## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, message = FALSE ) ## ----setup-------------------------------------------------------------------- library(admix) ## ----------------------------------------------------------------------------- ####### Under the null hypothesis H0. ## Simulate mixture data: mixt1 <- twoComp_mixt(n = 300, weight = 0.6, comp.dist = list("norm", "norm"), comp.param = list(c("mean" = 2, "sd" = 0.5), c("mean" = 0, "sd" = 1))) data1 <- getmixtData(mixt1) ## Define the admixture model: admixMod <- admix_model(knownComp_dist = mixt1$comp.dist[[2]], knownComp_param = mixt1$comp.param[[2]]) admix_test(samples = list(data1), admixMod = list(admixMod), test_method = "poly", ask_poly_param = FALSE, support = "Real", conf_level = 0.95, parallel = FALSE, n_cpu = 2) ## ----------------------------------------------------------------------------- mixt1 <- twoComp_mixt(n = 350, weight = 0.8, comp.dist = list("norm", "norm"), comp.param = list(list("mean" = 3, "sd" = 0.5), list("mean" = 0, "sd" = 1))) mixt2 <- twoComp_mixt(n = 450, weight = 0.7, comp.dist = list("norm", "norm"), comp.param = list(list("mean" = 3, "sd" = 0.5), list("mean" = 6, "sd" = 1.2))) data1 <- getmixtData(mixt1) data2 <- getmixtData(mixt2) ## Define the admixture models: admixMod1 <- admix_model(knownComp_dist = mixt1$comp.dist[[2]], knownComp_param = mixt1$comp.param[[2]]) admixMod2 <- admix_model(knownComp_dist = mixt2$comp.dist[[2]], knownComp_param = mixt2$comp.param[[2]]) ## Using expansion coefficients in orthonormal polynomial basis: admix_test(samples = list(data1,data2), admixMod = list(admixMod1,admixMod2), test_method = "poly", ask_poly_param = FALSE, support = "Real", conf_level = 0.95) ## ----------------------------------------------------------------------------- mixt1 <- twoComp_mixt(n = 450, weight = 0.4, comp.dist = list("norm", "norm"), comp.param = list(c("mean" = -2, "sd" = 0.5), c("mean" = 0, "sd" = 1))) mixt2 <- twoComp_mixt(n = 600, weight = 0.24, comp.dist = list("norm", "norm"), comp.param = list(c("mean" = -2, "sd" = 0.5), c("mean" = -1, "sd" = 1))) mixt3 <- twoComp_mixt(n = 400, weight = 0.53, comp.dist = list("norm", "norm"), comp.param = list(c("mean" = -2, "sd" = 0.5), c("mean" = 2, "sd" = 1))) data1 <- getmixtData(mixt1) data2 <- getmixtData(mixt2) data3 <- getmixtData(mixt3) admixMod1 <- admix_model(knownComp_dist = mixt1$comp.dist[[2]], knownComp_param = mixt1$comp.param[[2]]) admixMod2 <- admix_model(knownComp_dist = mixt2$comp.dist[[2]], knownComp_param = mixt2$comp.param[[2]]) admixMod3 <- admix_model(knownComp_dist = mixt3$comp.dist[[2]], knownComp_param = mixt3$comp.param[[2]]) admix_test(samples = list(data1, data2, data3), admixMod = list(admixMod1, admixMod2, admixMod3), test_method = "icv", n_sim_tab = 8, ICV_tunePenalty = FALSE, conf_level = 0.95, parallel = FALSE, n_cpu = 2)