Informally test our various CV functions on the ISLR::Auto
dataset using SRS-CV, clustered-CV, and stratified-CV.
(We are arbitrarily using year as either clusterID or stratumID.)
Just run the functions on a somewhat arbitrary dataset to ensure that the output format is what we’re looking for, and that the output is roughly consistent across the different functions that are doing the same thing.
tests
directory, not a vignette.surveyCV
appropriately on a real complex-survey dataset?library(surveyCV)
library(survey)
library(ISLR)
data(Auto)
with(Auto, plot(horsepower, mpg, pch = '.'))
cv.svy()
# Test the general cv.svy() function
# The first line's results are usually around:
# linear lm: mean=24.3, se=1.45
# quadratic lm: mean=19.3, se=1.38
cv.svy(Auto, c("mpg~poly(horsepower,1, raw = TRUE)",
"mpg~poly(horsepower,2, raw = TRUE)"),
nfolds = 10)
## mean SE
## .Model_1 24.071 1.8454
## .Model_2 19.173 1.7553
cv.svy(Auto, c("mpg~poly(horsepower,1,raw=TRUE)",
"mpg~poly(horsepower,2,raw=TRUE)"),
nfolds = 10, clusterID = "year")
## mean SE
## .Model_1 27.271 4.6104
## .Model_2 21.184 3.8695
cv.svy(Auto, c("mpg~poly(horsepower,1, raw = TRUE)",
"mpg~poly(horsepower,2, raw = TRUE)"),
nfolds = 10, strataID = "year")
## mean SE
## .Model_1 24.110 1.7364
## .Model_2 19.114 1.6673
cv.svydesign()
# Test the cv.svydesign() function, which takes a svydesign object and formulas
<- svydesign(ids = ~0,
auto.srs.svy data = Auto)
## Warning in svydesign.default(ids = ~0, data = Auto): No weights or probabilities
## supplied, assuming equal probability
<- svydesign(ids = ~year,
auto.clus.svy data = Auto)
## Warning in svydesign.default(ids = ~year, data = Auto): No weights or
## probabilities supplied, assuming equal probability
<- svydesign(ids = ~0,
auto.strat.svy strata = ~year,
data = Auto)
## Warning in svydesign.default(ids = ~0, strata = ~year, data = Auto): No weights
## or probabilities supplied, assuming equal probability
cv.svydesign(formulae = c("mpg~poly(horsepower,1, raw = TRUE)",
"mpg~poly(horsepower,2, raw = TRUE)",
"mpg~poly(horsepower,3, raw = TRUE)"),
design_object = auto.srs.svy, nfolds = 10)
## mean SE
## .Model_1 24.272 1.8579
## .Model_2 19.276 1.7724
## .Model_3 19.378 1.8126
cv.svydesign(formulae = c("mpg~poly(horsepower,1, raw = TRUE)",
"mpg~poly(horsepower,2, raw = TRUE)",
"mpg~poly(horsepower,3, raw = TRUE)"),
design_object = auto.clus.svy, nfolds = 10)
## mean SE
## .Model_1 26.963 4.6224
## .Model_2 20.740 3.8867
## .Model_3 20.789 3.8934
cv.svydesign(formulae = c("mpg~poly(horsepower,1, raw = TRUE)",
"mpg~poly(horsepower,2, raw = TRUE)",
"mpg~poly(horsepower,3, raw = TRUE)"),
design_object = auto.strat.svy, nfolds = 10)
## mean SE
## .Model_1 24.041 1.7297
## .Model_2 19.108 1.6763
## .Model_3 19.130 1.7104
cv.svyglm()
# Test the cv.svyglm() function, which takes one svyglm object
<- svyglm(mpg~horsepower+I(horsepower^2)+I(horsepower^3), design = auto.srs.svy)
srs.model <- svyglm(mpg~horsepower+I(horsepower^2)+I(horsepower^3), design = auto.clus.svy)
clus.model <- svyglm(mpg~horsepower+I(horsepower^2)+I(horsepower^3), design = auto.strat.svy)
strat.model
cv.svyglm(glm = srs.model, nfolds = 10)
## mean SE
## .Model_1 19.43 1.8208
cv.svyglm(glm = clus.model, nfolds = 10)
## mean SE
## .Model_1 20.625 3.8178
cv.svyglm(glm = strat.model, nfolds = 10)
## mean SE
## .Model_1 19.279 1.7197
= 20210708
seed
set.seed(seed)
cv.svy(Auto, "mpg~horsepower+I(horsepower^2)+I(horsepower^3)",
nfolds = 10)
## mean SE
## .Model_1 19.466 1.8254
set.seed(seed)
cv.svydesign(formulae = "mpg~horsepower+I(horsepower^2)+I(horsepower^3)",
design_object = auto.srs.svy, nfolds = 10)
## mean SE
## .Model_1 19.466 1.8254
<- svyglm(mpg~horsepower+I(horsepower^2)+I(horsepower^3), design = auto.srs.svy)
srs.model set.seed(seed)
cv.svyglm(glm = srs.model, nfolds = 10)
## mean SE
## .Model_1 19.466 1.8254
$isAmerican <- Auto$origin == 1
Autowith(Auto, plot(horsepower, isAmerican))
cv.svy(Auto, c("isAmerican~horsepower",
"isAmerican~horsepower+I(horsepower^2)",
"isAmerican~horsepower+I(horsepower^2)+I(horsepower^3)"),
nfolds = 10, method = "logistic")
## mean SE
## .Model_1 0.50118 0.0231
## .Model_2 0.50184 0.0233
## .Model_3 0.49620 0.0245
# Should stop early because method isn't linear or logistic
try(cv.svy(Auto, "mpg~horsepower+I(horsepower^2)+I(horsepower^3)",
nfolds = 10,
method = "abcde"))
## Error in match.arg(method) : 'arg' should be one of "linear", "logistic"
# Should try to run but crash because response variable isn't 0/1
try(cv.svy(Auto, "mpg~horsepower+I(horsepower^2)+I(horsepower^3)",
nfolds = 10,
method = "logistic"))
## Error in eval(family$initialize) : y values must be 0 <= y <= 1