This package implements the methods developed in [1]
To simulate samples from the posterior using the methods developed in the paper you simply need to run
set.seed(2021)
<-mvmeta::hyp
dataREM# Observation matrix X
<-t(cbind(dataREM$sbp,dataREM$dbp))
X<-nrow(X) # model dimension
p<-ncol(X) # sample size
n# Matrix U
<-matrix(0,n*p,n*p)
Ufor (i_n in 1:n) {
<-diag(c(dataREM$sbp_se[i_n],dataREM$dbp_se[i_n]))
Use<-matrix(c(1,dataREM$rho[i_n],dataREM$rho[i_n],1),p,p)
Corr_mat*(i_n-1)+1):(p*i_n),(p*(i_n-1)+1):(p*i_n)]<- Use%*%Corr_mat%*%Use
U[(p
}<- BayesMultMeta(X, U, 1e4, burn_in = 100,
bmgmr_run likelihood = "normal", prior="jeffrey",
algorithm_version = "A")
summary(bmgmr_run)
[1] Olha Bodnar, Taras Bodnar (2021). Objective Bayesian meta-analysis based on generalized multivariate random effects model. Under revision in Bayesian analysis.