments d and ¢ as optional third
argument, which specifies how the elements of G operate (see 8.1).
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gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;

gap> DegreeOperation( g, [1..10] );

8

gap> sets := Combinations( [1..8], 3 );; Length( sets );
56  # a list of all three element subsets of [1..8]

gap> DegreeOperation( g, sets, OnSets );

55

DegreeOperation calls

G .operations.DegreeOperation( G, D, operation )

and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.DegreeOperation, which simply loops
over the elements of D and applies to each all generators of G, and counts those that are
moved by at least one generator. This function is seldom overlaid, because it is very difficult
to improve it.

8.12 IsTransitive

IsTransitive( G, D )
IsTransitive( G, D, operation )

IsTransitive returns true if the group G operates transitively on the domain D, which
must be a list of points of arbitrary type.

We say that a group G acts transitively on a domain D if and only if for every pair of
points d and e there is an element g of G such that d9 = e. An alternative characterization
of this property is to say that D as a set is equal to the orbit of every single point.

It is allowed that D is a proper subset of a domain, i.e., that D is not invariant under the
operation of G. In this case IsTransitive checks whether for every pair of points d, e of
D there is an element g of G, such that d9 = e. This can also be characterized by saying
that D is a subset of the orbit of every single point.

IsTransitive accepts a function operation of two arguments d and g as optional third
argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;
gap> IsTransitive( g, [1..8] );

false
gap> IsTransitive( g, [1,6] );
false # note that the domain need not be invariant

gap> sets := Combinations( [1..5], 3 );; Length( sets );
10 # a list of all three element subsets of [1..5]

gap> IsTransitive( g, sets, OnSets );

true

IsTransitive calls

G .operations.IsTransitive( G, D, operation )

and returns the value. Note that the third argument is not optional for functions called this
way.
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The default function called this way is GroupOps.IsTransitive, which tests whether D is
a subset of the orbit of the first point in D. This function is seldom overlaid, because it is
difficult to improve it.

8.13 Transitivity

Transitivity( G, D )
Transitivity( G, D, operation )

Transitivity returns the degree of transitivity of the group G on the domain D, which
must be a list of points of arbitrary type. If G does not operate transitively on D then
Transitivity returns 0.

The degree of transitivity of the operation of G on D is the largest k£ such that G
operates k-fold transitively on D. We say that G operates k-fold transitively on D if
it operates transitively on D (see 8.12) and the stabilizer of one point d of D operates
k-1-fold transitively on Difference(D, [d]). Because the stabilizers of the points of D
are conjugate this is equivalent to saying that the stabilizer of each point d of D operates
k-1-fold transitively on Difference (D, [d]).

It is not allowed that D is a proper subset of a domain, i.e., D must be invariant under the
operation of G.

Transitivity accepts a function operation of two arguments d and g as optional third
argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;

gap> Transitivity( g, [1..8] );

0

gap> Transitivity( g, [1..5] );

3

gap> sets := Combinations( [1..5], 3 );; Length( sets );
10 # a list of all three element subsets of [1..5]

gap> Transitivity( g, sets, OnSets );

1

Transitivity calls

G .operations.Transitivity( G, D, operation )

and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.Transitivity, which first tests whether
G operates transitively on D. If so, it returns
Transitivity(Stabilizer(G,Difference(D, [D[11]),operation)+1;

if not, it simply returns 0. Special categories of groups overlay this default function with
more efficient functions.

8.14 IsRegular

IsRegular( G, D ) IsRegular( G, D, operation )

IsRegular returns true if the group G operates regularly on the domain D, which must be
a list of points of arbitrary type, and false otherwise.
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A group G operates regularly on a domain D if it operates transitively and no element
of G other than the idenity leaves a point of D fixed. An equal characterisation is that
G operates transitively on D and the stabilizer of any point of D is trivial. Yet another
characterisation is that the operation of G on D is equivalent to the operation of G on its
elements by multiplication from the right.

It is not allowed that D is a proper subset of a domain, i.e., D must be invariant under the
operation of G.

IsRegular accepts a function operation of two arguments d and g as optional third argu-
ment, which specifies how the elements of G operate (see 8.1).

gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;

gap> IsRegular( g, [1..5] );

false

gap> IsRegular( g, Elements(g), OnRight );

true

gap> g := Group( (1,2,3), (3,4,5) );;

gap> IsRegular( g, Orbit( g, [1,2,3], OnTuples ), OnTuples );
true

IsRegular calls

G .operations.IsRegular( G, D, operation )

and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.IsRegular, which tests if G operates
transitively and semiregularly on D (see 8.12 and 8.15).

8.15 IsSemiRegular

IsSemiRegular( G, D )
IsSemiRegular( G, D, operation )

IsSemiRegular returns true if the group G operates semiregularly on the domain D, which
must be a list of points of arbitrary type, and false otherwise.

A group G operates semiregularly on a domain D if no element of G other than the idenity
leaves a point of D fixed. An equal characterisation is that the stabilizer of any point of
D is trivial. Yet another characterisation is that the operation of G on D is equivalent to
multiple copies of the operation of G on its elements by multiplication from the right.

It is not allowed that D is a proper subset of a domain, i.e., D must be invariant under the
operation of G.

IsSemiRegular accepts a function operation of two arguments d and ¢ as optional third
argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group( (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(5,6)(7,8) );;
gap> IsSemiRegular( g, [1..8] );

true

gap> g := Group( (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(5,6,7,8) );;
gap> IsSemiRegular( g, [1..8] );

false
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gap> IsSemiRegular( g, Orbit( g, [1,5], OnSets ), OnSets );
true

IsSemiRegular calls

G .operations.IsSemiRegular( G, D, operation )

and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.IsSemiRegular, which computes a per-
mutation group P that operates on [1..Length(D)] in the same way that G operates
on D (see 8.20) and then checks if this permutation group operations semiregularly. This
of course only works because this default function is overlaid for permutation groups (see
21.22).

8.16 Orbit

Orbit( G, d )
Orbit( G, d, operation )

Orbit returns the orbit of the point d, which may be an object of arbitrary type, under the
group G as a list of points.

The points e in the orbit of d under the group G are those points for which a group element
g of G exists such that d9 = e.

Suppose G has n generators. First we order the words of the free monoid with n abstract
generators according to length and for words with equal length lexicographically. So if G has
two generators called a and b the ordering is identity, a, b, a, ab, ba, b%, a>, .... Next we order
the elements of G that can be written as a product of the generators, i.e., without inverses
of the generators, according to the first occurrence of a word representing the element in the
above ordering. Then the ordering of points in the orbit returned by Orbit is according to
the order of the first representative of each point e, i.e., the smallest g such that d9 = e. Note
that because the orbit is finite there is for every point in the orbit at least one representative
that can be written as a product in the generators of G.

Orbit accepts a function operation of two arguments d and g as optional third argument,
which specifies how the elements of G operate (see 8.1).

gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;
gap> Orbit( g, 1 );

(1, 2,3, 4,5]

gap> Orbit( g, 2 );

[ 2, 3,1, 4, 5]

gap> Orbit( g, [1,6], OnPairs );

(rs,61, 02, 71,033,661, [2,81,[1,71,[4,61,
(3,81, [2,61,[1,81,[4,71,[5,61, [3,71,
(5,81, [5, 71, [4,81]1

Orbit calls

G .operations.Orbit( G, d, operation )

and returns the value. Note that the third argument is not optional for functions called this
way.
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The default function called this way is GroupOps.0Orbit, which performs an ordinary orbit
algorithm. Special categories of groups overlay this default function with more efficient
functions.

8.17 OrbitLength

OrbitLength( G, d )
OrbitLength( G, d, operation )

OrbitLength returns the length of the orbit of the point d, which may be an object of
arbitrary type, under the group G. See 8.16 for the definition of orbits.

OrbitLength accepts a function operation of two arguments d and ¢ as optional third
argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;
gap> OrbitLength( g, 1 );

5

gap> OrbitLength( g, 10 );

1

gap> OrbitLength( g, [1,6], OnPairs );

15

OrbitLength calls

G .operations.OrbitLength( G, d, operation )

and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.OrbitLength, which performs an ordinary
orbit algorithm. Special categories of groups overlay this default function with more efficient
functions.

8.18 Orbits

Orbits( G, D )
Orbits( G, D, operation )

Orbits returns the orbits of the group G on the domain D, which must be a list of points
of arbitrary type, as a set of lists of points. See 8.16 for the definition of orbits.

It is allowed that D is a proper subset of a domain, i.e., that D is not invariant under the
operation of G. In this case D is silently replaced by the smallest superset of D which is
invariant.

The first point in each orbit is the smallest point, the other points of each orbit are ordered
in the standard order defined for orbits (see 8.16). Because Orbits returns a set of orbits,
i.e., a sorted list, and because those orbits are compared lexicographically, and because the
first point in each orbit is the smallest point in that orbit, the list returned by Orbits is in
fact sorted with respect to the smallest points the orbits.

Orbits accepts a function operation of two arguments d and ¢ as optional third argument,
which specifies how the elements of G operate (see 8.1).

gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;
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gap> Orbits( g, [1..8] );

(f1,2,3,4,51]1,[6,7,81]1

gap> Orbits( g, [1,6] );

[[1,2,3,4,51]1,[6,7,81]1] # the domain is not invariant

gap> sets := Combinations( [1..8], 3 );; Length( sets );

56 # a list of all three element subsets of [1..8]

gap> Orbits( g, sets, OnSets );

[rc1,2,31,101,2,41, 02,383,471, [1,2,51, 1 [1,3,41,
[2,4,5]1, [2,3,51,[1, 4,51, [3,4,51, [1, 3,5]1]

1,

[r1,2,61, 02,383,711, [1,3,61,[2,4,81,[1,2,71,
(1, 4,61, [3,4,81,[2,5,71,[2, 3,61,
[1,2,81,[2,4,7]1,[1,5,61, [1, 4, 81,

(4,5, 71, [03,5,61,[2,3,81,[1,3,71,
(2,4,61, [3,4,61,[2,5,81, [1,5, 71,
(4,5,61, [3,5,81, [1,3,81, [3,4,71,
[2,5,61, [1, 4,71, [1,5,81, [4,5,81, [3,5, 7]
1,

rri1,6, 71, [2,6,71, [1,6,81,[(3,6,71, [2,6,81,
(2,7,81,04,6,81, [3,7,81, [3,6,81,

(4, 7,81, [5,6, 71, [1,7,81, [4,6,7]1,
[5,7,81,[5,6,811,[[6,7,811]

Orbits calls

G .operations.Orbits( G, D, operation )

and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.0Orbits, which takes an element from D,
computes its orbit, removes all points in the orbit from D, and repeats this until D has
been emptied. Special categories of groups overlay this default function with more efficient
functions.

8.19 OrbitLengths

OrbitLengths( G, D )

OrbitLengths( G, D, operation )

OrbitLengths returns a list of the lengths of the orbits of the group G on the domain D,
which may be a list of points of arbitrary type. See 8.16 for the definition of orbits.

It is allowed that D is proper subset of a domain, i.e., that D is not invariant under the
operation of G. In this case D is silently replaced by the smallest superset of D which is
invariant.

The ordering of the lengths of orbits in the list returned by OrbitLengths corresponds to
the list of cycles returned by Orbits, which is ordered with respect to the smallest point in
each orbit.

OrbitLengths accepts a function operation of two arguments d and g as optional third
argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;
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gap> OrbitLengths( g, [1..8] );

[ 5, 3]

gap> sets := Combinations( [1..8], 3 );; Length( sets );
56 # a list of all three element subsets of [1..8]

gap> OrbitLengths( g, sets, OnSets );

[ 10, 30, 15, 1 ]

OrbitLengths calls

G .operations.OrbitLenghts( G, D, operation )

and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.OrbitLengths, which takes an element
from D, computes its orbit, removes all points in the orbit from D, and repeats this until
D has been emptied. Special categories of groups overlay this default function with more
efficient functions.

8.20 Operation

Operation( G, D )
Operation( G, D, operation )

Operation returns a permutation group with the same number of generators as G, such
that each generator of the permutation group operates on the set [1..Length(D)] in the
same way that the corresponding generator of the group G operates on the domain D, which
may be a list of arbitrary type.

It is not allowed that D is a proper subset of a domain, i.e., D must be invariant under the
element g.

Operation accepts a function operation of two arguments d and ¢ as optional third argu-
ment, which specifies how the elements of G operate (see 8.1).

The function OperationHomomorphism (see 8.21) can be used to compute the homomor-
phism that maps G onto the new permutation group. Of course if you are only interested in
mapping single elements of G into the new permutation group you may also use Permutation
(see 8.8).

gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;

gap> Operation( g, [1..5] );

Group( (1,2,3), (3,4,5) )

gap> Operation( g, Orbit( g, [1,6], OnPairs ), OnPairs );

Group( ( 1, 2, 3, 5, 8,12)( 4, 7, 9( 6,10)(11,14), (2, 4)( 3, 6,11)
(5, 9¢(7,10,13,12,15,14) )

Operation calls

G .operations.Operation( G, D, operation )

and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.Operation, which simply applies each
generator of G to all the points of D, finds the position of the image in D, and finally
applies PermList (see 20.9) to the list of those positions. Actually this is not quite true.
Because finding the position on an image in a sorted list is so much faster than finding it
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in D, GroupElementsOps.0Operation first sorts a copy of D and remembers how it had to
rearrange the elements of D to achieve this. Special categories of groups overlay this default
function with more efficient functions.

8.21 OperationHomomorphism

OperationHomomorphism( G, P )

OperationHomomorphism returns the group homomorphism (see 7.106) from the group G
to the permutation group P, which must be the result of a prior call to Operation (see
8.20) with G or a group of which G is a subgroup (see 7.62) as first argument.

gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;
gap> h := Operation( g, [1..5] );
Group( (1,2,3), (3,4,5) )
gap> p := OperationHomomorphism( g, h );
OperationHomomorphism( Group( (1,2,3)(6,7), (3,4,5)(7,8) ), Group(
(1,2,3), (3,4,5) ) )
gap> (1,4,2,5,3)(6,7,8) " p;
1,4,2,5,3)
gap> h := Operation( g, Orbit( g, [1,6], OnPairs ), OnPairs );
Group( (1, 2, 3, 5, 8,12)( 4, 7, 9)( 6,10)(11,14), ( 2, 4)( 3, 6,11)
(5, 9(7,10,13,12,15,14) )
gap> p := OperationHomomorphism( g, h );;
gap> s := SylowSubgroup( g, 2 );
Subgroup( Group( (1,2,3)(6,7), (3,4,5)(7,8) ),
L (7,8, (7,8, (2,6)(3,4), (2,3)(4,5) 1)
gap> Images( p, s );
Subgroup( Group( ( 1, 2, 3, 5, 8,12)( 4, 7, 9( 6,10)(11,14), ( 2, 4)
(3,6,11)(5, 9(7,10,13,12,15,14) ),
[ (2, (5, 99(7,12)(10,15) (13,14),
(2, (5, 9(7,12)(10,15)(13,14),
(2,14)( 3, 6)( 4,13)(C 7,15)( 8,11)(10,12),
(2,12)( 3, 8)(4, 7)(6,11)(10,14)(13,15) 1 )
gap> OperationHomomorphism( g, Group( (1,2,3), (3,4,5) ) );
Error, Record: element ’operation’ must have an assigned value

OperationHomomorphism calls
P .operations.0OperationHomomorphism( G, P )
and returns the value.

The default function called this way is GroupOps .OperationHomomorphism, which uses the
fields P.operationGroup, P.operationDomain, and P.operationOperation (the argu-
ments to the Operation call that created P) to construct a generic homomorphism h. This
homomorphism uses
Permutation(g,h.range.operationDomain,h.range.operationOperation)

to compute the image of an element ¢ of G under h. It uses Representative to compute
the preimages of an element p of P under h. And it computes the kernel by intersecting
the cores (see 7.21) of the stabilizers (see 8.24) of representatives of the orbits of G. Look
under OperationHomomorphism in the index to see for which groups and operations
this function is overlaid.
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8.22 Blocks

Blocks( G, D, seed )
Blocks( G, D, seed, operation )

In this form Blocks returns a block system of the domain D, which may be a list of points
of arbitrary type, under the group G, such that the points in the list seed all lie in the same
block. If no such nontrivial block system exists, Blocks returns [ D ]. G must operate
transitively on D, otherwise an error is signalled.

Blocks( G, D )
Blocks( G, D, operation )

In this form Blocks returns a minimal block system of the domain D, which may be a list
of points of arbitrary type, under the group G. If no nontrivial block system exists, Blocks
returns [ D ]. G must operate transitively on D, otherwise an error is signalled.

A block system B is a list of blocks with the following properties. Each block b of B is
a subset of D. The blocks are pairwise disjoint. The union of blocks is D. The image of
each block under each element g of G is as a set equal to some block of the block system.
Note that this implies that all blocks contain the same number of elements as G operates
transitive on D. Put differently a block system B of D is a partition of D such that G
operates with OnSets (see 8.1) on B. The block system that consists of only singleton sets
and the block system consisting only of D are called trivial. A block system B is called
minimal if there is no nontrivial block system whose blocks are all subsets of the blocks of
B and whose number of blocks is larger than the number of blocks of B.

Blocks accepts a function operation of two arguments d and g as optional third, resp.
fourth, argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;
gap> Blocks( g, [1..5] );

[[1..5]1]1

gap> Blocks( g, Orbit( g, [1,2], OnPairs ), OnPairs );
rtft1,21,03,21,04,21,0[5,211,
(1,31, 02,31,[4,31,0[5,311,
(C1,41,02,41,03,41, [5,411,
(f1,5]1, (2,51, (3,51, (4,511,
(2,11, 03,11, (4,11, [5,111]1

Blocks calls

G .operations.Blocks( G, D, seed, operation )

and returns the value. If no seed was given as argument to Blocks it passes the empty list.
Note that the fourth argument is not optional for functions called this way.

The default function called this way is GroupOps.Blocks, which computes a permutation
group P that operates on [1..Length(D)] in the same way that G operates on D (see
8.20) and leaves it to this permutation group to find the blocks. This of course works only
because this default function is overlaid for permutation groups (see 21.22).

8.23 IsPrimitive

IsPrimitive( G, D )
IsPrimitive( G, D, operation )
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IsPrimitive returns true if the group G operates primitively on the domain D, which may
be a list of points of arbitrary type, and false otherwise.

A group G operates primitively on a domain D if and only if D operates transitively (see
8.12) and has only the trivial block systems (see 8.22).

IsPrimitive accepts a function operation of two arguments d and g as optional third
argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;

gap> IsPrimitive( g, [1..5] );

true

gap> IsPrimitive( g, Orbit( g, [1,2], OnPairs ), OnPairs );
false

IsPrimitive calls

G .operations.IsPrimitive( G, D, operation )

and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps.IsPrimitive, which simply calls Blocks(
G, D, operation ) and tests whether the returned block system is [ D ]. This function
is seldom overlaid, because all the important work is done in Blocks.

8.24 Stabilizer

Stabilizer( G, d )
Stabilizer( G, d, operation )

Stabilizer returns the stabilizer of the point d under the operation of the group G.

The stabilizer S of d in G is the subgroup of those elements g of G that fix d, i.e., for
which d9 = d. The right cosets of S correspond in a canonical way to the points p in the
orbit O of d under G; namely all elements from a right coset Sg map d to the same point
d?9 € O, and elements from different right cosets S¢g and Sh map d to different points d9
and d". Thus the index of the stabilizer S in G is equal to the length of the orbit O.
RepresentativesOperation (see 8.26) computes a system of representatives of the right
cosets of S in G.

Stabilizer accepts a function operation of two arguments d and g as optional third argu-
ment, which specifies how the elements of G operate (see 8.1).

gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;

gap> g.name := "G";;

gap> Stabilizer( g, 1 );

Subgroup( G, [ (3,4,5)(7,8), (2,5,3)(6,7) 1)

gap> Stabilizer( g, [1,2,3], OnSets );

Subgroup( G, [ (7,8), (6,8), (2,3)(4,5)(6,7,8), (1,2)(4,5)(6,7,8) 1)

Stabilizer calls

G .operations.Stabilizer( G, d, operation )

and returns the value. Note that the third argument is not optional for functions called this
way.
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The default function called this way is GroupOps . Stabilizer, which computes the orbit of d
under G, remembers a representative 7. for each point e in the orbit, and uses Schreier’s the-
orem, which says that the stabilizer is generated by the elements 7, gr;l. Special categories
of groups overlay this default function with more efficient functions.

8.25 RepresentativeOperation

RepresentativeOperation( G, d, e )
RepresentativeOperation( G, d, e, operation )

RepresentativeOperation returns a representative of the point e in the orbit of the point
d under the group G. If d = e then RepresentativeOperation returns G .identity, other-
wise it is not specified which group element RepresentativeOperation will return if there
are several that map d to e. If e is not in the orbit of d under G, RepresentativeOperation
returns false.

An element g of G is called a representative for the point e in the orbit of d under G if g
maps d to e, i.e., d? = e. Note that the set of such representatives that map d to e forms a
right coset of the stabilizer of d in G (see 8.24).

RepresentativeOperation accepts a function operation of two arguments d and g as op-
tional third argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;
gap> RepresentativeOperation( g, 1, 5 );
(1,5,4,3,2)(6,8,7)

gap> RepresentativeOperation( g, 1, 6 );

false

gap> RepresentativeOperation( g, [1,2,3], [3,4,5], OnSets );
(1,3,5,2,4)

gap> RepresentativeOperation( g, [1,2,3,4], [3,4,5,2], OnTuples );
false

RepresentativeOperation calls

G .operations.RepresentativeOperation( G, d, e, operation )

and returns the value. Note that the fourth argument is not optional for functions called
this way.

The default function called this way is GroupOper .RepresentativeOperation, which starts
a normal orbit calculation to compute the orbit of d under G, and remembers for each
point how it was obtained, i.e., which generator of G took which orbit point to this new
point. When the point e appears this information can be traced back to write down the
representative of e as a word in the generators. Special categories of groups overlay this
default function with more efficient functions.

8.26 RepresentativesOperation

RepresentativesOperation( G, d )
RepresentativesOperation( G, d, operation )

RepresentativesOperation returns a list of representatives of the points in the orbit of
the point d under the group G.
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The ordering of the representatives corresponds to the ordering of the points in the orbit
as returned by Orbit (see 8.16). Therefore List( RepresentativesOperation(G,d),
r->d"r ) = 0rbit(G,d).

An element g of G is called a representative for the point e in the orbit of d under G if g
maps d to e, i.e., d9 = e. Note that the set of such representatives that map d to e forms a
right coset of the stabilizer of d in G (see 8.24). The set of all representatives of the orbit
of d under G thus forms a system of representatives of the right cosets of the stabilizer of d
in G.

RepresentativesOperation accepts a function operation of two arguments d and g as
optional third argument, which specifies how the elements of G operate (see 8.1).

gap> g := Group( (1,2,3)(6,7), (3,4,5)(7,8) );;

gap> RepresentativesOperation( g, 1 );

[ O, 1,2,3¢,7, (1,3,2), (1,4,5,3,2)(7,8), (1,5,4,3,2) ]

gap> Orbit( g, [1,2], OnSets );

tft1+,21,02,31,01,31,0[02,41, (1,41, 1[3,4]1,
(2,51, 01,571, [4,51]1, [3,51]1]

gap> RepresentativesOperation( g, [1,2], OnSets );

[ O, 1,2,3)6,7, (1,3,2), (1,2,4,5,3)(6,8,7), (1,4,5,3,2)(7,8),
(1,3,2,4,5)(6,8), (1,2,5,4,3)(6,7), (1,5,4,3,2), (1,4,3,2,5)(6,7,8),
(1,3,2,5,4) 1

RepresentativesOperation calls

G .operations.RepresentativesOperation( G, d, operation )

and returns the value. Note that the third argument is not optional for functions called this
way.

The default function called this way is GroupOps .RepresentativesOperation, which com-
putes the orbit of d with the normal algorithm, but remembers for each point e in the orbit
a representative r.. When a generator g of G takes an old point e to a point f not yet in the
orbit, the representative r¢ for f is computed as r.g. Special categories of groups overlay
this default function with more efficient functions.

8.27 IsEquivalentOperation

IsEquivalentOperation( G, D, H, E )
IsEquivalentOperation( G, D, H, E, operationH )
IsEquivalentOperation( G, D, operationG, H, E )
IsEquivalentOperation( G, D, operationG, H, E, operationH )

IsEquivalentOperation returns true if G operates on D in like H operates on E, and
false otherwise.

The operations of G on D and H on E are equivalent if they have the same number of
generators and there is a permutation F' of the elements of E such that for every generator
g of G and the corresponding generator h of H we have Position(D, DY) = Position(F, F").
Note that this assumes that the mapping defined by mapping G.generators to H.generators
is a homomorphism (actually an isomorphism of factor groups of G and H represented by
the respective operation).
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IsEquivalentOperation accepts functions operationG and operationH of two arguments d
and g as optional third and sixth arguments, which specify how the elements of G and H
operate (see 8.1).

gap> g := Group( (1,2)(4,5), (1,2,3)(4,5,6) );;
gap> h := Group( (2,3)(4,5), (1,2,3)(4,5,6) );;
gap> IsEquivalentOperation( g, [1..6], h, [1..6] );
true

gap> h := Group( (1,2), (1,2,3) );;

gap> IsEquivalentOperation(g,[[1,4],[2,5],[3,6]],0nPairs,h,[1..3]);
true

gap> h := Group( (1,2), (1,2,3)(4,5,6) );;

gap> IsEquivalentOperation( g, [1..6], h, [1..6] );
false

gap> h := Group( (1,2,3)(4,5,6), (1,2)(4,5) );;
gap> IsEquivalentOperation( g, [1..6], h, [1..6] );
false # the generators must correspond

IsEquivalentOperation calls
G .operations.IsEquivalentOperation(G,D,oprG,H ,E,oprH) and returns the value.
Note that the third and sixth argument are not optional for functions called this way.

The default function called this way is GroupOps.IsEquivalentOperation, which tries to
rearrange F so that the above condition is satisfied. This is done one orbit of G at a time,
and for each such orbit all the orbits of H of the same length are tried to see if there is
one which can be rearranged as necessary. Special categories of groups overlay this function
with more efficient ones.



Chapter 9

Vector Spaces

The material described in this chapter is subject to change.

Vector spaces form another important domain in GAP3. They may be given in any repre-
sentation whenever the underlying set of elements forms a vector space in terms of linear
algebra. Thus, for example, one may construct a vector space by defining generating ma-
trices over a field or by using the base of a field extension as generators. More complex
constructions may fake elements of a vector space by specifying records with appropriate
operations. A special type of vector space, that is implemented in the GAP3 library, handles
the case where the elements are lists over a field. This type is the so called RowSpace (see
33 for details).

General vector spaces are created using the function VectorSpace (see 9.1) and they are
represented as records that contain all necessary information to deal with the vector space.
The components listed in 9.3 are common for all vector spaces, but special types of vector
spaces, such as the row spaces, may use additional entries to store specific data.

The following sections contain descriptions of functions and operations defined for vector
spaces.

The next sections describe functions to compute a base (see 9.6) and the dimension (see
9.8) of a vector space over its field.

The next sections describe how to calculate linear combinations of the elements of a base
(see 9.9) and how to find the coefficients of an element of a vector space when expressed as
a linear combination in the current base (see 9.10).

The functions described in this chapter are implemented in the file LIBNAME/"vecspace.g".

9.1 VectorSpace

VectorSpace( generators, field )

Let generators be a list of objects generating a vector space over the field field. Then
VectorSpace returns this vector space represented as a GAP3 record.

gap> f := GF( 372 );
GF(372)

353
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gap> m := [ [ f.one, f.one ], [ f.zero, f.zero ] 1;
[ [ 2370, Z2(3)~0 1, [ 0%Z(3), 0%Z(3) ] 1]
gap> n := [ [ f.one, f.zero ], [ f.zero, f.one ] ];

[ [ 2(3)70, 0%xZ(3) 1, [ 0%Z(3), Z(3)"0 ] ]

gap> VectorSpace( [ m, n 1, £ );

VectorSpace( [ [ [ 2(3)70, Z2(3)70 1, [ 0%Z(3), 0%Z(3) 1 1,
[ [ 2(3)"0, 0%2(3) 1, [ 0%xZ(3), Z(3)"0 1 1 1, GF(3"2) )

VectorSpace( generators, field, zero )

VectorSpace returns the vector space generated by generators over the field field having zero
as the uniquely determined neutral element. This call of VectorSpace always is requested
if generators is the empty list.

gap> VectorSpace( [1, £, [ [ f.zero, f.zero ], [ f.zero, f.zero ] ] );
VectorSpace( [ 1, GF(3°2), [ [ 0%Z(3), 0*Z(3) 1, [ 0*Z(3), 0*Z(3) ]
19

9.2 IsVectorSpace

IsVectorSpace( obj )

IsVectorSpace returns true if obj, which can be an object of arbitrary type, is a vector
space and false otherwise.

9.3 Vector Space Records

A vector space is represented as a GAP3 record having several entries to hold some necessary
information about the vector space.

Basically a vector space record is constructed using the function VectorSpace although one
may create such a record by hand. Furthermore vector space records may be returned by
functions described here or somewhere else in this manual.

Once a vector space record is created you are free to add components, but you should never
alter existing entries, especially generators, field and zero.

The following list mentions all components that are requested for a vector space V.

generators
a list of elements generating the vector space V.

field
the field over which the vector space V is written.

zero
the zero element of the vector space.

isDomain
always true, because vector spaces are domains.

isVectorSpace
always true, for obvious reasons.

There are as well some optional components for a vector space record.



9.4. SET FUNCTIONS FOR VECTOR SPACES 355

base
a base for V, given as a list of elements of V.

dimension
the dimension of V' which is the length of a base of V.

9.4 Set Functions for Vector Spaces

As mentioned before, vector spaces are domains. So all functions that exist for domains may
also be applied to vector spaces. This and the following chapters give further information
on the implementation of these functions for vector spaces, as far as they differ in their
implementation from the general functions.

Elements( V )

The elements of a vector space V are computed by producing all linear combinations of the
generators of V.

Size( V )

The size of a vector space V is determined by calculating the dimension of V and looking
at the field over which it is written.

IsFinite( V )

A vector space in GAP3 is finite if it contains only its zero element or if the field over which
it is written is finite. This characterisation is true here, as in GAP3 all vector spaces have a
finite dimension.

Intersection( V, W )

The intersection of vector spaces is computed by finding a base for the intersection of the
sets of their elements. One may consider the algorithm for finding a base of a vector space
V as another way to write Intersection( V, V ).

9.5 IsSubspace

IsSubspace( V, W )

IsSubspace tests whether the vector space W is a subspace of V. It returns true if W lies
in V and false if it does not.

The answer to the question is obtained by testing whether all the generators of W lie in
V', so that, for the general case of vector space handling, a list of all the elements of V is
constructed.

9.6 Base

Base( V )

Base computes a base of the given vector space V. The result is returned as a list of elements
of the vector space V.
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The base of a vector space is defined to be a minimal generating set. It can be shown that
for a given vector space V each base has the same number of elements, which is called the
dimension of V (see 9.8).

Unfortunately, no better algorithm is known to compute a base in general than to browse
through the list of all elements of the vector space. So be careful when using this command
on plain vector spaces.

gap> f := GF(3);

GF(3)

gap> ml := [[ f.one, f.one, f.zero, f.zero ]];
[ [ 2(3)"0, 2(3)"0, 0%Z(3), 0%Z(3) 11

gap> m2 := [[ f.one, f.one, f.one, f.zero ]1];

[ [ 2(3)"0, Z(3)"0, Z(3)"0, 0%xZ(3) 1 1

gap> V := VectorSpace( [ ml, m2, ml+m2 ], GF(3) );

VectorSpace( [ [ [ Z2(3)"0, Z(3)"0, 0%z(3), 0%z(3) 1 1,
[ [ 2(3-0, z(3)"0, Z(3)"0, 0%xZ(3) 11,
[ [ 203, 2(3), 2(3)"0, 0%¥2(3) 1 1 1, GF(3) )

gap> Base( V );

[ L [z("0, Z(3)"0, 0%¥Z(3), 0xZ(3) 1 1,
[ [ 2(3)°0, Z(3)70, Z(3)"0, 0*Z(3) 1 ]

gap> Dimension( V );

2

9.7 AddBase

]

AddBase( V', base )

AddBase attaches a user-supplied base for the vector space V to the record that represents
V.

Most of the functions for vector spaces make use of a base (see 9.9, 9.10). These functions
get access to a base using the function Base, which normally computes a base for the vector
space using an appropriate algorithm. Once a base is computed it will always be reused, no
matter whether there is a more interesting base available or not.

AddBase installs a given base for V by overwriting any other base of the vector space that
has been installed before. So after AddBase has successfully been used, base will be used
whenever Base is called with V' as argument.

Calling AddBase with a base which is not a base for ¥V might produce unpredictable results
in following computations.

gap> £ := GF(3);

GF(3)

gap> ml := [[ f.one, f.one, f.zero, f.zero ]1];
[ [ z(3)"0, Z(3)"0, 0%Z(3), 0xZ(3) ] ]

gap> m2 := [[ f.one, f.one, f.one, f.zero ]];

[ [ 230, Z(3)70, Z(3)"0, 0%xZ(3) 11

gap> V := VectorSpace( [ ml, m2, ml+m2 ], GF(3) );

VectorSpace( [ [ [ Z(3)"0, Z(3)"0, 0*Z(3), 0%z2(3) 1 1,
[ [ Z(3)"0, Z(3)"0, Z(3)"0, 0xZ(3) 1 1,
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[ [ 23, 2(3), 2(3)"0, 0%xZ(3) 1 1 1, GF(3) )
gap> Base( V );
L [L[z@30, 2(3)"0, 0*xZ(3), 0%z(3) 1 1,
[ [ 2Z¢(3)"0, 2(3)"0, Z(3)"0, 0xZ(3) 1 1
gap> AddBase( V, [ ml, ml+m2 ] );
gap> Base( V );
[ [ [z()"0, Z(3)"0, 0%xZ(3), 0*xz(3) 1 1,
[ [Z@3), z(3), Z(3)70, 0xZ(3) 111

]

9.8 Dimension

Dimension( V )
Dimension computes the dimension of the given vector space V over its field.

The dimension of a vector space V is defined to be the length of a minimal generating set
of V, which is called a base of V (see 9.6).

The implementation of Dimension strictly follows its above definition, so that this function
will always determine a base of V.

gap> £ := GF( 374 );

GF(374)

gap> f.base;

[ z(3)"0, Z(374), z2(3"4)"2, Z(374)"3 ]

gap> V := VectorSpace( f.base, GF( 3 ) );

VectorSpace( [ Z(3)°0, Z(374), Z(374)"2, Z(374)"3 1, GF(3) )

gap> Dimension( V );

4

9.9 LinearCombination

LinearCombination( V', ¢f )

LinearCombination computes the linear combination of the base elements of the vector
space V with coefficients cf.

cf has to be a list of elements of V field, the field over which the vector space is written.
Its length must be equal to the dimension of V' to make sure that one coefficient is specified
for each element of the base.

LinearCombination will use that base of V' which is returned when applying the function
Base to V (see 9.6). To perform linear combinations of different bases use AddBase to
specify which base should be used (see 9.7).

gap> f := GF( 374 );

GF(374)

gap> f.base;

[ 2(3)"0, Z(374), 2(374)"2, Z(374)"3 ]

gap> V := VectorSpace( f.base, GF( 3 ) );

VectorSpace( [ Z(3)"0, z(374), Z(374)"2, Z(374)"3 1, GF(3) )

gap> LinearCombination( V, [ Z(3), Z(3)"0, Z(3), 0%Z(3) 1 );

Z(374)"16

gap> Coefficients( V, f.root ~ 16 );

[ Z(3), Z(3)"0, Z(3), 0%Z(3) ]
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9.10 Coefficients

Coefficients( V, v )

Coefficients computes the coefficients that have to be used to write v as a linear combi-
nation in the base of V.

To make sure that this function produces the correct result, v has to be an element of V.
If v does not lie in V the result is unpredictable.

The result of Coefficients is returned as a list of elements of the field over which the
vector space V is written. Of course, the length of this list equals the dimension of V.

gap> f := GF( 374 );

GF(374)

gap> f.base;

[ 2(3)"0, Z(374), 2(374)"2, Z(374)"3 ]

gap> V := VectorSpace( f.base, GF( 3 ) );

VectorSpace( [ Z(3)"0, z(374), Z(374)"2, Z(374)"3 1, GF(3) )
gap> Dimension( V );

4

gap> Coefficients( V, f.root ~ 16 );

[ Z2(3), Z(3)"0, Z(3), 0*Z(3) ]
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Integers

One of the most fundamental datatypes in every programming language is the integer type.
GAP3 is no exception.

GAP3 integers are entered as a sequence of digits optionally preceded by a + sign for positive
integers or a - sign for negative integers. The size of integers in GAP3 is only limited by the
amount of available memory, so you can compute with integers having thousands of digits.
gap> -1234;
-1234
gap> 123456789012345678901234567890123456789012345678901234567890;
123456789012345678901234567890123456789012345678901234567890

The first sections in this chapter describe the operations applicable to integers (see 10.1,
10.2, 10.3 and 10.4).

The next sections describe the functions that test whether an object is an integer (see 10.5)
and convert objects of various types to integers (see 10.6).

The next sections describe functions related to the ordering of integers (see 10.7, 10.8).
The next section describes the function that computes a Chinese remainder (see 10.9).

The next sections describe the functions related to the ordering of integers, logarithms, and
roots (10.10, 10.11, 10.12).

The GAP3 object Integers is the ring domain of all integers. So all set theoretic functions
are also applicable to this domain (see chapter 4 and 10.13). The only serious use of this
however seems to be the generation of random integers.

Since the integers form a Euclidean ring all the ring functions are applicable to integers (see
chapter 5, 10.14, 10.15, 10.16, 10.17, 10.18, 10.19, 10.20, 10.21, 10.22, 10.23, and 10.24).

Since the integers are naturally embedded in the field of rationals all the field functions are
applicable to integers (see chapter 6 and 12.7).

Many more functions that are mainly related to the prime residue group of integers modulo
an integer are described in chapter 11.

The external functions are in the file LIBNAME/"integer.g".

359
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10.1 Comparisons of Integers

nl = n2
nl <> n2
The equality operator = evaluates to true if the integer ni is equal to the integer n2 and
false otherwise. The inequality operator <> evaluates to true if n1 is not equal to n2 and
false otherwise.
Integers can also be compared to objects of other types; of course, they are never equal.
gap> 1 = 1;
true
gap> 1 <> 0;
true
gap> 1 = (1,2); # (1,2) is a permutation
false
nl < n2
nl <= n2
nl > n2
nl >= n2
The operators <, <=, >, and => evaluate to true if the integer ni is less than, less than or
equal to, greater than, or greater than or equal to the integer n2, respectively.
Integers can also be compared to objects of other types, they are considered smaller than
any other object, except rationals, where the ordering reflects the ordering of the rationals
(see 12.4).
gap> 1 < 2;
true
gap> 1 < -1;
false
gap> 1 < 3/2;
true
gap> 1 < false;
true

10.2 Operations for Integers

nl + n2

The operator + evaluates to the sum of the two integers nl and n2.

nl - n2

The operator - evaluates to the difference of the two integers ni and n2.
nl * n2

The operator * evaluates to the product of the two integers n1 and n2.
nl / n2

The operator / evaluates to the quotient of the two integers n1 and n2. If the divisor does
not divide the dividend the quotient is a rational (see 12). If the divisor is 0 an error is
signalled. The integer part of the quotient can be computed with QuoInt (see 10.3).
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nl mod n2

The operator mod evaluates to the smallest positive representative of the residue class
of the left operand modulo the right, i.e., ¢ mod k is the unique m in the range [0 ..
AbsInt (k)-1] such that k divides i - m. If the right operand is 0 an error is signalled.
The remainder of the division can be computed with RemInt (see 10.4).

nl =~ n2
The operator ~ evaluates to the n2-th power of the integer ni. If n2 is a positive integer
then n1-n2 is nl*ni*..*nl (n2 factors). If n2 is a negative integer nl"n2 is defined as

1/n17"2. If 0 is raised to a negative power an error is signalled. Any integer, even 0, raised
to the zeroth power yields 1.

Since integers embed naturally into the field of rationals all the rational operations are
available for integers too (see 12.5).

For the precedence of the operators see 2.10.

gap> 2 *x 3 + 1;
7

10.3 Quolnt

QuoInt( nl, n2 )
QuoInt returns the integer part of the quotient of its integer operands.

If n1 and n2 are positive QuoInt( nl, n2 ) is the largest positive integer ¢ such that
g*n2 <= nl. If nl1 or n2 or both are negative the absolute value of the integer part of
the quotient is the quotient of the absolute values of n1 and n2, and the sign of it is the
product of the signs of n! and n2.

RemInt (see 10.4) can be used to compute the remainder.

gap> QuoInt(5,2); QuoInt(-5,2); QuoInt(5,-2); QuoInt(-5,-2);
2
-2
-2
2

10.4 Remlnt

RemInt( ni, n2 )
RemInt returns the remainder of its two integer operands.

If n2 is not equal to zero RemInt( nl, n2 ) = nl - n2*QuoInt( nl, n2 ). Note that
the rules given for QuoInt (see 10.3) imply that RemInt( n!, n2 ) has the same sign as
nl and its absolute value is strictly less than the absolute value of n2. Dividing by 0 signals
an error.

gap> RemInt(5,2); RemInt(-5,2); RemInt(5,-2); RemInt(-5,-2);
1

-1

1

-1



362 CHAPTER 10. INTEGERS

10.5 IsInt

IsInt( obj )

IsInt returns true if 0bj, which can be an arbitrary object, is an integer and false other-
wise. IsInt will signal an error if obj is an unbound variable.

gap> IsInt( 1 );

true

gap> IsInt( IsInt );

false # IsInt is a function, not an integer
10.6 Int
Int( obj )

Int converts an object 0bj to an integer. If obj is an integer Int will simply return obj.

If obj is a rational number (see 12) Int returns the unique integer that has the same sign
as obj and the largest absolute value not larger than the absolute value of 0bj.

If 0bj is an element of the prime field of a finite field F', Int returns the least positive integer
n such that n*xF.one = obj (see 18.8).

If obj is not of one of the above types an error is signalled.

gap> Int( 17 );

17

gap> Int( 17 / 3 );

5

gap> Int( Z(573)762 );

4 # Z(5%)% = (Z(5%)124*)?2 = Z(5)% = PrimitiveRoot(5)? = 22

10.7 AbsInt

AbsInt( n )

AbsInt returns the absolute value of the integer n, i.e., n if n is positive, -n if n is negative
and 0 if n is 0 (see 10.8).

gap> AbsInt( 33 );

33

gap> AbsInt( -214378 );
214378

gap> AbsInt( 0 );

0

10.8 SignlInt

SignInt( obj )

SignInt returns the sign of the integer obj, i.e., 1 if 0bj is positive, -1 if 0bj is negative and
0 if obj is 0 (see 10.7).

gap> SignInt( 33 );
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1

gap> SignInt( -214378 );
-1

gap> SignInt( 0 );

0

10.9 ChineseRem

ChineseRem( moduli, residues )

ChineseRem returns the combination of the residues modulo the moduli, i.e., the unique
integer ¢ from [0..Lcm(moduli)-1] such that ¢ = residues[i] modulo moduli[i] for all
i, if it exists. If no such combination exists ChineseRem signals an error.

Such a combination does exist if and only if
residues [i1]=residues [k] mod Ged(moduli[i] , moduli[k]) for every pair i, k. Note that
this implies that such a combination exists if the moduli are pairwise relatively prime. This
is called the Chinese remainder theorem.

gap> ChineseRem( [ 2, 3, 5, 71, [ 1, 2, 3, 41 );

53

gap> ChineseRem( [ 6, 10, 14 1, [ 1, 3, 51 );

103

gap> ChineseRem( [ 6, 10, 141, [ 1, 2, 31 );

Error, the residues must be equal modulo 2

10.10 LoglInt

LogInt( n, base )

LogInt returns the integer part of the logarithm of the positive integer n with respect to the
positive integer base, i.e., the largest positive integer ezp such that base®”? <= n. LogInt
will signal an error if either n or base is not positive.

gap> LogInt( 1030, 2 );

10 # 210 =1024
gap> LogInt( 1, 10 );
0

10.11 RootInt

RootInt( n )
RootInt( n, k )

RootInt returns the integer part of the kth root of the integer n. If the optional integer
argument k is not given it defaults to 2, i.e., RootInt returns the integer part of the square
root in this case.

If n is positive RootInt returns the largest positive integer r such that r* <= n. If n is
negative and k is odd RootInt returns ~-RootInt( -n, k£ ). If n is negative and k is even
RootInt will cause an error. RootInt will also cause an error if k£ is 0 or negative.

gap> RootInt( 361 );
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19

gap> RootInt( 2 * 10712 );
1414213

gap> RootInt( 17000, 5 );
7 # 75 =16807

10.12 SmallestRootInt

SmallestRootInt( n )
SmallestRootInt returns the smallest root of the integer n.

The smallest root of an integer n is the integer r of smallest absolute value for which a
positive integer k exists such that n = r*.

gap> SmallestRootInt( 2730 );

2

gap> SmallestRootInt( -(2730) );
-4 # note that (—2)30 = +(239)
gap> SmallestRootInt( 279936 );

6

gap> LogInt( 279936, 6 );

7

gap> SmallestRootInt( 1001 );

1001

SmallestRootInt can be used to identify and decompose powers of primes as is demon-
strated in the following example (see 10.17)

p := SmallestRootInt( q ); n := LogInt( q, p );
if not IsPrimeInt(p) then Error("GF: <g> must be a primepower"); fi;

10.13 Set Functions for Integers

As already mentioned in the first section of this chapter, Integers is the domain of all
integers. Thus in principle all set theoretic functions, for example Intersection, Size, and
so on can be applied to this domain. This seems generally of little use.

gap> Intersection( Integers, [ 0, 1/2, 1, 3/2 1 );
£o, 1]
gap> Size( Integers );
"infinity"
Random( Integers )
This seems to be the only useful domain function that can be applied to the domain
Integers. It returns pseudo random integers between -10 and 10 distributed according
to a binomial distribution.
gap> Random( Integers );
1
gap> Random( Integers );
-4
To generate uniformly distributed integers from a range, use the construct Random( [ low
high 1 ).
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10.14 Ring Functions for Integers

As was already noted in the introduction to this chapter the integers form a Euclidean ring,
so all ring functions (see chapter 5) are applicable to the integers. This section comments
on the implementation of those functions for the integers and tells you how you can call the
corresponding functions directly, for example to save time.

IsPrime( Integers, n )

This is implemented by IsPrimeInt, which you can call directly to save a little bit of time
(see 10.16).

Factors( Integers, n )

This is implemented as by FactorsInt, which you can call directly to save a little bit of
time (see 10.20).

EuclideanDegree( Integers, n )

The Euclidean degree of an integer is of course simply the absolute value of the integer.
Calling AbsInt directly will be a little bit faster.

EuclideanRemainder( Integers, n, m )

This is implemented as RemInt( 7, m ), which you can use directly to save a lot of time.
EuclideanQuotient( Integers, n, m )

This is implemented as QuoInt( n, m ), which you can use directly to save a lot of time.
QuotientRemainder( Integers, n, m )

This is implemented as [ QuoInt(n,m), RemInt(n,m) ], which you can use directly to
save a lot of time.

QuotientMod( Integers, nl, n2, m )
This is implemented as (n1 / n2) mod m, which you can use directly to save a lot of time.
PowerMod( Integers, n, e, m )

This is implemented by PowerModInt, which you can call directly to save a little bit of
time. Note that using n ~ e mod m will generally be slower, because it can not reduce
intermediate results like PowerMod.

Ged( Integers, ni, n2.. )

This is implemented by GedInt, which you can call directly to save a lot of time. Note that
GecdInt takes only two arguments, not several as Ged does.

Gecdex( nl1, n2 )
Gcdex returns a record. The component ged is the ged of nf and n2.

The components coeffl and coeff2 are integer cofactors such that

g.gcd = g.coefflxnl + g.coeff2x*n2.

If n1 and n2 both are nonzero, AbsInt( g.coeffl ) is less than or equal to AbsInt(n2)
/ (2xg.gcd) and AbsInt( g.coeff2 ) isless than or equal to AbsInt(ni) / (2*xg.gcd).

The components coeff3 and coeff4 are integer cofactors such that
0 = g.coeff3*nl + g.coeffd*n2.
If n1 or n2 or are both nonzero coeff3is -n2 / g.gcd and coeffd is ni / g.gcd.
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The coefficients always form a unimodular matrix, i.e., the determinant
g.coeffl*g.coeff4 - g.coeff3*g.coeff2

is 1 or -1.

gap> Gedex( 123, 66 );

rec(
ged := 3,
coeffl =7,
coeff2 := -13,
coeff3 := -22,
coeffd := 41 )

# 3 =T7%123 - 13%66, 0 = -22*123 + 41*66
gap> Gedex( 0, -3 );

rec(
ged := 3,
coeffl := 0,
coeff2 := -1,
coeff3 := 1,

coeffd := 0 )
gap> Gedex( 0, 0 );
rec(

ged := 0,

coeffl :=1

coeff2 := 0

coeff3 := 0,

coeffd := 1

Lem( Integers, nl, n2.. )

This is implemented as LcmInt, which you can call directly to save a little bit of time. Note
that LemInt takes only two arguments, not several as Lcm does.

10.15 Primes

Primes[ n ]
Primes is a set, i.e., a sorted list, of the 168 primes less than 1000.

Primes is used in IsPrimeInt (see 10.16) and FactorsInt (see 10.20) to cast out small
prime divisors quickly.

gap> Primes[1];

2

gap> Primes[100];

541

10.16 IsPrimelnt

IsPrimeInt( n )

IsPrimeInt returns false if it can prove that n is composite and true otherwise. By
convention IsPrimeInt(0) = IsPrimeInt(1) = false and we define IsPrimeInt( -n )
= IsPrimeInt( n ).



10.17. ISPRIMEPOWERINT 367

IsPrimeInt will return true for all prime n. IsPrimeInt will return false for all composite
n < 10'3 and for all composite n that have a factor p < 1000. So for integers n < 103,
IsPrimeInt is a proper primality test. It is conceivable that IsPrimeInt may return true
for some composite n > 10'2, but no such n is currently known. So for integers n > 103,
IsPrimelInt is a probable-primality test. If composites that fool IsPrimeInt do exist, they
would be extremly rare, and finding one by pure chance is less likely than finding a bug in
GAP3.

IsPrimelInt is a deterministic algorithm, i.e., the computations involve no random numbers,
and repeated calls will always return the same result. IsPrimeInt first does trial divisions
by the primes less than 1000. Then it tests that n is a strong pseudoprime w.r.t. the base 2.
Finally it tests whether n is a Lucas pseudoprime w.r.t. the smallest quadratic nonresidue
of n. A better description can be found in the comment in the library file integer.g.
The time taken by IsPrimeInt is approximately proportional to the third power of the
number of digits of n. Testing numbers with several hundreds digits is quite feasible.

gap> IsPrimeInt( 2731 - 1 );

true

gap> IsPrimeInt( 10742 + 1 );

false

10.17 IsPrimePowerlInt

IsPrimePowerInt( n )
IsPrimePowerInt returns true if the integer n is a prime power and false otherwise.

n is a prime power if there exists a prime p and a positive integer 4 such that p' = n. If
n is negative the condition is that there must exist a negative prime p and an odd positive
integer ¢ such that p* =n. 1 and -1 are not prime powers.

Note that IsPrimePowerInt uses SmallestRootInt (see 10.12) and a probable-primality
test (see 10.16).

gap> IsPrimePowerInt( 3175 );

true

gap> IsPrimePowerInt( 27°31-1 );

true # 231 — 1 is actually a prime

gap> IsPrimePowerInt( 27°63-1 );

false

gap> Filtered( [-10..10], IsPrimePowerInt );
[ -8, -7, -5, -3, -2, 2, 3, 4, 5,7, 8, 9]

10.18 NextPrimelnt

NextPrimeInt( n )
NextPrimeInt returns the smallest prime which is strictly larger than the integer n.
Note that NextPrimeInt uses a probable-primality test (see 10.16).

gap> NextPrimeInt( 541 );
547

gap> NextPrimeInt( -1 );
2
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10.19 PrevPrimelnt

PrevPrimeInt( n )
PrevPrimeInt returns the largest prime which is strictly smaller than the integer n.
Note that PrevPrimeInt uses a probable-primality test (see 10.16).

gap> PrevPrimeInt( 541 );
523

gap> PrevPrimeInt( 1 );
-2

10.20 FactorsInt

FactorsInt( n )

FactorsInt returns a list of the prime factors of the integer n. If the ith power of a prime
divides n this prime appears i times. The list is sorted, that is the smallest prime factors
come first. The first element has the same sign as n, the others are positive. For any integer
n it holds that Product ( FactorsInt( n ) ) = n.

Note that FactorsInt uses a probable-primality test (see 10.16). Thus FactorsInt might
return a list which contains composite integers.

The time taken by FactorsInt is approximately proportional to the square root of the
second largest prime factor of n, which is the last one that FactorsInt has to find, since
the largest factor is simply what remains when all others have been removed. Thus the time
is roughly bounded by the fourth root of n. FactorsInt is guaranteed to find all factors
less than 10® and will find most factors less than 10'°. If n contains multiple factors larger
than that FactorsInt may not be able to factor n and will then signal an error.

gap> FactorsInt( -Factorial(6) );

[ -2, 2,2,2,3,3,5]

gap> Set( FactorsInt( Factorial(13)/11 ) );

[2,3,5,7,13]

gap> FactorsInt( 2763 - 1 );

[7, 7, 73, 127, 337, 92737, 649657 ]

gap> FactorsInt( 10742 + 1 );

[ 29, 101, 281, 9901, 226549, 121499449, 4458192223320340849 ]

10.21 Divisorslnt

DivisorsInt( n )

DivisorsInt returns a list of all positive divisors of the integer n. The list is sorted, so
it starts with 1 and ends with n. We define DivisorsInt( -n ) = DivisorsInt( n ).
Since the set of divisors of 0 is infinite calling DivisorsInt( O ) causes an error.

DivisorsInt calls FactorsInt (see 10.20) to obtain the prime factors. Sigma (see 10.22)
computes the sum, Tau (see 10.23) the number of positive divisors.

gap> DivisorsInt( 1 );
(1]
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gap> DivisorsInt( 20 );
[1, 2, 4, 5, 10, 20 1]
gap> DivisorsInt( 541 );
[ 1, 541 ]

10.22 Sigma

Sigma( n )
Sigma returns the sum of the positive divisors (see 10.21) of the integer n.
Sigma is a multiplicative arithmetic function, i.e., if n and m are relatively prime we have
o(nm) = o(n)o(m). Together with the formula o(p¢) = (p¢*! — 1)/(p — 1) this allows you
to compute o(n).
Integers n for which o(n) = 2n are called perfect. Even perfect integers are exactly of the
form 27~1(2" — 1) where 2" — 1 is prime. Primes of the form 2" — 1 are called Mersenne
primes, the known ones are obtained for n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127,
521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497,
86243, 110503, 132049, 216091, 756839, and 859433. It is not known whether odd perfect
integers exist, however [BC89] show that any such integer must have at least 300 decimal
digits.
Sigma usually spends most of its time factoring n (see 10.20).

gap> Sigma( 0 );

Error, Sigma: <n> must not be 0

gap> Sigma( 1 );

1

gap> Sigma( 1009 );

1010 # thus 1009 is a prime

gap> Sigma( 8128 ) = 2%8128;

true # thus 8128 is a perfect number
10.23 Tau
Tau( n )

Tau returns the number of the positive divisors (see 10.21) of the integer n.

Tau is a multiplicative arithmetic function, i.e., if n and m are relatively prime we have
7(nm) = 7(n)T(m). Together with the formula 7(p¢) = e + 1 this allows us to compute
7(n).
Tau usually spends most of its time factoring n (see 10.20).

gap> Tau( 0 );

Error, Tau: <n> must not be O

gap> Tau( 1 );

1

gap> Tau( 1013 );

2 # thus 1013 is a prime

gap> Tau( 8128 );

14

gap> Tau( 36 );

9 # 7(n) is odd if and only if n is a perfect square
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10.24 MoebiusMu

MoebiusMu( n )

MoebiusMu computes the value of the Moebius function for the integer n. This is 0 for
integers which are not squarefree, i.e., which are divisible by a square r2. Otherwise it is 1
if » has an even number and -1 if n has an odd number of prime factors.

The importance of u stems from the so called inversion formula. Suppose f(n) is a function
defined on the positive integers and let g(n) = 3_,,, f(d). Then f(n) = 3_,, u(d)g(n/d).
As a special case we have ¢(n) = 3_,, p(d)n/d since n =3, (d) (see 11.2).

MoebiusMu usually spends all of its time factoring n (see 10.20).

gap> MoebiusMu( 60 );
0
gap> MoebiusMu( 61 );
-1
gap> MoebiusMu( 62 );
1



Chapter 11

Number Theory

The integers relatively prime to m form a group under multiplication modulo m, called the
prime residue group. This chapter describes the functions that deal with this group.

The first section describes the function that computes the set of representatives of the group
(see 11.1).

The next sections describe the functions that compute the size and the exponent of the
group (see 11.2 and 11.3).

The next section describes the function that computes the order of an element in the group
(see 11.4).

The next section describes the functions that test whether a residue generates the group or
computes a generator of the group, provided it is cyclic (see 11.5, 11.6).

The next section describes the functions that test whether an element is a square in the
group (see 11.7 and 11.8).

The next sections describe the functions that compute general roots in the group (see 11.9
and 11.10).

All these functions are in the file LIBNAME/ "numtheor.g".

11.1 PrimeResidues

PrimeResidues( m )

PrimeResidues returns the set of integers from the range 0..Abs(m) — 1 that are relatively
prime to the integer m.

Abs(m) must be less than 228, otherwise the set would probably be too large anyhow.

The integers relatively prime to m form a group under multiplication modulo m, called the
prime residue group. ¢(m) (see 11.2) is the order of this group, A(m) (see 11.3) the
exponent. If and only if m is 2, 4, an odd prime power p€, or twice an odd prime power 2p€,
this group is cyclic. In this case the generators of the group, i.e., elements of order ¢(m),
are called primitive roots (see 11.5, 11.6).

gap> PrimeResidues( 0 );
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L]

gap> PrimeResidues( 1 );

(0]

gap> PrimeResidues( 20 );

[1, 3, 7,9, 11, 13, 17, 19 ]

11.2 Phi

Phi( m )

Phi returns the value of the Euler totient function ¢(m) for the integer m. ¢(m) is
defined as the number of positive integers less than or equal to m that are relatively prime
to m.

e1—1

Suppose that m = p{'ps?...pp". Then ¢(m) is p7* ™ (p1 — Dps>~H(pa — 1)...pi’“_1(pk —1). It
follows that m is a prime if and only if ¢(m) =m — 1.

The integers relatively prime to m form a group under multiplication modulo m, called the
prime residue group. It can be computed with PrimeResidues (see 11.1). ¢(m) is the
order of this group, A(m) (see 11.3) the exponent. If and only if m is 2, 4, an odd prime
power p®, or twice an odd prime power 2p®, this group is cyclic. In this case the generators
of the group, i.e., elements of order ¢(m), are called primitive roots (see 11.5, 11.6).

Phi usually spends most of its time factoring m (see 10.20).

gap> Phi( 12 );

4

gap> Phi( 2713-1 );

8190 # which proves that 23 — 1 is a prime
gap> Phi( 2715-1 );

27000

11.3 Lambda

Lambda( m )

Lambda returns the exponent of the group of relatively prime residues modulo the integer
m.

A(m) is the smallest positive integer ! such that for every a relatively prime to m we have
a' = 1 mod m. Fermat’s theorem asserts a®™ = 1 mod m, thus A(m) divides ¢(m) (see
11.2).

Carmichael’s theorem states that A can be computed as follows A(2) = 1, A(4) = 2 and
A2¢) =272 if 3 <=, A\(p©) = (p — 1)p*~ ! (= ¢(p°)) if p is an odd prime, and \(nm) =
Lem(A(n), A(m)) if n,m are relatively prime.

Composites for which A(m) divides m — 1 are called Carmichaels. If 6k + 1, 12k + 1 and
18k +1 are primes their product is such a number. It is believed but unproven that there are

infinitely many Carmichaels. There are only 1547 Carmichaels below 10° but 455052511
primes.

The integers relatively prime to m form a group under multiplication modulo m, called the
prime residue group. It can be computed with PrimeResidues (see 11.1). ¢(m) (see
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11.2) is the order of this group, A(m) the exponent. If and only if m is 2, 4, an odd prime
power p°, or twice an odd prime power 2p°, this group is cyclic. In this case the generators
of the group, i.e., elements of order ¢(m), are called primitive roots (see 11.5, 11.6).

Lambda usually spends most of its time factoring m (see 10.20).

gap> Lambda( 10 );

4

gap> Lambda( 30 );

4

gap> Lambda( 561 );

80 # 561 is the smallest Carmichael number

11.4 OrderMod

OrderMod( n, m )

OrderMod returns the multiplicative order of the integer n modulo the positive integer m.
If n is less than O or larger than m it is replaced by its remainder. If n and m are not
relatively prime the order of n is not defined and OrderMod will return 0.

If n and m are relatively prime the multiplicative order of n modulo m is the smallest
positive integer i such that n* = 1 mod m. Elements of maximal order are called primitive
roots (see 11.2).

OrderMod usually spends most of its time factoring m and ¢(m) (see 10.20).
gap> OrderMod( 2, 7 );

3
gap> OrderMod( 3, 7 );
6 # 3 is a primitive root modulo 7

11.5 IsPrimitiveRootMod

IsPrimitiveRootMod( », m )

IsPrimitiveRootMod returns true if the integer r is a primitive root modulo the positive
integer m and false otherwise. If r is less than O or larger than m it is replaced by its
remainder.

The integers relatively prime to m form a group under multiplication modulo m, called the
prime residue group. It can be computed with PrimeResidues (see 11.1). ¢(m) (see 11.2) is
the order of this group, A(m) (see 11.3) the exponent. If and only if m is 2, 4, an odd prime
power p®, or twice an odd prime power 2p®, this group is cyclic. In this case the generators
of the group, i.e., elements of order ¢(m), are called primitive roots (see also 11.6).

gap> IsPrimitiveRootMod( 2, 541 );

true

gap> IsPrimitiveRootMod( -539, 541 );

true # same computation as above

gap> IsPrimitiveRootMod( 4, 541 );

false

gap> ForAny( [1..29], r -> IsPrimitiveRootMod( r, 30 ) );
false # there does not exist a primitive root modulo 30
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11.6 PrimitiveRootMod

PrimitiveRootMod( m )
PrimitiveRootMod( m, start )

PrimitiveRootMod returns the smallest primitive root modulo the positive integer m and
false if no such primitive root exists. If the optional second integer argument start is given
PrimitiveRootMod returns the smallest primitive root that is strictly larger than start.

The integers relatively prime to m form a group under multiplication modulo m, called the
prime residue group. It can be computed with PrimeResidues (see 11.1). ¢(m) (see 11.2) is
the order of this group, A(m) (see 11.3) the exponent. If and only if m is 2, 4, an odd prime
power p®, or twice an odd prime power 2p®, this group is cyclic. In this case the generators
of the group, i.e., elements of order ¢(m), are called primitive roots (see also 11.5).

gap> PrimitiveRootMod( 409 );

21 # largest primitive root for a prime less than 2000
gap> PrimitiveRootMod( 541, 2 );

10

gap> PrimitiveRootMod( 337, 327 );

false # 327 is the largest primitive root mod 337
gap> PrimitiveRootMod( 30 );

false # the exists no primitive root modulo 30

11.7 Jacobi

Jacobi( n, m )

Jacobi returns the value of the Jacobi symbol of the integer n modulo the integer m.
Suppose that m = pips..pr as a product of primes, not necessarily distinct. Then for n
relatively prime to m the Jacobi symbol is defined by J(n/m) = L(n/p1)L(n/p2)..L(n/pk),

where L(n/p) is the Legendre symbol (see 11.8). By convention J(n/1) = 1. If the ged of
n and m is larger than 1 we define J(n/m) = 0.

If n is an quadratic residue modulo m, i.e., if there exists an r such that »?> = n mod m
then J(n/m) = 1. However J(n/m) = 1 implies the existence of such an r only if m is a
prime.

Jacobi is very efficient, even for large values of n and m, it is about as fast as the Euclidean
algorithm (see 5.26).

gap> Jacobi( 11, 35 );

1 # 92 =11 mod 35

gap> Jacobi( 6, 35 );

-1 # thus there is no r such that r?> = 6 mod 35
gap> Jacobi( 3, 35 );

1 # even though there is no r with 72 = 3 mod 35

11.8 Legendre

Legendre( n, m )
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Legendre returns the value of the Legendre symbol of the integer n modulo the positive
integer m.

The value of the Legendre symbol L(n/m) is 1 if n is a quadratic residue modulo m, i.e.,
if there exists an integer r such that r> = n mod m and -1 otherwise.

If a root of n exists it can be found by RootMod (see 11.9).

While the value of the Legendre symbol usually is only defined for m a prime, we have
extended the definition to include composite moduli too. The Jacobi symbol (see 11.7) is
another generalization of the Legendre symbol for composite moduli that is much cheaper
to compute, because it does not need the factorization of m (see 10.20).

gap> Legendre( 5, 11 );

1 # 42 =5mod 11

gap> Legendre( 6, 11 );

-1 # thus there is no r such that 2> = 6 mod 11
gap> Legendre( 3, 35 );

-1 # thus there is no r such that 72 = 3 mod 35

11.9 RootMod

RootMod( n, m )
RootMod( n, k, m )

In the first form RootMod computes a square root of the integer n modulo the positive integer
m, i.e., an integer r such that > = n mod m. If no such root exists RootMod returns false.

A root of n exists only if Legendre(n,m) = 1 (see 11.8). If m has k different prime factors
then there are 2F different roots of n mod m. It is unspecified which one RootMod returns.
You can, however, use RootsUnityMod (see 11.10) to compute the full set of roots.

In the second form RootMod computes a kth root of the integer n modulo the positive integer
m, i.e., an integer r such that ¥ = n mod m. If no such root exists RootMod returns false.

In the current implementation £ must be a prime.

RootMod is efficient even for large values of m, actually most time is usually spent factoring
m (see 10.20).

gap> RootMod( 64, 1009 );

1001 # note RootMod does not return 8 in this case but -8
gap> RootMod( 64, 3, 1009 );

518

gap> RootMod( 64, 5, 1009 );

656

gap> List( RootMod( 64, 1009 ) * RootsUnityMod( 1009 ),
> X -> x mod 1009 );

[ 1001, 8] # set of all square roots of 64 mod 1009

11.10 RootsUnityMod

RootsUnityMod( m )
RootsUnityMod( k, m )
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In the first form RootsUnityMod computes the square roots of 1 modulo the integer m, i.e.,
the set of all positive integers r less than n such that 2 = 1 mod m.

In the second form RootsUnityMod computes the kth roots of 1 modulo the integer m, i.e.,
the set of all positive integers r less than n such that ¥ = 1 mod m.

In general there are k™ such roots if the modulus m has n different prime factors p such
that p = 1 mod k. If k2 divides m then there are k™! such roots; and especially if k = 2
and 8 divides m there are 2”2 such roots.

If you are interested in the full set of roots of another number instead of 1 use RootsUnityMod
together with RootMod (see 11.9).

In the current implementation & must be a prime.

RootsUnityMod is efficient even for large values of m, actually most time is usually spent
factoring m (see 10.20).

gap> RootsUnityMod(7%31);

[ 1, 92, 125, 216 ]

gap> RootsUnityMod(3,7*31);

[ 1, 25, 32, 36, 67, 149, 156, 191, 211 1]

gap> RootsUnityMod(5,7*31);

[ 1, 8, 64, 78, 190 ]

gap> List( RootMod( 64, 1009 ) * RootsUnityMod( 1009 ),
> x -> x mod 1009 );

[ 1001, 81 # set of all square roots of 64 mod 1009
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Rationals

The rationals form a very important field. On the one hand it is the quotient field of the
integers (see 10). On the other hand it is the prime field of the fields of characteristic zero
(see 15).

The former comment suggests the representation actually used. A rational is represented as
a pair of integers, called numerator and denominator. Numerator and denominator are
reduced, i.e., their greatest common divisor is 1. If the denominator is 1, the rational is
in fact an integer and is represented as such. The numerator holds the sign of the rational,
thus the denominator is always positive.
Because the underlying integer arithmetic can compute with arbitrary size integers, the
rational arithmetic is always exact, even for rationals whose numerators and denominators
have thousands of digits.

gap> 2/3;

2/3

gap> 66/123;

22/41 # numerator and denominator are made relatively prime

gap> 17/-13;

-17/13 # the numerator carries the sign

gap> 121/11;

11 # rationals with denominator 1 (after cancelling) are integers
The first sections of this chapter describe the functions that test whether an object is a
rational (see 12.1), and select the numerator and denominator of a rational (see 12.2, 12.3).

The next sections describe the rational operations (see 12.4, and 12.5).

The GAP3 object Rationals is the field domain of all rationals. All set theoretic functions
are applicable to this domain (see chapter 4 and 12.6). Since Rationals is a field all field
functions are also applicable to this domain and its elements (see chapter 6 and 12.7).

All external functions are defined in the file "LIBNAME/rational.g".

12.1 IsRat

IsRat( obj )

377
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IsRat returns true if obj, which can be an arbitrary object, is a rational and false oth-
erwise. Integers are rationals with denominator 1, thus IsRat returns true for integers.
IsRat will signal an error if obj is an unbound variable or a procedure call.

gap> IsRat( 2/3 );

true

gap> IsRat( 17/-13 );

true

gap> IsRat( 11 );

true

gap> IsRat( IsRat );

false # IsRat is a function, not a rational

12.2 Numerator

Numerator( rat )

Numerator returns the numerator of the rational rat. Because the numerator holds the
sign of the rational it may be any integer. Integers are rationals with denominator 1, thus
Numerator is the identity function for integers.

gap> Numerator( 2/3 );

2
gap> Numerator( 66/123 );
22 # numerator and denominator are made relatively prime

gap> Numerator( 17/-13 );

-17 # the numerator holds the sign of the rational
gap> Numerator( 11 );

11 # integers are rationals with denominator 1

Denominator (see 12.3) is the counterpart to Numerator.

12.3 Denominator

Denominator( rat )

Denominator returns the denominator of the rational rat. Because the numerator holds the
sign of the rational the denominator is always a positive integer. Integers are rationals with
the denominator 1, thus Denominator returns 1 for integers.

gap> Denominator( 2/3 );

3
gap> Denominator( 66/123 );
41 # numerator and denominator are made relatively prime

gap> Denominator( 17/-13 );

13 # the denominator holds the sign of the rational
gap> Denominator( 11 );

1 # integers are rationals with denominator 1

Numerator (see 12.2) is the counterpart to Denominator.
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12.4 Comparisons of Rationals

ql = q2

ql <> g2

The equality operator = evaluates to true if the two rationals ¢! and ¢2 are equal and to
false otherwise. The inequality operator <> evaluates to true if the two rationals g1 and
q2 are not equal and to false otherwise.

gap> 2/3 = -4/-6;
true

gap> 66/123 <> 22/41;
false

gap> 17/13 = 11;
false

ql < ¢2

ql <= ¢2

ql > q2

ql >= q2

The operators <, <=, >, and => evaluate to true if the rational ¢ is less than, less than or
equal to, greater than, and greater than or equal to the rational ¢2 and to false otherwise.

One rational g1 = n1/d; is less than another g = no/ds if and only if n1ds < nady. This
definition is of course only valid because the denominator of rationals is always defined to be
positive. This definition also extends to the comparison of rationals with integers, which are
interpreted as rationals with denominator 1. Rationals can also be compared with objects
of other types. They are smaller than objects of any other type by definition.

gap> 2/3 < 22/41;
false
gap> -17/13 < 11;
true

12.5 Operations for Rationals

ql + q2

ql - q2

ql * q2

ql / q2

The operators +, -, * and / evaluate to the sum, difference, product, and quotient of the two
rationals ¢ and ¢2. For the quotient / ¢2 must of course be nonzero, otherwise an error is
signalled. Either operand may also be an integer i, which is interpreted as a rational with
denominator 1. The result of those operations is always reduced. If, after the reduction,
the denominator is 1, the rational is in fact an integer, and is represented as such.

gap> 2/3 + 4/5;

22/15

gap> 7/6 * 2/3;

7/9 # mnote how the result is cancelled
gap> 67/6 - 1/6;
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11 # the result is an integer

q " i

The powering operator ~ returns the i-th power of the rational ¢. ¢ must be an integer. If
the exponent ¢ is zero, ¢~ is defined as 1; if ¢ is positive, ¢ ¢ is defined as the i-fold product
g*q*. .*q; finally, if 4 is negative, ¢~ is defined as (1/¢) "-i. In this case ¢ must of course
be nonzero.

gap> (2/3) = 3;

8/27

gap> (-17/13) =~ -1;

-13/17 # mnote how the sign switched
gap> (1/2) = -2;

4

12.6 Set Functions for Rationals

As was already mentioned in the introduction of this chapter the GAP3 object Rationals
is the domain of all rationals. All set theoretic functions, e.g., Intersection and Size, are
applicable to this domain.

gap> Intersection( Rationals, [ E(4)°0, E(4)"1, E(4)"2, E(4)"3 1 );
[ -1, 1] # E(4) is the complex square root of -1

gap> Size( Ratiomnals );

"infinity"

This does not seem to be very useful.

12.7 Field Functions for Rationals

As was already mentioned in the introduction of this chapter the GAP3 object Rationals
is the field of all rationals. All field functions, e.g., Norm and MinPol are applicable to
this domain and its elements. However, since the field of rationals is the prime field, all
those functions are trivial. Therefore, Conjugates( Rationals, ¢ ) returns [ ¢ 1, Norm(
Rationals, ¢ ) and Trace( Rationals, ¢ ) return ¢, and CharPol( Rationals, ¢ )
and MinPol( Rationals, ¢ ) both return [ -¢, 1 ].



Chapter 13

Cyclotomics

GAP3 allows computations in abelian extension fields of the rational field @, i.e., fields with
abelian Galois group over (). These fields are described in chapter 15. They are subfields
of cyclotomic fields @Q,, = Q(e,,) where e, = e s a primitive n—th root of unity. Their
elements are called cyclotomics.

The internal representation of a cyclotomic does not refer to the smallest number field but
the smallest cyclotomic field containing it (the so—called conductor). This is because it
is easy to embed two cyclotomic fields in a larger one that contains both, i.e., there is a
natural way to get the sum or the product of two arbitrary cyclotomics as element of a
cyclotomic field. The disadvantage is that the arithmetical operations are too expensive
to do arithmetics in number fields, e.g., calculations in a matrix ring over a number field.
But it suffices to deal with irrationalities in character tables (see 49). (And in fact, the
comfortability of working with the natural embeddings is used there in many situations
which did not actually afford it ...)

All functions that take a field extension as —possibly optional— argument, e.g., Trace or
Coefficients (see chapter 6), are described in chapter 15.

This chapter informs about
the representation of cyclotomics in GAP3 (see 13.1),
access to the internal data (see 13.7, 13.8)
integral elements of number fields (see 13.2, 13.3, 13.4),
characteristic functions (see 13.5, 13.6),
comparison and arithmetical operations of cyclotomics (see 13.9, 13.10),
functions concerning Galois conjugacy of cyclotomics (see 13.11, 13.13), or lists of
them (see 13.15, 13.16),
some special cyclotomics, as defined in [CCNT85] (see 13.12, 13.14)

The external functions are in the file LIBNAME/"cyclotom.g".

13.1 More about Cyclotomics

Elements of number fields (see chapter 15), cyclotomics for short, are arithmetical objects
like rationals and finite field elements; they are not implemented as records —like groups—
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or e.g. with respect to a character table (although character tables may be the main interest
for cyclotomic arithmetics).

ECn)

27

returns the primitive n-th root of unity e, = e™» . Cyclotomics are usually entered as
(and irrational cyclotomics are always displayed as) sums of roots of unity with rational
coefficients. (For special cyclotomics, see 13.12.)

gap> E(9); E(9)°3; E(6); E(12) / 3;

-E(9)"4-E(9)"7 # the root needs not to be an element of the base
E(3)

-E(3)"2

-1/3*E(12) "7

For the representation of cyclotomics one has to recall that the cyclotomic field @,, = Q(e,)
is a vector space of dimension ¢(n) over the rationals where ¢ denotes Euler’s phi-function
(see 11.2).

Note that the set of all n-th roots of unity is linearly dependent for n > 1, so multiplication
is not the multiplication of the group ring Q{e,); given a @Q-basis of @,, the result of the
multiplication (computed as multiplication of polynomials in e, using (e, )™ = 1) will be
converted to the base.

gap> E(5) * E(5)72; ( E(5) + E(5)74 ) * E(5)"2;
E(5)"3

E(5)+E(5)"3

gap> ( E(6) + E(5)74 ) * E(5);
-E(5)-E(5)"3-E(5)"4

Cyclotomics are always represented in the smallest cyclotomic field they are contained in.
Together with the choice of a fixed base this means that two cyclotomics are equal if and
only if they are equally represented.

Addition and multiplication of two cyclotomics represented in @),, and @Q,,, respectively, is
computed in the smallest cyclotomic field containing both: Qren(n,m). Conversely, if the
result is contained in a smaller cyclotomic field the representation is reduced to the minimal
such field.

The base, the base conversion and the reduction to the minimal cyclotomic field are described
in [Zum89], more about the base can be found in 15.9.

Since n must be a short integer, the maximal cyclotomic field implemented in GAP3 is
not really the field Q. The biggest allowed (though not very useful) n is 65535.

There is a global variable Cyclotomics in GAP3, a record that stands for the domain of all
cyclotomics (see chapter 15).

13.2 Cyclotomic Integers

A cyclotomic is called integral or cyclotomic integer if all coefficients of its minimal
polynomial are integers. Since the base used is an integral base (see 15.9), the subring
of cyclotomic integers in a cyclotomic field is formed by those cyclotomics which have not
only rational but integral coefficients in their representation as sums of roots of unity. For
example, square roots of integers are cyclotomic integers (see 13.12), any root of unity is a
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cyclotomic integer, character values are always cyclotomic integers, but all rationals which
are not integers are not cyclotomic integers. (See 13.6)

gap> ER( 5 ); # The square root of 5 is a cyclotomic
E(5)-E(5)"2-E(5)"3+E(5) "4 # integer, it has integral coefficients.
gap> 1/2 * ER( 5 ); # This is not a cyclotomic integer, ...
1/2%E(5)-1/2%E(5) "2-1/2*E(5) "3+1/2+E(5) "4

gap> 1/2 * ER( 5 ) - 1/2; # ...but this is one.

E(5)+E(5)"4
13.3 IntCyc

IntCyc( z )

returns the cyclotomic integer (see 13.2) with Zumbroich base coefficients (see 15.9) List (
zumb, x -> Int( x ) ) where zumb is the vector of Zumbroich base coeflicients of the
cyclotomic z; see also 13.4.

gap> IntCyc( E(5)+1/2%E(5)"2 ); IntCyc( 2/3*E(7)+3/2*E(4) );
E(5)
E(4)

13.4 RoundCyc

RoundCyc( z )

returns the cyclotomic integer (see 13.2) with Zumbroich base coefficients (see 15.9) List (
zumb, x => Int( x+1/2 ) ) where zumb is the vector of Zumbroich base coefficients of
the cyclotomic z; see also 13.3.

gap> RoundCyc( E(5)+1/2*E(5)"2 ); RoundCyc( 2/3+E(7)+3/2+E(4) );
E(5)+E(5)"2

-2+E(28) "3+E(28) "4-2*E(28) "11-2+E(28) "15-2*E(28) "19-2+E(28) "23
-2%E(28) ~27

13.5 IsCyc

IsCyc( obj )

returns true if obj is a cyclotomic, and false otherwise. Will signal an error if obj is an
unbound variable.

gap> IsCyc( 0 ); IsCyc( E(3) ); IsCyc( 1/2 * E(3) ); IsCyc( IsCyc );
true
true
true
false

IsCyc is an internal function.

13.6 IsCyclnt

IsCycInt( obj )
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returns true if obj is a cyclotomic integer (see 13.2), false otherwise. Will signal an error
if 0bj is an unbound variable.

gap> IsCycInt( 0 ); IsCycInt( E(3) ); IsCycInt( 1/2 * E(3) );
true
true
false

IsCycInt is an internal function.

13.7 NofCyc

NofCyc( z )
NofCyc( list )

returns the smallest positive integer n for which the cyclotomic z is resp. for which all
cyclotomics in the list list are contained in Q,, = Qe+ ) = Q(E(n)).

gap> NofCyc( 0 ); NofCyc( E(10) ); NofCyc( E(12) );
1
5
12

NofCyc is an internal function.

13.8 CoeffsCyc

CoeffsCyc( z, n )

If z is a cyclotomic which is contained in @), CoeffsCyc( z, n ) returns a list ¢fs of length
n where the entry at position ¢ is the coefficient of E(n)F1 in the internal representation
of z as element of the cyclotomic field Q,, (see 13.1, 15.9): z = ¢fs[1] + ¢fs[2] E(n)" + ... +
cfs[n] E(n)" "

Note that all positions which do not belong to base elements of @,, contain zeroes.

gap> CoeffsCyc( E(5), 5 ); CoeffsCyc( E(5), 15 );
[o, 1, 0,0,0]1

(o, o,o0,o0,0,0,0,0,-1,0,0,0,0,-1,0
gap> CoeffsCyc( 1+E(3), 9 ); CoeffsCyc( E(5), 7
[0, 0, 0, 0,0, 0, -1, 0, 0]

Error, no representation of <z> in 7th roots of unity

]
) b
CoeffsCyc calls the internal function COEFFSCYC:

COEFFSCYC( z )
is equivalent to CoeffsCyc( z, NofCyc( z ) ), see 13.7.

13.9 Comparisons of Cyclotomics

To compare cyclotomics, the operators <, <=, =, >=, > and <> can be used, the result will
be true if the first operand is smaller, smaller or equal, equal, larger or equal, larger, or
inequal, respectively, and false otherwise.
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Cyclotomics are ordered as follows: The relation between rationals is as usual, and rationals
are smaller than irrational cyclotomics. For two irrational cyclotomics z1, z2 which lie in dif-
ferent minimal cyclotomic fields, we have z1 < 22 if and only if NofCyc(z1) < NofCyc(z2));
if NofCyc(z1) = NofCyc(22)), that one is smaller that has the smaller coefficient vector, i.e.,
z1 < 22 if and only if COEFFSCYC(z1) < COEFFSCYC(22).

You can compare cyclotomics with objects of other types; all objects which are not cyclo-
tomics are larger than cyclotomics.

gap> E(5) < E(6); # the latter value lies in Q3

false

gap> E(3) < E(3)°2; # both lie in @3, so compare coefficients
false

gap> 3 < E(3); E(5) < E(7);

true

true

gap> E(728) < (1,2);

true

13.10 Operations for Cyclotomics

The operators +, —, *, / are used for addition, subtraction, multiplication and division of
two cyclotomics; note that division by 0 causes an error.

+ and - can also be used as unary operators;

~ is used for exponentiation of a cyclotomic with an integer; this is in general not equal to
Galois conjugation.

gap> E(5) + E(3); (E(5) + E(6)"4) ~ 2; E(5) / E(3); E(5) * E(3);

-E(15) "2-2*E(15) "8-E(15) "11-E(15) "13-E(15)"14

-2*E(5)-E(5) "2-E(5) "3-2%E(5) "4

E(15)"13

E(15)"8

13.11 GaloisCyc

GaloisCyc( z, k )

returns the cyclotomic obtained on raising the roots of unity in the representation of the
cyclotomic z to the k-th power. If z is represented in the field @Q,, and k is a fixed integer
relative prime to n, GaloisCyc( ., k ) acts as a Galois automorphism of @Q,, (see 15.8);
to get Galois automorphisms as functions, use 6.7 GaloisGroup.

gap> GaloisCyc( E(5) + E(5)74, 2 );

E(5)"2+E(5)"3

gap> GaloisCyc( E(5), -1 ); # the complex conjugate
E(5)"4

gap> GaloisCyc( E(5) + E(5)°4, -1 ); # this value is real
E(B)+E(5) "4

gap> GaloisCyc( E(15) + E(15)7°4, 3 );

E(5)+E(5)"4

GaloisCyc is an internal function.
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13.12 ATLAS irrationalities

EB( N ),ECC N ),...,EH( N ),

EI( N ),ER( N ),

EJ( N ),EK( N ),EL( N ),EM( N ),

EJ( N, d ),EK( N, d ),EL( N, d ),EM( N, d ),
ESC N ),ETC N ),...,EY( N ),

ESC N, d ),ETC N, d),...,EYC N, d ),

NKC N, k, d)

For N a positive integer, let z = E(N) = e2™/N  The following so-called atomic irrational-
ities (see [CCNT85, Chapter 7, Section 10]) can be entered by functions (Note that the
values are not necessary irrational.):

EB(N) = by = 1 ;V;ll 2’ (N =1mod 2)
EC(N) = v = % ;V;ll 2’ (N =1mod 3)
ED(N) = dy = 13702 (N=1mod4)
EE(N) = ev = % jV:_ll z° (N =1mod5)
EF(N) = fv = $3X05'%" (N =1mod6)
EG(N) = gv = 1 jv:_ll 2" (N=1mod7)
EH(N) hny = 3 ;\7:—11 2° (N =1mod 8)

(Note that in ¢y, ..., hn, N must be a prime.)

ER(N) = VN
EI(N) = iWN = -N

From a theorem of Gauss we know that

b L(-1+V/N) if N=1 mod4
NTUL—14iVN) if N=-1 mod4 ’

so VN can be (and in fact is) computed from by. If N is a negative integer then ER(N) =
EI(-N).

For given N, let ng = ni (V) be the first integer with multiplicative order exactly ¥ modulo
N, chosen in the order of preference

1,-1,2,-2,3, 3,4, —4, ... .

We have
EY(N) Yn = z+2" (n=ng)
EX(N) = z, = z+2"+ P (n =ns)
EW(N) = w, = z+2"+ 4 (n=ny)
EV(N) = v, = z+2"+ 4 4t (n=ns)
EUN) = u, = z+2"+2" +...42" (n=ng)
ET(N) = t, = z+42"+2" +...42"° (n=ny)
ES(N) S = 242"+ . +2"  (n=ng)
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EM(N) m, = z-—2z" (n=na)
EL(N) = I, = z-2"+ = (n=ny)
EK(N) = ky = z—2"+...—2" (n=ng)
EJ(N) Jun = z—am4 =2 (n =ng)

Let n,(cd) = n,(cd)(N ) be the d + 1-th integer with multiplicative order exactly k& modulo N,
chosen in the order of preference defined above; we write ng = nffo),njc = ng),n% = n,(f)

and so on. These values can be computed as NK(N ,k,d)= n,id)(N); if there is no integer
with the required multiplicative order, NK will return false.

The algebraic numbers

1 2 g
y;\] :yg\/')ayx/ :yg\/'))'"7‘r§\/71'/]<7a"'3.7§\7a.75\/73"'
are obtained on replacing ny, in the above definitions by n},ny,...; they can be entered as
EY(N,d) = yy
EX(N, d) 2
EI(N,d) = ji

gap> EW(16,3); EW(17,2); ER(3); EI(3); EY(5); EB(9);
0

E(17)+E(17) ~4+E(17) "13+E(17) 16

“E(12) "7+E(12) 11

E(3)-E(3)"2

E(5)+E(5)"4

1

13.13 StarCyc

StarCyc( z )

If z is an irrational element of a quadratic number field (i.e. if z is a quadratic irrationality),
StarCyc( z ) returns the unique Galois conjugate of z that is different from z; this is often
called zx (see 49.37). Otherwise false is returned.

gap> StarCyc( EB(5) ); StarCyc( E(5) );

E(5)"2+E(5)"3

false

13.14 Quadratic

Quadratic( z )
If z is a cyclotomic integer that is contained in a quadratic number field over the rationals,

it can be written as z = # with integers a, b, n and d, where d is either 1 or 2. In
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this case Quadratic( z ) returns a record with fields a, b, root, d and ATLAS where the
first four mean the integers mentioned above, and the last one is a string that is a (not
necessarily shortest) representation of z by by, im, or 7, for m = |root| (see 13.12).

If z is not a quadratic irrationality or not a cyclotomic integer, false is returned.

gap> Quadratic( EB(5) ); Quadratic( EB(27) );

rec(

a := -1,

b =1,

root := 5,

d := 2,

ATLAS := "b5" )
rec(

a := -1,

b := 3,

root := -3,

d := 2,

ATLAS := "1+3b3" )
gap> Quadratic(0); Quadratic( E(5) );
rec(

a :=0,

b :=0,

root := 1,

d :=1,

ATLAS := "O" )
false

13.15 GaloisMat

GaloisMat ( mat )

mat must be a matrix of cyclotomics (or possibly unknowns, see 17.1). The conjugate of a
row in mat under a particular Galois automorphism is defined pointwise. If mat consists of
full orbits under this action then the Galois group of its entries acts on mat as a permutation
group, otherwise the orbits must be completed before.

GaloisMat( mat ) returns a record with fields mat, galoisfams and generators:

mat
a list with initial segment mat (not a copy of mat); the list consists of full orbits
under the action of the Galois group of the entries of mat defined above. The last
entries are those rows which had to be added to complete the orbits; so if they were
already complete, mat and mat have identical entries.

galoisfams
a list that has the same length as mat; its entries are either 1, 0, -1 or lists:
galoisfams[i] = 1 means that mat[i] consists of rationals, i.e. [mat[i]] forms an
orbit.
galoisfams[i] = —1 means that mat[i] contains unknowns; in this case [mat[i]] is

regarded as an orbit, too, even if mat[i] contains irrational entries.
If galoisfams[i] = [l;,ls] is a list then mat[i] is the first element of its orbit in



13.16. RATIONALIZEDMAT 389

mat; /1 is the list of positions of rows which form the orbit, and I is the list of
corresponding Galois automorphisms (as exponents, not as functions); so we have
mat[l1[j]][k] = GaloisCyc(mat[i]|[k], l2[/])-

galoisfams[i] = 0 means that mat[i] is an element of a nontrivial orbit but not the
first element of it.

generators
a list of permutations generating the permutation group corresponding to the action
of the Galois group on the rows of mat.

Note that mat should be a set, i.e. no two rows should be equal. Otherwise only the first
row of some equal rows is considered for the permutations, and a warning is printed.

gap> GaloisMat( [ [ E(3), E(4) 11 );
rec(
mat := [ [ E(Q3Q), E4) 1, [ E(3), -E4) 1, [ E(d)"2, EM4 1,
[ E(3)"2, -EM4) 11,
galoisfams := [ [ [ 1, 2, 3,41, [, 7,5, 11711, 0,0, 01,

generators := [ (1,2)(3,4), (1,3)(2,4) 1)
gap> GaloisMat( [ [ 1, 1, 11, [ 1, E(®), E(3)"211);
rec(
mat := [ [ 1, 1, 11, [ 1, E(®), E®@)"21]1, [ 1, E(3)"2, E(3) 11,
galoisfams := [ 1, [ [ 2,31, [1, 211,01,
generators := [ (2,3) ] )

13.16 RationalizedMat

RationalizedMat ( mat )

returns the set of rationalized rows of mat, i.e. the set of sums over orbits under the action
of the Galois group of the elements of mat (see 13.15).

This may be viewed as a kind of trace operation for the rows.
Note that mat should be a set, i.e. no two rows should be equal.

gap> mat:= CharTable( "AB" ).irreducibles;

[f1,1,1,1,11, [3, -1, 0, -E(5)-E(5)"4, -E(5)"2-E(5)"3 1],
[ 3, -1, 0, -E(6)"2-E(5)"3, -E(5)-E(6)"4 1, [ 4, 0, 1, -1, -1 1,
[5,1, -1, 0, 01 1]

gap> RationalizedMat( mat );

rrs+ 1¢,1¢,1,11,06, -2,0, 1,11, [4, 0,1, -1, -11],
[5,1, -1, 0, 01 1]
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Chapter 14

Gaussians

If we adjoin a square root of -1, usually denoted by i, to the field of rationals we obtain a
field that is an extension of degree 2. This field is called the Gaussian rationals and its
ring of integers is called the Gaussian integers, because C.F. Gauss was the first to study
them.

In GAP3 Gaussian rationals are written in the form a + b*E(4), where a and b are rationals,
because E(4) is GAP3’s name for i. Because 1 and ¢ form an integral base the Gaussian
integers are written in the form a + b0*E(4), where a and b are integers.

The first sections in this chapter describe the operations applicable to Gaussian rationals
(see 14.1 and 14.2).

The next sections describe the functions that test whether an object is a Gaussian rational
or integer (see 14.3 and 14.4).

The GAP3 object GaussianRationals is the field domain of all Gaussian rationals, and
the object GaussianIntegers is the ring domain of all Gaussian integers. All set theoretic
functions are applicable to those two domains (see chapter 4 and 14.5).

The Gaussian rationals form a field so all field functions, e.g., Norm, are applicable to the
domain GaussianRationals and its elements (see chapter 6 and 14.6).

The Gaussian integers form a Euclidean ring so all ring functions, e.g., Factors, are appli-
cable to GaussianIntegers and its elements (see chapter 5, 14.7, and 14.8).

The field of Gaussian rationals is just a special case of cyclotomic fields, so everything that
applies to those fields also applies to it (see chapters 13 and 15).

All functions are in the library file LIBNAME/"gaussian.g".

14.1 Comparisons of Gaussians

r =19
T <>y

The equality operator evaluates to true if the two Gaussians z and y are equal, and to
false otherwise. The inequality operator <> evaluates to true if the two Gaussians z and
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y are not equal, and to false otherwise. It is also possible to compare a Gaussian with an
object of another type, of course they are never equal.

Two Gaussians a + b*E(4) and ¢ + d*E(4) are considered equal if a = c and b = d.

2/ (1 -E@);

gap> 1 + E(4)
true
gap> 1 + E(4)
false
gap> 1 + E(4)
false

1 - E4);

E(6);

Tz <y

x <=y

r >y

T >= vy

The operators <, <=, >, and >= evaluate to true if the Gaussian z is less than, less than or
equal to, greater than, and greater than or equal to the Gaussian y, and to false otherwise.
Gaussians can also be compared to objects of other types, they are smaller than anything
else, except other cyclotomics (see 13.9).

A Gaussian a + b*E(4) is considered less than another Gaussian ¢ + d*E(4) if a is less
than ¢, or if @ is equal to ¢ and b is less than d.

gap> 1 + E(4) < 2 + E(4);
true

gap> 1 + E(4) < 1 - E(4);
false

gap> 1 + E(4) < 1/2;
false

14.2 Operations for Gaussians

ty
-y
*y

/'y

The operators +, —, *, and / evaluate to the sum, difference, product, and quotient of the
two Gaussians z and y. Of course either operand may also be an ordinary rational (see 12),
because the rationals are embedded into the Gaussian rationals. On the other hand the
Gaussian rationals are embedded into other cyclotomic fields, so either operand may also
be a cyclotomic (see 13). Division by 0 is as usual an error.

8 8 8 8

x n

The operator ~ evaluates to the n-th power of the Gaussian rational z. If n is positive, the
power is defined as the n-fold product zxz*...z; if n is negative, the power is defined as
(1/x) " (-n); and if n is zero, the power is 1, even if z is 0.

gap> (1 + E(4)) * (E(4) - 1);
-2
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14.3 IsGaussRat

IsGaussRat( obj )

IsGaussRat returns true if obj, which may be an object of arbitrary type, is a Gaussian
rational and false otherwise. Will signal an error if obj is an unbound variable.

gap> IsGaussRat( 1/2 );
true

gap> IsGaussRat( E(4) );
true

gap> IsGaussRat( E(6) );
false

gap> IsGaussRat( true );
false

IsGaussInt can be used to test whether an object is a Gaussian integer (see 14.4).

14.4 IsGaussInt

IsGaussInt( obj )

IsGaussInt returns true if obj, which may be an object of arbitrary type, is a Gaussian
integer, and false otherwise. Will signal an error if obj is an unbound variable.

gap> IsGaussInt( 1 );

true

gap> IsGaussInt( E(4) );

true

gap> IsGaussInt( 1/2 + 1/2+E(4) );
false

gap> IsGaussInt( E(6) );

false

IsGaussRat can be used to test whether an object is a Gaussian rational (see 14.3).

14.5 Set Functions for Gaussians

As already mentioned in the introduction of this chapter the objects GaussianRationals
and GaussianIntegers are the domains of Gaussian rationals and integers respectively. All
set theoretic functions, i.e., Size and Intersection, are applicable to these domains and
their elements (see chapter 4). There does not seem to be an important use of this however.
All functions not mentioned here are not treated specially, i.e., they are implemented by the
default function mentioned in the respective section.

in
The membership test for Gaussian rationals is implemented via IsGaussRat (14.3). The

membership test for Gaussian integers is implemented via IsGaussInt (see 14.4).

Random
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A random Gaussian rational a + b*E(4) is computed by combining two random rationals a
and b (see 12.6). Likewise a random Gaussian integer a + b*E(4) is computed by combining
two random integers a and b (see 10.13).

gap> Size( GaussianRationals );

"infinity"

gap> Intersection( GaussianIntegers, [1,1/2,E(4),-E(6),E(4)/3] );
[ 1, E4 ]

14.6 Field Functions for Gaussian Rationals

As already mentioned in the introduction of this chapter, the domain of Gaussian rationals
is a field. Therefore all field functions are applicable to this domain and its elements (see
chapter 6). This section gives further comments on the definitions and implementations
of those functions for the the Gaussian rationals. All functions not mentioned here are
not treated specially, i.e., they are implemented by the default function mentioned in the
respective section.

Conjugates

The field of Gaussian rationals is an extension of degree 2 of the rationals, its prime field.
Therefore there is one further conjugate of every element a + b*E(4), namely a - b*E(4).

Norm, Trace

According to the definition of conjugates above, the norm of a Gaussian rational a + b*E(4)
is a2 + b~2 and the trace is 2*a.

14.7 Ring Functions for Gaussian Integers

As already mentioned in the introduction to this chapter, the ring of Gaussian integers is a
Euclidean ring. Therefore all ring functions are applicable to this ring and its elements (see
chapter 5). This section gives further comments on the definitions and implementations of
those functions for the Gaussian integers. All functions not mentioned here are not treated
specially, i.e., they are implemented by the default function mentioned in the respective
section.

IsUnit, Units, IsAssociated, Associates

The units of GaussianIntegers are [ 1, E(4), -1, -E(4) 1.

StandardAssociate

The standard associate of a Gaussian integer z is the associated element y of = that lies in the
first quadrant of the complex plane. That is y is that element from z * [1,-1,E(4),-E(4)]
that has positive real part and nonnegative imaginary part.

EuclideanDegree
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The Euclidean degree of a Gaussian integer z is the product of x and its complex conjugate.

EuclideanRemainder

Define the integer part i of the quotient of z and y as the point of the lattice spanned by
1 and E(4) that lies next to the rational quotient of z and y, rounding towards the origin
if there are several such points. Then EuclideanRemainder( z, y ) is defined asz - i *
y. With this definition the ordinary Euclidean algorithm for the greatest common divisor
works, whereas it does not work if you always round towards the origin.

EuclideanQuotient

The Euclidean quotient of two Gaussian integers z and y is the quotient of w and y, where
w is the difference between x and the Euclidean remainder of z and y.

QuotientRemainder

QuotientRemainder uses EuclideanRemainder and EuclideanQuotient.

IsPrime, IsIrreducible

Since the Gaussian integers are a Fuclidean ring, primes and irreducibles are equivalent.
The primes are the elements 1 + E(4) and 1 - E(4) of norm 2, the elements a + b*E(4)
and a - b*E(4) of norm p = a”2 + 0”2 with p a rational prime congruent to 1 mod 4,
and the elements p of norm p~2 with p a rational prime congruent to 3 mod 4.

Factors

The list returned by Factors is sorted according to the norms of the primes, and among
those of equal norm with respect to <. All elements in the list are standard associates,
except the first, which is multiplied by a unit as necessary.

The above characterization already shows how one can factor a Gaussian integer. First
compute the norm of the element, factor this norm over the rational integers and then split
2 and the primes congruent to 1 mod 4 with TwoSquares (see 14.8).

gap> Factors( GaussianIntegers, 30 );
[ -1-E(4), 1+E(4), 3, 1+2xE(4), 2+E(4) ]

14.8 TwoSquares

TwoSquares( n )

TwoSquares returns a list of two integers x <= y such that the sum of the squares of x and
y is equal to the nonnegative integer n, i.e., n = x2 4+ y2. If no such representation exists
TwoSquares will return false. TwoSquares will return a representation for which the ged
of x and y is as small as possible. If there are several such representations, it is not specified
which one TwoS