---
title: "Creating a PK NCA or Population PK ADaM"
output: 
  rmarkdown::html_vignette
vignette: >
  %\VignetteIndexEntry{Creating a PK NCA or Population PK ADaM}
  %\VignetteEncoding{UTF-8}
  %\VignetteEngine{knitr::rmarkdown}
editor_options: 
  markdown: 
    wrap: 72
---

```{r setup, include = FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

library(admiraldev)
```

# Introduction

This article describes creating a Pharmacokinetics (PK)
Non-compartmental analysis (NCA) ADaM (ADNCA/ADPC) or a Population PK
ADaM (ADPPK). The first part of the article describes the NCA file
creation while the second part describes Population PK. This initial
steps for both files are very similar and could be combined in one
script if desired.

# Programming PK NCA (ADPC/ADNCA) Analysis Data

The Non-compartmental analysis (NCA) ADaM uses the CDISC Implementation
Guide
(<https://www.cdisc.org/standards/foundational/adam/adamig-non-compartmental-analysis-input-data-v1-0>).
This example presented uses underlying `EX` and `PC` domains where the
`EX` and `PC` domains represent data as collected and the `ADPC` ADaM is
output. However, the example can be applied to situations where an `EC`
domain is used as input instead of `EX` and/or `ADNCA` or another ADaM
is created.

One of the important aspects of the dataset is the derivation of
relative timing variables. These variables consist of nominal and actual
times, and refer to the time from first dose or time from most recent
reference dose. The reference dose for pre-dose records may be the
upcoming dose. The CDISC Implementation Guide makes use of duplicated
records for analysis, which allows the same record to be used both with
respect to the previous dose and the next upcoming dose. This is
illustrated later in this vignette.

Here are the relative time variables we will use. These correspond to
the names in the CDISC Implementation Guide.

| Variable | Variable Label                         |
|----------|----------------------------------------|
| NFRLT    | Nom. Rel. Time from Analyte First Dose |
| AFRLT    | Act. Rel. Time from Analyte First Dose |
| NRRLT    | Nominal Rel. Time from Ref. Dose       |
| ARRLT    | Actual Rel. Time from Ref. Dose        |
| MRRLT    | Modified Rel. Time from Ref. Dose      |

**Note**: *All examples assume CDISC SDTM and/or ADaM format as input
unless otherwise specified.*

# `ADPC` Programming Workflow

-   [Read in Data](#readdata)

-   [Expand Dosing Records](#expand)

-   [Find First Dose](#firstdose)

-   [Find Reference Dose Dates Corresponding to PK Records](#dosedates)

-   [Combine `PC` and `EX` Records and Derive Relative Time
    Variables](#relative)

-   [Derive Analysis Variables](#analysis)

-   [Create Duplicated Records for Analysis](#copy)

-   [Combine `ADPC` data with Duplicated Records](#combine)

-   [Calculate Change from Baseline and Assign `ASEQ`](#aseq)

-   [Add Additional Baseline Variables](#baselines)

-   [Add ADSL variables](#adsl_vars)

-   [Add Labels and Attributes](#attributes)

## Read in Data {#readdata}

To start, all data frames needed for the creation of `ADPC` should be
read into the environment. This will be a company specific process. Some
of the data frames needed may be `PC`, `EX`, and `ADSL`.

Additional domains such as `VS` and `LB` may be used for additional
baseline variables if needed. These may come from either the SDTM or
ADaM source.

For the purpose of example, the CDISC Pilot SDTM and ADaM
datasets---which are included in `{pharmaversesdtm}`---are used.

```{r message=FALSE}
library(dplyr, warn.conflicts = FALSE)
library(admiral)
library(pharmaversesdtm)
library(lubridate)
library(stringr)
library(tibble)

ex <- pharmaversesdtm::ex
pc <- pharmaversesdtm::pc
vs <- pharmaversesdtm::vs
lb <- pharmaversesdtm::lb
adsl <- admiral::admiral_adsl

ex <- convert_blanks_to_na(ex)
pc <- convert_blanks_to_na(pc)
vs <- convert_blanks_to_na(vs)
lb <- convert_blanks_to_na(lb) %>%
  filter(LBBLFL == "Y")

# ---- Lookup tables ----
param_lookup <- tibble::tribble(
  ~PCTESTCD, ~PARAMCD, ~PARAM, ~PARAMN,
  "XAN", "XAN", "Pharmacokinetic concentration of Xanomeline", 1,
  "DOSE", "DOSE", "Xanomeline Patch Dose", 2,
)
```

```{r echo=FALSE}
ex <- filter(ex, USUBJID %in% c(
  "01-701-1028", "01-701-1033", "01-701-1442", "01-714-1288", "01-718-1101"
))
pc <- filter(pc, USUBJID %in% c(
  "01-701-1028", "01-701-1033", "01-701-1442", "01-714-1288", "01-718-1101"
))
```

At this step, it may be useful to join `ADSL` to your `PC` and `EX`
domains as well. Only the `ADSL` variables used for derivations are
selected at this step. The rest of the relevant `ADSL` variables will be
added later.

In this case we will keep `TRTSDT`/`TRTSDTM` for day derivation and
`TRT01P`/`TRT01A` for planned and actual treatments.

In this segment we will use `derive_vars_merged()` to join the `ADSL`
variables and the following `{admiral}` functions to derive analysis
dates, times and days: `derive_vars_dtm()`, `derive_vars_dtm_to_dt()`,
`derive_vars_dtm_to_tm()`, `derive_vars_dy()`. We will also create
`NFRLT` for `PC` data based on `PCTPTNUM`. We will create an event ID
(`EVID`) of 0 for concentration records and 1 for dosing records. This
is a traditional variable that will provide a handy tool to identify
records but will be dropped from the final dataset in this example.

```{r eval=TRUE}
adsl_vars <- exprs(TRTSDT, TRTSDTM, TRT01P, TRT01A)

pc_dates <- pc %>%
  # Join ADSL with PC (need TRTSDT for ADY derivation)
  derive_vars_merged(
    dataset_add = adsl,
    new_vars = adsl_vars,
    by_vars = exprs(STUDYID, USUBJID)
  ) %>%
  # Derive analysis date/time
  # Impute missing time to 00:00:00
  derive_vars_dtm(
    new_vars_prefix = "A",
    dtc = PCDTC,
    time_imputation = "00:00:00"
  ) %>%
  # Derive dates and times from date/times
  derive_vars_dtm_to_dt(exprs(ADTM)) %>%
  derive_vars_dtm_to_tm(exprs(ADTM)) %>%
  derive_vars_dy(reference_date = TRTSDT, source_vars = exprs(ADT)) %>%
  # Derive event ID and nominal relative time from first dose (NFRLT)
  mutate(
    EVID = 0,
    DRUG = PCTEST,
    NFRLT = if_else(PCTPTNUM < 0, 0, PCTPTNUM), .after = USUBJID
  )
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  pc_dates,
  display_vars = exprs(
    USUBJID, PCTEST, ADTM, VISIT, PCTPT, NFRLT
  )
)
```

Next we will also join `ADSL` data with `EX` and derive dates/times.
This section uses the `{admiral}` functions `derive_vars_merged()`,
`derive_vars_dtm()`, and `derive_vars_dtm_to_dt()`. Time is imputed to
00:00:00 here for reasons specific to the sample data. Other imputation
times may be used based on study details. Here we create `NFRLT` for
`EX` data based on `VISITDY` using `dplyr::mutate()`.

```{r eval=TRUE, echo=TRUE}
# ---- Get dosing information ----

ex_dates <- ex %>%
  derive_vars_merged(
    dataset_add = adsl,
    new_vars = adsl_vars,
    by_vars = exprs(STUDYID, USUBJID)
  ) %>%
  # Keep records with nonzero dose
  filter(EXDOSE > 0) %>%
  # Add time and set missing end date to start date
  # Impute missing time to 00:00:00
  # Note all times are missing for dosing records in this example data
  # Derive Analysis Start and End Dates
  derive_vars_dtm(
    new_vars_prefix = "AST",
    dtc = EXSTDTC,
    time_imputation = "00:00:00"
  ) %>%
  derive_vars_dtm(
    new_vars_prefix = "AEN",
    dtc = EXENDTC,
    time_imputation = "00:00:00"
  ) %>%
  # Derive event ID and nominal relative time from first dose (NFRLT)
  mutate(
    EVID = 1,
    NFRLT = case_when(
      VISITDY == 1 ~ 0,
      TRUE ~ 24 * VISITDY
    )
  ) %>%
  # Set missing end dates to start date
  mutate(AENDTM = case_when(
    is.na(AENDTM) ~ ASTDTM,
    TRUE ~ AENDTM
  )) %>%
  # Derive dates from date/times
  derive_vars_dtm_to_dt(exprs(ASTDTM)) %>%
  derive_vars_dtm_to_dt(exprs(AENDTM))
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  ex_dates,
  display_vars = exprs(
    USUBJID, EXTRT, EXDOSFRQ, ASTDTM, AENDTM, VISIT, VISITDY, NFRLT
  )
)
```

## Expand Dosing Records {#expand}

The function `create_single_dose_dataset()` can be used to expand dosing
records between the start date and end date. The nominal time will also
be expanded based on the values of `EXDOSFRQ`, for example "QD" will
result in nominal time being incremented by 24 hours and "BID" will
result in nominal time being incremented by 12 hours. This is a new
feature of `create_single_dose_dataset()`.

Dates and times will be derived after expansion using
`derive_vars_dtm_to_dt()` and `derive_vars_dtm_to_tm()`.

For this example study we will define analysis visit (`AVISIT)` based on
the nominal day value from `NFRLT` and give it the format, "Day 1", "Day
2", "Day 3", etc. This is important for creating the `BASETYPE` variable
later. `DRUG` is created from `EXTRT` here. This will be useful for
linking treatment data with concentration data if there are multiple
drugs and/or analytes, but this variable will also be dropped from the
final dataset in this example.

```{r eval=TRUE, echo=TRUE}
# ---- Expand dosing records between start and end dates ----

ex_exp <- ex_dates %>%
  create_single_dose_dataset(
    dose_freq = EXDOSFRQ,
    start_date = ASTDT,
    start_datetime = ASTDTM,
    end_date = AENDT,
    end_datetime = AENDTM,
    nominal_time = NFRLT,
    lookup_table = dose_freq_lookup,
    lookup_column = CDISC_VALUE,
    keep_source_vars = exprs(
      STUDYID, USUBJID, EVID, EXDOSFRQ, EXDOSFRM,
      NFRLT, EXDOSE, EXDOSU, EXTRT, ASTDT, ASTDTM, AENDT, AENDTM,
      VISIT, VISITNUM, VISITDY, TRT01A, TRT01P, DOMAIN, EXSEQ, !!!adsl_vars
    )
  ) %>%
  # Derive AVISIT based on nominal relative time
  # Derive AVISITN to nominal time in whole days using integer division
  # Define AVISIT based on nominal day
  mutate(
    AVISITN = NFRLT %/% 24 + 1,
    AVISIT = paste("Day", AVISITN),
    ADTM = ASTDTM,
    DRUG = EXTRT,
  ) %>%
  # Derive dates and times from datetimes
  derive_vars_dtm_to_dt(exprs(ADTM)) %>%
  derive_vars_dtm_to_tm(exprs(ADTM)) %>%
  derive_vars_dtm_to_tm(exprs(ASTDTM)) %>%
  derive_vars_dtm_to_tm(exprs(AENDTM)) %>%
  derive_vars_dy(reference_date = TRTSDT, source_vars = exprs(ADT))
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  ex_exp,
  display_vars = exprs(
    USUBJID, DRUG, EXDOSFRQ, ASTDTM, AENDTM, AVISIT, NFRLT
  )
)
```

## Find First Dose {#firstdose}

In this section we will find the first dose for each subject and drug,
using `derive_vars_merged()`. We also create an analysis visit
(`AVISIT`) based on `NFRLT`. The first dose datetime for an analyte
`FANLDTM` is calculated as the minimum `ADTM` from the dosing records by
subject and drug.

```{r eval=TRUE, echo=TRUE, message=FALSE}
# ---- Find first dose per treatment per subject ----
# ---- Join with ADPC data and keep only subjects with dosing ----

adpc_first_dose <- pc_dates %>%
  derive_vars_merged(
    dataset_add = ex_exp,
    filter_add = (EXDOSE > 0 & !is.na(ADTM)),
    new_vars = exprs(FANLDTM = ADTM),
    order = exprs(ADTM, EXSEQ),
    mode = "first",
    by_vars = exprs(STUDYID, USUBJID, DRUG)
  ) %>%
  filter(!is.na(FANLDTM)) %>%
  # Derive AVISIT based on nominal relative time
  # Derive AVISITN to nominal time in whole days using integer division
  # Define AVISIT based on nominal day
  mutate(
    AVISITN = NFRLT %/% 24 + 1,
    AVISIT = paste("Day", AVISITN)
  )
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  adpc_first_dose,
  display_vars = exprs(
    USUBJID, FANLDTM, AVISIT, ADTM, PCTPT
  )
)
```

## Find Reference Dose Dates Corresponding to PK Records {#dosedates}

Use `derive_vars_joined()` to find the previous dose data. This will
join the expanded `EX` data with the `ADPC` based on the analysis date
`ADTM`. Note the `filter_join` parameter. In addition to the date of the
previous dose (`ADTM_prev)`, we also keep the actual dose amount
`EXDOSE_prev` and the analysis visit of the dose `AVISIT_prev`.

```{r eval=TRUE, echo=TRUE}
# ---- Find previous dose  ----

adpc_prev <- adpc_first_dose %>%
  derive_vars_joined(
    dataset_add = ex_exp,
    by_vars = exprs(USUBJID),
    order = exprs(ADTM),
    new_vars = exprs(
      ADTM_prev = ADTM, EXDOSE_prev = EXDOSE, AVISIT_prev = AVISIT,
      AENDTM_prev = AENDTM
    ),
    join_vars = exprs(ADTM),
    join_type = "all",
    filter_add = NULL,
    filter_join = ADTM > ADTM.join,
    mode = "last",
    check_type = "none"
  )
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  adpc_prev,
  display_vars = exprs(
    USUBJID, VISIT, ADTM, VISIT, PCTPT, ADTM_prev, EXDOSE_prev, AVISIT_prev
  )
)
```

Similarly, find next dose information using `derive_vars_joined()` with
the `filter_join` parameter as `ADTM <= ADTM.join`. Here we keep the
next dose analysis date `ADTM_next`, the next actual dose `EXDOSE_next`,
and the next analysis visit `AVISIT_next`.

```{r eval=TRUE, echo=TRUE}
# ---- Find next dose  ----

adpc_next <- adpc_prev %>%
  derive_vars_joined(
    dataset_add = ex_exp,
    by_vars = exprs(USUBJID),
    order = exprs(ADTM),
    new_vars = exprs(
      ADTM_next = ADTM, EXDOSE_next = EXDOSE, AVISIT_next = AVISIT,
      AENDTM_next = AENDTM
    ),
    join_vars = exprs(ADTM),
    join_type = "all",
    filter_add = NULL,
    filter_join = ADTM <= ADTM.join,
    mode = "first",
    check_type = "none"
  )
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  adpc_next,
  display_vars = exprs(
    USUBJID,
    VISIT, ADTM, VISIT, PCTPT, ADTM_next, EXDOSE_next, AVISIT_next
  )
)
```

Use the same method to find the previous and next nominal times. Note
that here the data are sorted by nominal time rather than the actual
time. This will tell us when the previous dose and the next dose were
supposed to occur. Sometimes this will differ from the actual times in a
study. Here we keep the previous nominal dose time `NFRLT_prev` and the
next nominal dose time `NFRLT_next`. Note that the `filter_join`
parameter uses the nominal relative times, e.g. `NFRLT > NFRLT.join`.

```{r eval=TRUE, echo=TRUE}
# ---- Find previous nominal time ----

adpc_nom_prev <- adpc_next %>%
  derive_vars_joined(
    dataset_add = ex_exp,
    by_vars = exprs(USUBJID),
    order = exprs(NFRLT),
    new_vars = exprs(NFRLT_prev = NFRLT),
    join_vars = exprs(NFRLT),
    join_type = "all",
    filter_add = NULL,
    filter_join = NFRLT > NFRLT.join,
    mode = "last",
    check_type = "none"
  )

# ---- Find next nominal time ----

adpc_nom_next <- adpc_nom_prev %>%
  derive_vars_joined(
    dataset_add = ex_exp,
    by_vars = exprs(USUBJID),
    order = exprs(NFRLT),
    new_vars = exprs(NFRLT_next = NFRLT),
    join_vars = exprs(NFRLT),
    join_type = "all",
    filter_add = NULL,
    filter_join = NFRLT <= NFRLT.join,
    mode = "first",
    check_type = "none"
  )
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  adpc_nom_next,
  display_vars = exprs(
    USUBJID, NFRLT, PCTPT, NFRLT_prev, NFRLT_next
  )
)
```

## Combine PC and EX Records and Derive Relative Time Variables {#relative}

Combine `PC` and `EX` records and derive the additional relative time
variables. Often NCA data will keep both dosing and concentration
records. We will keep both here. Sometimes you will see `ADPC` with only
the concentration records. If this is desired, the dosing records can be
dropped before saving the final dataset. We will use the `{admiral}`
function `derive_vars_duration()` to calculate the actual relative time
from first dose (`AFRLT`) and the actual relative time from most recent
dose (`ARRLT`). Note that we use the parameter `add_one = FALSE` here.
We will also create a variable representing actual time to next dose
(`AXRLT`) which is not kept, but will be used when we create duplicated
records for analysis for the pre-dose records. For now, we will update
missing values of `ARRLT` corresponding to the pre-dose records with
`AXRLT`, and dosing records will be set to zero.

We also calculate the reference dates `FANLDTM` (First Datetime of Dose
for Analyte) and `PCRFTDTM` (Reference Datetime of Dose for Analyte) and
their corresponding date and time variables.

We calculate the maximum date for concentration records and only keep
the dosing records up to that date.

```{r eval=TRUE, echo=TRUE}
# ---- Combine ADPC and EX data ----
# Derive Relative Time Variables

adpc_arrlt <- bind_rows(adpc_nom_next, ex_exp) %>%
  group_by(USUBJID, DRUG) %>%
  mutate(
    FANLDTM = min(FANLDTM, na.rm = TRUE),
    min_NFRLT = min(NFRLT_prev, na.rm = TRUE),
    maxdate = max(ADT[EVID == 0], na.rm = TRUE), .after = USUBJID
  ) %>%
  arrange(USUBJID, ADTM) %>%
  ungroup() %>%
  filter(ADT <= maxdate) %>%
  # Derive Actual Relative Time from First Dose (AFRLT)
  derive_vars_duration(
    new_var = AFRLT,
    start_date = FANLDTM,
    end_date = ADTM,
    out_unit = "hours",
    floor_in = FALSE,
    add_one = FALSE
  ) %>%
  # Derive Actual Relative Time from Reference Dose (ARRLT)
  derive_vars_duration(
    new_var = ARRLT,
    start_date = ADTM_prev,
    end_date = ADTM,
    out_unit = "hours",
    floor_in = FALSE,
    add_one = FALSE
  ) %>%
  # Derive Actual Relative Time from Next Dose (AXRLT not kept)
  derive_vars_duration(
    new_var = AXRLT,
    start_date = ADTM_next,
    end_date = ADTM,
    out_unit = "hours",
    floor_in = FALSE,
    add_one = FALSE
  ) %>%
  mutate(
    ARRLT = case_when(
      EVID == 1 ~ 0,
      is.na(ARRLT) ~ AXRLT,
      TRUE ~ ARRLT
    ),

    # Derive Reference Dose Date
    PCRFTDTM = case_when(
      EVID == 1 ~ ADTM,
      is.na(ADTM_prev) ~ ADTM_next,
      TRUE ~ ADTM_prev
    )
  ) %>%
  # Derive dates and times from datetimes
  derive_vars_dtm_to_dt(exprs(FANLDTM)) %>%
  derive_vars_dtm_to_tm(exprs(FANLDTM)) %>%
  derive_vars_dtm_to_dt(exprs(PCRFTDTM)) %>%
  derive_vars_dtm_to_tm(exprs(PCRFTDTM))
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  adpc_arrlt,
  display_vars = exprs(
    USUBJID, FANLDTM, AVISIT, PCTPT, AFRLT, ARRLT, AXRLT
  )
)
```

For nominal relative times we calculate `NRRLT` generally as
`NFRLT - NFRLT_prev` and `NXRLT` as `NFRLT - NFRLT_next`.

```{r eval=TRUE, echo=TRUE}
adpc_nrrlt <- adpc_arrlt %>%
  # Derive Nominal Relative Time from Reference Dose (NRRLT)
  mutate(
    NRRLT = case_when(
      EVID == 1 ~ 0,
      is.na(NFRLT_prev) ~ NFRLT - min_NFRLT,
      TRUE ~ NFRLT - NFRLT_prev
    ),
    NXRLT = case_when(
      EVID == 1 ~ 0,
      TRUE ~ NFRLT - NFRLT_next
    )
  )
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  adpc_nrrlt,
  display_vars = exprs(
    USUBJID, AVISIT, PCTPT, NFRLT, NRRLT, NXRLT
  )
)
```

## Derive Analysis Variables {#analysis}

Using `dplyr::mutate` we derive a number of analysis variables including
analysis value (`AVAL`), analysis time point (`ATPT`) analysis timepoint
reference (`ATPTREF`) and baseline type (`BASETYPE`).

We set `ATPT` to `PCTPT` for concentration records and to "Dose" for
dosing records. The analysis timepoint reference `ATPTREF` will
correspond to the dosing visit. We will use `AVISIT_prev` and
`AVISIT_next` to derive. The baseline type will be a concatenation of
`ATPTREF` and "Baseline" with values such as "Day 1 Baseline", "Day 2
Baseline", etc. The baseline flag `ABLFL` will be set to "Y" for
pre-dose records.

Analysis value `AVAL` in this example comes from `PCSTRESN` for
concentration records. In addition we are including the dose value
`EXDOSE` for dosing records and setting BLQ (Below Limit of
Quantitation) records to 0 before the first dose and to 1/2 of LLOQ
(Lower Limit of Quantitation) for records after first dose. (Additional
tests such as whether more than 1/3 of records are BLQ may be required
and are not done in this example.) We also create a listing-ready
variable `AVALCAT1` which includes the "BLQ" record indicator and
formats the numeric values to three significant digits.

We derive actual dose `DOSEA` based on `EXDOSE_prev` and `EXDOSE_next`
and planned dose `DOSEP` based on the planned treatment `TRT01P`. In
addition we add the units for the dose variables and the relative time
variables.

```{r eval=TRUE, echo=TRUE}
# ---- Derive Analysis Variables ----
# Derive ATPTN, ATPT, ATPTREF, ABLFL and BASETYPE
# Derive planned dose DOSEP, actual dose DOSEA and units
# Derive PARAMCD and relative time units
# Derive AVAL, AVALU and AVALCAT1

adpc_aval <- adpc_nrrlt %>%
  mutate(
    PARCAT1 = PCSPEC,
    ATPTN = case_when(
      EVID == 1 ~ 0,
      TRUE ~ PCTPTNUM
    ),
    ATPT = case_when(
      EVID == 1 ~ "Dose",
      TRUE ~ PCTPT
    ),
    ATPTREF = case_when(
      EVID == 1 ~ AVISIT,
      is.na(AVISIT_prev) ~ AVISIT_next,
      TRUE ~ AVISIT_prev
    ),
    # Derive baseline flag for pre-dose records
    ABLFL = case_when(
      ATPT == "Pre-dose" ~ "Y",
      TRUE ~ NA_character_
    ),
    # Derive BASETYPE
    BASETYPE = paste(ATPTREF, "Baseline"),

    # Derive Actual Dose
    DOSEA = case_when(
      EVID == 1 ~ EXDOSE,
      is.na(EXDOSE_prev) ~ EXDOSE_next,
      TRUE ~ EXDOSE_prev
    ),
    # Derive Planned Dose
    DOSEP = case_when(
      TRT01P == "Xanomeline High Dose" ~ 81,
      TRT01P == "Xanomeline Low Dose" ~ 54
    ),
    DOSEU = "mg",
  ) %>%
  # Derive relative time units
  mutate(
    FRLTU = "h",
    RRLTU = "h",
    # Derive PARAMCD
    PARAMCD = coalesce(PCTESTCD, "DOSE"),
    ALLOQ = PCLLOQ,
    # Derive AVAL
    AVAL = case_when(
      EVID == 1 ~ EXDOSE,
      PCSTRESC == "<BLQ" & NFRLT == 0 ~ 0,
      PCSTRESC == "<BLQ" & NFRLT > 0 ~ 0.5 * ALLOQ,
      TRUE ~ PCSTRESN
    ),
    AVALU = case_when(
      EVID == 1 ~ EXDOSU,
      TRUE ~ PCSTRESU
    ),
    AVALCAT1 = if_else(PCSTRESC == "<BLQ", PCSTRESC, prettyNum(signif(AVAL, digits = 3))),
  ) %>%
  # Add SRCSEQ
  mutate(
    SRCDOM = DOMAIN,
    SRCVAR = "SEQ",
    SRCSEQ = coalesce(PCSEQ, EXSEQ)
  )
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  adpc_aval,
  display_vars = exprs(
    USUBJID, NFRLT, AVISIT, ATPT, ABLFL, ATPTREF, AVAL, AVALCAT1
  )
)
```

## Create Duplicated Records for Analysis {#copy}

As mentioned above, the CDISC ADaM Implementation Guide for
Non-compartmental Analysis uses duplicated records for analysis when a
record needs to be used in more than one way. In this example the 24
hour post-dose record will also be used a the pre-dose record for the
"Day 2" dose. In addition to 24 hour post-dose records, other situations
may include pre-dose records for "Cycle 2 Day 1", etc.

In general, we will select the records of interest and then update the
relative time variables for the duplicated records. In this case we will
select where the nominal relative time to next dose is zero. (Note that
we do not need to duplicate the first dose record since there is no
prior dose.)

`DTYPE` is set to "COPY" for the duplicated records and the original
`PCSEQ` value is retained. In this case we change "24h Post-dose" to
"Pre-dose". `ABLFL` is set to "Y" since these records will serve as
baseline for the "Day 2" dose. `DOSEA` is set to `EXDOSE_next` and
`PCRFTDTM` is set to `ADTM_next`.

```{r eval=TRUE, echo=TRUE}
# ---- Create DTYPE copy records ----

dtype <- adpc_aval %>%
  filter(NFRLT > 0 & NXRLT == 0 & EVID == 0 & !is.na(AVISIT_next)) %>%
  select(-PCRFTDT, -PCRFTTM) %>%
  # Re-derive variables in for DTYPE copy records
  mutate(
    ABLFL = NA_character_,
    ATPTREF = AVISIT_next,
    ARRLT = AXRLT,
    NRRLT = NXRLT,
    PCRFTDTM = ADTM_next,
    DOSEA = EXDOSE_next,
    BASETYPE = paste(AVISIT_next, "Baseline"),
    ATPT = "Pre-dose",
    ATPTN = -0.5,
    ABLFL = "Y",
    DTYPE = "COPY"
  ) %>%
  derive_vars_dtm_to_dt(exprs(PCRFTDTM)) %>%
  derive_vars_dtm_to_tm(exprs(PCRFTDTM))
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  dtype,
  display_vars = exprs(
    USUBJID, DTYPE, ATPT, NFRLT, NRRLT, AFRLT, ARRLT, BASETYPE
  )
)
```

## Combine `ADPC` data with Duplicated Records {#combine}

Now the duplicated records are combined with the original records. We
also derive the modified relative time from reference dose `MRRLT`. In
this case, negative values of `ARRLT` are set to zero.

This is also an opportunity to derive analysis flags e.g. `ANL01FL` ,
`ANL02FL` etc. In this example `ANL01FL` is set to "Y" for all records
and `ANL02FL` is set to "Y" for all records except the duplicated
records with `DTYPE` = "COPY". Additional flags may be used to select
full profile records and/or to select records included in the tables and
figures, etc.

```{r eval=TRUE, echo=TRUE}
# ---- Combine original records and DTYPE copy records ----

adpc_dtype <- bind_rows(adpc_aval, dtype) %>%
  arrange(STUDYID, USUBJID, BASETYPE, ADTM, NFRLT) %>%
  mutate(
    # Derive MRRLT, ANL01FL and ANL02FL
    MRRLT = if_else(ARRLT < 0, 0, ARRLT),
    ANL01FL = "Y",
    ANL02FL = if_else(is.na(DTYPE), "Y", NA_character_),
  )
```

```{r, eval=TRUE, echo=FALSE}
adpc_dtype %>%
  dataset_vignette(display_vars = exprs(
    STUDYID, USUBJID, BASETYPE, ADTM, ATPT, NFRLT, NRRLT, ARRLT, MRRLT
  ))
```

## Calculate Change from Baseline and Assign `ASEQ` {#aseq}

The `{admiral}` function `derive_var_base()` is used to derive `BASE`
and the function `derive_var_chg()` is used to derive change from
baseline `CHG`.

We also now derive `ASEQ` using `derive_var_obs_number()` and we drop
intermediate variables such as those ending with "\_prev" and "\_next".

Finally we derive `PARAM` and `PARAMN` from a lookup table.

```{r eval=TRUE, echo=TRUE}
# ---- Derive BASE and Calculate Change from Baseline ----

adpc_base <- adpc_dtype %>%
  # Derive BASE
  derive_var_base(
    by_vars = exprs(STUDYID, USUBJID, PARAMCD, PARCAT1, BASETYPE),
    source_var = AVAL,
    new_var = BASE,
    filter = ABLFL == "Y"
  )

# Calculate CHG for post-baseline records
# The decision on how to populate pre-baseline and baseline values of CHG is left to producer choice
adpc_chg <- restrict_derivation(
  adpc_base,
  derivation = derive_var_chg,
  filter = AVISITN > 0
)

# ---- Add ASEQ ----

adpc_aseq <- adpc_chg %>%
  # Calculate ASEQ
  derive_var_obs_number(
    new_var = ASEQ,
    by_vars = exprs(STUDYID, USUBJID),
    order = exprs(ADTM, BASETYPE, EVID, AVISITN, ATPTN, PARCAT1, DTYPE),
    check_type = "error"
  ) %>%
  # Remove temporary variables
  select(
    -DOMAIN, -PCSEQ, -starts_with("orig"), -starts_with("min"),
    -starts_with("max"), -starts_with("EX"), -ends_with("next"),
    -ends_with("prev"), -DRUG, -EVID, -AXRLT, -NXRLT, -VISITDY
  ) %>%
  # Derive PARAM and PARAMN
  derive_vars_merged(
    dataset_add = select(param_lookup, -PCTESTCD), by_vars = exprs(PARAMCD)
  )
```

```{r, eval=TRUE, echo=FALSE}
adpc_aseq %>%
  dataset_vignette(display_vars = exprs(
    USUBJID, BASETYPE, DTYPE, AVISIT, ATPT, AVAL, NFRLT, NRRLT, AFRLT, ARRLT, BASE, CHG
  ))
```

## Add Additional Baseline Variables {#baselines}

Here we derive additional baseline values from `VS` for baseline height
`HTBL` and weight `WTBL` and compute the body mass index (BMI) with
`compute_bmi()`. These values could also be obtained from `ADVS` if
available. Baseline lab values could also be derived from `LB` or `ADLB`
in a similar manner.

```{r eval=TRUE, echo=TRUE}
# Derive additional baselines from VS
adpc_baselines <- adpc_aseq %>%
  derive_vars_merged(
    dataset_add = vs,
    filter_add = VSTESTCD == "HEIGHT",
    by_vars = exprs(STUDYID, USUBJID),
    new_vars = exprs(HTBL = VSSTRESN, HTBLU = VSSTRESU)
  ) %>%
  derive_vars_merged(
    dataset_add = vs,
    filter_add = VSTESTCD == "WEIGHT" & VSBLFL == "Y",
    by_vars = exprs(STUDYID, USUBJID),
    new_vars = exprs(WTBL = VSSTRESN, WTBLU = VSSTRESU)
  ) %>%
  mutate(
    BMIBL = compute_bmi(height = HTBL, weight = WTBL),
    BMIBLU = "kg/m^2"
  )
```

```{r, eval=TRUE, echo=FALSE}
adpc_baselines %>%
  dataset_vignette(display_vars = exprs(
    USUBJID, HTBL, HTBLU, WTBL, WTBLU, BMIBL, BMIBLU, BASETYPE, ATPT, AVAL
  ))
```

## Add the `ADSL` variables {#adsl_vars}

If needed, the other `ADSL` variables can now be added:

```{r eval=TRUE, echo=TRUE}
# Add all ADSL variables
adpc <- adpc_baselines %>%
  derive_vars_merged(
    dataset_add = select(adsl, !!!negate_vars(adsl_vars)),
    by_vars = exprs(STUDYID, USUBJID)
  )
```

Adding attributes to the `ADPC` file will be discussed
[below](#attributes). We will now turn to the Population PK example.

# Programming Population PK (ADPPK) Analysis Data

The Population PK Analysis Data (ADPPK) follows the CDISC Implementation Guide
(<https://www.cdisc.org/standards/foundational/adam/basic-data-structure-adam-poppk-implementation-guide-v1-0>). The programming workflow for Population PK (ADPPK) Analysis Data is similar
to the NCA Programming flow with a few key differences. Population PK
models generally make use of nonlinear mixed effects models that require
numeric variables. The data used in the models will include both dosing
and concentration records, relative time variables, and numeric
covariate variables. A `DV` or dependent variable is often expected.
This is equivalent to the ADaM `AVAL` variable and will be included in
addition to `AVAL` for ADPPK. The ADPPK file will not have the
duplicated records for analysis found in the NCA.

Here are the relative time variables we will use for the ADPPK data.
These correspond to the names in the forthcoming CDISC Implementation
Guide.

| Variable | Variable Label                      |
|----------|-------------------------------------|
| NFRLT    | Nominal Rel Time from First Dose    |
| AFRLT    | Actual Rel Time from First Dose     |
| NPRLT    | Nominal Rel Time from Previous Dose |
| APRLT    | Actual Rel Time from Previous Dose  |

The `ADPPK` will require the numeric Event ID (`EVID`) which we defined
in `ADPC` but did not keep.

# `ADPPK` Programming Workflow

-   [Read in Data (Same as `ADPC`)](#readdata)

-   [Expand Dosing Records (Same as `ADPC`)](#expand)

-   [Find First Dose](#ppkfirst)

-   [Find Previous Dose](#prevdose)

-   [Combine PC and EX Records for `ADPPK`](#aprlt)

-   [Derive Analysis Variables and Dependent Variable `DV`](#dv)

-   [Add `ASEQ` and Remove Temporary Variables](#ppkaseq)

-   [Derive Numeric Covariates](#covar)

-   [Derive Additional Covariates from VS and LB](#addcovar)

-   [Combine Covariates with `ADPPK` Data](#final)

## Find First Dose `ADPPK` {#ppkfirst}

The initial programming steps for `ADPPK` will follow the same sequence
as the `ADPC`. This includes reading in the `{pharmaversesdtm}` data,
deriving analysis dates, defining the nominal relative time from first
dose `NFRLT`, and expanding dosing records. For more detail see these
steps above ([Read in Data](#readdata)).

We will pick this up at the stage where we find the first dose for the
concentration records. We will use `derive_vars_merged()` as we did for
`ADPC`.

```{r eval=TRUE, echo=TRUE, message=FALSE}
# ---- Find first dose per treatment per subject ----
# ---- Join with ADPC data and keep only subjects with dosing ----

adppk_first_dose <- pc_dates %>%
  derive_vars_merged(
    dataset_add = ex_exp,
    filter_add = (!is.na(ADTM)),
    new_vars = exprs(FANLDTM = ADTM, EXDOSE_first = EXDOSE),
    order = exprs(ADTM, EXSEQ),
    mode = "first",
    by_vars = exprs(STUDYID, USUBJID, DRUG)
  ) %>%
  filter(!is.na(FANLDTM)) %>%
  # Derive AVISIT based on nominal relative time
  # Derive AVISITN to nominal time in whole days using integer division
  # Define AVISIT based on nominal day
  mutate(
    AVISITN = NFRLT %/% 24 + 1,
    AVISIT = paste("Day", AVISITN),
  )
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  adppk_first_dose,
  display_vars = exprs(
    USUBJID, FANLDTM, AVISIT, ADTM, PCTPT
  )
)
```

## Find Previous Dose {#prevdose}

For `ADPPK` we will find the previous dose with respect to actual time
and nominal time. We will use `derive_vars_joined()` as we did for
`ADPC`, but note that we will not need to find the next dose as for
`ADPC`.

```{r eval=TRUE, echo=TRUE}
# ---- Find previous dose  ----

adppk_prev <- adppk_first_dose %>%
  derive_vars_joined(
    dataset_add = ex_exp,
    by_vars = exprs(USUBJID),
    order = exprs(ADTM),
    new_vars = exprs(
      ADTM_prev = ADTM, EXDOSE_prev = EXDOSE, AVISIT_prev = AVISIT,
      AENDTM_prev = AENDTM
    ),
    join_vars = exprs(ADTM),
    join_type = "all",
    filter_add = NULL,
    filter_join = ADTM > ADTM.join,
    mode = "last",
    check_type = "none"
  )

# ---- Find previous nominal dose ----

adppk_nom_prev <- adppk_prev %>%
  derive_vars_joined(
    dataset_add = ex_exp,
    by_vars = exprs(USUBJID),
    order = exprs(NFRLT),
    new_vars = exprs(NFRLT_prev = NFRLT),
    join_vars = exprs(NFRLT),
    join_type = "all",
    filter_add = NULL,
    filter_join = NFRLT > NFRLT.join,
    mode = "last",
    check_type = "none"
  )
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  adppk_nom_prev,
  display_vars = exprs(
    USUBJID, VISIT, ADTM, VISIT, PCTPT, ADTM_prev, NFRLT_prev
  )
)
```

## Combine PC and EX Records for `ADPPK` {#aprlt}

As we did for `ADPC` we will now combine `PC` and `EX` records. We will
derive the relative time variables `AFRLT` (Actual Relative Time from
First Dose), `APRLT` (Actual Relative Time from Previous Dose), and
`NPRLT` (Nominal Relative Time from Previous Dose). Use
`derive_vars_duration()` to derive `AFRLT` and `APRLT`. Note we defined
`EVID` above with values of 0 for observation records and 1 for dosing
records.

```{r eval=TRUE, echo=TRUE}
# ---- Combine ADPPK and EX data ----
# Derive Relative Time Variables

adppk_aprlt <- bind_rows(adppk_nom_prev, ex_exp) %>%
  group_by(USUBJID, DRUG) %>%
  mutate(
    FANLDTM = min(FANLDTM, na.rm = TRUE),
    min_NFRLT = min(NFRLT, na.rm = TRUE),
    maxdate = max(ADT[EVID == 0], na.rm = TRUE), .after = USUBJID
  ) %>%
  arrange(USUBJID, ADTM) %>%
  ungroup() %>%
  filter(ADT <= maxdate) %>%
  # Derive Actual Relative Time from First Dose (AFRLT)
  derive_vars_duration(
    new_var = AFRLT,
    start_date = FANLDTM,
    end_date = ADTM,
    out_unit = "hours",
    floor_in = FALSE,
    add_one = FALSE
  ) %>%
  # Derive Actual Relative Time from Reference Dose (APRLT)
  derive_vars_duration(
    new_var = APRLT,
    start_date = ADTM_prev,
    end_date = ADTM,
    out_unit = "hours",
    floor_in = FALSE,
    add_one = FALSE
  ) %>%
  # Derive APRLT
  mutate(
    APRLT = case_when(
      EVID == 1 ~ 0,
      is.na(APRLT) ~ AFRLT,
      TRUE ~ APRLT
    ),
    NPRLT = case_when(
      EVID == 1 ~ 0,
      is.na(NFRLT_prev) ~ NFRLT - min_NFRLT,
      TRUE ~ NFRLT - NFRLT_prev
    )
  )
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  adppk_aprlt,
  display_vars = exprs(
    USUBJID, EVID, NFRLT, AFRLT, APRLT, NPRLT
  )
)
```

## Derive Analysis Variables and Dependent Variable `DV` {#dv}

The expected analysis variable for `ADPPK` is `DV` or dependent
variable. For this example `DV` is set to the numeric concentration
value `PCSTRESN`. We will also include `AVAL` equivalent to `DV` for
consistency with CDISC ADaM standards. `MDV` missing dependent variable
will also be included.

```{r eval=TRUE, echo=TRUE}
# ---- Derive Analysis Variables ----
# Derive actual dose DOSEA and planned dose DOSEP,
# Derive AVAL and DV

adppk_aval <- adppk_aprlt %>%
  mutate(
    # Derive Actual Dose
    DOSEA = case_when(
      EVID == 1 ~ EXDOSE,
      is.na(EXDOSE_prev) ~ EXDOSE_first,
      TRUE ~ EXDOSE_prev
    ),
    # Derive Planned Dose
    DOSEP = case_when(
      TRT01P == "Xanomeline High Dose" ~ 81,
      TRT01P == "Xanomeline Low Dose" ~ 54,
      TRT01P == "Placebo" ~ 0
    ),
    # Derive PARAMCD
    PARAMCD = case_when(
      EVID == 1 ~ "DOSE",
      TRUE ~ PCTESTCD
    ),
    ALLOQ = PCLLOQ,
    # Derive CMT
    CMT = case_when(
      EVID == 1 ~ 1,
      PCSPEC == "PLASMA" ~ 2,
      TRUE ~ 3
    ),
    # Derive BLQFL/BLQFN
    BLQFL = case_when(
      PCSTRESC == "<BLQ" ~ "Y",
      TRUE ~ "N"
    ),
    BLQFN = case_when(
      PCSTRESC == "<BLQ" ~ 1,
      TRUE ~ 0
    ),
    AMT = case_when(
      EVID == 1 ~ EXDOSE,
      TRUE ~ NA_real_
    ),
    # Derive DV and AVAL
    DV = PCSTRESN,
    AVAL = DV,
    DVL = case_when(
      DV != 0 ~ log(DV),
      TRUE ~ NA_real_
    ),
    # Derive MDV
    MDV = case_when(
      EVID == 1 ~ 1,
      is.na(DV) ~ 1,
      TRUE ~ 0
    ),
    AVALU = case_when(
      EVID == 1 ~ NA_character_,
      TRUE ~ PCSTRESU
    ),
    UDTC = format_ISO8601(ADTM),
    II = if_else(EVID == 1, 1, 0),
    SS = if_else(EVID == 1, 1, 0)
  )
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  adppk_aval,
  display_vars = exprs(
    USUBJID, EVID, DOSEA, AMT, NFRLT, AFRLT, CMT, DV, MDV, BLQFN
  )
)
```

## Add `ASEQ` and Remove Temporary Variables {#ppkaseq}

We derive `ASEQ` using `derive_var_obs_number()`. We add a `PROJID`
based on drug and include the numeric version `PROJIDN`, and we drop and
we drop intermediate variables such as those ending with "\_prev".

```{r eval=TRUE, echo=TRUE}
# ---- Add ASEQ ----

adppk_aseq <- adppk_aval %>%
  # Calculate ASEQ
  derive_var_obs_number(
    new_var = ASEQ,
    by_vars = exprs(STUDYID, USUBJID),
    order = exprs(AFRLT, EVID, CMT),
    check_type = "error"
  ) %>%
  # Derive PARAM and PARAMN
  derive_vars_merged(dataset_add = select(param_lookup, -PCTESTCD), by_vars = exprs(PARAMCD)) %>%
  mutate(
    PROJID = DRUG,
    PROJIDN = 1
  ) %>%
  # Remove temporary variables
  select(
    -DOMAIN, -starts_with("min"), -starts_with("max"), -starts_with("EX"),
    -starts_with("PC"), -ends_with("first"), -ends_with("prev"),
    -ends_with("DTM"), -ends_with("DT"), -ends_with("TM"), -starts_with("VISIT"),
    -starts_with("AVISIT"), -ends_with("TMF"), -starts_with("TRT"),
    -starts_with("ATPT"), -DRUG
  )
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  adppk_aseq,
  display_vars = exprs(
    USUBJID, EVID, DOSEA, AMT, NFRLT, AFRLT, CMT, DV, MDV, BLQFN, ASEQ
  )
)
```

## Derive Numeric Covariates {#covar}

A key feature of Population PK modeling is the presence of numeric
covariates. We will create numeric versions of many of our standard
CDISC demographic variables including `STUDYIDN`, `USUBJIDN`, `SEXN`,
`RACEN`, and `ETHNICN`.

```{r eval=TRUE, echo=TRUE}
#---- Derive Covariates ----
# Include numeric values for STUDYIDN, USUBJIDN, SEXN, RACEN etc.

covar <- adsl %>%
  derive_vars_merged(
    dataset_add = country_code_lookup,
    new_vars = exprs(COUNTRYN = country_number, COUNTRYL = country_name),
    by_vars = exprs(COUNTRY = country_code),
  ) %>%
  mutate(
    STUDYIDN = as.numeric(word(USUBJID, 1, sep = fixed("-"))),
    SITEIDN = as.numeric(word(USUBJID, 2, sep = fixed("-"))),
    USUBJIDN = as.numeric(word(USUBJID, 3, sep = fixed("-"))),
    SUBJIDN = as.numeric(SUBJID),
    SEXN = case_when(
      SEX == "M" ~ 1,
      SEX == "F" ~ 2,
      TRUE ~ 3
    ),
    RACEN = case_when(
      RACE == "AMERICAN INDIAN OR ALASKA NATIVE" ~ 1,
      RACE == "ASIAN" ~ 2,
      RACE == "BLACK OR AFRICAN AMERICAN" ~ 3,
      RACE == "NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER" ~ 4,
      RACE == "WHITE" ~ 5,
      TRUE ~ 6
    ),
    ETHNICN = case_when(
      ETHNIC == "HISPANIC OR LATINO" ~ 1,
      ETHNIC == "NOT HISPANIC OR LATINO" ~ 2,
      TRUE ~ 3
    ),
    ARMN = case_when(
      ARM == "Placebo" ~ 0,
      ARM == "Xanomeline Low Dose" ~ 1,
      ARM == "Xanomeline High Dose" ~ 2,
      TRUE ~ 3
    ),
    ACTARMN = case_when(
      ACTARM == "Placebo" ~ 0,
      ACTARM == "Xanomeline Low Dose" ~ 1,
      ACTARM == "Xanomeline High Dose" ~ 2,
      TRUE ~ 3
    ),
    COHORT = ARMN,
    COHORTC = ARM,
    ROUTE = unique(ex$EXROUTE),
    ROUTEN = case_when(
      ROUTE == "TRANSDERMAL" ~ 3,
      TRUE ~ NA_real_
    ),
    FORM = unique(ex$EXDOSFRM),
    FORMN = case_when(
      FORM == "PATCH" ~ 3,
      TRUE ~ 4
    )
  ) %>%
  select(
    STUDYID, STUDYIDN, SITEID, SITEIDN, USUBJID, USUBJIDN,
    SUBJID, SUBJIDN, AGE, SEX, SEXN, COHORT, COHORTC, ROUTE, ROUTEN,
    RACE, RACEN, ETHNIC, ETHNICN, FORM, FORMN, COUNTRY, COUNTRYN, COUNTRYL
  )
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  covar,
  display_vars = exprs(
    STUDYIDN, USUBJIDN, SITEIDN, COUNTRY, COUNTRYN, AGE, SEXN, RACEN, COHORT, ROUTEN
  )
)
```

## Derive Additional Covariates from VS and LB {#addcovar}

We will add additional covariates for baseline height `HTBL` and weight
`WTBL` from `VS` and select baseline lab values `CREATBL`, `ALTBL`,
`ASTBL` and `TBILBL` from `LB`. We will calculate BMI and BSA from
height and weight using `compute_bmi()` and `compute_bsa()`. And we will
calculate creatinine clearance `CRCLBL` and estimated glomerular
filtration rate (eGFR) `EGFRBL` using `compute_egfr()` function.

```{r eval=TRUE, echo=TRUE}
#---- Derive additional baselines from VS and LB ----

labsbl <- lb %>%
  filter(LBBLFL == "Y" & LBTESTCD %in% c("CREAT", "ALT", "AST", "BILI")) %>%
  mutate(LBTESTCDB = paste0(LBTESTCD, "BL")) %>%
  select(STUDYID, USUBJID, LBTESTCDB, LBSTRESN)

covar_vslb <- covar %>%
  derive_vars_merged(
    dataset_add = vs,
    filter_add = VSTESTCD == "HEIGHT",
    by_vars = exprs(STUDYID, USUBJID),
    new_vars = exprs(HTBL = VSSTRESN)
  ) %>%
  derive_vars_merged(
    dataset_add = vs,
    filter_add = VSTESTCD == "WEIGHT" & VSBLFL == "Y",
    by_vars = exprs(STUDYID, USUBJID),
    new_vars = exprs(WTBL = VSSTRESN)
  ) %>%
  derive_vars_transposed(
    dataset_merge = labsbl,
    by_vars = exprs(STUDYID, USUBJID),
    key_var = LBTESTCDB,
    value_var = LBSTRESN
  ) %>%
  mutate(
    BMIBL = compute_bmi(height = HTBL, weight = WTBL),
    BSABL = compute_bsa(
      height = HTBL,
      weight = HTBL,
      method = "Mosteller"
    ),
    # Derive CRCLBL and EGFRBL using new function
    CRCLBL = compute_egfr(
      creat = CREATBL, creatu = "SI", age = AGE, weight = WTBL, sex = SEX,
      method = "CRCL"
    ),
    EGFRBL = compute_egfr(
      creat = CREATBL, creatu = "SI", age = AGE, weight = WTBL, sex = SEX,
      method = "CKD-EPI"
    )
  ) %>%
  rename(TBILBL = BILIBL)
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  covar_vslb,
  display_vars = exprs(
    USUBJIDN, AGE, SEXN, HTBL, WTBL, CREATBL, ALTBL, ASTBL
  )
)
```

## Combine Covariates with `ADPPK` Data {#final}

Finally, we combine the covariates with the `ADPPK` data.

```{r eval=TRUE, echo=TRUE}
# Combine covariates with APPPK data

adppk <- adppk_aseq %>%
  derive_vars_merged(
    dataset_add = covar_vslb,
    by_vars = exprs(STUDYID, USUBJID)
  ) %>%
  arrange(STUDYIDN, USUBJIDN, AFRLT, EVID) %>%
  mutate(RECSEQ = row_number())
```

```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
  adppk,
  display_vars = exprs(
    USUBJIDN, AGE, SEXN, CREATBL, EVID, AMT, DV, MDV, RECSEQ
  )
)
```

# Add Labels and Attributes {#attributes}

Adding labels and attributes for SAS transport files is supported by the
following packages:

-   [metacore](https://atorus-research.github.io/metacore/): establish a
    common foundation for the use of metadata within an R session.

-   [metatools](https://pharmaverse.github.io/metatools/): enable the
    use of metacore objects. Metatools can be used to build datasets or
    enhance columns in existing datasets as well as checking datasets
    against the metadata.

-   [xportr](https://atorus-research.github.io/xportr/): functionality
    to associate all metadata information to a local R data frame,
    perform data set level validation checks and convert into a
    [transport v5
    file(xpt)](https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/movefile/n1xbwdre0giahfn11c99yjkpi2yb.htm).

NOTE: All these packages are in the experimental phase, but the vision
is to have them associated with an End to End pipeline under the
umbrella of the [pharmaverse](https://github.com/pharmaverse). An
example of applying metadata and perform associated checks can be found
at the [pharmaverse E2E example](https://pharmaverse.github.io/examples/adam/adsl).


# Example Scripts {#example}

ADaM  | Sourcing Command
----- | --------------
ADPC  | `use_ad_template("ADPC")`
ADPPK | `use_ad_template("ADPPK")`