---
title: "Normal distribution"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Distributions-Normal}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
========================================================
Probability density function:
-------------------------
$$f(x) = \frac 1 {\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2} {2\sigma^2}}$$
with $\mu$ the mean of the distribution and $\sigma$ the standard deviation
Cumulative distribution function:
-------------------------
$$F(x) =\int_{-\infty}^{x}\frac 1 {\sigma\sqrt{2\pi}} e^{-\frac{(y-\mu)^2} {2\sigma^2}}dy
=\int_{-\infty}^{\frac {x-\mu}{\sigma}}\frac 1 {\sqrt{2\pi}} e^{-\frac{z^2} {2}}dz
=\frac 1 2 \left[1+\text{erf}\left(\frac {x-\mu} {\sigma\sqrt{2}} \right)\right]$$
with $\text{erf}$ being the error function.
Log-likelihood function:
-------------------------
$$L(\mu,\sigma;X)=\sum_i\left[-\frac 1 2 \ln(2\pi)-\ln(\sigma)-\frac{1}{2\sigma^2}(X_i-\mu)^2\right]$$
Score function vector:
-------------------------
$$V(\mu,\sigma;X)
=\left( \begin{array}{c}
\frac{\partial L}{\partial \mu} \\
\frac{\partial L}{\partial \sigma}
\end{array} \right)
=\sum_i\left( \begin{array}{c}
\frac {X_i-\mu}{\sigma^2} \\
\frac {(X_i-\mu)^2-\sigma^2}{\sigma^3}
\end{array} \right)
$$
Observed information matrix:
-------------------------
$$\mathcal J (\mu,\sigma;X)=
-\left( \begin{array}{cc}
\frac{\partial^2 L}{\partial \mu^2} & \frac{\partial^2 L}{\partial \mu \partial \sigma} \\
\frac{\partial^2 L}{\partial \sigma \partial \mu} & \frac{\partial^2 L}{\partial \sigma^2} \end{array} \right)
=\sum_i
\left( \begin{array}{cc}
\frac{1}{\sigma^2} & \frac{2(X_i-\mu)}{\sigma^3} \\
\frac{2(X_i-\mu)}{\sigma^3} & \frac{3(X_i-\mu)^2-\sigma^2}{\sigma^4} \end{array} \right)
$$