
Python OpenSSL Manual
Release 0.11

Jean-Paul Calderone

June 19, 2011

exarkun@twistedmatrix.com

Abstract

This module is a rather thin wrapper around (a subset of) the OpenSSL library. With thin wrapper I mean that a lot of
the object methods do nothing more than calling a corresponding function in the OpenSSL library.

Contents

1 Introduction 2

2 Building and Installing 2
2.1 Building the Module on a Unix System . 2
2.2 Building the Module on a Windows System . 3

3 OpenSSL — Python interface to OpenSSL 3
3.1 crypto — Generic cryptographic module . 3

X509Extension objects . 5
X509 objects . 5
X509Name objects . 7
X509Req objects . 8
X509Store objects . 8
PKey objects . 8
PKCS7 objects . 8
PKCS12 objects . 9
X509Extension objects . 9
NetscapeSPKI objects . 9
CRL objects . 10
Revoked objects . 10

3.2 rand — An interface to the OpenSSL pseudo random number generator 11
3.3 SSL — An interface to the SSL-specific parts of OpenSSL . 11

Context objects . 13
Connection objects . 15

4 Internals 17
4.1 Exceptions . 17
4.2 Callbacks . 17
4.3 Acessing Socket Methods . 18

1 Introduction

The reason pyOpenSSL was created is that the SSL support in the socket module in Python 2.1 (the contemporary
version of Python when the pyOpenSSL project was begun) was severely limited. Other OpenSSL wrappers for
Python at the time were also limited, though in different ways. Unfortunately, Python’s standard library SSL support
has remained weak, although other packages (such as M2Crypto1) have made great advances and now equal or exceed
pyOpenSSL’s functionality.

The reason pyOpenSSL continues to be maintained is that there is a significant user community around it, as well as a
large amount of software which depends on it. It is a great benefit to many people for pyOpenSSL to continue to exist
and advance.

2 Building and Installing

These instructions can also be found in the file INSTALL.

I have tested this on Debian Linux systems (woody and sid), Solaris 2.6 and 2.7. Others have successfully compiled it
on Windows and NT.

2.1 Building the Module on a Unix System

pyOpenSSL uses distutils, so there really shouldn’t be any problems. To build the library:

python setup.py build

If your OpenSSL header files aren’t in /usr/include, you may need to supply the -I flag to let the setup script
know where to look. The same goes for the libraries of course, use the -L flag. Note that build won’t accept these
flags, so you have to run first build_ext and then build! Example:

python setup.py build_ext -I/usr/local/ssl/include -L/usr/local/ssl/lib
python setup.py build

Now you should have a directory called OpenSSL that contains e.g. SSL.so and __init__.py somewhere in the
build dicrectory, so just:

python setup.py install

If you, for some arcane reason, don’t want the module to appear in the site-packages directory, use the
--prefix option.

You can, of course, do

python setup.py --help

to find out more about how to use the script.

1See http://chandlerproject.org/Projects/MeTooCrypto

2 2 Building and Installing

2.2 Building the Module on a Windows System

Big thanks to Itamar Shtull-Trauring and Oleg Orlov for their help with Windows build instructions. Same as for Unix
systems, we have to separate the build_ext and the build.

Building the library:

setup.py build_ext -I ...\openssl\inc32 -L ...\openssl\out32dll
setup.py build

Where ...\openssl is of course the location of your OpenSSL installation.

Installation is the same as for Unix systems:

setup.py install

And similarily, you can do

setup.py --help

to get more information.

3 OpenSSL — Python interface to OpenSSL

This package provides a high-level interface to the functions in the OpenSSL library. The following modules are
defined:

crypto
Generic cryptographic module. Note that if anything is incomplete, this module is!

rand
An interface to the OpenSSL pseudo random number generator.

SSL
An interface to the SSL-specific parts of OpenSSL.

3.1 crypto — Generic cryptographic module

X509Type
See X509.

class X509()
A class representing X.509 certificates.

X509NameType
See X509Name.

class X509Name(x509name)
A class representing X.509 Distinguished Names.

This constructor creates a copy of x509name which should be an instance of X509Name.

X509ReqType

2.2 Building the Module on a Windows System 3

See X509Req.

class X509Req()
A class representing X.509 certificate requests.

X509StoreType
A Python type object representing the X509Store object type.

PKeyType
See PKey.

class PKey()
A class representing DSA or RSA keys.

PKCS7Type
A Python type object representing the PKCS7 object type.

PKCS12Type
A Python type object representing the PKCS12 object type.

X509ExtensionType
See X509Extension.

class X509Extension(typename, critical, value[, subject][, issuer])
A class representing an X.509 v3 certificate extensions. See http://openssl.org/docs/apps/x509v3_config.html#STANDARD_EXTENSIONS
for typename strings and their options. Optional parameters subject and issuer must be X509 objects.

NetscapeSPKIType
See NetscapeSPKI.

class NetscapeSPKI([enc])
A class representing Netscape SPKI objects.

If the enc argument is present, it should be a base64-encoded string representing a NetscapeSPKI object, as
returned by the b64_encode method.

class CRL()
A class representing Certifcate Revocation List objects.

class Revoked()
A class representing Revocation objects of CRL.

FILETYPE_PEM
FILETYPE_ASN1

File type constants.

TYPE_RSA
TYPE_DSA

Key type constants.

exception Error
Generic exception used in the crypto module.

dump_certificate(type, cert)
Dump the certificate cert into a buffer string encoded with the type type.

dump_certificate_request(type, req)
Dump the certificate request req into a buffer string encoded with the type type.

dump_privatekey(type, pkey[, cipher, passphrase])
Dump the private key pkey into a buffer string encoded with the type type, optionally (if type is
FILETYPE_PEM) encrypting it using cipher and passphrase.

passphrase must be either a string or a callback for providing the pass phrase.

4 3 OpenSSL — Python interface to OpenSSL

load_certificate(type, buffer)
Load a certificate (X509) from the string buffer encoded with the type type.

load_certificate_request(type, buffer)
Load a certificate request (X509Req) from the string buffer encoded with the type type.

load_privatekey(type, buffer[, passphrase])
Load a private key (PKey) from the string buffer encoded with the type type (must be one of FILETYPE_PEM
and FILETYPE_ASN1).

passphrase must be either a string or a callback for providing the pass phrase.

load_crl(type, buffer)
Load Certificate Revocation List (CRL) data from a string buffer. buffer encoded with the type type. The type
type must either FILETYPE_PEM or FILETYPE_ASN1).

load_pkcs7_data(type, buffer)
Load pkcs7 data from the string buffer encoded with the type type.

load_pkcs12(buffer[, passphrase])
Load pkcs12 data from the string buffer. If the pkcs12 structure is encrypted, a passphrase must be included.
The MAC is always checked and thus required.

See also the man page for the C function PKCS12_parse.

sign(key, data, digest)
Sign a data string using the given key and message digest.

key is a PKey instance. data is a str instance. digest is a str naming a supported message digest type, for
example “sha1”. New in version 0.11.

verify(certificate, signature, data, digest)
Verify the signature for a data string.

certificate is a X509 instance corresponding to the private key which generated the signature. signature is a str
instance giving the signature itself. data is a str instance giving the data to which the signature applies. digest is
a str instance naming the message digest type of the signature, for example “sha1”. New in version 0.11.

X509Extension objects

X509Extension objects have the following methods:

get_short_name()
Retrieve the short descriptive name for this extension.

The result is a byte string like “basicConstraints”. New in version 0.12.

get_data()
Retrieve the data for this extension.

The result is the ASN.1 encoded form of the extension data as a byte string. New in version 0.12.

X509 objects

X509 objects have the following methods:

get_issuer()
Return an X509Name object representing the issuer of the certificate.

get_pubkey()
Return a PKey object representing the public key of the certificate.

3.1 crypto — Generic cryptographic module 5

get_serial_number()
Return the certificate serial number.

get_subject()
Return an X509Name object representing the subject of the certificate.

get_version()
Return the certificate version.

get_notBefore()
Return a string giving the time before which the certificate is not valid. The string is formatted as an ASN1
GENERALIZEDTIME:

YYYYMMDDhhmmssZ
YYYYMMDDhhmmss+hhmm
YYYYMMDDhhmmss-hhmm

If no value exists for this field, None is returned.

get_notAfter()
Return a string giving the time after which the certificate is not valid. The string is formatted as an ASN1
GENERALIZEDTIME:

YYYYMMDDhhmmssZ
YYYYMMDDhhmmss+hhmm
YYYYMMDDhhmmss-hhmm

If no value exists for this field, None is returned.

set_notBefore(when)
Change the time before which the certificate is not valid. when is a string formatted as an ASN1 GENERAL-
IZEDTIME:

YYYYMMDDhhmmssZ
YYYYMMDDhhmmss+hhmm
YYYYMMDDhhmmss-hhmm

set_notAfter(when)
Change the time after which the certificate is not valid. when is a string formatted as an ASN1 GENERAL-
IZEDTIME:

YYYYMMDDhhmmssZ
YYYYMMDDhhmmss+hhmm
YYYYMMDDhhmmss-hhmm

gmtime_adj_notBefore(time)
Adjust the timestamp (in GMT) when the certificate starts being valid.

gmtime_adj_notAfter(time)
Adjust the timestamp (in GMT) when the certificate stops being valid.

has_expired()
Checks the certificate’s time stamp against current time. Returns true if the certificate has expired and false
otherwise.

set_issuer(issuer)
Set the issuer of the certificate to issuer.

set_pubkey(pkey)

6 3 OpenSSL — Python interface to OpenSSL

Set the public key of the certificate to pkey.

set_serial_number(serialno)
Set the serial number of the certificate to serialno.

set_subject(subject)
Set the subject of the certificate to subject.

set_version(version)
Set the certificate version to version.

sign(pkey, digest)
Sign the certificate, using the key pkey and the message digest algorithm identified by the string digest.

subject_name_hash()
Return the hash of the certificate subject.

digest(digest_name)
Return a digest of the certificate, using the digest_name method. digest_name must be a string describing a
digest algorithm supported by OpenSSL (by EVP_get_digestbyname, specifically). For example, "md5" or
"sha1".

add_extensions(extensions)
Add the extensions in the sequence extensions to the certificate.

get_extension_count()
Return the number of extensions on this certificate. New in version 0.12.

get_extension(index)
Retrieve the extension on this certificate at the given index.

Extensions on a certificate are kept in order. The index parameter selects which extension will be returned. The
returned object will be an X509Extension instance. New in version 0.12.

X509Name objects

X509Name objects have the following methods:

hash()
Return an integer giving the first four bytes of the MD5 digest of the DER representation of the name.

der()
Return a string giving the DER representation of the name.

get_components()
Return a list of two-tuples of strings giving the components of the name.

X509Name objects have the following members:

countryName
The country of the entity. C may be used as an alias for countryName.

stateOrProvinceName
The state or province of the entity. ST may be used as an alias for stateOrProvinceNameů

localityName
The locality of the entity. L may be used as an alias for localityName.

organizationName
The organization name of the entity. O may be used as an alias for organizationName.

organizationalUnitName
The organizational unit of the entity. OU may be used as an alias for organizationalUnitName.

3.1 crypto — Generic cryptographic module 7

commonName
The common name of the entity. CN may be used as an alias for commonName.

emailAddress
The e-mail address of the entity.

X509Req objects

X509Req objects have the following methods:

get_pubkey()
Return a PKey object representing the public key of the certificate request.

get_subject()
Return an X509Name object representing the subject of the certificate.

set_pubkey(pkey)
Set the public key of the certificate request to pkey.

sign(pkey, digest)
Sign the certificate request, using the key pkey and the message digest algorithm identified by the string digest.

verify(pkey)
Verify a certificate request using the public key pkey.

set_version(version)
Set the version (RFC 2459, 4.1.2.1) of the certificate request to version.

get_version()
Get the version (RFC 2459, 4.1.2.1) of the certificate request.

X509Store objects

The X509Store object has currently just one method:

add_cert(cert)
Add the certificate cert to the certificate store.

PKey objects

The PKey object has the following methods:

bits()
Return the number of bits of the key.

generate_key(type, bits)
Generate a public/private key pair of the type type (one of TYPE_RSA and TYPE_DSA) with the size bits.

type()
Return the type of the key.

PKCS7 objects

PKCS7 objects have the following methods:

type_is_signed()
FIXME

8 3 OpenSSL — Python interface to OpenSSL

type_is_enveloped()
FIXME

type_is_signedAndEnveloped()
FIXME

type_is_data()
FIXME

get_type_name()
Get the type name of the PKCS7.

PKCS12 objects

PKCS12 objects have the following methods:

export([passphrase=None][, iter=2048][, maciter=1])
Returns a PKCS12 object as a string.
The optional passphrase must be a string not a callback.
See also the man page for the C function PKCS12_create.

get_ca_certificates()
Return CA certificates within the PKCS12 object as a tuple. Returns None if no CA certificates are present.

get_certificate()
Return certificate portion of the PKCS12 structure.

get_friendlyname()
Return friendlyName portion of the PKCS12 structure.

get_privatekey()
Return private key portion of the PKCS12 structure

set_ca_certificates(cacerts)
Replace or set the CA certificates within the PKCS12 object with the sequence cacerts.
Set cacerts to None to remove all CA certificates.

set_certificate(cert)
Replace or set the certificate portion of the PKCS12 structure.

set_friendlyname(name)
Replace or set the friendlyName portion of the PKCS12 structure.

set_privatekey(pkey)
Replace or set private key portion of the PKCS12 structure

X509Extension objects

X509Extension objects have several methods:

get_critical()
Return the critical field of the extension object.

get_short_name()
Return the short type name of the extension object.

NetscapeSPKI objects

NetscapeSPKI objects have the following methods:

3.1 crypto — Generic cryptographic module 9

b64_encode()
Return a base64-encoded string representation of the object.

get_pubkey()
Return the public key of object.

set_pubkey(key)
Set the public key of the object to key.

sign(key, digest_name)
Sign the NetscapeSPKI object using the given key and digest_name. digest_name must be a string describing
a digest algorithm supported by OpenSSL (by EVP_get_digestbyname, specifically). For example, "md5" or
"sha1".

verify(key)
Verify the NetscapeSPKI object using the given key.

CRL objects

CRL objects have the following methods:

add_revoked(revoked)
Add a Revoked object to the CRL, by value not reference.

export(cert, key[, type=FILETYPE_PEM][, days=100])
Use cert and key to sign the CRL and return the CRL as a string. days is the number of days before the next
CRL is due.

get_revoked()
Return a tuple of Revoked objects, by value not reference.

Revoked objects

Revoked objects have the following methods:

all_reasons()
Return a list of all supported reasons.

get_reason()
Return the revocation reason as a str. Can be None, which differs from "Unspecified".

get_rev_date()
Return the revocation date as a str. The string is formatted as an ASN1 GENERALIZEDTIME.

get_serial()
Return a str containing a hex number of the serial of the revoked certificate.

set_reason(reason)
Set the revocation reason. reason must be None or a string, but the values are limited. Spaces and case are
ignored. See all_reasons.

set_rev_date(date)
Set the revocation date. The string is formatted as an ASN1 GENERALIZEDTIME.

set_serial(serial)
serial is a string containing a hex number of the serial of the revoked certificate.

10 3 OpenSSL — Python interface to OpenSSL

3.2 rand — An interface to the OpenSSL pseudo random number generator

This module handles the OpenSSL pseudo random number generator (PRNG) and declares the following:

add(string, entropy)
Mix bytes from string into the PRNG state. The entropy argument is (the lower bound of) an estimate of how
much randomness is contained in string, measured in bytes. For more information, see e.g. RFC 1750.

bytes(num_bytes)
Get some random bytes from the PRNG as a string.

This is a wrapper for the C function RAND_bytes.

cleanup()
Erase the memory used by the PRNG.

This is a wrapper for the C function RAND_cleanup.

egd(path[, bytes])
Query the Entropy Gathering Daemon2 on socket path for bytes bytes of random data and and uses add to seed
the PRNG. The default value of bytes is 255.

load_file(path[, bytes])
Read bytes bytes (or all of it, if bytes is negative) of data from the file path to seed the PRNG. The default value
of bytes is -1.

screen()
Add the current contents of the screen to the PRNG state. Availability: Windows.

seed(string)
This is equivalent to calling add with entropy as the length of the string.

status()
Returns true if the PRNG has been seeded with enough data, and false otherwise.

write_file(path)
Write a number of random bytes (currently 1024) to the file path. This file can then be used with load_file
to seed the PRNG again.

exception Error
If the current RAND method supports any errors, this is raised when needed. The default method does not raise
this when the entropy pool is depleted.

Whenever this exception is raised directly, it has a list of error messages from the OpenSSL error queue, where
each item is a tuple (lib, function, reason). Here lib, function and reason are all strings, describing where
and what the problem is. See err(3) for more information.

3.3 SSL — An interface to the SSL-specific parts of OpenSSL

This module handles things specific to SSL. There are two objects defined: Context, Connection.

SSLv2_METHOD
SSLv3_METHOD
SSLv23_METHOD
TLSv1_METHOD

These constants represent the different SSL methods to use when creating a context object.

VERIFY_NONE
VERIFY_PEER

2See http://www.lothar.com/tech/crypto/

3.2 rand — An interface to the OpenSSL pseudo random number generator 11

VERIFY_FAIL_IF_NO_PEER_CERT
These constants represent the verification mode used by the Context object’s set_verify method.

FILETYPE_PEM
FILETYPE_ASN1

File type constants used with the use_certificate_file and use_privatekey_file methods of
Context objects.

OP_SINGLE_DH_USE
OP_EPHEMERAL_RSA
OP_NO_SSLv2
OP_NO_SSLv3
OP_NO_TLSv1

Constants used with set_options of Context objects. OP_SINGLE_DH_USE means to always create a
new key when using ephemeral Diffie-Hellman. OP_EPHEMERAL_RSA means to always use ephemeral RSA
keys when doing RSA operations. OP_NO_SSLv2, OP_NO_SSLv3 and OP_NO_TLSv1 means to disable
those specific protocols. This is interesting if you’re using e.g. SSLv23_METHOD to get an SSLv2-compatible
handshake, but don’t want to use SSLv2.

ContextType
See Context.

class Context(method)
A class representing SSL contexts. Contexts define the parameters of one or more SSL connections.

method should be SSLv2_METHOD, SSLv3_METHOD, SSLv23_METHOD or TLSv1_METHOD.

ConnectionType
See Connection.

class Connection(context, socket)
A class representing SSL connections.

context should be an instance of Context and socket should be a socket 3 object. socket may be None; in this
case, the Connection is created with a memory BIO: see the bio_read, bio_write, and bio_shutdown
methods.

exception Error
This exception is used as a base class for the other SSL-related exceptions, but may also be raised directly.

Whenever this exception is raised directly, it has a list of error messages from the OpenSSL error queue, where
each item is a tuple (lib, function, reason). Here lib, function and reason are all strings, describing where
and what the problem is. See err(3) for more information.

exception ZeroReturnError
This exception matches the error return code SSL_ERROR_ZERO_RETURN, and is raised when the SSL Con-
nection has been closed. In SSL 3.0 and TLS 1.0, this only occurs if a closure alert has occurred in the protocol,
i.e. the connection has been closed cleanly. Note that this does not necessarily mean that the transport layer (e.g.
a socket) has been closed.

It may seem a little strange that this is an exception, but it does match an SSL_ERROR code, and is very
convenient.

exception WantReadError
The operation did not complete; the same I/O method should be called again later, with the same arguments.
Any I/O method can lead to this since new handshakes can occur at any time.

The wanted read is for dirty data sent over the network, not the clean data inside the tunnel. For a
socket based SSL connection, read means data coming at us over the network. Until that read suc-
ceeds, the attempted OpenSSL.SSL.Connection.recv, OpenSSL.SSL.Connection.send, or

3Actually, all that is required is an object that behaves like a socket, you could even use files, even though it’d be tricky to get the handshakes
right!

12 3 OpenSSL — Python interface to OpenSSL

OpenSSL.SSL.Connection.do_handshake is prevented or incomplete. You probably want to
select() on the socket before trying again.

exception WantWriteError
See WantReadError. The socket send buffer may be too full to write more data.

exception WantX509LookupError
The operation did not complete because an application callback has asked to be called again. The I/O method
should be called again later, with the same arguments. Note: This won’t occur in this version, as there are no
such callbacks in this version.

exception SysCallError
The SysCallError occurs when there’s an I/O error and OpenSSL’s error queue does not contain any infor-
mation. This can mean two things: An error in the transport protocol, or an end of file that violates the protocol.
The parameter to the exception is always a pair (errnum, errstr).

Context objects

Context objects have the following methods:

check_privatekey()
Check if the private key (loaded with use_privatekey[_file]) matches the certificate (loaded with
use_certificate[_file]). Returns None if they match, raises Error otherwise.

get_app_data()
Retrieve application data as set by set_app_data.

get_cert_store()
Retrieve the certificate store (a X509Store object) that the context uses. This can be used to add "trusted"
certificates without using the. load_verify_locations() method.

get_timeout()
Retrieve session timeout, as set by set_timeout. The default is 300 seconds.

get_verify_depth()
Retrieve the Context object’s verify depth, as set by set_verify_depth.

get_verify_mode()
Retrieve the Context object’s verify mode, as set by set_verify.

load_client_ca(pemfile)
Read a file with PEM-formatted certificates that will be sent to the client when requesting a client certificate.

set_client_ca_list(certificate_authorities)
Replace the current list of preferred certificate signers that would be sent to the client when requesting a client
certificate with the certificate_authorities sequence of OpenSSL.crypto.X509Names.

New in version 0.10.

add_client_ca(certificate_authority)
Extract a OpenSSL.crypto.X509Name from the certificate_authority OpenSSL.crypto.X509 certifi-
cate and add it to the list of preferred certificate signers sent to the client when requesting a client certificate.

New in version 0.10.

load_verify_locations(pemfile, capath)
Specify where CA certificates for verification purposes are located. These are trusted certificates. Note that the
certificates have to be in PEM format. If capath is passed, it must be a directory prepared using the c_rehash
tool included with OpenSSL. Either, but not both, of pemfile or capath may be None.

set_default_verify_paths()
Specify that the platform provided CA certificates are to be used for verification purposes. This method may not

3.3 SSL — An interface to the SSL-specific parts of OpenSSL 13

work properly on OS X.

load_tmp_dh(dhfile)
Load parameters for Ephemeral Diffie-Hellman from dhfile.

set_app_data(data)
Associate data with this Context object. data can be retrieved later using the get_app_data method.

set_cipher_list(ciphers)
Set the list of ciphers to be used in this context. See the OpenSSL manual for more information (e.g. ciphers(1))

set_info_callback(callback)
Set the information callback to callback. This function will be called from time to time during SSL handshakes.
callback should take three arguments: a Connection object and two integers. The first integer specifies where
in the SSL handshake the function was called, and the other the return code from a (possibly failed) internal
function call.

set_options(options)
Add SSL options. Options you have set before are not cleared! This method should be used with the OP_*
constants.

set_passwd_cb(callback[, userdata])
Set the passphrase callback to callback. This function will be called when a private key with a passphrase is
loaded. callback must accept three positional arguments. First, an integer giving the maximum length of the
passphrase it may return. If the returned passphrase is longer than this, it will be truncated. Second, a boolean
value which will be true if the user should be prompted for the passphrase twice and the callback should verify
that the two values supplied are equal. Third, the value given as the userdata parameter to set_passwd_cb.
If an error occurs, callback should return a false value (e.g. an empty string).

set_session_id(name)
Set the context name within which a session can be reused for this Context object. This is needed when doing
session resumption, because there is no way for a stored session to know which Context object it is associated
with. name may be any binary data.

set_timeout(timeout)
Set the timeout for newly created sessions for this Context object to timeout. timeout must be given in
(whole) seconds. The default value is 300 seconds. See the OpenSSL manual for more information (e.g.
SSL_CTX_set_timeout(3)).

set_verify(mode, callback)
Set the verification flags for this Context object to mode and specify that callback should be used for verification
callbacks. mode should be one of VERIFY_NONE and VERIFY_PEER. If VERIFY_PEER is used, mode
can be OR:ed with VERIFY_FAIL_IF_NO_PEER_CERT and VERIFY_CLIENT_ONCE to further control
the behaviour. callback should take five arguments: A Connection object, an X509 object, and three integer
variables, which are in turn potential error number, error depth and return code. callback should return true if
verification passes and false otherwise.

set_verify_depth(depth)
Set the maximum depth for the certificate chain verification that shall be allowed for this Context object.

use_certificate(cert)
Use the certificate cert which has to be a X509 object.

add_extra_chain_cert(cert)
Adds the certificate cert, which has to be a X509 object, to the certificate chain presented together with the
certificate.

use_certificate_chain_file(file)
Load a certificate chain from file which must be PEM encoded.

use_privatekey(pkey)

14 3 OpenSSL — Python interface to OpenSSL

Use the private key pkey which has to be a PKey object.

use_certificate_file(file[, format])
Load the first certificate found in file. The certificate must be in the format specified by format, which is either
FILETYPE_PEM or FILETYPE_ASN1. The default is FILETYPE_PEM.

use_privatekey_file(file[, format])
Load the first private key found in file. The private key must be in the format specified by format, which is either
FILETYPE_PEM or FILETYPE_ASN1. The default is FILETYPE_PEM.

Connection objects

Connection objects have the following methods:

accept()
Call the accept method of the underlying socket and set up SSL on the returned socket, using the Context
object supplied to this Connection object at creation. Returns a pair (conn, address). where conn is the new
Connection object created, and address is as returned by the socket’s accept.

bind(address)
Call the bind method of the underlying socket.

close()
Call the close method of the underlying socket. Note: If you want correct SSL closure, you need to call the
shutdown method first.

connect(address)
Call the connect method of the underlying socket and set up SSL on the socket, using the Context object
supplied to this Connection object at creation.

connect_ex(address)
Call the connect_ex method of the underlying socket and set up SSL on the socket, using the Context object
supplied to this Connection object at creation. Note that if the connect_ex method of the socket doesn’t
return 0, SSL won’t be initialized.

do_handshake()
Perform an SSL handshake (usually called after renegotiate or one of set_accept_state or
set_accept_state). This can raise the same exceptions as send and recv.

fileno()
Retrieve the file descriptor number for the underlying socket.

listen(backlog)
Call the listen method of the underlying socket.

get_app_data()
Retrieve application data as set by set_app_data.

get_cipher_list()
Retrieve the list of ciphers used by the Connection object. WARNING: This API has changed. It used to take
an optional parameter and just return a string, but not it returns the entire list in one go.

get_client_ca_list()
Retrieve the list of preferred client certificate issuers sent by the server as OpenSSL.crypto.X509Name
objects.

If this is a client Connection, the list will be empty until the connection with the server is established.

If this is a server Connection, return the list of certificate authorities that will be sent or has been sent to the
client, as controlled by this Connection’s Context.

New in version 0.10.

3.3 SSL — An interface to the SSL-specific parts of OpenSSL 15

get_context()
Retrieve the Context object associated with this Connection.

get_peer_certificate()
Retrieve the other side’s certificate (if any)

getpeername()
Call the getpeername method of the underlying socket.

getsockname()
Call the getsockname method of the underlying socket.

getsockopt(level, optname[, buflen])
Call the getsockopt method of the underlying socket.

pending()
Retrieve the number of bytes that can be safely read from the SSL buffer (not the underlying transport buffer).

recv(bufsize)
Receive data from the Connection. The return value is a string representing the data received. The maximum
amount of data to be received at once, is specified by bufsize.

bio_write(bytes)
If the Connection was created with a memory BIO, this method can be used to add bytes to the read end of that
memory BIO. The Connection can then read the bytes (for example, in response to a call to recv).

renegotiate()
Renegotiate the SSL session. Call this if you wish to change cipher suites or anything like that.

send(string)
Send the string data to the Connection.

bio_read(bufsize)
If the Connection was created with a memory BIO, this method can be used to read bytes from the write end of
that memory BIO. Many Connection methods will add bytes which must be read in this manner or the buffer
will eventually fill up and the Connection will be able to take no further actions.

sendall(string)
Send all of the string data to the Connection. This calls send repeatedly until all data is sent. If an error occurs,
it’s impossible to tell how much data has been sent.

set_accept_state()
Set the connection to work in server mode. The handshake will be handled automatically by read/write.

set_app_data(data)
Associate data with this Connection object. data can be retrieved later using the get_app_data method.

set_connect_state()
Set the connection to work in client mode. The handshake will be handled automatically by read/write.

setblocking(flag)
Call the setblocking method of the underlying socket.

setsockopt(level, optname, value)
Call the setsockopt method of the underlying socket.

shutdown()
Send the shutdown message to the Connection. Returns true if the shutdown message exchange is completed and
false otherwise (in which case you call recv() or send() when the connection becomes readable/writeable.

get_shutdown()
Get the shutdown state of the Connection. Returns a bitvector of either or both of SENT_SHUTDOWN and
RECEIVED_SHUTDOWN.

16 3 OpenSSL — Python interface to OpenSSL

set_shutdown(state)
Set the shutdown state of the Connection. state is a bitvector of either or both of SENT_SHUTDOWN and
RECEIVED_SHUTDOWN.

sock_shutdown(how)
Call the shutdown method of the underlying socket.

bio_shutdown()
If the Connection was created with a memory BIO, this method can be used to indicate that “end of file” has
been reached on the read end of that memory BIO.

state_string()
Retrieve a verbose string detailing the state of the Connection.

client_random()
Retrieve the random value used with the client hello message.

server_random()
Retrieve the random value used with the server hello message.

master_key()
Retrieve the value of the master key for this session.

want_read()
Checks if more data has to be read from the transport layer to complete an operation.

want_write()
Checks if there is data to write to the transport layer to complete an operation.

4 Internals

We ran into three main problems developing this: Exceptions, callbacks and accessing socket methods. This is what
this chapter is about.

4.1 Exceptions

We realized early that most of the exceptions would be raised by the I/O functions of OpenSSL, so it
felt natural to mimic OpenSSL’s error code system, translating them into Python exceptions. This natu-
rally gives us the exceptions SSL.ZeroReturnError, SSL.WantReadError, SSL.WantWriteError,
SSL.WantX509LookupError and SSL.SysCallError.

For more information about this, see section 3.3.

4.2 Callbacks

There are a number of problems with callbacks. First of all, OpenSSL is written as a C library, it’s not meant to have
Python callbacks, so a way around that is needed. Another problem is thread support. A lot of the OpenSSL I/O
functions can block if the socket is in blocking mode, and then you want other Python threads to be able to do other
things. The real trouble is if you’ve released the global CPython interpreter lock to do a potentially blocking operation,
and the operation calls a callback. Then we must take the GIL back, since calling Python APIs without holding it is
not allowed.

There are two solutions to the first problem, both of which are necessary. The first solution to use is if the C callback
allows ”userdata” to be passed to it (an arbitrary pointer normally). This is great! We can set our Python function
object as the real userdata and emulate userdata for the Python function in another way. The other solution can be used
if an object with an ”app_data” system always is passed to the callback. For example, the SSL object in OpenSSL has

17

app_data functions and in e.g. the verification callbacks, you can retrieve the related SSL object. What we do is to set
our wrapper Connection object as app_data for the SSL object, and we can easily find the Python callback.

The other problem is solved using thread local variables. Whenever the GIL is released before calling into an OpenSSL
API, the PyThreadState pointer returned by PyEval_SaveState is stored in a global thread local variable (using
Python’s own TLS API, PyThread_set_key_value). When it is necessary to re-acquire the GIL, either after
the OpenSSL API returns or in a C callback invoked by that OpenSSL API, the value of the thread local variable is
retrieved (PyThread_get_key_value) and used to re-acquire the GIL. This allows Python threads to execute
while OpenSSL APIs are running and allows use of any particular pyOpenSSL object from any Python thread, since
there is no per-thread state associated with any of these objects and since OpenSSL is threadsafe (as long as properly
initialized, as pyOpenSSL initializes it).

4.3 Acessing Socket Methods

We quickly saw the benefit of wrapping socket methods in the SSL.Connection class, for an easy transition into
using SSL. The problem here is that the socket module lacks a C API, and all the methods are declared static. One
approach would be to have OpenSSL as a submodule to the socketmodule, placing all the code in ‘socketmodule.c’,
but this is obviously not a good solution, since you might not want to import tonnes of extra stuff you’re not going to
use when importing the socket module. The other approach is to somehow get a pointer to the method to be called,
either the C function, or a callable Python object. This is not really a good solution either, since there’s a lot of lookups
involved.

The way it works is that you have to supply a “socket-like” transport object to the SSL.Connection. The only
requirement of this object is that it has a fileno() method that returns a file descriptor that’s valid at the C level
(i.e. you can use the system calls read and write). If you want to use the connect() or accept() methods of
the SSL.Connection object, the transport object has to supply such methods too. Apart from them, any method
lookups in the SSL.Connection object that fail are passed on to the underlying transport object.

Future changes might be to allow Python-level transport objects, that instead of having fileno() methods, have
read() and write() methods, so more advanced features of Python can be used. This would probably entail some
sort of OpenSSL “BIOs”, but converting Python strings back and forth is expensive, so this shouldn’t be used unless
necessary. Other nice things would be to be able to pass in different transport objects for reading and writing, but
then the fileno() method of SSL.Connection becomes virtually useless. Also, should the method resolution
be used on the read-transport or the write-transport?

18 4 Internals

