The table present the different plot functions in the packages
mgcv
(Wood 2006,
2011) and itsadug
for visualizing GAMM models.
Partial effect | Sum of all effects | Sum of “fixed” effects1 | |
---|---|---|---|
surface | plot.gam() | vis.gam() | |
pvisgam() | fvisgam() | ||
smooth | plot.gam() | plot_smooth() | |
group estimates | plot.gam()2 | plot_parametric() | |
random smooths | get_random(), inspect_random() |
1: include rm.ranef=TRUE
to zero all random
effects.
2: include all.terms=TRUE
to visualize
parametric terms.
library(itsadug)
library(mgcv)
data(simdat)
## Not run:
# Model with random effect and interactions:
m1 <- bam(Y ~ Group + te(Time, Trial, by=Group)
+ s(Time, Subject, bs='fs', m=1, k=5),
data=simdat)
# Simple model with smooth:
m2 <- bam(Y ~ Group + s(Time, by=Group)
+ s(Subject, bs='re')
+ s(Subject, Time, bs='re'),
data=simdat)
Summary model m1
:
gamtabs(m1, type='html')
Summary model m2
:
gamtabs(m2, type='html')
Plotting the partial effects of
te(Time,Trial):GroupAdults
and
te(Time,Trial):GroupChildren
.
par(mfrow=c(1,2), cex=1.1)
pvisgam(m1, view=c("Time", "Trial"), select=1,
main="Children", zlim=c(-12,12))
pvisgam(m1, view=c("Time", "Trial"), select=2,
main="Adults", zlim=c(-12,12))
Notes:
Plots same data as plot(m1, select=1)
: partial
effects plot, i.e., the plot does not include intercept or any
other effects.
Make sure to set the zlim values the same when comparing surfaces
Use the argument cond
to specify the value of other
predictors in a more complex interaction. For example, for plotting a
modelterm te(A,B,C)
use something like
pvisgam(model, view=c("A", "B"), select=1, cond=list(C=5))
.
Plotting the fitted effects of
te(Time,Trial):GroupAdults
and
te(Time,Trial):GroupChildren
.
par(mfrow=c(1,2), cex=1.1)
fvisgam(m1, view=c("Time", "Trial"), cond=list(Group="Children"),
main="Children", zlim=c(-12,12), rm.ranef=TRUE)
fvisgam(m1, view=c("Time", "Trial"), cond=list(Group="Adults"),
main="Adults", zlim=c(-12,12), rm.ranef=TRUE)
Notes:
Plots the fitted effects, i.e., the plot includes intercept and estimates for the other modelterms.
Make sure to set the zlim values the same when comparing surfaces
Use the argument cond
to specify the value of other
predictors in the model.
The argument rm.ranef
cancels the contribution of
random effects.
The argument transform
accepts a function for
transforming the fitted values into the original scale.
Plotting the partial effects of s(Time):GroupAdults
and
s(Time):GroupChildren
.
par(mfrow=c(1,2), cex=1.1)
plot(m2, select=1, shade=TRUE, rug=FALSE, ylim=c(-15,10))
abline(h=0)
plot(m2, select=2, shade=TRUE, rug=FALSE, ylim=c(-15,10))
abline(h=0)
Notes:
Alternatively:
par(mfrow=c(1,1), cex=1.1)
# Get model term data:
st1 <- get_modelterm(m2, select=1)
st2 <- get_modelterm(m2, select=2)
# plot model terms:
emptyPlot(2000, c(-15,10), h=0,
main='s(Time)',
xmark = TRUE, ymark = TRUE, las=1)
plot_error(st1$Time, st1$fit, st1$se.fit, shade=TRUE)
plot_error(st2$Time, st2$fit, st2$se.fit, shade=TRUE, col='red', lty=4, lwd=2)
# add legend:
legend('bottomleft',
legend=c('Children', 'Adults'),
fill=c(alpha('black'), alpha('red')),
bty='n')
Plotting the fitted effects of
te(Time,Trial):GroupAdults
and
te(Time,Trial):GroupChildren
i.e., the plot includes
intercept and estimates for the other modelterms.
par(mfrow=c(1,2), cex=1.1)
plot_smooth(m1, view="Time", cond=list(Group="Children"),
rm.ranef=TRUE, ylim=c(-6,10))
plot_smooth(m1, view="Time", cond=list(Group="Adults"),
col="red", rug=FALSE, add=TRUE,
rm.ranef=TRUE)
# or alternatively:
plot_smooth(m1, view="Time", plot_all="Group",
rm.ranef=TRUE)
Notes:
Use the argument cond
to specify the value of other
predictors in the model.
The argument rm.ranef
cancels the contribution of
random effects.
The argument transform
accepts a function for
transforming the fitted values into the original scale.
The argument plot_all
plots all levels for the given
predictor(s).
Plotting the partial effect of grouping predictors such as
Group
:
par(mfrow=c(1,1), cex=1.1)
plot.gam(m1, select=4, all.terms=TRUE, rug=FALSE)
Alternatively, use get_coefs()
to extract the
coefficients and plot these:
coefs <- get_coefs(m1)
coefs
par(mfrow=c(1,2), cex=1.1)
b <- barplot(coefs[,1], beside=TRUE,
main="Parametric terms",
ylim=c(0,5))
errorBars(b, coefs[,1], coefs[,2], xpd=TRUE)
# Note that the effect of Group is a *difference* estimate
# between intercept (=GroupChildren) and Group Adults
b2 <- barplot(coefs[1,1], beside=TRUE,
main="Estimate for Group",
ylim=c(0,5), xlim=c(0.1,2.5))
mtext(row.names(coefs), at=b, side=1, line=1)
abline(h=coefs[1,1], lty=2)
rect(b[2]-.4, coefs[1,1], b[2]+.4, coefs[1,1]+coefs[2,1],
col='gray')
errorBars(b, coefs[,1]+c(0,coefs[1,1]), coefs[,2], xpd=TRUE)
## Estimate Std. Error
## (Intercept) 2.050539 0.6881195
## GroupAdults 3.120351 0.9731479
Notes:
get_coefs()
is faster than
summary(model)
.Plotting the fitted effects of grouping predictors such as
Group
:
pp <- plot_parametric(m1, pred=list(Group=c("Children", "Adults")) )
pp
## $fv
## Group Time Trial Subject fit CI rm.ranef
## 1 Children 989.899 0 a01 4.182214 1.705797 s(Time,Subject)
## 2 Adults 989.899 0 a01 11.216176 1.789386 s(Time,Subject)
For extracting the random effects coefficients (random adjustments of intercept and slopes):
par(mfrow=c(1,2), cex=1.1)
plot(m2, select=3)
plot(m2, select=4)
Or alternatively:
pp <- get_random(m2)
emptyPlot(range(pp[[1]]), range(pp[[2]]), h=0,v=0,
xlab='Random intercepts', ylab='Random slopes',
main='Correlation')
text(pp[[1]], pp[[2]], labels=names(pp[[1]]),
col='steelblue', xpd=TRUE)
For plotting and extracting the random smooths:
par(mfrow=c(1,2), cex=1.1)
inspect_random(m1, select=3, main='s(Time, Subject)')
children <- unique(simdat[simdat$Group=="Children", "Subject"])
adults <- unique(simdat[simdat$Group=="Adults", "Subject"])
inspect_random(m1, select=3, main='Averages',
fun=mean,
cond=list(Subject=children))
inspect_random(m1, select=3,
fun=mean, cond=list(Subject=adults),
add=TRUE, col='red', lty=5)
# add legend:
legend('bottomleft',
legend=c('Children', 'Adults'),
col=c('black', 'red'), lty=c(1,5),
bty='n')