tab_model()
is the pendant to plot_model()
,
however, instead of creating plots, tab_model()
creates
HTML-tables that will be displayed either in your IDE’s viewer-pane, in
a web browser or in a knitr-markdown-document (like this vignette).
HTML is the only output-format, you can’t (directly) create a LaTex
or PDF output from tab_model()
and related table-functions.
However, it is possible to easily export the tables into Microsoft Word
or Libre Office Writer.
This vignette shows how to create table from regression models with
tab_model()
. There’s a dedicated vignette that demonstrate
how to change the table layout and appearance
with CSS.
Note! Due to the custom CSS, the layout of the table inside a knitr-document differs from the output in the viewer-pane and web browser!
# load package
library(sjPlot)
library(sjmisc)
library(sjlabelled)
# sample data
data("efc")
efc <- as_factor(efc, c161sex, c172code)
First, we fit two linear models to demonstrate the
tab_model()
-function.
m1 <- lm(barthtot ~ c160age + c12hour + c161sex + c172code, data = efc)
m2 <- lm(neg_c_7 ~ c160age + c12hour + c161sex + e17age, data = efc)
The simplest way of producing the table output is by passing the fitted model as parameter. By default, estimates, confidence intervals (CI) and p-values (p) are reported. As summary, the numbers of observations as well as the R-squared values are shown.
Total score BARTHEL INDEX | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 87.15 | 77.96 – 96.34 | <0.001 |
carer’age | -0.21 | -0.35 – -0.07 | 0.004 |
average number of hours of care per week |
-0.28 | -0.32 – -0.24 | <0.001 |
carer’s gender: Female | -0.39 | -4.49 – 3.71 | 0.850 |
carer’s level of education: intermediate level of education |
1.37 | -3.12 – 5.85 | 0.550 |
carer’s level of education: high level of education |
-1.64 | -7.22 – 3.93 | 0.564 |
Observations | 821 | ||
R2 / R2 adjusted | 0.271 / 0.266 |
As the sjPlot-packages features labelled data, the coefficients in the table are already labelled in this example. The name of the dependent variable(s) is used as main column header for each model. For non-labelled data, the coefficient names are shown.
mpg | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 38.75 | 35.09 – 42.41 | <0.001 |
cyl | -0.94 | -2.07 – 0.19 | 0.098 |
hp | -0.02 | -0.04 – 0.01 | 0.140 |
wt | -3.17 | -4.68 – -1.65 | <0.001 |
Observations | 32 | ||
R2 / R2 adjusted | 0.843 / 0.826 |
If factors are involved and auto.label = TRUE
, “pretty”
parameters names are used (see format_parameters()
.
set.seed(2)
dat <- data.frame(
y = runif(100, 0, 100),
drug = as.factor(sample(c("nonsense", "useful", "placebo"), 100, TRUE)),
group = as.factor(sample(c("control", "treatment"), 100, TRUE))
)
pretty_names <- lm(y ~ drug * group, data = dat)
tab_model(pretty_names)
y | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 66.84 | 52.97 – 80.71 | <0.001 |
drug [placebo] | -7.18 | -28.25 – 13.89 | 0.500 |
drug [useful] | -30.95 | -53.08 – -8.82 | 0.007 |
group [treatment] | -21.66 | -40.13 – -3.19 | 0.022 |
drug [placebo] × group [treatment] |
4.15 | -23.68 – 31.98 | 0.768 |
drug [useful] × group [treatment] |
30.85 | 2.38 – 59.33 | 0.034 |
Observations | 100 | ||
R2 / R2 adjusted | 0.116 / 0.069 |
To turn off automatic labelling, use auto.label = FALSE
,
or provide an empty character vector for pred.labels
and
dv.labels
.
barthtot | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 87.15 | 77.96 – 96.34 | <0.001 |
c160age | -0.21 | -0.35 – -0.07 | 0.004 |
c12hour | -0.28 | -0.32 – -0.24 | <0.001 |
c161sex2 | -0.39 | -4.49 – 3.71 | 0.850 |
c172code2 | 1.37 | -3.12 – 5.85 | 0.550 |
c172code3 | -1.64 | -7.22 – 3.93 | 0.564 |
Observations | 821 | ||
R2 / R2 adjusted | 0.271 / 0.266 |
Same for models with non-labelled data and factors.
y | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 66.84 | 52.97 – 80.71 | <0.001 |
drugplacebo | -7.18 | -28.25 – 13.89 | 0.500 |
druguseful | -30.95 | -53.08 – -8.82 | 0.007 |
grouptreatment | -21.66 | -40.13 – -3.19 | 0.022 |
drugplacebo:grouptreatment | 4.15 | -23.68 – 31.98 | 0.768 |
druguseful:grouptreatment | 30.85 | 2.38 – 59.33 | 0.034 |
Observations | 100 | ||
R2 / R2 adjusted | 0.116 / 0.069 |
tab_model()
can print multiple models at once, which are
then printed side-by-side. Identical coefficients are matched in a
row.
Total score BARTHEL INDEX |
Negative impact with 7 items |
|||||
---|---|---|---|---|---|---|
Predictors | Estimates | CI | p | Estimates | CI | p |
(Intercept) | 87.15 | 77.96 – 96.34 | <0.001 | 9.83 | 7.33 – 12.33 | <0.001 |
carer’age | -0.21 | -0.35 – -0.07 | 0.004 | 0.01 | -0.01 – 0.03 | 0.359 |
average number of hours of care per week |
-0.28 | -0.32 – -0.24 | <0.001 | 0.02 | 0.01 – 0.02 | <0.001 |
carer’s gender: Female | -0.39 | -4.49 – 3.71 | 0.850 | 0.43 | -0.15 – 1.01 | 0.147 |
carer’s level of education: intermediate level of education |
1.37 | -3.12 – 5.85 | 0.550 | |||
carer’s level of education: high level of education |
-1.64 | -7.22 – 3.93 | 0.564 | |||
elder’age | 0.01 | -0.03 – 0.04 | 0.741 | |||
Observations | 821 | 879 | ||||
R2 / R2 adjusted | 0.271 / 0.266 | 0.067 / 0.063 |
For generalized linear models, the ouput is slightly adapted. Instead of Estimates, the column is named Odds Ratios, Incidence Rate Ratios etc., depending on the model. The coefficients are in this case automatically converted (exponentiated). Furthermore, pseudo R-squared statistics are shown in the summary.
m3 <- glm(
tot_sc_e ~ c160age + c12hour + c161sex + c172code,
data = efc,
family = poisson(link = "log")
)
efc$neg_c_7d <- ifelse(efc$neg_c_7 < median(efc$neg_c_7, na.rm = TRUE), 0, 1)
m4 <- glm(
neg_c_7d ~ c161sex + barthtot + c172code,
data = efc,
family = binomial(link = "logit")
)
tab_model(m3, m4)
Services for elderly | neg c 7 d | |||||
---|---|---|---|---|---|---|
Predictors | Incidence Rate Ratios | CI | p | Odds Ratios | CI | p |
(Intercept) | 0.30 | 0.21 – 0.45 | <0.001 | 6.54 | 3.66 – 11.96 | <0.001 |
carer’age | 1.01 | 1.01 – 1.02 | <0.001 | |||
average number of hours of care per week |
1.00 | 1.00 – 1.00 | <0.001 | |||
carer’s gender: Female | 1.01 | 0.87 – 1.19 | 0.867 | 1.87 | 1.31 – 2.69 | 0.001 |
carer’s level of education: intermediate level of education |
1.47 | 1.21 – 1.79 | <0.001 | 1.23 | 0.84 – 1.82 | 0.288 |
carer’s level of education: high level of education |
1.90 | 1.52 – 2.38 | <0.001 | 1.37 | 0.84 – 2.23 | 0.204 |
Total score BARTHEL INDEX | 0.97 | 0.96 – 0.97 | <0.001 | |||
Observations | 840 | 815 | ||||
R2 Nagelkerke | 0.106 | 0.191 |
To plot the estimates on the linear scale, use
transform = NULL
.
tot_sc_e | neg_c_7d | |||||
---|---|---|---|---|---|---|
Predictors | Log-Mean | CI | p | Log-Odds | CI | p |
(Intercept) | -1.19 | -1.58 – -0.80 | <0.001 | 1.88 | 1.30 – 2.48 | <0.001 |
c160age | 0.01 | 0.01 – 0.02 | <0.001 | |||
c12hour | 0.00 | 0.00 – 0.00 | <0.001 | |||
c161sex2 | 0.01 | -0.15 – 0.18 | 0.867 | 0.63 | 0.27 – 0.99 | 0.001 |
c172code2 | 0.39 | 0.19 – 0.58 | <0.001 | 0.21 | -0.18 – 0.60 | 0.288 |
c172code3 | 0.64 | 0.42 – 0.87 | <0.001 | 0.31 | -0.17 – 0.80 | 0.204 |
barthtot | -0.03 | -0.04 – -0.03 | <0.001 | |||
Observations | 840 | 815 | ||||
R2 Nagelkerke | 0.106 | 0.191 |
Other models, like hurdle- or zero-inflated models, also work with
tab_model()
. In this case, the zero inflation model is
indicated in the table. Use show.zeroinf = FALSE
to hide
this part from the table.
library(pscl)
data("bioChemists")
m5 <- zeroinfl(art ~ fem + mar + kid5 + ment | kid5 + phd + ment, data = bioChemists)
tab_model(m5)
art | ||||
---|---|---|---|---|
Predictors | Incidence Rate Ratios | CI | p | |
Count Model | ||||
(Intercept) | 1.83 | 1.61 – 2.10 | <0.001 | |
fem [Women] | 0.80 | 0.72 – 0.90 | <0.001 | |
mar [Married] | 1.14 | 1.01 – 1.30 | 0.041 | |
kid5 | 0.86 | 0.78 – 0.94 | 0.001 | |
ment | 1.02 | 1.01 – 1.02 | <0.001 | |
Zero-Inflated Model | ||||
(Intercept) | 0.45 | 0.20 – 1.01 | 0.054 | |
kid5 | 1.12 | 0.79 – 1.58 | 0.531 | |
phd | 1.02 | 0.78 – 1.33 | 0.881 | |
ment | 0.88 | 0.81 – 0.95 | 0.002 | |
Observations | 915 | |||
R2 / R2 adjusted | 0.230 / 0.226 |
You can combine any model in one table.
barthtot | tot_sc_e | art | ||||
---|---|---|---|---|---|---|
Predictors | Estimates | p | Incidence Rate Ratios | p | Incidence Rate Ratios | p |
(Intercept) | 87.15 | <0.001 | 0.30 | <0.001 | ||
c160age | -0.21 | 0.004 | 1.01 | <0.001 | ||
c12hour | -0.28 | <0.001 | 1.00 | <0.001 | ||
c161sex2 | -0.39 | 0.850 | 1.01 | 0.867 | ||
c172code2 | 1.37 | 0.550 | 1.47 | <0.001 | ||
c172code3 | -1.64 | 0.564 | 1.90 | <0.001 | ||
count_(Intercept) | 1.83 | <0.001 | ||||
count_femWomen | 0.80 | <0.001 | ||||
count_marMarried | 1.14 | 0.041 | ||||
count_kid5 | 0.86 | 0.001 | ||||
count_ment | 1.02 | <0.001 | ||||
Zero-Inflated Model | ||||||
zero_(Intercept) | 0.45 | 0.054 | ||||
zero_kid5 | 1.12 | 0.531 | ||||
zero_phd | 1.02 | 0.881 | ||||
zero_ment | 0.88 | 0.002 | ||||
Observations | 821 | 840 | 915 | |||
R2 / R2 adjusted | 0.271 / 0.266 | 0.106 | 0.230 / 0.226 |
tab_model()
has some argument that allow to show or hide
specific columns from the output:
show.est
to show/hide the column with model
estimates.show.ci
to show/hide the column with confidence
intervals.show.se
to show/hide the column with standard
errors.show.std
to show/hide the column with standardized
estimates (and their standard errors).show.p
to show/hide the column with p-values.show.stat
to show/hide the column with the
coefficients’ test statistics.show.df
for linear mixed models, when p-values are
based on degrees of freedom with Kenward-Rogers approximation, these
degrees of freedom are shown.In the following example, standard errors, standardized coefficients and test statistics are also shown.
Total score BARTHEL INDEX | ||||||||
---|---|---|---|---|---|---|---|---|
Predictors | Estimates | std. Error | std. Beta | standardized std. Error | CI | standardized CI | Statistic | p |
(Intercept) | 87.15 | 4.68 | -0.01 | 0.08 | 77.96 – 96.34 | -0.17 – 0.16 | 18.62 | <0.001 |
carer’age | -0.21 | 0.07 | -0.09 | 0.03 | -0.35 – -0.07 | -0.16 – -0.03 | -2.87 | 0.004 |
average number of hours of care per week |
-0.28 | 0.02 | -0.48 | 0.03 | -0.32 – -0.24 | -0.54 – -0.42 | -14.95 | <0.001 |
carer’s gender: Female | -0.39 | 2.09 | -0.01 | 0.07 | -4.49 – 3.71 | -0.15 – 0.13 | -0.19 | 0.850 |
carer’s level of education: intermediate level of education |
1.37 | 2.28 | 0.05 | 0.08 | -3.12 – 5.85 | -0.11 – 0.20 | 0.60 | 0.550 |
carer’s level of education: high level of education |
-1.64 | 2.84 | -0.06 | 0.10 | -7.22 – 3.93 | -0.24 – 0.13 | -0.58 | 0.564 |
Observations | 821 | |||||||
R2 / R2 adjusted | 0.271 / 0.266 |
In the following example, default columns are removed.
tot_sc_e | neg_c_7d | |
---|---|---|
Predictors | Incidence Rate Ratios | Odds Ratios |
(Intercept) | 0.30 | 6.54 |
c160age | 1.01 | |
c12hour | 1.00 | |
c161sex2 | 1.01 | 1.87 |
c172code2 | 1.47 | 1.23 |
c172code3 | 1.90 | 1.37 |
barthtot | 0.97 | |
Observations | 840 | 815 |
R2 Nagelkerke | 0.106 | 0.191 |
Another way to remove columns, which also allows to reorder the
columns, is the col.order
-argument. This is a character
vector, where each element indicates a column in the output. The value
"est"
, for instance, indicates the estimates, while
"std.est"
is the column for standardized estimates and so
on.
By default, col.order
contains all possible columns. All
columns that should shown (see previous tables, for example using
show.se = TRUE
to show standard errors, or
show.st = TRUE
to show standardized estimates) are then
printed by default. Colums that are excluded from
col.order
are not shown, no matter if the
show*
-arguments are TRUE
or
FALSE
. So if show.se = TRUE
,
butcol.order
does not contain the element
"se"
, standard errors are not shown. On the other hand, if
show.est = FALSE
, but col.order
does
include the element "est"
, the columns with estimates
are not shown.
In summary, col.order
can be used to exclude
columns from the table and to change the order of colums.
tab_model(
m1, show.se = TRUE, show.std = TRUE, show.stat = TRUE,
col.order = c("p", "stat", "est", "std.se", "se", "std.est")
)
Total score BARTHEL INDEX | ||||||
---|---|---|---|---|---|---|
Predictors | p | Statistic | Estimates | standardized std. Error | std. Error | std. Beta |
(Intercept) | <0.001 | 18.62 | 87.15 | 0.08 | 4.68 | -0.01 |
carer’age | 0.004 | -2.87 | -0.21 | 0.03 | 0.07 | -0.09 |
average number of hours of care per week |
<0.001 | -14.95 | -0.28 | 0.03 | 0.02 | -0.48 |
carer’s gender: Female | 0.850 | -0.19 | -0.39 | 0.07 | 2.09 | -0.01 |
carer’s level of education: intermediate level of education |
0.550 | 0.60 | 1.37 | 0.08 | 2.28 | 0.05 |
carer’s level of education: high level of education |
0.564 | -0.58 | -1.64 | 0.10 | 2.84 | -0.06 |
Observations | 821 | |||||
R2 / R2 adjusted | 0.271 / 0.266 |
With collapse.ci
and collapse.se
, the
columns for confidence intervals and standard errors can be collapsed
into one column together with the estimates. Sometimes this table layout
is required.
Total score BARTHEL INDEX | ||
---|---|---|
Predictors | Estimates | p |
(Intercept) |
87.15 (77.96 – 96.34) |
<0.001 |
carer’age |
-0.21 (-0.35 – -0.07) |
0.004 |
average number of hours of care per week |
-0.28 (-0.32 – -0.24) |
<0.001 |
carer’s gender: Female |
-0.39 (-4.49 – 3.71) |
0.850 |
carer’s level of education: intermediate level of education |
1.37 (-3.12 – 5.85) |
0.550 |
carer’s level of education: high level of education |
-1.64 (-7.22 – 3.93) |
0.564 |
Observations | 821 | |
R2 / R2 adjusted | 0.271 / 0.266 |
There are different options to change the labels of the column headers or coefficients, e.g. with:
pred.labels
to change the names of the coefficients in
the Predictors column. Note that the length of
pred.labels
must exactly match the amount of predictors in
the Predictor column.dv.labels
to change the names of the model columns,
which are labelled with the variable labels / names from the dependent
variables.string.*
-arguments, to
change the name of column headings.tab_model(
m1, m2,
pred.labels = c("Intercept", "Age (Carer)", "Hours per Week", "Gender (Carer)",
"Education: middle (Carer)", "Education: high (Carer)",
"Age (Older Person)"),
dv.labels = c("First Model", "M2"),
string.pred = "Coeffcient",
string.ci = "Conf. Int (95%)",
string.p = "P-Value"
)
First Model | M2 | |||||
---|---|---|---|---|---|---|
Coeffcient | Estimates | Conf. Int (95%) | P-Value | Estimates | Conf. Int (95%) | P-Value |
Intercept | 87.15 | 77.96 – 96.34 | <0.001 | 9.83 | 7.33 – 12.33 | <0.001 |
Age (Carer) | -0.21 | -0.35 – -0.07 | 0.004 | 0.01 | -0.01 – 0.03 | 0.359 |
Hours per Week | -0.28 | -0.32 – -0.24 | <0.001 | 0.02 | 0.01 – 0.02 | <0.001 |
Gender (Carer) | -0.39 | -4.49 – 3.71 | 0.850 | 0.43 | -0.15 – 1.01 | 0.147 |
Education: middle (Carer) | 1.37 | -3.12 – 5.85 | 0.550 | |||
Education: high (Carer) | -1.64 | -7.22 – 3.93 | 0.564 | |||
Age (Older Person) | 0.01 | -0.03 – 0.04 | 0.741 | |||
Observations | 821 | 879 | ||||
R2 / R2 adjusted | 0.271 / 0.266 | 0.067 / 0.063 |
By default, for categorical predictors, the variable names and the categories for regression coefficients are shown in the table output.
library(glmmTMB)
data("Salamanders")
model <- glm(
count ~ spp + Wtemp + mined + cover,
family = poisson(),
data = Salamanders
)
tab_model(model)
count | |||
---|---|---|---|
Predictors | Incidence Rate Ratios | CI | p |
(Intercept) | 0.22 | 0.17 – 0.29 | <0.001 |
spp [PR] | 0.25 | 0.16 – 0.38 | <0.001 |
spp [DM] | 1.26 | 0.98 – 1.62 | 0.074 |
spp [EC-A] | 0.46 | 0.33 – 0.64 | <0.001 |
spp [EC-L] | 1.86 | 1.48 – 2.36 | <0.001 |
spp [DES-L] | 1.97 | 1.57 – 2.49 | <0.001 |
spp [DF] | 1.08 | 0.83 – 1.41 | 0.549 |
Wtemp | 1.00 | 0.93 – 1.08 | 0.977 |
mined [no] | 9.97 | 7.91 – 12.69 | <0.001 |
cover | 0.79 | 0.73 – 0.86 | <0.001 |
Observations | 644 | ||
R2 Nagelkerke | 0.758 |
You can include the reference level for categorical predictors by
setting show.reflvl = TRUE
.
count | |||
---|---|---|---|
Predictors | Incidence Rate Ratios | CI | p |
(Intercept) | 0.22 | 0.17 – 0.29 | <0.001 |
Wtemp | 1.00 | 0.93 – 1.08 | 0.977 |
cover | 0.79 | 0.73 – 0.86 | <0.001 |
GP | Reference | ||
PR | 0.25 | 0.16 – 0.38 | <0.001 |
DM | 1.26 | 0.98 – 1.62 | 0.074 |
EC-A | 0.46 | 0.33 – 0.64 | <0.001 |
EC-L | 1.86 | 1.48 – 2.36 | <0.001 |
DES-L | 1.97 | 1.57 – 2.49 | <0.001 |
DF | 1.08 | 0.83 – 1.41 | 0.549 |
yes | Reference | ||
no | 9.97 | 7.91 – 12.69 | <0.001 |
Observations | 644 | ||
R2 Nagelkerke | 0.758 |
To show variable names, categories and include the reference level,
also set prefix.labels = "varname"
.
count | |||
---|---|---|---|
Predictors | Incidence Rate Ratios | CI | p |
(Intercept) | 0.22 | 0.17 – 0.29 | <0.001 |
Wtemp | 1.00 | 0.93 – 1.08 | 0.977 |
cover | 0.79 | 0.73 – 0.86 | <0.001 |
spp: GP | Reference | ||
spp: PR | 0.25 | 0.16 – 0.38 | <0.001 |
spp: DM | 1.26 | 0.98 – 1.62 | 0.074 |
spp: EC-A | 0.46 | 0.33 – 0.64 | <0.001 |
spp: EC-L | 1.86 | 1.48 – 2.36 | <0.001 |
spp: DES-L | 1.97 | 1.57 – 2.49 | <0.001 |
spp: DF | 1.08 | 0.83 – 1.41 | 0.549 |
mined: yes | Reference | ||
mined: no | 9.97 | 7.91 – 12.69 | <0.001 |
Observations | 644 | ||
R2 Nagelkerke | 0.758 |
You can change the style of how p-values are displayed with the
argument p.style
. With p.style = "stars"
, the
p-values are indicated as *
in the table.
Total score BARTHEL INDEX |
Negative impact with 7 items |
|||
---|---|---|---|---|
Predictors | Estimates | CI | Estimates | CI |
(Intercept) | 87.15 *** | 77.96 – 96.34 | 9.83 *** | 7.33 – 12.33 |
carer’age | -0.21 ** | -0.35 – -0.07 | 0.01 | -0.01 – 0.03 |
average number of hours of care per week |
-0.28 *** | -0.32 – -0.24 | 0.02 *** | 0.01 – 0.02 |
carer’s gender: Female | -0.39 | -4.49 – 3.71 | 0.43 | -0.15 – 1.01 |
carer’s level of education: intermediate level of education |
1.37 | -3.12 – 5.85 | ||
carer’s level of education: high level of education |
-1.64 | -7.22 – 3.93 | ||
elder’age | 0.01 | -0.03 – 0.04 | ||
Observations | 821 | 879 | ||
R2 / R2 adjusted | 0.271 / 0.266 | 0.067 / 0.063 | ||
|
Another option would be scientific notation, using
p.style = "scientific"
, which also can be combined with
digits.p
.
Total score BARTHEL INDEX |
Negative impact with 7 items |
|||||
---|---|---|---|---|---|---|
Predictors | Estimates | CI | p | Estimates | CI | p |
(Intercept) | 87.15 | 77.96 – 96.34 | 9.33e-65 | 9.83 | 7.33 – 12.33 | 3.11e-14 |
carer’age | -0.21 | -0.35 – -0.07 | 4.18e-03 | 0.01 | -0.01 – 0.03 | 3.59e-01 |
average number of hours of care per week |
-0.28 | -0.32 – -0.24 | 7.77e-45 | 0.02 | 0.01 – 0.02 | 2.69e-11 |
carer’s gender: Female | -0.39 | -4.49 – 3.71 | 8.50e-01 | 0.43 | -0.15 – 1.01 | 1.47e-01 |
carer’s level of education: intermediate level of education |
1.37 | -3.12 – 5.85 | 5.50e-01 | |||
carer’s level of education: high level of education |
-1.64 | -7.22 – 3.93 | 5.64e-01 | |||
elder’age | 0.01 | -0.03 – 0.04 | 7.41e-01 | |||
Observations | 821 | 879 | ||||
R2 / R2 adjusted | 0.271 / 0.266 | 0.067 / 0.063 |
Another way to easily assign labels are named vectors. In
this case, it doesn’t matter if pred.labels
has more labels
than coefficients in the model(s), or in which order the labels are
passed to tab_model()
. The only requirement is that the
labels’ names equal the coefficients names as they appear in the
summary()
-output.
# example, coefficients are "c161sex2" or "c172code3"
summary(m1)
#>
#> Call:
#> lm(formula = barthtot ~ c160age + c12hour + c161sex + c172code,
#> data = efc)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -75.144 -14.944 4.401 18.661 72.393
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 87.14994 4.68009 18.621 < 2e-16 ***
#> c160age -0.20716 0.07211 -2.873 0.00418 **
#> c12hour -0.27883 0.01865 -14.950 < 2e-16 ***
#> c161sex2 -0.39402 2.08893 -0.189 0.85044
#> c172code2 1.36596 2.28440 0.598 0.55004
#> c172code3 -1.64045 2.84037 -0.578 0.56373
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 25.35 on 815 degrees of freedom
#> (87 observations deleted due to missingness)
#> Multiple R-squared: 0.2708, Adjusted R-squared: 0.2664
#> F-statistic: 60.54 on 5 and 815 DF, p-value: < 2.2e-16
pl <- c(
`(Intercept)` = "Intercept",
e17age = "Age (Older Person)",
c160age = "Age (Carer)",
c12hour = "Hours per Week",
barthtot = "Barthel-Index",
c161sex2 = "Gender (Carer)",
c172code2 = "Education: middle (Carer)",
c172code3 = "Education: high (Carer)",
a_non_used_label = "We don't care"
)
tab_model(
m1, m2, m3, m4,
pred.labels = pl,
dv.labels = c("Model1", "Model2", "Model3", "Model4"),
show.ci = FALSE,
show.p = FALSE,
transform = NULL
)
Model1 | Model2 | Model3 | Model4 | |
---|---|---|---|---|
Predictors | Estimates | Estimates | Log-Mean | Log-Odds |
Intercept | 87.15 | 9.83 | -1.19 | 1.88 |
Age (Carer) | -0.21 | 0.01 | 0.01 | |
Hours per Week | -0.28 | 0.02 | 0.00 | |
Gender (Carer) | -0.39 | 0.43 | 0.01 | 0.63 |
Education: middle (Carer) | 1.37 | 0.39 | 0.21 | |
Education: high (Carer) | -1.64 | 0.64 | 0.31 | |
Age (Older Person) | 0.01 | |||
Barthel-Index | -0.03 | |||
Observations | 821 | 879 | 840 | 815 |
R2 / R2 adjusted | 0.271 / 0.266 | 0.067 / 0.063 | 0.106 | 0.191 |
Using the terms
- or rm.terms
-argument
allows us to explicitly show or remove specific coefficients from the
table output.
Total score BARTHEL INDEX | |||
---|---|---|---|
Predictors | Estimates | CI | p |
carer’age | -0.21 | -0.35 – -0.07 | 0.004 |
average number of hours of care per week |
-0.28 | -0.32 – -0.24 | <0.001 |
Observations | 821 | ||
R2 / R2 adjusted | 0.271 / 0.266 |
Note that the names of terms to keep or remove should match the coefficients names. For categorical predictors, one example would be:
Total score BARTHEL INDEX | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 87.15 | 77.96 – 96.34 | <0.001 |
carer’age | -0.21 | -0.35 – -0.07 | 0.004 |
average number of hours of care per week |
-0.28 | -0.32 – -0.24 | <0.001 |
carer’s level of education: high level of education |
-1.64 | -7.22 – 3.93 | 0.564 |
Observations | 821 | ||
R2 / R2 adjusted | 0.271 / 0.266 |