library(plotfunctions)
add_bars
Add bars to a graph. See example Function errorBars
.
check_normaldist
par(mfrow=c(1,2))
set.seed(123)
# PLOT1: t-distribution:
test <- rt(1000, df=5)
check_normaldist(test)
# PLOT2: skewed data, e.g., reaction times:
test <- exp(rnorm(1000, mean=.500, sd=.25))
check_normaldist(test)
The ideal normal distribution is displayed in gray, whereas the data is represented by the red line. Generally the distribution is checked by a QQ norm plot, and the function check_normaldist
may facilitate interpretation.
par(mfrow=c(1,2))
set.seed(123)
# PLOT1: t-distribution:
test <- rt(1000, df=5)
qqnorm(test)
qqline(test)
# PLOT2: skewed data, e.g., reaction times:
test <- exp(rnorm(1000, mean=.500, sd=.25))
qqnorm(test)
qqline(test)
dotplot_error
Creating dotplots with error bars, and optionally grouping of the data points.
# example InsectSprays from R datasets
avg <- aggregate(count ~ spray, data=InsectSprays, mean)
avg <- merge(avg,
aggregate(count ~ spray, data=InsectSprays, sd),
by="spray", all=TRUE)
# we could add the type of spray to the averages:
avg$type <- c(1,1,2,2,2,1)
# visualize output
dotplot_error(avg$count.x, se.val=avg$count.y, groups=avg$type, labels=avg$spray)
drawDevArrows
Facilitates connections between graphs. Precise information is found in the examples in the help file (help(drawDevArrows
).
# 3 panels:
par(mfrow=c(1,3), cex=1.1)
# define x and y
x <- -5:20
y <- x^2
# PLOT 1:
plot(x, y, pch=16)
# convert arrow positions:
ap1 <- getArrowPos(x, y, units="coords")
# PLOT 2:
plot(x, -1*y)
# convert arrow positions:
ap2 <- getArrowPos(x, -1*y, units="coords")
ap3 <- getArrowPos(c(1,1,1), c(1,.5,0), units="prop")
# PLOT 3:
plot(x, -2*y+200, ylim=c(-600,200), pch=18)
abline(h=c(0,-400), lty=3, col='red2')
points(x, -1*y)
ap4 <- getArrowPos(c(0,0,0), c(.75,.5,.25), units="prop")
# DRAW ARROWS:
drawDevArrows(start=ap1, end=ap2, arrows="none",
col=alphaPalette("red2", f.seq=c(.1,1), n=length(x)))
drawDevArrows(start=ap3, end=ap4, arrows="end", col="red2", lwd=3, length=.1)
emptyPlot
Quickly setting up an empty plot, wrapper around plot(x, y, type='n')
.
par(mfrow=c(2,2), cex=1.1)
# PLOT 1:
emptyPlot(10,1)
# PLOT 2:
emptyPlot(c(-10, 10), c(-100,500),
h0=0, main="Plot 2", xlab="X", ylab="Y")
# PLOT 3:
emptyPlot(c(-100, 1000), c(-8,8),
h0=0, v0=0, eegAxis=TRUE,
main="Plot 3: EEG axes")
# PLOT 4:
emptyPlot(c(-100, 1000), c(-8,8),
h0=0, v0=0,
xmark=TRUE, ymark=c(-5,5), las=1,
main="Plot 4: Simplified axes")
errorBars
Add confidence intervals or other error bars to a plot.
# load example data:
data(chickwts)
# first calculate means and sd per feeding type:
avg <- with(chickwts, tapply(weight, list(feed), mean))
sds <- with(chickwts, tapply(weight, list(feed), sd))
# barplot:
b <- barplot(avg, beside = TRUE, ylim=c(0,400),
col=1, las=2)
# add errorbars:
errorBars(b, avg, sds, border = TRUE)
# add average:
add_bars(b[length(b)]+diff(b[1:2]), mean(avg),
col="red", xpd=TRUE)
errorBars(b[length(b)]+diff(b[1:2]), mean(avg), se(avg), xpd=TRUE)
mtext("mean/SE", at=b[length(b)]+diff(b[1:2]), line=1, side=1, font=2, las=2)
getCoords
, getProps
, and getFigCoords
These functions facilitate in converting the coordinates to proportions and back. Basically a wrapper around par()$usr
.
emptyPlot(c(-10,100), c(-2,2), h0=0, v0=0)
# Proportions to coordinates:
x <- getCoords(c(0, .25, .5, .75, 1))
y <- getCoords(c(0, .25, .5, .75, 1), side=2)
points(x, y, col="red1", pch=1:5, lwd=2, xpd=TRUE)
# wrt figure region:
x <- getCoords(c(0.05, .25, .5, .75, .95), input="f")
y <- getCoords(c(0.05, .25, .5, .75, .95), side=2, input="f")
points(x, y, col="steelblue", pch=1:5, lwd=2, xpd=TRUE)
emptyPlot(c(-10,100), c(-2,2), h0=0, v0=0)
# get plot coordinates:
getFigCoords("p")
## [1] -14.40 104.40 -2.16 2.16
# get figure coordinates:
getFigCoords("f")
## [1] -49.69565 122.47826 -4.20000 3.80000
# get proportions:
getProps(c(20,60,100,500))
## [1] 0.2895623 0.6262626 0.9629630 4.3299663
getProps(c(-2,1,4), side=2)
## [1] 0.03703704 0.73148148 1.42592593
Add a gradient legend, with colors indicating the z-values in a plot. Note that a surface plot maybe more suited to visualize this 3-dimensional data, for example using the function plotsurface
.
dat <- expand.grid(x=seq(0,1,by=.1), y=seq(0,1, by=.1))
dat$z <- dat$x * dat$y
emptyPlot(1, 1, xlab="X", ylab="Y")
points(dat$x, dat$y, col=topo.colors(100)[round(dat$z*99)+1], pch=16, cex=2)
gradientLegend(range(dat$z), color="topo", nCol=100,inside = FALSE, pos=.825)
legend_margin
Add a legend in the margins of the plot to save space. Wrapper around legend
.
emptyPlot(1, 1, xlab="X", ylab="Y", bty='o')
legend("topright", legend=c("normal", "topright"), pch=21)
legend("center", legend=c("normal", "center"), pch=21)
legend("bottomleft", legend=c("normal", "bottomleft"), pch=21)
legend_margin("topright", legend=c("margin", "topright"), pch=21,
col="red1", box.col="red1", text.col="red1")
legend_margin("center", legend=c("margin", "center"), pch=21,
col="red1", box.col="red1", text.col="red1")
legend_margin("bottomleft", legend=c("margin", "bottomleft"), pch=21,
col="red1", box.col="red1", text.col="red1")
marginDensityPlot
Adds a density distribution in the margins of a plot.
Example: the onset of a certain stimuli varies. One would like to indicate on the time axis what is the variation in onsets. This example is illustrated below with a made-up data set.
set.seed(1234)
# grand mean of data:
x <- 1:100
y <- -0.01*(x - 30)^2+rnorm(100, mean=100)
# stimulus onset values:
so <- runif(100, min=20, max=40)+rnorm(100, sd=2)
par(mfrow=c(1,2), cex=1.1)
# PLOT 1
emptyPlot(range(x), range(y), h0=0,
main="Data", xlab="Time", ylab="Y")
lines(x, y, lwd=2, col='steelblue')
# add mean of stimulus onset:
abline(v=mean(so), lwd=2)
# add density of stimulus onset in
marginDensityPlot(density(so), side=1)
# PLOT 2
emptyPlot(range(x), range(y), h0=0,
main="More examples", xlab="Time", ylab="Y")
lines(x, y, lwd=2, col='steelblue')
# add mean of stimulus onset:
abline(v=mean(so), lwd=2)
# add density of stimulus onset on top of plot:
marginDensityPlot(density(so), side=3, scale=1, density=25)
marginDensityPlot(density(so), side=3, from=getCoords(0, side=2), scale=1)
# or on left side:
marginDensityPlot(density(y), side=2, col="steelblue")
color_contour
and plotsurface
Both functions create a colored surface plot. The function color_contour
is a wrapper around the functions image
and contour
, and a more flexible alternative to filled.contour
which cannot be used in subpanels (package graphics
, see also the examples in the help file: help(color_contour)
). Similar to image
and contour
, color_contour
expects a matrix of values to be plotted. In contrast, the function plotsurface
can create a surface of a vector of z-values in a data frame. Below both functions are illustrated.
data(volcano)
x <- 10*(1:nrow(volcano))
y <- 10*(1:ncol(volcano))
par(cex=1.1)
# PLOT 1: image and contour
image(x, y, volcano, col = terrain.colors(100),
axes = FALSE, xlab="", ylab="")
contour(x, y, volcano, levels = seq(90, 200, by = 5),
add = TRUE, col = "peru")
# PLOT 2: color_contour
color_contour(x, y, volcano,
color = terrain.colors(100), axes=FALSE,
col="peru", levels=seq(80, 200, by = 5), zlim=c(80,200))
# PLOT 3: filled.contour (takes the complete device)
filled.contour(x, y, volcano, color.palette = terrain.colors, axes=FALSE)
# not possible to add contour lines:
contour(x, y, volcano, levels = seq(90, 200, by = 5),
add = TRUE, col = "peru")
The function plotsurface
is recommended for data frame or vector input, which is how most experimental data is loaded in R. Here the data from the gradientLegend
example is recycled to illustrate the application of the function plotsurface
:
dat <- expand.grid(x=seq(0,1,by=.1), y=seq(0,1, by=.1))
dat$z <- dat$x * dat$y
# inspect the structure of the data:
head(dat)
## x y z
## 1 0.0 0 0
## 2 0.1 0 0
## 3 0.2 0 0
## 4 0.3 0 0
## 5 0.4 0 0
## 6 0.5 0 0
par(mfrow=c(1,2), cex=1.1)
# PLOT 1: plot the default surface
plotsurface(dat, view=c("x", "y"), predictor="z")
## Warning in gradientLegend(zlim, n.seg = 3, pos = 0.875, dec = dec, color =
## color, : Increase right margin to fit labels or decrease the number of decimals,
## see help(gradientLegend).
# PLOT 2: customized color palette
plotsurface(dat, view=c("x", "y"), predictor="z",
color = c('gray25', 'white', 'red'), col=1,
main="Customized interaction surface", labcex=1)
## Warning in gradientLegend(zlim, n.seg = 3, pos = 0.875, dec = dec, color =
## color, : Increase right margin to fit labels or decrease the number of decimals,
## see help(gradientLegend).
plot_error
Plot line with confidence intervals.
# Generate some data:
x <- -10:20
y <- 0.3*(x - 3)^2 + rnorm(length(x))
s <- 0.15*abs(100-y + rnorm(length(x)))
par(mfrow=c(1,2), cex=1.1)
# PLOT 1: shaded confidence interval
emptyPlot(range(x), c(-25,100), h0=0, v0=0, main="Symmetric CI")
plot_error(x, y, s, shade=TRUE, lwd=2, col="steelblue")
# PLOT 2: Use of se.fit2 for asymmetrical error bar
cu <- y + 2*s
cl <- y - s
emptyPlot(range(x), c(-25,100), h0=0, v0=0, main="Asymmetric CI")
plot_error(x, y, s, shade=TRUE, lwd=2, col="steelblue")
plot_error(x, y, se.fit=cu, se.fit2=cl, col='red', shade=TRUE, density=30)
plot_image
The function plot_image
allows to combine images in plots. The packages png
, jpeg
, or caTools
need to be installed to load png, jpg, or gif images directly. For the example below the png image is also available as image object: a list with matrix called 'image' and a vector with colors called 'col'. The original image (© Silver Spoon) can be found on Wikipedia.
# 1 A. load png image directly -- only works with package png:
img <- system.file("extdata", "Netherlands_by_SilverSpoon.png", package = "plotfunctions")
plot_image(img=img, type='png')
# 1 B. load image object:
data(img)
plot_image(img=img, type='image')
By default the image is plotted covering the complete plot region. Alternatively, the image could be added to an existing plot,, to specific coordinates. Below some of the features of the function are illustrated.
par(mfrow=c(1,2), cex=1.1)
# PLOT 1: replace colors
plot_image(img=img, type='image', replace.colors = list("#00000000"="#0000FF33", "#B.+"="#99DD99FF"),
main="the Netherlands")
points(c(.45, .8), c(.6, .85), pch=15)
text(c(.45, .8), c(.6, .85), labels=c("Amsterdam", "Groningen"), pos=1)
# example data
x <- 1:100
y <- -0.01*(x - 30)^2+rnorm(100, mean=100)
# PLOT 2: add picture to existing plot, while keeping original picture size ratio
emptyPlot(100, c(50, 100), h0=0,
main="Example data plot")
lines(x, y, lwd=2, col='steelblue')
plot_image(img=img, type='image', add=TRUE,
xrange=c(30,70), yrange=c(50,80), adj=1, keep.ratio = TRUE,
replace.colors = list("#B.+"="steelblue"),
bty='n')