binspp: Bayesian Inference for Neyman-Scott Point Processes
The Bayesian MCMC estimation of parameters for Thomas-type cluster
point process with various inhomogeneities. It allows for inhomogeneity in
(i) distribution of parent points, (ii) mean number of points in a cluster,
(iii) cluster spread. The package also allows for the Bayesian MCMC
algorithm for the homogeneous generalized Thomas process. The cluster size
is allowed to have a variance that is greater or less than the expected
value (cluster sizes are over or under dispersed). Details are described in
Dvořák, Remeš, Beránek & Mrkvička (2022) <arXiv: 10.48550/arXiv.2205.07946>.
Version: |
0.1.26 |
Depends: |
R (≥ 3.5.0) |
Imports: |
Rcpp, VGAM, cluster, mvtnorm, spatstat, spatstat.model, spatstat.geom, spatstat.random |
LinkingTo: |
Rcpp, RcppArmadillo, RcppEigen |
Published: |
2022-12-08 |
DOI: |
10.32614/CRAN.package.binspp |
Author: |
Mrkvicka Tomas [aut],
Dvorak Jiri [aut],
Beranek Ladislav [aut],
Remes Radim [aut, cre] |
Maintainer: |
Remes Radim <inrem at jcu.cz> |
License: |
GPL-3 |
URL: |
https://github.com/tomasmrkvicka/binspp |
NeedsCompilation: |
yes |
CRAN checks: |
binspp results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=binspp
to link to this page.