The goal of sparsegl is to fit regularization paths for sparse group-lasso penalized learning problems. The model is typically fit for a sequence of regularization parameters \(\lambda\). Such estimators minimize
\[ -\ell(\beta | y,\ \mathbf{X}) + \lambda(1-\alpha)\sum_{g\in G} \lVert\beta_g\rVert_2 + \lambda\alpha \lVert\beta\rVert_1. \]
The main focus of this package is for the case where the
loglikelihood corresponds to Gaussian or logistic regression. But we
also provide the ability to fit arbitrary GLMs using
stats::family()
objects. Details may be found in Liang,
Cohen, Sólon Heinsfeld, Pestilli, and McDonald (2024).
You can install the released version of sparsegl from CRAN with:
install.packages("sparsegl")
You can install the development version from GitHub with:
# install.packages("remotes")
::install_github("dajmcdon/sparsegl") remotes
set.seed(1010)
<- 100
n <- 200
p <- matrix(data = rnorm(n * p, mean = 0, sd = 1), nrow = n, ncol = p)
X <- rnorm(n, mean = 0, sd = 1)
eps <- c(
beta_star rep(5, 5), c(5, -5, 2, 0, 0),
rep(-5, 5), c(2, -3, 8, 0, 0), rep(0, (p - 20))
)<- X %*% beta_star + eps
y <- rep(1:(p / 5), each = 5)
groups <- sparsegl(X, y, group = groups)
fit1 plot(fit1, y_axis = "coef", x_axis = "penalty", add_legend = FALSE)
Liang, X., Cohen, A., Sólon Heinsfeld, A., Pestilli, F., and
McDonald, D.J. 2024. “sparsegl: An R
Package for Estimating
Sparse Group Lasso.” Journal of Statistical Software 110(6),
1–23. https://doi.org/10.18637/jss.v110.i06.