This package is designed to convert R data to JSON, ready for
plotting on a map in an htmlwidget
.
The basic idea of this package is to take an sf
object
or data.frame
head( widget_capitals )
# country capital geometry
# 1 Afghanistan Kabul 69.11, 34.28
# 2 Albania Tirane 19.49, 41.18
# 3 Algeria Algiers 3.08, 36.42
# 4 American Samoa Pago Pago -170.43, -14.16
# 5 Andorra Andorra la Vella 1.32, 42.31
# 6 Angola Luanda 13.15, -8.50
And convert it into pseudo-geojson ready to be parsed by javascript inside an htmlwidget
js <- spatialwidget::widget_point(
data = widget_capitals
, fill_colour = "country"
, legend = TRUE
)
substr( js$data, 1, 200 )
# [{"type":"Feature","properties":{"fill_colour":"#440154FF"},"geometry":{"geometry":{"type":"Point","coordinates":[69.11,34.28]}}},{"type":"Feature","properties":{"fill_colour":"#450356FF"},"geometry":
substr( js$legend, 1, 100 )
# {"fill_colour":{"colour":["#440154FF","#450356FF","#450458FF","#45065AFF","#46085CFF","#460A5EFF","#
Notice the fill_colour
column is now a hex colour, and
the geometry
column has been converted into
Point
coordinates.
This is basically it. The R object is now represented as JSON, having had a column of data changed into hex colours.
Here I describe the R functions available to you. However, these are deliberately limited in their capability, as this library is not intended to be used directly at the R-level. Instead, it’s designed to be integrated into packages at the C++ level, where you will call the C++ functions directly.
There are 4 R functions you can call for creating POINTs, LINEs,
POLYGONs or origin-destination shapes. Each of these functions returns a
list with two elements, data
and legend
.
data.frame
or sf
object
converted to pseudo-GeoJSONThe data
is returned as pseudo-GeoJSON.
Some plotting libraries can use more than one geometry, such as
mapdeck::add_arc()
, which uses an origin and destination.
So spatialwidget needs to handle multiple geometries.
Typical GeoJSON will take the form
[{"type":"Feature", "properties":{},"geometry":{"type":"Point","coordinates":[0,0]}}]
Whereas I’ve nested the geometries one-level deeper, so the pseudo-GeoJSON i’m using takes the form
[{"type":"Feature", "properties":{},"geometry":{"myGeometry":{"type":"Point","coordinates":[0,0]}}}]
Where the myGeometry
object is defined on a
per-application bases. You are free to call this whatever you want
inside your library, and have as many as you want.
l <- widget_point(
widget_capitals[1:2, ]
, fill_colour = "country"
, legend = T
)
substr( l$data, 1, 200 )
# [{"type":"Feature","properties":{"fill_colour":"#440154FF"},"geometry":{"geometry":{"type":"Point","coordinates":[69.11,34.28]}}},{"type":"Feature","properties":{"fill_colour":"#FDE725FF"},"geometry":
l <- widget_line(
widget_roads[1:2, ]
, stroke_colour = "ROAD_NAME"
, legend = T
)
substr( l$data, 1, 200 )
# [{"type":"Feature","properties":{"stroke_colour":"#440154FF","stroke_width":1.0},"geometry":{"geometry":{"type":"LineString","coordinates":[[145.014291,-37.830458],[145.014345,-37.830574],[145.01449,-
l <- widget_polygon(
widget_melbourne[1:2, ]
, fill_colour = "AREASQKM16"
, legend = F
)
substr( l$data, 1, 200 )
# [{"type":"Feature","properties":{"stroke_colour":"#440154FF","stroke_width":1.0,"fill_colour":"#440154FF"},"geometry":{"geometry":{"type":"Polygon","coordinates":[[[144.992523,-37.80249],[144.992645,-
The spatialwidget::api::
namespace has 5 functions for
converting your data into pseudo-geojson. Here are their definitions,
the input data they expect and the type of output they produce.
sfc
-column sf
to pseudo-geojson/*
* sf object with one or many sfc columns
*
* expects `data` to be an sf object, where the geometry_columns is a string vector
* containing the sfc colunm names (of sf) you want to use as the geometry objects
* inside the GeoJSON
*/
inline Rcpp::List create_geojson(
Rcpp::DataFrame& data,
Rcpp::List& params,
Rcpp::List& lst_defaults,
std::unordered_map< std::string, std::string >& layer_colours,
Rcpp::StringVector& layer_legend,
int& data_rows,
Rcpp::StringVector& parameter_exclusions,
Rcpp::StringVector& geometry_columns,
bool jsonify_legend
)
in - sf
object with one or many
sfc
columns
out - geometries left as-is, returned in pseudo-geojson
sfc
-column sf
to standard
geojson/*
* expects `data` to be an sf object, where the geometry_column is a string vector
* of the sfc column names (of sf) you want to use as the geometry object inside the GeoJSON.
*
*/
inline Rcpp::List create_geojson(
Rcpp::DataFrame& data,
Rcpp::List& params,
Rcpp::List& lst_defaults,
std::unordered_map< std::string, std::string >& layer_colours,
Rcpp::StringVector& layer_legend,
int& data_rows,
Rcpp::StringVector& parameter_exclusions,
std::string& geometry_column, // single geometry column from sf object
bool jsonify_legend
)
in - sf
object with one
sfc
column
out - returns standard geojson
data.frame
with lon & lat columns to
pseudo-geojson/*
* expects `data` to be data.frame withn lon & lat columns. The geometry_columns
* argument is a named list, list(myGeometry = c("lon","lat")), where 'myGeometry'
* will be returned inside the 'geometry' object of the GeoJSON
*/
inline Rcpp::List create_geojson(
Rcpp::DataFrame& data,
Rcpp::List& params,
Rcpp::List& lst_defaults,
std::unordered_map< std::string, std::string >& layer_colours,
Rcpp::StringVector& layer_legend,
int& data_rows,
Rcpp::StringVector& parameter_exclusions,
Rcpp::List& geometry_columns,
bool jsonify_legend
)
in - data.frame
with lon & lat
columns (each row is a POINT)
out - pseudo-geojson
data.frame
with lon, lat & elevation columns to
pseudo-geojson/*
* expects `data` to be data.frame withn lon & lat & elev columns. The 'bool elevation'
* argument must be set to 'true', and the 'geometry_columns' should contain an 'elevation'
* value - 'geometry_column <- list( geometry = c("lon","lat","elevation") )'
*/
inline Rcpp::List create_geojson(
Rcpp::DataFrame& data,
Rcpp::List& params,
Rcpp::List& lst_defaults,
std::unordered_map< std::string, std::string >& layer_colours,
Rcpp::StringVector& layer_legend,
int& data_rows,
Rcpp::StringVector& parameter_exclusions,
Rcpp::List& geometry_columns,
bool jsonify_legend,
bool elevation
)
in - data.frame
with lon, lat and
elevation columns (each row is a POINT)
out - pseudo-gejson
This set of arguments are commong to all the C++ functions
This will either be a data.frame with lon & lat columns, or an
sf
object.
A named list. The names are the arguments of the calling R function
which will be supplied to the javascript widget. These are typically
columns of data
, or a single value that will be applied to
all rows of data
.
For example, an R function will look like
add_layer <- function(
data,
fill_colour = NULL,
stroke_colour = NULL,
another_argument = TRUE
)
And the list passed to c++ will be
l <- list()
l[["fill_colour"]] <- force( fill_colour )
l[["stroke_colour"]] <- force( stroke_colour )
In this case, the another_argument
is not passed to the
javascript widget as part of the data, so we don’t include it in our
list.
The javascript function inside a htmlwidget
will then
access the stroke_colour
and fill_colour
properties from the data.
This example code is taken from the javascript binding of
mapdeck::add_polygon()
to show you how I use it.
const polygonLayer = new PolygonLayer({
getLineColor: d => hexToRGBA2( d.properties.stroke_colour ),
getFillColor: d => hexToRGBA2( d.properties.fill_colour ),
});
Either a named list, or an empty list.
You can use this list to supply default values to the widget.
Rcpp::List scatterplot_defaults(int n) {
return Rcpp::List::create(
_["fill_colour"] = mapdeck::defaults::default_fill_colour(n)
);
}
// use Either a named list,
Rcpp::List lst_defaults = scatterplot_defaults( data_rows ); // initialise with defaults
// or an empty object
Rcpp::List lst_defaults;
A c++ unorderd_map
specifying colours and their
associated opacity.
std::unordered_map< std::string, std::string > polygon_colours = {
{ "fill_colour", "fill_opacity" },
{ "stroke_colour", "stroke_opacity"}
};
These values will match the colour parameters used in the
params
list
l <- list()
l[["fill_colour"]] <- force( fill_colour )
l[["stroke_colour"]] <- force( stroke_colour )
But you don’t have to supply the opacity, it will be set to ‘opaque’ by default.
A vector of the colour values you want to use in a lenged.
const Rcpp::StringVector polygon_legend = Rcpp::StringVector::create(
"fill_colour", "stroke_colour"
);
In this example, both fill_colour
and
stroke_colour
will be returned in the legend data.
The number of rows of data
.
A vector describing the elements of params
which will be
excluded from the final JSON data.
Rcpp::StringVector parameter_exclusions = Rcpp::StringVector::create("palette","legend","na_colour");
A logical value indicating if you want the legend data returned as JSON (TRUE) or a a list (FALSE)
Either an Rcpp::List
or
Rcpp::StringVector
.
The List
is used for data.frame
s with lon
& lat columns.
df <- data.frame(lon = 0, lat = 0)
geometry_column <- list( geometry = c("lon","lat") )
The StringVector
is used for sf
objects to
specify the geometry columns.
sf <- sf::st_sf( origin = sf::st_sfc( sf::st_point(c(0,0 ) ) ) )
geometry_column <- c( "origin" )
The elevation
argument is used when the
data.frame
has a column of elevation data. When using the
elevation you also need to supply this column in the
geometry_column
list.
geometry_column <- list( geometry = c("lon","lat","elevation") )
Here’s an example implementation of the R, cpp and hpp files required to convert R data to pseudo-GeoJSON
widgetpoint.R
#' Widget Point
#'
#' Converts an `sf` object with POINT geometriers into JSON for plotting in an htmlwidget
#'
#' @param data `sf` object with POINT geometries
#' @param fill_colour string specifying column of `sf` to use for the fill colour
#' @param legend logical indicating if legend data will be returned
#' @param json_legend logical indicating if the lgend will be returned as JSON or a list
#'
#' @examples
#'
#' l <- widget_point( data = capitals, fill_colour = "country", legend = FALSE )
#'
#' @export
widget_point <- function( data,
fill_colour,
legend = TRUE,
json_legend = TRUE ) {
l <- list()
l[["fill_colour"]] <- force( fill_colour )
l[["legend"]] <- legend
js_data <- rcpp_widget_point( data, l, c("geometry"), json_legend )
return( js_data )
}
widgetpoint.cpp
#include <Rcpp.h>
#include "spatialwidget/spatialwidget.hpp"
#include "spatialwidget/spatialwidget_defaults.hpp"
#include "spatialwidget/layers/widgetpoint.hpp"
// [[Rcpp::export]]
Rcpp::List rcpp_widget_point(
Rcpp::DataFrame data,
Rcpp::List params,
Rcpp::StringVector geometry_columns,
bool jsonify_legend ) {
int data_rows = data.nrows();
Rcpp::List defaults = point_defaults( data_rows );
std::unordered_map< std::string, std::string > point_colours = spatialwidget::widgetpoint::point_colours;
Rcpp::StringVector point_legend = spatialwidget::widgetpoint::point_legend;
Rcpp::StringVector parameter_exclusions = Rcpp::StringVector::create("legend","legend_options","palette","na_colour");
return spatialwidget::api::create_geojson(
data,
params,
defaults,
point_colours,
point_legend,
data_rows,
parameter_exclusions,
geometry_columns,
jsonify_legend
);
}
/layers/widgetpoint.hpp
#ifndef SPATIALWIDGET_WIDGETPOINT_H
#define SPATIALWIDGET_WIDGETPOINT_H
#include <Rcpp.h>
namespace spatialwidget {
namespace widgetpoint {
// map between colour and opacity values
std::unordered_map< std::string, std::string > point_colours = {
{ "fill_colour", "fill_opacity" }
};
// vector of possible legend components
Rcpp::StringVector point_legend = Rcpp::StringVector::create(
"fill_colour"
);
} // namespace widgetpoint
} // namespace spatialwidget
#endif
As well as creating pseudo-GeoJSON, most of the functions also atomise the data.
When converting an sf
object to GeoJSON it will
typically create a FeatureCollection. ‘Atomising’ means it treats each
row of the sf
as it’s own Feature, and stores each one in a
separate JSON object inside a JSON array (i.e., without combining them
into a Feature Collection).
For example, we can create a GeoJSON FeatureCollection, convert it to
sf
and back again
feat1 <- '{"type":"Feature","properties":{"id":1},"geometry":{"type":"Point","coordinates":[0,0]}}'
feat2 <- '{"type":"Feature","properties":{"id":2},"geometry":{"type":"Point","coordinates":[1,1]}}'
geojson <- paste0('[{"type":"FeatureCollection","features":[',feat1,',',feat2,']}]')
sf <- geojsonsf::geojson_sf( geojson )
sf
# id geometry
# 1 1 0, 0
# 2 2 1, 1
and going back the other way completes the round-trip and creates a FeatureCollection.
geo <- geojsonsf::sf_geojson( sf )
geo
# {"type":"FeatureCollection","features":[{"type":"Feature","properties":{"id":1.0},"geometry":{"type":"Point","coordinates":[0.0,0.0]}},{"type":"Feature","properties":{"id":2.0},"geometry":{"type":"Point","coordinates":[1.0,1.0]}}]}
If we set it to ‘atomise’ when converting to geojson, an array of
Features
is returned
geojsonsf::sf_geojson( sf, atomise = TRUE )
# {"type":"Feature","properties":{"id":1.0},"geometry":{"type":"Point","coordinates":[0.0,0.0]}}
# {"type":"Feature","properties":{"id":2.0},"geometry":{"type":"Point","coordinates":[1.0,1.0]}}
This structure is useful for sending to an htmlwidget because each object in the array can be parsed independently, without having to worry about iterating or parsing the entire Featurecollection.
Therefore, most of the GeoJSON functions inside spatialwidget will return the ‘atomised’ form.
You can by-pass the spatialwidget::api::
namepsace and
call the spatialwidget::geojson::
api directly. However,
doing so will only convert your data to pseudo-geojson, it won’t create
colours or legends.
Here are the function definitions, the input data they expect and the type of output they produce.
sfc
-column sf
to atomised
pseudo-geojson /*
* a variation on the atomise function to return an array of atomised features
*/
inline Rcpp::StringVector to_geojson_atomise(
Rcpp::DataFrame& sf,
Rcpp::StringVector& geometries ) {
geojson <- spatialwidget:::rcpp_geojson_sf(sf = widget_arcs, geometries = c("origin","destination"))
substr( geojson, 1, 500)
# [{"type":"Feature","properties":{"country_from":"Australia","capital_from":"Canberra","country_to":"Afghanistan","capital_to":"Kabul"},"geometry":{"origin":{"type":"Point","coordinates":[149.08,-35.15]},"destination":{"type":"Point","coordinates":[69.11,34.28]}}},{"type":"Feature","properties":{"country_from":"Australia","capital_from":"Canberra","country_to":"Albania","capital_to":"Tirane"},"geometry":{"origin":{"type":"Point","coordinates":[149.08,-35.15]},"destination":{"type":"Point","coordi
in - sf
object with one or more
sfc
columns
out - atomised pseudo-geojson
sfc
-column sf
to standard
geojsoninline Rcpp::StringVector to_geojson( Rcpp::DataFrame& sf, std::string geom_column )
geojson <- spatialwidget:::rcpp_geojson( sf = widget_capitals, geometry = "geometry")
substr( geojson, 1, 300)
# {"type":"FeatureCollection","features":[{"type":"Feature","properties":{"country":"Afghanistan","capital":"Kabul"},"geometry":{"type":"Point","coordinates":[69.11,34.28]}},{"type":"Feature","properties":{"country":"Albania","capital":"Tirane"},"geometry":{"type":"Point","coordinates":[19.49,41.18]}}
in - sf
object with one
sfc
column
out - standard GeoJSON
data.frame
with lon & lat columsn to atomised
pseudo-geojson inline Rcpp::StringVector to_geojson_atomise(
Rcpp::DataFrame& df,
Rcpp::List& geometries ) // i.e., list(origin = c("start_lon", "start_lat", destination = c("end_lon", "end_lat")))
{
df <- sfheaders::sf_to_df( widget_capitals )
geojson <- spatialwidget:::rcpp_geojson_df(df = df, list(geometry = c("x","y")) )
substr( geojson, 1, 500 )
# [{"type":"Feature","properties":{"sfg_id":1,"point_id":1},"geometry":{"geometry":{"type":"Point","coordinates":[69.11,34.28]}}},{"type":"Feature","properties":{"sfg_id":2,"point_id":2},"geometry":{"geometry":{"type":"Point","coordinates":[19.49,41.18]}}},{"type":"Feature","properties":{"sfg_id":3,"point_id":3},"geometry":{"geometry":{"type":"Point","coordinates":[3.08,36.42]}}},{"type":"Feature","properties":{"sfg_id":4,"point_id":4},"geometry":{"geometry":{"type":"Point","coordinates":[-170.43,
in - data.frame
with lon & lat
columns
out - pseudo-GeoJSON atomised
data.frame
with lon, lat and elevation columns to
atomised pseudo-geojson // list of geometries is designed for lon & lat columns of data
inline Rcpp::StringVector to_geojson_z_atomise(
Rcpp::DataFrame& df,
Rcpp::List& geometries ) // i.e., list(origin = c("start_lon", "start_lat", destination = c("end_lon", "end_lat")))
{
df$z <- sample(1:500, size = nrow(df), replace = TRUE )
geojson <- spatialwidget:::rcpp_geojson_dfz( df, geometries = list(geometry = c("x","y","z") ) )
substr( geojson, 1, 500 )
# [{"type":"Feature","properties":{"sfg_id":1,"point_id":1},"geometry":{"geometry":{"type":"Point","coordinates":[69.11,34.28,63.0]}}},{"type":"Feature","properties":{"sfg_id":2,"point_id":2},"geometry":{"geometry":{"type":"Point","coordinates":[19.49,41.18,110.0]}}},{"type":"Feature","properties":{"sfg_id":3,"point_id":3},"geometry":{"geometry":{"type":"Point","coordinates":[3.08,36.42,315.0]}}},{"type":"Feature","properties":{"sfg_id":4,"point_id":4},"geometry":{"geometry":{"type":"Point","coord
in - data.frame
with lon, lat and
elevation columns
out - pseudo-GeoJSON atomised