Install R package ‘TGS’.
Attach R package ‘TGS’.
Let us assume that you have a time-series gene expression data. It is comprised of multiple time series. Each time series contains the expressions of \(10\) genes across \(21\) time points. The data is saved in a file named ‘input_data_10.tsv’. The file is saved inside directory ‘/home/saptarshi/datasets/’.
First, assign absolute path to the input directory.
Then reconstruct time-varying gene regulatory networks (GRNs) using algorithm ‘TGS’.
## Assign the name of the desired output directory.
## The output directory will be created automatically.
output_dir <- '/home/saptarshi/My_TGS_output'
## Run algorithm 'TGS'.
## It is assumed that your data is continuous.
## In case, your data is discrete, simply
## make the following changes:
## (a) is.discrete = TRUE,
## (b) num.discr.levels = <number of discrete
## levels each gene has>,
## (c) discr.algo = ''.
##
TGS::LearnTgs(
isfile = 0,
json.file = '',
input.dirname = input_dir,
input.data.filename = 'input_data_10.tsv',
num.timepts = 21,
true.net.filename = '',
input.wt.data.filename = '',
is.discrete = FALSE,
num.discr.levels = 2,
discr.algo = 'discretizeData.2L.Tesla',
mi.estimator = 'mi.pca.cmi',
apply.aracne = FALSE,
clr.algo = 'CLR',
max.fanin = 14,
allow.self.loop = TRUE,
scoring.func = 'BIC',
output.dirname = output_dir
)
You may also reconstruct time-varying GRNs using algorithm ‘TGS+’. The only difference is that the input argument apply.aracne
is set to TRUE
.
## Assign the name of the desired output directory.
## The output directory will be created automatically.
output_dir <- '/home/saptarshi/My_TGS_plus_output'
## Run algorithm 'TGS'
TGS::LearnTgs(
isfile = 0,
json.file = '',
input.dirname = input_dir,
input.data.filename = 'input_data_10.tsv',
num.timepts = 21,
true.net.filename = '',
input.wt.data.filename = '',
is.discrete = FALSE,
num.discr.levels = 2,
discr.algo = 'discretizeData.2L.Tesla',
mi.estimator = 'mi.pca.cmi',
apply.aracne = TRUE,
clr.algo = 'CLR',
max.fanin = 14,
allow.self.loop = TRUE,
scoring.func = 'BIC',
output.dirname = output_dir
)
Once the reconstruction is complete, please go to the output directory. There should be a file named ‘unrolled.DBN.adj.matrix.list.RData’. This file contains the reconstructed time-varying GRNs. Load this file in an R session.
Print the reconstructed GRN of the \(7^{th}\) time interval.