Provides a non-parametric Bayesian framework based on Gaussian process priors for estimating causal effects of a continuous exposure and detecting change points in the causal exposure response curves using observational data. Ren, B., Wu, X., Braun, D., Pillai, N., & Dominici, F.(2021). "Bayesian modeling for exposure response curve via gaussian processes: Causal effects of exposure to air pollution on health outcomes." arXiv preprint <doi:10.48550/arXiv.2105.03454>.
Version: | 0.2.4 |
Depends: | R (≥ 3.5.0) |
Imports: | parallel, xgboost, stats, MASS, spatstat.geom, logger, Rcpp, RcppArmadillo, ggplot2, cowplot, rlang, Rfast, SuperLearner, wCorr |
LinkingTo: | RcppArmadillo, Rcpp |
Suggests: | rmarkdown, knitr, testthat (≥ 3.0.0) |
Published: | 2024-04-15 |
DOI: | 10.32614/CRAN.package.GPCERF |
Author: | Naeem Khoshnevis [aut] (HUIT), Boyu Ren [aut, cre] (McLean Hospital), Tanujit Dey [ctb] (HMS), Danielle Braun [aut] (HSPH) |
Maintainer: | Boyu Ren <bren at mgb.org> |
BugReports: | https://github.com/NSAPH-Software/GPCERF/issues |
License: | GPL (≥ 3) |
Copyright: | Harvard University |
URL: | https://github.com/NSAPH-Software/GPCERF |
NeedsCompilation: | yes |
Language: | en-US |
Citation: | GPCERF citation info |
Materials: | README NEWS |
CRAN checks: | GPCERF results |
Reference manual: | GPCERF.pdf |
Vignettes: |
A-Note-on-Choosing-Hyperparameters Developers-Guide GPCERF Nearest-neighbor-Gaussian-Processes Standard Gaussian Processes |
Package source: | GPCERF_0.2.4.tar.gz |
Windows binaries: | r-devel: GPCERF_0.2.4.zip, r-release: GPCERF_0.2.4.zip, r-oldrel: GPCERF_0.2.4.zip |
macOS binaries: | r-release (arm64): GPCERF_0.2.4.tgz, r-oldrel (arm64): GPCERF_0.2.4.tgz, r-release (x86_64): GPCERF_0.2.4.tgz, r-oldrel (x86_64): GPCERF_0.2.4.tgz |
Old sources: | GPCERF archive |
Please use the canonical form https://CRAN.R-project.org/package=GPCERF to link to this page.