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1 Software and Documentation Licenses

1.1 Software license

GNUMCSim is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
3 of the License, or (at your option) any later version. This program is distributed in the
hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

1.2 Documentation license

The GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
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A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in



Chapter 1: Software and Documentation Licenses 3

another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
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It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.
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L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”
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6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.
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10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/
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2 Overview

GNU MCSim is a simulation and statistical inference tool for algebraic or differential equa-
tion systems. Other programs, such as GNU Octave, have been created to the same end.
Still, most available tools are not optimal for performing computer intensive and sophisti-
cated Monte Carlo analyses. GNU MCSim was created specifically to this end: to perform
Monte Carlo analyses in an optimized, and easy to maintain environment. The software
consists in two pieces, a model generator and a simulation engine:

- The model generator, "mod", was created to facilitate structural model definition and
maintenance, while keeping execution time short. You code your model using a simplified
syntax and mod translates it in C.

- The simulation engine is a set of routines which are linked to your model during compi-
lation to produce executable code. After that you can run simulations of your model under
a variety of conditions, specify an associated statistical model, and perform simulations.

2.1 General procedure

Model building and simulation proceeds in four stages:

1. You create with any text editor (e.g., emacs) a model description file. The reference
section on mod, later in this manual gives you the syntax to use (see Chapter 5 [Writing
and Compiling Structural Models], page 19). This syntax allows you to describe the
model variables, parameters, equations, inputs and outputs in a C-like fashion without
having you to actually know how to write a C program.

2. You instruct the model generator, mod, to preprocess your structural model description
file. Mod creates a C file, called model.c.

3. You compile and link the newly created model.c file together with a library containing
the other C routines (or with the other C files of the mcsim/sim directory). GNU
MCSim C code is standard, so you should be able to compile it with any standard C
compiler, for example GNU gcc. After compiling and linking, an executable simula-
tion program is created, specific of your particular model. These preprocessing and
compilation steps can be performed in Unix with a single shell command makemcsim

(in which case, the model.c is created only temporarily and erased afterward). This
produces the most efficient code for your particular machine.

4. You then write any number of simulation specification files and run them with the
compiled mcsim program. These simulation files describe the kind of simulation to run
(simple simulations, Monte Carlo etc.), various settings for the integration algorithm
if needed, and a description of one or several simulation conditions (eventually with a
statistical model and data to fit) (see Chapter 6 [Running Simulations], page 37). The
simulation output is written to standard ASCII files.

Little or no knowledge of computer programming is required, unless you want to tailor
the program to special needs, beyond what is described in this manual (in which case you
may want to contact us).

Under Unix, a graphical user interface written in Tcl/Tk, XMCSim (called by the com-
mand xmcsim), is also provided. This menu-driven interface automatizes the compilation
and running tasks. It also offers a convenient interface to 2-D and 3-D plotting of the
simulation results.
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2.2 Types of simulations

Five types of simulations are available:

• A simple simulation will solve (eventually integrate) the equations you specified, using
the default parameter values eventually overridden in the simulation specification file.
User-requested outputs are sent to an output file of your choice.

• "Monte Carlo" simulations will perform repeated (stochastic) simulations across a ran-
domly sampled region of the model parameter space (see [MonteCarlo() specification],
page 42).

• A Markov-chain Monte Carlo (MCMC) simulation performs a series of simulations
along a Markov chain in the model parameter space (see [MCMC() specification],
page 43). In MCMC simulations the random choice of a new parameter value is in-
fluenced by the current value. They can be used to obtain the Bayesian posterior
distribution of the model parameters, given a statistical model, prior parameter dis-
tributions (that you need to specify) and data for which a likelihood function can be
computed. The program handles hierarchical (e.g., random effects and mixed effects)
statistical models (see Section 6.2.5 [Setting-up statistical models], page 55).

• A "SetPoints" simulation solves the model for a series of specified parameter sets, listed
in a separate ASCII file (see [SetPoints() specification], page 45). You can create these
parameter sets yourself (on a regular grid, for example) or use the output of a previous
Monte Carlo or MCMC simulation.

• An "OptimalDesign" procedure optimizes the number and location of observation times
for experimental conditions, in order to minimize the variance of a parameter or an
output you specify, given a structural model, a statistical model, and prior distributions
for their parameters (see [OptimalDesign() specification], page 46).

2.3 Major changes introduced with version 5.4.0

• GNU MCSim is now distributed under version 3 of the GNU General Public License.

• The installation scripts have been rewritten using GNU autoconf, automake and
libtool. This should make GNU MCSim easier to install and more portable.

• Systems Biology Markup Language (SBML) models are read by libSBML if it is in-
stalled.

• Tempered MCMC (useful for hard, multimodal posterior densities, for rapid and guar-
anteed convergence, and for model choice) and stochastic optimizations are offered as
options of the MCMC() specification.

2.4 Major changes introduced with version 5.5.0

• The installation scripts have been regenerated using GNU autoconf version 2.69 which
fixes a potential security problem in the installation.

• The mod utility can now generate C model files suitable for use with the R package
deSolve. Use mod -R for that.
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2.5 Major changes introduced with version 5.6.0

• The keyword End is now mandatory at the end of every model. This is not backward
compatible (you will need to modify your older models accordingly).

• The StartTime() specification can now accept a symbolic parameter. That allows you
to treat the initial time as a random variable in error-in-variable problems (when the
initial time is an unknown).

• The PrintStep() specification can read a list of variables to print (as Print() does).

• In MCMC simulation, the jump kernel is now output in a file with the .kernel extension.
If the simulations are restarted in a continuation mode and if a kernel file with the same
name as the restart file (with an added .kernel extension) is present, the jump kernel
will restored to its saved value.

• Delay differential equations can now be coded and solved using the CalDelay function.

• Discontinuities in state variables can now be forced to happen at predefined times
through the Events() specification.

2.6 Major changes introduced with version 6.0.0

In mod:

• You can now specify the Jacobian matrix of the model’s derivatives with respect to
state variables in a Jacobian section. It will then be used by the Lsodes integrator
instead of numerical differentiation, see Section 5.3 [Syntax of mod files], page 20.

• The standard C function fmax and fmin can be used in your models, see [Standard
functions], page 21.

In sim:

• The vector notation (see [Vectors], page 22) can now be used in input simulation files.

• If you use the GNU Scientific Library (libgsl), the very long-period “Mersenne
twister” random number generator is now used, see [Random Generator], page 27.
Otherwise the Park and Miller generator is used, as before.

• A new input function, PerTransit, is available to simulate delayed gut absorption, for
example (see [PerTransit], page 27).

• The Sundials library Cvodes integrator https://computation.llnl.gov/projects/
sundials can be called in a Integrate specification, see [Integrate() specification],
page 41.

• Specifications for tempered MCMC simulations have been extended to include ther-
modynamic integration and allow infinite temperature (i.e., perk 0), see [Tempered
MCMC], page 44.

• Two new distributions, Normal_cv and TruncNormal_cv, can be used to draw nor-
mal random variates with specified mean and coefficient of variation, see [Normal cv],
page 49.

• Symbols (denoting previously defined variables) can be used to specify times and mag-
nitudes in Events (see [Events() specification], page 53).

• The Prediction() specification can be used as a synonym for Print(), see [Print()
specification], page 54.

https://computation.llnl.gov/projects/sundials
https://computation.llnl.gov/projects/sundials
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• Minor bugs were fixed (see the http://savannah.gnu.org/projects/mcsim reposi-
tory for details).

2.7 Major changes introduced with version 6.1.0

In sim:

• In the case of posterior tempered MCMC (simTypeFlag equal to 3) or thermodynamic
integration (simTypeFlag equal to 4), the inverse temperature (perk) scale is deter-
mined automatically (unless you specific your own scale). The scale optimization is
rather efficient and often reaches perk 0, which offers garanteed convergence with only
one chain and estimation of the target posterior’s normalization constant (hence Bayes
factors for model choice).

• UserSpecifiedLL can be used to specify an arbitrary data likelihood.

2.8 Major changes introduced with version 6.2.0

In mod:

• You can use C preprocessor directives (i.e., #include) in Inline() statements. That
you allows you, for example, to use GSL code in such statements or import large C
code sections in your models.

• The function NegativeBinomialRandom() is available to generate corresponding ran-
dom variates in your models.

In sim:

• GNUMCSim can now run Monte Carlo, SetPoints and MCMC simulations (monitoring
their convergence in real time) in parallel on multiprocessor architectures if a MPI
library (Open MPI or MPICH, for example) is installed.

• The negative binomial distribution is available for use in statistical models.

• The efficiency of the truncated normal and log-normal samplers has been improved by
using C. Robert 1995 algorithm (see [Bibliographic References], page 65).

• New options for the Cvodes integrator are available.

http://savannah.gnu.org/projects/mcsim
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3 Installation

3.1 System requirements

GNU MCSim is written in ANSI-standard C language. We are distributing the source
code and you should be able to compile it for any system, provided you have an ANSI C
compliant compiler.

Starting with version 5.0.0 GNU MCSim is using a few routines from the GNU Scientific
Library (libgsl). We recommend that you install version 1.5 (or higher) of the shared GSL
library, gslcblas library, and GSL include files on your system. Otherwise, some features (the
TruncInvGamma density, and the Mersenne twister random number generator, see [Random
Generator], page 27) will not be available (you’ll get a error message if you are trying to
use them.)

Version 5.4.0 and higher of GNU MCSim can take advantage of (libSBML) to read
SBML models. If you choose to install libSBML on your system, we recommend that you
use version 3.3.2 (or higher) of libSBML. LibSBML needs an XML parser library (either
Expat, Xerces, or libxml2). The Expat library has worked well for us under Linux.

Version 6.2.0 and higher of GNU MCSim can take advantage of (MPI), the message pass-
ing protocol, to parallelize Monte Carlo, Setpoints, or MCMC simulations on multiprocessor
architectures. You will need to have a MPI library installed on your system.

On any system we recommend the GNU gcc compiler (freeware). The automated instal-
lation script checks for the availability on your system of the tools needed for compilation
and proper running of the software. It should warn you of missing component and even-
tually adapt the installation to your needs (for example by installing the package locally if
you do not have superuser’s priviledges).

To run the graphical user interface XMCsim, you need a GNU/Linux or Unix system
with "XWindows", "Tcl/Tk" and "wish" installed.

3.2 Distribution

GNU MCSim source code is available on Internet through:

- http://savannah.gnu.org/projects/mcsim.

Packaged distributions are available at:

- http://ftp.gnu.org/gnu/mcsim,

- http://www.gnu.org/software/mcsim,

and mirror sites of the GNU project.

Three mailing lists are available for GNU MCSim users:

General info on GNU MCSim is broadcasted through:

- http://lists.gnu.org/archive/html/info-mcsim

You can subscribe to the info list by going to:

- http://lists.gnu.org/mailman/listinfo/info-mcsim.

You can request help from us, and from other GNU MCSim users, by sending email to:

- help-mcsim@gnu.org

http://savannah.gnu.org/projects/mcsim
http://ftp.gnu.org/gnu/mcsim
http://www.gnu.org/software/mcsim
http://lists.gnu.org/archive/html/info-mcsim
http://lists.gnu.org/mailman/listinfo/info-mcsim
mailto:help-mcsim@gnu.org
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(see http://lists.gnu.org/mailman/listinfo/help-mcsim for subscribing).

Help archives are found at:

- http://news.gmane.org/gmane.comp.gnu.mcsim,

- http://lists.gnu.org/archive/html/help-mcsim.

You can report bugs to us, by sending email to:

- bug-mcsim@gnu.org

(http://lists.gnu.org/mailman/listinfo/bug-mcsim for subscribing).

Bugs archives are located at:

- http://news.gmane.org/gmane.comp.gnu.mcsim.bugs,

- http://lists.gnu.org/archive/html/bug-mcsim.

3.3 Machine-specific installation

3.3.1 Unix and GNU/Linux operating systems

To install on a Unix or GNU/Linux machine, download (in binary mode) the distributed
archive file to your machine. Place it in a directory where there is no existing mcsim

subdirectory that could be erased (make sure you check that). Decompress the archive with
GNU gunzip (gunzip <archive-name>.tar.gz). Untar the decompressed archive with tar
(tar xf <archive-name>.tar) (do man tar for further help). Move to the mcsim directory
just created and issue the following commands:

./configure

make

make check

The first command above checks for the availability of the tools needed for installation and
proper running of the software. The second compiles the mod program and the dynamic
libmcsim.so library and eventually compiles this manual in various formats. The third
checks whether the software is running and producing meaningful results in test cases.
In case of error messages, don’t panic: check the actual differences between the culprit
output file and the file sim.out produced by the checking. Small differences may occur
from different machine precision. This can happen for random numbers, in which case the
Markov chain simulations (MCMC) can diverge greatly after a while.

If you are logged in as "root" or have sufficient access rights, you can then install the
software in common directories in /usr by typing at the shell prompt:

make install

If this system-wide installation is successful the executable files mod, makemcsim, xmcsim are
installed in /usr/local/bin. The library libmcsim is placed in /usr/local/lib. A copy
of the mcsim source directory (with the mod, sim, doc, examples, and xmcsim subdirectories)
is placed in /usr/local/share. If you have the GNU info system available, an mcsim node
is added to the main info menu, so that info mcsim will show you this manual. Finally,
a symbolic link to /usr/local/share/mcsim/doc, which contains the documentation files
and this manual (if it was generated), is created as /usr/share/doc/mcsim.

If you do not have the necessary access rights and want to install GNU MCSim in a
directory such as /home/me, type:

http://lists.gnu.org/mailman/listinfo/help-mcsim
http://news.gmane.org/gmane.comp.gnu.mcsim
http://lists.gnu.org/archive/html/help-mcsim
mailto:bug-mcsim@gnu.org
http://lists.gnu.org/mailman/listinfo/bug-mcsim
http://news.gmane.org/gmane.comp.gnu.mcsim.bugs
http://lists.gnu.org/archive/html/bug-mcsim
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./configure prefix=/home/me

This will copy or move mod, makemcsim, and xmcsim in a /bin directory in the /home/me

directory, creating it if necessary. The library libmcsim.so will be moved to the
/home/me/lib directory, etc.

If MPI is available on your system, parallelization of Monte Carlo runs will be enabled
by default. To force the configure script to ignore MPI, you should type:

./configure --with-mpi=no

See also the README and INSTALL text files located in the top directory of the distribution.

On certain platforms (Linux...), you will also need to do one of the following:
1) run ’ldconfig’ (see the man page if this is unfamiliar)
2) set the LD LIBRARY PATH (or equivalent) environment variable to contain the path
"/usr/local/lib" or whatever you set so that programs can find the libSBML library at
run-time.

3.3.2 Other operating systems

Under other operating systems (Windows, etc.) or if everything else fails you should be
able to both uncompress and untar the archive with widely distributed archiving tools.
Refer to the documentation of your C compiler to create an executable mod file from the
source code files (getopt.c, lex.c, lexerr.c, lexfn.c, mod.c, modd.c, modi.c, modiSBML.c,
modiSBML2.c, modo.c, strutil.c) provided in the mod directory. If you want to process
SBML models it is best to install the libSBML library first. You would then compile mod
with the HAVE LIBSBML flag defined (option -DHAVE_LIBSBML) and link with the library
(using the -lsbml directive). Place then the executable mod on your command path.

The sim directory contains all the source files (delays.c, getopt.c, lex.c, lexerr.c, lexfn.c,
list.c, lsodes1.c, lsodes2.c, matutil.c, matutilo.c, mh.c, modelu.c, optdsign.c, random.c,
sim.c, simi.c, siminit.c, simmonte.c, simo.c, strutil.c, yourcode.c) to create a dynamic li-
brary or a set of objects to link with the model.c files generated by mod after processing
your models. Compilation also requires reference to the config.h file sitting in the main
folder (one level above the sim directory). The -I.. option should make the compiler aware
of the correct location of config.h. Alternatively, config.h can be copied into the sim

directory to make the package complete (apart of model.c).

The final product should be an executable able to run your model. Linking with the
GNU Scientific Library (gsl) is recommended (but not mandatory. In that case, define the
HAVE_LIBGSL flag and link with the -lgsl and -lgslcblas (in that order).

You are now ready to use GNU MCSim. We recommend that you go through the next
section of this manual, which walks you through an example of model building and running.
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4 Working Through an Example

Several models and simulation specification files are provided with the package as examples
(they are in the examples directory. You can try any of them. The linear regression model
is particularly simple, but to be more complete we will try here a nonlinear implicit model,
specified through differential equations.

Pharmacokinetics models describe the transport and transformation of chemical com-
pounds in the body. These models often include nonlinear first-order differential equations.
The following example is taken from our own work on the kinetics of tetrachloroethylene
(a solvent) in the human body (Bois et al., 1996; Bois et al., 1990) (see [Bibliographic
References], page 65).

Go to the mcsim/examples/perc directory (installed either locally or by default in
usr/share under Unix or GNU/Linux). Open the file perc.model with any text editor
(e.g., emacs or vi under Unix). This file is an example of a model definition file. It is also
printed at in Appendix the end of this manual (see Section B.3 [perc.model], page 73). You
can use it as a template for your own model, but you should leave it unchanged for now. In
that file, the pound signs (#) indicate the start of comments. Notice that the file defines:

• state variables for the model (for which differentials are defined), for example:

States = {Q_fat, # Quantity of PERC in the fat (mg)

Q_wp, # ... in the well-perfused compartment (mg)

Q_pp, # ... in the poorly-perfused compartment (mg)

Q_liv, # ... in the liver (mg)

Q_exh, # ... exhaled (mg)

Q_met} # Quantity of metabolite formed (mg)

• output variables (obtainable at any time as analytical functions of the states, inputs
and parameters), for example:

Outputs = {C_liv, # mg/l in the liver

C_alv, # ... in the alveolar air

C_exh, # ... in the exhaled air

C_ven, # ... in the venous blood

Pct_metabolized, # % of the dose metabolized

C_exh_ug} # ug/l in the exhaled air

• input variables (independent of the others variables, and eventually varying with time),
for example:

Inputs = {C_inh, # Concentration inhaled (ppm)

Q_ing}; # Quantity ingested (mg)

• model parameters (independent of time), such as:

LeanBodyWt = 55; # lean body weight (kg)

• model initialization and parameters’ scaling (the parameters used in the dynamic equa-
tions can be made functions of other parameters: for example volumes can be computed
from masses and densities, etc.),

• system’s dynamics (differential or algebraic equations defining the model per se),

• equations to compute the output variables.



18 GNU MCSim User’s Manual

This model definition file as a simple syntax, easy to master. It needs to be turned
into a C program file before compilation and linking to the other routines (integration, file
management etc.) of GNU MCSim. You will use mod for that. First, quit the editor and
return to the operating system.

To start mod under Unix just type mod perc.model. After a few seconds, with no error
messages if the model definition is syntactically correct, mod announces that the model.c

file has been created. It should operate similarly under other operating systems.

The next step is to compile and link together the various C files that will constitute the
simulation program for your particular model. Note that each time you want to change
an equation in your model you will have to change the model definition file and repeat
the steps above. However, changing just parameter values or state initial values does not
require recompilation since that can be done through simulation specification files.

• Under Unix, the simplest is to use the makemcsim script. Just type makemcsim and
compilation will be done automatically (see Section 5.2 [Using makemcsim], page 20).
An executable mcsim.perc is created. You can rename it if you wish.

• Under other operating systems, you should use the command make or its equivalent to
compile and link together the model.c file created by mod and the other C files of the
sim directory (see Chapter 3 [Installation], page 13). That should create an application
(you should give it a name specific to the model you are developing, e.g., mcsim.perc).
Refer to your compiler manual for details on how to use your programming environment.
Your executable mcsim.perc program is now ready to perform simulations.

To start your GNU MCSim program just type mcsim.perc (if you gave it that name)
under Unix. After an introductory banner (telling in particular which model file the program
has been compiled with), you are prompted for an input file name: type in perc.lsodes.in

(see Section B.4 [perc.lsodes.in], page 78, to see this file in Appendix), then a space, and
then type in the output file name: perc.lsodes.out. After a few seconds or less (depending
on your machine) the program announces that it has finished and that the output file is
perc.lsodes.out. You can open the output file with any text editor or word processor,
you can edit it for input in graphic programs etc.

You can try the various demonstration models provided in the examples directory and
observe the output you obtain. You can then start programming you own models and doing
simulations. The next sections of this manual reference the syntax for model definition and
simulation specifications.
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5 Writing and Compiling Structural Models

The model generator, "mod", was created to facilitate structural model definition and
maintenance, while keeping short execution time through compilation. This chapter ex-
plains how to use mod, and how to code your models using a simplified syntax that mod can
translate in C (creating thereby a model.c file).

After compiling and linking of the newly created model.c file together with the other
C files of the mcsim/sim directory (or after linking with a dynamic library libmcsim.so),
an executable simulation program is created, specific of your particular model. These
preprocessing and compilation steps can be performed in Unix with a single shell command
makemcsim (in which case, the model.c is created only temporarily and erased after that).

Several examples of model simulation files are included in the mcsim/examples directory.
Some of them are reproduced in Appendix (see Appendix B [Examples], page 71).

5.1 Using mod to preprocess model description files

The mod program is a stand-alone facility. It takes a model description file in the "user-
friendly" format described below (see Section 5.3 [Syntax of mod files], page 20) and cre-
ates a C language file model.c which you will compile and link to produce the simulation
program. Mod allows the user to define equations for the model, assign default values to pa-
rameters or default initial values to model variables, and to initialize them using additional
algebraic equations. Mod lets the user create and modify models without having to maintain
C code. Under Unix or GNU/Linux, the command line syntax for the mod program is:

mod [input-file [output-file]]

where the brackets indicate that the input and output filenames are optional. If the input
filename is not specified, the program will prompt for both. If only the input filename is
specified, the output is written by default to the file model.c. Unless you feel like doing
some makefile programming, we recommend using this default since the makefile for GNU
MCSim assumes the C language model file to have this name. You have to have prepared a
text file containing a description of the model following the syntax described in the following
(see Section 5.3 [Syntax of mod files], page 20).

The following options are available:

• -h, -H gives a short online help.

• -R generate a C file of the format requested for use by the deSolve package of the R

software for statistical analysis; deSolve implements differential equations solvers with
interesting capabilities.

Most error messages given by mod are self-explanatory. Where appropriate, they also give
the line number in the model file where the error occurred. Beware, however, of cascades
of errors generated as a consequence of a first one; so don’t panic: start by fixing the first
one and rerun mod. Note that when using the -R option, care has to be taken to adopt the
deSolve code conventions (see the deSolve manual on R CRAN). If you get really stuck
you can send a message to the help mailing list (see Chapter 3 [Installation], page 13) or to
the authors of this manual.
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5.2 Using makemcsim to preprocess and compile model files

makemcsim is a Unix sh shell script that further facilitates preprocessing and compilation.
You run makemcsim by entering it at the command prompt:

makemcsim [model-file]

where the brackets indicate that the model filename is optional. If a model filename is not
specified, the first file having extension .model (by alphabetical order) is used. Makem-
csim calls mod if the model file has changed since last compilation, compiles the model.c

generated, links it to the shared libmcsim.so library to create an executable mcsim.<root-
model-name>. The extension root-model-name corresponds to your model filename (with-
out its last extension if it has one; i.e.,typically, without the .model extension). The
model.c file is deleted afterward; if you want to inspect it (for example, if you got error
messages from mod), run mod on your model definition file.

Three variants of makemcsim are also available:

• makemcsimp, which creates a parallelized standalone version to run with a MPI wrapper,
such as mpirun (no dynamic libmcsim.so library loaded).

• makemcsims, which creates a standalone version of your model (no dynamic
libmcsim.so library loaded, no parallelization).

• makemcsimd, which creates a non-parallelized standalone version with debugging sym-
bols included (so that you can use gdb, for example, to check what the code actually
does).

5.3 Syntax of the model description file

The model description file is a text (ASCII) file that consists of several sections, including
global declarations, dynamics specifications (with derivative calculations), model initializa-
tion ("scaling"), and output computations. Here is a template for such a file (for further
examples see Appendix B [Examples], page 71):

# Model description file (this is a comment)

<Declarations of global variables>

Initialize {

<Equations for initializing or scaling model parameters>

}

Dynamics {

<Equations for computing derivatives of the state variables>

}

Jacobian {

<Equation for the Jacobian of the state derivatives>

}

CalcOutputs {

<Equations for computing output variables>

}

End. # mandatory ending keyword
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Initialize, Dynamics, Jacobian and CalcOutputs are reserved keywords and, if
used, must appear as shown, followed by the curly braces which delimit each section (see
Section 5.3.7 [Model initialization], page 29; Section 5.3.8 [Dynamics section], page 30;
Section 5.3.10 [Output calculations], page 31). Please note that at least one of the sections
Dynamics or CalcOutputs should be defined, and that Dynamics must be used if the
model includes differential equations. Finally the model definition file must have the End

keyword at the beggining of a line, eventually preceeded by white spaces or tabs. Text
after the End keyword is ignored.

5.3.1 General syntax

The general syntax of the model description file is as follows:

• Comments begin with a pound sign (#) and continue to the end of the line.

• Blank lines are allowed and ignored.

• All commands can span several lines and are terminated by a semi-colon (;).

• Four types of variables are used: state variables, output variables, input variables, and
parameters (see Section 5.3.2 [Declarations of global variables], page 23). The name of
a variable should be a valid C identifier, starting with a letter or underscore (_) and
followed by any number of alpha-numeric characters or underscores, up to a maximum
of 80. Variable names are case sensitive. Note that the names IFN and IGS, in capital
letters, are reserved by the program and should not be used as a parameter or variable
name.

• Variable assignments have the following syntax:

<variable-name> ’=’ <constant-value-or-expression> ’;’

The equal sign is needed. The right-hand side expression can be a valid C mathematical
expression including numerical constants, already defined variables, standard ANSI C
mathematical functions ( acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor,
fmax, fmin, fmod, log, log10, pow, sin, sinh, sqrt, tan, tanh), and GNU MCSim’s
"special functions" (see Section 5.3.4 [Special functions], page 25) or "input functions"
(see Section 5.3.5 [Input functions], page 27). Special functions can take already defined
variables, constant numerical values or expressions as parameters. Input functions can
only be used on the right hand side of assignments to input variables.

Colon conditional assignments have the following syntax:

<variable-name> = (<test> ? <value-if-true> : <value-if-false>);

For example:

Adjusted_Param = (Input_Var > 0.0 ? Param * 1.1 : Param);

In this example, if ‘Input_Var’ is greater than 0, the parameter ‘Adjusted_Param’
is computed as the product of ‘Param’ by ‘1.1’; otherwise ‘Adjusted_Param’ is equal
to ‘Param’. Note that conditional assignments can be nested (i.e., <value-if-true> or
<value-if-false> can themselves be a conditional expression). The comparison operators
allowed are the equality operator ==, and non-equality operators !=, <, >, <>, <= and
>=.

More complex conditions can also be specified, but the Boolean AND, OR and NOT
operations have not yet been implemented. You can use:

((’A’*’B’)>0) for AND ((’A’+’B’)>0) for OR (’A’==0) for NOT
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• Vectors: You can use vectors (arrays) in your model code or simulation definition files
to simplify it.

Declaring vectors: To declare a state variable, an input, an output, or a parameter as
a vector, use the one of the two following syntaxes when you first define it:

<variable-name> ’[’ <integer> ’]’

<variable-name> ’[’ <integer> ’-’ <integer> ’]’

The variable name is immediately followed by an opening square bracket (’[’). The
array index bounds (which define the valid indices) can be given as (long) positive or
null integers separated by an hyphen (’-’) (spaces are allowed). In this case the second
integer must be higher the first. They are followed by a closing bracket (’]’). The
hyphen and second integer are optional. If only one bound (integer) is given, only the
component with corresponding index is declared. Both syntaxes can be mixed. For
example:

States = {y[0-9]};

alpha[0-2] = 1;

beta[0] = 1;

beta[1] = 2;

beta[2-4];

The previous lines define a state variable ‘y’ as a vector of length 10, with valid indices
ranging between 0 and 9, included. The parameter vector ‘alpha’ is defined with range
0 to 2, each component being initialized to value 1. For parameter ‘beta’, components
0, 1 and 2 to 4 are initialized separately (components 2 to 4 are initialized with default
value 0).

Accessing vectors’ components: After declaration, vector’s components can be accessed
individually using the square bracket syntax:

<variable-name> ’[’ <integer> ’]’

For example:

Outputs = {x[0-1]};

beta[0] = 0;

beta[1] = beta[0] + 1;

CalcOutputs {

x[0] = beta[0] * t;

x[1] = beta[1] * t;

}

In the above example, ‘beta[0]’, ‘beta[1]’, ‘x[0]’, and ‘x[1]’ are accessed individu-
ally. The variable ‘t’ refers to the implicit variable ’time’.

Vectorization of equations: The equations specifying the model, which consist in assign-
ments, can be vectorized in the Initialize, Dynamics and CalcOutputs sections (but
not in the global section) (see Section 5.3.2 [Declarations of global variables], page 23).
Vectorization allows you to specify an operation for an entire vector or parts of it. The
following syntax should be used:

<var-name>’[’<integer>’-’<integer>’]’ = <vectorized-expression>;

On the right-hand side, the vectorized expression should be a valid C mathematical
expression including numerical constants, already defined state, input, output, other



Chapter 5: Writing and Compiling Structural Models 23

(parameter) variables or vectors, and standard ANSI C mathematical functions or
special functions (see Section 5.3.4 [Special functions], page 25). Here also, input
functions (see Section 5.3.5 [Input functions], page 27) can only be used on the right
hand side of assignments to input variables. Vector indices on the right-hand side
can take the special form of "bracketed expressions". Bracketed expressions can be
composed of integers, the 4 basic arithmetic operators (’+’, ’-’, ’*’, ’/’), parentheses
and the index letter ’i’. The running index ’i’ points in turn to each component in the
range specified on the left-hand side (imagine that the range given on the left-hand side
corresponds to a ’for’ loop with index ’i’ running from the lower bound to the upper
bound). This is best understood by looking at some code. In the previous example,
the assignments to x[0] and x[1] obviously deserve vectorization. This is achieved by
the following statements:

CalcOutputs {

x[0-1] = beta[i] * t;

}

Here, the index ’i’ refers to the values 0 and 1. Here is another example:

Outputs{x[1-10]};

CalcOutputs {

x[1] = 0;

x[2-10] = x[i-1] + 1;

}

This is equivalent to:

Outputs{x[1-10]};

CalcOutputs {

x[1] = 0;

x[2] = x[1] + 1;

...

x[10] = x[9] + 1;

}

and will assign value 1 to ‘x[2]’, 2 to ‘x[3]’, etc. On the right-hand side, more com-
plicated bracketed expressions like ‘[(2*i-1)/(i+3)]’ can be used. Another, working,
example of vector use is given in the mcsim/examples/pde2 directory.

Alternative ’underscore’ (’ ’) syntax : Individual vector components can be declared
and used (everywhere in the model file) with the following syntax:

<variable-name>’_’<integer>

The integer indicates which component of the vector is referred to. For example ‘x_1’
is strictly equivalent to ‘x[1]’. Note!: No space are allowed between the variable name,
the underscore and the integer.

• The End keyword must used to indicate model termination.

5.3.2 Declarations of global variables

Commands not specified within the delimiting braces of another section are considered to
be global declarations. In the global section, you first declare the state, input, and output
variables. There should be at least one state or output variable in your model.
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• States are variables for which a first-order differential equation is defined in the
Dynamics section (see Section 5.3.8 [Dynamics section], page 30) (higher orders or
partial differential equations are not allowed).

• Inputs are variables independent of the others variables, and may change with time
(for example an exposure concentration to a chemical).

• Outputs are dependent model variables, obtainable at any time as analytical func-
tions of the states, inputs or parameters. They must receive assignments in either the
Dynamics or CalcOutputs sections. You should not assume that their past values are
accessible and correct: they have to be calculated in the same section where they are
used and before being used.

The format for declaring each of these variables is the same, and consists of the keyword
States, Inputs or Outputs followed by an equal sign and a list of the variable names
enclosed in curly braces as shown here:

States = {Qb_fat, # Benzene in the fat

Qb_bm, # ... in the bone marrow

Qb_liv}; # ... in the liver and others

Inputs = {Q_gav, # Gavage dose

C_inh}; # Inhalation concentration

Outputs = {Cb_exp, # Concentration in expired air

Cb_ven}; # ... in venous blood

After being defined, states, inputs and outputs can then be given initial values (con-
stants or expressions). Inputs can also be assigned input functions, described below (see
Section 5.3.5 [Input functions], page 27). Some examples of initialization are shown here:

Qb = 0.1; # Default initial value for state variable Qb

# Input variable assigned a periodic exponential input function

Q = PerExp(1, 60, 0, 1); # Magnitude of 1.0,

# period of 60 time units,

# T0 in period is 0,

# Rate constant is 1.0

If a state, input, or output variable is not explicitly given an initial value, that value will
be set to zero by default. Initial values are reset to their specified value by the simulation
program at the start of each Simulation (see [Simulation sections], page 52).

All the other variables are "parameters". Model parameters you want to be able to
change in simulation input files should be declared in the global section. For example:

Wind_speed; # (m/s) Local wind speed

Parameters are by default assigned a value of zero. To assign a different nominal values,
use the assignment rules given above. For example:

BodyWt = 65.0 + sqrt(15.0); # Weight of the subject (in kg)

All parameters and variables are computed in double precision floating-point format.
Initial values should not be such as to cause computation errors in the model equations;
this is likely to lead to crashing of the program (so, for example, do not assign a default
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value of zero to a parameter appearing alone in a denominator). Note that the order of
global declarations matters within the global section itself (i.e., parameters and variables
should be defined and initialized before being used in assignments of others), but not with
respect to other blocks. A parameter defined at the end of the description file can be used
in the Dynamics section which may appear at the beginning of the file. Still, such an inverse
order should be avoided. For this reason, the format above, where global declarations come
first, is strongly suggested to avoid confusing results. Note again that the name IFN, in
capital letters, is reserved by the program and should not be used as parameter or variable
name. Finally, if a parameter is defined several times, only the first definition is taken into
account (a warning is issued, beware of it).

5.3.3 Model types

This section deals with structural models. Statistical models that you setup for model
calibration and data analysis are defined in the simulation input files, through statistical
distribution functions. They are dealt with later in this manual (see Section 6.2.5 [Setting-
up statistical models], page 55).

GNU MCSim can easily deal with purely algebraic structural models. You do not need
to define state variables or a Dynamics section for such models. Simply use input and output
variables and parameters and specify the model in the CalcOutputs section. You can use
the time variable t if that is natural for your model. If your model does not use t, you
will still need to specify "output times" in Print() or PrintStep() statements to obtain
outputs: you can use arbitrary times. If you do not use t as "independent" model variable,
you will also need do define a Simulation section (see [Simulation sections], page 52) for
each combination of values for the independent variables of your model. This may be clumsy
if many values are to be used. In that case, you may want to use the variable t to represent
something else than time.

Ordinary differential models, with algebraic components, can be easily setup with GNU
MCSim. Use state variables and specify a Dynamics section. Time, t is the integration
variable, but here again, t can be used to represent anything you want. For partial differen-
tial equations some problems might be solved by implementing line methods (see examples
in mcsim/examples/pde1 and mcsim/examples/pde2)...

You can use GNU MCSim for discrete-time dynamic models (or difference models). That
is a bit tricky. Assignments in the CalcOutputs section are volatile (not memorized), so the
model equations have to be given in a Dynamics section. But the model variables should
still be declared as outputs, because they should not be updated by integration. However,
you need at least one true differential equation in the Dynamics section, so you should
declare a dummy state variable (and assign to its derivative a constant value of zero). You
also want the calls to Dynamics to be precisely scheduled, so it is best to use the Euler

integration routine (see [Integrate() specification], page 41) which uses a constant step.
Since Euler may call repeatedly Dynamics at any given time, you want to guard against
untimely updating... Altogether, we recommend that you examine the example files in the
mcsim/examples/discrete directory provided with the source code for GNU MCSim.

5.3.4 Special functions

The following special functions (whose name is case-sensitive) are available to the user for
assignment of parameters and variables in the model definition file:
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• BetaRandom(alpha, beta, a, b): returns a Beta distributed variate on the interval
[a,b] with shape parameters alpha and beta;

• BinomialBetaRandom(E, alpha, beta): return random variate, of mathematical ex-
pectation E, drawn from a binomial distribution with probability p, p being Beta
distributed with parameters alpha and beta;

• BinomialRandom(p, N): returns a binomially distributed random variate;

• CauchyRandom(s): returns a Cauchy distributed random variate with scale s;

• CDFNormal(x): the normal cumulative density function;

• Chi2Random(dof): returns a Chi-squared random variate with dof degrees of freedom;

• erfc(x): the complementary error function;

• ExpRandom(beta): returns an exponential variate with inverse scale beta;

• GammaRandom(alpha): returns a gamma distributed random variate with shape pa-
rameter alpha and inverse scale equal to 1;

• GetSeed(): returns the current value of the random generator seed (this function is
not available if the GNU Scientific Library is used; if called in that case, it exits with
an error message);

• GGammaRandom(alpha, beta): returns a gamma distributed random variate with shape
parameter alpha and inverse scale beta;

• InvGGammaRandom(alpha, beta): returns an inverse gamma distributed random vari-
ate with shape parameter alpha and scale parameter beta;

• lnDFNormal(x, mean, sd): the natural logarithm of the normal density function;

• lnGamma(x): the natural logarithm of the gamma function;

• LogNormalRandom(mean, sd): returns a lognormally distributed variate with geomet-
ric mean mean and geometric standard deviation sd (i.e., the log of the returned variate
is normally distributed with mean ln(mean) standard deviation ln(sd);

• LogUniformRandom(a, b): returns variate log-uniformly distributed on the interval
[a,b];

• NegativeBinomialRandom(r, p): returns a negative binomial random variable with
prescribed number of failures, r, until trials are stopped, and probability of failure, p,
for each trial The probability mass function of this distribution for the number $k$ of
successes is equal to:

C(k + r − 1, k)pr(1− p)k

where C() is the binomial coefficient;

• NormalRandom(mean, sd): returns a normally distributed random variable with pre-
scribed mean and standard deviation;

• PiecewiseRandom(min, a, b, max): the distribution of the returned variate has the
form of a truncated triangle, with base from min to max and a plateau between a and
b. If a = b, the distribution is the triangular distribution;

• PoissonRandom(mu): returns a Poisson-distributed random variate, of rate mu;

• SetSeed(seed): sets the current value of the pseudo-random generator seed to the
specified seed. When using the GNU Scientific Library, that seed can be any positive
integer (including zero). When using the native code, it can be any positive real number
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(seeds between 1.0 and 2147483646.0 are used as is, the others are rescaled within those
bounds, and a warning is issued);

• StudentTRandom(dof, mean, sd): returns a Student t distributed random variate with
dof degrees of freedom and given mean and standard deviation;

• TruncInvGGammaRandom(alpha, beta, a, b): returns a truncated inverse gamma dis-
tributed random variate with shape parameter alpha and scale beta, in the range [a,b].
Explicit specification of a,b is required;

• TruncLogNormalRandom(mean, sd, a, b): returns a truncated lognormal variate with
geometric mean mean and geometric standard deviation sd, in the range [a,b]. Explicit
specification of a,b is required;

• TruncNormalRandom(mean, sd, a, b): returns a truncated normal variate with pre-
scribed mean and standard deviation, in the range [a,b]. Explicit specification of a,b
is required;

• UniformRandom(min, max): returns a uniformly distributed random variable, sampled
between min and max.

Note: If you have linked Graph Sampler with GNU Scientific Library (gls), all the above
random number generating functions use an extremely long period random number gener-
ator: the Mersenne twister generator (gsl rng mt19937). Otherwise, the random generator
used is that of Park and Miller (Barry, 1996; Park and Miller, 1988; Vattulainen et al., 1994)
(see [Bibliographic References], page 65). When using the GNU Scientific Library, the de-
fault random generator seed value is 0. When using the native code, it is 314159265.3589793.
Those default values can be overridden with the function SetSeed.

Note also that assignment of a random number generating function to a state variable
derivative will define a form of stochastic differential equation. GNU MCSim’s integration
routines are not particularly suited to the resolution of such equations. If you wish to try
it anyway, you may want to consider using the "robust" Euler method (see [Integrate()
specification], page 41).

5.3.5 Input functions

These functions can be used in special assignments, valid only for input variables. Inputs
can be initialized to a constant or to a standard mathematical expression, or assigned one
of the following input functions:

• PerDose() specifies a periodic input of constant <magnitude>. The input begins exactly
at <initial-time> in the <period> and lasts for <exposure-time> time units. Syntax:

<input variable> = PerDose(<magnitude>, <period>, <initial-time>,

<exposure-time>);

• PerExp() specifies a periodic exponential input. At time <initial-time> in the <period>
the input rises instantaneously to <magnitude> and begins to decay exponentially with
the constant <decay-constant>. Note that the input does not accumulate across periods,
it resets at each period start. Syntax:

<input variable> = PerExp(<magnitude>, <period>, <initial-time>,

<decay-constant>);

• PerTransit() models a delayed input mechanism in which a substance has to go
through a chain of (linear) transfer compartments before being actually input (see Savic



28 GNU MCSim User’s Manual

et al., 2007) (see [Bibliographic References], page 65). The actual input is computed
as:

(Ktrt)
n

n!
e−Ktrt

where Ktr is the transit rate constant from compartment to compartment, and n is
the number of “apparent” transit compartments (a positive real number). Factorial n
is computed using Stirling’s formula. This is a popular absorption model in pharma-
cokinetics, where the number of n and the transfer rate constant are estimated from
data.

The function PerTransit() has 5 arguments: a <magnitude>; a <period> (for mul-
tiple dosing) at the beginning of which input is reset. Note that the input does not
accumulate across periods, it resets at each period start; an <initial-time-in-period> in
<period> at which dosing actually starts; a <transfer-rate-constant>, as defined above;
a <number-of-input-compartments>. Its syntax is:

<input variable> = PerTransit(<magnitude>, <period>,

<initial-time-in-period>,

<transfer-rate-constant>,

<number-of-input-compartments>);

An demonstration of its use is given in mcsim/examples/test_transit_input.

• NDoses() specifies a number of stepwise inputs of variable magnitude and their starting
times. The first argument, <n>, is the number of input steps and start times. Next
come a list of magnitudes and a list of corresponding initial times. Each list is comma-
separated. The duration of each input step is computed automatically by difference
between the listed times. Currently this function can only be used in the simulation
description file, and not in the model description file (which simply implies that you
cannot use it as a default). Syntax:

<input variable> = NDoses(<n>, <list-of-magnitudes>,

<list-of-initial-times>);

Instead of lists of magnitudes and times, you can use vectors specifying them, as in:

My_input = NDoses(10, My_magnitudes[1-10], My_initial_times[1-10]);

Note that the list or vector of times must begin at the starting time of the simulation
(typically time zero), even if the magnitude at that first time is zero.

• Spikes() specifies a number of instantaneous inputs of variable magnitude and their
exact times of occurrence. However, a spike occuring exactly at the final simulation
time will be ignored (see below the Note on discontinuity). The first argument, <n>,
is the number of inputs and input times. Next come a list of magnitudes and a list of
times. Each list is comma-separated. Currently this function can only be used in the
simulation description file, and not in the model description file (which simply implies
that you cannot use it as a default). Syntax:

<input variable> = Spikes(<n>, <list-of-magnitudes>,

<list-of-times>);

The arguments of input functions can either be constants or variables. For example, if
‘Mag’ and ‘RateConst’ are defined model parameters, then the input variable ‘Q_in’ can be
defined as:
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Q_in = PerExp(Mag, 60, 0, RateConst);

In this way the parameters of input functions can, for example, be assigned statistical
distributions in Monte Carlo simulations (see [Distrib() specification], page 48). Variable
dependencies are resolved before each simulation specified by a Simulation section (equiv-
alently Experiment) (see [Simulation sections], page 52).

For each of the periodic functions, a single exposure beginning at time initial-time can
be specified by giving an effectively infinite period, e.g. 1010. The first period starts at the
initial time of the simulation.

Note on discontinuities: Magnitudes change exactly at the times given. At a disconti-
nuity, the time point belongs to the NEW time period UNLESS we are at the final time.

Input variables assigned input functions can be combined to give a lot of flexibility
(e.g., an input variable can be declared as the sum of others). Separate inputs can also be
declared in the global section of the model definition file and combined in the Dynamics (see
Section 5.3.8 [Dynamics section], page 30) and CalcOutputs (see Section 5.3.10 [Output
calculations], page 31) sections.

5.3.6 In line functions

Inline() functions can be placed in the various sections of a model file to introduce stan-
dard C code (or whatever) in your models. Text placed between the parentheses of an
Inline function will be passed as is to the C compiler. That text can span several lines
but its size should not exceed MAX EQN (defined in lex.h); In case it does, you can in-
crease MAX EQN (and recompile mod...) or you can split you text between any number
of Inline() in a row. It is your responsibility to make sure that the code passed can be
compiled without errors!

Example:

Inline( printf("hello/n"); );

You can use C compiler (in fact preprocessor) directives, such #include directives, inside
Inline statements, provided that you use the \# escape sequence instead of simply the #

character (otherwise it is confused with a GNU MCSim comment and Hell breaks loose).

Example:

Inline( \#include <gsl/gsl_interp.h> );

This can be useful to include large amounts of C code. Note also that the inlined code
is likely to be dependent on whether or not you are using the -R option of mod.

5.3.7 Model initialization

The model initialization section begins with the keyword Initialize (the keyword Scale is
obsolete but is still understood) and is enclosed in curly braces. The equations given in this
section will define a function (subroutine) that will be called by GNU MCSim after the as-
signments specified in each Simulation section are done (see [Simulation sections], page 52).
They are the last initializations performed. The model file in mcsim/examples/perc gives
an example of the use of Initialize (see Section B.3 [perc.model], page 73, in Appendix).

All model variables and parameters, except inputs, can be changed in this section. Mod-
ifications to state variables affect initial values only. In this section, state variables, outputs
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and parameters (but not input variables) can also appear at the the right-hand side of
equations. The integration variable can be accessed if referred to as t

Warning: Assignments to state variables in the Initialize section override the same
assignments made in input files.

Additional parameters (to those declared in the global section) may be used within the
section. They will be declared as local temporary variables and their scope will be limited to
the Initialize section (i.e., their value and existence will be forgotten outside the section).

The dt() operator (see Section 5.3.8 [Dynamics section], page 30) cannot be used in this
section, since derivatives have not yet been computed when the scaling function is called.

5.3.8 Dynamics section

The dynamics specification section begins with the keyword Dynamics and is enclosed in
curly braces. The equations given in this section will be called by the integration routines at
each integration step. Dynamics must be used if the model includes differential equations.

Additional parameters (to those declared in the global section) may be used for any
calculations within the section. They will be declared as local temporary variables. (Note,
for example, the use of ‘Cout_fat’ and ‘Cout_wp’ in the perc.model example file). Local
variables are not accessible from the simulation program, or from other sections of the model
definition file, so don’t try to output them.

Each state variable declared in the global section must have one corresponding differential
equation in the Dynamics section. If a differential equation is missing, mod issues an error
message such as:

Error: State variable ’Q_foo’ has no dynamics.

and no model.c file or executable program will be created.

The derivative of a state variable is defined using the dt() operator, as shown here:

dt(state-variable) ’=’ constant-value-or-expression ’;’

The right-hand side can be any valid C expression, including standard math library calls
and the special functions mentioned above (see Section 5.3.4 [Special functions], page 25).
Note that no syntactic check is performed on the library function calls. Their correctness
is your responsibility.

The dt() operator can also be used in the right-hand side of equations in the dynamics
section to refer to the value of a derivative at that point in the calculations. For example:

dt(Qm_in) = Qmetabolized - dt(Qm_out);

The integration variable (e.g., time) can be accessed if referred to as t, as in:

dt(Qm_in) = Qmetabolized - t;

Output variables can also be made a function of t in the Dynamics section.

Note that while state variables, input variables and model parameters can be used on
the right-hand side of equations, they cannot be assigned values in the Dynamics section. If
you need a parameter to change with time, you can declare it as an output variable in the
global section. Assignments to states, inputs or parameters in this section causes an error
message like the following to be issued:

Error: line 48: ’YourParm’ used in invalid context.

Parameters cannot be defined in Dynamics{} section.
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Note also that, in Dynamics, output variables should be assigned a value or equation
before being used. You cannot assume that the value computed during a previous call to the
function is valid, because the integrator may have taken too long a time step, for example.
The integrator keeps track of state variables only.

5.3.9 Delay differential equations

GNU MCSim can solve delay differential equations.

Delay differential equations are equations that depend on past values of the state vari-
ables, say at time t-tau instead of at time t.

This is done very easily in GNU MCSim models with the CalcDelay funtion. Its syntax
is:

CalcDelay (<variable>, <delay>);

The variable must be a declared state or output variable. CalcDelay() will return its
past value (at time delay). The delay specified must be either a declared parameter or a
constant floating point or integer value. For example:

tau = 100;

dt (Q1) = k * CalcDelay(Q3, tau);

dt (Q2) = k * CalcDelay(Q3, 10);

An example of a model using CalcDelay() and input file is given in the example/delay_
diff_eqns folder. Note that currently, the CalcDelay() function cannot be used with the
-R option for mod (i.e., for use with the deSolve R package).

GNU MCSIm stores required variables past values in a arrays of size MAX DELAY
(equal by default to 1000). If the needed past recall exceeds that capacity you will need to
increase the value of MAX DELAY in the C file delays.c and recompile the library and
your model.

5.3.10 Output calculations

The output calculation section begins with the keyword CalcOutputs and is enclosed in
curly braces. The equations given in this section will be called by the simulation pro-
gram at each output time specified by a Print() or PrintStep() statement (see [Print()
specification], page 54, and see [PrintStep() specification], page 54). In this way, output
computations are done efficiently, only when values are to be saved.

Only variables that have been declared with the keyword Outputs, or local temporary
variables, can receive assignments in this section. As in the Dynamics section, output
variables should be assigned a value or equation before being used. Assignments to other
types of variables cause an error message like the following to be issued:

Error: line 56: ’Qb_fat’ used in invalid context.

Only output and local variables can be defined in CalcOutputs section.

Any reference to an input or state variable will use the current value (at the time of
output). Note that CalcOutputs code is called only on the correct state trajectory, but
you cannot reuse past values of outputs in your code, for example forming cumulative sums
such as:

a = a + b;
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The dt() operator can appear in the right-hand side of equations, and refers to cur-
rent values of the derivatives (see Section 5.3.8 [Dynamics section], page 30). Like in the
Dynamics section, the integration variable can be accessed if referred to as t, as in:

Qx_out = DQx * t;

5.3.11 Comments on style

For your model file to be readable and understandable, it is useful to use a consistent
notation style. The example file perc.model tries to follow such a style (see Section B.3
[perc.model], page 73). For example we suggest that:

• All variable names begin with a capital letter followed by meaningful lower case sub-
scripts.

• Where two subscripts are necessary, they can be separated by an underscore, such as
in ‘Qb_fat’.

• Where there is only one subscript an underscore can still be used to increase readability
as in ‘Q_fat’.

• Where two words are used in combination to name one item, they can be separated
visually by capitalizing each word, as in ‘BodyWt’.

These conventions are suggestions only. The key to have a consistent notation that
makes sense to you. Consistency is one of the best ways to:

1. Increase readability, both for others and for yourself. If you have to suspend work for a
month or two and then come back to it, the last thing you want is to have to decipher
your own file.

2. Decrease the likelihood of mistakes. If all of the equations are coded with a consistent,
logical convention, mistakes stand out more readily.

Last, but not least, do use comments to annotate your code! Also: make sure your
comments are accurate and update them when you change your code. In our experience,
an enormous number of hours has been wasted in trying to figure out inconsistencies that
existed only because of inaccurate comments (e.g., erroneous comments about the reasons
for choice of default parameter values). That does not decrease the value of good comments,
however...

5.4 Reading SBML models and applying a template

To read models written in SBML, you simply need to create a text file of the same for-
mat as an MCsim model definition file (comments starting with #, file ending with End,
etc.) In that file, you specify a list of one or more SBML model files with the keyword
SBMLModels followed by an equal sign and a list of SBML model file names (of maximum
size MAX FILENAMESIZE, 80 characters, as defined in mod.h), enclosed in curly braces,
as shown here:

#---------------------------------------------------------

# SBML_List.in

# Use it as "mod SBML_List.in"

#---------------------------------------------------------
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SBMLModels = {useID, "default", "C_central.xml", "C_periph.xml"};

End.

The first two tokens, useID and "default", at the very beginning of the list, are optional
(but if the appear they must both appear). The first indicates that species are recognized
by "IDs" (at the moment this the only possibility, hardly an option indeed, but in the future
we would like to be able also to use Names"). The second one gives the name of the default
(external) compartment in your SBML files. Here the default is named "default", which
works for CellDesigner, but JDesigner, for example, uses "compartment"... The list of files
comes after, with the filenames being enclosed with double quotes. There is no restriction
about their extension (".xml" is just an example). They just have to be valid filenames.

Give that file as input to mod, by typing in mod SBML_List.in on your shell com-
mand line. A model.c file is produced, suitable for further compilation by makemcsim.
SBML model files are typically ASCII text files with a xml extension (for examples see
mcsim/sim/examples/SBML). SBML Level 1 and Level 2 are recognized (but some features
of Level 2 are not yet understood by mod, such as functionDefinition, unit, rateRule
and a few others.) Omitted reaction stoichiometries are set to value 1 by default. Com-
partments are ignored unless a model template for circulating species is given (see below).

If two or more of the SBML files define a same chemical species, mod merges the models:
namely, the rate equation for that species will be the sum of the rate equations implied by
each model. In fact, mod constructs the rate equations from the reaction descriptions given
by the SBML format. State variables and parameters keep the same name after merging,
so they should be unique from the start to each SBML model, to avoid confusion.

To automatically extend SBML (level 2) models (e.g., with transport component terms,
an example which will be used throughout this part of the manual), a template model can
be applied to all the species defined in SBML which are placed in the default compartment
(conventionally called compartment), and outside of other compartments whose names are
specified by the template itself. Specifically: the template model should define compart-
ments and differential equations terms for the transport of an unspecified species between
those compartments (the syntax for that will be described below). For each species placed
in SBML outside one of the defined compartments, a differential equations is created for
each compartment using the template transport terms. The differentials for the compart-
ments found in both the template and the SBML models will contain both transport and
kinetic terms. With the exception of the generic compartment, the SBML models merged
can only use the compartments defined by the template (compartment name recognition is
case-sensitive). Species placed in SBML inside one of the defined compartments are not
transported and stay local to that compartment. Their differentials will contain only the
reaction kinetics terms defined by the SBML models. For simplicity, the default initial
values of the model state variables (species) specified by the user are ignored and set to
zero.

Warning: At the moment, libSBML does not guarantee the type of operands or their
format for a division. While 5.4/2.3 will appear correctly as a float division, 5.0/2.0 is
likely to be translated in 5/2 which is an integer division in C! It is probably best to use
the multiplication by the inverse in that case, but that forces you to check SBML models
manually for all divisions...
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There might be many applications of the template mechanism, and they are left to the
reader to imagine.

The template model to use is specified with PKTemplate keyword, followed by an equal
sign and the file name of a template model file (of maximum size MAX FILENAMESIZE,
80 characters, as defined in mod.h), enclosed in curly braces, like in:

#---------------------------------------------------------

# SBML_List.in

# Use it as "mod SBML_List.in"

#---------------------------------------------------------

PKTemplate = {"input_f/2cpt_PBPK.model"};

SBMLModels = {"C_central.xml", "C_periph.xml"};

End.

The template structure is similar to that of other GNU MCSim models, with two excep-
tions: First, the variables and parameters which are supposed to apply to several chemical
species defined in SBML are preceeded with an underscore (_). Second, the compartments
allowed in SBML and for which the template is defined are declared using the keyword
Compartment, followed by an equal sign and a list of the compartment names enclosed in
curly braces. Here is an example of template file:

#---------------------------------------------------------

# Template for pharmacokinetic modeling

#---------------------------------------------------------

States = {_central, _periph};

Inputs = {_Dose_rate};

Outputs = {_Q_total};

Compartments = {central, peripheral};

# Species-dependent parameters

_PC = 2;

_K_urine;

# Species-independent parameters

V_central;

V_periph;

Initialize { _K_urine = _K_urine * 2; }

Dynamics {

_Q_rate_c_p = 5 * (_central - _periph / _PC);

# Central compartment quantity

_pk_central = (_Dose_rate - _Q_rate_c_p -

_K_urine * _central) / V_central;
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dt(_central) = _pk_central;

# Peripheral compartment quantity

_pk_periph = _Q_rate_c_p / V_periph;

dt(_periph) = _pk_periph;

}

CalcOutputs { _Q_total = _central / V_central + _periph / V_periph; }

End.

With that template, each species, say S1, defined in SBML to be outside of the central
or peripheral compartments will be cloned to form the state variables S1 central and
S1 peripheral. Those will have associated differential equations using specific parameters
S1 PC or unspecific ones like V central. The chemical reactions defined in SBML to take
place inside the central or peripheral compartments will be translated into specific terms
added to the dt(_central) and dt(_periph) equations.

Warning: the automatic creation of a model by merging SBML files with a template
may shuffle the order of the differential equation declarations. Therefore you should not use
an already defined dt() term in a subsequent differential equation in the template model.

5.5 Working with the R package deSolve

GNU MCSim mod model generator can be passed the -R option. For example:

mod -R perc.model

In that case, the C code produced can be used by the deSolve package of the R statis-
tical software (see http://www.r-project.org/) to perform simulations of your models. The
numerical integators provided by deSolve are improved implementations of the lsode family
of integrators used by GNU MCSim), and deSolve provides a few more options than GNU
MCSim (see the deSolve user manuals). However, if you need raw speed (say, for Markov
chain Monte Carlo simulations) GNU MCSim is probably the fastest option.

In addition to producing a model.c file in C language, mod called with the -R option also
generates model_inits.R file. That file can be loaded in R and provides the R two functions
initParms, initStates and the variable Outputs, which can be handy in R scripts:

• initParms() without parameters reset the model parameters to their default values.
The newparms parameter takes a vector of named parameters and values, assign the
given values to the corresponding model parameters and reset the others to their default
values.

• initStates() with just the parms parameter reset the model initial states to their
default values. If the newparms parameter is used it takes a vector of named states
and values, assign the given values as initial values to the corresponding model state
variables and reset the others to their default values.

• Outputs is simply an array of output variable names.

An example of R script using GNU MCsim to generate and run a model is given in the
example/R folder.
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6 Running Simulations

After having your model processed by mod or makemcsim, and obtained an executable mcsim_
... file, you are ready to run simulations. For this you need to write simulation files. This
chapter explains how to write such files with the proper syntax and how to run the executable
program.

You may want to first give a look at the examples given in the mcsim/examples di-
rectory. An example file perc.lsodes.in, which works with the perchloroethylene model
perc.model, is also given in an Appendix to this manual (see Section B.4 [perc.lsodes.in],
page 78).

6.1 Using the compiled program

GNU MCSim provides several types of simulations for the models you create. Simulations
are specified in a text file of format similar to that of the model description file.

Assume that your model a.model has been preprocessed and compiled by makemcsim

(see Section 5.2 [Using makemcsim], page 20) to generate an executable mcsim_a (if you
have renamed the executable file, substitute mcsim_my by the name of your executable in
the following). In Unix the command-line syntax to run that executable is simply:

mcsim_a [run-time options] [input-file [output-file]]

where the brackets indicate optional arguments. If no input and output file names are
specified, the program will prompt you for them. You must provide an input file name.
That file should describe the simulations to perform and specify which outputs should be
printed out (see Section 6.2 [Syntax of simulation files], page 38). If you just hit the return
key when prompted for the output name, the program will use the name you have specified
in the input file, if any, or a default name (see [OutputFile() specification], page 41). If just
one file name is given on the command-line, the program will assume that it specifies the
input file. For the output filename, the program will then use the name you have specified
in the input file, if any, or a default name.

The following run-time options are available:

• -c displays the Gelman-Rubin’s MCMC convergence diagnostic as simulated chains
progress in parallel on different processors (if MPI is used).

• -D=print-hierarchy or -D print-hierarchy prints out the details of a multilevel
statistical model for debugging (see [Level sections], page 57).

• -h or -H display a short help on the program use.

• -i=<arg> or -i <arg>, where arg is an integer, prints out the number of simulations
done, every <arg> iteration.

Note on parallelized code: If your model has been preprocessed and compiled
by makemcsimp (see Section 5.2 [Using makemcsim], page 20) to generate a
parallelization-enabled executable mcsim_a, you should run it with a specific wrapper like
mpirun:

mpirun -np 50 mcsim_a [run-time options] [input-file [output-file]]

The particular wrapper to use depends on the MPI library installed on your system. In the
case of Open MP mpirun, the number of processors to use is specified by the -np option
(50 processors in the example above).
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When the program starts, it announces which model description file was used to create
it. While the input file is read or while simulations are running, some informations will be
printed on your computer screen. They can help you check that the input file is correctly
interpreted and that the program runs as it should. GNU MCSim can also post error
messages, which should be self-explanatory. Where appropriate, they show the line number
in the input file where the error occurred. Beware, however, of cascades of errors generated
as a consequence of a first one; also errors may be detected after the line in which they really
occur and the line number shown will be unhelpful; don’t panic: start by fixing the first
error in the input file and rerun your executable. You should not need to recompile your
executable, unless you have changed the model itself. If you get really stuck you can send
a message to the mailing list "help-mcsim@prep.ai.mit.edu" (see Chapter 3 [Installation],
page 13) or to the authors of this manual.

The program ends (if everything is fine) by giving you the name of the output file
generated. If you want to run the program in batch mode (in the background), you may
want to redirect the screen output and error messages; refer for this to the man pages for
your shell.

6.2 Syntax of the simulation definition file

A simulation specification file is a text (ASCII) file that consists of several sections, starting
with global specifications and assignments (valid throughout the file), followed by a number
of Simulation sections (see [Simulation sections], page 52), eventually enclosed in Level

sections. (The keyword Experiment is now obsolete but can still be used as a synonym for
Simulation.)

It is important to note that all simulations are fundamentally dynamic, and that time
is the explicit independent variable. There can be time-discontuities in your simulations
if a input changes instantaneously (see Section 5.3.5 [Input functions], page 27). At a
discontinuity, the time point belongs to the new time period unless we are at the final time.
Current simulation time can be accessed in your model using variable t. It is possible to
ignore time and write models which do not consider it, but inputs and outputs of such
models will still refer to time. For example, you are required to specify at least one output
time to print results from your model, even though time is inconsequent. In that case you
can use an arbitrary time or sets of times.

Each Simulation section defines simulation conditions, from an initial time (or whatever
the dependent variable represents, see Section 5.3.3 [Model types], page 25) to a final time.
Initial values of the model state variables, parameter values, input variables time-course, and
which outputs are to be printed at which times, can all be changed in a given Simulation

section.

In simple cases, the general layout of the file is therefore (see also the example file in
Section B.4 [perc.lsodes.in], page 78):
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# Input file (text after # are comments)

<Global assignments and specifications>

Simulation {

<Specifications for first simulation>

}

Simulation {

<Specifications for second simulation>

}

# Unlimited number of simulation specifications

End. # Mandatory End keyword. Everything after this line is ignored

For Markov chain Monte Carlo simulations (see [MCMC() specification], page 43), the
general layout of the file must include Level sections. Level sections are used to define
a hierarchy of statistical dependencies (see Section 6.2.5 [Setting-up statistical models],
page 55). In that case, the general layout of the file is:

# Input file

<Global assignments and specifications>

Level {

# Up to 10 levels of hierarchy

Simulation {

<Specifications and data for first simulation>

}

Simulation {

<Specifications and data for second simulation>

}

# Unlimited number of simulation specifications

} # end Level

End. # Mandatory keyword.

6.2.1 General input file syntax

The general syntax of the file is the same as that of structural model definition files (see
Section 5.3.1 [General syntax], page 21) except that:

• No new variable can be created (all variables must have been defined in the model defi-
nition file). Assignments can only modify the value of already defined model variables.
This implies that parameters needed to set up a statistical model must be declared in
the model definition file, even if the structural model does not use them.

• Assignments to state variables or parameters can only use constant numerical values;
mathematical expressions are not allowed.

• Input variables’ assignments can use any input function (including the NDoses() and
Spikes() functions), an Events() specification (see [Events() specification], page 53)
or a constant numerical values.

• Output variables cannot receive assignments.
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Note that vectors (see [Vectors], page 22) can be used, as in:

Simulation {

y[1-10] = 1.00;

PrintStep (y[1-5], 0, 10, 0.5);

Print (y[6-10], 0, 5, 10);

}

At the program start, all model parameters are initialized to the nominal values specified
in the model description file. Next, after the input file is read, modifications given in its
global section (including random sampling) are applied, then those specified at each Level,
and finally any modifications specified by the Simulation sections. Computations specified
in the Initialize section of the model definition file are the last initialization statements
executed.

Structural changes to the model (e.g., addition of a state, input, output or parameter)
cannot be done here and must be done in the model description file. The simulation
specification file is read until a mandatory End keyword is reached.

6.2.2 Input functions (revisited)

Input variables can be assigned all the input functions defined previously (see Section 5.3.5
[Input functions], page 27). Briefly, these are:

• PerDose():

PerDose(<magnitude>, <period>, <initial-time>, <exposure-time>);

• PerExp():

PerExp(<magnitude>, <period>, <initial-time>, <decay-constant>);

• PerTransit():

PerTransit(<magnitude>, <period>, <initial-time-in-period>,

<decay-constant>, <number-of-input-compartments>);

• NDoses():

NDoses(<n>, <list-of-magnitudes>, <list-of-initial-times>);

• Spikes():

Spikes(<n>, <list-of-magnitudes>, <list-of-times>);

In addition, they can be assigned a Events() specification (see [Events() specification],
page 53). Again, at a discontinuity, the time point belongs to the new time period unless
we are at the final time.

6.2.3 Global specifications

In the global section you can modify, by assignment, the value of already defined state or
input model variables or parameters (you cannot assign a value to an output variable).
These assignments will be in effect throughout the input file, unless they are overridden
later in the file. Here is an exemple of assignment (assuming that x and Pi have been
properly defined in the model definition file):

x = 10; # set the initial value if x is a state variable

Pi = 3; # to stop worrying about little decimals...
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In the global section, you can also give specifications relevant to all Simulation or
Level sections. These specifications are not needed if you just want to perform simple
simulations. They should also not appear inside Simulation or Level sections (with the
notable exception of Distrib() specifications which can appear inside Level sections).
They are used to call for and define the parameters of special computations (e.g., the
number of Monte Carlo simulations to run, which sampling distributions to use for a given
parameter, the data likelihood, etc.) These specifications are the following:

OutputFile() specification

The OutputFile() specification allows you to specify a name for the output file of basic
simulations. If this specification is not given the name sim.out is used if none has been
supplied on the command-line or during the initial dialog. The corresponding syntax is:

OutputFile("<OutputFilename>");

where the character string <OutputFilename>, enclosed in double quotes, should be a valid
file name for your operating system.

Integrate() specification

The integrator settings can be changed with the Integrate specification. Three inte-
gration routines can be used: Lsodes (which originates from the SLAC Fortran library
and is originally based on Gear’s routine) (Gear, 1971b; Gear, 1971a; Press et al., 1989)
(see [Bibliographic References], page 65), Cvodes (from the Sundials library https://

computation.llnl.gov/projects/sundials) which may be more stable than Lsodes in
difficult cases, and Euler (Press et al., 1989).

The syntax for Lsodes is:

Integrate(Lsodes, <rtol>, <atol>, <method>);

where <rtol> is a floating point scalar specifying the relative error tolerance for each integra-
tion step. The floating point scalar <atol> specifies the absolute error tolerance parameter.
Those tolerances are used for all state variables. The estimated local error for a state vari-
able y is controlled so as to be roughly less (in magnitude) than rtol× |y|+ atol. Thus the
local error test passes if, for each state variable, either the absolute error is less than <atol>,
or the relative error is less than <rtol>. Set <rtol> to zero for pure absolute error control,
and set <atol> to zero for pure relative error control. Caution: actual (global) errors may
exceed these local tolerances, so choose them conservatively.

The <method> flag should be 0 (zero) for non-stiff differential systems and 1 or 2 for stiff
systems. If you specify <method> 2 you should provide the Jacobian of your differential
system (see the “Perc” model in the example folder); otherwise the Jacobian will be com-
puted by numerical differentiation (which is about as fast if the Jacobian is dense). You
should try flag 0 or 1 and select the fastest for equal accuracy of output, unless insight from
your system leads you to choose one of them a priori. In our experience, a good starting
point for <atol> and <rtol> is about 10−6.

The syntax for Cvodes is:

Integrate(Cvodes, <rtol>, <atol>, <maxsteps>, <maxnef>, <maxcor>,

<maxncf>, <nlscoef>);

<atol> and <rtol> have the same meaning as for Lsodes, above.

https://computation.llnl.gov/projects/sundials
https://computation.llnl.gov/projects/sundials
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The <maxsteps> is an integer secifying the maximum number of internal steps taken
before exiting a Cvodes call; the default value in Sundials is 500. maxnef is an integer
specifying the maximum number of error test failures accepted; the default value in Sundials
is 7. maxcor is an integer giving the maximum number of nonlinear iterations attempted; the
default value in Sundials is 3. maxncf is again an integer specifying the maximum number
of convergence failures accepted; the default value in Sundials is 10. Finally, nlscoef is a
floating point scaler corresponding to the coefficient of the nonlinear convergence test; the
default value in Sundials is 0.1:

Example of use:

Integrate(Cvodes, 1E-6, 1E-6, 500, 7, 3, 10, 0.1);

The syntax for Euler is:

Integrate(Euler, <time-step>);

where <time-step> is a scalar specifying the constant time increment for each integration
step.

Note: if the Integrate() specification is not used, the default integration method is
Lsodes with parameters 10−5, 10−7 and 1. We recommend using Lsodes, since is it highly
accurate and efficient. Euler can be used for special applications (e.g., in system dynamics)
where a constant time step and a simple algorithm are needed.

MonteCarlo() specification

Monte Carlo simulations (Hammersley and Handscomb, 1964; Manteufel, 1996) (see
[Bibliographic References], page 65) randomly sample parameter values and run the model
for each parameter set so generated. The statistical distribution of the model outputs can
be studied for uncertainty analysis, sensitivity analysis etc. Such simulations require the
use of two specifications, MonteCarlo() and Distrib(), which must appear in the global
section of the file, before the Simulation sections. They are ignored if they appear inside
a Simulation section.

The MonteCarlo specification gives general information required for the runs: the output
file name, the number of runs to perform, and a starting seed for the random number
generator. Its syntax is:

MonteCarlo("<OutputFilename>", <nRuns>, <RandomSeed>);

The character string <OutputFilename>, enclosed in double quotes, should be a valid
filename for your operating system. If a null-string "" is given, the default name simmc.out
will be used. The number of runs <nRuns> should be an integer, and is only limited by
either your storage space for the output file or the largest (long) integer available on your
machine. When using the GNU Scientific Library, the seed <RandomSeed> of the pseudo-
random number generator can be any positive integer (including zero). When using the
native code, it can be any positive real number (seeds between 1.0 and 2147483646.0 are
used as is, the others are rescaled silently within those bounds). Here is an example of use:

MonteCarlo("percsimmc.out", 50000, 9386);

The parameters’ sampling distributions are specified by a list of Distrib() specifica-
tions, as explained in the following (see [Distrib() specification], page 48). The format of
the output file of Monte Carlo simulations is discussed later (see Section 6.3 [Analyzing
simulation output], page 58).
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Note on parallelized code: If your model has been preprocessed and compiled by
makemcsimp (see Section 5.2 [Using makemcsim], page 20) to generate a parallelization-
enabled executable, the number of Monte Carlo simulations requested will be split evenlly
between the recruited processors and computed in parallel. The number of processors to
use should specified on the calling command-line with the -np option (see Section 6.1
[Using the compiled program], page 37).

MCMC() specification

Markov chain Monte Carlo (MCMC) can be defined as stochastic simulations following a
Markov chain in a given parameter space. In MCMC simulations, the random choice of
a new parameter value is influenced by the current value. They can be used to obtain
a sample of parameter values from complex distribution functions, eventually intractable
analytically. Such complex distribution functions are typically encountered during Bayesian
data analysis, under the guise of posterior distributions of a model’s parameters. The reader
wishing to use the MCMC capabilities of GNU MCSim is referred to the published literature
(for example, Bernardo and Smith, 1994; Gelman, 1992; Gelman et al., 1995; Gelman et
al., 1996; Gilks et al., 1996; Smith, 1991; Smith and Roberts, 1993) (see [Bibliographic
References], page 65).

MCMC simulation chains (which in GNU MCSim start from a sample from the specified
prior) need to reach "equilibrium". Checking that equilibrium is obtained is best achieved,
in our opinion, by running multiple independent chains (cf. Gelman and Rubin, 1992, and
other relevant statistical literature). GNU MCSim does not deal (yet) with convergence
issues.

The Bayesian analysis of data with GNU MCSim requires you to setup:

− a structural model (see Chapter 5 [Writing and Compiling Structural Models], page 19),

− a statistical model (see Section 6.2.5 [Setting-up statistical models], page 55),

− prior distributions for the model parameters you want to sample and "data likelihoods"
(defining the probability of some observed realizations of the modeled process, condi-
tionally to the model) (see [Distrib() specification], page 48).

Setting-up a statistical model requires Level sections and Data() specifications. Assign-
ing priors and likelihoods is achieved through the Distrib() statements (or its equivalents
Density() and Likelihood()). Please refer to the corresponding sections of this manual, if
you are not familiar with them. The MCMC() statement, gives general directives for MCMC
simulations and has the following syntax:

MCMC("<OutputFilename>", "<RestartFilename>", "<DataFilename>",

<nRuns>, <simTypeFlag>, <printFrequency>, <itersToPrint>,

<RandomSeed>);

The character strings <OutputFilename>, <RestartFilename>, and <DataFilename>, en-
closed in double quotes, should be valid file names for your operating system. If a null-string
"" is given instead of the output file name, the default name MCMC.default.out will be
used.

If a restart file name is given, the first simulations will be read from that file (which
must be a text file). This allows you to continue a simulated Markov chain where you left
it, since an MCMC output file can be used as a restart file with no change. Note that the
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first line of the file (which typically contains column headers) is skipped. Also, the number
of lines in the file must be less than or equal to <nRuns>. The first column of the file should
be integers, and the following columns (tab- or space-separated) should give the various
parameters, in the same order as specified in the list of Distrib() specifications in the
input file.

If a data file name is given, the observed (data) values for the simulated outputs will be
read from that file (in ASCII format); otherwise, Data() specifications (see [Data() speci-
fication], page 58) should be provided. We recommend that you use Data() specifications
rather that the data file, which is much more error prone. The first line of the data file
is skipped and can be used for comments. The total number of data points should equal
the total number of outputs requested. The data values should be given on the second and
following lines, separated by white spaces or tabs. A data value of "-1" will be treated as
"missing data" and ignored in likelihood calculations. The convention "-1" can be changed
by changing INPUT MISSING VALUE in the header file mc.h and recompiling the entire
library.

The integer <nRuns> gives the total number of runs to be performed (i.e., the number
of posterior samples to draw), including the runs eventually read in the restart file.

Note on parallelized code: If your model has been preprocessed and compiled by
makemcsimp (see Section 5.2 [Using makemcsim], page 20) to generate a parallelization-
enabled executable, GNU MCSim will run, in parallel, as many simulated Markov chains
(of length <nRuns>) as there are available processors. The number of processors to use
(hence, of chains to run) should specified on the calling command-line with the -np option
(see Section 6.1 [Using the compiled program], page 37). You can assess the chains’
convergence in real time with the Gelman-Rubin’s MCMC convergence diagnostic with the
run-time command line option -c (see Section 6.1 [Using the compiled program], page 37)

The next field, <simTypeFlag> should be between 0 and 4 (included):

• It should be set at zero to start a chain of MCMC simulations. In that case, parameters
are updated by Metropolis steps, one at a time.

• If <simTypeFlag> = 1, a restart file must also be specified. The output file will contain
codes for the level sequence, simulation numbers, printing times, data values and the
corresponding model predictions, computed using the last parameter vector of the
restart file. This is useful to quickly check the model fit to the data.

• If <simTypeFlag> is equal to 2, a restart file must also be specified and that entire file is
used to compute the parameters’ covariance matrix. All parameters are then updated
at once using a multivariate normal kernel as proposal distribution of the Metropolis
steps. This may result in large improvement in speed. However, we recommend that
this option be used only when convergence is approximately obtained (therefore, you
should run MCMC simulations with <simTypeFlag> set to 0 first, up to approximate
convergence, and then restart the chain with the flag at 2).

• With <simTypeFlag> equal to 3 or 4, component by component simulated tempering
is performed (Geyer and Thompson, 1995) (see [Bibliographic References], page 65).
With option 3, the whole posterior is tempered (as in Geyer and Thompson) (see
[Bibliographic References], page 65). With option 4, only the likelihood is tempered
(thermodynamic integration, as in Calderhead and Girolami (2009). In those cases, a
grid of inverse temperatures (perks) is first determined automatically for you (diagnos-
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tic are printed out to the file ...out.perks), unless you define your own perks scale
with the InvTemperature() specification:

InvTemperature(<nValues>, <value 1>, <...>, <value n>);

The first number of the specification gives the number of perks to use and is followed
by a list of them. Those should be numbers in the interval [0,infinity[. Values above 1
lead in fact to simulated annealing (sharpening of the posterior distribution), suitable
for optimization (see Amzal et al. 2006) (see [Bibliographic References], page 65).
For simulated tempering, including thermodynamic integration, you should have perks
lower or equal to 1. You usually want to include the value 1 (since that perk corresponds
to your target distribution). At perk zero, the posterior distribution is uniform for all
parameters in the case of posterior tempering, or equal to the prior in the case of
likelihood tempering. Each time the simulated Markov chain reaches perk zero is a
regeneration time (Geyer and Thompson, 1995). Samples obtained at perk 1 between
regeneration times are guaranteed to be from the posterior distribution, so that only
one chains needs to be run and convergence need not to be checked (a significant
advantage of simulated tempering). Simulated tempering is also adapted to problems
with multiple maxima of the posterior distribution, in which standard samplers or
Hamiltonian MCMC usually get stuck in a local mode. See Section 6.3 [Analyzing
simulation output], page 58 for the output format of tempered MCMC simulations.

• Finally with <simTypeFlag> set to 5, GNU MCSim does stochastic optimization (an
MCMC in which only, but all, jumps leading posterior density improvement are ac-
cepted).

The integer <printFrequency> should be set to 1 if you want an output at each iteration,
to 2 if you want an output at every other iteration etc. The parameter <itersToPrint> is
the number of final iterations for which output is required (e.g., 1000 will request output
for the last 1000 iterations; to print all iterations just set this parameter to the value
of <nRuns>). Note that if no restart file is used, the first iteration is always printed,
regardless of the value of <itersToPrint>. Finally, when using the GNU Scientific Library,
the seed <RandomSeed> of the pseudo-random number generator can be any positive integer
(including zero). When using the native code, it can be any positive real number (seeds
between 1.0 and 2147483646.0 are used as is, the others are rescaled silently within those
bounds).

In the case of component by component jumps (<simTypeFlag> set to 0), tempered or
stochastic optimization (<simTypeFlag> set to 3 or higher), the jump kernel is saved with
the same name as the output file, with a .kernel extension. If the simulations are restarted
in a continuation mode and if a kernel file with the same name as the restart file (with an
added .kernel extension) is present, the jump kernel is restored.

Finally, the format of the output file of MCMC simulations is quite similar to that
of straight Monte Carlo simulations and will discussed in a later section (see Section 6.3
[Analyzing simulation output], page 58).

SetPoints() specification

To impose a series of set points (i.e., already tabulated values for the parameters), the
global section can include a SetPoints() specification. It allows you to perform additional
simulations with previously Monte Carlo sampled parameter values, eventually filtered. You
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can also generate parameters values in a systematic fashion, over a grid for example, with
another program, and use them as input to GNU MCSim. Importance sampling, Latin
hypercube sampling, grid sampling, can be accommodated in this way.

This command specifies an output filename, the name of a text file containing the chosen
parameter values, the number of simulations to perform and a list of model parameters to
read in. Parameters can mix scalar and vector notations. It has the following syntax:

SetPoints("<OutputFilename>", "<SetPointsFilename>", <nRuns>,

<parameter identifier>, <parameter identifier>, ...);

If a null string is given for the output filename, the set points output will be written to
the same default output file used for Monte Carlo analyses, simmc.out.

The SetPointsFilename is required and must refer to an existing file containing the
parameter values to use. The first line of the set points file is skipped and can contain
column headers, for example. Each of the other lines should contain an integer (e.g., the
line number) followed by values of the various parameters in the order indicated in the
SetPoints() specification. If extra fields are at the end of each line they are skipped. The
first integer field is needed but not used (this allows you to directly use Monte Carlo output
files for additional SetPoints simulations).

The variable <nRuns> should be less or equal to the number of lines (minus one) in the
set points file. If a zero is given, all lines of the file are read. Finally, a comma-separated
list of the parameters or vectors to be read in the SetPointsFilename is given. The format
of the output file of set points simulations is discussed below (see Section 6.3 [Analyzing
simulation output], page 58).

Following the SetPoints() specification, Distrib() statements can be given for param-
eters not already in the list (see [Distrib() specification], page 48). These parameters will
be sampled accordingly before to performing each simulation. The shape parameters of the
distribution specifications can reference other parameters, including those of the list.

Note on parallelized code: If your model has been preprocessed and compiled by
makemcsimp (see Section 5.2 [Using makemcsim], page 20) to generate a parallelization-
enabled executable, the number of SetPoints simulations requested will be split evenlly
between the recruited processors and computed in parallel. The number of processors to
use should specified on the calling command-line with the -np option (see Section 6.1
[Using the compiled program], page 37).

OptimalDesign() specification

The "OptimalDesign" procedure optimizes the number and location of observation times for
experimental conditions you specify, in order to minimize the variance of a parameter or an
output you designate. It requires a structural model (see Chapter 5 [Writing and Compiling
Structural Models], page 19), a statistical model in the form of a likelihood() function
(see Section 6.2.5 [Setting-up statistical models], page 55), and a random set of parameter
vectors sampled from a prior distribution (using Monte Carlo or MCMC simulations) (for
example and details, see Bois et al., 1999) (see [Bibliographic References], page 65). The
statistical model used should be quite simple and cannot not use Level sections (and hence
cannot be hierarchical).

The OptimalDesign command has the following syntax:
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OptimalDesign("<OutputFilename>", "<ParameterSampleFilename>",

<nSamples>, <RandomSeed>, <Style>,

<parameter identifier>, <parameter identifier>, ...);

The character strings <OutputFilename>, and <ParameterSampleFilename>, enclosed in
double quotes, should be valid file names for your operating system. If a null-string "" is
given instead of the output file name, the default name simopt.default.out will be used.

A parameter sample file name must be given (that file must be a text file). The first
line of the file (which typically contains column headers) is skipped. The number of lines
in the file must be less than or equal to <nSamples>. The first column of the file should
be integers (typically row numbers), and the following columns (tab- or space-separated)
should be values of the various parameters in the order indicated in the list at the end of the
OptimalDesign() specification. If extra fields are at the end of each line they are skipped.
The first integer field is needed but not used (this allows you to directly use Monte Carlo
output files for OptimalDesign simulations).

The integer <nSamples> indicates the number of lines to read from the <ParameterSam-
pleFilename> file. When using the GNU Scientific Library, the seed <RandomSeed> of the
pseudo-random number generator can be any positive integer (including zero). When using
the native code, it can be any positive real number (seeds between 1.0 and 2147483646.0
are used as is, the others are rescaled silently within those bounds). The directive Style
should be either the keyword Forward or the keyword Backward. Forward optimization
will start from no new data and will add, sequentially, optimal observation times. Back-
ward optimization starts with the full set of observation times you propose and delete the
least informative ones, sequentially. We recommand that you try both options. Finally, a
comma-separated list of the parameters to be read in the ParameterSamplFilename should
be given.

The input file must then contain two sets of Simulation definitions. You should look at
the sample optimal design files provided in mcsim/examples.

The first set specifies all experimental conditions and the set of observation times to
optimize, for one or several output variables given in Print statements. The output times
you specify for each output variable define an array of observation time values that the
optimization algorithm will rank by order of the estimated variance reduction they permit
for variables or parameters you will specify in the second set of Simulation definitions.
Data will be simulated for each of the required output. There must be one Data statement
per output specified (the data values are arbitrary). An error model must be specified for
those data, using a Likelihood statement (see [Distrib() specification], page 48).

The second set of Simulation specifies optimization target parameters or outputs. The
algorithm will select time-points (in the first section’s Simulation specifications) that mini-
mize the estimation variance of those parameters or outputs. When a parameter is targeted
no inputs are needed. If you optimize for an output variable variance (i.e., for the variance
of a model prediction), the experimental conditions can be very different from those of the
experiment whose conditions you optimize. The link is afforded solely by the parameters
(in the first set you are trying to determine the conditions that will optimally identify the
parameter values conditioning the predictions – or trivially, the parameters – of the second
set)
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The format of the output file of design optimization simulations is quite specific. The first
column is an iteration number. At each iteration one observation point is added (Forward
mode) or removed (Backward mode). Each step is therefore conditioned by the selection of
an observation time-point made by the previous step. The following columns give, for each
observation time point you specify, the average variance of the target outputs or parameters
achieved if this point is added (Forward mode) or removed (Backward mode). Next the
chosen time point at this step is given (the one minimizing average variance), followed by
the variance it leads to (in expectation) and the corresponding standard deviation. The
last column "Utility" is zero, unless you uncomment the function Compute_utility and
modify its code in optdesign.c to compute a utility of your own.

Distrib() specification

The specification of distributions for simple Monte Carlo simulations is quite straighfor-
ward. MCMC simulations require the definition of a full statistical model and the use of
distributions is somewhat more complex in that case, but the use of Distrib() is basically
the same.

In the context of MonteCarlo() or SetPoints() simulations (see [MonteCarlo() speci-
fication], page 42, and [SetPoints() specification], page 45), one (and only one) Distrib()
specification must be included for each model parameter to randomly sample. State, in-
put or output variables cannot be randomly sampled by Distrib() in this context. A
simulation specification file can include any number of Distrib() commands at the global
level.

Distrib() specifies the name of the parameter to sample, and its sampling distribution.
Its syntax is:

Distrib(<parameter identifier>, <distribution-name>,

[<shape parameters>]);

The <parameter identifier> gives the name of the parameter to sample. The
<distribution-name> and the corresponding <shape parameters> indicate the sampling
distribution to use (Bernardo and Smith, 1994; Gelman et al., 1995) (see [Bibliographic
References], page 65). They are specified as follow:

• Beta, takes at least two strictly positive real shape parameters: A and B. By default
the Beta distribution is defined over the interval [0;1]. If a range is given for the beta
distribution, the [0;1] interval is mapped onto the specified range.

• Binomial, needs two strictly positive numbers: the probability p (a real in the interval
[0;1]), and the sample size N, an integer. If N is not given as an integer it will be
rounded down during the computations.

• Cauchy, takes one strictly positive real number as parameter: its scale s.

• Chi2, takes one strictly positive real number as parameter: n. This distribution is the
same as Gamma(n/2, 1/2).

• Exponential, uses one strictly positive real number: the inverse-scale b. The density
of this distribution is equal to be−bx.

• Gamma, uses two strictly positive real parameter: the shape and the inverse scale.

• HalfCauchy, takes one strictly positive real number as parameter: the scale s. The
mode is at zero, on the lower boundary. The random variates returned are strictly
positive.



Chapter 6: Running Simulations 49

• HalfNormal, takes one real number as parameter: the standard deviation, strictly
positive. The mode is at zero, on the lower boundary. The random variates returned
are strictly positive.

• InvGamma (inverse gamma distribution), needs two strictly positive real parameters:
the shape and the scale.

• LogNormal, takes two reals numbers as parameters: the geometric mean (exponential
of the mean in log-space) and the geometric standard deviation (exponential, strictly
superior to 1, of the standard deviation in log-space).

• LogNormal_v, is the lognormal distribution with the variance (in log space!) instead of
the standard deviation as second parameter. You can use it to specify a hierarchical
model with a conjugate prior on the variance (see Section 6.2.5 [Setting-up statistical
models], page 55).

• LogUniform, with two shape parameters: the minimum and the maximum of the sam-
pling range (real numbers) in natural space.

• Normal, takes two reals numbers as parameters: the mean and the standard deviation,
the latter being strictly positive.

• NegativeBinomial, needs two positive or null numbers: the number of failures r until
trials are stopped and probability of success (p, a real in the interval [0;1]) for each
trial. The probability mass function of this distribution for a k of number of successes
is equal to:

C(k + r − 1, k)pr(1− p)k

where C() is the binomial coefficient.

• Normal_cv, is the normal distribution with the coefficient of variation instead of the
standard deviation as second parameter.

• Normal_v, is also the normal distribution with the variance instead of the standard
deviation as second parameter. You can use it to specify a hierarchical model with
a conjugate prior on the variance (see Section 6.2.5 [Setting-up statistical models],
page 55).

• Piecewise, uses four reals as parameters: the minimum, A, B, and the maximum. The
distribution has the form of a truncated triangle, with a plateau between A and B. If
A = B, the distribution is the triangular distribution.

• Poisson, needs a strictly positive real: the rate A.

• StudentT, requires three parameters: its number of degrees of freedom (an integer), its
mean, and its standard deviation.

• TruncInvGamma (truncated inverse gamma distribution), needs four strictly positive
real parameters: the shape, the scale, the minimum and the maximum. To use it you
need to have the GNU Scientific Library (gsl) to be installed.

• TruncLogNormal (truncated lognormal distribution), uses four real numbers: the geo-
metric mean and geometric standard deviation (strictly superior to 1), the minimum
and the maximum in natural space. For example:

Distrib(Var, TruncLogNormal, 1, 2.718, 0.01, 10);

samples ‘Var’ such that ln(V ar) is a standardized normal variate of mean ln(1) and
standard deviation ln(2.718) — while ‘Var’ is truncated to fall between 0.01 to 10.
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• TruncLogNormal_v, is like the truncated lognormal, except that it takes the variance
(in log space!) instead of the standard deviation as second parameter. You can use it
to specify a hierarchical model with a conjugate prior on the variance (see Section 6.2.5
[Setting-up statistical models], page 55).

• TruncNormal (truncated normal distribution), takes four real parameters: the mean,
the standard deviation (strictly positive), the minimum and the maximum.

• TruncNormal_cv, is like the truncated normal distribution with the coefficient of vari-
ation instead of the standard deviation as second parameter.

• TruncNormal_v, is like the truncated normal distribution with the variance instead of
the standard deviation as second parameter.

• Uniform, with two shape parameters: the minimum and the maximum of the sampling
range (real numbers).

• UserSpecifiedLL can be used to specify a data likelihood. It allows the user to com-
pute the log-likelihood of the data inside the model definition file (in the Dynamics or
CalcOutputs sections). It uses only one parameters: the calculated log-likelihood. For
example:

Likelihood(LL, UserSpecifiedLL, Prediction(LL));

...

Print (LL, 1);

Data (LL, 1);

In this case, the Data() statements are not actually used by the model. They must still
be provided, with arbitrary data values (except that you should not use the missing
data code, -1 by default). The actual data values must be passed as parameter(s) to
the model.

The shape parameters of the above distributions, if they are defined, can symbolically
reference other model parameters, even if distributions for these have already been defined.
For example:

Distrib(A, Normal, 0, 1);

Distrib(B, Normal, A, 2);

In the context of MCMC sampling, GNU MCSim provides extensions of the above
Distrib() specification syntax.

First, when Distrib() is used to specify the prior or conditional distribution of a model
parameter (in a Bayesian framework), that parameter can also appear as a shape parameter,
if a distribution has already been specified for the parameter at an upper Level of the file.

For example:

Level { # upper level

Distrib(A, Normal, 0, 1);

Distrib(B, InvGamma, 2, 2);

Level { # sub-level

Distrib(A, Normal_v, A, B);

...

} # end sub-level

} # end upper level
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In that case, the parameter A, used for shape specification (as the mean of a Normal
distribution) in the sub-level, refers to the "parent" A parameter, for which a standard
Normal distribution is defined at the upper Level. The sampled values of the parent
parameters A and B will be used as mean and variance for their "child" parameter, A,
when it will be its turn to be randomly sampled. This forms the basis of the specification of
multilevel (hierarchical) models (see Section 6.2.5 [Setting-up statistical models], page 55).

Note that the keyword Density() can be used instead of Distrib() to make more
understandable MCMC input files. Density() and Distrib() are equivalent and have the
same syntax. We recommend its use.

Next, in MCMC simulations, you usually assign a probability distribution (i.e., a like-
lihood) to the data you analyze. Typically, your model’s state and/or output variables
will be used to predict some aspect of the observed data distributions (mean, variance,
etc.). GNU MCSim gives you the possibility to specify a distribution for your data, using
model parameters, input, state, or output model variables, or even other data, to define
the distribution shape. This is achieved through the use of the Data() and Prediction()

"qualifiers". In that case, the keyword Likelihood() should be used instead of Distrib()
(the two keywords are equivalent and have the same syntax, but we recommend that you
use Likelihood() to make your MCMC input files more understandable and make it clear
that the data are not sampled, but only assigned a likelihood).

Data() can be used at the first position of a Distrib() statement, or as a distribution
shape parameter. It uses the following syntax:

Data(<identifier>)

where <identifier> corresponds to a valid input, state or output model variable for which
data are available. Model parameters cannot be used (but you can assign a simple param-
eter value to an output variable in your model definition file and use that output here).
The actual data values need to be given later in the simulation input file through Data()

specifications (which, in addition to a variable identifier, give a list of numerical data values,
see [Data() specification], page 58) or in a separate datafile (see [MCMC() specification],
page 43).

Working hand in hand with Data(), and using the same syntax, the Prediction()

qualifier can be used to designate actual model inputs, states and outputs for any shape
parameter of a specified distribution (therefore Prediction() must appear after the distri-
bution name). The actual predicted values, matching exactly the corresponding data, need
to be given later in the simulation input file through Print() or PrintStep() specifications
[see [Print() specification], page 54 and [PrintStep() specification], page 54).

Here are some example of use of Data() and Prediction() in the extended syntax of a
Likelihood() specification:

Likelihood (Data(y), Normal, Prediction(y), 0.01);

...

Data (y, 0.1, 2, 5, 3, 9.2);

Print(y, 10, 20, 40, 60, 100);

Likelihood (Data(y), Normal, Prediction(y), Prediction(sigma));

...

Data (y, 1.01, 1.20, 0.97, 0.80, 1.02);



52 GNU MCSim User’s Manual

PrintStep(y, 10, 50, 10);

PrintStep(sigma, 10, 50, 10);

Likelihood (Data(R), Binomial, Prediction(P), Data(N));

...

Data (R, 0, 2, 5, 5, 8, 9, 10, 10);

Data (N, 10, 10, 9, 10, 9, 9, 11, 10);

Print(P, 10, 20, 30,40, 50,60,70, 80);

(all these statements could not appear as such in an input file, they would need to be
embedded in Level and Simulation sections.)

SimType() specification

This specification is now obsolete and should not be used. It is left for compatibility with
old input files. It specifies the type of analysis to perform. Syntax:

SimType(<keyword>);

The following keywords can be used: DefaultSim (the list of specified simulations is
simulated), MonteCarlo, MCMC (previously Gibbs, which is now deprecated), SetPoints.
If MonteCarlo, MCMC, or SetPoints analyses are requested, additional specifications are
needed (see below).

6.2.4 Specifying basic conditions to simulate

Any simulation file must define at least one Simulation section. Simulation sections
include particular specifications, which are presented in the following.

Simulation sections

After global specifications, if any, Simulation sections must be included in the input file.
Expectedly, these sections start with the keyword Simulation and are enclosed in curly
braces.

A Simulation section can make assignments to any state variable, input variable or
parameter defined in the global section of the model description file. Output variables
cannot receive assignments in simulation input files.

State variables and parameters can only take constant numerical values (see Section 6.2.1
[General input file syntax], page 39). For state variables, this sets the initial value only. So,
for example, in a Simulation section the parameter Speed, if properly defined, can be set
using:

Speed = 83.2;

This overrides any previously assigned values, even if randomly sampled, for the specified
parameter.

Inputs can be redefined with input functions (see Section 6.2.2 [Input functions revis-
ited], page 40) or constant numerical values. Input functions can reference other variables
(eventually randomly sampled), as in:

Q_in = PerExp(InMag, 60, 0, RateConst);
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The maximum number of Simulation sections allowed in an input file is 200. This can
be changed by changing MAX INSTANCES and MAX EXPERIMENTS in the header file
sim.h and recompiling the program (this requires re-installation).

Within a Simulation section, several additional specifications can be used:

• StartTime(),

• Print() (or its synonym, Prediction())

• PrintStep(),

• Data().

The Data() specification is used only when a statistical model is set up and will be
covered in the corresponding section of this manual (Section 6.2.5 [Setting-up statistical
models], page 55).

Events() specification for state discontinuities

You can impose state variables discontinuities at a given set of times with the Events

specification. Events has a syntax similar to the NDoses input function (see Section 5.3.5
[Input functions], page 27). It is in fact a special type of input function that resets a state
variable, hence the need to assign it to a (dummy) input variable. Its syntax is:

<input variable> = Events(<state variable>, <n>, <list-of-times>,

<list-of-operation>, <list-of-scalars>);

The first argument, <state variable>, is the state whose value you want to reset at given
times. The integer <n> is the number of reset times you want to specify; <list-of-times>
is a comma separated list of those reset times; <list-of-operations> is a comma separated
list of operations that will affect the given state variable at the specified times (see next
paragraph), and <list-of-scalar> is the list of floating point values used for by the operations
specified, at the corresponding times.

The three keywords operations are Add, Multiply and Replace. Add adds the corre-
sponding scalar to the target state variable at the specified time; Multiply multiplies the
state variable by the specified scalar; Replace simply replaces the value of the state variable
by the given scalar.

The assigned input value takes the value 1 at the specified times and is zero otherwise. If
you don’t have a use for such an input, simply define a dummy input variable. For example:

In the model definition file define:

Inputs = {events_v1, events_v2};

and in the simulation specification file you can request, within a Simulation specifica-
tion:

events_v1 = Events (v1, 2, 1, 9,

Add, Add,

1, 4);

events_v2 = Events (v2, 2, 1, 5,

Multiply, Replace,

2, 6);

At time 1, a value of 1 will be added to the state variable v1 and v2 will be multiplied
by 2; At time 5 v2 will be reset to 6, and at time 9 the value 4 will be added to v1.
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See (and run) the example model and input file provided in the example/events folder.

StartTime() specification

The origin of time for a simulation, if it needs to be defined, can be set with the StartTime()
specification, whose syntax is:

StartTime(<initial-time>);

It just shifts the time scale. If this specification is not given, a value of zero is used by
default. A parameter can be used as initital time value, so that initial time can be sampled
in error-in-variable models, for example:

T0 = 20;

StartTime(T0);

The final time is automatically computed to match the largest output time specified in
the Print() or PrintStep() statements. Output times cannot be inferior to the initial
time.

Print() specification

The value of any model variable or parameter can be requested for output with Print()

or Prediction() specifications. Their arguments are a comma-separated list of variable
names (at least one and up to MAX PRINT VARS, which is set to 10 by default), and a
comma-separated list of increasing times at which to output their values:

Print(<identifier1>, <identifier2>, ..., <time1>, <time2>, ...);

Prediction(<identifier3>, <identifier4>, ..., <time1>, <time2>, ...);

where <identifier1>, <identifier2> etc. correspond to valid input, state or output model
variables, or parameter.

The same output times are used for all the variables specified. The size of the time list
is only limited by the available memory at run time. The limit of 10 variables names can be
increased by changing MAX PRINT VARS in the header file sim.h and re-installing the
whole software. The number of Print() statements you can used in a given Simulation

section is only limited by the available memory at run time. The same variable or parameter
can appear in more than one Print() specification in a given Simulation section.

PrintStep() specification

The value of any model variable or parameter can be also output with PrintStep() specifi-
cations. They allow dense printing, suitable for smooth plots, for example. Their arguments
are: a comma-separated list of variable names (at least one and up to MAX PRINT VARS,
which is set to 10 by default), the first output time, the last one, and a time increment:

PrintStep(<identifier1>, <identifier2>, ..., <start-time>, <end-time>,

<time-step>);

The final time has to be superior to the initial time and the time step has to be less than
the time span between end and start. If the time step is not an exact divider of the time
span the last printing step is shorter and the last output time is still the end-time specified.
The number of outputs produced is only limited by the memory available at run time. You
can use several PrintStep() specification, and the same variable or parameter can appear
in more than one PrintStep(), in a given Simulation section.
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6.2.5 Setting-up statistical models

With GNU MCSim, you must define a statistical model to use the MCMC() specification.
MCMC simulations will give you a sample from the joint posterior distribution of the param-
eters that you designate as randomly sampled through Distrib() specifications. You do
not need to specify explicitly that joint posterior distribution (in fact, in most case, this is
impossible). The posterior distribution is implicitly defined by a statistical model, that is
simply a set of conditional relationship between the parameters and some data.

GNU MCSim handles multilevel (hierarchical) random effects and mixed effects statis-
tical models in a Bayesian framework. These models need to be defined in the simulation
specification file, rather than in the structural model definition file. Yet, due to compilation
constraints, if you need special parameters for your statistical model (e.g., variances) you
have to declare them in the structural model file, even if they are not used by the structural
model itself.

So, how do we go about specifying a statistical model with GNU MCSim? Take for
example the following simple linear regression model:

yi = N(µi, σ
2) (1)

µi = α+ β(xi − x) (2)

where the observed (x, y) pairs are (1, 1), (2, 3), (3, 3), (4, 3) and (5, 5). Assume that the pa-
rameters α and β are given N(0, 10000) priors, and that 1/σ2 is given a Gamma(10−2, 10−2)
prior. We want the posterior distributions of α, β, and σ2.

The first thing to do is to define a structural (or link) model to compute y as a function
of x. Here is such a model (quite similar to the one distributed with GNU MCSim source
code (see Section B.1 [linear.model], page 71):

# ---------------------------------------------

# Model definition file for a linear model

# ---------------------------------------------

Outputs = {y};

# Structural model parameters

Alpha = 0;

Beta = 0;

x_bar = 0;

# Statistical parameter

Sigma2 = 1;

CalcOutputs { y = Alpha + Beta * (t - x_bar); }

# ---------------------------------------------

The parameters’ default values are arbitrary, and could be anything reasonable. They
will be changed or sampled through the input file. Note thatσ2 is not used in the model
equations, but still needs to be defined here in order to be part of the statistical model. On
the other hand, µ is not defined, since we do not really need it. Finally x is replaced by the
time, t, for convenience. An alternative would be to define an input ‘x’ and use it instead
of t.
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We now need to write an input file specifying the distribution of y (i.e., the likeli-
hood), and the prior distributions of the various parameters. Technically, GNU MCSim
uses Metropolis sampling and you do not need to worry about issues of conjugacy or log-
concavity of your prior or posterior distributions. Here is what a simulation file with a
statistical model looks like:

# ---------------------------------------------------------------

# Simulation input file for a linear regression

# ---------------------------------------------------------------

MCMC ("linear.MCMC.out", "", "", 50000, 0, 5, 40000, 63453.1961);

Level {

Distrib(Alpha, Normal_v, 0, 10000);

Distrib(Beta, Normal_v, 0, 10000);

Distrib(Sigma2, InvGamma, 0.01, 0.01);

Likelihood(Data(y), Normal_v, Prediction(y), Sigma2);

Simulation {

x_bar = 3.0;

PrintStep (y, 1, 5, 1);

Data (y, 1, 3, 3, 3, 5);

}

} # end Level

End.

# ---------------------------------------------------------------

The file begins with MCMC() (see [MCMC() specification], page 43). The keyword Level

comes next. Level is used to specify hierarchical dependences between model parameters.
There should be at least one Level in every MCMC input file, even for a non-hierarchical
model like the one above. See below for further discussion of the Level keyword. You can
also look at the MCMC input files provided as examples withGNU MCSim source code. The
Distrib() statements define the parameter priors. Normal_v specifications are used since
we use variances instead of standard deviations. The inverse-Gamma distribution is used for
the variance component, since the precision is supposed to be Gamma-distributed. The like-
lihood is the distribution of the data, given the model: it is specified by a Likelihood()

specification, valid for every y data point. Again, note that the µ variable is not used.
Instead, the Prediction(y) specification designates the linear model output. The distribu-
tions and likelihoods specified are in effect for every sub-level or every Simulation section
included in the current Level.

The "simulations" to perform, and the corresponding data values, are specified by a
Simulation section. Only one Simulation section is needed here, but several could be
specified. In this section, the value of x is provided. The different values of x (time in our
formulation of the model) can be specified via PrintStep() (see [PrintStep() specification],
page 54), since they are equally spaced. More generally, Print() can also be used (see
[Print() specification], page 54). The data values are given in a Data() statement (see
below).

The following paragraphs deal with Level sections and Data() specifications.
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Level sections

Markov chain Monte Carlo simulations require the definition of a statistical model struc-
tured with "levels". Think for example of the definition of a prior distribution as a top level
in a hierarchy, with the data likelihood being at the lowest level. The hierarchy levels are
defined in GNU MCSim with the help of Level sections. At least one Level section must be
defined in the simulation input file (you cannot use Level in a structural model definition
file). A Level section starts with the corresponding keyword and is enclosed in curly braces
(’{}’). It can include any number of sub-levels or Simulations sections. Simulations

(where the data are specified) form the lowest level of the hierarchy (see [Simulation sec-
tions], page 52). In terms of structure, Simulation sections behave like Level sections (in
particular with regard to "cloning" of random variables, see below) except that they cannot
include further levels. There must be one and only one top Level and at most 10 nested
sub-levels in the hierarchy. No parameter assignement or distribution specification should
occur outside a Level, otherwise it will be ignored (which is probably not what you want).
This limit of 10 can be increased (up to 255) by changing MAX LEVELS in the header file
sim.h and re-installing GNU MCSim.

A Level can specify or change the sampling distribution of any model parameter properly
defined in the global section of the structural model description file. These distribution
specifications apply to all sub-levels of the Level where they take place. For example:

MCMC("samp.out", "", "", 1, 1, 1, 1, 1); # we are in an MCMC context

Level { # this is the top level

Distrib(A, Uniform, 0, 1);

Likelihood(Data(y), Normal, Prediction(y), 1);

Level { # sub-level 1

Distrib(A, Normal, A, 1);

Simulation { ... } # simulation 1

Simulation { ... } # simulation 2

} # End sub-level 1

} # End top, end file

End.

A Level can also make simple assignments to any model parameter (see Section 6.2.1
[General input file syntax], page 39). So, for example, in an simulation, the parameter A
could be modified with:

A = 2.0;

This overrides any previously assigned values for the specified parameter, even if ran-
domly sampled, and applies to the sub-levels of the Level where it take place.

An important concept to grasp here is that of parameter "cloning". Cloning automat-
ically creates, using templates, as many new parameters as you need in your multilevel
model. One of the characteristic feature of multilevel models is the same parameters ap-
pear at several levels. For example, in a random effect model, a parameter (e.g., size) will
be assumed to be randomly distributed in a population of individuals. If you have 100 indi-
viduals in your database, your model will have to deal with 100 individual size parameters
and an average size. To spare you the tedium of defining the same distribution for many
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parameters, GNU MCSim creates an appropriate number of parameters for your model on
the basis of its level structure. Assume that you have specified a distribution for a pa-
rameter A at a given level (that we label L1 for clarity). GNU MCSim will automatically
create new parameters ("clones") with the same distribution as A to match the number of
immediate sub-levels in L1. For example, if there are three sub-levels included in L1, GNU
MCSim creates two clones to form a total of three instances of A (the original and its two
clones). This convention saves a lot writing and effort in the long run.

In the example of code given above, the parameter A, defined at the top level, will be
simply moved to sub-level 1 (cloning is not necessary since there is only on sub-level directly
included in the top level). Within sub-level 1, the normally-distributed A will be cloned
once in order to create another normal variate with the same distribution. Each one of
those two will be moved to a lower Simulation, where they will be conditioned by the data
of that simulation only. A total of three variables of "type" A will be sampled and will
be printed in the output file (coded so that the position in the hierarchy is apparent): the
"parent" A(1), a priori uniformly distributed, and two "dependents" A(1.1) and A(1.2), a
priori normally distributed around A(1).

Note that you can check on the console screen the detail of the actual multilevel structure
of your statistical model at run-time by using option -D=print-hierarchy (see Section 6.1
[Using the compiled program], page 37).

Data() specification

Experimental observations of model variables, inputs, outputs, or parameters, can be spec-
ified with the Data() command. Markov chain Monte Carlo sampling requires that you
specify Data() statements (see [MCMC() specification], page 43; see Section 6.2.5 [Setting-
up statistical models], page 55). The data are then used internally to evaluate the likelihood
function for the model. The arguments are the name of the variable for which observations
exist, and a comma-separated list of data values:

Data(<variable identifier>, <value1>, <value2>, ...);

This specification can only be used with a matching Print() or PrintStep() for the
same variable (see [Print() specification], page 54; see [PrintStep() specification], page 54).
You must make sure that there are as many data values in the Data() specification as
output time requested in the corresponding Print() or PrintStep(). A data value of "-1"
is treated as "missing data" and ignored in likelihood calculations. The convention "-1" can
be changed by changing INPUT MISSING VALUE in the header file mc.h and recompiling.

6.3 Analyzing simulation output

The output from Monte Carlo or SetPoints simulations is a tab-delimited text file with
one row for each run (i.e., parameter set) and one column for each parameter and output
in the order specified. Thus each line of the output file is in the following order:

<# of run> <parameters> <outputs for Exp 1> <outputs for Exp2> ...

The parameters are printed in the order they were sampled or set.

The first line gives the column headers. A variable called name requested for output in
an simulation i at a time j is labeled name i.j.

The output of Markov chain Monte Carlo simulations is also a text file with one row
for each run. It displays a column of iteration labels, and one column for each parameter



Chapter 6: Running Simulations 59

sampled. The last three columns contain respectively, the sum of the logarithms of each pa-
rameter’s density given its parents’ values (‘LnPrior’), the logarithm of the data likelihood
(‘LnData’), and the sum of the previous two values (‘LnPosterior’). The first line gives the
column headers. On this line, parameters names are tagged with a code identifying their
position in the hierarchy defined by the Level sections. For example, the second instance
of a parameter called name placed at the fist level of the hierarchy is labeled name(2); the
first instance of the same parameter placed at the second instance of the second level of the
hierarchy is labeled name(2.1), etc.

If tempered Markov chain Monte Carlo simulations have been requested, the overall
output format is the same as above, with the addition of a column of perk index (the lowest
perk having index zero), and columns of log-pseudoprior values (one column per perk, start-
ing with the log-pseudoprior of the lowest perk). Those extra colums are labelled ‘IndexT’,
‘LnPseudoPrior(1)’, ‘LnPseudoPrior(2)’, etc. and come just after the parameters. The
samples at the highest perk (typically, perk 1) can be found by selecting the highest value
of ‘IndexT’.

In addition, in the case of tempered MCMC, an history of the perks values computed is
saved with the same name as the output file, with a .perks extension. It lists perk values,
counts of samples and log-pseudoprior at each perk, attempted jumps and successful jumps
between perks. This can help check the perk schedule optimisation (in particular whether
perk zero has been reached) and the behavior of the chain over perks values. If the perks are
correctly spaced, there should be about equal number of samples at each perk, and jumps
between perks should be frequent.

Those tab-delimited files can easily be imported into your favorite spreadsheet, graphic
or statistical package for further analysis.

6.4 Error handling

If integration fails for a imulation in DefaultSim simulations no output is generated for
that simulation, and the user is warned by an error message on the screen. In MonteCarlo

or SetPoints simulations, the corresponding simulation line is not printed, but the iteration
number is incremented. Finally, in MCMC simulations, the parameter for which the data
likelihood was computed is simply not updated (which implicitly forbids the uncomputable
region of the parameter space). In all cases an error message is given on the screen, or
wherever the screen output has been redirected.
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7 Common Pitfalls

The following mistakes are particularly easy to make, and sometimes hard to notice, or
understand at first.

• Forgetting about type-related arithmetics in C: ‘1000/882’ gives ‘1’ since it is inter-
preted as an integer division by the compiler. To get a floating-point (usual) division
use ‘1000./882.’.

• Forgetting a semi-colon (’;’) at the end of statements: the error is usually detected at
the following line(s) where in fact nothing may be wrong.
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8 XMCSim

XMCSim is a menu-driven interface which automatizes the compilation and running tasks of
GNU MCSim. It also offers a convenient interface to 2-D and 3-D plotting of the simulation
results. Note that you need XWindows, Tcl/Tk and wish installed to run XMCSim. xemacs
is also recommended.

Just type xmcsim at the command promt. A windows appear, with a menu bar. Menu
items are:

• File, which allows you to choose an existing model file or to exit the program. Once
you have chosen a model file, its file name appears as a reminder at the bottom of the
window.

• Edit, which calls xemacs for you to create a new model file or edit any file of your
choice (for example an input or output file). Note: if you do not have xemacs installed
you can change the file xmcsim to replace the call to xemacs by a call to your editor.

• Compile has two items: Compile model will compile the current model file or prompt
you for one and will call mod to generate a model.c file from it; Compile mcsim will first
call mod and will then go on to create an executable mcsim filevia a call to makemcsim

create an executable program.

• Run with three items: Run which will prompt you for an executable mcsim file, an input
file and an output file (the latter is optional) and will then launch the executable; Stop
will just stop a running executable; Debug will produce a standalone executable with a
name starting with debugmcsim and will launch xemacs for you (you will then need to
call gdb or another debugger by yourself; if you find a way to start gdb on an executable
via xemacs on the command line please tell me...).

• Plot will start an Xgnuplot-based interface to gnuplot An Help menu available there
to guide you further in the arcanes of gnuplot, but we recommend that you also browse
gnuplot documentation.

At some point GNU MCSim may do symbolic computations, wash dishes, clothes and
cars, and write poems, but for now, that’s all, folks!
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Appendix A Keywords List

You should use the following reserved keywords as prescribed when building your models
and input files:

• Add

• Beta

• BetaRandom

• Binomial

• BinomialBetaRandom

• BinomialRandom

• CDFNormal

• CalcDelay

• CalcOutputs

• Cauchy

• CauchyRandom

• Chi2

• Chi2Random

• Compartment

• Cvodes

• Data

• DefaultSim

• Density

• Distrib

• dt

• Dynamics

• End

• erfc

• Euler

• Events

• ExpRandom

• Experiment

• Exponential

• GGammaRandom

• Gamma

• GammaRandom

• GetSeed

• HalfCauchy

• HalfNormal

• IFN
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• Initialize

• Inline

• Inputs

• Integrate

• InvGGammaRandom

• InvGamma

• InvTemperature

• Jacobian

• Level

• Likelihood

• lnDFNormal

• lnGamma

• LogNormal

• LogNormalRandom

• LogNormal v

• LogUniform

• LogUniformRandom

• Lsodes

• MCMC

• MonteCarlo

• Multiply

• NegativeBinomial

• NegativeBinomialRandom

• NDoses

• Normal

• NormalRandom

• Normal cv

• Normal v

• OptimalDesign

• OutputFile

• Outputs

• PerDose

• PerExp

• Piecewise

• PiecewiseRandom

• PKTemplate

• Poisson

• PoissonRandom

• Prediction
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• Print

• PrintStep

• Replace

• SBMLModels

• Scale

• SetPoints

• SetSeed

• SimType

• Simulation

• Spikes

• StartTime

• States

• StudentT

• StudentTRandom

• t

• TruncInvGamma

• TruncInvGGammaRandom

• TruncLogNormal

• TruncLogNormalRandom

• TruncLogNormal v

• TruncNormal

• TruncNormalRandom

• TruncNormal cv

• TruncNormal v

• Uniform

• UniformRandom

• useID
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Appendix B Examples

You will find here some examples of model description files and simulation input files.

B.1 linear.model

# Linear Model with a random component

# y = A + B * time + N(0,SD_true)

# Setting SD_true to zero gives the deterministic version

#---------------------------------------------------------

# Outputs

Outputs = {y};

# Model Parameters

A = 0;

B = 1;

SD_true = 0;

SD_esti = 0;

CalcOutputs { y = A + B * t + NormalRandom(0,SD_true); }

B.2 1cpt.model: A example model description file

# One Compartment Model

# First order input and output

#---------------------------------------------------------

# Inputs

Inputs = {Dose};

# Outputs

Outputs = {C_central, AUC, ln_C_central, ln_AUC,

SD_C_computed, SD_A_computed};

# Model Parameters

ka = 1;

ke = 0.5;

F = 1;

V = 2;

# Statistical Parameters

SDb_ka = 0;

SDw_ka = 0;

SDb_ke = 0;

SDw_ke = 0;

SDb_V = 0;

min_F = 0;
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max_F = 0;

SD_C_central = 0;

SD_AUC = 0;

CV_C_cen = 0;

CV_AUC = 0;

CV_C_cen_true = 0;

CV_AUC_true = 0;

# Calculate Outputs

CalcOutputs {

# algebraic equation for C_central

C_central = (ka != ke ?

(exp(-ke * t) - exp(-ka * t)) *

F * ka * Dose / (V * (ka - ke))):

exp(-ka * t) * ka * t * F * Dose / V);

# algebraic equation for AUC

AUC = (ka != ke ?

((1 - exp(-ke * t)) / ke -

(1 - exp(-ka * t)) / ka) * F * ka * Dose / (V * (ka - ke))) :

F * Dose * (1 - (1 + ka * t) * exp(-ka * t)) / (V * ke));

C_central = C_central + NormalRandom(0, C_central * CV_C_cen_true);

AUC = AUC + NormalRandom(0, AUC * CV_AUC_true);

ln_C_central = (C_central > 0 ? log (C_central) : -100);

ln_AUC = (AUC > 0 ? log (AUC) : -100);

SD_C_computed = (C_central > 0 ? C_central * CV_C_cen : 1e-10);

SD_A_computed = (AUC > 0 ? AUC * CV_AUC : 1e-10);

} # End of output calculations

End.
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B.3 perc.model: A example model description file

#---------------------------------------------------------

# perc.model

# A four compartment model of Tetrachloroethylene (PERC)

# and total metabolites.

#---------------------------------------------------------

# States are quantities of PERC and metabolite formed, they can be

# output

States = {Q_fat, # Quantity of PERC in the fat

Q_wp, # ... in the well-perfused compartment

Q_pp, # ... in the poorly-perfused compartment

Q_liv, # ... in the liver

Q_exh, # ... exhaled

Qmet}; # Quantity of metabolite formed

# Extra outputs are concentrations at various points

Outputs = {C_liv, # mg/l in the liver

C_alv, # ... in the alveolar air

C_exh, # ... in the exhaled air

C_ven, # ... in the venous blood

Pct_metabolized, # % of the dose metabolized

C_exh_ug}; # ug/l in the exhaled air

Inputs = {C_inh} # Concentration inhaled

# Constants

# Conversions from/to ppm: 72 ppm = .488 mg/l

PPM_per_mg_per_l = 72.0 / 0.488;

mg_per_l_per_PPM = 1/PPM_per_mg_per_l;

#---------------------------------------------------------

# Nominal values for parameters

# Units:

# Volumes: liter

# Vmax: mg / minute

# Weights: kg

# Km: mg / minute

# Time: minute

# Flows: liter / minute

#---------------------------------------------------------

InhMag = 0.0;
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Period = 0.0;

Exposure = 0.0;

C_inh = PerDose (InhMag, Period, 0.0, Exposure);

LeanBodyWt = 55; # lean body weight

# Percent mass of tissues with ranges shown

Pct_M_fat = .16; # % total body mass

Pct_LM_liv = .03; # liver, % of lean mass

Pct_LM_wp = .17; # well perfused tissue, % of lean mass

Pct_LM_pp = .70; # poorly perfused tissue, recomputed in scale

# Percent blood flows to tissues

Pct_Flow_fat = .09;

Pct_Flow_liv = .34;

Pct_Flow_wp = .50; # will be recomputed in scale

Pct_Flow_pp = .07;

# Tissue/blood partition coeficients

PC_fat = 144;

PC_liv = 4.6;

PC_wp = 8.7;

PC_pp = 1.4;

PC_art = 12.0;

Flow_pul = 8.0; # Pulmonary ventilation rate (minute volume)

Vent_Perf = 1.14; # ventilation over perfusion ratio

sc_Vmax = .0026; # scaling coeficient of body weight for Vmax

Km = 1.0;

# The following parameters are calculated from the above values in

# the Scale section before the start of each simulation.

# They are left uninitialized here.

BodyWt = 0;

V_fat = 0; # Actual volume of tissues

V_liv = 0;

V_wp = 0;

V_pp = 0;
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Flow_fat = 0; # Actual blood flows through tissues

Flow_liv = 0;

Flow_wp = 0;

Flow_pp = 0;

Flow_tot = 0; # Total blood flow

Flow_alv = 0; # Alveolar ventilation rate

Vmax = 0; # kg/minute

#---------------------------------------------------------

# Dynamics

# Define the dynamics of the simulation. This section is

# calculated with each integration step. It includes

# specification of differential equations.

#---------------------------------------------------------

Dynamics {

# Venous blood concentrations at the organ exit

Cout_fat = Q_fat / (V_fat * PC_fat);

Cout_wp = Q_wp / (V_wp * PC_wp);

Cout_pp = Q_pp / (V_pp * PC_pp);

Cout_liv = Q_liv / (V_liv * PC_liv);

# Sum of Flow * Concentration for all compartments

dQ_ven = Flow_fat * Cout_fat + Flow_wp * Cout_wp

+ Flow_pp * Cout_pp + Flow_liv * Cout_liv;

# Venous blood concentration

C_ven = dQ_ven / Flow_tot;

# Arterial blood concentration

# Convert input given in ppm to mg/l to match other units

C_art = (Flow_alv * C_inh / PPM_per_mg_per_l + dQ_ven) /

(Flow_tot + Flow_alv / PC_art);

# Alveolar air concentration

C_alv = C_art / PC_art;

# Exhaled air concentration
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C_exh = 0.7 * C_alv + 0.3 * C_inh / PPM_per_mg_per_l;

# Differentials

dt (Q_exh) = Flow_alv * C_alv;

dt (Q_fat) = Flow_fat * (C_art - Cout_fat);

dt (Q_wp) = Flow_wp * (C_art - Cout_wp);

dt (Q_pp) = Flow_pp * (C_art - Cout_pp);

# Quantity metabolized in liver

dQmet_liv = Vmax * Q_liv / (Km + Q_liv);

dt (Q_liv) = Flow_liv * (C_art - Cout_liv) - dQmet_liv;

# Metabolite formation

dt (Qmet) = dQmet_liv;

} # End of Dynamics

#---------------------------------------------------------

# Scale

# Scale certain model parameters and resolve dependencies

# between parameters. Generally the scaling involves a

# change of units, or conversion from percentage to actual

# units.

#---------------------------------------------------------

Scale {

# Volumes scaled to actual volumes

BodyWt = LeanBodyWt/(1 - Pct_M_fat);

V_fat = Pct_M_fat * BodyWt/0.92; # density of fat = 0.92 g/ml

V_liv = Pct_LM_liv * LeanBodyWt;

V_wp = Pct_LM_wp * LeanBodyWt;

V_pp = 0.9 * LeanBodyWt - V_liv - V_wp; # 10% bones

# Calculate Flow_alv from total pulmonary flow

Flow_alv = Flow_pul * 0.7;

# Calculate total blood flow from the alveolar ventilation rate and

# the V/P ratio.
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Flow_tot = Flow_alv / Vent_Perf;

# Calculate actual blood flows from total flow and percent flows

Flow_fat = Pct_Flow_fat * Flow_tot;

Flow_liv = Pct_Flow_liv * Flow_tot;

Flow_pp = Pct_Flow_pp * Flow_tot;

Flow_wp = Flow_tot - Flow_fat - Flow_liv - Flow_pp;

# Vmax (mass/time) for Michaelis-Menten metabolism is scaled

# by multiplication of bdw^0.7

Vmax = sc_Vmax * exp (0.7 * log (LeanBodyWt));

} # End of model scaling

#---------------------------------------------------------

# CalcOutputs

# The following outputs are only calculated just before values

# are saved. They are not calculated with each integration step.

#---------------------------------------------------------

CalcOutputs {

# Fraction of TCE metabolized per day

Pct_metabolized = (InhMag ?

Qmet / (1440 * Flow_alv * InhMag * mg_per_l_per_PPM):

0);

C_exh_ug = C_exh * 1000; # milli to micrograms

} # End of output calculation

End.
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B.4 perc.lsodes.in

#---------------------------------------------------------

# perc.lsodes.in

#

#---------------------------------------------------------

Integrate (Lsodes, 1e-4, 1e-6, 1);

#---------------------------------------------------------

# The following is a simulation of one of Dr. Monster’s

# exposure experiments described in "Kinetics of Tetracholoroethylene

# in Volunteers; Influence of Exposure Concentration and Work Load,"

# A.C. Monster, G. Boersma, and H. Steenweg,

# Int. Arch. Occup. Environ. Health, v42, 1989, pp303-309

#

# The paper documents measurements of levels of TCE in blood and

# exhaled air for a group of 6 subjects exposed to

# different concentrations of PERC in air.

#

# Inhalation is specified as a dose of magnitude InhMag for the

# given Exposure time.

#

# Inhalation is given in ppm

#---------------------------------------------------------

Simulation {

InhMag = 72; # ppm

Period = 1e10; # Only one dose

Exposure = 240; # 4 hour exposure

# measurements before end of exposure

# and at [5’ 30’] 2hr 18 42 67 91 139 163

Print (C_exh_ug, 239.9 245 270 360 1320 2760 4260 5700 8580 10020 );

Print (C_ven, 239.9 360 1320 2760 4260 5700 8580 10020 );

}

END.



Concept Index 79

Concept Index

’
’ !=’ operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
’#’ sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
’-’ (hyphen) sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
’:’ sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
’;’ sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
’<’ operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
’<=’ operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
’<>’ operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
’=’ sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
’==’ operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
’>’ operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
’>=’ operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
’?’ sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
’[]’ (square brackets) notation . . . . . . . . . . . . . . . . . . 22
’ ’ (underscore) in templates . . . . . . . . . . . . . . . . . . . 34
’ ’ (underscore) vector notation . . . . . . . . . . . . . . . . 23

A
Algebraic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Analyzing simulation output . . . . . . . . . . . . . . . . . . . 58
Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B
Beta distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
BetaRandom() function . . . . . . . . . . . . . . . . . . . . . . . . 26
Bibliographic references . . . . . . . . . . . . . . . . . . . . . . . . 65
Binomial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 48
BinomialBetaRandom() function . . . . . . . . . . . . . . . 26
BinomialRandom() function . . . . . . . . . . . . . . . . . . . . 26
Blank lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

C
CalcOutputs, output section . . . . . . . . . . . . . . . . . . . 31
Cauchy distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
CauchyRandom() function . . . . . . . . . . . . . . . . . . . . . . 26
CDFNormal() function . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Chi-square distribution . . . . . . . . . . . . . . . . . . . . . . . . 48
Chi2 distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Chi2Random() function . . . . . . . . . . . . . . . . . . . . . . . . 26
Colon conditional assignment . . . . . . . . . . . . . . . . . . 21
Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Common pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Comparison operators . . . . . . . . . . . . . . . . . . . . . . . . . 21
Compartment keyword . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Complementary error function . . . . . . . . . . . . . . . . . 26
Conditional assignment . . . . . . . . . . . . . . . . . . . . . . . . 21
Cumulative density function, Normal . . . . . . . . . . 26
Cvodes integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

D
Data() qualifier, for use in Distrib() . . . . . . . . . . 50
Data() specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Defining models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Delay differential equations . . . . . . . . . . . . . . . . . . . . 31
Density function, Normal . . . . . . . . . . . . . . . . . . . . . . 26
Density() specification . . . . . . . . . . . . . . . . . . . . . . . . 50
Derivative specification . . . . . . . . . . . . . . . . . . . . . . . . 30
Differential models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Discrete-time models . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Distrib() specification . . . . . . . . . . . . . . . . . . . . . . . . 48
Distribution, Beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Distribution, Binomial . . . . . . . . . . . . . . . . . . . . . . . . 48
Distribution, Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Distribution, Chi-square . . . . . . . . . . . . . . . . . . . . . . . 48
Distribution, Chi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Distribution, Exponential . . . . . . . . . . . . . . . . . . . . . 48
Distribution, Gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Distribution, HalfCauchy . . . . . . . . . . . . . . . . . . . . . . 48
Distribution, HalfNormal . . . . . . . . . . . . . . . . . . . . . . 49
Distribution, inverse-gamma . . . . . . . . . . . . . . . . . . . 49
Distribution, InvGamma . . . . . . . . . . . . . . . . . . . . . . . . 49
Distribution, LogNormal . . . . . . . . . . . . . . . . . . . . . . . 49
Distribution, LogNormal_v . . . . . . . . . . . . . . . . . . . . . 49
Distribution, Loguniform . . . . . . . . . . . . . . . . . . . . . . 49
Distribution, NegativeBinomial . . . . . . . . . . . . . . . 49
Distribution, Normal . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Distribution, Normal_cv . . . . . . . . . . . . . . . . . . . . . . . 49
Distribution, Normal_v . . . . . . . . . . . . . . . . . . . . . . . . 49
Distribution, Piecewise . . . . . . . . . . . . . . . . . . . . . . . 49
Distribution, Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Distribution, StudentT . . . . . . . . . . . . . . . . . . . . . . . . 49
Distribution, triangular . . . . . . . . . . . . . . . . . . . . . . . . 49
Distribution, truncated inverse-gamma . . . . . . . . . 49
Distribution, truncated lognormal . . . . . . . . . . . . . . 49
Distribution, truncated normal . . . . . . . . . . . . . . . . . 50
Distribution, TruncInvGamma . . . . . . . . . . . . . . . . . . . 49
Distribution, TruncLogNormal . . . . . . . . . . . . . . . . . . 49
Distribution, TrunclogNormal_v . . . . . . . . . . . . . . . 50
Distribution, TruncNormal . . . . . . . . . . . . . . . . . . . . . 50
Distribution, Truncnormal_cv . . . . . . . . . . . . . . . . . . 50
Distribution, Truncnormal_v . . . . . . . . . . . . . . . . . . . 50
Distribution, Uniform . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Distribution, UserSpecifiedLL . . . . . . . . . . . . . . . . 50
Documentation license . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Dt() operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Dynamics section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

E
End keyword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
erfc() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Error function, complementary . . . . . . . . . . . . . . . . . 26



80 GNU MCSim User’s Manual

Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Euler integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Events specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 71
Experiment sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Experimental design optimization . . . . . . . . . . . . . . 10
Exponential distribution . . . . . . . . . . . . . . . . . . . . . . 48
ExpRandom() function . . . . . . . . . . . . . . . . . . . . . . . . . . 26

F
Function, BetaRandom() . . . . . . . . . . . . . . . . . . . . . . . 26
Function, BinomialBetaRandom() . . . . . . . . . . . . . . 26
Function, BinomialRandom() . . . . . . . . . . . . . . . . . . . 26
Function, CauchyRandom() . . . . . . . . . . . . . . . . . . . . . 26
Function, CDFNormal() . . . . . . . . . . . . . . . . . . . . . . . . 26
Function, Chi2Random() . . . . . . . . . . . . . . . . . . . . . . . 26
Function, erfc() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Function, ExpRandom() . . . . . . . . . . . . . . . . . . . . . . . . 26
Function, GammaRandom() . . . . . . . . . . . . . . . . . . . . . . 26
Function, GetSeed() . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Function, GGammaRandom() . . . . . . . . . . . . . . . . . . . . . 26
Function, Inline, in line . . . . . . . . . . . . . . . . . . . . . . . . 29
Function, input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Function, InvGGammaRandom() . . . . . . . . . . . . . . . . . 26
Function, lnDFNormal() . . . . . . . . . . . . . . . . . . . . . . . 26
Function, lnGamma() . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Function, LogNormalRandom() . . . . . . . . . . . . . . . . . 26
Function, LogUniformRandom() . . . . . . . . . . . . . . . . 26
Function, NDoses() . . . . . . . . . . . . . . . . . . . . . . . . 28, 40
Function, NegativeBinomialRandom() . . . . . . . . . 26
Function, NormalRandom() . . . . . . . . . . . . . . . . . . . . . 26
Function, PerDose() . . . . . . . . . . . . . . . . . . . . . . . 27, 40
Function, PerExp() . . . . . . . . . . . . . . . . . . . . . . . . 27, 40
Function, PerTransit() . . . . . . . . . . . . . . . . . . . . 27, 40
Function, PiecewiseRandom() . . . . . . . . . . . . . . . . . 26
Function, PoissonRandom() . . . . . . . . . . . . . . . . . . . . 26
Function, SetSeed() . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Function, special . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Function, Spikes() . . . . . . . . . . . . . . . . . . . . . . . . 28, 40
Function, StudentTRandom() . . . . . . . . . . . . . . . . . . . 27
Function, TruncInvGGammaRandom() . . . . . . . . . . . . 27
Function, TruncLogNormalRandom() . . . . . . . . . . . . 27
Function, TruncNormalRandom() . . . . . . . . . . . . . . . 27
Function, UniformRandom() . . . . . . . . . . . . . . . . . . . . 27
Functions, input . . . . . . . . . . . . . . . . . . . . . . . . . . . 27, 40
Functions, special . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

G
Gamma distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
GammaRandom() function . . . . . . . . . . . . . . . . . . . . . . . 26
General input file syntax . . . . . . . . . . . . . . . . . . . . . . . 39
GetSeed() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
GGammaRandom() function . . . . . . . . . . . . . . . . . . . . . . 26
Global specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

H
HalfCauchy distribution . . . . . . . . . . . . . . . . . . . . . . . 48
HalfNormal distribution . . . . . . . . . . . . . . . . . . . . . . . 49

I
Initialize, initialization section, . . . . . . . . . . . . . . . . . 29
Inline, in line functions . . . . . . . . . . . . . . . . . . . . . . . . 29
Input functions . . . . . . . . . . . . . . . . . . . . . . . . . 21, 27, 40
Input variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Integrate() specification . . . . . . . . . . . . . . . . . . . . . . 41
Integration routine, Cvodes . . . . . . . . . . . . . . . . . . . . 41
Integration routine, Euler . . . . . . . . . . . . . . . . . . . . . 41
Integration routine, Lsodes . . . . . . . . . . . . . . . . . . . . 41
Integration variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Inverse-gamma distribution . . . . . . . . . . . . . . . . . . . . 49
InvGamma distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 49
InvGGammaRandom() function . . . . . . . . . . . . . . . . . . . 26
InvTemperature() specification . . . . . . . . . . . . . . . . 44

K
Keyword, Compartment . . . . . . . . . . . . . . . . . . . . . . . . 34
Keywords list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

L
Level sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Likelihood() specification . . . . . . . . . . . . . . . . . . . . 50
lnDFNormal() function . . . . . . . . . . . . . . . . . . . . . . . . 26
lnGamma() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Logical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
LogNormal distribution . . . . . . . . . . . . . . . . . . . . . . . . 49
LogNormal_v distribution . . . . . . . . . . . . . . . . . . . . . . 49
LogNormalRandom() function . . . . . . . . . . . . . . . . . . . 26
LogUniform distribution . . . . . . . . . . . . . . . . . . . . . . . 49
LogUniformRandom() function . . . . . . . . . . . . . . . . . . 26
Lsodes integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

M
Major changes in version 5.4.0 . . . . . . . . . . . . . . . . . 10
Major changes in version 5.5.0 . . . . . . . . . . . . . . . . . 10
Major changes in version 5.6.0 . . . . . . . . . . . . . . . . . 11
Major changes in version 6.0.0 . . . . . . . . . . . . . . . . . 11
Major changes in version 6.1.0 . . . . . . . . . . . . . . . . . 12
Major changes in version 6.2.0 . . . . . . . . . . . . . . . . . 12
makemcsim script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
makemcsimd script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
makemcsimp script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
makemcsims script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Markov-chain Monte Carlo simulations . . . . . 10, 43
MCMC simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 43
MCMC() specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
mod syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



Concept Index 81

mod usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Model definition files . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Model types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Models, algebraic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Models, differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Models, discrete-time . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Models, statistical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Monte Carlo simulations . . . . . . . . . . . . . . . . . . . 10, 42
MonteCarlo() specification . . . . . . . . . . . . . . . . . . . . 42
MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

N
NDoses() function . . . . . . . . . . . . . . . . . . . . . . . . . 28, 40
NegativeBinomial distribution . . . . . . . . . . . . . . . . 49
NegativeBinomialRandom() function . . . . . . . . . . . 26
Normal cumulative density function . . . . . . . . . . . . 26
Normal density function . . . . . . . . . . . . . . . . . . . . . . . 26
Normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Normal_cv distribution . . . . . . . . . . . . . . . . . . . . . . . . 49
Normal_v distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 49
NormalRandom() function . . . . . . . . . . . . . . . . . . . . . . 26

O
OptimalDesign() specification . . . . . . . . . . . . . . . . . 46
Output specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Output variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
OutputFile() specification . . . . . . . . . . . . . . . . . . . . 41
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

P
Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Parallelized code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Parameter declaration . . . . . . . . . . . . . . . . . . . . . . . . . 23
Parameter scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
PerDose() function . . . . . . . . . . . . . . . . . . . . . . . . 27, 40
PerExp() function . . . . . . . . . . . . . . . . . . . . . . . . . 27, 40
PerTransit() function . . . . . . . . . . . . . . . . . . . . . 27, 40
Piecewise distribution . . . . . . . . . . . . . . . . . . . . . . . . 49
PiecewiseRandom() function . . . . . . . . . . . . . . . . . . . 26
Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
PoissonRandom() function . . . . . . . . . . . . . . . . . . . . . 26
Prediction() qualifier, for use in Distrib() . . . 50
Prediction() specification (in Simulation

context) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Print() specification . . . . . . . . . . . . . . . . . . . . . . . . . . 54
PrintStep() specification . . . . . . . . . . . . . . . . . . . . . . 54

Q
Qualifier, Data() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Qualifier, Prediction() . . . . . . . . . . . . . . . . . . . . . . . 50

R
R deSolve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Random number, beta . . . . . . . . . . . . . . . . . . . . . . . . . 26
Random number, binomial . . . . . . . . . . . . . . . . . . . . . 26
Random number, binomial-beta . . . . . . . . . . . . . . . . 26
Random number, Cauchy . . . . . . . . . . . . . . . . . . . . . . 26
Random number, Chi-squared . . . . . . . . . . . . . . . . . 26
Random number, exponential . . . . . . . . . . . . . . . . . . 26
Random number, gamma . . . . . . . . . . . . . . . . . . . . . . 26
Random number, general-gamma . . . . . . . . . . . . . . 26
Random number, inverse-gamma . . . . . . . . . . . . . . . 26
Random number, lognormal . . . . . . . . . . . . . . . . . . . 26
Random number, loguniform . . . . . . . . . . . . . . . . . . . 26
Random number, negative binomial . . . . . . . . . . . . 26
Random number, normal . . . . . . . . . . . . . . . . . . . . . . 26
Random number, piecewise . . . . . . . . . . . . . . . . . . . . 26
Random number, Poisson . . . . . . . . . . . . . . . . . . . . . . 26
Random number, Student t . . . . . . . . . . . . . . . . . . . . 27
Random number, truncated inverse-gamma . . . . 27
Random number, truncated lognormal . . . . . . . . . 27
Random number, truncated normal . . . . . . . . . . . . 27
Random number, uniform . . . . . . . . . . . . . . . . . . . . . . 27
Random seed, reading its value . . . . . . . . . . . . . . . . 26
Random seed, setting its value . . . . . . . . . . . . . . . . . 26
Reserved keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Running simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

S
SBML models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Scale, scaling section . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Semi-colon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
SetPoints simulations . . . . . . . . . . . . . . . . . . . . . . . . . 10
SetPoints() specification . . . . . . . . . . . . . . . . . . . . . . 45
SetSeed() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Setting-up statistical models . . . . . . . . . . . . . . . . . . . 55
SimType() specification . . . . . . . . . . . . . . . . . . . . . . . . 52
Simulation definition files . . . . . . . . . . . . . . . . . . . . . . 37
Simulation file, syntax . . . . . . . . . . . . . . . . . . . . . . . . . 38
Simulation sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Software license . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Special functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 25
Specification, Data() . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Specification, Density() . . . . . . . . . . . . . . . . . . . . . . . 50
Specification, Distrib() . . . . . . . . . . . . . . . . . . . . . . . 48
Specification, Integrate() . . . . . . . . . . . . . . . . . . . . . 41
Specification, InvTemperature() . . . . . . . . . . . . . . . 44
Specification, Likelihood() . . . . . . . . . . . . . . . . . . . 50
Specification, MCMC() . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Specification, MonteCarlo() . . . . . . . . . . . . . . . . . . . 42
Specification, OptimalDesign() . . . . . . . . . . . . . . . . 46
Specification, OutputFile() . . . . . . . . . . . . . . . . . . . 41
Specification, Print() . . . . . . . . . . . . . . . . . . . . . . . . . 54
Specification, PrintStep() . . . . . . . . . . . . . . . . . . . . . 54
Specification, SetPoints() . . . . . . . . . . . . . . . . . . . . . 45
Specification, SimType() . . . . . . . . . . . . . . . . . . . . . . . 52
Specification, StartTime() . . . . . . . . . . . . . . . . . . . . . 54
Specifications, global . . . . . . . . . . . . . . . . . . . . . . . . . . 40



82 GNU MCSim User’s Manual

Specifying simulations . . . . . . . . . . . . . . . . . . . . . . . . . 37
Spikes() function . . . . . . . . . . . . . . . . . . . . . . . . . 28, 40
Square brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
StartTime() specification . . . . . . . . . . . . . . . . . . . . . . 54
State discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
State variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Statistical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Structural models . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 25
StudentT distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 49
StudentTRandom() function . . . . . . . . . . . . . . . . . . . . 27
Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Syntax for mod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Syntax of simulation files . . . . . . . . . . . . . . . . . . . . . . 38

T
Tempered MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Template models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Tests, logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Triangular distribution . . . . . . . . . . . . . . . . . . . . . . . . 49
Truncated Inverse-gamma distribution . . . . . . . . . 49
Truncated lognormal distribution . . . . . . . . . . . . . . 49
Truncated normal distribution . . . . . . . . . . . . . . . . . 50
TruncInvGamma distribution . . . . . . . . . . . . . . . . . . . . 49
TruncInvGGammaRandom() function . . . . . . . . . . . . . 27
TruncLogNormal distribution . . . . . . . . . . . . . . . . . . . 49
TruncLogNormal_v distribution . . . . . . . . . . . . . . . . 50
TruncLogNormalRandom() function . . . . . . . . . . . . . 27

TruncNormal distribution . . . . . . . . . . . . . . . . . . . . . . 50
TruncNormal_cv distribution . . . . . . . . . . . . . . . . . . . 50
TruncNormal_v distribution . . . . . . . . . . . . . . . . . . . . 50
TruncNormalRandom() function . . . . . . . . . . . . . . . . 27

U
Underscore syntax for vectors . . . . . . . . . . . . . . . . . . 23
Underscore use for template models . . . . . . . . . . . . 34
Uniform distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
UniformRandom() function . . . . . . . . . . . . . . . . . . . . . 27
UserSpecifiedLL distribution . . . . . . . . . . . . . . . . . . 50
Using deSolve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

V
Variable names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

W
Working Through an Example . . . . . . . . . . . . . . . . . 17
Writing and Compiling structural models . . . . . . 19

X
xmcsim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63


	Software and Documentation Licenses
	Software license
	Documentation license

	Overview
	General procedure
	Types of simulations
	Major changes introduced with version 5.4.0
	Major changes introduced with version 5.5.0
	Major changes introduced with version 5.6.0
	Major changes introduced with version 6.0.0
	Major changes introduced with version 6.1.0
	Major changes introduced with version 6.2.0

	Installation
	System requirements
	Distribution
	Machine-specific installation
	Unix and GNU/Linux operating systems
	Other operating systems


	Working Through an Example
	Writing and Compiling Structural Models
	Using mod to preprocess model description files
	Using makemcsim to preprocess and compile model files
	Syntax of the model description file
	General syntax
	Declarations of global variables
	Model types
	Special functions
	Input functions
	In line functions
	Model initialization
	Dynamics section
	Delay differential equations
	Output calculations
	Comments on style

	Reading SBML models and applying a template
	Working with the R package deSolve

	Running Simulations
	Using the compiled program
	Syntax of the simulation definition file
	General input file syntax
	Input functions (revisited)
	Global specifications
	OutputFile() specification
	Integrate() specification
	MonteCarlo() specification
	MCMC() specification
	SetPoints() specification
	OptimalDesign() specification
	Distrib() specification
	SimType() specification

	Specifying basic conditions to simulate
	Simulation sections
	Events() specification for state discontinuities
	StartTime() specification
	Print() specification
	PrintStep() specification

	Setting-up statistical models
	Level sections
	Data() specification


	Analyzing simulation output
	Error handling

	Common Pitfalls
	XMCSim
	Bibliographic References
	Keywords List
	Examples
	linear.model
	1cpt.model: A example model description file
	perc.model: A example model description file
	perc.lsodes.in

	Concept Index

