The package evclass
contains methods for evidential
classification. An evidential classifier quantifies the uncertainty
about the class of a pattern by a Dempster-Shafer mass function. In
evidential distance-based classifiers, the mass functions are
computed from distances between the test pattern and either training
pattern, or prototypes. Classical classifiers such as logistic
regression, radial basis function (RBF) neural networks and multilayer
perceptrons with a softmax output layer can also be seen as evidential
classifiers. The user is invited to read the papers cited in this
vignette to get familiar with the main concepts underlying evidential
classification. These papers can be downloaded from the author’s web
site, at https://www.hds.utc.fr/~tdenoeux/. Here, we provide a
short guided tour of the main functions in the evclass
package. The classification methods implemented to date are:
Also included in this package are functions to express the outputs of already trained logistic regression of multilayer perceptron classifiers in the belief function framework, using the approach described in (Denœux 2019).
You first need to install this package:
The following sections contain a brief introduction on the way to use
the main functions in the package evclass
for evidential
classification.
The principle of the evidential K-nearest neighbor (EK-NN) classifier
is explained in (Denœux 1995), and the
optimization of the parameters of this model is presented in (Zouhal and Denœux 1998). The reader is referred
to these references. Here, we focus on the practical application of this
method using the functions implemented in evclass
.
Consider, for instance, the ionosphere
data. This
dataset consists in 351 instances grouped in two classes and described
by 34 numeric attributes. The first 175 instances are training data, the
rest are test data. Let us first load the data, and split them into a
training set and a test set.
data(ionosphere)
xtr<-ionosphere$x[1:176,-2]
ytr<-ionosphere$y[1:176]
xtst<-ionosphere$x[177:351,-2]
ytst<-ionosphere$y[177:351]
The EK-NN classifier is implemented as three functions:
EkNNinit
for initialization, EkNNfit
for
training, and EkNNval
for testing. Let us initialize the
classifier and train it on the ionosphere
data, with \(K=5\) neighbors. (If the argument
param
is not passed to EkNNfit
, the function
EkNNinit
is called inside EkNNfit
; here, we
make the call explicit for clarity).
set.seed(20221229)
param0<- EkNNinit(xtr,ytr)
options=list(maxiter=300,eta=0.1,gain_min=1e-5,disp=FALSE)
fit<-EkNNfit(xtr,ytr,param=param0,K=5,options=options)
The list fit
contains the optimized parameters, the
final value of the cost function, the leave-one-out (LOO) error rate,
the LOO predicted class labels and the LOO predicted mass functions.
Here the LOO error rate and confusion matrix are:
## [1] 0.1079545
## ytr
## 1 2
## 1 108 14
## 2 5 49
We can then evaluate the classifier on the test data:
## [1] 0.1142857
## ytst
## 1 2
## 1 107 15
## 2 5 48
To determine the best value of \(K\), we may compute the LOO error for different candidate value. Here, we will all values between 1 and 15
err<-rep(0,15)
i<-0
for(K in 1:15){
fit<-EkNNfit(xtr,ytr,K,options=list(maxiter=100,eta=0.1,gain_min=1e-5,disp=FALSE))
err[K]<-fit$err
}
plot(1:15,err,type="b",xlab='K',ylab='LOO error rate')
The minimum LOO error rate is obtained for \(K=8\). The test error rate and confusion matrix for that value of \(K\) are obtained as follows:
fit<-EkNNfit(xtr,ytr,K=8,options=list(maxiter=100,eta=0.1,gain_min=1e-5,disp=FALSE))
val<-EkNNval(xtrain=xtr,ytrain=ytr,xtst=xtst,K=8,ytst=ytst,param=fit$param)
print(val$err)
## [1] 0.09142857
## ytst
## 1 2
## 1 106 10
## 2 6 53
In the evidential neural network classifier, the output mass
functions are based on distances to protypes, which allows for faster
classification. The prototypes and their class-membership degrees are
leanrnt by minimizing a cost function. This function is defined as the
sum of an error term and, optionally, a regularization term. As for the
EK-NN classifier, the evidential neural network classifier is
implemented as three functions: proDSinit
for
initialization, proDSfit
for training and
proDSval
for evaluation.
Let us demonstrate this method on the glass
dataset.
This data set contains 185 instances, which can be split into 89
training instances and 96 test instances.
We then initialize a network with 7 prototypes:
and train this network without regularization:
options<-list(maxiter=500,eta=0.1,gain_min=1e-5,disp=20)
fit<-proDSfit(x=xtr,y=ytr,param=param0,options=options)
## [1] 1.0000000 0.3582862 10.0000000
## [1] 21.0000000 0.2933648 1.2426284
## [1] 41.0000000 0.2278790 0.2197497
## [1] 61.0000000 0.1925287 0.0397398
## [1] 81.000000000 0.188994512 0.006524067
## [1] 1.010000e+02 1.883259e-01 1.274291e-03
## [1] 1.210000e+02 1.881550e-01 2.842364e-04
Finally, we evaluate the performance of the network on the test set:
## [1] 0.3020833
##
## ytst 1 2 4
## 1 31 9 0
## 2 5 28 4
## 3 5 3 0
## 4 0 3 8
If the training is done with regularization, the hyperparameter
mu
needs to be determined by cross-validation.
In the belief function framework, there are several definitions of
expectation. Each of these definitions results in a different decision
rule that can be used for classification. The reader is referred to
(Denœux 1997) for a detailed description
of theses rules and there application to classification. Here, we will
illustrate the use of the function decision
for generating
decisions.
We consider the Iris dataset from the package datasets
.
To plot the decisions regions, we will only use two input attributes:
‘Petal.Length’ and ‘Petal.Width’. This code plots of the data and trains
the evidential neural network classifiers with six prototypes:
data("iris")
x<- iris[,3:4]
y<-as.numeric(iris[,5])
c<-max(y)
plot(x[,1],x[,2],pch=y,xlab="Petal Length",ylab="Petal Width")
## [1] 1.0000000 0.3677901 10.0000000
## [1] 11.0000000 0.2188797 3.5760950
## [1] 21.00000000 0.08071952 1.33620828
## [1] 31.00000000 0.04385881 0.49005208
## [1] 41.00000000 0.03274671 0.21950743
## [1] 51.00000000 0.02745491 0.08000766
## [1] 61.00000000 0.02540228 0.03600120
## [1] 71.00000000 0.02354846 0.01519283
## [1] 81.00000000 0.02203566 0.00642574
## [1] 91.000000000 0.021082124 0.003074791
## [1] 1.010000e+02 2.090683e-02 1.323356e-03
Let us assume that we have the following loss matrix:
## [,1] [,2] [,3] [,4]
## [1,] 0 1 1 0.3
## [2,] 1 0 1 0.3
## [3,] 1 1 0 0.3
This matrix has four columns, one for each possible act (decision). The first three decisions correspond to the assignment to each the three classes. The losses are 0 for a correct classification, and 1 for a misclassification. The fourth decision is rejection. For this act, the loss is 0.3, whatever the true class. The following code draws the decision regions for this loss matrix, and three decision rules: the minimization of the lower, upper and pignistic expectations (see (Denœux 1997) for details about these rules).
xx<-seq(-1,9,0.01)
yy<-seq(-2,4.5,0.01)
nx<-length(xx)
ny<-length(yy)
Dlower<-matrix(0,nrow=nx,ncol=ny)
Dupper<-Dlower
Dpig<-Dlower
for(i in 1:nx){
X<-matrix(c(rep(xx[i],ny),yy),ny,2)
val<-proDSval(X,fit$param)
Dupper[i,]<-decision(val$m,L=L,rule='upper')
Dlower[i,]<-decision(val$m,L=L,rule='lower')
Dpig[i,]<-decision(val$m,L=L,rule='pignistic')
}
contour(xx,yy,Dlower,xlab="Petal.Length",ylab="Petal.Width",drawlabels=FALSE)
for(k in 1:c) points(x[y==k,1],x[y==k,2],pch=k)
contour(xx,yy,Dupper,xlab="Petal.Length",ylab="Petal.Width",drawlabels=FALSE,add=TRUE,lty=2)
contour(xx,yy,Dpig,xlab="Petal.Length",ylab="Petal.Width",drawlabels=FALSE,add=TRUE,lty=3)
As suggested in (Denœux 1997), we can also consider the case where there is an unknown class, not represented in the learning set. We can then construct a loss matrix with four rows (the last row corresponds to the unknown class) and five columns (the last column corresponds to the assignment to the unknown class). Assume that the losses are defined as follows:
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0 1 1 0.2 0.22
## [2,] 1 0 1 0.2 0.22
## [3,] 1 1 0 0.2 0.22
## [4,] 1 1 1 0.2 0.00
We can now plot the decision regions for the pignistic decision rule:
for(i in 1:nx){
X<-matrix(c(rep(xx[i],ny),yy),ny,2)
val<-proDSval(X,fit$param,rep(0,ny))
Dlower[i,]<-decision(val$m,L=L,rule='lower')
Dpig[i,]<-decision(val$m,L=L,rule='pignistic')
}
contour(xx,yy,Dpig,xlab="Petal.Length",ylab="Petal.Width",drawlabels=FALSE)
for(k in 1:c) points(x[y==k,1],x[y==k,2],pch=k)
The outer region corresponds to the assignment to the unknown class: this hypothesis becomes more plausible when the test vector is far from all the prototypes representing the training data.
As shown in (Denœux 2019), the calculations performed in the softmax layer of a feedforward neural network can be interpreted in terms of combination of evidence by Dempster’s rule. The output class probabilities can be seen as normalized plausibilities according to an underlying belief function. Applying these ideas to a radial basis function (RBF) network, it is possible to derive an alternative evidential classifier with properties similar to those of the evidential neural network classifier described above (Huang et al. 2022).
As for the EK-NN and evidential neural network classifiers, the RBF
classifier is implemented as three functions: RBFinit
for
initialization, RBFfit
for training and RBFval
for evaluation.
Let us demonstrate this method on the glass
dataset. We
initialize a network with 7 prototypes:
and train this network with regularization coefficient \(\lambda=0.001\):
Finally, we evaluate the performance of the network on the test set:
## [1] 0.2916667
##
## ytst 1 2 4
## 1 33 7 0
## 2 5 28 4
## 3 5 3 0
## 4 0 4 7
The output mass functions are contained in
val$Belief
:
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0 0.58304732 0.1744757 0.004657426 0.17745938 0.013651697 0.000961585
## [2,] 0 0.07344408 0.8300411 0.006973938 0.05988433 0.004677579 0.002611645
## [3,] 0 0.22191723 0.5970105 0.002397082 0.16344222 0.005569299 0.001182105
## [4,] 0 0.27630118 0.5888964 0.004433875 0.10283882 0.007023510 0.001667993
## [5,] 0 0.10489661 0.8272374 0.003132099 0.05281317 0.003176379 0.001502063
## [,8] [,9] [,10] [,11] [,12]
## [1,] 0.0010738391 0.025956610 0.0115497773 0.0008135320 9.085026e-04
## [2,] 0.0015483686 0.014082603 0.0025104560 0.0014016694 8.310093e-04
## [3,] 0.0005151682 0.006003338 0.0009445391 0.0002004821 8.737123e-05
## [4,] 0.0009316635 0.012820667 0.0025001611 0.0005937560 3.316445e-04
## [5,] 0.0006466038 0.004806532 0.0007150680 0.0003381451 1.455638e-04
## [,13] [,14] [,15] [,16]
## [1,] 0.0023845991 0.0026629739 1.875720e-04 2.094689e-04
## [2,] 0.0009401316 0.0005573768 3.112016e-04 1.845025e-04
## [3,] 0.0004657932 0.0002029953 4.308654e-05 1.877736e-05
## [4,] 0.0009405434 0.0005253439 1.247624e-04 6.968648e-05
## [5,] 0.0003429256 0.0001476217 6.980812e-05 3.005081e-05
## [,1] [,2] [,3] [,4]
## [1,] 0.61776100 0.1832876 0.19859111 0.044673036
## [2,] 0.09072731 0.8439034 0.07071513 0.020818950
## [3,] 0.23165246 0.6014546 0.17143945 0.007966383
## [4,] 0.29211706 0.5970498 0.11412232 0.017906565
## [5,] 0.11289000 0.8331017 0.05872863 0.006595715
## [,1] [,2] [,3] [,4]
## [1,] 0.58304732 0.1744757 0.17745938 0.025956610
## [2,] 0.07344408 0.8300411 0.05988433 0.014082603
## [3,] 0.22191723 0.5970105 0.16344222 0.006003338
## [4,] 0.27630118 0.5888964 0.10283882 0.012820667
## [5,] 0.10489661 0.8272374 0.05281317 0.004806532
We note that, in contrast with the outputs from evidential k-NN and neural network classifiers, the output mass functions based on weights of evidence have \(2^M-1\) focal sets, where \(M\) is the number of classes. The focal sets are obtained as
## [,1] [,2] [,3] [,4]
## [1,] 0 0 0 0
## [2,] 1 0 0 0
## [3,] 0 1 0 0
## [4,] 1 1 0 0
## [5,] 0 0 1 0
## [6,] 1 0 1 0
## [7,] 0 1 1 0
## [8,] 1 1 1 0
## [9,] 0 0 0 1
## [10,] 1 0 0 1
## [11,] 0 1 0 1
## [12,] 1 1 0 1
## [13,] 0 0 1 1
## [14,] 1 0 1 1
## [15,] 0 1 1 1
## [16,] 1 1 1 1
As shown in (Denœux 2019), logistic regression and multilayer feedforward neural networks can be viewed as converting input or higher-level features into Dempster-Shafer mass functions and aggregating them by Dempster’s rule of combination. The probabilistic outputs of these classifiers are the normalized plausibilities corresponding to the underlying combined mass function. This mass function is more informative than the output probability distribution.
Here, we illustrate the computation of mass functions for trained logistic regression and multilayer perceptron classifiers.
Let us first consider again the ionosphere
dataset:
Let us fit a logistic regression classifier on these data:
The optimal cofficients (denoted as \(\alpha\) and \(\beta\) in (Denœux
2019) can be computed using function calcAB
:
Using these coefficients, we can then compute the output mass functions and the corresponding contour functions:
## [,1] [,2]
## [1,] 0 0
## [2,] 1 0
## [3,] 0 1
## [4,] 1 1
## [,1] [,2] [,3] [,4]
## [1,] 0 0.035494939 0.9645048 2.975586e-07
## [2,] 0 0.022556633 0.9774395 3.869694e-06
## [3,] 0 0.114317329 0.8856825 1.519187e-07
## [4,] 0 0.015056402 0.9849436 4.161507e-10
## [5,] 0 0.007307175 0.9926928 6.313876e-10
## [,1] [,2]
## [1,] 0.035495236 0.9645051
## [2,] 0.022560503 0.9774434
## [3,] 0.114317481 0.8856827
## [4,] 0.015056402 0.9849436
## [5,] 0.007307176 0.9926928
Let us now consider again the glass
dataset:
data(glass)
M<-max(glass$y)
d<-ncol(glass$x)
n<-nrow(glass$x)
x<-scale(glass$x)
y<-as.factor(glass$y)
We train a neural network with \(J=5\) hidden units, using function
nnet
of package nnet
, with a regularization
coefficient decay=0.01
:
## # weights: 74
## initial value 323.067396
## iter 10 value 135.727407
## iter 20 value 104.137133
## iter 30 value 89.804624
## iter 40 value 78.869460
## iter 50 value 75.572605
## iter 60 value 74.986837
## iter 70 value 74.877776
## iter 80 value 73.539686
## iter 90 value 70.775342
## iter 100 value 68.769386
## final value 68.769386
## stopped after 100 iterations
We first need to extract the two layers of weights and to recompute the outputs from the hidden units;
W1<-matrix(fit$wts[1:(J*(d+1))],d+1,J)
W2<-matrix(fit$wts[(J*(d+1)+1):(J*(d+1) + M*(J+1))],J+1,M)
a1<-cbind(rep(1,n),x)%*%W1
o1<-1/(1+exp(-a1))
We can then compute the output mass functions as
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0 0.09201752 0.006033288 5.452724e-06 0.90145019 1.490901e-04
## [2,] 0 0.87396005 0.003553544 3.599587e-08 0.12247590 1.010041e-05
## [3,] 0 0.06424810 0.905965884 1.310345e-05 0.02699388 2.601519e-05
## [4,] 0 0.96877896 0.016366645 1.307094e-04 0.01259386 1.460422e-04
## [5,] 0 0.72270383 0.067037475 6.110541e-07 0.21020081 1.983050e-05
## [,7] [,8] [,9] [,10] [,11]
## [1,] 1.993250e-04 4.307527e-06 1.359320e-04 1.199772e-07 1.604026e-07
## [2,] 2.083657e-07 5.745201e-09 1.335618e-07 1.984252e-09 4.093400e-11
## [3,] 4.704915e-05 6.213525e-07 2.680469e-03 3.792644e-06 6.859096e-06
## [4,] 2.113669e-04 1.467222e-05 1.727117e-03 6.880557e-06 9.958229e-06
## [5,] 7.718707e-06 6.693631e-08 2.938967e-05 1.877425e-08 7.307576e-09
## [,12] [,13] [,14] [,15] [,16]
## [1,] 3.466392e-09 4.385780e-06 9.477922e-08 1.267144e-07 2.738371e-09
## [2,] 1.128660e-12 1.148604e-08 3.167010e-10 6.533361e-12 1.801423e-13
## [3,] 9.058434e-08 1.361784e-05 1.798433e-07 3.252514e-07 4.295418e-09
## [4,] 6.912593e-07 1.112637e-05 7.723470e-07 1.117818e-06 7.759431e-08
## [5,] 6.337100e-11 2.371524e-07 2.056576e-09 8.004892e-10 6.941810e-12
## [,1] [,2] [,3] [,4]
## [1,] 0.09217660 0.006242666 0.90180752 1.408259e-04
## [2,] 0.87397020 0.003553794 0.12248623 1.473975e-07
## [3,] 0.06429191 0.906033937 0.02708170 2.705339e-03
## [4,] 0.96907881 0.016735239 0.01297904 1.757741e-03
## [5,] 0.72272436 0.067045880 0.21022867 2.965583e-05