mase: Model-Assisted Survey Estimators
A set of model-assisted survey estimators and corresponding
variance estimators for single stage, unequal probability, without replacement
sampling designs. All of the estimators can be written as a generalized
regression estimator with the Horvitz-Thompson, ratio, post-stratified, and
regression estimators summarized by Sarndal et al. (1992, ISBN:978-0-387-40620-6).
Two of the estimators employ a statistical learning model as the assisting model:
the elastic net regression estimator, which is an extension of the lasso regression
estimator given by McConville et al. (2017) <doi:10.1093/jssam/smw041>, and the
regression tree estimator described in McConville and Toth (2017) <doi:10.48550/arXiv.1712.05708>.
The variance estimators which approximate the joint inclusion probabilities can
be found in Berger and Tille (2009) <doi:10.1016/S0169-7161(08)00002-3> and the
bootstrap variance estimator is presented in Mashreghi et al. (2016)
<doi:10.1214/16-SS113>.
Version: |
0.1.5.2 |
Depends: |
R (≥ 4.1.0) |
Imports: |
glmnet, survey, dplyr, tidyr, rpms, boot, stats, Rdpack, ellipsis, Rcpp |
LinkingTo: |
Rcpp, RcppEigen |
Suggests: |
roxygen2, testthat (≥ 3.0.0), knitr, rmarkdown |
Published: |
2024-01-17 |
DOI: |
10.32614/CRAN.package.mase |
Author: |
Kelly McConville [cre, aut, cph],
Josh Yamamoto [aut],
Becky Tang [aut],
George Zhu [aut],
Sida Li [ctb],
Shirley Chueng [ctb],
Daniell Toth [ctb] |
Maintainer: |
Kelly McConville <kmcconville at fas.harvard.edu> |
License: |
GPL-2 |
NeedsCompilation: |
yes |
Citation: |
mase citation info |
Materials: |
README |
CRAN checks: |
mase results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=mase
to link to this page.