
GNU Octave
A high-level interactive language for numerical computations

Edition 3 for Octave version 3.6.1
February 2011

Free Your Numbers

John W. Eaton
David Bateman
Søren Hauberg

Copyright c© 1996, 1997, 1999, 2000, 2001, 2002, 2005, 2006, 2007, 2011 John W. Eaton.

This is the third edition of the Octave documentation, and is consistent with version 3.6.1
of Octave.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

Portions of this document have been adapted from the gawk, readline, gcc, and C library
manuals, published by the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301–1307, USA.

i

Table of Contents

Preface . 1
Acknowledgements . 1
How You Can Contribute to Octave . 4
Distribution . 5

1 A Brief Introduction to Octave 7
1.1 Running Octave . 7
1.2 Simple Examples . 7

1.2.1 Elementary Calculations . 7
1.2.2 Creating a Matrix . 8
1.2.3 Matrix Arithmetic . 8
1.2.4 Solving Systems of Linear Equations . 8
1.2.5 Integrating Differential Equations . 9
1.2.6 Producing Graphical Output . 10
1.2.7 Editing What You Have Typed . 10
1.2.8 Help and Documentation . 10

1.3 Conventions . 11
1.3.1 Fonts . 11
1.3.2 Evaluation Notation . 11
1.3.3 Printing Notation . 11
1.3.4 Error Messages . 12
1.3.5 Format of Descriptions . 12

1.3.5.1 A Sample Function Description . 12
1.3.5.2 A Sample Command Description . 13
1.3.5.3 A Sample Variable Description . 13

2 Getting Started . 15
2.1 Invoking Octave from the Command Line . 15

2.1.1 Command Line Options . 15
2.1.2 Startup Files . 18

2.2 Quitting Octave . 19
2.3 Commands for Getting Help . 19
2.4 Command Line Editing . 23

2.4.1 Cursor Motion . 24
2.4.2 Killing and Yanking . 24
2.4.3 Commands For Changing Text . 25
2.4.4 Letting Readline Type For You . 25
2.4.5 Commands For Manipulating The History 26
2.4.6 Customizing readline . 29
2.4.7 Customizing the Prompt . 29
2.4.8 Diary and Echo Commands . 31

2.5 How Octave Reports Errors . 32

ii GNU Octave

2.6 Executable Octave Programs . 33
2.7 Comments in Octave Programs . 34

2.7.1 Single Line Comments . 34
2.7.2 Block Comments . 34
2.7.3 Comments and the Help System . 35

3 Data Types . 37
3.1 Built-in Data Types . 37

3.1.1 Numeric Objects . 39
3.1.2 Missing Data . 40
3.1.3 String Objects . 40
3.1.4 Data Structure Objects . 40
3.1.5 Cell Array Objects . 40

3.2 User-defined Data Types . 41
3.3 Object Sizes . 41

4 Numeric Data Types . 45
4.1 Matrices . 46

4.1.1 Empty Matrices . 49
4.2 Ranges . 50
4.3 Single Precision Data Types . 51
4.4 Integer Data Types . 52

4.4.1 Integer Arithmetic . 53
4.5 Bit Manipulations . 54
4.6 Logical Values . 57
4.7 Promotion and Demotion of Data Types . 58
4.8 Predicates for Numeric Objects . 58

5 Strings . 63
5.1 Escape Sequences in String Constants . 63
5.2 Character Arrays . 64
5.3 Creating Strings . 65

5.3.1 Concatenating Strings . 65
5.3.2 Conversion of Numerical Data to Strings 69

5.4 Comparing Strings . 70
5.5 Manipulating Strings . 72
5.6 String Conversions . 82
5.7 Character Class Functions . 87

iii

6 Data Containers . 91
6.1 Structures . 91

6.1.1 Basic Usage and Examples . 91
6.1.2 Structure Arrays . 94
6.1.3 Creating Structures . 96
6.1.4 Manipulating Structures . 98
6.1.5 Processing Data in Structures . 101

6.2 Cell Arrays . 102
6.2.1 Basic Usage of Cell Arrays . 102
6.2.2 Creating Cell Array . 103
6.2.3 Indexing Cell Arrays . 106
6.2.4 Cell Arrays of Strings . 108
6.2.5 Processing Data in Cell Arrays . 109

6.3 Comma Separated Lists . 110
6.3.1 Comma Separated Lists Generated from Cell Arrays 110
6.3.2 Comma Separated Lists Generated from Structure Arrays

. 111

7 Variables . 113
7.1 Global Variables . 114
7.2 Persistent Variables . 116
7.3 Status of Variables . 117

8 Expressions . 123
8.1 Index Expressions . 123

8.1.1 Advanced Indexing . 124
8.2 Calling Functions . 127

8.2.1 Call by Value . 127
8.2.2 Recursion . 128

8.3 Arithmetic Operators . 129
8.4 Comparison Operators . 132
8.5 Boolean Expressions . 133

8.5.1 Element-by-element Boolean Operators 133
8.5.2 Short-circuit Boolean Operators . 135

8.6 Assignment Expressions . 137
8.7 Increment Operators . 139
8.8 Operator Precedence . 139

9 Evaluation . 141
9.1 Calling a Function by its Name . 141
9.2 Evaluation in a Different Context . 143

iv GNU Octave

10 Statements . 145
10.1 The if Statement . 145
10.2 The switch Statement . 147

10.2.1 Notes for the C Programmer . 148
10.3 The while Statement . 149
10.4 The do-until Statement . 150
10.5 The for Statement . 150

10.5.1 Looping Over Structure Elements . 151
10.6 The break Statement . 152
10.7 The continue Statement . 153
10.8 The unwind_protect Statement . 154
10.9 The try Statement . 154
10.10 Continuation Lines . 155

11 Functions and Scripts . 157
11.1 Defining Functions . 157
11.2 Multiple Return Values . 159
11.3 Variable-length Argument Lists . 163
11.4 Ignoring Arguments . 164
11.5 Variable-length Return Lists . 165
11.6 Returning from a Function . 166
11.7 Default Arguments . 166
11.8 Function Files . 167

11.8.1 Manipulating the Load Path . 170
11.8.2 Subfunctions . 172
11.8.3 Private Functions . 172
11.8.4 Overloading and Autoloading . 173
11.8.5 Function Locking . 173
11.8.6 Function Precedence . 175

11.9 Script Files . 175
11.10 Function Handles, Inline Functions, and Anonymous Functions

. 177
11.10.1 Function Handles . 177
11.10.2 Anonymous Functions . 178
11.10.3 Inline Functions . 178

11.11 Commands . 179
11.12 Organization of Functions Distributed with Octave 179

12 Errors and Warnings . 181
12.1 Handling Errors . 181

12.1.1 Raising Errors . 181
12.1.2 Catching Errors . 184
12.1.3 Recovering From Errors . 186

12.2 Handling Warnings . 186
12.2.1 Issuing Warnings . 186
12.2.2 Enabling and Disabling Warnings . 188

v

13 Debugging . 193
13.1 Entering Debug Mode . 193
13.2 Leaving Debug Mode . 194
13.3 Breakpoints . 194
13.4 Debug Mode . 196
13.5 Call Stack . 197
13.6 Profiling . 198
13.7 Profiler Example . 199

14 Input and Output . 203
14.1 Basic Input and Output . 203

14.1.1 Terminal Output . 203
14.1.1.1 Paging Screen Output . 206

14.1.2 Terminal Input . 208
14.1.3 Simple File I/O . 209

14.1.3.1 Saving Data on Unexpected Exits 216
14.2 C-Style I/O Functions . 218

14.2.1 Opening and Closing Files . 219
14.2.2 Simple Output . 220
14.2.3 Line-Oriented Input . 221
14.2.4 Formatted Output . 222
14.2.5 Output Conversion for Matrices . 223
14.2.6 Output Conversion Syntax . 223
14.2.7 Table of Output Conversions . 224
14.2.8 Integer Conversions . 225
14.2.9 Floating-Point Conversions . 225
14.2.10 Other Output Conversions . 226
14.2.11 Formatted Input . 227
14.2.12 Input Conversion Syntax . 228
14.2.13 Table of Input Conversions . 229
14.2.14 Numeric Input Conversions . 230
14.2.15 String Input Conversions . 230
14.2.16 Binary I/O . 230
14.2.17 Temporary Files . 233
14.2.18 End of File and Errors . 234
14.2.19 File Positioning . 235

15 Plotting . 237
15.1 Introduction to Plotting . 237
15.2 High-Level Plotting . 237

15.2.1 Two-Dimensional Plots . 237
15.2.1.1 Axis Configuration . 256
15.2.1.2 Two-dimensional Function Plotting 258
15.2.1.3 Two-dimensional Geometric Shapes 260

15.2.2 Three-Dimensional Plots . 261
15.2.2.1 Aspect Ratio . 272
15.2.2.2 Three-dimensional Function Plotting 273

vi GNU Octave

15.2.2.3 Three-dimensional Geometric Shapes 275
15.2.3 Plot Annotations . 276
15.2.4 Multiple Plots on One Page . 280
15.2.5 Multiple Plot Windows . 280
15.2.6 Use of axis, line, and patch functions 281
15.2.7 Manipulation of plot windows . 282
15.2.8 Use of the interpreter Property . 284
15.2.9 Printing and Saving Plots . 287
15.2.10 Interacting with Plots . 291
15.2.11 Test Plotting Functions . 292

15.3 Graphics Data Structures . 293
15.3.1 Introduction to Graphics Structures . 293
15.3.2 Graphics Objects . 294

15.3.2.1 Handle Functions . 295
15.3.3 Graphics Object Properties . 297

15.3.3.1 Root Figure Properties . 297
15.3.3.2 Figure Properties . 298
15.3.3.3 Axes Properties . 301
15.3.3.4 Line Properties . 305
15.3.3.5 Text Properties . 307
15.3.3.6 Image Properties . 308
15.3.3.7 Patch Properties . 309
15.3.3.8 Surface Properties . 311

15.3.4 Searching Properties . 313
15.3.5 Managing Default Properties . 314

15.4 Advanced Plotting . 315
15.4.1 Colors . 315
15.4.2 Line Styles . 315
15.4.3 Marker Styles . 315
15.4.4 Callbacks . 316
15.4.5 Application-defined Data . 317
15.4.6 Object Groups . 317

15.4.6.1 Data Sources in Object Groups . 321
15.4.6.2 Area Series . 321
15.4.6.3 Bar Series . 322
15.4.6.4 Contour Groups . 323
15.4.6.5 Error Bar Series . 324
15.4.6.6 Line Series . 325
15.4.6.7 Quiver Group . 325
15.4.6.8 Scatter Group . 326
15.4.6.9 Stair Group . 327
15.4.6.10 Stem Series . 327
15.4.6.11 Surface Group . 328

15.4.7 Graphics Toolkits . 329
15.4.7.1 Customizing Toolkit Behavior . 329

vii

16 Matrix Manipulation . 331
16.1 Finding Elements and Checking Conditions 331
16.2 Rearranging Matrices . 334
16.3 Special Utility Matrices . 343
16.4 Famous Matrices . 350

17 Arithmetic . 353
17.1 Exponents and Logarithms . 353
17.2 Complex Arithmetic . 355
17.3 Trigonometry . 356
17.4 Sums and Products . 359
17.5 Utility Functions . 360
17.6 Special Functions . 367
17.7 Rational Approximations . 372
17.8 Coordinate Transformations . 372
17.9 Mathematical Constants . 373

18 Linear Algebra . 377
18.1 Techniques Used for Linear Algebra . 377
18.2 Basic Matrix Functions . 377
18.3 Matrix Factorizations . 383
18.4 Functions of a Matrix . 392
18.5 Specialized Solvers . 394

19 Vectorization and Faster Code Execution
. 397

19.1 Basic Vectorization . 397
19.2 Broadcasting . 399

19.2.1 Broadcasting and Legacy Code . 402
19.3 Function Application . 402
19.4 Accumulation . 406
19.5 Miscellaneous Techniques . 408
19.6 Examples . 410

20 Nonlinear Equations . 411
20.1 Solvers . 411
20.2 Minimizers . 414

viii GNU Octave

21 Diagonal and Permutation Matrices 417
21.1 Creating and Manipulating Diagonal and Permutation Matrices

. 417
21.1.1 Creating Diagonal Matrices . 417
21.1.2 Creating Permutation Matrices . 418
21.1.3 Explicit and Implicit Conversions . 419

21.2 Linear Algebra with Diagonal and Permutation Matrices 419
21.2.1 Expressions Involving Diagonal Matrices 419
21.2.2 Expressions Involving Permutation Matrices 421

21.3 Functions That Are Aware of These Matrices 421
21.3.1 Diagonal Matrix Functions . 421
21.3.2 Permutation Matrix Functions . 421

21.4 Some Examples of Usage . 422
21.5 The Differences in Treatment of Zero Elements 422

22 Sparse Matrices . 425
22.1 The Creation and Manipulation of Sparse Matrices 425

22.1.1 Storage of Sparse Matrices . 425
22.1.2 Creating Sparse Matrices . 426
22.1.3 Finding out Information about Sparse Matrices 431
22.1.4 Basic Operators and Functions on Sparse Matrices 434

22.1.4.1 Sparse Functions . 434
22.1.4.2 The Return Types of Operators and Functions 435
22.1.4.3 Mathematical Considerations . 436

22.2 Linear Algebra on Sparse Matrices . 445
22.3 Iterative Techniques applied to sparse matrices 453
22.4 Real Life Example of the use of Sparse Matrices 458

23 Numerical Integration . 463
23.1 Functions of One Variable . 463
23.2 Orthogonal Collocation . 470
23.3 Functions of Multiple Variables . 471

24 Differential Equations . 473
24.1 Ordinary Differential Equations . 473
24.2 Differential-Algebraic Equations . 475

25 Optimization . 485
25.1 Linear Programming . 485
25.2 Quadratic Programming . 491
25.3 Nonlinear Programming . 493
25.4 Linear Least Squares . 495

ix

26 Statistics . 499
26.1 Descriptive Statistics . 499
26.2 Basic Statistical Functions . 504
26.3 Statistical Plots . 507
26.4 Correlation and Regression Analysis . 508
26.5 Distributions . 510
26.6 Tests . 518
26.7 Random Number Generation . 525

27 Sets . 533
27.1 Set Operations . 533

28 Polynomial Manipulations 537
28.1 Evaluating Polynomials . 537
28.2 Finding Roots . 538
28.3 Products of Polynomials . 539
28.4 Derivatives / Integrals / Transforms . 542
28.5 Polynomial Interpolation . 542
28.6 Miscellaneous Functions . 545

29 Interpolation . 547
29.1 One-dimensional Interpolation . 547
29.2 Multi-dimensional Interpolation . 552

30 Geometry . 557
30.1 Delaunay Triangulation . 557

30.1.1 Plotting the Triangulation . 559
30.1.2 Identifying Points in Triangulation . 560

30.2 Voronoi Diagrams . 562
30.3 Convex Hull . 566
30.4 Interpolation on Scattered Data . 567

31 Signal Processing . 569

32 Image Processing . 581
32.1 Loading and Saving Images . 581
32.2 Displaying Images . 584
32.3 Representing Images . 585
32.4 Plotting on top of Images . 590
32.5 Color Conversion . 590

33 Audio Processing . 591

x GNU Octave

34 Object Oriented Programming 593
34.1 Creating a Class . 593
34.2 Manipulating Classes . 595
34.3 Indexing Objects . 598

34.3.1 Defining Indexing And Indexed Assignment 599
34.3.2 Indexed Assignment Optimization . 602

34.4 Overloading Objects . 603
34.4.1 Function Overloading . 603
34.4.2 Operator Overloading . 605
34.4.3 Precedence of Objects . 606

34.5 Inheritance and Aggregation . 607

35 GUI Development . 613
35.1 I/O Dialogs . 613
35.2 Progress Bar . 614
35.3 GUI Utility Functions . 615
35.4 User-Defined Preferences . 616

36 System Utilities . 619
36.1 Timing Utilities . 619
36.2 Filesystem Utilities . 629
36.3 File Archiving Utilities . 637
36.4 Networking Utilities . 638

36.4.1 FTP Objects . 639
36.4.2 URL Manipulation . 639

36.5 Controlling Subprocesses . 640
36.6 Process, Group, and User IDs . 647
36.7 Environment Variables . 648
36.8 Current Working Directory . 648
36.9 Password Database Functions . 649
36.10 Group Database Functions . 650
36.11 System Information . 650
36.12 Hashing Functions . 654

37 Packages . 657
37.1 Installing and Removing Packages . 657
37.2 Using Packages . 660
37.3 Administrating Packages . 661
37.4 Creating Packages . 661

37.4.1 The DESCRIPTION File . 663
37.4.2 The INDEX File . 664
37.4.3 PKG ADD and PKG DEL Directives 665

xi

Appendix A Dynamically Linked Functions
. 667

A.1 Oct-Files . 667
A.1.1 Getting Started with Oct-Files . 667
A.1.2 Matrices and Arrays in Oct-Files . 670
A.1.3 Character Strings in Oct-Files . 673
A.1.4 Cell Arrays in Oct-Files . 674
A.1.5 Structures in Oct-Files . 675
A.1.6 Sparse Matrices in Oct-Files . 677

A.1.6.1 The Differences between the Array and Sparse Classes
. 677

A.1.6.2 Creating Sparse Matrices in Oct-Files 678
A.1.6.3 Using Sparse Matrices in Oct-Files 681

A.1.7 Accessing Global Variables in Oct-Files 682
A.1.8 Calling Octave Functions from Oct-Files 683
A.1.9 Calling External Code from Oct-Files 684
A.1.10 Allocating Local Memory in Oct-Files 686
A.1.11 Input Parameter Checking in Oct-Files 687
A.1.12 Exception and Error Handling in Oct-Files 688
A.1.13 Documentation and Test of Oct-Files 689

A.2 Mex-Files . 690
A.2.1 Getting Started with Mex-Files . 691
A.2.2 Working with Matrices and Arrays in Mex-Files 692
A.2.3 Character Strings in Mex-Files . 694
A.2.4 Cell Arrays with Mex-Files . 695
A.2.5 Structures with Mex-Files . 696
A.2.6 Sparse Matrices with Mex-Files . 698
A.2.7 Calling Other Functions in Mex-Files 701

A.3 Standalone Programs . 702

Appendix B Test and Demo Functions 707
B.1 Test Functions . 707
B.2 Demonstration Functions . 712

Appendix C Tips and Standards 715
C.1 Writing Clean Octave Programs . 715
C.2 Tips on Writing Comments . 715
C.3 Conventional Headers for Octave Functions 716
C.4 Tips for Documentation Strings . 717

xii GNU Octave

Appendix D Contributing Guidelines 725
D.1 How to Contribute . 725
D.2 Building the Development Sources . 725
D.3 Basics of Generating a Changeset . 726
D.4 General Guidelines . 727
D.5 Octave Sources (m-files) . 728
D.6 C++ Sources . 729
D.7 Other Sources . 730

Appendix E Obsolete Functions 731

Appendix F Known Causes of Trouble 735
F.1 Actual Bugs We Haven’t Fixed Yet . 735
F.2 Reporting Bugs . 735

F.2.1 Have You Found a Bug? . 735
F.2.2 Where to Report Bugs . 736
F.2.3 How to Report Bugs . 736
F.2.4 Sending Patches for Octave . 737

F.3 How To Get Help with Octave . 738

Appendix G Installing Octave 739
G.1 Build Dependencies . 739

G.1.1 Tips for Specific Systems . 739
G.1.2 Build Tools . 739
G.1.3 External Packages . 740

G.2 Running Configure and Make . 742
G.3 Compiling Octave with 64-bit Indexing . 746
G.4 Installation Problems . 749

Appendix H Emacs Octave Support 753
H.1 Installing EOS . 753
H.2 Using Octave Mode . 753
H.3 Running Octave from Within Emacs . 757
H.4 Using the Emacs Info Reader for Octave . 758

Appendix I Grammar and Parser 761
I.1 Keywords . 761
I.2 Parser . 761

Appendix J GNU GENERAL PUBLIC
LICENSE . 763

Concept Index . 775

Function Index . 781

xiii

Operator Index . 795

Preface 1

Preface

Octave was originally intended to be companion software for an undergraduate-level text-
book on chemical reactor design being written by James B. Rawlings of the University of
Wisconsin-Madison and John G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another ‘courseware’ package with limited
utility beyond the classroom. Although our initial goals were somewhat vague, we knew
that we wanted to create something that would enable students to solve realistic problems,
and that they could use for many things other than chemical reactor design problems. We
find that most students pick up the basics of Octave quickly, and are using it confidently in
just a few hours.

Although it was originally intended to be used to teach reactor design, it has been
used in several other undergraduate and graduate courses in the Chemical Engineering
Department at the University of Texas, and the math department at the University of
Texas has been using it for teaching differential equations and linear algebra as well. More
recently, Octave has been used as the primary computational tool for teaching Stanford’s
online Machine Learning class (ml-class.org) taught by Andrew Ng. Tens of thousands
of students participated in the course.

If you find Octave useful, please let us know. We are always interested to find out how
Octave is being used.

Virtually everyone thinks that the name Octave has something to do with music, but
it is actually the name of one of John W. Eaton’s former professors who wrote a famous
textbook on chemical reaction engineering, and who was also well known for his ability
to do quick ‘back of the envelope’ calculations. We hope that this software will make it
possible for many people to do more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the terms of the GNU
General Public License (see Appendix J [Copying], page 763). You are also encouraged to
help make Octave more useful by writing and contributing additional functions for it, and
by reporting any problems you may have.

Acknowledgements

Many people have contributed to Octave’s development. The following people have helped
code parts of Octave or aided in various other ways (listed alphabetically).

Ben Abbott Andy Adler Giles Anderson
Joel Andersson Muthiah Annamalai Marco Atzeri
Shai Ayal Roger Banks Ben Barrowes
Alexander Barth David Bateman Heinz Bauschke
Roman Belov Karl Berry David Billinghurst
Don Bindner Jakub Bogusz Moritz Borgmann
Paul Boven Richard Bovey John Bradshaw
Marcus Brinkmann Remy Bruno Ansgar Burchard
Marco Caliari Daniel Calvelo John C. Campbell
Juan Pablo Carbajal Jean-Francois Cardoso Joao Cardoso
Larrie Carr David Castelow Vincent Cautaerts
Clinton Chee Albert Chin-A-Young Carsten Clark

ml-class.org

2 GNU Octave

J. D. Cole Martin Costabel Michael Creel
Jeff Cunningham Martin Dalecki Jorge Barros de Abreu
Carlo de Falco Jacob Dawid Thomas D. Dean
Philippe Defert Bill Denney Fabian Deutsch
Christos Dimitrakakis David M. Doolin Carn Draug
Pascal A. Dupuis John W. Eaton Dirk Eddelbuettel
Pieter Eendebak Paul Eggert Stephen Eglen
Peter Ekberg Rolf Fabian Gunnar Farnebck
Stephen Fegan Ramon Garcia Fernandez Torsten Finke
Jose Daniel Munoz Frias Brad Froehle Castor Fu
Eduardo Gallestey Walter Gautschi Klaus Gebhardt
Driss Ghaddab Nicolo Giorgetti Michael D. Godfrey
Michael Goffioul Glenn Golden Tomislav Goles
Keith Goodman Brian Gough Steffen Groot
Etienne Grossmann David Grundberg Peter Gustafson
Kai Habel Patrick Hcker William P. Y. Hadisoeseno
Jaroslav Hajek Benjamin Hall Kim Hansen
Sren Hauberg Dave Hawthorne Daniel Heiserer
Martin Helm Stefan Hepp Jordi Gutirrez Hermoso
Yozo Hida Ryan Hinton Roman Hodek
A. Scottedward Hodel Richard Allan Holcombe Tom Holroyd
David Hoover Kurt Hornik Christopher Hulbert
Cyril Humbert Teemu Ikonen Alan W. Irwin
Geoff Jacobsen Mats Jansson Cai Jianming
Steven G. Johnson Heikki Junes Matthias Jschke
Atsushi Kajita Jarkko Kaleva Mohamed Kamoun
Lute Kamstra Fotios Kasolis Thomas Kasper
Joel Keay Mumit Khan Paul Kienzle
Aaron A. King Arno J. Klaassen Alexander Klein
Geoffrey Knauth Heine Kolltveit Ken Kouno
Kacper Kowalik Daniel Kraft Aravindh Krishnamoorthy
Oyvind Kristiansen Piotr Krzyzanowski Volker Kuhlmann
Tetsuro Kurita Miroslaw Kwasniak Rafael Laboissiere
Kai Labusch Claude Lacoursiere Walter Landry
Bill Lash Dirk Laurie Maurice LeBrun
Friedrich Leisch Jyh-miin Lin Timo Lindfors
Benjamin Lindner Ross Lippert David Livings
Sebastien Loisel Erik de Castro Lopo Massimo Lorenzin
Emil Lucretiu Hoxide Ma James Macnicol
Jens-Uwe Mager Rob Mahurin Ricardo Marranita
Orestes Mas Makoto Matsumoto Tatsuro Matsuoka
Laurent Mazet G. D. McBain Alexander Mamonov
Christoph Mayer Jlio Hoffimann Mendes Thorsten Meyer
Petr Mikulik Stefan Monnier Antoine Moreau
Kai P. Mueller Hannes Mller Victor Munoz
Carmen Navarrete Todd Neal Philip Nienhuis
Al Niessner Rick Niles Takuji Nishimura

Preface 3

Kai Noda Eric Norum Krzesimir Nowak
Michael O’Brien Peter O’Gorman Thorsten Ohl
Arno Onken Luis F. Ortiz Scott Pakin
Gabriele Pannocchia Sylvain Pelissier Per Persson
Primozz Peterlin Jim Peterson Danilo Piazzalunga
Nicholas Piper Elias Pipping Robert Platt
Hans Ekkehard Plesser Tom Poage Orion Poplawski
Ondrej Popp Jef Poskanzer Francesco Potort
Konstantinos Poulios Jarno Rajahalme James B. Rawlings
Eric S. Raymond Balint Reczey Joshua Redstone
Lukas Reichlin Michael Reifenberger Anthony Richardson
Jason Riedy E. Joshua Rigler Petter Risholm
Matthew W. Roberts Andrew Ross Mark van Rossum
Joe Rothweiler Kevin Ruland Kristian Rumberg
Ryan Rusaw Olli Saarela Toni Saarela
Juhani Saastamoinen Radek Salac Ben Sapp
Aleksej Saushev Alois Schlgl Michel D. Schmid
Julian Schnidder Nicol N. Schraudolph Sebastian Schubert
Ludwig Schwardt Thomas L. Scofield Daniel J. Sebald
Dmitri A. Sergatskov Vanya Sergeev Baylis Shanks
Andriy Shinkarchuck Robert T. Short Joseph P. Skudlarek
John Smith Julius Smith Shan G. Smith
Peter L. Sondergaard Joerg Specht Quentin H. Spencer
Christoph Spiel Richard Stallman Russell Standish
Brett Stewart Doug Stewart Jonathan Stickel
Judd Storrs Thomas Stuart Ivan Sutoris
John Swensen Daisuke Takago Ariel Tankus
Matthew Tenny Georg Thimm Duncan Temple Lang
Kris Thielemans Olaf Till Christophe Tournery
Thomas Treichl Karsten Trulsen Frederick Umminger
Utkarsh Upadhyay Stefan van der Walt Peter Van Wieren
James R. Van Zandt Gregory Vanuxem Ivana Varekova
Thomas Walter Andreas Weber Olaf Weber
Thomas Weber Rik Wehbring Bob Weigel
Andreas Weingessel Martin Weiser Michael Weitzel
David Wells Fook Fah Yap Sean Young
Michael Zeising Federico Zenith Alex Zvoleff

Special thanks to the following people and organizations for supporting the development
of Octave:

• The United States Department of Energy, through grant number DE-FG02-04ER25635.

• Ashok Krishnamurthy, David Hudak, Juan Carlos Chaves, and Stanley C. Ahalt of the
Ohio Supercomputer Center.

• The National Science Foundation, through grant numbers CTS-0105360, CTS-9708497,
CTS-9311420, CTS-8957123, and CNS-0540147.

• The industrial members of the Texas-Wisconsin Modeling and Control Consortium
(TWMCC).

http://www.che.utexas.edu/twmcc

4 GNU Octave

• The Paul A. Elfers Endowed Chair in Chemical Engineering at the University of
Wisconsin-Madison.

• Digital Equipment Corporation, for an equipment grant as part of their External Re-
search Program.

• Sun Microsystems, Inc., for an Academic Equipment grant.

• International Business Machines, Inc., for providing equipment as part of a grant to
the University of Texas College of Engineering.

• Texaco Chemical Company, for providing funding to continue the development of this
software.

• The University of Texas College of Engineering, for providing a Challenge for Excellence
Research Supplement, and for providing an Academic Development Funds grant.

• The State of Texas, for providing funding through the Texas Advanced Technology
Program under Grant No. 003658-078.

• Noel Bell, Senior Engineer, Texaco Chemical Company, Austin Texas.

• John A. Turner, Group Leader, Continuum Dynamics (CCS-2), Los Alamos National
Laboratory, for registering the octave.org domain name.

• James B. Rawlings, Professor, University of Wisconsin-Madison, Department of Chem-
ical and Biological Engineering.

• Richard Stallman, for writing GNU.

This project would not have been possible without the GNU software used in and to
produce Octave.

How You Can Contribute to Octave

There are a number of ways that you can contribute to help make Octave a better system.
Perhaps the most important way to contribute is to write high-quality code for solving
new problems, and to make your code freely available for others to use. See Appendix D
[Contributing Guidelines], page 725, for detailed information on contributing new code.

If you find Octave useful, consider providing additional funding to continue its develop-
ment. Even a modest amount of additional funding could make a significant difference in
the amount of time that is available for development and support.

Donations supporting Octave development may be made on the web at
https://my.fsf.org/donate/working-together/octave. These donations also help to
support the Free Software Foundation

If you’d prefer to pay by check or money order, you can do so by sending a check to the
FSF at the following address:

Free Software Foundation
51 Franklin Street, Suite 500
Boston, MA 02110-1335
USA

If you pay by check, please be sure to write “GNU Octave” in the memo field of your check.

If you cannot provide funding or contribute code, you can still help make Octave better
and more reliable by reporting any bugs you find and by offering suggestions for ways to

octave.org
https://my.fsf.org/donate/working-together/octave

Preface 5

improve Octave. See Appendix F [Trouble], page 735, for tips on how to write useful bug
reports.

Distribution

Octave is free software. This means that everyone is free to use it and free to redistribute
it on certain conditions. Octave is not, however, in the public domain. It is copyrighted
and there are restrictions on its distribution, but the restrictions are designed to ensure
that others will have the same freedom to use and redistribute Octave that you have. The
precise conditions can be found in the GNU General Public License that comes with Octave
and that also appears in Appendix J [Copying], page 763.

To download a copy of Octave, please visit http://www.octave.org/download.html.

http://www.octave.org/download.html

Chapter 1: A Brief Introduction to Octave 7

1 A Brief Introduction to Octave

GNU Octave is a high-level language, primarily intended for numerical computations. It
provides a convenient interactive command line interface for solving linear and nonlinear
problems numerically, and for performing other numerical experiments. It may also be used
as a batch-oriented language for data processing.

GNU Octave is freely redistributable software. You may redistribute it and/or modify
it under the terms of the GNU General Public License as published by the Free Software
Foundation. The GPL is included in this manual in Appendix J [Copying], page 763.

This manual provides comprehensive documentation on how to install, run, use, and
extend GNU Octave. Additional chapters describe how to report bugs and help contribute
code.

This document corresponds to Octave version 3.6.1.

1.1 Running Octave

On most systems, Octave is started with the shell command ‘octave’. Octave displays an
initial message and then a prompt indicating it is ready to accept input. You can begin
typing Octave commands immediately afterward.

If you get into trouble, you can usually interrupt Octave by typing Control-C (written
C-c for short). C-c gets its name from the fact that you type it by holding down CTRL
and then pressing C. Doing this will normally return you to Octave’s prompt.

To exit Octave, type quit, or exit at the Octave prompt.

On systems that support job control, you can suspend Octave by sending it a SIGTSTP

signal, usually by typing C-z.

1.2 Simple Examples

The following chapters describe all of Octave’s features in detail, but before doing that, it
might be helpful to give a sampling of some of its capabilities.

If you are new to Octave, I recommend that you try these examples to begin learning
Octave by using it. Lines marked like so, ‘octave:13>’, are lines you type, ending each
with a carriage return. Octave will respond with an answer, or by displaying a graph.

1.2.1 Elementary Calculations

Octave can easily be used for basic numerical calculations. Octave knows about arithmetic
operations (+,-,*,/), exponentiation (^), natural logarithms/exponents (log, exp), and the
trigonometric functions (sin, cos, . . .). Moreover, Octave calculations work on real or
imaginary numbers (i,j). In addition, some mathematical constants such as the base of
the natural logarithm (e) and the ratio of a circle’s circumference to its diameter (pi) are
pre-defined.

For example, to verify Euler’s Identity,

eıπ = −1

type the following which will evaluate to -1 within the tolerance of the calculation.

octave:1> exp(i*pi)

8 GNU Octave

1.2.2 Creating a Matrix

Vectors and matrices are the basic building blocks for numerical analysis. To create a new
matrix and store it in a variable so that you can refer to it later, type the command

octave:1> A = [1, 1, 2; 3, 5, 8; 13, 21, 34]

Octave will respond by printing the matrix in neatly aligned columns. Octave uses a comma
or space to separate entries in a row, and a semicolon or carriage return to separate one row
from the next. Ending a command with a semicolon tells Octave not to print the result of
the command. For example,

octave:2> B = rand (3, 2);

will create a 3 row, 2 column matrix with each element set to a random value between zero
and one.

To display the value of a variable, simply type the name of the variable at the prompt.
For example, to display the value stored in the matrix B, type the command

octave:3> B

1.2.3 Matrix Arithmetic

Octave has a convenient operator notation for performing matrix arithmetic. For example,
to multiply the matrix A by a scalar value, type the command

octave:4> 2 * A

To multiply the two matrices A and B, type the command

octave:5> A * B

and to form the matrix product ATA, type the command

octave:6> A’ * A

1.2.4 Solving Systems of Linear Equations

Systems of linear equations are ubiquitous in numerical analysis. To solve the set of linear
equations Ax = b, use the left division operator, ‘\’:

x = A \ b

This is conceptually equivalent to A−1b, but avoids computing the inverse of a matrix
directly.

If the coefficient matrix is singular, Octave will print a warning message and compute a
minimum norm solution.

A simple example comes from chemistry and the need to obtain balanced chemical
equations. Consider the burning of hydrogen and oxygen to produce water.

H2 +O2 → H2O

The equation above is not accurate. The Law of Conservation of Mass requires that the num-
ber of molecules of each type balance on the left- and right-hand sides of the equation. Writ-
ing the variable overall reaction with individual equations for hydrogen and oxygen one finds:

Chapter 1: A Brief Introduction to Octave 9

x1H2 + x2O2 → H2O

H : 2x1 + 0x2 → 2

O : 0x1 + 2x2 → 1

The solution in Octave is found in just three steps.

octave:1> A = [2, 0; 0, 2];

octave:2> b = [2; 1];

octave:3> x = A \ b

1.2.5 Integrating Differential Equations

Octave has built-in functions for solving nonlinear differential equations of the form

dx

dt
= f(x, t), x(t = t0) = x0

For Octave to integrate equations of this form, you must first provide a definition of the
function f(x, t). This is straightforward, and may be accomplished by entering the function
body directly on the command line. For example, the following commands define the right-
hand side function for an interesting pair of nonlinear differential equations. Note that
while you are entering a function, Octave responds with a different prompt, to indicate that
it is waiting for you to complete your input.

octave:1> function xdot = f (x, t)

>

> r = 0.25;

> k = 1.4;

> a = 1.5;

> b = 0.16;

> c = 0.9;

> d = 0.8;

>

> xdot(1) = r*x(1)*(1 - x(1)/k) - a*x(1)*x(2)/(1 + b*x(1));

> xdot(2) = c*a*x(1)*x(2)/(1 + b*x(1)) - d*x(2);

>

> endfunction

Given the initial condition

octave:2> x0 = [1; 2];

and the set of output times as a column vector (note that the first output time corresponds
to the initial condition given above)

octave:3> t = linspace (0, 50, 200)’;

it is easy to integrate the set of differential equations:

octave:4> x = lsode ("f", x0, t);

The function lsode uses the Livermore Solver for Ordinary Differential Equations, described
in A. C. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in: Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pages 55–64.

10 GNU Octave

1.2.6 Producing Graphical Output

To display the solution of the previous example graphically, use the command

octave:1> plot (t, x)

If you are using a graphical user interface, Octave will automatically create a separate
window to display the plot.

To save a plot once it has been displayed on the screen, use the print command. For
example,

print -deps foo.eps

will create a file called ‘foo.eps’ that contains a rendering of the current plot in Encapsu-
lated PostScript format. The command

help print

explains more options for the print command and provides a list of additional output file
formats.

1.2.7 Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous commands using Emacs-
or vi-style editing commands. The default keybindings use Emacs-style commands. For
example, to recall the previous command, press Control-p (written C-p for short). Doing
this will normally bring back the previous line of input. C-n will bring up the next line of
input, C-b will move the cursor backward on the line, C-f will move the cursor forward on
the line, etc.

A complete description of the command line editing capability is given in this manual
in Section 2.4 [Command Line Editing], page 23.

1.2.8 Help and Documentation

Octave has an extensive help facility. The same documentation that is available in printed
form is also available from the Octave prompt, because both forms of the documentation
are created from the same input file.

In order to get good help you first need to know the name of the command that you want
to use. This name of the function may not always be obvious, but a good place to start is to
type help --list. This will show you all the operators, keywords, built-in functions, and
loadable functions available in the current session of Octave. An alternative is to search
the documentation using the lookfor function. This function is described in Section 2.3
[Getting Help], page 19.

Once you know the name of the function you wish to use, you can get more help on the
function by simply including the name as an argument to help. For example,

help plot

will display the help text for the plot function.

Octave sends output that is too long to fit on one screen through a pager like less or
more. Type a RET to advance one line, a SPC to advance one page, and Q to exit the
pager.

The part of Octave’s help facility that allows you to read the complete text of the printed
manual from within Octave normally uses a separate program called Info. When you invoke

Chapter 1: A Brief Introduction to Octave 11

Info you will be put into a menu driven program that contains the entire Octave manual.
Help for using Info is provided in this manual in Section 2.3 [Getting Help], page 19.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may
want to skip this section and refer back to it later.

1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names that represent
variables or function arguments appear in this font or form: first-number. Commands
that you type at the shell prompt appear in this font or form: ‘octave --no-init-file’.
Commands that you type at the Octave prompt sometimes appear in this font or form: foo
--bar --baz. Specific keys on your keyboard appear in this font or form: ANY.

1.3.2 Evaluation Notation

In the examples in this manual, results from expressions that you evaluate are indicated
with ‘⇒’. For example:

sqrt (2)

⇒ 1.4142

You can read this as “sqrt (2) evaluates to 1.4142”.

In some cases, matrix values that are returned by expressions are displayed like this

[1, 2; 3, 4] == [1, 3; 2, 4]

⇒ [1, 0; 0, 1]

and in other cases, they are displayed like this

eye (3)

⇒ 1 0 0

0 1 0

0 0 1

in order to clearly show the structure of the result.

Sometimes to help describe one expression, another expression is shown that produces
identical results. The exact equivalence of expressions is indicated with ‘≡ ’. For example:

rot90 ([1, 2; 3, 4], -1)

≡
rot90 ([1, 2; 3, 4], 3)

≡
rot90 ([1, 2; 3, 4], 7)

1.3.3 Printing Notation

Many of the examples in this manual print text when they are evaluated. In this manual
the printed text resulting from an example is indicated by ‘ a ’. The value that is returned
by evaluating the expression is displayed with ‘⇒’ (1 in the next example) and follows on
a separate line.

printf ("foo %s\n", "bar")

a foo bar

⇒ 1

12 GNU Octave

1.3.4 Error Messages

Some examples signal errors. This normally displays an error message on your terminal.
Error messages are shown on a line beginning with error:.

fieldnames ([1, 2; 3, 4])

error: fieldnames: wrong type argument ‘matrix’

1.3.5 Format of Descriptions

Functions, commands, and variables are described in this manual in a uniform format. The
first line of a description contains the name of the item followed by its arguments, if any.
The category—function, variable, or whatever—is printed next to the right margin. The
description follows on succeeding lines, sometimes with examples.

1.3.5.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of parameters. The names used for the parameters are
also used in the body of the description.

Here is a description of an imaginary function foo:

[Function File]foo (x)
[Function File]foo (x, y)
[Function File]foo (x, y, . . .)

The function foo subtracts x from y, then adds the remaining arguments to the result.
If y is not supplied, then the number 19 is used by default.

foo (1, [3, 5], 3, 9)

⇒ [14, 16]

foo (5)

⇒ 14

More generally,

foo (w, x, y, ...)

≡
x - w + y + ...

Any parameter whose name contains the name of a type (e.g., integer or matrix) is
expected to be of that type. Parameters named object may be of any type. Parameters
with other sorts of names (e.g., new file) are discussed specifically in the description of
the function. In some sections, features common to parameters of several functions are
described at the beginning.

Functions in Octave may be defined in several different ways. The category name for
functions may include another name that indicates the way that the function is defined.
These additional tags include

Function File
The function described is defined using Octave commands stored in a text file.
See Section 11.8 [Function Files], page 167.

Built-in Function
The function described is written in a language like C++, C, or Fortran, and is
part of the compiled Octave binary.

Chapter 1: A Brief Introduction to Octave 13

Loadable Function
The function described is written in a language like C++, C, or Fortran. On
systems that support dynamic linking of user-supplied functions, it may be
automatically linked while Octave is running, but only if it is needed. See
Appendix A [Dynamically Linked Functions], page 667.

Mapping Function
The function described works element-by-element for matrix and vector argu-
ments.

1.3.5.2 A Sample Command Description

Command descriptions have a format similar to function descriptions, except that the word
‘Function’ is replaced by ‘Command’. Commands are functions that may be called with-
out surrounding their arguments in parentheses. For example, here is the description for
Octave’s cd command:

[Command]cd dir
[Command]chdir dir

Change the current working directory to dir. For example, cd ~/octave changes the
current working directory to ‘~/octave’. If the directory does not exist, an error
message is printed and the working directory is not changed.

1.3.5.3 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the
user, built-in variables typically exist specifically so that users can change them to alter the
way Octave behaves (built-in variables are also sometimes called user options). Ordinary
variables and built-in variables are described using a format like that for functions except
that there are no arguments.

Here is a description of the imaginary variable do_what_i_mean_not_what_i_say.

[Built-in Variable]do_what_i_mean_not_what_i_say
If the value of this variable is nonzero, Octave will do what you actually wanted, even
if you have typed a completely different and meaningless list of commands.

Other variable descriptions have the same format, but ‘Built-in Variable’ is replaced by
‘Variable’, for ordinary variables, or ‘Constant’ for symbolic constants whose values cannot
be changed.

Chapter 2: Getting Started 15

2 Getting Started

This chapter explains some of Octave’s basic features, including how to start an Octave ses-
sion, get help at the command prompt, edit the command line, and write Octave programs
that can be executed as commands from your shell.

2.1 Invoking Octave from the Command Line

Normally, Octave is used interactively by running the program ‘octave’ without any ar-
guments. Once started, Octave reads commands from the terminal until you tell it to
exit.

You can also specify the name of a file on the command line, and Octave will read and
execute the commands from the named file and then exit when it is finished.

You can further control how Octave starts by using the command-line options described
in the next section, and Octave itself can remind you of the options available. Type ‘octave
--help’ to display all available options and briefly describe their use (‘octave -h’ is a shorter
equivalent).

2.1.1 Command Line Options

Here is a complete list of the command line options that Octave accepts.

--debug

-d Enter parser debugging mode. Using this option will cause Octave’s parser to
print a lot of information about the commands it reads, and is probably only
useful if you are actually trying to debug the parser.

--doc-cache-file filename

Specify the name of the doc cache file to use. The value of filename specified
on the command line will override any value of OCTAVE_DOC_CACHE_FILE found
in the environment, but not any commands in the system or user startup files
that use the doc_cache_file function.

--echo-commands

-x Echo commands as they are executed.

--eval code

Evaluate code and exit when finished unless ‘--persist’ is also specified.

--exec-path path

Specify the path to search for programs to run. The value of path specified on
the command line will override any value of OCTAVE_EXEC_PATH found in the
environment, but not any commands in the system or user startup files that set
the built-in variable EXEC_PATH.

--help

-h

-? Print short help message and exit.

--image-path path

Add path to the head of the search path for images. The value of path specified
on the command line will override any value of OCTAVE_IMAGE_PATH found in

16 GNU Octave

the environment, but not any commands in the system or user startup files that
set the built-in variable IMAGE_PATH.

--info-file filename

Specify the name of the info file to use. The value of filename specified on
the command line will override any value of OCTAVE_INFO_FILE found in the
environment, but not any commands in the system or user startup files that
use the info_file function.

--info-program program

Specify the name of the info program to use. The value of program specified
on the command line will override any value of OCTAVE_INFO_PROGRAM found
in the environment, but not any commands in the system or user startup files
that use the info_program function.

--interactive

-i Force interactive behavior. This can be useful for running Octave via a remote
shell command or inside an Emacs shell buffer. For another way to run Octave
within Emacs, see Appendix H [Emacs Octave Support], page 753.

--line-editing

Force readline use for command-line editing.

--no-history

-H Disable recording of command-line history.

--no-init-file

Don’t read the initialization files ‘~/.octaverc’ and ‘.octaverc’.

--no-init-path

Don’t initialize the search path for function files to include default locations.

--no-line-editing

Disable command-line editing.

--no-site-file

Don’t read the site-wide ‘octaverc’ initialization files.

--norc

-f Don’t read any of the system or user initialization files at startup. This is equiv-
alent to using both of the options ‘--no-init-file’ and ‘--no-site-file’.

--path path

-p path Add path to the head of the search path for function files. The value of path
specified on the command line will override any value of OCTAVE_PATH found
in the environment, but not any commands in the system or user startup files
that set the internal load path through one of the path functions.

--persist

Go to interactive mode after ‘--eval’ or reading from a file named on the
command line.

--silent

--quiet

-q Don’t print the usual greeting and version message at startup.

Chapter 2: Getting Started 17

--traditional

--braindead

For compatibility with matlab, set initial values for user preferences to the
following values

PS1 = ">> "

PS2 = ""

allow_noninteger_range_as_index = true

beep_on_error = true

confirm_recursive_rmdir = false

crash_dumps_octave_core = false

default_save_options = "-mat-binary"

do_braindead_shortcircuit_evaluation = true

fixed_point_format = true

history_timestamp_format_string = "%%-- %D %I:%M %p --%%"

page_screen_output = false

print_empty_dimensions = false

and disable the following warnings

Octave:abbreviated-property-match

Octave:fopen-file-in-path

Octave:function-name-clash

Octave:load-file-in-path

--verbose

-V Turn on verbose output.

--version

-v Print the program version number and exit.

file Execute commands from file. Exit when done unless ‘--persist’ is also speci-
fied.

Octave also includes several functions which return information about the command line,
including the number of arguments and all of the options.

[Built-in Function]argv ()
Return the command line arguments passed to Octave. For example, if you invoked
Octave using the command

octave --no-line-editing --silent

argv would return a cell array of strings with the elements ‘--no-line-editing’ and
‘--silent’.

If you write an executable Octave script, argv will return the list of arguments passed
to the script. See Section 2.6 [Executable Octave Programs], page 33, for an example
of how to create an executable Octave script.

[Built-in Function]program_name ()
Return the last component of the value returned by program_invocation_name.

See also: [program invocation name], page 18.

18 GNU Octave

[Built-in Function]program_invocation_name ()
Return the name that was typed at the shell prompt to run Octave.

If executing a script from the command line (e.g., octave foo.m) or using an ex-
ecutable Octave script, the program name is set to the name of the script. See
Section 2.6 [Executable Octave Programs], page 33, for an example of how to create
an executable Octave script.

See also: [program name], page 17.

Here is an example of using these functions to reproduce the command line which invoked
Octave.

printf ("%s", program_name ());

arg_list = argv ();

for i = 1:nargin

printf (" %s", arg_list{i});

endfor

printf ("\n");

See Section 6.2.3 [Indexing Cell Arrays], page 106, for an explanation of how to retrieve
objects from cell arrays, and Section 11.1 [Defining Functions], page 157, for information
about the variable nargin.

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the files in the following list.
These files may contain any valid Octave commands, including function definitions.

octave-home/share/octave/site/m/startup/octaverc

where octave-home is the directory in which Octave is installed (the default
is ‘/usr/local’). This file is provided so that changes to the default Octave
environment can be made globally for all users at your site for all versions of
Octave you have installed. Care should be taken when making changes to this
file since all users of Octave at your site will be affected. The default file may
be overridden by the environment variable OCTAVE_SITE_INITFILE.

octave-home/share/octave/version/m/startup/octaverc

where octave-home is the directory in which Octave is installed (the default is
‘/usr/local’), and version is the version number of Octave. This file is pro-
vided so that changes to the default Octave environment can be made glob-
ally for all users of a particular version of Octave. Care should be taken
when making changes to this file since all users of Octave at your site will
be affected. The default file may be overridden by the environment variable
OCTAVE_VERSION_INITFILE.

~/.octaverc

This file is used to make personal changes to the default Octave environment.

.octaverc

This file can be used to make changes to the default Octave environment for
a particular project. Octave searches for this file in the current directory after
it reads ‘~/.octaverc’. Any use of the cd command in the ‘~/.octaverc’ file
will affect the directory where Octave searches for ‘.octaverc’.

Chapter 2: Getting Started 19

If you start Octave in your home directory, commands from the file
‘~/.octaverc’ will only be executed once.

A message will be displayed as each of the startup files is read if you invoke Octave with
the ‘--verbose’ option but without the ‘--silent’ option.

The dump_prefs function is useful for determining what customizations to Octave are
possible and which are in effect.

[Function File]dump_prefs ()
[Function File]dump_prefs (fid)

Dump all of the current user preference variables in a format that can be parsed by
Octave later. fid is a file descriptor as returned by fopen. If file is omitted, the listing
is printed to stdout.

2.2 Quitting Octave

[Built-in Function]exit (status)
[Built-in Function]quit (status)

Exit the current Octave session. If the optional integer value status is supplied, pass
that value to the operating system as the Octave’s exit status. The default value is
zero.

[Built-in Function]atexit (fcn)
[Built-in Function]atexit (fcn, flag)

Register a function to be called when Octave exits. For example,

function last_words ()

disp ("Bye bye");

endfunction

atexit ("last_words");

will print the message "Bye bye" when Octave exits.

The additional argument flag will register or unregister fcn from the list of functions
to be called when Octave exits. If flag is true, the function is registered, and if flag
is false, it is unregistered. For example, after registering the function last_words

above,

atexit ("last_words", false);

will remove the function from the list and Octave will not call last_words when it
exits.

Note that atexit only removes the first occurrence of a function from the list, so if a
function was placed in the list multiple times with atexit, it must also be removed
from the list multiple times.

2.3 Commands for Getting Help

The entire text of this manual is available from the Octave prompt via the command doc.
In addition, the documentation for individual user-written functions and variables is also
available via the help command. This section describes the commands used for reading
the manual and the documentation strings for user-supplied functions and variables. See

20 GNU Octave

Section 11.8 [Function Files], page 167, for more information about how to document the
functions you write.

[Command]help name
[Command]help --list

Display the help text for name. For example, the command help help prints a short
message describing the help command.

Given the single argument --list, list all operators, keywords, built-in functions,
and loadable functions available in the current session of Octave.

If invoked without any arguments, help display instructions on how to access help
from the command line.

The help command can give you information about operators, but not the comma
and semicolons that are used as command separators. To get help for those, you must
type help comma or help semicolon.

See also: [doc], page 20, [lookfor], page 20, [which], page 122.

[Command]doc function_name
Display documentation for the function function name directly from an on-line ver-
sion of the printed manual, using the GNU Info browser. If invoked without any
arguments, the manual is shown from the beginning.

For example, the command doc rand starts the GNU Info browser at the rand node
in the on-line version of the manual.

Once the GNU Info browser is running, help for using it is available using the com-
mand C-h.

See also: [help], page 20.

[Command]lookfor str
[Command]lookfor -all str

[Function File][func, helpstring] = lookfor (str)
[Function File][func, helpstring] = lookfor (’-all’, str)

Search for the string str in all functions found in the current function search path.
By default, lookfor searches for str in the first sentence of the help string of each
function found. The entire help text of each function can be searched if the ’-all’
argument is supplied. All searches are case insensitive.

Called with no output arguments, lookfor prints the list of matching functions to the
terminal. Otherwise, the output arguments func and helpstring define the matching
functions and the first sentence of each of their help strings.

The ability of lookfor to correctly identify the first sentence of the help text is depen-
dent on the format of the function’s help. All Octave core functions are correctly for-
matted, but the same can not be guaranteed for external packages and user-supplied
functions. Therefore, the use of the ’-all’ argument may be necessary to find related
functions that are not a part of Octave.

See also: [help], page 20, [doc], page 20, [which], page 122.

To see what is new in the current release of Octave, use the news function.

Chapter 2: Getting Started 21

[Function File]news (package)
Display the current NEWS file for Octave or installed package.

If package is the name of an installed package, display the current NEWS file for that
package.

[Function File]info ()
Display contact information for the GNU Octave community.

[Built-in Function]warranty ()
Describe the conditions for copying and distributing Octave.

The following functions can be used to change which programs are used for displaying
the documentation, and where the documentation can be found.

[Built-in Function]val = info_file ()
[Built-in Function]old_val = info_file (new_val)
[Built-in Function]info_file (new_val, "local")

Query or set the internal variable that specifies the name of the Octave info file. The
default value is ‘octave-home/info/octave.info’, in which octave-home is the root
directory of the Octave installation. The default value may be overridden by the en-
vironment variable OCTAVE_INFO_FILE, or the command line argument ‘--info-file
NAME’.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [info program], page 21, [doc], page 20, [help], page 20, [makeinfo program],
page 21.

[Built-in Function]val = info_program ()
[Built-in Function]old_val = info_program (new_val)
[Built-in Function]info_program (new_val, "local")

Query or set the internal variable that specifies the name of the info program to run.
The default value is ‘octave-home/libexec/octave/version/exec/arch/info’
in which octave-home is the root directory of the Octave installation, version
is the Octave version number, and arch is the system type (for example,
i686-pc-linux-gnu). The default value may be overridden by the environment
variable OCTAVE_INFO_PROGRAM, or the command line argument ‘--info-program
NAME’.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [info file], page 21, [doc], page 20, [help], page 20, [makeinfo program],
page 21.

[Built-in Function]val = makeinfo_program ()
[Built-in Function]old_val = makeinfo_program (new_val)

22 GNU Octave

[Built-in Function]makeinfo_program (new_val, "local")
Query or set the internal variable that specifies the name of the program that Octave
runs to format help text containing Texinfo markup commands. The default value is
makeinfo.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [info file], page 21, [info program], page 21, [doc], page 20, [help], page 20.

[Built-in Function]val = doc_cache_file ()
[Built-in Function]old_val = doc_cache_file (new_val)
[Built-in Function]doc_cache_file (new_val, "local")

Query or set the internal variable that specifies the name of the Octave documentation
cache file. A cache file significantly improves the performance of the lookfor com-
mand. The default value is ‘octave-home/share/octave/version/etc/doc-cache’,
in which octave-home is the root directory of the Octave installation, and version is the
Octave version number. The default value may be overridden by the environment vari-
able OCTAVE_DOC_CACHE_FILE, or the command line argument ‘--doc-cache-file
NAME’.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [lookfor], page 20, [info program], page 21, [doc], page 20, [help], page 20,
[makeinfo program], page 21.

[Built-in Function]val = suppress_verbose_help_message ()
[Built-in Function]old_val = suppress_verbose_help_message (new_val)
[Built-in Function]suppress_verbose_help_message (new_val, "local")

Query or set the internal variable that controls whether Octave will add additional
help information to the end of the output from the help command and usage messages
for built-in commands.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

The following functions are principally used internally by Octave for generating the docu-
mentation. They are documented here for completeness and because they may occasionally
be useful for users.

[Function File]gen_doc_cache (out_file, directory)
Generate documentation caches for all functions in a given directory.

A documentation cache is generated for all functions in directory. The resulting cache
is saved in the file out file. The cache is used to speed up lookfor.

If no directory is given (or it is the empty matrix), a cache for builtin operators, etc.
is generated.

See also: [lookfor], page 20, [path], page 171.

Chapter 2: Getting Started 23

[Loadable Function][text, format] = get_help_text (name)
Return the raw help text of function name.

The raw help text is returned in text and the format in format The format is a string
which is one of "texinfo", "html", or "plain text".

[Loadable Function][text, format] = get_help_text_from_file (fname)
Return the raw help text from the file fname.

The raw help text is returned in text and the format in format The format is a string
which is one of "texinfo", "html", or "plain text".

[Function File][text, status] = get_first_help_sentence (name)
[Function File][text, status] = get_first_help_sentence (name, max_len)

Return the first sentence of a function’s help text.

The first sentence is defined as the text after the function declaration until either the
first period (".") or the first appearance of two consecutive newlines ("\n\n"). The
text is truncated to a maximum length of max len, which defaults to 80.

The optional output argument status returns the status reported by makeinfo. If only
one output argument is requested, and status is non-zero, a warning is displayed.

As an example, the first sentence of this help text is

get_first_help_sentence ("get_first_help_sentence")

a ans = Return the first sentence of a function’s help text.

2.4 Command Line Editing

Octave uses the GNU Readline library to provide an extensive set of command-line editing
and history features. Only the most common features are described in this manual. In
addition, all of the editing functions can be bound to different key strokes at the user’s
discretion. This manual assumes no changes from the default Emacs bindings. See the
GNU Readline Library manual for more information on customizing Readline and for a
complete feature list.

To insert printing characters (letters, digits, symbols, etc.), simply type the character.
Octave will insert the character at the cursor and advance the cursor forward.

Many of the command-line editing functions operate using control characters. For ex-
ample, the character Control-a moves the cursor to the beginning of the line. To type C-a,
hold down CTRL and then press A. In the following sections, control characters such as
Control-a are written as C-a.

Another set of command-line editing functions use Meta characters. To type M-u, hold
down the META key and press U. Depending on the keyboard, the META key may be
labeled ALT or even WINDOWS. If your terminal does not have a META key, you can
still type Meta characters using two-character sequences starting with ESC. Thus, to enter
M-u, you would type ESC U. The ESC character sequences are also allowed on terminals
with real Meta keys. In the following sections, Meta characters such as Meta-u are written
as M-u.

24 GNU Octave

2.4.1 Cursor Motion

The following commands allow you to position the cursor.

C-b Move back one character.

C-f Move forward one character.

BACKSPACE
Delete the character to the left of the cursor.

DEL Delete the character underneath the cursor.

C-d Delete the character underneath the cursor.

M-f Move forward a word.

M-b Move backward a word.

C-a Move to the start of the line.

C-e Move to the end of the line.

C-l Clear the screen, reprinting the current line at the top.

C-_

C-/ Undo the last action. You can undo all the way back to an empty line.

M-r Undo all changes made to this line. This is like typing the ‘undo’ command
enough times to get back to the beginning.

The above table describes the most basic possible keystrokes that you need in order to
do editing of the input line. On most terminals, you can also use the left and right arrow
keys in place of C-f and C-b to move forward and backward.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

The function clc will allow you to clear the screen from within Octave programs.

[Built-in Function]clc ()
[Built-in Function]home ()

Clear the terminal screen and move the cursor to the upper left corner.

2.4.2 Killing and Yanking

Killing text means to delete the text from the line, but to save it away for later use, usually
by yanking it back into the line. If the description for a command says that it ‘kills’ text,
then you can be sure that you can get the text back in a different (or the same) place later.

Here is the list of commands for killing text.

C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or if between words, to the
end of the next word.

M-DEL Kill from the cursor to the start of the previous word, or if between words, to
the start of the previous word.

Chapter 2: Getting Started 25

C-w Kill from the cursor to the previous whitespace. This is different than M-DEL

because the word boundaries differ.

And, here is how to yank the text back into the line. Yanking means to copy the
most-recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it in one
clean sweep. The kill ring is not line specific; the text that you killed on a previously typed
line is available to be yanked back later, when you are typing another line.

2.4.3 Commands For Changing Text

The following commands can be used for entering characters that would otherwise have a
special meaning (e.g., TAB, C-q, etc.), or for quickly correcting typing mistakes.

C-q

C-v Add the next character that you type to the line verbatim. This is how to insert
things like C-q for example.

M-TAB Insert a tab character.

C-t Drag the character before the cursor forward over the character at the cursor,
also moving the cursor forward. If the cursor is at the end of the line, then
transpose the two characters before it.

M-t Drag the word behind the cursor past the word in front of the cursor moving
the cursor over that word as well.

M-u Uppercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-l Lowercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-c Uppercase the character following the cursor (or the beginning of the next word
if the cursor is between words), moving the cursor to the end of the word.

2.4.4 Letting Readline Type For You

The following commands allow Octave to complete command and variable names for you.

TAB Attempt to do completion on the text before the cursor. Octave can complete
the names of commands and variables.

M-? List the possible completions of the text before the cursor.

[Built-in Function]val = completion_append_char ()
[Built-in Function]old_val = completion_append_char (new_val)
[Built-in Function]completion_append_char (new_val, "local")

Query or set the internal character variable that is appended to successful command-
line completion attempts. The default value is " " (a single space).

26 GNU Octave

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

[Built-in Function]completion_matches (hint)
Generate possible completions given hint.

This function is provided for the benefit of programs like Emacs which might be
controlling Octave and handling user input. The current command number is not
incremented when this function is called. This is a feature, not a bug.

2.4.5 Commands For Manipulating The History

Octave normally keeps track of the commands you type so that you can recall previous
commands to edit or execute them again. When you exit Octave, the most recent commands
you have typed, up to the number specified by the variable history_size, are saved in a
file. When Octave starts, it loads an initial list of commands from the file named by the
variable history_file.

Here are the commands for simple browsing and searching the history list.

LFD
RET Accept the current line regardless of where the cursor is. If the line is non-

empty, add it to the history list. If the line was a history line, then restore the
history line to its original state.

C-p Move ‘up’ through the history list.

C-n Move ‘down’ through the history list.

M-< Move to the first line in the history.

M-> Move to the end of the input history, i.e., the line you are entering!

C-r Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary. This is an incremental search.

C-s Search forward starting at the current line and moving ‘down’ through the
history as necessary.

On most terminals, you can also use the up and down arrow keys in place of C-p and
C-n to move through the history list.

In addition to the keyboard commands for moving through the history list, Octave
provides three functions for viewing, editing, and re-running chunks of commands from the
history list.

[Command]history options
If invoked with no arguments, history displays a list of commands that you have
executed. Valid options are:

-w file Write the current history to the file file. If the name is omitted, use the
default history file (normally ‘~/.octave_hist’).

-r file Read the file file, appending its contents to the current history list. If the
name is omitted, use the default history file (normally ‘~/.octave_hist’).

Chapter 2: Getting Started 27

n Display only the most recent n lines of history.

-q Don’t number the displayed lines of history. This is useful for cutting and
pasting commands using the X Window System.

For example, to display the five most recent commands that you have typed without
displaying line numbers, use the command history -q 5.

[Command]edit_history [first] [last]
If invoked with no arguments, edit_history allows you to edit the history list using
the editor named by the variable EDITOR. The commands to be edited are first copied
to a temporary file. When you exit the editor, Octave executes the commands that
remain in the file. It is often more convenient to use edit_history to define functions
rather than attempting to enter them directly on the command line. By default, the
block of commands is executed as soon as you exit the editor. To avoid executing any
commands, simply delete all the lines from the buffer before exiting the editor.

The edit_history command takes two optional arguments specifying the history
numbers of first and last commands to edit. For example, the command

edit_history 13

extracts all the commands from the 13th through the last in the history list. The
command

edit_history 13 169

only extracts commands 13 through 169. Specifying a larger number for the first
command than the last command reverses the list of commands before placing them
in the buffer to be edited. If both arguments are omitted, the previous command in
the history list is used.

See also: [run history], page 27.

[Command]run_history [first] [last]
Similar to edit_history, except that the editor is not invoked, and the commands
are simply executed as they appear in the history list.

See also: [edit history], page 27.

Octave also allows you customize the details of when, where, and how history is saved.

[Built-in Function]val = saving_history ()
[Built-in Function]old_val = saving_history (new_val)
[Built-in Function]saving_history (new_val, "local")

Query or set the internal variable that controls whether commands entered on the
command line are saved in the history file.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [history control], page 28, [history file], page 28, [history size], page 28,
[history timestamp format string], page 28.

28 GNU Octave

[Built-in Function]val = history_control ()
[Built-in Function]old_val = history_control (new_val)

Query or set the internal variable that specifies how commands are saved to the
history list. The default value is an empty character string, but may be overridden
by the environment variable OCTAVE_HISTCONTROL.

The value of history_control is a colon-separated list of values controlling how
commands are saved on the history list. If the list of values includes ignorespace,
lines which begin with a space character are not saved in the history list. A value of
ignoredups causes lines matching the previous history entry to not be saved. A value
of ignoreboth is shorthand for ignorespace and ignoredups. A value of erasedups
causes all previous lines matching the current line to be removed from the history list
before that line is saved. Any value not in the above list is ignored. If history_
control is the empty string, all commands are saved on the history list, subject to
the value of saving_history.

See also: [history file], page 28, [history size], page 28, [history timestamp format string],
page 28, [saving history], page 27.

[Built-in Function]val = history_file ()
[Built-in Function]old_val = history_file (new_val)

Query or set the internal variable that specifies the name of the file used to store
command history. The default value is ‘~/.octave_hist’, but may be overridden by
the environment variable OCTAVE_HISTFILE.

See also: [history size], page 28, [saving history], page 27, [history timestamp format string],
page 28.

[Built-in Function]val = history_size ()
[Built-in Function]old_val = history_size (new_val)

Query or set the internal variable that specifies how many entries to store in the
history file. The default value is 1024, but may be overridden by the environment
variable OCTAVE_HISTSIZE.

See also: [history file], page 28, [history timestamp format string], page 28,
[saving history], page 27.

[Built-in Function]val = history_timestamp_format_string ()
[Built-in Function]old_val = history_timestamp_format_string (new_val)
[Built-in Function]history_timestamp_format_string (new_val, "local")

Query or set the internal variable that specifies the format string for the comment
line that is written to the history file when Octave exits. The format string is passed
to strftime. The default value is

"# Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USER@HOST>"

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [strftime], page 621, [history file], page 28, [history size], page 28,
[saving history], page 27.

Chapter 2: Getting Started 29

[Built-in Function]val = EDITOR ()
[Built-in Function]old_val = EDITOR (new_val)
[Built-in Function]EDITOR (new_val, "local")

Query or set the internal variable that specifies the editor to use with the edit_

history command. The default value is taken from the environment variable EDITOR
when Octave starts. If the environment variable is not initialized, EDITOR will be set
to "emacs".

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [edit history], page 27.

2.4.6 Customizing readline

Octave uses the GNU Readline library for command-line editing and history features. Read-
line is very flexible and can be modified through a configuration file of commands (See the
GNU Readline library for the exact command syntax). The default configuration file is
normally ‘~/.inputrc’.

Octave provides two commands for initializing Readline and thereby changing the com-
mand line behavior.

[Built-in Function]read_readline_init_file (file)
Read the readline library initialization file file. If file is omitted, read the default
initialization file (normally ‘~/.inputrc’).

See Section “Readline Init File” in GNU Readline Library , for details.

[Built-in Function]re_read_readline_init_file ()
Re-read the last readline library initialization file that was read. See Section “Readline
Init File” in GNU Readline Library , for details.

2.4.7 Customizing the Prompt

The following variables are available for customizing the appearance of the command-line
prompts. Octave allows the prompt to be customized by inserting a number of backslash-
escaped special characters that are decoded as follows:

‘\t’ The time.

‘\d’ The date.

‘\n’ Begins a new line by printing the equivalent of a carriage return followed by a
line feed.

‘\s’ The name of the program (usually just ‘octave’).

‘\w’ The current working directory.

‘\W’ The basename of the current working directory.

‘\u’ The username of the current user.

‘\h’ The hostname, up to the first ‘.’.

30 GNU Octave

‘\H’ The hostname.

‘\#’ The command number of this command, counting from when Octave starts.

‘\!’ The history number of this command. This differs from ‘\#’ by the number of
commands in the history list when Octave starts.

‘\$’ If the effective UID is 0, a ‘#’, otherwise a ‘$’.

‘\nnn’ The character whose character code in octal is nnn.

‘\\’ A backslash.

[Built-in Function]val = PS1 ()
[Built-in Function]old_val = PS1 (new_val)
[Built-in Function]PS1 (new_val, "local")

Query or set the primary prompt string. When executing interactively, Octave dis-
plays the primary prompt when it is ready to read a command.

The default value of the primary prompt string is "\s:\#> ". To change it, use a
command like

PS1 ("\\u@\\H> ")

which will result in the prompt ‘boris@kremvax> ’ for the user ‘boris’ logged in
on the host ‘kremvax.kgb.su’. Note that two backslashes are required to enter a
backslash into a double-quoted character string. See Chapter 5 [Strings], page 63.

You can also use ANSI escape sequences if your terminal supports them. This can be
useful for coloring the prompt. For example,

PS1 ("\\[\\033[01;31m\\]\\s:\\#> \\[\\033[0m\]")

will give the default Octave prompt a red coloring.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [PS2], page 30, [PS4], page 31.

[Built-in Function]val = PS2 ()
[Built-in Function]old_val = PS2 (new_val)
[Built-in Function]PS2 (new_val, "local")

Query or set the secondary prompt string. The secondary prompt is printed when
Octave is expecting additional input to complete a command. For example, if you are
typing a for loop that spans several lines, Octave will print the secondary prompt at
the beginning of each line after the first. The default value of the secondary prompt
string is "> ".

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [PS1], page 30, [PS4], page 31.

Chapter 2: Getting Started 31

[Built-in Function]val = PS4 ()
[Built-in Function]old_val = PS4 (new_val)
[Built-in Function]PS4 (new_val, "local")

Query or set the character string used to prefix output produced when echoing com-
mands is enabled. The default value is "+ ". See Section 2.4.8 [Diary and Echo
Commands], page 31, for a description of echoing commands.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [echo], page 31, [echo executing commands], page 31, [PS1], page 30, [PS2],
page 30.

2.4.8 Diary and Echo Commands

Octave’s diary feature allows you to keep a log of all or part of an interactive session by
recording the input you type and the output that Octave produces in a separate file.

[Command]diary options
Record a list of all commands and the output they produce, mixed together just as
you see them on your terminal. Valid options are:

on Start recording your session in a file called ‘diary’ in your current working
directory.

off Stop recording your session in the diary file.

file Record your session in the file named file.

With no arguments, diary toggles the current diary state.

Sometimes it is useful to see the commands in a function or script as they are being
evaluated. This can be especially helpful for debugging some kinds of problems.

[Command]echo options
Control whether commands are displayed as they are executed. Valid options are:

on Enable echoing of commands as they are executed in script files.

off Disable echoing of commands as they are executed in script files.

on all Enable echoing of commands as they are executed in script files and
functions.

off all Disable echoing of commands as they are executed in script files and
functions.

With no arguments, echo toggles the current echo state.

[Built-in Function]val = echo_executing_commands ()
[Built-in Function]old_val = echo_executing_commands (new_val)
[Built-in Function]echo_executing_commands (new_val, "local")

Query or set the internal variable that controls the echo state. It may be the sum of
the following values:

32 GNU Octave

1 Echo commands read from script files.

2 Echo commands from functions.

4 Echo commands read from command line.

More than one state can be active at once. For example, a value of 3 is equivalent to
the command echo on all.

The value of echo_executing_commands may be set by the echo command or the
command line option ‘--echo-commands’.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

2.5 How Octave Reports Errors

Octave reports two kinds of errors for invalid programs.

A parse error occurs if Octave cannot understand something you have typed. For exam-
ple, if you misspell a keyword,

octave:13> function y = f (x) y = x***2; endfunction

Octave will respond immediately with a message like this:

parse error:

syntax error

>>> function y = f (x) y = x***2; endfunction

^

For most parse errors, Octave uses a caret (‘^’) to mark the point on the line where it was
unable to make sense of your input. In this case, Octave generated an error message because
the keyword for exponentiation (**) was misspelled. It marked the error at the third ‘*’
because the code leading up to this was correct but the final ‘*’ was not understood.

Another class of error message occurs at evaluation time. These errors are called run-time
errors, or sometimes evaluation errors, because they occur when your program is being run,
or evaluated. For example, if after correcting the mistake in the previous function definition,
you type

octave:13> f ()

Octave will respond with

error: ‘x’ undefined near line 1 column 24

error: called from:

error: f at line 1, column 22

This error message has several parts, and gives quite a bit of information to help you locate
the source of the error. The messages are generated from the point of the innermost error,
and provide a traceback of enclosing expressions and function calls.

In the example above, the first line indicates that a variable named ‘x’ was found to be
undefined near line 1 and column 24 of some function or expression. For errors occurring
within functions, lines are counted from the beginning of the file containing the function

Chapter 2: Getting Started 33

definition. For errors occurring outside of an enclosing function, the line number indicates
the input line number, which is usually displayed in the primary prompt string.

The second and third lines of the error message indicate that the error occurred within
the function f. If the function f had been called from within another function, for example,
g, the list of errors would have ended with one more line:

error: g at line 1, column 17

These lists of function calls make it fairly easy to trace the path your program took
before the error occurred, and to correct the error before trying again.

2.6 Executable Octave Programs

Once you have learned Octave, you may want to write self-contained Octave scripts, using
the ‘#!’ script mechanism. You can do this on GNU systems and on many Unix systems1.

Self-contained Octave scripts are useful when you want to write a program which users
can invoke without knowing that the program is written in the Octave language. Octave
scripts are also used for batch processing of data files. Once an algorithm has been developed
and tested in the interactive portion of Octave, it can be committed to an executable script
and used again and again on new data files.

As a trivial example of an executable Octave script, you might create a text file named
‘hello’, containing the following lines:

#! octave-interpreter-name -qf

a sample Octave program

printf ("Hello, world!\n");

(where octave-interpreter-name should be replaced with the full path and name of your
Octave binary). Note that this will only work if ‘#!’ appears at the very beginning of the
file. After making the file executable (with the chmod command on Unix systems), you can
simply type:

hello

at the shell, and the system will arrange to run Octave as if you had typed:

octave hello

The line beginning with ‘#!’ lists the full path and filename of an interpreter to be run,
and an optional initial command line argument to pass to that interpreter. The operating
system then runs the interpreter with the given argument and the full argument list of
the executed program. The first argument in the list is the full file name of the Octave
executable. The rest of the argument list will either be options to Octave, or data files, or
both. The ‘-qf’ options are usually specified in stand-alone Octave programs to prevent
them from printing the normal startup message, and to keep them from behaving differently
depending on the contents of a particular user’s ‘~/.octaverc’ file. See Section 2.1 [Invoking
Octave from the Command Line], page 15.

Note that some operating systems may place a limit on the number of characters that
are recognized after ‘#!’. Also, the arguments appearing in a ‘#!’ line are parsed differently
by various shells/systems. The majority of them group all the arguments together in one
string and pass it to the interpreter as a single argument. In this case, the following script:

1 The ‘#!’ mechanism works on Unix systems derived from Berkeley Unix, System V Release 4, and some
System V Release 3 systems.

34 GNU Octave

#! octave-interpreter-name -q -f # comment

is equivalent to typing at the command line:

octave "-q -f # comment"

which will produce an error message. Unfortunately, it is not possible for Octave to deter-
mine whether it has been called from the command line or from a ‘#!’ script, so some care
is needed when using the ‘#!’ mechanism.

Note that when Octave is started from an executable script, the built-in function argv

returns a cell array containing the command line arguments passed to the executable Octave
script, not the arguments passed to the Octave interpreter on the ‘#!’ line of the script. For
example, the following program will reproduce the command line that was used to execute
the script, not ‘-qf’.

#! /bin/octave -qf

printf ("%s", program_name ());

arg_list = argv ();

for i = 1:nargin

printf (" %s", arg_list{i});

endfor

printf ("\n");

2.7 Comments in Octave Programs

A comment is some text that is included in a program for the sake of human readers, and
which is NOT an executable part of the program. Comments can explain what the program
does, and how it works. Nearly all programming languages have provisions for comments,
because programs are typically hard to understand without them.

2.7.1 Single Line Comments

In the Octave language, a comment starts with either the sharp sign character, ‘#’, or the
percent symbol ‘%’ and continues to the end of the line. Any text following the sharp sign
or percent symbol is ignored by the Octave interpreter and not executed. The following
example shows whole line and partial line comments.

function countdown

Count down for main rocket engines

disp(3);

disp(2);

disp(1);

disp("Blast Off!"); # Rocket leaves pad

endfunction

2.7.2 Block Comments

Entire blocks of code can be commented by enclosing the code between matching ‘#{’ and
‘#}’ or ‘%{’ and ‘%}’ markers. For example,

Chapter 2: Getting Started 35

function quick_countdown

Count down for main rocket engines

disp(3);

#{

disp(2);

disp(1);

#}

disp("Blast Off!"); # Rocket leaves pad

endfunction

will produce a very quick countdown from ’3’ to ’Blast Off’ as the lines "disp(2);" and
"disp(1);" won’t be executed.

The block comment markers must appear alone as the only characters on a line (excepting
whitespace) in order to be parsed correctly.

2.7.3 Comments and the Help System

The help command (see Section 2.3 [Getting Help], page 19) is able to find the first block
of comments in a function and return those as a documentation string. This means that the
same commands used to get help on built-in functions are available for properly formatted
user-defined functions. For example, after defining the function f below,

function xdot = f (x, t)

usage: f (x, t)

#

This function defines the right-hand

side functions for a set of nonlinear

differential equations.

r = 0.25;

...

endfunction

the command help f produces the output

usage: f (x, t)

This function defines the right-hand

side functions for a set of nonlinear

differential equations.

Although it is possible to put comment lines into keyboard-composed, throw-away Oc-
tave programs, it usually isn’t very useful because the purpose of a comment is to help you
or another person understand the program at a later time.

The help parser currently only recognizes single line comments (see Section 2.7.1 [Single
Line Comments], page 34) and not block comments for the initial help text.

Chapter 3: Data Types 37

3 Data Types

All versions of Octave include a number of built-in data types, including real and complex
scalars and matrices, character strings, a data structure type, and an array that can contain
all data types.

It is also possible to define new specialized data types by writing a small amount of C++
code. On some systems, new data types can be loaded dynamically while Octave is running,
so it is not necessary to recompile all of Octave just to add a new type. See Appendix A
[Dynamically Linked Functions], page 667, for more information about Octave’s dynamic
linking capabilities. Section 3.2 [User-defined Data Types], page 41 describes what you
must do to define a new data type for Octave.

[Built-in Function]typeinfo ()
[Built-in Function]typeinfo (expr)

Return the type of the expression expr, as a string. If expr is omitted, return an cell
array of strings containing all the currently installed data types.

3.1 Built-in Data Types

The standard built-in data types are real and complex scalars and matrices, ranges, char-
acter strings, a data structure type, and cell arrays. Additional built-in data types may
be added in future versions. If you need a specialized data type that is not currently pro-
vided as a built-in type, you are encouraged to write your own user-defined data type and
contribute it for distribution in a future release of Octave.

The data type of a variable can be determined and changed through the use of the
following functions.

[Built-in Function]class (expr)
[Built-in Function]class (s, id)
[Built-in Function]class (s, id, p, . . .)

Return the class of the expression expr or create a class with fields from structure s
and name (string) id. Additional arguments name a list of parent classes from which
the new class is derived.

[Function File]isa (obj, class)
Return true if obj is an object from the class class.

See also: [class], page 37, [typeinfo], page 37.

[Function File]cast (val, type)
Convert val to data type type.

See also: [int8], page 52, [uint8], page 52, [int16], page 52, [uint16], page 52, [int32],
page 52, [uint32], page 52, [int64], page 52, [uint64], page 52, [double], page 45.

[Loadable Function]typecast (x, class)
Return a new array y resulting from interpreting the data of x in memory as data
of the numeric class class. Both the class of x and class must be one of the built-in
numeric classes:

38 GNU Octave

"logical"

"char"

"int8"

"int16"

"int32"

"int64"

"uint8"

"uint16"

"uint32"

"uint64"

"double"

"single"

"double complex"

"single complex"

the last two are reserved for class; they indicate that a complex-valued result is
requested. Complex arrays are stored in memory as consecutive pairs of real numbers.
The sizes of integer types are given by their bit counts. Both logical and char are
typically one byte wide; however, this is not guaranteed by C++. If your system is
IEEE conformant, single and double should be 4 bytes and 8 bytes wide, respectively.
"logical" is not allowed for class. If the input is a row vector, the return value is a
row vector, otherwise it is a column vector. If the bit length of x is not divisible by
that of class, an error occurs.

An example of the use of typecast on a little-endian machine is

x = uint16 ([1, 65535]);

typecast (x, ’uint8’)

⇒ [0, 1, 255, 255]

See also: [cast], page 37, [bitunpack], page 39, [bitpack], page 38, [swapbytes], page 38.

[Function File]swapbytes (x)
Swap the byte order on values, converting from little endian to big endian and vice
versa. For example:

swapbytes (uint16 (1:4))

⇒ [256 512 768 1024]

See also: [typecast], page 37, [cast], page 37.

[Loadable Function]y = bitpack (x, class)
Return a new array y resulting from interpreting an array x as raw bit patterns for
data of the numeric class class. class must be one of the built-in numeric classes:

Chapter 3: Data Types 39

"char"

"int8"

"int16"

"int32"

"int64"

"uint8"

"uint16"

"uint32"

"uint64"

"double"

"single"

The number of elements of x should be divisible by the bit length of class. If it is
not, excess bits are discarded. Bits come in increasing order of significance, i.e., x(1)
is bit 0, x(2) is bit 1, etc. The result is a row vector if x is a row vector, otherwise
it is a column vector.

See also: [bitunpack], page 39, [typecast], page 37.

[Loadable Function]y = bitunpack (x)
Return an array y corresponding to the raw bit patterns of x. x must belong to one
of the built-in numeric classes:

"char"

"int8"

"int16"

"int32"

"int64"

"uint8"

"uint16"

"uint32"

"uint64"

"double"

"single"

The result is a row vector if x is a row vector; otherwise, it is a column vector.

See also: [bitpack], page 38, [typecast], page 37.

3.1.1 Numeric Objects

Octave’s built-in numeric objects include real, complex, and integer scalars and matrices.
All built-in floating point numeric data is currently stored as double precision numbers.
On systems that use the IEEE floating point format, values in the range of approximately
2.2251× 10−308 to 1.7977× 10308 can be stored, and the relative precision is approximately
2.2204 × 10−16. The exact values are given by the variables realmin, realmax, and eps,
respectively.

Matrix objects can be of any size, and can be dynamically reshaped and resized. It is
easy to extract individual rows, columns, or submatrices using a variety of powerful indexing
features. See Section 8.1 [Index Expressions], page 123.

See Chapter 4 [Numeric Data Types], page 45, for more information.

40 GNU Octave

3.1.2 Missing Data

It is possible to represent missing data explicitly in Octave using NA (short for “Not Avail-
able”). Missing data can only be represented when data is represented as floating point
numbers. In this case missing data is represented as a special case of the representation of
NaN.

[Built-in Function]NA
[Built-in Function]NA (n)
[Built-in Function]NA (n, m)
[Built-in Function]NA (n, m, k, . . .)
[Built-in Function]NA (. . . , class)

Return a scalar, matrix, or N-dimensional array whose elements are all equal to the
special constant used to designate missing values.

Note that NA always compares not equal to NA (NA != NA). To find NA values, use
the isna function.

When called with no arguments, return a scalar with the value ‘NA’. When called
with a single argument, return a square matrix with the dimension specified. When
called with more than one scalar argument the first two arguments are taken as the
number of rows and columns and any further arguments specify additional matrix
dimensions. The optional argument class specifies the return type and may be either
"double" or "single".

See also: [isna], page 40.

[Mapping Function]isna (x)
Return a logical array which is true where the elements of x are NA (missing) values
and false where they are not. For example:

isna ([13, Inf, NA, NaN])

⇒ [0, 0, 1, 0]

See also: [isnan], page 332, [isinf], page 332, [isfinite], page 332.

3.1.3 String Objects

A character string in Octave consists of a sequence of characters enclosed in either double-
quote or single-quote marks. Internally, Octave currently stores strings as matrices of
characters. All the indexing operations that work for matrix objects also work for strings.

See Chapter 5 [Strings], page 63, for more information.

3.1.4 Data Structure Objects

Octave’s data structure type can help you to organize related objects of different types.
The current implementation uses an associative array with indices limited to strings, but
the syntax is more like C-style structures.

See Section 6.1 [Structures], page 91, for more information.

3.1.5 Cell Array Objects

A Cell Array in Octave is general array that can hold any number of different data types.

See Section 6.2 [Cell Arrays], page 102, for more information.

Chapter 3: Data Types 41

3.2 User-defined Data Types

Someday I hope to expand this to include a complete description of Octave’s mechanism
for managing user-defined data types. Until this feature is documented here, you will have
to make do by reading the code in the ‘ov.h’, ‘ops.h’, and related files from Octave’s ‘src’
directory.

3.3 Object Sizes

The following functions allow you to determine the size of a variable or expression. These
functions are defined for all objects. They return −1 when the operation doesn’t make
sense. For example, Octave’s data structure type doesn’t have rows or columns, so the
rows and columns functions return −1 for structure arguments.

[Built-in Function]ndims (a)
Return the number of dimensions of a. For any array, the result will always be larger
than or equal to 2. Trailing singleton dimensions are not counted.

ndims (ones (4, 1, 2, 1))

⇒ 3

[Built-in Function]columns (a)
Return the number of columns of a.

See also: [rows], page 41, [size], page 42, [length], page 41, [numel], page 41, [isscalar],
page 60, [isvector], page 59, [ismatrix], page 59.

[Built-in Function]rows (a)
Return the number of rows of a.

See also: [columns], page 41, [size], page 42, [length], page 41, [numel], page 41,
[isscalar], page 60, [isvector], page 59, [ismatrix], page 59.

[Built-in Function]numel (a)
[Built-in Function]numel (a, idx1, idx2, . . .)

Return the number of elements in the object a. Optionally, if indices idx1, idx2, . . .
are supplied, return the number of elements that would result from the indexing

a(idx1, idx2, ...)

Note that the indices do not have to be numerical. For example,

a = 1;

b = ones (2, 3);

numel (a, b);

will return 6, as this is the number of ways to index with b.

This method is also called when an object appears as lvalue with cs-list indexing, i.e.,
object{...} or object(...).field.

See also: [size], page 42.

[Built-in Function]length (a)
Return the "length" of the object a. For matrix objects, the length is the number
of rows or columns, whichever is greater (this odd definition is used for compatibility
with matlab).

42 GNU Octave

[Built-in Function]size (a)
[Built-in Function]size (a, dim)

Return the number of rows and columns of a.

With one input argument and one output argument, the result is returned in a row
vector. If there are multiple output arguments, the number of rows is assigned to the
first, and the number of columns to the second, etc. For example:

size ([1, 2; 3, 4; 5, 6])

⇒ [3, 2]

[nr, nc] = size ([1, 2; 3, 4; 5, 6])

⇒ nr = 3

⇒ nc = 2

If given a second argument, size will return the size of the corresponding dimension.
For example,

size ([1, 2; 3, 4; 5, 6], 2)

⇒ 2

returns the number of columns in the given matrix.

See also: [numel], page 41.

[Built-in Function]isempty (a)
Return true if a is an empty matrix (any one of its dimensions is zero). Otherwise,
return false.

See also: [isnull], page 42.

[Built-in Function]isnull (x)
Return true if x is a special null matrix, string, or single quoted string. Indexed
assignment with such a value on the right-hand side should delete array elements.
This function should be used when overloading indexed assignment for user-defined
classes instead of isempty, to distinguish the cases:

A(I) = [] This should delete elements if I is nonempty.

X = []; A(I) = X

This should give an error if I is nonempty.

See also: [isempty], page 42, [isindex], page 126.

[Built-in Function]sizeof (val)
Return the size of val in bytes.

See also: [whos], page 118.

[Built-in Function]size_equal (a, b, . . .)
Return true if the dimensions of all arguments agree. Trailing singleton dimensions
are ignored. Called with a single or no argument, size equal returns true.

See also: [size], page 42, [numel], page 41.

Chapter 3: Data Types 43

[Built-in Function]squeeze (x)
Remove singleton dimensions from x and return the result. Note that for compatibility
with matlab, all objects have a minimum of two dimensions and row vectors are left
unchanged.

Chapter 4: Numeric Data Types 45

4 Numeric Data Types

A numeric constant may be a scalar, a vector, or a matrix, and it may contain complex
values.

The simplest form of a numeric constant, a scalar, is a single number that can be an
integer, a decimal fraction, a number in scientific (exponential) notation, or a complex
number. Note that by default numeric constants are represented within Octave in double-
precision floating point format (complex constants are stored as pairs of double-precision
floating point values). It is however possible to represent real integers as described in
Section 4.4 [Integer Data Types], page 52. Here are some examples of real-valued numeric
constants, which all have the same value:

105

1.05e+2

1050e-1

To specify complex constants, you can write an expression of the form

3 + 4i

3.0 + 4.0i

0.3e1 + 40e-1i

all of which are equivalent. The letter ‘i’ in the previous example stands for the pure
imaginary constant, defined as

√
−1.

For Octave to recognize a value as the imaginary part of a complex constant, a space
must not appear between the number and the ‘i’. If it does, Octave will print an error
message, like this:

octave:13> 3 + 4 i

parse error:

syntax error

>>> 3 + 4 i

^

You may also use ‘j’, ‘I’, or ‘J’ in place of the ‘i’ above. All four forms are equivalent.

[Built-in Function]double (x)
Convert x to double precision type.

See also: [single], page 51.

[Built-in Function]complex (x)
[Built-in Function]complex (re, im)

Return a complex result from real arguments. With 1 real argument x, return the
complex result x + 0i. With 2 real arguments, return the complex result re + im .
complex can often be more convenient than expressions such as a + i*b. For example:

complex ([1, 2], [3, 4])

⇒
1 + 3i 2 + 4i

See also: [real], page 355, [imag], page 355, [iscomplex], page 59.

46 GNU Octave

4.1 Matrices

It is easy to define a matrix of values in Octave. The size of the matrix is determined
automatically, so it is not necessary to explicitly state the dimensions. The expression

a = [1, 2; 3, 4]

results in the matrix

a =

[
1 2
3 4

]
Elements of a matrix may be arbitrary expressions, provided that the dimensions all

make sense when combining the various pieces. For example, given the above matrix, the
expression

[a, a]

produces the matrix

ans =

1 2 1 2

3 4 3 4

but the expression

[a, 1]

produces the error

error: number of rows must match (1 != 2) near line 13, column 6

(assuming that this expression was entered as the first thing on line 13, of course).

Inside the square brackets that delimit a matrix expression, Octave looks at the sur-
rounding context to determine whether spaces and newline characters should be converted
into element and row separators, or simply ignored, so an expression like

a = [1 2

3 4]

will work. However, some possible sources of confusion remain. For example, in the expres-
sion

[1 - 1]

the ‘-’ is treated as a binary operator and the result is the scalar 0, but in the expression

[1 -1]

the ‘-’ is treated as a unary operator and the result is the vector [1, -1]. Similarly, the
expression

[sin (pi)]

will be parsed as

[sin, (pi)]

and will result in an error since the sin function will be called with no arguments. To get
around this, you must omit the space between sin and the opening parenthesis, or enclose
the expression in a set of parentheses:

[(sin (pi))]

Whitespace surrounding the single quote character (‘’’, used as a transpose operator
and for delimiting character strings) can also cause confusion. Given a = 1, the expression

Chapter 4: Numeric Data Types 47

[1 a’]

results in the single quote character being treated as a transpose operator and the result is
the vector [1, 1], but the expression

[1 a ’]

produces the error message

parse error:

syntax error

>>> [1 a ’]

^

because not doing so would cause trouble when parsing the valid expression

[a ’foo’]

For clarity, it is probably best to always use commas and semicolons to separate matrix
elements and rows.

The maximum number of elements in a matrix is fixed when Octave is compiled. The
allowable number can be queried with the function sizemax. Note that other factors, such as
the amount of memory available on your machine, may limit the maximum size of matrices
to something smaller.

[Built-in Function]sizemax ()
Return the largest value allowed for the size of an array. If Octave is compiled with
64-bit indexing, the result is of class int64, otherwise it is of class int32. The maximum
array size is slightly smaller than the maximum value allowable for the relevant class
as reported by intmax.

See also: [intmax], page 53.

When you type a matrix or the name of a variable whose value is a matrix, Octave
responds by printing the matrix in with neatly aligned rows and columns. If the rows of
the matrix are too large to fit on the screen, Octave splits the matrix and displays a header
before each section to indicate which columns are being displayed. You can use the following
variables to control the format of the output.

[Built-in Function]val = output_max_field_width ()
[Built-in Function]old_val = output_max_field_width (new_val)
[Built-in Function]output_max_field_width (new_val, "local")

Query or set the internal variable that specifies the maximum width of a numeric
output field.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 204, [fixed point format], page 48, [output precision],
page 48.

48 GNU Octave

[Built-in Function]val = output_precision ()
[Built-in Function]old_val = output_precision (new_val)
[Built-in Function]output_precision (new_val, "local")

Query or set the internal variable that specifies the minimum number of significant
figures to display for numeric output.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 204, [fixed point format], page 48, [output max field width],
page 47.

It is possible to achieve a wide range of output styles by using different values of output_
precision and output_max_field_width. Reasonable combinations can be set using the
format function. See Section 14.1 [Basic Input and Output], page 203.

[Built-in Function]val = split_long_rows ()
[Built-in Function]old_val = split_long_rows (new_val)
[Built-in Function]split_long_rows (new_val, "local")

Query or set the internal variable that controls whether rows of a matrix may be
split when displayed to a terminal window. If the rows are split, Octave will display
the matrix in a series of smaller pieces, each of which can fit within the limits of
your terminal width and each set of rows is labeled so that you can easily see which
columns are currently being displayed. For example:

octave:13> rand (2,10)

ans =

Columns 1 through 6:

0.75883 0.93290 0.40064 0.43818 0.94958 0.16467

0.75697 0.51942 0.40031 0.61784 0.92309 0.40201

Columns 7 through 10:

0.90174 0.11854 0.72313 0.73326

0.44672 0.94303 0.56564 0.82150

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 204.

Octave automatically switches to scientific notation when values become very large or
very small. This guarantees that you will see several significant figures for every value in
a matrix. If you would prefer to see all values in a matrix printed in a fixed point format,
you can set the built-in variable fixed_point_format to a nonzero value. But doing so is
not recommended, because it can produce output that can easily be misinterpreted.

Chapter 4: Numeric Data Types 49

[Built-in Function]val = fixed_point_format ()
[Built-in Function]old_val = fixed_point_format (new_val)
[Built-in Function]fixed_point_format (new_val, "local")

Query or set the internal variable that controls whether Octave will use a scaled
format to print matrix values such that the largest element may be written with a
single leading digit with the scaling factor is printed on the first line of output. For
example:

octave:1> logspace (1, 7, 5)’

ans =

1.0e+07 *

0.00000

0.00003

0.00100

0.03162

1.00000

Notice that first value appears to be zero when it is actually 1. For this reason, you
should be careful when setting fixed_point_format to a nonzero value.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 204, [output max field width], page 47, [output precision],
page 48.

4.1.1 Empty Matrices

A matrix may have one or both dimensions zero, and operations on empty matrices are
handled as described by Carl de Boor in An Empty Exercise, SIGNUM, Volume 25, pages
2-6, 1990 and C. N. Nett and W. M. Haddad, in A System-Theoretic Appropriate Realiza-
tion of the Empty Matrix Concept, IEEE Transactions on Automatic Control, Volume 38,
Number 5, May 1993. Briefly, given a scalar s, an m×n matrixMm×n, and an m×n empty
matrix []m×n (with either one or both dimensions equal to zero), the following are true:

s · []m×n = []m×n · s = []m×n

[]m×n + []m×n = []m×n

[]0×m ·Mm×n = []0×n

Mm×n · []n×0 = []m×0

[]m×0 · []0×n = 0m×n

By default, dimensions of the empty matrix are printed along with the empty matrix
symbol, ‘[]’. The built-in variable print_empty_dimensions controls this behavior.

[Built-in Function]val = print_empty_dimensions ()
[Built-in Function]old_val = print_empty_dimensions (new_val)

50 GNU Octave

[Built-in Function]print_empty_dimensions (new_val, "local")
Query or set the internal variable that controls whether the dimensions of empty
matrices are printed along with the empty matrix symbol, ‘[]’. For example, the
expression

zeros (3, 0)

will print

ans = [](3x0)

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 204.

Empty matrices may also be used in assignment statements as a convenient way to delete
rows or columns of matrices. See Section 8.6 [Assignment Expressions], page 137.

When Octave parses a matrix expression, it examines the elements of the list to determine
whether they are all constants. If they are, it replaces the list with a single matrix constant.

4.2 Ranges

A range is a convenient way to write a row vector with evenly spaced elements. A range
expression is defined by the value of the first element in the range, an optional value for the
increment between elements, and a maximum value which the elements of the range will
not exceed. The base, increment, and limit are separated by colons (the ‘:’ character) and
may contain any arithmetic expressions and function calls. If the increment is omitted, it
is assumed to be 1. For example, the range

1 : 5

defines the set of values ‘[1, 2, 3, 4, 5]’, and the range

1 : 3 : 5

defines the set of values ‘[1, 4]’.

Although a range constant specifies a row vector, Octave does not convert range con-
stants to vectors unless it is necessary to do so. This allows you to write a constant like ‘1
: 10000’ without using 80,000 bytes of storage on a typical 32-bit workstation.

A common example of when it does become necessary to convert ranges into vectors
occurs when they appear within a vector (i.e., inside square brackets). For instance, whereas

x = 0 : 0.1 : 1;

defines x to be a variable of type range and occupies 24 bytes of memory, the expression

y = [0 : 0.1 : 1];

defines y to be of type matrix and occupies 88 bytes of memory.

Note that the upper (or lower, if the increment is negative) bound on the range is not
always included in the set of values, and that ranges defined by floating point values can
produce surprising results because Octave uses floating point arithmetic to compute the
values in the range. If it is important to include the endpoints of a range and the number of
elements is known, you should use the linspace function instead (see Section 16.3 [Special
Utility Matrices], page 343).

Chapter 4: Numeric Data Types 51

When adding a scalar to a range, subtracting a scalar from it (or subtracting a range
from a scalar) and multiplying by scalar, Octave will attempt to avoid unpacking the range
and keep the result as a range, too, if it can determine that it is safe to do so. For instance,
doing

a = 2*(1:1e7) - 1;

will produce the same result as ‘1:2:2e7-1’, but without ever forming a vector with ten
million elements.

Using zero as an increment in the colon notation, as ‘1:0:1’ is not allowed, because a
division by zero would occur in determining the number of range elements. However, ranges
with zero increment (i.e., all elements equal) are useful, especially in indexing, and Octave
allows them to be constructed using the built-in function ones. Note that because a range
must be a row vector, ‘ones (1, 10)’ produces a range, while ‘ones (10, 1)’ does not.

When Octave parses a range expression, it examines the elements of the expression to
determine whether they are all constants. If they are, it replaces the range expression with
a single range constant.

4.3 Single Precision Data Types

Octave includes support for single precision data types, and most of the functions in Octave
accept single precision values and return single precision answers. A single precision variable
is created with the single function.

[Built-in Function]single (x)
Convert x to single precision type.

See also: [double], page 45.

for example:

sngl = single (rand (2, 2))

⇒ sngl =

0.37569 0.92982

0.11962 0.50876

class (sngl)

⇒ single

Many functions can also return single precision values directly. For example

ones (2, 2, "single")

zeros (2, 2, "single")

eye (2, 2, "single")

rand (2, 2, "single")

NaN (2, 2, "single")

NA (2, 2, "single")

Inf (2, 2, "single")

will all return single precision matrices.

52 GNU Octave

4.4 Integer Data Types

Octave supports integer matrices as an alternative to using double precision. It is possible
to use both signed and unsigned integers represented by 8, 16, 32, or 64 bits. It should be
noted that most computations require floating point data, meaning that integers will often
change type when involved in numeric computations. For this reason integers are most
often used to store data, and not for calculations.

In general most integer matrices are created by casting existing matrices to integers.
The following example shows how to cast a matrix into 32 bit integers.

float = rand (2, 2)

⇒ float = 0.37569 0.92982

0.11962 0.50876

integer = int32 (float)

⇒ integer = 0 1

0 1

As can be seen, floating point values are rounded to the nearest integer when converted.

[Built-in Function]isinteger (x)
Return true if x is an integer object (int8, uint8, int16, etc.). Note that
isinteger (14) is false because numeric constants in Octave are double precision
floating point values.

See also: [isfloat], page 59, [ischar], page 64, [islogical], page 60, [isnumeric], page 59,
[isa], page 37.

[Built-in Function]int8 (x)
Convert x to 8-bit integer type.

[Built-in Function]uint8 (x)
Convert x to unsigned 8-bit integer type.

[Built-in Function]int16 (x)
Convert x to 16-bit integer type.

[Built-in Function]uint16 (x)
Convert x to unsigned 16-bit integer type.

[Built-in Function]int32 (x)
Convert x to 32-bit integer type.

[Built-in Function]uint32 (x)
Convert x to unsigned 32-bit integer type.

[Built-in Function]int64 (x)
Convert x to 64-bit integer type.

[Built-in Function]uint64 (x)
Convert x to unsigned 64-bit integer type.

Chapter 4: Numeric Data Types 53

[Built-in Function]intmax (type)
Return the largest integer that can be represented in an integer type. The variable
type can be

int8 signed 8-bit integer.

int16 signed 16-bit integer.

int32 signed 32-bit integer.

int64 signed 64-bit integer.

uint8 unsigned 8-bit integer.

uint16 unsigned 16-bit integer.

uint32 unsigned 32-bit integer.

uint64 unsigned 64-bit integer.

The default for type is uint32.

See also: [intmin], page 53, [bitmax], page 55.

[Built-in Function]intmin (type)
Return the smallest integer that can be represented in an integer type. The variable
type can be

int8 signed 8-bit integer.

int16 signed 16-bit integer.

int32 signed 32-bit integer.

int64 signed 64-bit integer.

uint8 unsigned 8-bit integer.

uint16 unsigned 16-bit integer.

uint32 unsigned 32-bit integer.

uint64 unsigned 64-bit integer.

The default for type is uint32.

See also: [intmax], page 53, [bitmax], page 55.

4.4.1 Integer Arithmetic

While many numerical computations can’t be carried out in integers, Octave does support
basic operations like addition and multiplication on integers. The operators +, -, .*, and
./ work on integers of the same type. So, it is possible to add two 32 bit integers, but not
to add a 32 bit integer and a 16 bit integer.

When doing integer arithmetic one should consider the possibility of underflow and
overflow. This happens when the result of the computation can’t be represented using the
chosen integer type. As an example it is not possible to represent the result of 10 − 20
when using unsigned integers. Octave makes sure that the result of integer computations is

54 GNU Octave

the integer that is closest to the true result. So, the result of 10− 20 when using unsigned
integers is zero.

When doing integer division Octave will round the result to the nearest integer. This is
different from most programming languages, where the result is often floored to the nearest
integer. So, the result of int32(5) ./ int32(8) is 1.

[Function File]idivide (x, y, op)
Integer division with different rounding rules.

The standard behavior of integer division such as a ./ b is to round the result to
the nearest integer. This is not always the desired behavior and idivide permits
integer element-by-element division to be performed with different treatment for the
fractional part of the division as determined by the op flag. op is a string with one
of the values:

"fix" Calculate a ./ b with the fractional part rounded towards zero.

"round" Calculate a ./ b with the fractional part rounded towards the nearest
integer.

"floor" Calculate a ./ b with the fractional part rounded towards negative in-
finity.

"ceil" Calculate a ./ b with the fractional part rounded towards positive infin-
ity.

If op is not given it defaults to "fix". An example demonstrating these rounding
rules is

idivide (int8 ([-3, 3]), int8 (4), "fix")

⇒ int8 ([0, 0])

idivide (int8 ([-3, 3]), int8 (4), "round")

⇒ int8 ([-1, 1])

idivide (int8 ([-3, 3]), int8 (4), "floor")

⇒ int8 ([-1, 0])

idivide (int8 ([-3, 3]), int8 (4), "ceil")

⇒ int8 ([0, 1])

See also: [ldivide], page 131, [rdivide], page 132.

4.5 Bit Manipulations

Octave provides a number of functions for the manipulation of numeric values on a bit by
bit basis. The basic functions to set and obtain the values of individual bits are bitset

and bitget.

[Function File]C = bitset (A, n)
[Function File]C = bitset (A, n, val)

Set or reset bit(s) n of unsigned integers in A. val = 0 resets and val = 1 sets the
bits. The lowest significant bit is: n = 1

dec2bin (bitset (10, 1))

⇒ 1011

Chapter 4: Numeric Data Types 55

See also: [bitand], page 55, [bitor], page 55, [bitxor], page 56, [bitget], page 55,
[bitcmp], page 56, [bitshift], page 56, [bitmax], page 55.

[Function File]c = bitget (A, n)
Return the status of bit(s) n of unsigned integers in A the lowest significant bit is n
= 1.

bitget (100, 8:-1:1)

⇒ 0 1 1 0 0 1 0 0

See also: [bitand], page 55, [bitor], page 55, [bitxor], page 56, [bitset], page 54,
[bitcmp], page 56, [bitshift], page 56, [bitmax], page 55.

The arguments to all of Octave’s bitwise operations can be scalar or arrays, except for
bitcmp, whose k argument must a scalar. In the case where more than one argument is an
array, then all arguments must have the same shape, and the bitwise operator is applied to
each of the elements of the argument individually. If at least one argument is a scalar and
one an array, then the scalar argument is duplicated. Therefore

bitget (100, 8:-1:1)

is the same as

bitget (100 * ones (1, 8), 8:-1:1)

It should be noted that all values passed to the bit manipulation functions of Octave
are treated as integers. Therefore, even though the example for bitset above passes the
floating point value 10, it is treated as the bits [1, 0, 1, 0] rather than the bits of the
native floating point format representation of 10.

As the maximum value that can be represented by a number is important for bit ma-
nipulation, particularly when forming masks, Octave supplies the function bitmax.

[Built-in Function]bitmax ()
[Built-in Function]bitmax ("double")
[Built-in Function]bitmax ("single")

Return the largest integer that can be represented within a floating point value. The
default class is "double", but "single" is a valid option. On IEEE-754 compatible
systems, bitmax is 253 − 1.

This is the double precision version of the functions intmax, previously discussed.

Octave also includes the basic bitwise ’and’, ’or’ and ’exclusive or’ operators.

[Built-in Function]bitand (x, y)
Return the bitwise AND of non-negative integers. x, y must be in the range [0,bitmax]

See also: [bitor], page 55, [bitxor], page 56, [bitset], page 54, [bitget], page 55,
[bitcmp], page 56, [bitshift], page 56, [bitmax], page 55.

[Built-in Function]bitor (x, y)
Return the bitwise OR of non-negative integers. x, y must be in the range [0,bitmax]

See also: [bitor], page 55, [bitxor], page 56, [bitset], page 54, [bitget], page 55,
[bitcmp], page 56, [bitshift], page 56, [bitmax], page 55.

56 GNU Octave

[Built-in Function]bitxor (x, y)
Return the bitwise XOR of non-negative integers. x, y must be in the range [0,bitmax]

See also: [bitand], page 55, [bitor], page 55, [bitset], page 54, [bitget], page 55,
[bitcmp], page 56, [bitshift], page 56, [bitmax], page 55.

The bitwise ’not’ operator is a unary operator that performs a logical negation of each
of the bits of the value. For this to make sense, the mask against which the value is negated
must be defined. Octave’s bitwise ’not’ operator is bitcmp.

[Function File]bitcmp (A, k)
Return the k-bit complement of integers in A. If k is omitted k = log2 (bitmax) + 1

is assumed.

bitcmp (7,4)

⇒ 8

dec2bin (11)

⇒ 1011

dec2bin (bitcmp (11, 6))

⇒ 110100

See also: [bitand], page 55, [bitor], page 55, [bitxor], page 56, [bitset], page 54, [bitget],
page 55, [bitcmp], page 56, [bitshift], page 56, [bitmax], page 55.

Octave also includes the ability to left-shift and right-shift values bitwise.

[Built-in Function]bitshift (a, k)
[Built-in Function]bitshift (a, k, n)

Return a k bit shift of n-digit unsigned integers in a. A positive k leads to a left
shift; A negative value to a right shift. If n is omitted it defaults to log2(bitmax)+1.
n must be in the range [1,log2(bitmax)+1] usually [1,33].

bitshift (eye (3), 1)

⇒
2 0 0

0 2 0

0 0 2

bitshift (10, [-2, -1, 0, 1, 2])

⇒ 2 5 10 20 40

See also: [bitand], page 55, [bitor], page 55, [bitxor], page 56, [bitset], page 54, [bitget],
page 55, [bitcmp], page 56, [bitmax], page 55.

Bits that are shifted out of either end of the value are lost. Octave also uses arithmetic
shifts, where the sign bit of the value is kept during a right shift. For example:

bitshift (-10, -1)

⇒ -5

bitshift (int8 (-1), -1)

⇒ -1

Note that bitshift (int8 (-1), -1) is -1 since the bit representation of -1 in the int8
data type is [1, 1, 1, 1, 1, 1, 1, 1].

Chapter 4: Numeric Data Types 57

4.6 Logical Values

Octave has built-in support for logical values, i.e., variables that are either true or false.
When comparing two variables, the result will be a logical value whose value depends on
whether or not the comparison is true.

The basic logical operations are &, |, and !, which correspond to “Logical And”, “Logical
Or”, and “Logical Negation”. These operations all follow the usual rules of logic.

It is also possible to use logical values as part of standard numerical calculations. In
this case true is converted to 1, and false to 0, both represented using double precision
floating point numbers. So, the result of true*22 - false/6 is 22.

Logical values can also be used to index matrices and cell arrays. When indexing with
a logical array the result will be a vector containing the values corresponding to true parts
of the logical array. The following example illustrates this.

data = [1, 2; 3, 4];

idx = (data <= 2);

data(idx)

⇒ ans = [1; 2]

Instead of creating the idx array it is possible to replace data(idx) with data(data <= 2)

in the above code.

Logical values can also be constructed by casting numeric objects to logical values, or
by using the true or false functions.

[Built-in Function]logical (x)
Convert x to logical type.

See also: [double], page 45, [single], page 51, [char], page 67.

[Built-in Function]true (x)
[Built-in Function]true (n, m)
[Built-in Function]true (n, m, k, . . .)

Return a matrix or N-dimensional array whose elements are all logical 1. If invoked
with a single scalar integer argument, return a square matrix of the specified size.
If invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with given dimensions.

See also: [false], page 57.

[Built-in Function]false (x)
[Built-in Function]false (n, m)
[Built-in Function]false (n, m, k, . . .)

Return a matrix or N-dimensional array whose elements are all logical 0. If invoked
with a single scalar integer argument, return a square matrix of the specified size.
If invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with given dimensions.

See also: [true], page 57.

58 GNU Octave

4.7 Promotion and Demotion of Data Types

Many operators and functions can work with mixed data types. For example,

uint8 (1) + 1

⇒ 2

where the above operator works with an 8-bit integer and a double precision value and
returns an 8-bit integer value. Note that the type is demoted to an 8-bit integer, rather
than promoted to a double precision value as might be expected. The reason is that if
Octave promoted values in expressions like the above with all numerical constants would
need to be explicitly cast to the appropriate data type like

uint8 (1) + uint8 (1)

⇒ 2

which becomes difficult for the user to apply uniformly and might allow hard to find bugs
to be introduced. The same applies to single precision values where a mixed operation such
as

single (1) + 1

⇒ 2

returns a single precision value. The mixed operations that are valid and their returned
data types are

Mixed Operation Result
double OP single single
double OP integer integer
double OP char double
double OP logical double
single OP integer integer
single OP char single
single OP logical single

The same logic applies to functions with mixed arguments such as

min (single (1), 0)

⇒ 0

where the returned value is single precision.

In the case of mixed type indexed assignments, the type is not changed. For example,

x = ones (2, 2);

x (1, 1) = single (2)

⇒ x = 2 1

1 1

where x remains of the double precision type.

4.8 Predicates for Numeric Objects

Since the type of a variable may change during the execution of a program, it can be
necessary to do type checking at run-time. Doing this also allows you to change the behavior
of a function depending on the type of the input. As an example, this naive implementation

Chapter 4: Numeric Data Types 59

of abs returns the absolute value of the input if it is a real number, and the length of the
input if it is a complex number.

function a = abs (x)

if (isreal (x))

a = sign (x) .* x;

elseif (iscomplex (x))

a = sqrt (real(x).^2 + imag(x).^2);

endif

endfunction

The following functions are available for determining the type of a variable.

[Built-in Function]isnumeric (x)
Return true if x is a numeric object, i.e., an integer, real, or complex array. Logical
and character arrays are not considered to be numeric.

See also: [isinteger], page 52, [isfloat], page 59, [isreal], page 59, [iscomplex], page 59,
[islogical], page 60, [ischar], page 64, [iscell], page 103, [isstruct], page 98.

[Built-in Function]isfloat (x)
Return true if x is a floating-point numeric object. Objects of class double or single
are floating-point objects.

See also: [isinteger], page 52, [ischar], page 64, [islogical], page 60, [isnumeric], page 59,
[isa], page 37.

[Built-in Function]isreal (x)
Return true if x is a non-complex matrix or scalar. For compatibility with matlab,
this includes logical and character matrices.

See also: [iscomplex], page 59, [isnumeric], page 59.

[Built-in Function]iscomplex (x)
Return true if x is a complex-valued numeric object.

See also: [isreal], page 59, [isnumeric], page 59.

[Built-in Function]ismatrix (a)
Return true if a is a numeric, logical, or character matrix. Scalars (1x1 matrices) and
vectors (1xN or Nx1 matrices) are subsets of the more general N-dimensional matrix
and ismatrix will return true for these objects as well.

See also: [isscalar], page 60, [isvector], page 59, [iscell], page 103, [isstruct], page 98,
[issparse], page 431.

[Function File]isvector (x)
Return true if x is a vector. A vector is a 2-D array where one of the dimensions is
equal to 1. As a consequence a 1x1 array, or scalar, is also a vector.

See also: [isscalar], page 60, [ismatrix], page 59, [size], page 42, [rows], page 41,
[columns], page 41, [length], page 41.

60 GNU Octave

[Function File]isrow (x)
Return true if x is a row vector.

See also: [iscolumn], page 60, [isscalar], page 60, [isvector], page 59, [ismatrix],
page 59.

[Function File]iscolumn (x)
Return true if x is a column vector.

See also: [isrow], page 60, [isscalar], page 60, [isvector], page 59, [ismatrix], page 59.

[Function File]isscalar (x)
Return true if x is a scalar.

See also: [isvector], page 59, [ismatrix], page 59.

[Function File]issquare (x)
Return true if x is a square matrix.

See also: [isscalar], page 60, [isvector], page 59, [ismatrix], page 59, [size], page 42.

[Function File]issymmetric (x)
[Function File]issymmetric (x, tol)

Return true if x is a symmetric matrix within the tolerance specified by tol. The
default tolerance is zero (uses faster code). Matrix x is considered symmetric if norm
(x - x.’, Inf) / norm (x, Inf) < tol .

See also: [ishermitian], page 60, [isdefinite], page 60.

[Function File]ishermitian (x)
[Function File]ishermitian (x, tol)

Return true if x is Hermitian within the tolerance specified by tol. The default
tolerance is zero (uses faster code). Matrix x is considered symmetric if norm (x -

x’, Inf) / norm (x, Inf) < tol .

See also: [issymmetric], page 60, [isdefinite], page 60.

[Function File]isdefinite (x)
[Function File]isdefinite (x, tol)

Return 1 if x is symmetric positive definite within the tolerance specified by tol or 0
if x is symmetric positive semidefinite. Otherwise, return -1. If tol is omitted, use a
tolerance of 100 * eps * norm (x, "fro")

See also: [issymmetric], page 60, [ishermitian], page 60.

[Built-in Function]islogical (x)
[Built-in Function]isbool (x)

Return true if x is a logical object.

See also: [isfloat], page 59, [isinteger], page 52, [ischar], page 64, [isnumeric], page 59,
[isa], page 37.

Chapter 4: Numeric Data Types 61

[Function File]isprime (x)
Return a logical array which is true where the elements of x are prime numbers and
false where they are not.

If the maximum value in x is very large, then you should be using special purpose
factorization code.

isprime (1:6)

⇒ [0, 1, 1, 0, 1, 0]

See also: [primes], page 366, [factor], page 365, [gcd], page 365, [lcm], page 366.

If instead of knowing properties of variables, you wish to know which variables are
defined and to gather other information about the workspace itself, see Section 7.3 [Status
of Variables], page 117.

Chapter 5: Strings 63

5 Strings

A string constant consists of a sequence of characters enclosed in either double-quote or
single-quote marks. For example, both of the following expressions

"parrot"

’parrot’

represent the string whose contents are ‘parrot’. Strings in Octave can be of any length.

Since the single-quote mark is also used for the transpose operator (see Section 8.3
[Arithmetic Ops], page 129) but double-quote marks have no other purpose in Octave, it is
best to use double-quote marks to denote strings.

Strings can be concatenated using the notation for defining matrices. For example, the
expression

["foo" , "bar" , "baz"]

produces the string whose contents are ‘foobarbaz’. See Chapter 4 [Numeric Data Types],
page 45, for more information about creating matrices.

5.1 Escape Sequences in String Constants

In double-quoted strings, the backslash character is used to introduce escape sequences that
represent other characters. For example, ‘\n’ embeds a newline character in a double-quoted
string and ‘\"’ embeds a double quote character. In single-quoted strings, backslash is not
a special character. Here is an example showing the difference:

toascii ("\n")

⇒ 10

toascii (’\n’)

⇒ [92 110]

Here is a table of all the escape sequences used in Octave (within double quoted strings).
They are the same as those used in the C programming language.

\\ Represents a literal backslash, ‘\’.

\" Represents a literal double-quote character, ‘"’.

\’ Represents a literal single-quote character, ‘’’.

\0 Represents the “nul” character, control-@, ASCII code 0.

\a Represents the “alert” character, control-g, ASCII code 7.

\b Represents a backspace, control-h, ASCII code 8.

\f Represents a formfeed, control-l, ASCII code 12.

\n Represents a newline, control-j, ASCII code 10.

\r Represents a carriage return, control-m, ASCII code 13.

\t Represents a horizontal tab, control-i, ASCII code 9.

\v Represents a vertical tab, control-k, ASCII code 11.

In a single-quoted string there is only one escape sequence: you may insert a single quote
character using two single quote characters in succession. For example,

64 GNU Octave

’I can’’t escape’

⇒ I can’t escape

In scripts the two different string types can be distinguished if necessary by using is_

dq_string and is_sq_string.

[Built-in Function]is_dq_string (x)
Return true if x is a double-quoted character string.

See also: [is sq string], page 64, [ischar], page 64.

[Built-in Function]is_sq_string (x)
Return true if x is a single-quoted character string.

See also: [is dq string], page 64, [ischar], page 64.

5.2 Character Arrays

The string representation used by Octave is an array of characters, so internally the string
"dddddddddd" is actually a row vector of length 10 containing the value 100 in all places
(100 is the ASCII code of "d"). This lends itself to the obvious generalization to character
matrices. Using a matrix of characters, it is possible to represent a collection of same-length
strings in one variable. The convention used in Octave is that each row in a character matrix
is a separate string, but letting each column represent a string is equally possible.

The easiest way to create a character matrix is to put several strings together into a
matrix.

collection = ["String #1"; "String #2"];

This creates a 2-by-9 character matrix.

The function ischar can be used to test if an object is a character matrix.

[Built-in Function]ischar (x)
Return true if x is a character array.

See also: [isfloat], page 59, [isinteger], page 52, [islogical], page 60, [isnumeric], page 59,
[iscellstr], page 109, [isa], page 37.

To test if an object is a string (i.e., a character vector and not a character matrix) you
can use the ischar function in combination with the isvector function as in the following
example:

ischar(collection)

⇒ ans = 1

ischar(collection) && isvector(collection)

⇒ ans = 0

ischar("my string") && isvector("my string")

⇒ ans = 1

One relevant question is, what happens when a character matrix is created from strings
of different length. The answer is that Octave puts blank characters at the end of strings
shorter than the longest string. It is possible to use a different character than the blank
character using the string_fill_char function.

Chapter 5: Strings 65

[Built-in Function]val = string_fill_char ()
[Built-in Function]old_val = string_fill_char (new_val)
[Built-in Function]string_fill_char (new_val, "local")

Query or set the internal variable used to pad all rows of a character matrix to the
same length. It must be a single character. The default value is " " (a single space).
For example:

string_fill_char ("X");

["these"; "are"; "strings"]

⇒ "theseXX"

"areXXXX"

"strings"

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

This shows a problem with character matrices. It simply isn’t possible to represent
strings of different lengths. The solution is to use a cell array of strings, which is described
in Section 6.2.4 [Cell Arrays of Strings], page 108.

5.3 Creating Strings

The easiest way to create a string is, as illustrated in the introduction, to enclose a text
in double-quotes or single-quotes. It is however possible to create a string without actually
writing a text. The function blanks creates a string of a given length consisting only of
blank characters (ASCII code 32).

[Function File]blanks (n)
Return a string of n blanks, for example:

blanks (10);

whos ans;

⇒
Attr Name Size Bytes Class

==== ==== ==== ===== =====

ans 1x10 10 char

See also: [repmat], page 344.

5.3.1 Concatenating Strings

It has been shown above that strings can be concatenated using matrix notation (see
Chapter 5 [Strings], page 63, Section 5.2 [Character Arrays], page 64). Apart from that,
there are several functions to concatenate string objects: char, strvcat, strcat and
cstrcat. In addition, the general purpose concatenation functions can be used: see [cat],
page 336, [horzcat], page 336 and [vertcat], page 337.

• All string concatenation functions except cstrcat convert numerical input into char-
acter data by taking the corresponding ASCII character for each element, as in the
following example:

66 GNU Octave

char([98, 97, 110, 97, 110, 97])

⇒ ans =

banana

• char and strvcat concatenate vertically, while strcat and cstrcat concatenate hor-
izontally. For example:

char("an apple", "two pears")

⇒ ans =

an apple

two pears

strcat("oc", "tave", " is", " good", " for you")

⇒ ans =

octave is good for you

• char generates an empty row in the output for each empty string in the input. strvcat,
on the other hand, eliminates empty strings.

char("orange", "green", "", "red")

⇒ ans =

orange

green

red

strvcat("orange", "green", "", "red")

⇒ ans =

orange

green

red

• All string concatenation functions except cstrcat also accept cell array data (see
Section 6.2 [Cell Arrays], page 102). char and strvcat convert cell arrays into char-
acter arrays, while strcat concatenates within the cells of the cell arrays:

char({"red", "green", "", "blue"})

⇒ ans =

red

green

blue

strcat({"abc"; "ghi"}, {"def"; "jkl"})

⇒ ans =

{

[1,1] = abcdef

[2,1] = ghijkl

}

• strcat removes trailing white space in the arguments (except within cell arrays), while

Chapter 5: Strings 67

cstrcat leaves white space untouched. Both kinds of behavior can be useful as can be
seen in the examples:

strcat(["dir1";"directory2"], ["/";"/"], ["file1";"file2"])

⇒ ans =

dir1/file1

directory2/file2

cstrcat(["thirteen apples"; "a banana"], [" 5$";" 1$"])

⇒ ans =

thirteen apples 5$

a banana 1$

Note that in the above example for cstrcat, the white space originates from the inter-
nal representation of the strings in a string array (see Section 5.2 [Character Arrays],
page 64).

[Built-in Function]char (x)
[Built-in Function]char (x, . . .)
[Built-in Function]char (s1, s2, . . .)
[Built-in Function]char (cell_array)

Create a string array from one or more numeric matrices, character matrices, or cell
arrays. Arguments are concatenated vertically. The returned values are padded with
blanks as needed to make each row of the string array have the same length. Empty
input strings are significant and will concatenated in the output.

For numerical input, each element is converted to the corresponding ASCII character.
A range error results if an input is outside the ASCII range (0-255).

For cell arrays, each element is concatenated separately. Cell arrays converted through
char can mostly be converted back with cellstr. For example:

char ([97, 98, 99], "", {"98", "99", 100}, "str1", ["ha", "lf"])

⇒ ["abc "

" "

"98 "

"99 "

"d "

"str1 "

"half "]

See also: [strvcat], page 67, [cellstr], page 109.

[Built-in Function]strvcat (x)
[Built-in Function]strvcat (x, . . .)
[Built-in Function]strvcat (s1, s2, . . .)
[Built-in Function]strvcat (cell_array)

Create a character array from one or more numeric matrices, character matrices, or
cell arrays. Arguments are concatenated vertically. The returned values are padded
with blanks as needed to make each row of the string array have the same length.
Unlike char, empty strings are removed and will not appear in the output.

68 GNU Octave

For numerical input, each element is converted to the corresponding ASCII character.
A range error results if an input is outside the ASCII range (0-255).

For cell arrays, each element is concatenated separately. Cell arrays converted through
strvcat can mostly be converted back with cellstr. For example:

strvcat ([97, 98, 99], "", {"98", "99", 100}, "str1", ["ha", "lf"])

⇒ ["abc "

"98 "

"99 "

"d "

"str1 "

"half "]

See also: [char], page 67, [strcat], page 68, [cstrcat], page 68.

[Function File]strcat (s1, s2, . . .)
Return a string containing all the arguments concatenated horizontally. If the argu-
ments are cells strings, strcat returns a cell string with the individual cells concate-
nated. For numerical input, each element is converted to the corresponding ASCII
character. Trailing white space is eliminated. For example:

s = ["ab"; "cde"];

strcat (s, s, s)

⇒
"ab ab ab "

"cdecdecde"

s = { "ab"; "cde" };

strcat (s, s, s)

⇒
{

[1,1] = ababab

[2,1] = cdecdecde

}

See also: [cstrcat], page 68, [char], page 67, [strvcat], page 67.

[Function File]cstrcat (s1, s2, . . .)
Return a string containing all the arguments concatenated horizontally. Trailing white
space is preserved. For example:

cstrcat ("ab ", "cd")

⇒ "ab cd"

s = ["ab"; "cde"];

cstrcat (s, s, s)

⇒ "ab ab ab "

"cdecdecde"

See also: [strcat], page 68, [char], page 67, [strvcat], page 67.

Chapter 5: Strings 69

5.3.2 Conversion of Numerical Data to Strings

Apart from the string concatenation functions (see Section 5.3.1 [Concatenating Strings],
page 65) which cast numerical data to the corresponding ASCII characters, there are several
functions that format numerical data as strings. mat2str and num2str convert real or
complex matrices, while int2str converts integer matrices. int2str takes the real part
of complex values and round fractional values to integer. A more flexible way to format
numerical data as strings is the sprintf function (see Section 14.2.4 [Formatted Output],
page 222, [doc-sprintf], page 222).

[Function File]s = mat2str (x, n)
[Function File]s = mat2str (x, n, "class")

Format real, complex, and logical matrices as strings. The returned string may be
used to reconstruct the original matrix by using the eval function.

The precision of the values is given by n. If n is a scalar then both real and imaginary
parts of the matrix are printed to the same precision. Otherwise n(1) defines the
precision of the real part and n(2) defines the precision of the imaginary part. The
default for n is 15.

If the argument "class" is given then the class of x is included in the string in such a
way that eval will result in the construction of a matrix of the same class.

mat2str ([-1/3 + i/7; 1/3 - i/7], [4 2])

⇒ "[-0.3333+0.14i;0.3333-0.14i]"

mat2str ([-1/3 +i/7; 1/3 -i/7], [4 2])

⇒ "[-0.3333+0i 0+0.14i;0.3333+0i -0-0.14i]"

mat2str (int16([1 -1]), "class")

⇒ "int16([1 -1])"

mat2str (logical (eye (2)))

⇒ "[true false;false true]"

isequal (x, eval (mat2str (x)))

⇒ 1

See also: [sprintf], page 222, [num2str], page 69, [int2str], page 70.

[Function File]num2str (x)
[Function File]num2str (x, precision)
[Function File]num2str (x, format)

Convert a number (or array) to a string (or a character array). The optional second
argument may either give the number of significant digits (precision) to be used in
the output or a format template string (format) as in sprintf (see Section 14.2.4
[Formatted Output], page 222). num2str can also handle complex numbers. For
example:

70 GNU Octave

num2str (123.456)

⇒ "123.46"

num2str (123.456, 4)

⇒ "123.5"

s = num2str ([1, 1.34; 3, 3.56], "%5.1f")

⇒ s =

1.0 1.3

3.0 3.6

whos s

⇒
Attr Name Size Bytes Class

==== ==== ==== ===== =====

s 2x8 16 char

num2str (1.234 + 27.3i)

⇒ "1.234+27.3i"

The num2str function is not very flexible. For better control over the results, use
sprintf (see Section 14.2.4 [Formatted Output], page 222). Note that for complex x,
the format string may only contain one output conversion specification and nothing
else. Otherwise, you will get unpredictable results.

See also: [sprintf], page 222, [int2str], page 70, [mat2str], page 69.

[Function File]int2str (n)
Convert an integer (or array of integers) to a string (or a character array).

int2str (123)

⇒ "123"

s = int2str ([1, 2, 3; 4, 5, 6])

⇒ s =

1 2 3

4 5 6

whos s

⇒ s =

Attr Name Size Bytes Class

==== ==== ==== ===== =====

s 2x7 14 char

This function is not very flexible. For better control over the results, use sprintf

(see Section 14.2.4 [Formatted Output], page 222).

See also: [sprintf], page 222, [num2str], page 69, [mat2str], page 69.

5.4 Comparing Strings

Since a string is a character array, comparisons between strings work element by element
as the following example shows:

Chapter 5: Strings 71

GNU = "GNU’s Not UNIX";

spaces = (GNU == " ")

⇒ spaces =

0 0 0 0 0 1 0 0 0 1 0 0 0 0

To determine if two strings are identical it is necessary to use the strcmp function. It com-
pares complete strings and is case sensitive. strncmp compares only the first N characters
(with N given as a parameter). strcmpi and strncmpi are the corresponding functions for
case-insensitive comparison.

[Built-in Function]strcmp (s1, s2)
Return 1 if the character strings s1 and s2 are the same, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with matlab, Octave’s strcmp function returns 1 if the
character strings are equal, and 0 otherwise. This is just the opposite of the corre-
sponding C library function.

See also: [strcmpi], page 71, [strncmp], page 71, [strncmpi], page 72.

[Built-in Function]strncmp (s1, s2, n)
Return 1 if the first n characters of strings s1 and s2 are the same, and 0 otherwise.

strncmp ("abce", "abcd", 3)

⇒ 1

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

strncmp ("abce", {"abcd", "bca", "abc"}, 3)

⇒ [1, 0, 1]

Caution: For compatibility with matlab, Octave’s strncmp function returns 1 if
the character strings are equal, and 0 otherwise. This is just the opposite of the
corresponding C library function.

See also: [strncmpi], page 72, [strcmp], page 71, [strcmpi], page 71.

[Built-in Function]strcmpi (s1, s2)
Return 1 if the character strings s1 and s2 are the same, disregarding case of alpha-
betic characters, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with matlab, Octave’s strcmp function returns 1 if the
character strings are equal, and 0 otherwise. This is just the opposite of the corre-
sponding C library function.

72 GNU Octave

Caution: National alphabets are not supported.

See also: [strcmp], page 71, [strncmp], page 71, [strncmpi], page 72.

[Built-in Function]strncmpi (s1, s2, n)
Return 1 if the first n character of s1 and s2 are the same, disregarding case of
alphabetic characters, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with matlab, Octave’s strncmpi function returns 1 if
the character strings are equal, and 0 otherwise. This is just the opposite of the
corresponding C library function.

Caution: National alphabets are not supported.

See also: [strncmp], page 71, [strcmp], page 71, [strcmpi], page 71.

[Function File]validstr = validatestring (str, strarray)
[Function File]validstr = validatestring (str, strarray, funcname)
[Function File]validstr = validatestring (str, strarray, funcname,

varname)
[Function File]validstr = validatestring (. . . , position)

Verify that str is an element, or substring of an element, in strarray.

When str is a character string to be tested, and strarray is a cellstr of valid values,
then validstr will be the validated form of str where validation is defined as str being
a member or substring of validstr. This is useful for both verifying and expanding
short options, such as "r", to their longer forms, such as "red". If str is a substring
of validstr, and there are multiple matches, the shortest match will be returned if all
matches are substrings of each other. Otherwise, an error will be raised because the
expansion of str is ambiguous. All comparisons are case insensitive.

The additional inputs funcname, varname, and position are optional and will make
any generated validation error message more specific.

Examples:

validatestring ("r", {"red", "green", "blue"})
⇒ "red"

validatestring ("b", {"red", "green", "blue", "black"})
⇒ error: validatestring: multiple unique matches were found for ’b’:

blue, black

See also: [strcmp], page 71, [strcmpi], page 71.

5.5 Manipulating Strings

Octave supports a wide range of functions for manipulating strings. Since a string is just a
matrix, simple manipulations can be accomplished using standard operators. The following
example shows how to replace all blank characters with underscores.

Chapter 5: Strings 73

quote = ...

"First things first, but not necessarily in that order";

quote(quote == " ") = "_"

⇒ quote =

First_things_first,_but_not_necessarily_in_that_order

For more complex manipulations, such as searching, replacing, and general regular ex-
pressions, the following functions come with Octave.

[Function File]deblank (s)
Remove trailing whitespace and nulls from s. If s is a matrix, deblank trims each row
to the length of longest string. If s is a cell array of strings, operate recursively on
each string element.

Examples:

deblank (" abc ")

⇒ " abc"

deblank ([" abc "; " def "])

⇒ [" abc " ; " def"]

See also: [strtrim], page 73.

[Function File]strtrim (s)
Remove leading and trailing whitespace from s. If s is a matrix, strtrim trims each
row to the length of longest string. If s is a cell array of strings, operate recursively
on each string element. For example:

strtrim (" abc ")

⇒ "abc"

strtrim ([" abc "; " def "])

⇒ ["abc " ; " def"]

See also: [deblank], page 73.

[Function File]strtrunc (s, n)
Truncate the character string s to length n. If s is a character matrix, then the
number of columns is adjusted. If s is a cell array of strings, then the operation is
performed on each cell element and the new cell array is returned.

[Function File]findstr (s, t)
[Function File]findstr (s, t, overlap)

Return the vector of all positions in the longer of the two strings s and t where
an occurrence of the shorter of the two starts. If the optional argument overlap is
true, the returned vector can include overlapping positions (this is the default). For
example:

findstr ("ababab", "a")

⇒ [1, 3, 5];

findstr ("abababa", "aba", 0)

⇒ [1, 5]

74 GNU Octave

Caution: findstr is scheduled for deprecation. Use strfind in all new code.

See also: [strfind], page 74, [strmatch], page 75, [strcmp], page 71, [strncmp], page 71,
[strcmpi], page 71, [strncmpi], page 72, [find], page 333.

[Function File]idx = strchr (str, chars)
[Function File]idx = strchr (str, chars, n)
[Function File]idx = strchr (str, chars, n, direction)
[Function File][i, j] = strchr (. . .)

Search for the string str for occurrences of characters from the set chars. The return
value(s), as well as the n and direction arguments behave identically as in find.

This will be faster than using regexp in most cases.

See also: [find], page 333.

[Function File]index (s, t)
[Function File]index (s, t, direction)

Return the position of the first occurrence of the string t in the string s, or 0 if no
occurrence is found. s may also be a string array or cell array of strings.

For example:

index ("Teststring", "t")

⇒ 4

If direction is ‘"first"’, return the first element found. If direction is ‘"last"’, return
the last element found.

See also: [find], page 333, [rindex], page 74.

[Function File]rindex (s, t)
Return the position of the last occurrence of the character string t in the character
string s, or 0 if no occurrence is found. s may also be a string array or cell array of
strings.

For example:

rindex ("Teststring", "t")

⇒ 6

The rindex function is equivalent to index with direction set to ‘"last"’.

See also: [find], page 333, [index], page 74.

[Loadable Function]idx = strfind (str, pattern)
[Loadable Function]idx = strfind (cellstr, pattern)

Search for pattern in the string str and return the starting index of every such oc-
currence in the vector idx. If there is no such occurrence, or if pattern is longer than
str, then idx is the empty array [].

If a cell array of strings cellstr is specified then idx is a cell array of vectors, as
specified above. Examples:

Chapter 5: Strings 75

strfind ("abababa", "aba")

⇒ [1, 3, 5]

strfind ({"abababa", "bebebe", "ab"}, "aba")

⇒ ans =

{

[1,1] =

1 3 5

[1,2] = [](1x0)

[1,3] = [](1x0)

}

See also: [findstr], page 73, [strmatch], page 75, [regexp], page 79, [regexpi], page 81,
[find], page 333.

[Function File]strmatch (s, A)
[Function File]strmatch (s, A, "exact")

Return indices of entries of A which begin with the string s. The second argument A
must be a string, character matrix, or a cell array of strings. If the third argument
"exact" is not given, then s only needs to match A up to the length of s. Trailing
spaces and nulls in s and A are ignored when matching. option.

For example:

strmatch ("apple", "apple juice")

⇒ 1

strmatch ("apple", ["apple "; "apple juice"; "an apple"])

⇒ [1; 2]

strmatch ("apple", ["apple "; "apple juice"; "an apple"], "exact")

⇒ [1]

Caution: strmatch is scheduled for deprecation. Use strcmpi or strncmpi in all new
code.

See also: [strfind], page 74, [findstr], page 73, [strcmp], page 71, [strncmp], page 71,
[strcmpi], page 71, [strncmpi], page 72, [find], page 333.

[Function File][tok, rem] = strtok (str)
[Function File][tok, rem] = strtok (str, delim)

Find all characters in the string str up to, but not including, the first character
which is in the string delim. If rem is requested, it contains the remainder of the
string, starting at the first delimiter. Leading delimiters are ignored. If delim is not
specified, whitespace is assumed. str may also be a cell array of strings in which case
the function executes on every individual string and returns a cell array of tokens and
remainders.

Examples:

76 GNU Octave

strtok ("this is the life")

⇒ "this"

[tok, rem] = strtok ("14*27+31", "+-*/")

⇒
tok = 14

rem = *27+31

See also: [index], page 74, [strsplit], page 76, [strchr], page 74, [isspace], page 88.

[Function File][cstr] = strsplit (s, sep)
[Function File][cstr] = strsplit (s, sep, strip_empty)

Split the string s using one or more separators sep and return a cell array of strings.
Consecutive separators and separators at boundaries result in empty strings, unless
strip empty is true. The default value of strip empty is false.

2-D character arrays are split at separators and at the original column boundaries.

Example:

strsplit ("a,b,c", ",")

⇒
{

[1,1] = a

[1,2] = b

[1,3] = c

}

strsplit (["a,b" ; "cde"], ",")

⇒
{

[1,1] = a

[1,2] = b

[1,3] = cde

}

See also: [strtok], page 75.

[Function File][a, ...] = strread (str)
[Function File][a, ...] = strread (str, format)
[Function File][a, ...] = strread (str, format, format_repeat)
[Function File][a, ...] = strread (str, format, prop1, value1, . . .)
[Function File][a, ...] = strread (str, format, format_repeat, prop1,

value1, . . .)
Read data from a string.

The string str is split into words that are repeatedly matched to the specifiers in
format. The first word is matched to the first specifier, the second to the second
specifier and so forth. If there are more words than specifiers, the process is repeated
until all words have been processed.

The string format describes how the words in str should be parsed. It may contain
any combination of the following specifiers:

Chapter 5: Strings 77

%s The word is parsed as a string.
%f

%n The word is parsed as a number and converted to double.

%d

%u The word is parsed as a number and converted to int32.

%*’, ’%*f’, ’%*s

The word is skipped.

For %s and %d, %f, %n, %u and the associated %*s . . . specifiers an
optional width can be specified as %Ns, etc. where N is an integer > 1.
For %f, format specifiers like %N.Mf are allowed.

literals In addition the format may contain literal character strings; these will be
skipped during reading.

Parsed word corresponding to the first specifier are returned in the first output argu-
ment and likewise for the rest of the specifiers.

By default, format is "%f", meaning that numbers are read from str. This will do if
str contains only numeric fields.

For example, the string

str = "\

Bunny Bugs 5.5\n\

Duck Daffy -7.5e-5\n\

Penguin Tux 6"

can be read using

[a, b, c] = strread (str, "%s %s %f");

Optional numeric argument format repeat can be used for limiting the number of
items read:

-1 (default) read all of the string until the end.

N Read N times nargout items. 0 (zero) is an acceptable value for for-
mat repeat.

The behavior of strread can be changed via property-value pairs. The following
properties are recognized:

"commentstyle"
Parts of str are considered comments and will be skipped. value is the
comment style and can be any of the following.

• "shell" Everything from # characters to the nearest end-of-line is
skipped.

• "c" Everything between /* and */ is skipped.

• "c++" Everything from // characters to the nearest end-of-line is
skipped.

• "matlab" Everything from % characters to the nearest end-of-line is
skipped.

78 GNU Octave

• user-supplied. Two options: (1) One string, or 1x1 cell string: Skip
everything to the right of it; (2) 2x1 cell string array: Everything
between the left and right strings is skipped.

"delimiter"
Any character in value will be used to split str into words (default value
= any whitespace).

"emptyvalue":
Value to return for empty numeric values in non-whitespace delimited
data. The default is NaN. When the data type does not support NaN
(int32 for example), then default is zero.

"multipledelimsasone"
Treat a series of consecutive delimiters, without whitespace in between,
as a single delimiter. Consecutive delimiter series need not be vertically
"aligned".

"treatasempty"
Treat single occurrences (surrounded by delimiters or whitespace) of the
string(s) in value as missing values.

"returnonerror"
If value true (1, default), ignore read errors and return normally. If false
(0), return an error.

"whitespace"
Any character in value will be interpreted as whitespace and trimmed; the
string defining whitespace must be enclosed in double quotes for proper
processing of special characters like \t. The default value for whitespace
= " \b\r\n\t" (note the space). Unless whitespace is set to ” (empty)
AND at least one "%s" format conversion specifier is supplied, a space is
always part of whitespace.

See also: [textscan], page 216, [textread], page 215, [load], page 211, [dlmread],
page 215, [fscanf], page 227.

[Loadable Function]strrep (s, ptn, rep)
[Loadable Function]strrep (s, ptn, rep, "overlaps", o)

Replace all occurrences of the substring ptn in the string s with the string rep and
return the result. For example:

strrep ("This is a test string", "is", "&%$")

⇒ "Th&%$ &%$ a test string"

s may also be a cell array of strings, in which case the replacement is done for each
element and a cell array is returned.

See also: [regexprep], page 81, [strfind], page 74, [findstr], page 73.

[Function File]substr (s, offset)
[Function File]substr (s, offset, len)

Return the substring of s which starts at character number offset and is len characters
long.

Chapter 5: Strings 79

Position numbering for offsets begins with 1. If offset is negative, extraction starts
that far from the end of the string.

If len is omitted, the substring extends to the end of S. A negative value for len
extracts to within len characters of the end of the string

Examples:

substr ("This is a test string", 6, 9)

⇒ "is a test"

substr ("This is a test string", -11)

⇒ "test string"

substr ("This is a test string", -11, -7)

⇒ "test"

This function is patterned after the equivalent function in Perl.

[Loadable Function][s, e, te, m, t, nm] = regexp (str, pat)
[Loadable Function][...] = regexp (str, pat, "opt1", . . .)

Regular expression string matching. Search for pat in str and return the positions
and substrings of any matches, or empty values if there are none.

The matched pattern pat can include any of the standard regex operators, including:

. Match any character

* + ? {} Repetition operators, representing

* Match zero or more times

+ Match one or more times

? Match zero or one times

{n} Match exactly n times

{n,} Match n or more times

{m,n} Match between m and n times

[...] [^...]

List operators. The pattern will match any character listed between "["
and "]". If the first character is "^" then the pattern is inverted and any
character except those listed between brackets will match.

Escape sequences defined below can also be used inside list operators.
For example, a template for a floating point number might be [-+.\d]+.

() Grouping operator

| Alternation operator. Match one of a choice of regular expressions. The
alternatives must be delimited by the grouping operator () above.

^ $ Anchoring operators. Requires pattern to occur at the start (^) or end
($) of the string.

In addition, the following escaped characters have special meaning. Note, it is recom-
mended to quote pat in single quotes, rather than double quotes, to avoid the escape
sequences being interpreted by Octave before being passed to regexp.

80 GNU Octave

\b Match a word boundary

\B Match within a word

\w Match any word character

\W Match any non-word character

\< Match the beginning of a word

\> Match the end of a word

\s Match any whitespace character

\S Match any non-whitespace character

\d Match any digit

\D Match any non-digit

The outputs of regexp default to the order given below

s The start indices of each matching substring

e The end indices of each matching substring

te The extents of each matched token surrounded by (...) in pat

m A cell array of the text of each match

t A cell array of the text of each token matched

nm A structure containing the text of each matched named token, with
the name being used as the fieldname. A named token is denoted by
(?<name>...).

sp A cell array of the text not returned by match.

Particular output arguments, or the order of the output arguments, can be selected
by additional opt arguments. These are strings and the correspondence between the
output arguments and the optional argument are

’start’ s
’end’ e
’tokenExtents’ te
’match’ m
’tokens’ t
’names’ nm
’split’ sp

Additional arguments are summarized below.

‘once’ Return only the first occurrence of the pattern.

‘matchcase’
Make the matching case sensitive. (default)

Alternatively, use (?-i) in the pattern.

‘ignorecase’
Ignore case when matching the pattern to the string.

Alternatively, use (?i) in the pattern.

Chapter 5: Strings 81

‘stringanchors’
Match the anchor characters at the beginning and end of the string.
(default)

Alternatively, use (?-m) in the pattern.

‘lineanchors’
Match the anchor characters at the beginning and end of the line.

Alternatively, use (?m) in the pattern.

‘dotall’ The pattern . matches all characters including the newline character.
(default)

Alternatively, use (?s) in the pattern.

‘dotexceptnewline’
The pattern . matches all characters except the newline character.

Alternatively, use (?-s) in the pattern.

‘literalspacing’
All characters in the pattern, including whitespace, are significant and
are used in pattern matching. (default)

Alternatively, use (?-x) in the pattern.

‘freespacing’
The pattern may include arbitrary whitespace and also comments begin-
ning with the character ‘#’.

Alternatively, use (?x) in the pattern.

See also: [regexpi], page 81, [strfind], page 74, [regexprep], page 81.

[Loadable Function][s, e, te, m, t, nm] = regexpi (str, pat)
[Loadable Function][...] = regexpi (str, pat, "opt1", . . .)

Case insensitive regular expression string matching. Search for pat in str and return
the positions and substrings of any matches, or empty values if there are none. See
[regexp], page 79, for details on the syntax of the search pattern.

See also: [regexp], page 79.

[Loadable Function]outstr = regexprep (string, pat, repstr)
[Loadable Function]outstr = regexprep (string, pat, repstr, "opt1", . . .)

Replace occurrences of pattern pat in string with repstr.

The pattern is a regular expression as documented for regexp. See [regexp], page 79.

The replacement string may contain $i, which substitutes for the ith set of parentheses
in the match string. For example,

regexprep("Bill Dunn",’(\w+) (\w+)’,’$2, $1’)

returns "Dunn, Bill"

Options in addition to those of regexp are

‘once’ Replace only the first occurrence of pat in the result.

‘warnings’
This option is present for compatibility but is ignored.

82 GNU Octave

See also: [regexp], page 79, [regexpi], page 81, [strrep], page 78.

[Function File]regexptranslate (op, s)
Translate a string for use in a regular expression. This may include either wildcard
replacement or special character escaping. The behavior is controlled by op which
can take the following values

"wildcard"
The wildcard characters ., *, and ? are replaced with wildcards that are
appropriate for a regular expression. For example:

regexptranslate ("wildcard", "*.m")

⇒ ".*\.m"

"escape" The characters $.?[], that have special meaning for regular expressions
are escaped so that they are treated literally. For example:

regexptranslate ("escape", "12.5")

⇒ "12\.5"

See also: [regexp], page 79, [regexpi], page 81, [regexprep], page 81.

[Function File]untabify (t)
[Function File]untabify (t, tw)
[Function File]untabify (t, tw, deblank)

Replace TAB characters in t, with spaces. The tab width is specified by tw, or defaults
to eight. The input, t, may be either a 2-D character array, or a cell array of character
strings. The output is the same class as the input.

If the optional argument deblank is true, then the spaces will be removed from the
end of the character data.

The following example reads a file and writes an untabified version of the same file
with trailing spaces stripped.

fid = fopen ("tabbed_script.m");

text = char (fread (fid, "uchar")’);

fclose (fid);

fid = fopen ("untabified_script.m", "w");

text = untabify (strsplit (text, "\n"), 8, true);

fprintf (fid, "%s\n", text{:});

fclose (fid);

See also: [strjust], page 85, [strsplit], page 76, [deblank], page 73.

5.6 String Conversions

Octave supports various kinds of conversions between strings and numbers. As an example,
it is possible to convert a string containing a hexadecimal number to a floating point number.

hex2dec ("FF")

⇒ ans = 255

[Function File]bin2dec (s)
Return the decimal number corresponding to the binary number represented by the
string s. For example:

Chapter 5: Strings 83

bin2dec ("1110")

⇒ 14

If s is a string matrix, return a column vector with one converted number per row of
s; Invalid rows evaluate to NaN.

If s is a cell array of strings, return a column vector with one converted number per
cell element in s.

See also: [dec2bin], page 83, [base2dec], page 84, [hex2dec], page 83.

[Function File]dec2bin (d, len)
Return a binary number corresponding to the non-negative integer d, as a string of
ones and zeros. For example:

dec2bin (14)

⇒ "1110"

If d is a matrix or cell array, return a string matrix with one row per element in d,
padded with leading zeros to the width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the
result.

See also: [bin2dec], page 82, [dec2base], page 84, [dec2hex], page 83.

[Function File]dec2hex (d, len)
Return the hexadecimal string corresponding to the non-negative integer d. For
example:

dec2hex (2748)

⇒ "ABC"

If d is a matrix or cell array, return a string matrix with one row per element in d,
padded with leading zeros to the width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the
result.

See also: [hex2dec], page 83, [dec2base], page 84, [dec2bin], page 83.

[Function File]hex2dec (s)
Return the integer corresponding to the hexadecimal number represented by the string
s. For example:

hex2dec ("12B")

⇒ 299

hex2dec ("12b")

⇒ 299

If s is a string matrix, return a column vector with one converted number per row of
s; Invalid rows evaluate to NaN.

If s is a cell array of strings, return a column vector with one converted number per
cell element in s.

See also: [dec2hex], page 83, [base2dec], page 84, [bin2dec], page 82.

84 GNU Octave

[Function File]dec2base (d, base)
[Function File]dec2base (d, base, len)

Return a string of symbols in base base corresponding to the non-negative integer d.

dec2base (123, 3)

⇒ "11120"

If d is a matrix or cell array, return a string matrix with one row per element in d,
padded with leading zeros to the width of the largest value.

If base is a string then the characters of base are used as the symbols for the digits
of d. Space (’ ’) may not be used as a symbol.

dec2base (123, "aei")

⇒ "eeeia"

The optional third argument, len, specifies the minimum number of digits in the
result.

See also: [base2dec], page 84, [dec2bin], page 83, [dec2hex], page 83.

[Function File]base2dec (s, base)
Convert s from a string of digits in base base to a decimal integer (base 10).

base2dec ("11120", 3)

⇒ 123

If s is a string matrix, return a column vector with one value per row of s. If a row
contains invalid symbols then the corresponding value will be NaN.

If s is a cell array of strings, return a column vector with one value per cell element
in s.

If base is a string, the characters of base are used as the symbols for the digits of s.
Space (’ ’) may not be used as a symbol.

base2dec ("yyyzx", "xyz")

⇒ 123

See also: [dec2base], page 84, [bin2dec], page 82, [hex2dec], page 83.

[Loadable Function]s = num2hex (n)
Typecast a double precision number or vector to a 16 character hexadecimal string
of the IEEE 754 representation of the number. For example:

num2hex ([-1, 1, e, Inf, NaN, NA]);

⇒ "bff0000000000000

3ff0000000000000

4005bf0a8b145769

7ff0000000000000

fff8000000000000

7ff00000000007a2"

See also: [hex2num], page 84, [hex2dec], page 83, [dec2hex], page 83.

[Loadable Function]n = hex2num (s)
Typecast the 16 character hexadecimal character string to an IEEE 754 double preci-
sion number. If fewer than 16 characters are given the strings are right padded with
’0’ characters.

Chapter 5: Strings 85

Given a string matrix, hex2num treats each row as a separate number.

hex2num (["4005bf0a8b145769";"4024000000000000"])

⇒ [2.7183; 10.000]

See also: [num2hex], page 84, [hex2dec], page 83, [dec2hex], page 83.

[Built-in Function]str2double (s)
Convert a string to a real or complex number.

The string must be in one of the following formats where a and b are real numbers
and the complex unit is ’i’ or ’j’:

• a + bi

• a + b*i

• a + i*b

• bi + a

• b*i + a

• i*b + a

If present, a and/or b are of the form [+-]d[,.]d[[eE][+-]d] where the brackets indicate
optional arguments and ’d’ indicates zero or more digits. The special input values
Inf, NaN, and NA are also accepted.

s may also be a character matrix, in which case the conversion is repeated for each
row. Or s may be a cell array of strings, in which case each element is converted and
an array of the same dimensions is returned.

str2double returns NaN for elements of s which cannot be converted.

str2double can replace str2num, and it avoids the security risk of using eval on
unknown data.

See also: [str2num], page 85.

[Function File]strjust (s)
[Function File]strjust (s, pos)

Return the text, s, justified according to pos, which may be ‘"left"’, ‘"center"’, or
‘"right"’. If pos is omitted it defaults to ‘"right"’.

Null characters are replaced by spaces. All other character data are treated as non-
white space.

Example:

strjust (["a"; "ab"; "abc"; "abcd"])

⇒
" a"

" ab"

" abc"

"abcd"

See also: [deblank], page 73, [strrep], page 78, [strtrim], page 73, [untabify], page 82.

[Function File]x = str2num (s)
[Function File][x, state] = str2num (s)

Convert the string (or character array) s to a number (or an array). Examples:

86 GNU Octave

str2num ("3.141596")

⇒ 3.141596

str2num (["1, 2, 3"; "4, 5, 6"])

⇒ 1 2 3

4 5 6

The optional second output, state, is logically true when the conversion is successful.
If the conversion fails the numeric output, x, is empty and state is false.

Caution: As str2num uses the eval function to do the conversion, str2num will
execute any code contained in the string s. Use str2double for a safer and faster
conversion.

For cell array of strings use str2double.

See also: [str2double], page 85, [eval], page 141.

[Mapping Function]toascii (s)
Return ASCII representation of s in a matrix. For example:

toascii ("ASCII")

⇒ [65, 83, 67, 73, 73]

See also: [char], page 67.

[Mapping Function]tolower (s)
[Mapping Function]lower (s)

Return a copy of the string or cell string s, with each uppercase character replaced by
the corresponding lowercase one; non-alphabetic characters are left unchanged. For
example:

tolower ("MiXeD cAsE 123")

⇒ "mixed case 123"

See also: [toupper], page 86.

[Mapping Function]toupper (s)
[Mapping Function]upper (s)

Return a copy of the string or cell string s, with each lowercase character replaced by
the corresponding uppercase one; non-alphabetic characters are left unchanged. For
example:

toupper ("MiXeD cAsE 123")

⇒ "MIXED CASE 123"

See also: [tolower], page 86.

[Built-in Function]do_string_escapes (string)
Convert special characters in string to their escaped forms.

[Built-in Function]undo_string_escapes (s)
Convert special characters in strings back to their escaped forms. For example, the
expression

Chapter 5: Strings 87

bell = "\a";

assigns the value of the alert character (control-g, ASCII code 7) to the string variable
bell. If this string is printed, the system will ring the terminal bell (if it is possible).
This is normally the desired outcome. However, sometimes it is useful to be able to
print the original representation of the string, with the special characters replaced by
their escape sequences. For example,

octave:13> undo_string_escapes (bell)

ans = \a

replaces the unprintable alert character with its printable representation.

5.7 Character Class Functions

Octave also provides the following character class test functions patterned after the functions
in the standard C library. They all operate on string arrays and return matrices of zeros and
ones. Elements that are nonzero indicate that the condition was true for the corresponding
character in the string array. For example:

isalpha ("!Q@WERT^Y&")

⇒ [0, 1, 0, 1, 1, 1, 1, 0, 1, 0]

[Mapping Function]isalnum (s)
Return a logical array which is true where the elements of s are letters or digits and
false where they are not. This is equivalent to (isalpha (s) | isdigit (s)).

See also: [isalpha], page 87, [isdigit], page 88, [ispunct], page 88, [isspace], page 88,
[iscntrl], page 88.

[Mapping Function]isalpha (s)
Return a logical array which is true where the elements of s are letters and false where
they are not. This is equivalent to (islower (s) | isupper (s)).

See also: [isdigit], page 88, [ispunct], page 88, [isspace], page 88, [iscntrl], page 88,
[isalnum], page 87, [islower], page 87, [isupper], page 87.

[Function File]isletter (s)
Return a logical array which is true where the elements of s are letters and false where
they are not. This is an alias for the isalpha function.

See also: [isalpha], page 87, [isdigit], page 88, [ispunct], page 88, [isspace], page 88,
[iscntrl], page 88, [isalnum], page 87.

[Mapping Function]islower (s)
Return a logical array which is true where the elements of s are lowercase letters and
false where they are not.

See also: [isupper], page 87, [isalpha], page 87, [isletter], page 87, [isalnum], page 87.

[Mapping Function]isupper (s)
Return a logical array which is true where the elements of s are uppercase letters and
false where they are not.

See also: [islower], page 87, [isalpha], page 87, [isletter], page 87, [isalnum], page 87.

88 GNU Octave

[Mapping Function]isdigit (s)
Return a logical array which is true where the elements of s are decimal digits (0-9)
and false where they are not.

See also: [isxdigit], page 88, [isalpha], page 87, [isletter], page 87, [ispunct], page 88,
[isspace], page 88, [iscntrl], page 88.

[Mapping Function]isxdigit (s)
Return a logical array which is true where the elements of s are hexadecimal digits
(0-9 and a-fA-F).

See also: [isdigit], page 88.

[Mapping Function]ispunct (s)
Return a logical array which is true where the elements of s are punctuation characters
and false where they are not.

See also: [isalpha], page 87, [isdigit], page 88, [isspace], page 88, [iscntrl], page 88.

[Mapping Function]isspace (s)
Return a logical array which is true where the elements of s are whitespace characters
(space, formfeed, newline, carriage return, tab, and vertical tab) and false where they
are not.

See also: [iscntrl], page 88, [ispunct], page 88, [isalpha], page 87, [isdigit], page 88.

[Mapping Function]iscntrl (s)
Return a logical array which is true where the elements of s are control characters
and false where they are not.

See also: [ispunct], page 88, [isspace], page 88, [isalpha], page 87, [isdigit], page 88.

[Mapping Function]isgraph (s)
Return a logical array which is true where the elements of s are printable characters
(but not the space character) and false where they are not.

See also: [isprint], page 88.

[Mapping Function]isprint (s)
Return a logical array which is true where the elements of s are printable characters
(including the space character) and false where they are not.

See also: [isgraph], page 88.

[Mapping Function]isascii (s)
Return a logical array which is true where the elements of s are ASCII characters (in
the range 0 to 127 decimal) and false where they are not.

[Function File]isstrprop (str, prop)
Test character string properties. For example:

isstrprop ("abc123", "alpha")

⇒ [1, 1, 1, 0, 0, 0]

If str is a cell array, isstrpop is applied recursively to each element of the cell array.

Numeric arrays are converted to character strings.

The second argument prop must be one of

Chapter 5: Strings 89

"alpha" True for characters that are alphabetic (letters).

"alnum"

"alphanum"

True for characters that are alphabetic or digits.

"lower" True for lowercase letters.

"upper" True for uppercase letters.

"digit" True for decimal digits (0-9).

"xdigit" True for hexadecimal digits (a-fA-F0-9).

"space"
"wspace" True for whitespace characters (space, formfeed, newline, carriage return,

tab, vertical tab).

"punct" True for punctuation characters (printing characters except space or letter
or digit).

"cntrl" True for control characters.

"graph"
"graphic" True for printing characters except space.

"print" True for printing characters including space.

"ascii" True for characters that are in the range of ASCII encoding.

See also: [isalpha], page 87, [isalnum], page 87, [islower], page 87, [isupper], page 87,
[isdigit], page 88, [isxdigit], page 88, [isspace], page 88, [ispunct], page 88, [iscntrl],
page 88, [isgraph], page 88, [isprint], page 88, [isascii], page 88.

Chapter 6: Data Containers 91

6 Data Containers

Octave includes support for two different mechanisms to contain arbitrary data types in
the same variable. Structures, which are C-like, and are indexed with named fields, and
cell arrays, where each element of the array can have a different data type and or shape.
Multiple input arguments and return values of functions are organized as another data
container, the comma separated list.

6.1 Structures

Octave includes support for organizing data in structures. The current implementation
uses an associative array with indices limited to strings, but the syntax is more like C-style
structures.

6.1.1 Basic Usage and Examples

Here are some examples of using data structures in Octave.

Elements of structures can be of any value type. For example, the three expressions

x.a = 1;

x.b = [1, 2; 3, 4];

x.c = "string";

create a structure with three elements. The ‘.’ character separates the structure name from
the field name and indicates to Octave that this variable is a structure. To print the value
of the structure you can type its name, just as for any other variable:

x

⇒ x =

{

a = 1

b =

1 2

3 4

c = string

}

Note that Octave may print the elements in any order.

Structures may be copied just like any other variable:

92 GNU Octave

y = x

⇒ y =

{

a = 1

b =

1 2

3 4

c = string

}

Since structures are themselves values, structure elements may reference other structures.
The following statements change the value of the element b of the structure x to be a data
structure containing the single element d, which has a value of 3.

x.b.d = 3;

x.b

⇒ ans =

{

d = 3

}

x

⇒ x =

{

a = 1

b =

{

d = 3

}

c = string

}

Note that when Octave prints the value of a structure that contains other structures,
only a few levels are displayed. For example:

Chapter 6: Data Containers 93

a.b.c.d.e = 1;

a

⇒ a =

{

b =

{

c =

{

1x1 struct array containing the fields:

d: 1x1 struct

}

}

}

This prevents long and confusing output from large deeply nested structures. The number
of levels to print for nested structures may be set with the function struct_levels_to_

print, and the function print_struct_array_contents may be used to enable printing
of the contents of structure arrays.

[Built-in Function]val = struct_levels_to_print ()
[Built-in Function]old_val = struct_levels_to_print (new_val)
[Built-in Function]struct_levels_to_print (new_val, "local")

Query or set the internal variable that specifies the number of structure levels to
display.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

[Built-in Function]val = print_struct_array_contents ()
[Built-in Function]old_val = print_struct_array_contents (new_val)
[Built-in Function]print_struct_array_contents (new_val, "local")

Query or set the internal variable that specifies whether to print struct array contents.
If true, values of struct array elements are printed. This variable does not affect scalar
structures. Their elements are always printed. In both cases, however, printing will
be limited to the number of levels specified by struct levels to print.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

Functions can return structures. For example, the following function separates the real
and complex parts of a matrix and stores them in two elements of the same structure
variable.

function y = f (x)

y.re = real (x);

y.im = imag (x);

endfunction

94 GNU Octave

When called with a complex-valued argument, f returns the data structure containing
the real and imaginary parts of the original function argument.

f (rand (2) + rand (2) * I)

⇒ ans =

{

im =

0.26475 0.14828

0.18436 0.83669

re =

0.040239 0.242160

0.238081 0.402523

}

Function return lists can include structure elements, and they may be indexed like any
other variable. For example:

[x.u, x.s(2:3,2:3), x.v] = svd ([1, 2; 3, 4]);

x

⇒ x =

{

u =

-0.40455 -0.91451

-0.91451 0.40455

s =

0.00000 0.00000 0.00000

0.00000 5.46499 0.00000

0.00000 0.00000 0.36597

v =

-0.57605 0.81742

-0.81742 -0.57605

}

It is also possible to cycle through all the elements of a structure in a loop, using a
special form of the for statement (see Section 10.5.1 [Looping Over Structure Elements],
page 151).

6.1.2 Structure Arrays

A structure array is a particular instance of a structure, where each of the fields of the
structure is represented by a cell array. Each of these cell arrays has the same dimensions.

Chapter 6: Data Containers 95

Conceptually, a structure array can also be seen as an array of structures with identical
fields. An example of the creation of a structure array is

x(1).a = "string1";

x(2).a = "string2";

x(1).b = 1;

x(2).b = 2;

which creates a 2-by-1 structure array with two fields. Another way to create a structure
array is with the struct function (see Section 6.1.3 [Creating Structures], page 96). As
previously, to print the value of the structure array, you can type its name:

x

⇒ x =

{

1x2 struct array containing the fields:

a

b

}

Individual elements of the structure array can be returned by indexing the variable like
x(1), which returns a structure with two fields:

x(1)

⇒ ans =

{

a = string1

b = 1

}

Furthermore, the structure array can return a comma separated list of field values (see
Section 6.3 [Comma Separated Lists], page 110), if indexed by one of its own field names.
For example:

x.a

⇒
ans = string1

ans = string2

Here is another example, using this comma separated list on the left-hand side of an
assignment:

[x.a] = deal("new string1", "new string2");

x(1).a

⇒ ans = new string1

x(2).a

⇒ ans = new string2

Just as for numerical arrays, it is possible to use vectors as indices (see Section 8.1 [Index
Expressions], page 123):

96 GNU Octave

x(3:4) = x(1:2);

[x([1,3]).a] = deal("other string1", "other string2");

x.a

⇒
ans = other string1

ans = new string2

ans = other string2

ans = new string2

The function size will return the size of the structure. For the example above

size(x)

⇒ ans =

1 4

Elements can be deleted from a structure array in a similar manner to a numerical array,
by assigning the elements to an empty matrix. For example

in = struct ("call1", {x, Inf, "last"},

"call2", {x, Inf, "first"})

⇒ in =

{

1x3 struct array containing the fields:

call1

call2

}

in(1) = [];

in.call1

⇒
ans = Inf

ans = last

6.1.3 Creating Structures

Besides the index operator ".", Octave can use dynamic naming "(var)" or the struct

function to create structures. Dynamic naming uses the string value of a variable as the
field name. For example:

a = "field2";

x.a = 1;

x.(a) = 2;

x

⇒ x =

{

a = 1

field2 = 2

}

More realistically, all of the functions that operate on strings can be used to build the
correct field name before it is entered into the data structure.

Chapter 6: Data Containers 97

names = ["Bill"; "Mary"; "John"];

ages = [37; 26; 31];

for i = 1:rows (names)

database.(names(i,:)) = ages(i);

endfor

database

⇒ database =

{

Bill = 37

Mary = 26

John = 31

}

The third way to create structures is the struct command. struct takes pairs of
arguments, where the first argument in the pair is the fieldname to include in the structure
and the second is a scalar or cell array, representing the values to include in the structure
or structure array. For example:

struct ("field1", 1, "field2", 2)

⇒ ans =

{

field1 = 1

field2 = 2

}

If the values passed to struct are a mix of scalar and cell arrays, then the scalar argu-
ments are expanded to create a structure array with a consistent dimension. For example:

s = struct ("field1", {1, "one"}, "field2", {2, "two"},

"field3", 3);

s.field1

⇒
ans = 1

ans = one

s.field2

⇒
ans = 2

ans = two

s.field3

⇒
ans = 3

ans = 3

If you want to create a struct which contains a cell array as an individual field, you must
wrap it in another cell array as shown in the following example:

98 GNU Octave

struct ("field1", {{1, "one"}}, "field2", 2)

⇒ ans =

{

field1 =

{

[1,1] = 1

[1,2] = one

}

field2 = 2

}

[Built-in Function]struct ("field", value, "field", value, . . .)
Create a structure and initialize its value.

If the values are cell arrays, create a structure array and initialize its values. The
dimensions of each cell array of values must match. Singleton cells and non-cell values
are repeated so that they fill the entire array. If the cells are empty, create an empty
structure array with the specified field names.

If the argument is an object, return the underlying struct.

The function isstruct can be used to test if an object is a structure or a structure
array.

[Built-in Function]isstruct (x)
Return true if x is a structure or a structure array.

See also: [ismatrix], page 59, [iscell], page 103, [isa], page 37.

6.1.4 Manipulating Structures

Other functions that can manipulate the fields of a structure are given below.

[Built-in Function]nfields (s)
Return the number of fields of the structure s.

[Built-in Function]fieldnames (struct)
Return a cell array of strings naming the elements of the structure struct. It is an
error to call fieldnames with an argument that is not a structure.

[Built-in Function]isfield (x, name)
Return true if the x is a structure and it includes an element named name. If name
is a cell array of strings then a logical array of equal dimension is returned.

[Function File][v1, ...] = getfield (s, key, . . .)
Extract a field from a structure (or a nested structure). For example:

ss(1,2).fd(3).b = 5;

getfield (ss, {1,2}, "fd", {3}, "b")

⇒ 5

Note that the function call in the previous example is equivalent to the expression

Chapter 6: Data Containers 99

i1 = {1,2}; i2 = "fd"; i3 = {3}; i4= "b";

ss(i1{:}).(i2)(i3{:}).(i4)

⇒ 5

See also: [setfield], page 99, [rmfield], page 99, [isfield], page 98, [isstruct], page 98,
[fieldnames], page 98, [struct], page 98.

[Function File][k1, ..., v1] = setfield (s, k1, v1, . . .)
Set a field member in a (nested) structure array. For example:

oo(1,1).f0 = 1;

oo = setfield (oo, {1,2}, "fd", {3}, "b", 6);

oo(1,2).fd(3).b == 6

⇒ ans = 1

Note that the same result as in the above example could be achieved by:

i1 = {1,2}; i2 = "fd"; i3 = {3}; i4 = "b";

oo(i1{:}).(i2)(i3{:}).(i4) == 6

⇒ ans = 1

See also: [getfield], page 98, [rmfield], page 99, [isfield], page 98, [isstruct], page 98,
[fieldnames], page 98, [struct], page 98.

[Built-in Function]rmfield (s, f)
Return a copy of the structure (array) s with the field f removed. If f is a cell array
of strings or a character array, remove the named fields.

See also: [cellstr], page 109, [iscellstr], page 109, [setfield], page 99.

[Function File][t, p] = orderfields (s1)
[Function File][t, p] = orderfields (s1, s2)

Return a copy of s1 with fields arranged alphabetically or as specified by s2.

Given one struct, arrange field names in s1 alphabetically.

If the second argument is a struct, arrange field names in s1 as they appear in s2.
The second argument may also specify the order in a permutation vector or a cell
array of strings containing the fieldnames of s1 in the desired order.

The optional second output argument p is assigned the permutation vector which
converts the original name order into the new name order.

Examples:

s = struct("d", 4, "b", 2, "a", 1, "c", 3);

t1 = orderfields (s)

⇒ t1 =

{

a = 1

b = 2

c = 3

d = 4

}

100 GNU Octave

t = struct("d", {}, "c", {}, "b", "a", {});

t2 = orderfields (s, t)

⇒ t2 =

{

d = 4

c = 3

b = 2

a = 1

}

t3 = orderfields (s, [3, 2, 4, 1]);

⇒ t3 =

{

a = 1

b = 2

c = 3

d = 4

}

[t4, p] = orderfields (s, {"d", "c", "b", "a"})

⇒ t4 =

{

d = 4

c = 3

b = 2

a = 1

}

p =

1

4

2

3

See also: [getfield], page 98, [rmfield], page 99, [isfield], page 98, [isstruct], page 98,
[fieldnames], page 98, [struct], page 98.

[Function File]substruct (type, subs, . . .)
Create a subscript structure for use with subsref or subsasgn. For example:

Chapter 6: Data Containers 101

idx = substruct ("()", {3, ":"})

⇒
idx =

{

type = ()

subs =

{

[1,1] = 3

[1,2] = :

}

}

x = [1, 2, 3; 4, 5, 6; 7, 8, 9];

subsref (x, idx)

⇒ 7 8 9

See also: [subsref], page 599, [subsasgn], page 600.

6.1.5 Processing Data in Structures

The simplest way to process data in a structure is within a for loop (see Section 10.5.1
[Looping Over Structure Elements], page 151). A similar effect can be achieved with the
structfun function, where a user defined function is applied to each field of the structure.
See [doc-structfun], page 406.

Alternatively, to process the data in a structure, the structure might be converted to
another type of container before being treated.

[Built-in Function]struct2cell (S)
Create a new cell array from the objects stored in the struct object. If f is the
number of fields in the structure, the resulting cell array will have a dimension vector
corresponding to [F size(S)]. For example:

s = struct(’name’, {’Peter’, ’Hannah’, ’Robert’},

’age’, {23, 16, 3});

c = struct2cell(s)

⇒ c = {1x1x3 Cell Array}

c(1,1,:)(:)

⇒ ans =

{

[1,1] = Peter

[2,1] = Hannah

[3,1] = Robert

}

c(2,1,:)(:)

⇒ ans =

{

[1,1] = 23

[2,1] = 16

[3,1] = 3

}

102 GNU Octave

See also: [cell2struct], page 110, [fieldnames], page 98.

6.2 Cell Arrays

It can be both necessary and convenient to store several variables of different size or type
in one variable. A cell array is a container class able to do just that. In general cell arrays
work just like N -dimensional arrays with the exception of the use of ‘{’ and ‘}’ as allocation
and indexing operators.

6.2.1 Basic Usage of Cell Arrays

As an example, the following code creates a cell array containing a string and a 2-by-2
random matrix

c = {"a string", rand(2, 2)};

To access the elements of a cell array, it can be indexed with the { and } operators. Thus,
the variable created in the previous example can be indexed like this:

c{1}

⇒ ans = a string

As with numerical arrays several elements of a cell array can be extracted by indexing with
a vector of indexes

c{1:2}

⇒ ans = a string

⇒ ans =

0.593993 0.627732

0.377037 0.033643

The indexing operators can also be used to insert or overwrite elements of a cell array.
The following code inserts the scalar 3 on the third place of the previously created cell array

c{3} = 3

⇒ c =

{

[1,1] = a string

[1,2] =

0.593993 0.627732

0.377037 0.033643

[1,3] = 3

}

Details on indexing cell arrays are explained in Section 6.2.3 [Indexing Cell Arrays],
page 106.

In general nested cell arrays are displayed hierarchically as in the previous example.
In some circumstances it makes sense to reference them by their index, and this can be
performed by the celldisp function.

Chapter 6: Data Containers 103

[Function File]celldisp (c, name)
Recursively display the contents of a cell array. By default the values are displayed
with the name of the variable c. However, this name can be replaced with the variable
name. For example:

c = {1, 2, {31, 32}};

celldisp (c, "b")

⇒
b{1} =

1

b{2} =

2

b{3}{1} =

31

b{3}{2} =

32

See also: [disp], page 203.

To test if an object is a cell array, use the iscell function. For example:

iscell(c)

⇒ ans = 1

iscell(3)

⇒ ans = 0

[Built-in Function]iscell (x)
Return true if x is a cell array object.

See also: [ismatrix], page 59, [isstruct], page 98, [iscellstr], page 109, [isa], page 37.

6.2.2 Creating Cell Array

The introductory example (see Section 6.2.1 [Basic Usage of Cell Arrays], page 102) showed
how to create a cell array containing currently available variables. In many situations,
however, it is useful to create a cell array and then fill it with data.

The cell function returns a cell array of a given size, containing empty matrices. This
function is similar to the zeros function for creating new numerical arrays. The following
example creates a 2-by-2 cell array containing empty matrices

c = cell(2,2)

⇒ c =

{

[1,1] = [](0x0)

[2,1] = [](0x0)

[1,2] = [](0x0)

[2,2] = [](0x0)

}

104 GNU Octave

Just like numerical arrays, cell arrays can be multi-dimensional. The cell function
accepts any number of positive integers to describe the size of the returned cell array. It is
also possible to set the size of the cell array through a vector of positive integers. In the
following example two cell arrays of equal size are created, and the size of the first one is
displayed

c1 = cell(3, 4, 5);

c2 = cell([3, 4, 5]);

size(c1)

⇒ ans =

3 4 5

As can be seen, the [doc-size], page 42 function also works for cell arrays. As do other
functions describing the size of an object, such as [doc-length], page 41, [doc-numel], page 41,
[doc-rows], page 41, and [doc-columns], page 41.

[Built-in Function]cell (n)
[Built-in Function]cell (m, n)
[Built-in Function]cell (m, n, k, . . .)
[Built-in Function]cell ([m n . . .])

Create a new cell array object. If invoked with a single scalar integer argument, return
a square NxN cell array. If invoked with two or more scalar integer arguments, or a
vector of integer values, return an array with the given dimensions.

As an alternative to creating empty cell arrays, and then filling them, it is possible to
convert numerical arrays into cell arrays using the num2cell, mat2cell and cellslices

functions.

[Loadable Function]C = num2cell (A)
[Loadable Function]C = num2cell (A, dim)

Convert the numeric matrix A to a cell array. If dim is defined, the value C is of
dimension 1 in this dimension and the elements of A are placed into C in slices. For
example:

Chapter 6: Data Containers 105

num2cell([1,2;3,4])

⇒ ans =

{

[1,1] = 1

[2,1] = 3

[1,2] = 2

[2,2] = 4

}

num2cell([1,2;3,4],1)

⇒ ans =

{

[1,1] =

1

3

[1,2] =

2

4

}

See also: [mat2cell], page 105.

[Loadable Function]C = mat2cell (A, m, n)
[Loadable Function]C = mat2cell (A, d1, d2, . . .)
[Loadable Function]C = mat2cell (A, r)

Convert the matrix A to a cell array. If A is 2-D, then it is required that sum (m)

== size (A, 1) and sum (n) == size (A, 2). Similarly, if A is multi-dimensional
and the number of dimensional arguments is equal to the dimensions of A, then it is
required that sum (di) == size (A, i).

Given a single dimensional argument r, the other dimensional arguments are assumed
to equal size (A,i).

An example of the use of mat2cell is

mat2cell (reshape(1:16,4,4),[3,1],[3,1])

⇒ {

[1,1] =

1 5 9

2 6 10

3 7 11

[2,1] =

4 8 12

[1,2] =

13

14

106 GNU Octave

15

[2,2] = 16

}

See also: [num2cell], page 104, [cell2mat], page 109.

[Loadable Function]sl = cellslices (x, lb, ub, dim)
Given an array x, this function produces a cell array of slices from the array deter-
mined by the index vectors lb, ub, for lower and upper bounds, respectively. In other
words, it is equivalent to the following code:

n = length (lb);

sl = cell (1, n);

for i = 1:length (lb)

sl{i} = x(:,...,lb(i):ub(i),...,:);

endfor

The position of the index is determined by dim. If not specified, slicing is done along
the first non-singleton dimension.

See also: [cell2mat], page 109, [cellindexmat], page 108, [cellfun], page 404.

6.2.3 Indexing Cell Arrays

As shown in see Section 6.2.1 [Basic Usage of Cell Arrays], page 102 elements can be
extracted from cell arrays using the ‘{’ and ‘}’ operators. If you want to extract or access
subarrays which are still cell arrays, you need to use the ‘(’ and ‘)’ operators. The following
example illustrates the difference:

c = {"1", "2", "3"; "a", "b", "c"; "4", "5", "6"};

c{2,3}

⇒ ans = c

c(2,3)

⇒ ans =

{

[1,1] = c

}

So with ‘{}’ you access elements of a cell array, while with ‘()’ you access a sub array of a
cell array.

Using the ‘(’ and ‘)’ operators, indexing works for cell arrays like for multi-dimensional
arrays. As an example, all the rows of the first and third column of a cell array can be set
to 0 with the following command:

Chapter 6: Data Containers 107

c(:, [1, 3]) = {0}

⇒ =

{

[1,1] = 0

[2,1] = 0

[3,1] = 0

[1,2] = 2

[2,2] = 10

[3,2] = 20

[1,3] = 0

[2,3] = 0

[3,3] = 0

}

Note, that the above can also be achieved like this:

c(:, [1, 3]) = 0;

Here, the scalar ‘0’ is automatically promoted to cell array ‘{0}’ and then assigned to the
subarray of c.

To give another example for indexing cell arrays with ‘()’, you can exchange the first
and the second row of a cell array as in the following command:

c = {1, 2, 3; 4, 5, 6};

c([1, 2], :) = c([2, 1], :)

⇒ =

{

[1,1] = 4

[2,1] = 1

[1,2] = 5

[2,2] = 2

[1,3] = 6

[2,3] = 3

}

Accessing multiple elements of a cell array with the ‘{’ and ‘}’ operators will result in
a comma-separated list of all the requested elements (see Section 6.3 [Comma Separated
Lists], page 110). Using the ‘{’ and ‘}’ operators the first two rows in the above example
can be swapped back like this:

[c{[1,2], :}] = deal(c{[2, 1], :})

⇒ =

{

[1,1] = 1

[2,1] = 4

[1,2] = 2

[2,2] = 5

[1,3] = 3

[2,3] = 6

}

108 GNU Octave

As for struct arrays and numerical arrays, the empty matrix ‘[]’ can be used to delete
elements from a cell array:

x = {"1", "2"; "3", "4"};

x(1, :) = []

⇒ x =

{

[1,1] = 3

[1,2] = 4

}

The following example shows how to just remove the contents of cell array elements but
not delete the space for them:

x = {"1", "2"; "3", "4"};

x{1, :} = []

⇒ x =

{

[1,1] = [](0x0)

[2,1] = 3

[1,2] = [](0x0)

[2,2] = 4

}

The indexing operations operate on the cell array and not on the objects within the cell
array. By contrast, cellindexmat applies matrix indexing to the objects within each cell
array entry and returns the requested values.

[Loadable Function]y = cellindexmat (x, varargin)
Given a cell array of matrices x, this function computes

Y = cell (size (X));

for i = 1:numel (X)

Y{i} = X{i}(varargin{:});

endfor

See also: [cellslices], page 106, [cellfun], page 404.

6.2.4 Cell Arrays of Strings

One common use of cell arrays is to store multiple strings in the same variable. It is also
possible to store multiple strings in a character matrix by letting each row be a string. This,
however, introduces the problem that all strings must be of equal length. Therefore, it is
recommended to use cell arrays to store multiple strings. For cases, where the character
matrix representation is required for an operation, there are several functions that convert
a cell array of strings to a character array and back. char and strvcat convert cell arrays
to a character array (see Section 5.3.1 [Concatenating Strings], page 65), while the function
cellstr converts a character array to a cell array of strings:

Chapter 6: Data Containers 109

a = ["hello"; "world"];

c = cellstr (a)

⇒ c =

{

[1,1] = hello

[2,1] = world

}

[Built-in Function]cellstr (string)
Create a new cell array object from the elements of the string array string.

One further advantage of using cell arrays to store multiple strings is that most functions
for string manipulations included with Octave support this representation. As an example,
it is possible to compare one string with many others using the strcmp function. If one
of the arguments to this function is a string and the other is a cell array of strings, each
element of the cell array will be compared to the string argument:

c = {"hello", "world"};

strcmp ("hello", c)

⇒ ans =

1 0

The following string functions support cell arrays of strings: char, strvcat, strcat (see
Section 5.3.1 [Concatenating Strings], page 65), strcmp, strncmp, strcmpi, strncmpi (see
Section 5.4 [Comparing Strings], page 70), str2double, deblank, strtrim, strtrunc,
strfind, strmatch, , regexp, regexpi (see Section 5.5 [Manipulating Strings], page 72)
and str2double (see Section 5.6 [String Conversions], page 82).

The function iscellstr can be used to test if an object is a cell array of strings.

[Built-in Function]iscellstr (cell)
Return true if every element of the cell array cell is a character string.

See also: [ischar], page 64.

6.2.5 Processing Data in Cell Arrays

Data that is stored in a cell array can be processed in several ways depending on the actual
data. The simplest way to process that data is to iterate through it using one or more
for loops. The same idea can be implemented more easily through the use of the cellfun
function that calls a user-specified function on all elements of a cell array. See [doc-cellfun],
page 404.

An alternative is to convert the data to a different container, such as a matrix or a data
structure. Depending on the data this is possible using the cell2mat and cell2struct

functions.

[Function File]m = cell2mat (c)
Convert the cell array c into a matrix by concatenating all elements of c into a
hyperrectangle. Elements of c must be numeric, logical or char matrices, or cell
arrays, and cat must be able to concatenate them together.

See also: [mat2cell], page 105, [num2cell], page 104.

110 GNU Octave

[Built-in Function]cell2struct (cell, fields, dim)
Convert cell to a structure. The number of fields in fields must match the number of
elements in cell along dimension dim, that is numel (fields) == size (cell, dim).
If dim is omitted, a value of 1 is assumed.

A = cell2struct ({’Peter’, ’Hannah’, ’Robert’;

185, 170, 168},

{’Name’,’Height’}, 1);

A(1)

⇒ ans =

{

Name = Peter

Height = 185

}

6.3 Comma Separated Lists

Comma separated lists1 are the basic argument type to all Octave functions - both for input
and return arguments. In the example

max (a, b)

‘a, b ’ is a comma separated list. Comma separated lists can appear on both the right and
left hand side of an assignment. For example

x = [1 0 1 0 0 1 1; 0 0 0 0 0 0 7];

[i, j] = find (x, 2, "last");

Here, ‘x, 2, "last"’ is a comma separated list constituting the input arguments of find.
find returns a comma separated list of output arguments which is assigned element by
element to the comma separated list ‘i, j ’.

Another example of where comma separated lists are used is in the creation of a new
array with [] (see Section 4.1 [Matrices], page 46) or the creation of a cell array with {}

(see Section 6.2.1 [Basic Usage of Cell Arrays], page 102). In the expressions

a = [1, 2, 3, 4];

c = {4, 5, 6, 7};

both ‘1, 2, 3, 4’ and ‘4, 5, 6, 7’ are comma separated lists.

Comma separated lists cannot be directly manipulated by the user. However, both
structure arrays and cell arrays can be converted into comma separated lists, and thus used
in place of explicitly written comma separated lists. This feature is useful in many ways,
as will be shown in the following subsections.

6.3.1 Comma Separated Lists Generated from Cell Arrays

As has been mentioned above (see Section 6.2.3 [Indexing Cell Arrays], page 106), elements
of a cell array can be extracted into a comma separated list with the { and } operators. By
surrounding this list with [and], it can be concatenated into an array. For example:

1 Comma-separated lists are also sometimes informally referred to as cs-lists.

Chapter 6: Data Containers 111

a = {1, [2, 3], 4, 5, 6};

b = [a{1:4}]

⇒ b =

1 2 3 4 5

Similarly, it is possible to create a new cell array containing cell elements selected with
{}. By surrounding the list with ‘{’ and ‘}’ a new cell array will be created, as the following
example illustrates:

a = {1, rand(2, 2), "three"};

b = { a{ [1, 3] } }

⇒ b =

{

[1,1] = 1

[1,2] = three

}

Furthermore, cell elements (accessed by {}) can be passed directly to a function. The
list of elements from the cell array will be passed as an argument list to a given function
as if it is called with the elements as individual arguments. The two calls to printf in the
following example are identical but the latter is simpler and can handle cell arrays of an
arbitrary size:

c = {"GNU", "Octave", "is", "Free", "Software"};

printf ("%s ", c{1}, c{2}, c{3}, c{4}, c{5});

a GNU Octave is Free Software

printf ("%s ", c{:});

a GNU Octave is Free Software

If used on the left-hand side of an assignment, a comma separated list generated with
{} can be assigned to. An example is

in{1} = [10, 20, 30, 40, 50, 60, 70, 80, 90];

in{2} = inf;

in{3} = "last";

in{4} = "first";

out = cell (4, 1);

[out{1:3}] = find (in{1 : 3});

[out{4:6}] = find (in{[1, 2, 4]})

⇒ out =

{

[1,1] = 1

[2,1] = 9

[3,1] = 90

[4,1] = 1

[3,1] = 1

[4,1] = 10

}

6.3.2 Comma Separated Lists Generated from Structure Arrays

Structure arrays can equally be used to create comma separated lists. This is done by
addressing one of the fields of a structure array. For example:

112 GNU Octave

x = ceil (randn (10, 1));

in = struct ("call1", {x, 3, "last"},

"call2", {x, inf, "first"});

out = struct ("call1", cell (2, 1), "call2", cell (2, 1));

[out.call1] = find (in.call1);

[out.call2] = find (in.call2);

Chapter 7: Variables 113

7 Variables

Variables let you give names to values and refer to them later. You have already seen
variables in many of the examples. The name of a variable must be a sequence of letters,
digits and underscores, but it may not begin with a digit. Octave does not enforce a limit
on the length of variable names, but it is seldom useful to have variables with names longer
than about 30 characters. The following are all valid variable names

x

x15

__foo_bar_baz__

fucnrdthsucngtagdjb

However, names like __foo_bar_baz__ that begin and end with two underscores are under-
stood to be reserved for internal use by Octave. You should not use them in code you write,
except to access Octave’s documented internal variables and built-in symbolic constants.

Case is significant in variable names. The symbols a and A are distinct variables.

A variable name is a valid expression by itself. It represents the variable’s current value.
Variables are given new values with assignment operators and increment operators. See
Section 8.6 [Assignment Expressions], page 137.

There is one built-in variable with a special meaning. The ans variable always contains
the result of the last computation, where the output wasn’t assigned to any variable. The
code a = cos (pi) will assign the value -1 to the variable a, but will not change the value
of ans. However, the code cos (pi) will set the value of ans to -1.

Variables in Octave do not have fixed types, so it is possible to first store a numeric
value in a variable and then to later use the same name to hold a string value in the same
program. Variables may not be used before they have been given a value. Doing so results
in an error.

[Automatic Variable]ans
The most recently computed result that was not explicitly assigned to a variable. For
example, after the expression

3^2 + 4^2

is evaluated, the value returned by ans is 25.

[Built-in Function]isvarname (name)
Return true if name is a valid variable name.

See also: [iskeyword], page 761, [exist], page 120, [who], page 118.

[Function File]varname = genvarname (str)
[Function File]varname = genvarname (str, exclusions)

Create unique variable(s) from str. If exclusions is given, then the variable(s) will be
unique to each other and to exclusions (exclusions may be either a string or a cellstr).

If str is a cellstr, then a unique variable is created for each cell in str.

x = 3.141;

genvarname ("x", who ())

⇒ x1

If wanted is a cell array, genvarname will make sure the returned strings are distinct:

114 GNU Octave

genvarname ({"foo", "foo"})

⇒
{

[1,1] = foo

[1,2] = foo1

}

Note that the result is a char array/cell array of strings, not the variables themselves.
To define a variable, eval() can be used. The following trivial example sets x to 42.

name = genvarname ("x");

eval ([name " = 42"]);

⇒ x = 42

Also, this can be useful for creating unique struct field names.

x = struct ();

for i = 1:3

x.(genvarname ("a", fieldnames (x))) = i;

endfor

⇒ x =

{

a = 1

a1 = 2

a2 = 3

}

Since variable names may only contain letters, digits and underscores, genvarname
replaces any sequence of disallowed characters with an underscore. Also, variables
may not begin with a digit; in this case an underscore is added before the variable
name.

Variable names beginning and ending with two underscores " " are valid but they
are used internally by octave and should generally be avoided, therefore genvarname
will not generate such names.

genvarname will also make sure that returned names do not clash with keywords such
as "for" and "if". A number will be appended if necessary. Note, however, that this
does not include function names, such as "sin". Such names should be included in
avoid if necessary.

See also: [isvarname], page 113, [exist], page 120, [tmpnam], page 233, [eval], page 141.

[Function File]namelengthmax ()
Return the matlab compatible maximum variable name length. Octave is capable of
storing strings up to 231−1 in length. However for matlab compatibility all variable,
function, and structure field names should be shorter than the length supplied by
namelengthmax. In particular variables stored to a matlab file format will have
their names truncated to this length.

7.1 Global Variables

A variable that has been declared global may be accessed from within a function body
without having to pass it as a formal parameter.

Chapter 7: Variables 115

A variable may be declared global using a global declaration statement. The following
statements are all global declarations.

global a

global a b

global c = 2

global d = 3 e f = 5

A global variable may only be initialized once in a global statement. For example, after
executing the following code

global gvar = 1

global gvar = 2

the value of the global variable gvar is 1, not 2. Issuing a ‘clear gvar’ command does not
change the above behavior, but ‘clear all’ does.

It is necessary declare a variable as global within a function body in order to access it.
For example,

global x

function f ()

x = 1;

endfunction

f ()

does not set the value of the global variable x to 1. In order to change the value of the
global variable x, you must also declare it to be global within the function body, like this

function f ()

global x;

x = 1;

endfunction

Passing a global variable in a function parameter list will make a local copy and not
modify the global value. For example, given the function

function f (x)

x = 0

endfunction

and the definition of x as a global variable at the top level,

global x = 13

the expression

f (x)

will display the value of x from inside the function as 0, but the value of x at the top level
remains unchanged, because the function works with a copy of its argument.

[Built-in Function]isglobal (name)
Return true if name is a globally visible variable. For example:

global x

isglobal ("x")

⇒ 1

See also: [isvarname], page 113, [exist], page 120.

116 GNU Octave

7.2 Persistent Variables

A variable that has been declared persistent within a function will retain its contents in
memory between subsequent calls to the same function. The difference between persistent
variables and global variables is that persistent variables are local in scope to a particular
function and are not visible elsewhere.

The following example uses a persistent variable to create a function that prints the
number of times it has been called.

function count_calls ()

persistent calls = 0;

printf ("’count_calls’ has been called %d times\n",

++calls);

endfunction

for i = 1:3

count_calls ();

endfor

a ’count_calls’ has been called 1 times

a ’count_calls’ has been called 2 times

a ’count_calls’ has been called 3 times

As the example shows, a variable may be declared persistent using a persistent decla-
ration statement. The following statements are all persistent declarations.

persistent a

persistent a b

persistent c = 2

persistent d = 3 e f = 5

The behavior of persistent variables is equivalent to the behavior of static variables in
C. The command static in Octave is also recognized and is equivalent to persistent.

Like global variables, a persistent variable may only be initialized once. For example,
after executing the following code

persistent pvar = 1

persistent pvar = 2

the value of the persistent variable pvar is 1, not 2.

If a persistent variable is declared but not initialized to a specific value, it will contain an
empty matrix. So, it is also possible to initialize a persistent variable by checking whether
it is empty, as the following example illustrates.

function count_calls ()

persistent calls;

if (isempty (calls))

calls = 0;

endif

printf ("’count_calls’ has been called %d times\n",

++calls);

endfunction

Chapter 7: Variables 117

This implementation behaves in exactly the same way as the previous implementation of
count_calls.

The value of a persistent variable is kept in memory until it is explicitly cleared. As-
suming that the implementation of count_calls is saved on disk, we get the following
behavior.

for i = 1:2

count_calls ();

endfor

a ’count_calls’ has been called 1 times

a ’count_calls’ has been called 2 times

clear

for i = 1:2

count_calls();

endfor

a ’count_calls’ has been called 3 times

a ’count_calls’ has been called 4 times

clear all

for i = 1:2

count_calls();

endfor

a ’count_calls’ has been called 1 times

a ’count_calls’ has been called 2 times

clear count_calls

for i = 1:2

count_calls();

endfor

a ’count_calls’ has been called 1 times

a ’count_calls’ has been called 2 times

That is, the persistent variable is only removed from memory when the function containing
the variable is removed. Note that if the function definition is typed directly into the Octave
prompt, the persistent variable will be cleared by a simple clear command as the entire
function definition will be removed from memory. If you do not want a persistent variable to
be removed from memory even if the function is cleared, you should use the mlock function
as described in See Section 11.8.5 [Function Locking], page 173.

7.3 Status of Variables

When creating simple one-shot programs it can be very convenient to see which variables
are available at the prompt. The function who and its siblings whos and whos_line_format

will show different information about what is in memory, as the following shows.

118 GNU Octave

str = "A random string";

who -variables

a *** local user variables:

a
a __nargin__ str

[Command]who
[Command]who pattern . . .
[Command]who option pattern . . .
[Command]C = who ("pattern", . . .)

List currently defined variables matching the given patterns. Valid pattern syntax
is the same as described for the clear command. If no patterns are supplied, all
variables are listed. By default, only variables visible in the local scope are displayed.

The following are valid options but may not be combined.

global List variables in the global scope rather than the current scope.

-regexp The patterns are considered to be regular expressions when matching the
variables to display. The same pattern syntax accepted by the regexp

function is used.

-file The next argument is treated as a filename. All variables found within the
specified file are listed. No patterns are accepted when reading variables
from a file.

If called as a function, return a cell array of defined variable names matching the
given patterns.

See also: [whos], page 118, [isglobal], page 115, [isvarname], page 113, [exist], page 120,
[regexp], page 79.

[Command]whos
[Command]whos pattern . . .
[Command]whos option pattern . . .
[Command]S = whos ("pattern", . . .)

Provide detailed information on currently defined variables matching the given pat-
terns. Options and pattern syntax are the same as for the who command. Extended
information about each variable is summarized in a table with the following default
entries.

Attr Attributes of the listed variable. Possible attributes are:

blank Variable in local scope

a Automatic variable. An automatic variable is one created by
the interpreter, for example argn.

c Variable of complex type.

f Formal parameter (function argument).

g Variable with global scope.

p Persistent variable.

Chapter 7: Variables 119

Name The name of the variable.

Size The logical size of the variable. A scalar is 1x1, a vector is 1xN or Nx1,
a 2-D matrix is MxN.

Bytes The amount of memory currently used to store the variable.

Class The class of the variable. Examples include double, single, char, uint16,
cell, and struct.

The table can be customized to display more or less information through the function
whos_line_format.

If whos is called as a function, return a struct array of defined variable names matching
the given patterns. Fields in the structure describing each variable are: name, size,
bytes, class, global, sparse, complex, nesting, persistent.

See also: [who], page 118, [whos line format], page 119.

[Built-in Function]val = whos_line_format ()
[Built-in Function]old_val = whos_line_format (new_val)
[Built-in Function]whos_line_format (new_val, "local")

Query or set the format string used by the command whos.

A full format string is:
%[modifier]<command>[:width[:left-min[:balance]]];

The following command sequences are available:

%a Prints attributes of variables (g=global, p=persistent, f=formal parame-
ter, a=automatic variable).

%b Prints number of bytes occupied by variables.

%c Prints class names of variables.

%e Prints elements held by variables.

%n Prints variable names.

%s Prints dimensions of variables.

%t Prints type names of variables.

Every command may also have an alignment modifier:

l Left alignment.

r Right alignment (default).

c Column-aligned (only applicable to command %s).

The width parameter is a positive integer specifying the minimum number of columns
used for printing. No maximum is needed as the field will auto-expand as required.

The parameters left-min and balance are only available when the column-aligned
modifier is used with the command ‘%s’. balance specifies the column number within
the field width which will be aligned between entries. Numbering starts from 0 which
indicates the leftmost column. left-min specifies the minimum field width to the
left of the specified balance column.

120 GNU Octave

The default format is " %a:4; %ln:6; %cs:16:6:1; %rb:12; %lc:-1;\n".

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [whos], page 118.

Instead of displaying which variables are in memory, it is possible to determine if a given
variable is available. That way it is possible to alter the behavior of a program depending
on the existence of a variable. The following example illustrates this.

if (! exist ("meaning", "var"))

disp ("The program has no ’meaning’");

endif

[Built-in Function]exist (name, type)
Return 1 if the name exists as a variable, 2 if the name is an absolute file name, an
ordinary file in Octave’s path, or (after appending ‘.m’) a function file in Octave’s
path, 3 if the name is a ‘.oct’ or ‘.mex’ file in Octave’s path, 5 if the name is a
built-in function, 7 if the name is a directory, or 103 if the name is a function not
associated with a file (entered on the command line).

Otherwise, return 0.

This function also returns 2 if a regular file called name exists in Octave’s search path.
If you want information about other types of files, you should use some combination
of the functions file_in_path and stat instead.

If the optional argument type is supplied, check only for symbols of the specified type.
Valid types are

"var" Check only for variables.

"builtin" Check only for built-in functions.

"file" Check only for files.

"dir" Check only for directories.

See also: [file in loadpath], page 171.

Usually Octave will manage the memory, but sometimes it can be practical to remove
variables from memory manually. This is usually needed when working with large variables
that fill a substantial part of the memory. On a computer that uses the IEEE floating point
format, the following program allocates a matrix that requires around 128 MB memory.

large_matrix = zeros (4000, 4000);

Since having this variable in memory might slow down other computations, it can be nec-
essary to remove it manually from memory. The clear function allows this.

[Command]clear [options] pattern . . .
Delete the names matching the given patterns from the symbol table. The pattern
may contain the following special characters:

? Match any single character.

Chapter 7: Variables 121

* Match zero or more characters.

[list] Match the list of characters specified by list. If the first character is
! or ^, match all characters except those specified by list. For example,
the pattern ‘[a-zA-Z]’ will match all lowercase and uppercase alphabetic
characters.

For example, the command

clear foo b*r

clears the name foo and all names that begin with the letter b and end with the letter
r.

If clear is called without any arguments, all user-defined variables (local and global)
are cleared from the symbol table. If clear is called with at least one argument, only
the visible names matching the arguments are cleared. For example, suppose you
have defined a function foo, and then hidden it by performing the assignment foo

= 2. Executing the command clear foo once will clear the variable definition and
restore the definition of foo as a function. Executing clear foo a second time will
clear the function definition.

The following options are available in both long and short form

-all, -a Clears all local and global user-defined variables and all functions from
the symbol table.

-exclusive, -x

Clears the variables that don’t match the following pattern.

-functions, -f

Clears the function names and the built-in symbols names.

-global, -g

Clears the global symbol names.

-variables, -v

Clears the local variable names.

-classes, -c

Clears the class structure table and clears all objects.

-regexp, -r

The arguments are treated as regular expressions as any variables that
match will be cleared.

With the exception of exclusive, all long options can be used without the dash as
well.

[Function File]pack ()
Consolidate workspace memory in matlab. This function is provided for compati-
bility, but does nothing in Octave.

Information about a function or variable such as its location in the file system can also be
acquired from within Octave. This is usually only useful during development of programs,
and not within a program.

122 GNU Octave

[Command]type name . . .
[Command]type -q name . . .

[Function File]dfns = type ("name", . . .)
Display the definition of each name that refers to a function.

Normally also displays whether each name is user-defined or built-in; the ‘-q’ option
suppresses this behavior.

If an output argument is requested nothing is displayed. Instead, a cell array of
strings is returned, where each element corresponds to the definition of each requested
function.

[Command]which name . . .
Display the type of each name. If name is defined from a function file, the full name
of the file is also displayed.

See also: [help], page 20, [lookfor], page 20.

[Command]what
[Command]what dir

[Function File]w = what (dir)
List the Octave specific files in directory dir. If dir is not specified then the current
directory is used. If a return argument is requested, the files found are returned in
the structure w.

See also: [which], page 122.

Chapter 8: Expressions 123

8 Expressions

Expressions are the basic building block of statements in Octave. An expression evaluates
to a value, which you can print, test, store in a variable, pass to a function, or assign a new
value to a variable with an assignment operator.

An expression can serve as a statement on its own. Most other kinds of statements
contain one or more expressions which specify data to be operated on. As in other languages,
expressions in Octave include variables, array references, constants, and function calls, as
well as combinations of these with various operators.

8.1 Index Expressions

An index expression allows you to reference or extract selected elements of a matrix or
vector.

Indices may be scalars, vectors, ranges, or the special operator ‘:’, which may be used
to select entire rows or columns.

Vectors are indexed using a single index expression. Matrices (2-D) and higher multi-
dimensional arrays are indexed using either one index or N indices where N is the dimension
of the array. When using a single index expression to index 2-D or higher data the elements
of the array are taken in column-first order (like Fortran).

The output from indexing assumes the dimensions of the index expression. For example:

a(2) # result is a scalar

a(1:2) # result is a row vector

a([1; 2]) # result is a column vector

As a special case, when a colon is used as a single index, the output is a column vector
containing all the elements of the vector or matrix. For example:

a(:) # result is a column vector

a(:)’ # result is a row vector

The above two code idioms are often used in place of reshape when a simple vector,
rather than an arbitrarily sized array, is needed.

Given the matrix

a = [1, 2; 3, 4]

all of the following expressions are equivalent and select the first row of the matrix.

a(1, [1, 2]) # row 1, columns 1 and 2

a(1, 1:2) # row 1, columns in range 1-2

a(1, :) # row 1, all columns

In index expressions the keyword end automatically refers to the last entry for a partic-
ular dimension. This magic index can also be used in ranges and typically eliminates the
needs to call size or length to gather array bounds before indexing. For example:

124 GNU Octave

a = [1, 2, 3, 4];

a(1:end/2) # first half of a => [1, 2]

a(end + 1) = 5; # append element

a(end) = []; # delete element

a(1:2:end) # odd elements of a => [1, 3]

a(2:2:end) # even elements of a => [2, 4]

a(end:-1:1) # reversal of a => [4, 3, 2 , 1]

8.1.1 Advanced Indexing

An array with ‘n’ dimensions can be indexed using ‘m’ indices. More generally, the set of
index tuples determining the result is formed by the Cartesian product of the index vectors
(or ranges or scalars).

For the ordinary and most common case, m == n, and each index corresponds to its
respective dimension. If m < n and every index is less than the size of the array in the
ith dimension, m(i) < n(i), then the index expression is padded with trailing singleton
dimensions ([ones (m-n, 1)]). If m < n but one of the indices m(i) is outside the size of
the current array, then the last n-m+1 dimensions are folded into a single dimension with
an extent equal to the product of extents of the original dimensions. This is easiest to
understand with an example.

a = reshape (1:8, 2, 2, 2) # Create 3-D array

a =

ans(:,:,1) =

1 3

2 4

ans(:,:,2) =

5 7

6 8

a(2,1,2); # Case (m == n): ans = 6

a(2,1); # Case (m < n), idx within array:

equivalent to a(2,1,1), ans = 2

a(2,4); # Case (m < n), idx outside array:

Dimension 2 & 3 folded into new dimension of size 2x2 = 4

Select 2nd row, 4th element of [2, 4, 6, 8], ans = 8

One advanced use of indexing is to create arrays filled with a single value. This can be
done by using an index of ones on a scalar value. The result is an object with the dimensions
of the index expression and every element equal to the original scalar. For example, the
following statements

a = 13;

a(ones (1, 4))

produce a vector whose four elements are all equal to 13.

Chapter 8: Expressions 125

Similarly, by indexing a scalar with two vectors of ones it is possible to create a matrix.
The following statements

a = 13;

a(ones (1, 2), ones (1, 3))

create a 2x3 matrix with all elements equal to 13.

The last example could also be written as

13(ones (2, 3))

It is more efficient to use indexing rather than the code construction scalar * ones (N,

M, ...) because it avoids the unnecessary multiplication operation. Moreover, multiplica-
tion may not be defined for the object to be replicated whereas indexing an array is always
defined. The following code shows how to create a 2x3 cell array from a base unit which is
not itself a scalar.

{"Hello"}(ones (2, 3))

It should be, noted that ones (1, n) (a row vector of ones) results in a range (with zero
increment). A range is stored internally as a starting value, increment, end value, and total
number of values; hence, it is more efficient for storage than a vector or matrix of ones
whenever the number of elements is greater than 4. In particular, when ‘r’ is a row vector,
the expressions

r(ones (1, n), :)

r(ones (n, 1), :)

will produce identical results, but the first one will be significantly faster, at least for ‘r’
and ‘n’ large enough. In the first case the index is held in compressed form as a range which
allows Octave to choose a more efficient algorithm to handle the expression.

A general recommendation, for a user unaware of these subtleties, is to use the function
repmat for replicating smaller arrays into bigger ones.

A second use of indexing is to speed up code. Indexing is a fast operation and judicious
use of it can reduce the requirement for looping over individual array elements which is a
slow operation.

Consider the following example which creates a 10-element row vector a containing the
values ai =

√
i.

for i = 1:10

a(i) = sqrt (i);

endfor

It is quite inefficient to create a vector using a loop like this. In this case, it would have
been much more efficient to use the expression

a = sqrt (1:10);

which avoids the loop entirely.

In cases where a loop cannot be avoided, or a number of values must be combined to
form a larger matrix, it is generally faster to set the size of the matrix first (pre-allocate
storage), and then insert elements using indexing commands. For example, given a matrix
a,

126 GNU Octave

[nr, nc] = size (a);

x = zeros (nr, n * nc);

for i = 1:n

x(:,(i-1)*nc+1:i*nc) = a;

endfor

is considerably faster than

x = a;

for i = 1:n-1

x = [x, a];

endfor

because Octave does not have to repeatedly resize the intermediate result.

[Function File]ind = sub2ind (dims, i, j)
[Function File]ind = sub2ind (dims, s1, s2, . . . , sN)

Convert subscripts to a linear index.

The following example shows how to convert the two-dimensional index (2,3) of a
3-by-3 matrix to a linear index. The matrix is linearly indexed moving from one
column to next, filling up all rows in each column.

linear_index = sub2ind ([3, 3], 2, 3)

⇒ 8

See also: [ind2sub], page 126.

[Function File][s1, s2, ..., sN] = ind2sub (dims, ind)
Convert a linear index to subscripts.

The following example shows how to convert the linear index 8 in a 3-by-3 matrix
into a subscript. The matrix is linearly indexed moving from one column to next,
filling up all rows in each column.

[r, c] = ind2sub ([3, 3], 8)

⇒ r = 2

c = 3

See also: [sub2ind], page 126.

[Built-in Function]isindex (ind)
[Built-in Function]isindex (ind, n)

Return true if ind is a valid index. Valid indices are either positive integers (although
possibly of real data type), or logical arrays. If present, n specifies the maximum
extent of the dimension to be indexed. When possible the internal result is cached so
that subsequent indexing using ind will not perform the check again.

[Built-in Function]val = allow_noninteger_range_as_index ()
[Built-in Function]old_val = allow_noninteger_range_as_index (new_val)
[Built-in Function]allow_noninteger_range_as_index (new_val, "local")

Query or set the internal variable that controls whether non-integer ranges are allowed
as indices. This might be useful for matlab compatibility; however, it is still not
entirely compatible because matlab treats the range expression differently in different
contexts.

Chapter 8: Expressions 127

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

8.2 Calling Functions

A function is a name for a particular calculation. Because it has a name, you can ask for it
by name at any point in the program. For example, the function sqrt computes the square
root of a number.

A fixed set of functions are built-in, which means they are available in every Octave
program. The sqrt function is one of these. In addition, you can define your own functions.
See Chapter 11 [Functions and Scripts], page 157, for information about how to do this.

The way to use a function is with a function call expression, which consists of the function
name followed by a list of arguments in parentheses. The arguments are expressions which
give the raw materials for the calculation that the function will do. When there is more
than one argument, they are separated by commas. If there are no arguments, you can
omit the parentheses, but it is a good idea to include them anyway, to clearly indicate that
a function call was intended. Here are some examples:

sqrt (x^2 + y^2) # One argument
ones (n, m) # Two arguments
rand () # No arguments

Each function expects a particular number of arguments. For example, the sqrt function
must be called with a single argument, the number to take the square root of:

sqrt (argument)

Some of the built-in functions take a variable number of arguments, depending on the
particular usage, and their behavior is different depending on the number of arguments
supplied.

Like every other expression, the function call has a value, which is computed by the
function based on the arguments you give it. In this example, the value of sqrt (argument)

is the square root of the argument. A function can also have side effects, such as assigning
the values of certain variables or doing input or output operations.

Unlike most languages, functions in Octave may return multiple values. For example,
the following statement

[u, s, v] = svd (a)

computes the singular value decomposition of the matrix a and assigns the three result
matrices to u, s, and v.

The left side of a multiple assignment expression is itself a list of expressions, and is
allowed to be a list of variable names or index expressions. See also Section 8.1 [Index
Expressions], page 123, and Section 8.6 [Assignment Ops], page 137.

8.2.1 Call by Value

In Octave, unlike Fortran, function arguments are passed by value, which means that each
argument in a function call is evaluated and assigned to a temporary location in memory
before being passed to the function. There is currently no way to specify that a function
parameter should be passed by reference instead of by value. This means that it is impossible

128 GNU Octave

to directly alter the value of a function parameter in the calling function. It can only change
the local copy within the function body. For example, the function

function f (x, n)

while (n-- > 0)

disp (x);

endwhile

endfunction

displays the value of the first argument n times. In this function, the variable n is used as a
temporary variable without having to worry that its value might also change in the calling
function. Call by value is also useful because it is always possible to pass constants for any
function parameter without first having to determine that the function will not attempt to
modify the parameter.

The caller may use a variable as the expression for the argument, but the called function
does not know this: it only knows what value the argument had. For example, given a
function called as

foo = "bar";

fcn (foo)

you should not think of the argument as being “the variable foo.” Instead, think of the
argument as the string value, "bar".

Even though Octave uses pass-by-value semantics for function arguments, values are not
copied unnecessarily. For example,

x = rand (1000);

f (x);

does not actually force two 1000 by 1000 element matrices to exist unless the function f

modifies the value of its argument. Then Octave must create a copy to avoid changing the
value outside the scope of the function f, or attempting (and probably failing!) to modify
the value of a constant or the value of a temporary result.

8.2.2 Recursion

With some restrictions1, recursive function calls are allowed. A recursive function is one
which calls itself, either directly or indirectly. For example, here is an inefficient2 way to
compute the factorial of a given integer:

function retval = fact (n)

if (n > 0)

retval = n * fact (n-1);

else

retval = 1;

endif

endfunction

1 Some of Octave’s functions are implemented in terms of functions that cannot be called recursively. For
example, the ODE solver lsode is ultimately implemented in a Fortran subroutine that cannot be called
recursively, so lsode should not be called either directly or indirectly from within the user-supplied
function that lsode requires. Doing so will result in an error.

2 It would be much better to use prod (1:n), or gamma (n+1) instead, after first checking to ensure that
the value n is actually a positive integer.

Chapter 8: Expressions 129

This function is recursive because it calls itself directly. It eventually terminates because
each time it calls itself, it uses an argument that is one less than was used for the previous
call. Once the argument is no longer greater than zero, it does not call itself, and the
recursion ends.

The built-in variable max_recursion_depth specifies a limit to the recursion depth and
prevents Octave from recursing infinitely.

[Built-in Function]val = max_recursion_depth ()
[Built-in Function]old_val = max_recursion_depth (new_val)
[Built-in Function]max_recursion_depth (new_val, "local")

Query or set the internal limit on the number of times a function may be called
recursively. If the limit is exceeded, an error message is printed and control returns
to the top level.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

8.3 Arithmetic Operators

The following arithmetic operators are available, and work on scalars and matrices. The
element-by-element operators and functions broadcast (see Section 19.2 [Broadcasting],
page 399).

x + y Addition. If both operands are matrices, the number of rows and columns must
both agree, or they must be broadcastable to the same shape.

x .+ y Element-by-element addition. This operator is equivalent to +.

x - y Subtraction. If both operands are matrices, the number of rows and columns
of both must agree, or they must be broadcastable to the same shape.

x .- y Element-by-element subtraction. This operator is equivalent to -.

x * y Matrix multiplication. The number of columns of x must agree with the number
of rows of y, or they must be broadcastable to the same shape.

x .* y Element-by-element multiplication. If both operands are matrices, the number
of rows and columns must both agree, or they must be broadcastable to the
same shape.

x / y Right division. This is conceptually equivalent to the expression

(inverse (y’) * x’)’

but it is computed without forming the inverse of y’.

If the system is not square, or if the coefficient matrix is singular, a minimum
norm solution is computed.

x ./ y Element-by-element right division.

x \ y Left division. This is conceptually equivalent to the expression

inverse (x) * y

but it is computed without forming the inverse of x.

130 GNU Octave

If the system is not square, or if the coefficient matrix is singular, a minimum
norm solution is computed.

x .\ y Element-by-element left division. Each element of y is divided by each corre-
sponding element of x.

x ^ y
x ** y Power operator. If x and y are both scalars, this operator returns x raised to

the power y. If x is a scalar and y is a square matrix, the result is computed
using an eigenvalue expansion. If x is a square matrix, the result is computed
by repeated multiplication if y is an integer, and by an eigenvalue expansion if
y is not an integer. An error results if both x and y are matrices.

The implementation of this operator needs to be improved.

x .^ y
x .** y Element-by-element power operator. If both operands are matrices, the number

of rows and columns must both agree, or they must be broadcastable to the
same shape. If several complex results are possible, the one with smallest non-
negative argument (angle) is taken. This rule may return a complex root even
when a real root is also possible. Use realpow, realsqrt, cbrt, or nthroot if
a real result is preferred.

-x Negation.

+x Unary plus. This operator has no effect on the operand.

x’ Complex conjugate transpose. For real arguments, this operator is the same as
the transpose operator. For complex arguments, this operator is equivalent to
the expression

conj (x.’)

x.’ Transpose.

Note that because Octave’s element-by-element operators begin with a ‘.’, there is a
possible ambiguity for statements like

1./m

because the period could be interpreted either as part of the constant or as part of the
operator. To resolve this conflict, Octave treats the expression as if you had typed

(1) ./ m

and not

(1.) / m

Although this is inconsistent with the normal behavior of Octave’s lexer, which usually
prefers to break the input into tokens by preferring the longest possible match at any given
point, it is more useful in this case.

[Built-in Function]ctranspose (x)
Return the complex conjugate transpose of x. This function and x’ are equivalent.

See also: [transpose], page 132.

Chapter 8: Expressions 131

[Built-in Function]ldivide (x, y)
Return the element-by-element left division of x and y. This function and x .\ y are
equivalent.

See also: [rdivide], page 132, [mldivide], page 131.

[Built-in Function]minus (x, y)
This function and x - y are equivalent.

See also: [plus], page 131.

[Built-in Function]mldivide (x, y)
Return the matrix left division of x and y. This function and x \ y are equivalent.

See also: [mrdivide], page 131, [ldivide], page 131.

[Built-in Function]mpower (x, y)
Return the matrix power operation of x raised to the y power. This function and
x ^ y are equivalent.

See also: [power], page 131.

[Built-in Function]mrdivide (x, y)
Return the matrix right division of x and y. This function and x / y are equivalent.

See also: [mldivide], page 131, [rdivide], page 132.

[Built-in Function]mtimes (x, y)
[Built-in Function]mtimes (x1, x2, . . .)

Return the matrix multiplication product of inputs. This function and x * y are
equivalent. If more arguments are given, the multiplication is applied cumulatively
from left to right:

(...((x1 * x2) * x3) * ...)

At least one argument is required.

See also: [times], page 132.

[Built-in Function]plus (x, y)
[Built-in Function]plus (x1, x2, . . .)

This function and x + y are equivalent. If more arguments are given, the summation
is applied cumulatively from left to right:

(...((x1 + x2) + x3) + ...)

At least one argument is required.

See also: [minus], page 131.

[Built-in Function]power (x, y)
Return the element-by-element operation of x raised to the y power. If several com-
plex results are possible, returns the one with smallest non-negative argument (angle).
Use realpow, realsqrt, cbrt, or nthroot if a real result is preferred.

This function and x .^ y are equivalent.

See also: [mpower], page 131, [realpow], page 354, [realsqrt], page 354, [cbrt],
page 354, [nthroot], page 354.

132 GNU Octave

[Built-in Function]rdivide (x, y)
Return the element-by-element right division of x and y. This function and x ./ y

are equivalent.

See also: [ldivide], page 131, [mrdivide], page 131.

[Built-in Function]times (x, y)
[Built-in Function]times (x1, x2, . . .)

Return the element-by-element multiplication product of inputs. This function and
x .* y are equivalent. If more arguments are given, the multiplication is applied
cumulatively from left to right:

(...((x1 .* x2) .* x3) .* ...)

At least one argument is required.

See also: [mtimes], page 131.

[Built-in Function]transpose (x)
Return the transpose of x. This function and x.’ are equivalent.

See also: [ctranspose], page 130.

[Built-in Function]uminus (x)
This function and - x are equivalent.

[Built-in Function]uplus (x)
This function and + x are equivalent.

8.4 Comparison Operators

Comparison operators compare numeric values for relationships such as equality. They are
written using relational operators.

All of Octave’s comparison operators return a value of 1 if the comparison is true, or 0
if it is false. For matrix values, they all work on an element-by-element basis. Broadcasting
rules apply. See Section 19.2 [Broadcasting], page 399. For example:

[1, 2; 3, 4] == [1, 3; 2, 4]

⇒ 1 0

0 1

According to broadcasting rules, if one operand is a scalar and the other is a matrix, the
scalar is compared to each element of the matrix in turn, and the result is the same size as
the matrix.

x < y True if x is less than y.

x <= y True if x is less than or equal to y.

x == y True if x is equal to y.

x >= y True if x is greater than or equal to y.

x > y True if x is greater than y.

x != y

x ~= y True if x is not equal to y.

Chapter 8: Expressions 133

For complex numbers, the following ordering is defined: z1 < z2 iff

abs(z1) < abs(z2)

|| (abs(z1) == abs(z2) && arg(z1) < arg(z2))

This is consistent with the ordering used by max, min and sort, but is not consistent
with matlab, which only compares the real parts.

String comparisons may also be performed with the strcmp function, not with the com-
parison operators listed above. See Chapter 5 [Strings], page 63.

[Built-in Function]eq (x, y)
Return true if the two inputs are equal. This function is equivalent to x == y.

See also: [ne], page 133, [isequal], page 133.

[Built-in Function]ge (x, y)
This function is equivalent to x >= y.

[Built-in Function]gt (x, y)
This function is equivalent to x > y.

[Function File]isequal (x1, x2, . . .)
Return true if all of x1, x2, . . . are equal.

See also: [isequalwithequalnans], page 133.

[Function File]isequalwithequalnans (x1, x2, . . .)
Assuming NaN == NaN, return true if all of x1, x2, . . . are equal.

See also: [isequal], page 133.

[Built-in Function]le (x, y)
This function is equivalent to x <= y.

[Built-in Function]lt (x, y)
This function is equivalent to x < y.

[Built-in Function]ne (x, y)
Return true if the two inputs are not equal. This function is equivalent to x != y.

See also: [eq], page 133, [isequal], page 133.

8.5 Boolean Expressions

8.5.1 Element-by-element Boolean Operators

An element-by-element boolean expression is a combination of comparison expressions using
the boolean operators “or” (‘|’), “and” (‘&’), and “not” (‘!’), along with parentheses to
control nesting. The truth of the boolean expression is computed by combining the truth
values of the corresponding elements of the component expressions. A value is considered
to be false if it is zero, and true otherwise.

Element-by-element boolean expressions can be used wherever comparison expressions
can be used. They can be used in if and while statements. However, a matrix value used
as the condition in an if or while statement is only true if all of its elements are nonzero.

134 GNU Octave

Like comparison operations, each element of an element-by-element boolean expression
also has a numeric value (1 if true, 0 if false) that comes into play if the result of the boolean
expression is stored in a variable, or used in arithmetic.

Here are descriptions of the three element-by-element boolean operators.

boolean1 & boolean2

Elements of the result are true if both corresponding elements of boolean1 and
boolean2 are true.

boolean1 | boolean2

Elements of the result are true if either of the corresponding elements of
boolean1 or boolean2 is true.

! boolean

~ boolean

Each element of the result is true if the corresponding element of boolean is
false.

These operators work on an element-by-element basis. For example, the expression

[1, 0; 0, 1] & [1, 0; 2, 3]

returns a two by two identity matrix.

For the binary operators, broadcasting rules apply. See Section 19.2 [Broadcasting],
page 399. In particular, if one of the operands is a scalar and the other a matrix, the
operator is applied to the scalar and each element of the matrix.

For the binary element-by-element boolean operators, both subexpressions boolean1 and
boolean2 are evaluated before computing the result. This can make a difference when the
expressions have side effects. For example, in the expression

a & b++

the value of the variable b is incremented even if the variable a is zero.

This behavior is necessary for the boolean operators to work as described for matrix-
valued operands.

[Built-in Function]and (x, y)
[Built-in Function]and (x1, x2, . . .)

Return the logical AND of x and y. This function is equivalent to x & y. If more
arguments are given, the logical and is applied cumulatively from left to right:

(...((x1 & x2) & x3) & ...)

At least one argument is required.

See also: [or], page 134, [not], page 134, [xor], page 331.

[Built-in Function]not (x)
Return the logical NOT of x. This function is equivalent to ! x.

See also: [and], page 134, [or], page 134, [xor], page 331.

[Built-in Function]or (x, y)
[Built-in Function]or (x1, x2, . . .)

Return the logical OR of x and y. This function is equivalent to x | y. If more
arguments are given, the logical or is applied cumulatively from left to right:

Chapter 8: Expressions 135

(...((x1 | x2) | x3) | ...)

At least one argument is required.

See also: [and], page 134, [not], page 134, [xor], page 331.

8.5.2 Short-circuit Boolean Operators

Combined with the implicit conversion to scalar values in if and while conditions, Oc-
tave’s element-by-element boolean operators are often sufficient for performing most logical
operations. However, it is sometimes desirable to stop evaluating a boolean expression as
soon as the overall truth value can be determined. Octave’s short-circuit boolean operators
work this way.

boolean1 && boolean2

The expression boolean1 is evaluated and converted to a scalar using the equiv-
alent of the operation all (boolean1(:)). If it is false, the result of the overall
expression is 0. If it is true, the expression boolean2 is evaluated and converted
to a scalar using the equivalent of the operation all (boolean1(:)). If it is
true, the result of the overall expression is 1. Otherwise, the result of the overall
expression is 0.

Warning: there is one exception to the rule of evaluating all (boolean1(:)),
which is when boolean1 is the empty matrix. The truth value of an empty
matrix is always false so [] && true evaluates to false even though all

([]) is true.

boolean1 || boolean2

The expression boolean1 is evaluated and converted to a scalar using the equiv-
alent of the operation all (boolean1(:)). If it is true, the result of the overall
expression is 1. If it is false, the expression boolean2 is evaluated and converted
to a scalar using the equivalent of the operation all (boolean1(:)). If it is
true, the result of the overall expression is 1. Otherwise, the result of the overall
expression is 0.

Warning: the truth value of an empty matrix is always false, see the previous
list item for details.

The fact that both operands may not be evaluated before determining the overall truth
value of the expression can be important. For example, in the expression

a && b++

the value of the variable b is only incremented if the variable a is nonzero.

This can be used to write somewhat more concise code. For example, it is possible write

function f (a, b, c)

if (nargin > 2 && ischar (c))

...

instead of having to use two if statements to avoid attempting to evaluate an argument
that doesn’t exist. For example, without the short-circuit feature, it would be necessary to
write

136 GNU Octave

function f (a, b, c)

if (nargin > 2)

if (ischar (c))

...

Writing

function f (a, b, c)

if (nargin > 2 & ischar (c))

...

would result in an error if f were called with one or two arguments because Octave would
be forced to try to evaluate both of the operands for the operator ‘&’.

matlab has special behavior that allows the operators ‘&’ and ‘|’ to short-circuit when
used in the truth expression for if and while statements. The Octave parser may be
instructed to behave in the same manner, but its use is strongly discouraged.

[Built-in Function]val = do_braindead_shortcircuit_evaluation ()
[Built-in Function]old_val = do_braindead_shortcircuit_evaluation

(new_val)
[Built-in Function]do_braindead_shortcircuit_evaluation (new_val, "local")

Query or set the internal variable that controls whether Octave will do short-circuit
evaluation of ‘|’ and ‘&’ operators inside the conditions of if or while statements.

This feature is only provided for compatibility with matlab and should not be used
unless you are porting old code that relies on this feature.

To obtain short-circuit behavior for logical expressions in new programs, you should
always use the ‘&&’ and ‘||’ operators.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

Finally, the ternary operator (?:) is not supported in Octave. If short-circuiting is not
important, it can be replaced by the ifelse function.

[Built-in Function]merge (mask, tval, fval)
[Built-in Function]ifelse (mask, tval, fval)

Merge elements of true val and false val, depending on the value of mask. If mask is
a logical scalar, the other two arguments can be arbitrary values. Otherwise, mask
must be a logical array, and tval, fval should be arrays of matching class, or cell
arrays. In the scalar mask case, tval is returned if mask is true, otherwise fval is
returned.

In the array mask case, both tval and fval must be either scalars or arrays with
dimensions equal to mask. The result is constructed as follows:

result(mask) = tval(mask);

result(! mask) = fval(! mask);

mask can also be arbitrary numeric type, in which case it is first converted to logical.

See also: [logical], page 57.

Chapter 8: Expressions 137

8.6 Assignment Expressions

An assignment is an expression that stores a new value into a variable. For example, the
following expression assigns the value 1 to the variable z:

z = 1

After this expression is executed, the variable z has the value 1. Whatever old value z had
before the assignment is forgotten. The ‘=’ sign is called an assignment operator.

Assignments can store string values also. For example, the following expression would
store the value "this food is good" in the variable message:

thing = "food"

predicate = "good"

message = ["this " , thing , " is " , predicate]

(This also illustrates concatenation of strings.)

Most operators (addition, concatenation, and so on) have no effect except to compute
a value. If you ignore the value, you might as well not use the operator. An assignment
operator is different. It does produce a value, but even if you ignore the value, the assignment
still makes itself felt through the alteration of the variable. We call this a side effect.

The left-hand operand of an assignment need not be a variable (see Chapter 7 [Variables],
page 113). It can also be an element of a matrix (see Section 8.1 [Index Expressions],
page 123) or a list of return values (see Section 8.2 [Calling Functions], page 127). These
are all called lvalues, which means they can appear on the left-hand side of an assignment
operator. The right-hand operand may be any expression. It produces the new value which
the assignment stores in the specified variable, matrix element, or list of return values.

It is important to note that variables do not have permanent types. The type of a
variable is simply the type of whatever value it happens to hold at the moment. In the
following program fragment, the variable foo has a numeric value at first, and a string value
later on:

octave:13> foo = 1

foo = 1

octave:13> foo = "bar"

foo = bar

When the second assignment gives foo a string value, the fact that it previously had a
numeric value is forgotten.

Assignment of a scalar to an indexed matrix sets all of the elements that are referenced
by the indices to the scalar value. For example, if a is a matrix with at least two columns,

a(:, 2) = 5

sets all the elements in the second column of a to 5.

Assigning an empty matrix ‘[]’ works in most cases to allow you to delete rows or
columns of matrices and vectors. See Section 4.1.1 [Empty Matrices], page 49. For example,
given a 4 by 5 matrix A, the assignment

A (3, :) = []

deletes the third row of A, and the assignment

138 GNU Octave

A (:, 1:2:5) = []

deletes the first, third, and fifth columns.

An assignment is an expression, so it has a value. Thus, z = 1 as an expression has the
value 1. One consequence of this is that you can write multiple assignments together:

x = y = z = 0

stores the value 0 in all three variables. It does this because the value of z = 0, which is 0,
is stored into y, and then the value of y = z = 0, which is 0, is stored into x.

This is also true of assignments to lists of values, so the following is a valid expression

[a, b, c] = [u, s, v] = svd (a)

that is exactly equivalent to

[u, s, v] = svd (a)

a = u

b = s

c = v

In expressions like this, the number of values in each part of the expression need not
match. For example, the expression

[a, b] = [u, s, v] = svd (a)

is equivalent to

[u, s, v] = svd (a)

a = u

b = s

The number of values on the left side of the expression can, however, not exceed the number
of values on the right side. For example, the following will produce an error.

[a, b, c, d] = [u, s, v] = svd (a);

a error: element number 4 undefined in return list

The symbol ~ may be used as a placeholder in the list of lvalues, indicating that the
corresponding return value should be ignored and not stored anywhere:

[~, s, v] = svd (a);

This is cleaner and more memory efficient than using a dummy variable. The nargout

value for the right-hand side expression is not affected. If the assignment is used as an
expression, the return value is a comma-separated list with the ignored values dropped.

A very common programming pattern is to increment an existing variable with a given
value, like this

a = a + 2;

This can be written in a clearer and more condensed form using the += operator

a += 2;

Similar operators also exist for subtraction (-=), multiplication (*=), and division (/=). An
expression of the form

expr1 op= expr2

is evaluated as

Chapter 8: Expressions 139

expr1 = (expr1) op (expr2)

where op can be either +, -, *, or /. So, the expression

a *= b+1

is evaluated as

a = a * (b+1)

and not

a = a * b + 1

You can use an assignment anywhere an expression is called for. For example, it is valid
to write x != (y = 1) to set y to 1 and then test whether x equals 1. But this style tends
to make programs hard to read. Except in a one-shot program, you should rewrite it to get
rid of such nesting of assignments. This is never very hard.

8.7 Increment Operators

Increment operators increase or decrease the value of a variable by 1. The operator to
increment a variable is written as ‘++’. It may be used to increment a variable either before
or after taking its value.

For example, to pre-increment the variable x, you would write ++x . This would add one
to x and then return the new value of x as the result of the expression. It is exactly the
same as the expression x = x + 1.

To post-increment a variable x, you would write x++. This adds one to the variable x,
but returns the value that x had prior to incrementing it. For example, if x is equal to 2,
the result of the expression x++ is 2, and the new value of x is 3.

For matrix and vector arguments, the increment and decrement operators work on each
element of the operand.

Here is a list of all the increment and decrement expressions.

++x This expression increments the variable x. The value of the expression is the
new value of x. It is equivalent to the expression x = x + 1.

--x This expression decrements the variable x. The value of the expression is the
new value of x. It is equivalent to the expression x = x - 1.

x++ This expression causes the variable x to be incremented. The value of the
expression is the old value of x.

x-- This expression causes the variable x to be decremented. The value of the
expression is the old value of x.

8.8 Operator Precedence

Operator precedence determines how operators are grouped, when different operators ap-
pear close by in one expression. For example, ‘*’ has higher precedence than ‘+’. Thus, the
expression a + b * c means to multiply b and c, and then add a to the product (i.e., a + (b

* c)).

You can overrule the precedence of the operators by using parentheses. You can think
of the precedence rules as saying where the parentheses are assumed if you do not write

140 GNU Octave

parentheses yourself. In fact, it is wise to use parentheses whenever you have an unusual
combination of operators, because other people who read the program may not remember
what the precedence is in this case. You might forget as well, and then you too could make
a mistake. Explicit parentheses will help prevent any such mistake.

When operators of equal precedence are used together, the leftmost operator groups
first, except for the assignment operators, which group in the opposite order. Thus, the
expression a - b + c groups as (a - b) + c, but the expression a = b = c groups as a = (b =

c).

The precedence of prefix unary operators is important when another operator follows
the operand. For example, -x^2 means -(x^2), because ‘-’ has lower precedence than ‘^’.

Here is a table of the operators in Octave, in order of decreasing precedence. Unless
noted, all operators group left to right.

function call and array indexing, cell array indexing, and structure element

indexing

‘()’ ‘{}’ ‘.’

postfix increment, and postfix decrement

‘++’ ‘--’

These operators group right to left.

transpose and exponentiation

‘’’ ‘.’’ ‘^’ ‘**’ ‘.^’ ‘.**’

unary plus, unary minus, prefix increment, prefix decrement, and logical "not"

‘+’ ‘-’ ‘++’ ‘--’ ‘~’ ‘!’

multiply and divide

‘*’ ‘/’ ‘\’ ‘.\’ ‘.*’ ‘./’

add, subtract

‘+’ ‘-’

colon ‘:’

relational

‘<’ ‘<=’ ‘==’ ‘>=’ ‘>’ ‘!=’ ‘~=’

element-wise "and"

‘&’

element-wise "or"

‘|’

logical "and"

‘&&’

logical "or"

‘||’

assignment

‘=’ ‘+=’ ‘-=’ ‘*=’ ‘/=’ ‘\=’ ‘^=’ ‘.*=’ ‘./=’ ‘.\=’ ‘.^=’ ‘|=’ ‘&=’

These operators group right to left.

Chapter 9: Evaluation 141

9 Evaluation

Normally, you evaluate expressions simply by typing them at the Octave prompt, or by
asking Octave to interpret commands that you have saved in a file.

Sometimes, you may find it necessary to evaluate an expression that has been computed
and stored in a string, which is exactly what the eval function lets you do.

[Built-in Function]eval (try)
[Built-in Function]eval (try, catch)

Parse the string try and evaluate it as if it were an Octave program. If that fails,
evaluate the optional string catch. The string try is evaluated in the current context,
so any results remain available after eval returns.

The following example makes the variable a with the approximate value 3.1416 avail-
able.

eval("a = acos(-1);");

If an error occurs during the evaluation of try the catch string is evaluated, as the
following example shows:

eval (’error ("This is a bad example");’,

’printf ("This error occurred:\n%s\n", lasterr ());’);

a This error occurred:

This is a bad example

Consider using try/catch blocks instead if you are only using eval as an error-
capturing mechanism rather than for the execution of arbitrary code strings.

See also: [evalin], page 144.

9.1 Calling a Function by its Name

The feval function allows you to call a function from a string containing its name. This
is useful when writing a function that needs to call user-supplied functions. The feval

function takes the name of the function to call as its first argument, and the remaining
arguments are given to the function.

The following example is a simple-minded function using feval that finds the root of a
user-supplied function of one variable using Newton’s method.

function result = newtroot (fname, x)

usage: newtroot (fname, x)

#

fname : a string naming a function f(x).

x : initial guess

delta = tol = sqrt (eps);

maxit = 200;

fx = feval (fname, x);

for i = 1:maxit

if (abs (fx) < tol)

142 GNU Octave

result = x;

return;

else

fx_new = feval (fname, x + delta);

deriv = (fx_new - fx) / delta;

x = x - fx / deriv;

fx = fx_new;

endif

endfor

result = x;

endfunction

Note that this is only meant to be an example of calling user-supplied functions and
should not be taken too seriously. In addition to using a more robust algorithm, any serious
code would check the number and type of all the arguments, ensure that the supplied func-
tion really was a function, etc. See Section 4.8 [Predicates for Numeric Objects], page 58,
for example, for a list of predicates for numeric objects, and see Section 7.3 [Status of
Variables], page 117, for a description of the exist function.

[Built-in Function]feval (name, . . .)
Evaluate the function named name. Any arguments after the first are passed on to
the named function. For example,

feval ("acos", -1)

⇒ 3.1416

calls the function acos with the argument ‘-1’.

The function feval can also be used with function handles of any sort (see
Section 11.10.1 [Function Handles], page 177). Historically, feval was the only way
to call user-supplied functions in strings, but function handles are now preferred due
to the cleaner syntax they offer. For example,

f = @exp;

feval (f, 1)

⇒ 2.7183

f (1)

⇒ 2.7183

are equivalent ways to call the function referred to by f. If it cannot be predicted
beforehand that f is a function handle or the function name in a string, feval can
be used instead.

A similar function run exists for calling user script files, that are not necessarily on the
user path

[Command]run script
[Function File]run (script)

Run scripts in the current workspace that are not necessarily on the path. If script is
the script to run, including its path, then run changes the directory to the directory

Chapter 9: Evaluation 143

where script is found. run then executes the script, and returns to the original
directory.

See also: [system], page 640.

9.2 Evaluation in a Different Context

Before you evaluate an expression you need to substitute the values of the variables used in
the expression. These are stored in the symbol table. Whenever the interpreter starts a new
function it saves the current symbol table and creates a new one, initializing it with the list
of function parameters and a couple of predefined variables such as nargin. Expressions
inside the function use the new symbol table.

Sometimes you want to write a function so that when you call it, it modifies variables in
your own context. This allows you to use a pass-by-name style of function, which is similar
to using a pointer in programming languages such as C.

Consider how you might write save and load as m-files. For example:

function create_data

x = linspace (0, 10, 10);

y = sin (x);

save mydata x y

endfunction

With evalin, you could write save as follows:

function save (file, name1, name2)

f = open_save_file (file);

save_var(f, name1, evalin ("caller", name1));

save_var(f, name2, evalin ("caller", name2));

endfunction

Here, ‘caller’ is the create_data function and name1 is the string "x", which evaluates
simply as the value of x.

You later want to load the values back from mydata in a different context:

function process_data

load mydata

... do work ...

endfunction

With assignin, you could write load as follows:

function load (file)

f = open_load_file (file);

[name, val] = load_var (f);

assignin ("caller", name, val);

[name, val] = load_var (f);

assignin ("caller", name, val);

endfunction

Here, ‘caller’ is the process_data function.

You can set and use variables at the command prompt using the context ‘base’ rather
than ‘caller’.

144 GNU Octave

These functions are rarely used in practice. One example is the fail (‘code’,

‘pattern’) function which evaluates ‘code’ in the caller’s context and checks that the
error message it produces matches the given pattern. Other examples such as save and
load are written in C++ where all Octave variables are in the ‘caller’ context and evalin

is not needed.

[Built-in Function]evalin (context, try)
[Built-in Function]evalin (context, try, catch)

Like eval, except that the expressions are evaluated in the context context, which
may be either "caller" or "base".

See also: [eval], page 141, [assignin], page 144.

[Built-in Function]assignin (context, varname, value)
Assign value to varname in context context, which may be either "base" or "caller".

See also: [evalin], page 144.

Chapter 10: Statements 145

10 Statements

Statements may be a simple constant expression or a complicated list of nested loops and
conditional statements.

Control statements such as if, while, and so on control the flow of execution in Octave
programs. All the control statements start with special keywords such as if and while,
to distinguish them from simple expressions. Many control statements contain other state-
ments; for example, the if statement contains another statement which may or may not be
executed.

Each control statement has a corresponding end statement that marks the end of the
control statement. For example, the keyword endif marks the end of an if statement, and
endwhile marks the end of a while statement. You can use the keyword end anywhere a
more specific end keyword is expected, but using the more specific keywords is preferred
because if you use them, Octave is able to provide better diagnostics for mismatched or
missing end tokens.

The list of statements contained between keywords like if or while and the correspond-
ing end statement is called the body of a control statement.

10.1 The if Statement

The if statement is Octave’s decision-making statement. There are three basic forms of an
if statement. In its simplest form, it looks like this:

if (condition)

then-body

endif

condition is an expression that controls what the rest of the statement will do. The then-
body is executed only if condition is true.

The condition in an if statement is considered true if its value is non-zero, and false if
its value is zero. If the value of the conditional expression in an if statement is a vector or
a matrix, it is considered true only if it is non-empty and all of the elements are non-zero.

The second form of an if statement looks like this:

if (condition)

then-body

else

else-body

endif

If condition is true, then-body is executed; otherwise, else-body is executed.

Here is an example:

if (rem (x, 2) == 0)

printf ("x is even\n");

else

printf ("x is odd\n");

endif

146 GNU Octave

In this example, if the expression rem (x, 2) == 0 is true (that is, the value of x is
divisible by 2), then the first printf statement is evaluated, otherwise the second printf

statement is evaluated.

The third and most general form of the if statement allows multiple decisions to be
combined in a single statement. It looks like this:

if (condition)

then-body

elseif (condition)

elseif-body

else

else-body

endif

Any number of elseif clauses may appear. Each condition is tested in turn, and if one is
found to be true, its corresponding body is executed. If none of the conditions are true and
the else clause is present, its body is executed. Only one else clause may appear, and it
must be the last part of the statement.

In the following example, if the first condition is true (that is, the value of x is divisible
by 2), then the first printf statement is executed. If it is false, then the second condition
is tested, and if it is true (that is, the value of x is divisible by 3), then the second printf

statement is executed. Otherwise, the third printf statement is performed.

if (rem (x, 2) == 0)

printf ("x is even\n");

elseif (rem (x, 3) == 0)

printf ("x is odd and divisible by 3\n");

else

printf ("x is odd\n");

endif

Note that the elseif keyword must not be spelled else if, as is allowed in Fortran. If
it is, the space between the else and if will tell Octave to treat this as a new if statement
within another if statement’s else clause. For example, if you write

if (c1)

body-1

else if (c2)

body-2

endif

Octave will expect additional input to complete the first if statement. If you are using
Octave interactively, it will continue to prompt you for additional input. If Octave is reading
this input from a file, it may complain about missing or mismatched end statements, or, if
you have not used the more specific end statements (endif, endfor, etc.), it may simply
produce incorrect results, without producing any warning messages.

It is much easier to see the error if we rewrite the statements above like this,

Chapter 10: Statements 147

if (c1)

body-1

else

if (c2)

body-2

endif

using the indentation to show how Octave groups the statements. See Chapter 11 [Functions
and Scripts], page 157.

10.2 The switch Statement

It is very common to take different actions depending on the value of one variable. This is
possible using the if statement in the following way

if (X == 1)

do_something ();

elseif (X == 2)

do_something_else ();

else

do_something_completely_different ();

endif

This kind of code can however be very cumbersome to both write and maintain. To overcome
this problem Octave supports the switch statement. Using this statement, the above
example becomes

switch (X)

case 1

do_something ();

case 2

do_something_else ();

otherwise

do_something_completely_different ();

endswitch

This code makes the repetitive structure of the problem more explicit, making the code
easier to read, and hence maintain. Also, if the variable X should change its name, only one
line would need changing compared to one line per case when if statements are used.

The general form of the switch statement is

switch expression

case label

command_list

case label

command_list

...

otherwise

command_list

endswitch

148 GNU Octave

where label can be any expression. However, duplicate label values are not detected, and
only the command list corresponding to the first match will be executed. For the switch

statement to be meaningful at least one case label command_list clause must be present,
while the otherwise command_list clause is optional.

If label is a cell array the corresponding command list is executed if any of the elements of
the cell array match expression. As an example, the following program will print ‘Variable
is either 6 or 7’.

A = 7;

switch A

case { 6, 7 }

printf ("variable is either 6 or 7\n");

otherwise

printf ("variable is neither 6 nor 7\n");

endswitch

As with all other specific end keywords, endswitch may be replaced by end, but you
can get better diagnostics if you use the specific forms.

One advantage of using the switch statement compared to using if statements is that
the labels can be strings. If an if statement is used it is not possible to write

if (X == "a string") # This is NOT valid

since a character-to-character comparison between X and the string will be made instead of
evaluating if the strings are equal. This special-case is handled by the switch statement,
and it is possible to write programs that look like this

switch (X)

case "a string"

do_something

...

endswitch

10.2.1 Notes for the C Programmer

The switch statement is also available in the widely used C programming language. There
are, however, some differences between the statement in Octave and C

• Cases are exclusive, so they don’t ‘fall through’ as do the cases in the switch statement
of the C language.

• The command list elements are not optional. Making the list optional would have
meant requiring a separator between the label and the command list. Otherwise,
things like

switch (foo)

case (1) -2

...

would produce surprising results, as would

switch (foo)

case (1)

case (2)

doit ();

...

Chapter 10: Statements 149

particularly for C programmers. If doit() should be executed if foo is either 1 or 2,
the above code should be written with a cell array like this

switch (foo)

case { 1, 2 }

doit ();

...

10.3 The while Statement

In programming, a loop means a part of a program that is (or at least can be) executed
two or more times in succession.

The while statement is the simplest looping statement in Octave. It repeatedly executes
a statement as long as a condition is true. As with the condition in an if statement, the
condition in a while statement is considered true if its value is non-zero, and false if its
value is zero. If the value of the conditional expression in a while statement is a vector or
a matrix, it is considered true only if it is non-empty and all of the elements are non-zero.

Octave’s while statement looks like this:

while (condition)

body

endwhile

Here body is a statement or list of statements that we call the body of the loop, and
condition is an expression that controls how long the loop keeps running.

The first thing the while statement does is test condition. If condition is true, it executes
the statement body. After body has been executed, condition is tested again, and if it is
still true, body is executed again. This process repeats until condition is no longer true. If
condition is initially false, the body of the loop is never executed.

This example creates a variable fib that contains the first ten elements of the Fibonacci
sequence.

fib = ones (1, 10);

i = 3;

while (i <= 10)

fib (i) = fib (i-1) + fib (i-2);

i++;

endwhile

Here the body of the loop contains two statements.

The loop works like this: first, the value of i is set to 3. Then, the while tests whether
i is less than or equal to 10. This is the case when i equals 3, so the value of the i-th
element of fib is set to the sum of the previous two values in the sequence. Then the i++

increments the value of i and the loop repeats. The loop terminates when i reaches 11.

A newline is not required between the condition and the body; but using one makes the
program clearer unless the body is very simple.

150 GNU Octave

10.4 The do-until Statement

The do-until statement is similar to the while statement, except that it repeatedly exe-
cutes a statement until a condition becomes true, and the test of the condition is at the end
of the loop, so the body of the loop is always executed at least once. As with the condition
in an if statement, the condition in a do-until statement is considered true if its value
is non-zero, and false if its value is zero. If the value of the conditional expression in a
do-until statement is a vector or a matrix, it is considered true only if it is non-empty and
all of the elements are non-zero.

Octave’s do-until statement looks like this:

do

body

until (condition)

Here body is a statement or list of statements that we call the body of the loop, and
condition is an expression that controls how long the loop keeps running.

This example creates a variable fib that contains the first ten elements of the Fibonacci
sequence.

fib = ones (1, 10);

i = 2;

do

i++;

fib (i) = fib (i-1) + fib (i-2);

until (i == 10)

A newline is not required between the do keyword and the body; but using one makes
the program clearer unless the body is very simple.

10.5 The for Statement

The for statement makes it more convenient to count iterations of a loop. The general
form of the for statement looks like this:

for var = expression

body

endfor

where body stands for any statement or list of statements, expression is any valid expression,
and var may take several forms. Usually it is a simple variable name or an indexed variable.
If the value of expression is a structure, var may also be a vector with two elements. See
Section 10.5.1 [Looping Over Structure Elements], page 151, below.

The assignment expression in the for statement works a bit differently than Octave’s
normal assignment statement. Instead of assigning the complete result of the expression, it
assigns each column of the expression to var in turn. If expression is a range, a row vector,
or a scalar, the value of var will be a scalar each time the loop body is executed. If var is a
column vector or a matrix, var will be a column vector each time the loop body is executed.

The following example shows another way to create a vector containing the first ten
elements of the Fibonacci sequence, this time using the for statement:

Chapter 10: Statements 151

fib = ones (1, 10);

for i = 3:10

fib (i) = fib (i-1) + fib (i-2);

endfor

This code works by first evaluating the expression 3:10, to produce a range of values from 3
to 10 inclusive. Then the variable i is assigned the first element of the range and the body
of the loop is executed once. When the end of the loop body is reached, the next value in
the range is assigned to the variable i, and the loop body is executed again. This process
continues until there are no more elements to assign.

Within Octave is it also possible to iterate over matrices or cell arrays using the for

statement. For example consider

disp("Loop over a matrix")

for i = [1,3;2,4]

i

endfor

disp("Loop over a cell array")

for i = {1,"two";"three",4}

i

endfor

In this case the variable i takes on the value of the columns of the matrix or cell matrix.
So the first loop iterates twice, producing two column vectors [1;2], followed by [3;4],
and likewise for the loop over the cell array. This can be extended to loops over multi-
dimensional arrays. For example:

a = [1,3;2,4]; c = cat(3, a, 2*a);

for i = c

i

endfor

In the above case, the multi-dimensional matrix c is reshaped to a two-dimensional matrix
as reshape (c, rows(c), prod(size(c)(2:end))) and then the same behavior as a loop
over a two dimensional matrix is produced.

Although it is possible to rewrite all for loops as while loops, the Octave language has
both statements because often a for loop is both less work to type and more natural to
think of. Counting the number of iterations is very common in loops and it can be easier
to think of this counting as part of looping rather than as something to do inside the loop.

10.5.1 Looping Over Structure Elements

A special form of the for statement allows you to loop over all the elements of a structure:

for [val, key] = expression

body

endfor

In this form of the for statement, the value of expression must be a structure. If it is, key
and val are set to the name of the element and the corresponding value in turn, until there
are no more elements. For example:

152 GNU Octave

x.a = 1

x.b = [1, 2; 3, 4]

x.c = "string"

for [val, key] = x

key

val

endfor

a key = a

a val = 1

a key = b

a val =

a
a 1 2

a 3 4

a
a key = c

a val = string

The elements are not accessed in any particular order. If you need to cycle through
the list in a particular way, you will have to use the function fieldnames and sort the list
yourself.

The key variable may also be omitted. If it is, the brackets are also optional. This is
useful for cycling through the values of all the structure elements when the names of the
elements do not need to be known.

10.6 The break Statement

The break statement jumps out of the innermost for or while loop that encloses it. The
break statement may only be used within the body of a loop. The following example finds
the smallest divisor of a given integer, and also identifies prime numbers:

num = 103;

div = 2;

while (div*div <= num)

if (rem (num, div) == 0)

break;

endif

div++;

endwhile

if (rem (num, div) == 0)

printf ("Smallest divisor of %d is %d\n", num, div)

else

printf ("%d is prime\n", num);

endif

When the remainder is zero in the first while statement, Octave immediately breaks
out of the loop. This means that Octave proceeds immediately to the statement following

Chapter 10: Statements 153

the loop and continues processing. (This is very different from the exit statement which
stops the entire Octave program.)

Here is another program equivalent to the previous one. It illustrates how the condition
of a while statement could just as well be replaced with a break inside an if:

num = 103;

div = 2;

while (1)

if (rem (num, div) == 0)

printf ("Smallest divisor of %d is %d\n", num, div);

break;

endif

div++;

if (div*div > num)

printf ("%d is prime\n", num);

break;

endif

endwhile

10.7 The continue Statement

The continue statement, like break, is used only inside for or while loops. It skips over
the rest of the loop body, causing the next cycle around the loop to begin immediately.
Contrast this with break, which jumps out of the loop altogether. Here is an example:

print elements of a vector of random

integers that are even.

first, create a row vector of 10 random

integers with values between 0 and 100:

vec = round (rand (1, 10) * 100);

print what we’re interested in:

for x = vec

if (rem (x, 2) != 0)

continue;

endif

printf ("%d\n", x);

endfor

If one of the elements of vec is an odd number, this example skips the print statement
for that element, and continues back to the first statement in the loop.

This is not a practical example of the continue statement, but it should give you a clear
understanding of how it works. Normally, one would probably write the loop like this:

154 GNU Octave

for x = vec

if (rem (x, 2) == 0)

printf ("%d\n", x);

endif

endfor

10.8 The unwind_protect Statement

Octave supports a limited form of exception handling modelled after the unwind-protect
form of Lisp.

The general form of an unwind_protect block looks like this:

unwind_protect

body

unwind_protect_cleanup

cleanup

end_unwind_protect

where body and cleanup are both optional and may contain any Octave expressions or
commands. The statements in cleanup are guaranteed to be executed regardless of how
control exits body.

This is useful to protect temporary changes to global variables from possible errors. For
example, the following code will always restore the original value of the global variable
frobnosticate even if an error occurs in the first part of the unwind_protect block.

save_frobnosticate = frobnosticate;

unwind_protect

frobnosticate = true;

...

unwind_protect_cleanup

frobnosticate = save_frobnosticate;

end_unwind_protect

Without unwind_protect, the value of frobnosticate would not be restored if an error occurs
while evaluating the first part of the unwind_protect block because evaluation would stop
at the point of the error and the statement to restore the value would not be executed.

10.9 The try Statement

In addition to unwind protect, Octave supports another limited form of exception handling.

The general form of a try block looks like this:

try

body

catch

cleanup

end_try_catch

where body and cleanup are both optional and may contain any Octave expressions or
commands. The statements in cleanup are only executed if an error occurs in body.

No warnings or error messages are printed while body is executing. If an error does
occur during the execution of body, cleanup can use the function lasterr to access the

Chapter 10: Statements 155

text of the message that would have been printed. This is the same as eval (try, catch)

but it is more efficient since the commands do not need to be parsed each time the try and
catch statements are evaluated. See Chapter 12 [Errors and Warnings], page 181, for more
information about the lasterr function.

10.10 Continuation Lines

In the Octave language, most statements end with a newline character and you must tell
Octave to ignore the newline character in order to continue a statement from one line to the
next. Lines that end with the characters ... or \ are joined with the following line before
they are divided into tokens by Octave’s parser. For example, the lines

x = long_variable_name ...

+ longer_variable_name \

- 42

form a single statement. The backslash character on the second line above is interpreted as
a continuation character, not as a division operator.

For continuation lines that do not occur inside string constants, whitespace and com-
ments may appear between the continuation marker and the newline character. For example,
the statement

x = long_variable_name ... # comment one

+ longer_variable_name \ # comment two

- 42 # last comment

is equivalent to the one shown above. Inside string constants, the continuation marker must
appear at the end of the line just before the newline character.

Input that occurs inside parentheses can be continued to the next line without having
to use a continuation marker. For example, it is possible to write statements like

if (fine_dining_destination == on_a_boat

|| fine_dining_destination == on_a_train)

seuss (i, will, not, eat, them, sam, i, am, i,

will, not, eat, green, eggs, and, ham);

endif

without having to add to the clutter with continuation markers.

Chapter 11: Functions and Scripts 157

11 Functions and Scripts

Complicated Octave programs can often be simplified by defining functions. Functions can
be defined directly on the command line during interactive Octave sessions, or in external
files, and can be called just like built-in functions.

11.1 Defining Functions

In its simplest form, the definition of a function named name looks like this:

function name

body

endfunction

A valid function name is like a valid variable name: a sequence of letters, digits and under-
scores, not starting with a digit. Functions share the same pool of names as variables.

The function body consists of Octave statements. It is the most important part of the
definition, because it says what the function should actually do.

For example, here is a function that, when executed, will ring the bell on your terminal
(assuming that it is possible to do so):

function wakeup

printf ("\a");

endfunction

The printf statement (see Chapter 14 [Input and Output], page 203) simply tells Octave
to print the string "\a". The special character ‘\a’ stands for the alert character (ASCII
7). See Chapter 5 [Strings], page 63.

Once this function is defined, you can ask Octave to evaluate it by typing the name of
the function.

Normally, you will want to pass some information to the functions you define. The
syntax for passing parameters to a function in Octave is

function name (arg-list)

body

endfunction

where arg-list is a comma-separated list of the function’s arguments. When the function is
called, the argument names are used to hold the argument values given in the call. The list
of arguments may be empty, in which case this form is equivalent to the one shown above.

To print a message along with ringing the bell, you might modify the wakeup to look
like this:

function wakeup (message)

printf ("\a%s\n", message);

endfunction

Calling this function using a statement like this

wakeup ("Rise and shine!");

will cause Octave to ring your terminal’s bell and print the message ‘Rise and shine!’,
followed by a newline character (the ‘\n’ in the first argument to the printf statement).

In most cases, you will also want to get some information back from the functions you
define. Here is the syntax for writing a function that returns a single value:

158 GNU Octave

function ret-var = name (arg-list)

body

endfunction

The symbol ret-var is the name of the variable that will hold the value to be returned by
the function. This variable must be defined before the end of the function body in order
for the function to return a value.

Variables used in the body of a function are local to the function. Variables named
in arg-list and ret-var are also local to the function. See Section 7.1 [Global Variables],
page 114, for information about how to access global variables inside a function.

For example, here is a function that computes the average of the elements of a vector:

function retval = avg (v)

retval = sum (v) / length (v);

endfunction

If we had written avg like this instead,

function retval = avg (v)

if (isvector (v))

retval = sum (v) / length (v);

endif

endfunction

and then called the function with a matrix instead of a vector as the argument, Octave
would have printed an error message like this:

error: value on right hand side of assignment is undefined

because the body of the if statement was never executed, and retval was never defined.
To prevent obscure errors like this, it is a good idea to always make sure that the return
variables will always have values, and to produce meaningful error messages when problems
are encountered. For example, avg could have been written like this:

function retval = avg (v)

retval = 0;

if (isvector (v))

retval = sum (v) / length (v);

else

error ("avg: expecting vector argument");

endif

endfunction

There is still one additional problem with this function. What if it is called without an
argument? Without additional error checking, Octave will probably print an error message
that won’t really help you track down the source of the error. To allow you to catch errors
like this, Octave provides each function with an automatic variable called nargin. Each
time a function is called, nargin is automatically initialized to the number of arguments
that have actually been passed to the function. For example, we might rewrite the avg

function like this:

Chapter 11: Functions and Scripts 159

function retval = avg (v)

retval = 0;

if (nargin != 1)

usage ("avg (vector)");

endif

if (isvector (v))

retval = sum (v) / length (v);

else

error ("avg: expecting vector argument");

endif

endfunction

Although Octave does not automatically report an error if you call a function with more
arguments than expected, doing so probably indicates that something is wrong. Octave
also does not automatically report an error if a function is called with too few arguments,
but any attempt to use a variable that has not been given a value will result in an error.
To avoid such problems and to provide useful messages, we check for both possibilities and
issue our own error message.

[Built-in Function]nargin ()
[Built-in Function]nargin (fcn_name)

Within a function, return the number of arguments passed to the function. At the
top level, return the number of command line arguments passed to Octave. If called
with the optional argument fcn name, return the maximum number of arguments
the named function can accept, or -1 if the function accepts a variable number of
arguments.

See also: [nargout], page 161, [varargin], page 163, [isargout], page 164, [varargout],
page 163, [nthargout], page 160.

[Function File]inputname (n)
Return the name of the n-th argument to the calling function. If the argument is not
a simple variable name, return an empty string.

[Built-in Function]val = silent_functions ()
[Built-in Function]old_val = silent_functions (new_val)
[Built-in Function]silent_functions (new_val, "local")

Query or set the internal variable that controls whether internal output from a func-
tion is suppressed. If this option is disabled, Octave will display the results produced
by evaluating expressions within a function body that are not terminated with a
semicolon.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

11.2 Multiple Return Values

Unlike many other computer languages, Octave allows you to define functions that return
more than one value. The syntax for defining functions that return multiple values is

160 GNU Octave

function [ret-list] = name (arg-list)

body

endfunction

where name, arg-list, and body have the same meaning as before, and ret-list is a comma-
separated list of variable names that will hold the values returned from the function. The
list of return values must have at least one element. If ret-list has only one element, this
form of the function statement is equivalent to the form described in the previous section.

Here is an example of a function that returns two values, the maximum element of a
vector and the index of its first occurrence in the vector.

function [max, idx] = vmax (v)

idx = 1;

max = v (idx);

for i = 2:length (v)

if (v (i) > max)

max = v (i);

idx = i;

endif

endfor

endfunction

In this particular case, the two values could have been returned as elements of a single
array, but that is not always possible or convenient. The values to be returned may not
have compatible dimensions, and it is often desirable to give the individual return values
distinct names.

It is possible to use the nthargout function to obtain only some of the return values or
several at once in a cell array. Section 3.1.5 [Cell Array Objects], page 40

[Function File]nthargout (n, func, . . .)
[Function File]nthargout (n, ntot, func, . . .)

Return the nth output argument of function given by the function handle or string
func. Any arguments after func are passed to func. The total number of arguments
to call func with can be passed in ntot; by default ntot is n. The input n can also be
a vector of indices of the output, in which case the output will be a cell array of the
requested output arguments.

The intended use nthargout is to avoid intermediate variables. For example, when
finding the indices of the maximum entry of a matrix, the following two compositions
of nthargout

m = magic (5);

cell2mat (nthargout ([1, 2], @ind2sub, size(m),

nthargout (2, @max, m(:))))

⇒ 5 3

are completely equivalent to the following lines:

m = magic(5);

[~, idx] = max (M(:));

[i, j] = ind2sub (size (m), idx);

[i, j]

⇒ 5 3

Chapter 11: Functions and Scripts 161

It can also be helpful to have all output arguments in a single cell in the following
manner:

USV = nthargout ([1:3], @svd, hilb (5));

See also: [nargin], page 159, [nargout], page 161, [varargin], page 163, [varargout],
page 163, [isargout], page 164.

In addition to setting nargin each time a function is called, Octave also automatically
initializes nargout to the number of values that are expected to be returned. This allows
you to write functions that behave differently depending on the number of values that the
user of the function has requested. The implicit assignment to the built-in variable ans

does not figure in the count of output arguments, so the value of nargout may be zero.

The svd and lu functions are examples of built-in functions that behave differently
depending on the value of nargout.

It is possible to write functions that only set some return values. For example, calling
the function

function [x, y, z] = f ()

x = 1;

z = 2;

endfunction

as

[a, b, c] = f ()

produces:

a = 1

b = [](0x0)

c = 2

along with a warning.

[Built-in Function]nargout ()
[Built-in Function]nargout (fcn_name)

Within a function, return the number of values the caller expects to receive. If called
with the optional argument fcn name, return the maximum number of values the
named function can produce, or -1 if the function can produce a variable number of
values.

For example,

f ()

will cause nargout to return 0 inside the function f and

[s, t] = f ()

will cause nargout to return 2 inside the function f.

At the top level, nargout is undefined.

See also: [nargin], page 159, [varargin], page 163, [isargout], page 164, [varargout],
page 163, [nthargout], page 160.

162 GNU Octave

It is good practice at the head of a function to verify that it has been called correctly.
In Octave the following idiom is seen frequently

if (nargin < min_#_inputs || nargin > max_#_inputs)

print_usage ();

endif

which stops the function execution and prints a message about the correct way to call the
function whenever the number of inputs is wrong.

For compatibility with matlab, nargchk, narginchk and nargoutchk are available
which provide similar error checking.

[Function File]msgstr = nargchk (minargs, maxargs, nargs)
[Function File]msgstr = nargchk (minargs, maxargs, nargs, "string")
[Function File]msgstruct = nargchk (minargs, maxargs, nargs, "struct")

Return an appropriate error message string (or structure) if the number of inputs
requested is invalid.

This is useful for checking to see that the number of input arguments supplied to a
function is within an acceptable range.

See also: [nargoutchk], page 162, [narginchk], page 162, [error], page 181, [nargin],
page 159, [nargout], page 161.

[Function File]narginchk (minargs, maxargs)
Check for correct number of arguments or generate an error message if the num-
ber of arguments in the calling function is outside the range minargs and maxargs.
Otherwise, do nothing.

Both minargs and maxargs need to be scalar numeric values. Zero, Inf and negative
values are all allowed, and minargs and maxargs may be equal.

Note that this function evaluates nargin on the caller.

See also: [nargchk], page 162, [nargoutchk], page 162, [error], page 181, [nargout],
page 161, [nargin], page 159.

[Function File]nargoutchk (minargs, maxargs)
[Function File]msgstr = nargoutchk (minargs, maxargs, nargs)
[Function File]msgstr = nargoutchk (minargs, maxargs, nargs, "string")
[Function File]msgstruct = nargoutchk (minargs, maxargs, nargs, "struct")

Check for correct number of output arguments.

On the first form, returns an error unless the number of arguments in its caller is
between the values of minargs and maxargs. It does nothing otherwise. Note that
this function evaluates the value of nargout on the caller so its value must have not
been tampered with.

Both minargs and maxargs need to be a numeric scalar. Zero, Inf and negative are
all valid, and they can have the same value.

For backward compatibility reasons, the other forms return an appropriate error mes-
sage string (or structure) if the number of outputs requested is invalid.

This is useful for checking to see that the number of output arguments supplied to a
function is within an acceptable range.

Chapter 11: Functions and Scripts 163

See also: [nargchk], page 162, [narginchk], page 162, [error], page 181, [nargout],
page 161, [nargin], page 159.

11.3 Variable-length Argument Lists

Sometimes the number of input arguments is not known when the function is defined. As
an example think of a function that returns the smallest of all its input arguments. For
example:

a = smallest (1, 2, 3);

b = smallest (1, 2, 3, 4);

In this example both a and b would be 1. One way to write the smallest function is

function val = smallest (arg1, arg2, arg3, arg4, arg5)

body

endfunction

and then use the value of nargin to determine which of the input arguments should be
considered. The problem with this approach is that it can only handle a limited number of
input arguments.

If the special parameter name varargin appears at the end of a function parameter list
it indicates that the function takes a variable number of input arguments. Using varargin

the function looks like this

function val = smallest (varargin)

body

endfunction

In the function body the input arguments can be accessed through the variable varargin.
This variable is a cell array containing all the input arguments. See Section 6.2 [Cell Arrays],
page 102, for details on working with cell arrays. The smallest function can now be defined
like this

function val = smallest (varargin)

val = min ([varargin{:}]);

endfunction

This implementation handles any number of input arguments, but it’s also a very simple
solution to the problem.

A slightly more complex example of varargin is a function print_arguments that prints
all input arguments. Such a function can be defined like this

function print_arguments (varargin)

for i = 1:length (varargin)

printf ("Input argument %d: ", i);

disp (varargin{i});

endfor

endfunction

This function produces output like this

print_arguments (1, "two", 3);

a Input argument 1: 1

a Input argument 2: two

a Input argument 3: 3

164 GNU Octave

[Function File][reg, prop] = parseparams (params)
[Function File][reg, var1, ...] = parseparams (params, name1, default1,

. . .)
Return in reg the cell elements of param up to the first string element and in prop
all remaining elements beginning with the first string element. For example:

[reg, prop] = parseparams ({1, 2, "linewidth", 10})

reg =

{

[1,1] = 1

[1,2] = 2

}

prop =

{

[1,1] = linewidth

[1,2] = 10

}

The parseparams function may be used to separate ’regular’ arguments and additional
arguments given as property/value pairs of the varargin cell array.

In the second form of the call, available options are specified directly with their
default values given as name-value pairs. If params do not form name-value pairs, or
if an option occurs that does not match any of the available options, an error occurs.
When called from an m-file function, the error is prefixed with the name of the caller
function. The matching of options is case-insensitive.

See also: [varargin], page 163.

11.4 Ignoring Arguments

In the formal argument list, it is possible to use the dummy placeholder ~ instead of a name.
This indicates that the corresponding argument value should be ignored and not stored to
any variable.

function val = pick2nd (~, arg2)

val = arg2;

endfunction

The value of nargin is not affected by using this declaration.

Return arguments can also be ignored using the same syntax. Functions may take
advantage of ignored outputs to reduce the number of calculations performed. To do so,
use the isargout function to query whether the output argument is wanted. For example:

function [out1, out2] = long_function (x, y, z)

if (isargout (1))

Long calculation

...

out1 = result;

endif

...

endfunction

Chapter 11: Functions and Scripts 165

[Built-in Function]isargout (k)
Within a function, return a logical value indicating whether the argument k will be
assigned on output to a variable. If the result is false, the argument has been ignored
during the function call through the use of the tilde (~) special output argument.
Functions can use isargout to avoid performing unnecessary calculations for outputs
which are unwanted.

If k is outside the range 1:max(nargout), the function returns false. k can also be
an array, in which case the function works element-by-element and a logical array is
returned. At the top level, isargout returns an error.

See also: [nargout], page 161, [nargin], page 159, [varargin], page 163, [varargout],
page 163, [nthargout], page 160.

11.5 Variable-length Return Lists

It is possible to return a variable number of output arguments from a function using a
syntax that’s similar to the one used with the special varargin parameter name. To let a
function return a variable number of output arguments the special output parameter name
varargout is used. As with varargin, varargout is a cell array that will contain the
requested output arguments.

As an example the following function sets the first output argument to 1, the second to
2, and so on.

function varargout = one_to_n ()

for i = 1:nargout

varargout{i} = i;

endfor

endfunction

When called this function returns values like this

[a, b, c] = one_to_n ()

⇒ a = 1

⇒ b = 2

⇒ c = 3

If varargin (varargout) does not appear as the last element of the input (output)
parameter list, then it is not special, and is handled the same as any other parameter name.

[Function File][r1, r2, ..., rn] = deal (a)
[Function File][r1, r2, ..., rn] = deal (a1, a2, . . . , an)

Copy the input parameters into the corresponding output parameters. If only one
input parameter is supplied, its value is copied to each of the outputs.

For example,

[a, b, c] = deal (x, y, z);

is equivalent to

a = x;

b = y;

c = z;

and

166 GNU Octave

[a, b, c] = deal (x);

is equivalent to

a = b = c = x;

11.6 Returning from a Function

The body of a user-defined function can contain a return statement. This statement returns
control to the rest of the Octave program. It looks like this:

return

Unlike the return statement in C, Octave’s return statement cannot be used to return
a value from a function. Instead, you must assign values to the list of return variables that
are part of the function statement. The return statement simply makes it easier to exit
a function from a deeply nested loop or conditional statement.

Here is an example of a function that checks to see if any elements of a vector are nonzero.

function retval = any_nonzero (v)

retval = 0;

for i = 1:length (v)

if (v (i) != 0)

retval = 1;

return;

endif

endfor

printf ("no nonzero elements found\n");

endfunction

Note that this function could not have been written using the break statement to exit
the loop once a nonzero value is found without adding extra logic to avoid printing the
message if the vector does contain a nonzero element.

[Keyword]return
When Octave encounters the keyword return inside a function or script, it returns
control to the caller immediately. At the top level, the return statement is ignored.
A return statement is assumed at the end of every function definition.

11.7 Default Arguments

Since Octave supports variable number of input arguments, it is very useful to assign default
values to some input arguments. When an input argument is declared in the argument list
it is possible to assign a default value to the argument like this

function name (arg1 = val1, ...)

body

endfunction

If no value is assigned to arg1 by the user, it will have the value val1.

As an example, the following function implements a variant of the classic “Hello, World”
program.

Chapter 11: Functions and Scripts 167

function hello (who = "World")

printf ("Hello, %s!\n", who);

endfunction

When called without an input argument the function prints the following

hello ();

a Hello, World!

and when it’s called with an input argument it prints the following

hello ("Beautiful World of Free Software");

a Hello, Beautiful World of Free Software!

Sometimes it is useful to explicitly tell Octave to use the default value of an input
argument. This can be done writing a ‘:’ as the value of the input argument when calling
the function.

hello (:);

a Hello, World!

11.8 Function Files

Except for simple one-shot programs, it is not practical to have to define all the functions
you need each time you need them. Instead, you will normally want to save them in a file
so that you can easily edit them, and save them for use at a later time.

Octave does not require you to load function definitions from files before using them.
You simply need to put the function definitions in a place where Octave can find them.

When Octave encounters an identifier that is undefined, it first looks for variables or
functions that are already compiled and currently listed in its symbol table. If it fails to
find a definition there, it searches a list of directories (the path) for files ending in ‘.m’ that
have the same base name as the undefined identifier.1 Once Octave finds a file with a name
that matches, the contents of the file are read. If it defines a single function, it is compiled
and executed. See Section 11.9 [Script Files], page 175, for more information about how
you can define more than one function in a single file.

When Octave defines a function from a function file, it saves the full name of the file it
read and the time stamp on the file. If the time stamp on the file changes, Octave may reload
the file. When Octave is running interactively, time stamp checking normally happens at
most once each time Octave prints the prompt. Searching for new function definitions also
occurs if the current working directory changes.

Checking the time stamp allows you to edit the definition of a function while Octave is
running, and automatically use the new function definition without having to restart your
Octave session.

To avoid degrading performance unnecessarily by checking the time stamps on func-
tions that are not likely to change, Octave assumes that function files in the directory tree
‘octave-home/share/octave/version/m’ will not change, so it doesn’t have to check their
time stamps every time the functions defined in those files are used. This is normally a very
good assumption and provides a significant improvement in performance for the function
files that are distributed with Octave.

1 The ‘.m’ suffix was chosen for compatibility with matlab.

168 GNU Octave

If you know that your own function files will not change while you are running Octave,
you can improve performance by calling ignore_function_time_stamp ("all"), so that
Octave will ignore the time stamps for all function files. Passing "system" to this function
resets the default behavior.

[Command]edit name
[Command]edit field value
[Command]value = edit get field

Edit the named function, or change editor settings.

If edit is called with the name of a file or function as its argument it will be opened
in a text editor.

• If the function name is available in a file on your path and that file is modifiable,
then it will be edited in place. If it is a system function, then it will first be
copied to the directory HOME (see further down) and then edited. If no file is
found, then the m-file variant, ending with ".m", will be considered. If still no
file is found, then variants with a leading "@" and then with both a leading "@"

and trailing ".m" will be considered.

• If name is the name of a function defined in the interpreter but not in an m-file,
then an m-file will be created in HOME to contain that function along with its
current definition.

• If name.cc is specified, then it will search for name.cc in the path and try to
modify it, otherwise it will create a new ‘.cc’ file in HOME. If name happens to
be an m-file or interpreter defined function, then the text of that function will
be inserted into the .cc file as a comment.

• If name.ext is on your path then it will be edited, otherwise the editor will be
started with ‘HOME/name.ext’ as the filename. If ‘name.ext’ is not modifiable, it
will be copied to HOME before editing.

Warning: You may need to clear name before the new definition is available. If
you are editing a .cc file, you will need to mkoctfile ‘name.cc’ before the definition
will be available.

If edit is called with field and value variables, the value of the control field field will
be value. If an output argument is requested and the first argument is get then edit

will return the value of the control field field. If the control field does not exist, edit
will return a structure containing all fields and values. Thus, edit get all returns a
complete control structure. The following control fields are used:

‘editor’ This is the editor to use to modify the functions. By default it uses
Octave’s EDITOR built-in function, which comes from getenv("EDITOR")

and defaults to emacs. Use %s In place of the function name. For example,

‘[EDITOR, " %s"]’
Use the editor which Octave uses for edit_history.

‘"xedit %s &"’
pop up simple X11 editor in a separate window

‘"gnudoit -q \"(find-file \\\"%s\\\")\""’
Send it to current Emacs; must have (gnuserv-start) in
‘.emacs’.

Chapter 11: Functions and Scripts 169

See also field ’mode’, which controls how the editor is run by Octave.

On Cygwin, you will need to convert the Cygwin path to a Windows path
if you are using a native Windows editor. For example:
’"C:/Program Files/Good Editor/Editor.exe" "$(cygpath -wa %s)"’

‘home’ This is the location of user local m-files. Be be sure it is in your path.
The default is ‘~/octave’.

‘author’ This is the name to put after the "## Author:" field of new functions.
By default it guesses from the gecos field of password database.

‘email’ This is the e-mail address to list after the name in the author field. By
default it guesses <$LOGNAME@$HOSTNAME>, and if $HOSTNAME is not de-
fined it uses uname -n. You probably want to override this. Be sure to
use <user@host> as your format.

‘license’

‘gpl’ GNU General Public License (default).

‘bsd’ BSD-style license without advertising clause.

‘pd’ Public domain.

‘"text"’ Your own default copyright and license.

Unless you specify ‘pd’, edit will prepend the copyright statement with
"Copyright (C) yyyy Function Author".

‘mode’ This value determines whether the editor should be started in async mode
(editor is started in the background and Octave continues) or sync mode
(Octave waits until the editor exits). Set it to "async" to start the editor
in async mode. The default is "sync" (see also "system").

‘editinplace’
Determines whether files should be edited in place, without regard to
whether they are modifiable or not. The default is false.

[Built-in Function]mfilename ()
[Built-in Function]mfilename ("fullpath")
[Built-in Function]mfilename ("fullpathext")

Return the name of the currently executing file. At the top-level, return the empty
string. Given the argument "fullpath", include the directory part of the file name,
but not the extension. Given the argument "fullpathext", include the directory
part of the file name and the extension.

[Built-in Function]val = ignore_function_time_stamp ()
[Built-in Function]old_val = ignore_function_time_stamp (new_val)

Query or set the internal variable that controls whether Octave checks the time stamp
on files each time it looks up functions defined in function files. If the internal variable
is set to "system", Octave will not automatically recompile function files in subdi-
rectories of ‘octave-home/lib/version ’ if they have changed since they were last
compiled, but will recompile other function files in the search path if they change. If

170 GNU Octave

set to "all", Octave will not recompile any function files unless their definitions are
removed with clear. If set to "none", Octave will always check time stamps on files
to determine whether functions defined in function files need to recompiled.

11.8.1 Manipulating the Load Path

When a function is called, Octave searches a list of directories for a file that contains the
function declaration. This list of directories is known as the load path. By default the
load path contains a list of directories distributed with Octave plus the current working
directory. To see your current load path call the path function without any input or output
arguments.

It is possible to add or remove directories to or from the load path using addpath and
rmpath. As an example, the following code adds ‘~/Octave’ to the load path.

addpath("~/Octave")

After this the directory ‘~/Octave’ will be searched for functions.

[Built-in Function]addpath (dir1, . . .)
[Built-in Function]addpath (dir1, . . . , option)

Add dir1, . . . to the current function search path. If option is "-begin" or 0 (the
default), prepend the directory name to the current path. If option is "-end" or 1,
append the directory name to the current path. Directories added to the path must
exist.

In addition to accepting individual directory arguments, lists of directory names sep-
arated by pathsep are also accepted. For example:

addpath ("dir1:/dir2:~/dir3");

See also: [path], page 171, [rmpath], page 170, [genpath], page 170, [pathdef],
page 171, [savepath], page 170, [pathsep], page 171.

[Built-in Function]genpath (dir)
[Built-in Function]genpath (dir, skip, . . .)

Return a path constructed from dir and all its subdirectories. If additional string
parameters are given, the resulting path will exclude directories with those names.

[Built-in Function]rmpath (dir1, . . .)
Remove dir1, . . . from the current function search path.

In addition to accepting individual directory arguments, lists of directory names sep-
arated by pathsep are also accepted. For example:

rmpath ("dir1:/dir2:~/dir3");

See also: [path], page 171, [addpath], page 170, [genpath], page 170, [pathdef],
page 171, [savepath], page 170, [pathsep], page 171.

[Function File]savepath (file)
Save the portion of the current function search path, that is not set during Octave’s
initialization process, to file. If file is omitted, ‘~/.octaverc’ is used. If successful,
savepath returns 0.

See also: [path], page 171, [addpath], page 170, [rmpath], page 170, [genpath],
page 170, [pathdef], page 171, [pathsep], page 171.

Chapter 11: Functions and Scripts 171

[Built-in Function]path (. . .)
Modify or display Octave’s load path.

If nargin and nargout are zero, display the elements of Octave’s load path in an easy
to read format.

If nargin is zero and nargout is greater than zero, return the current load path.

If nargin is greater than zero, concatenate the arguments, separating them with
pathsep. Set the internal search path to the result and return it.

No checks are made for duplicate elements.

See also: [addpath], page 170, [rmpath], page 170, [genpath], page 170, [pathdef],
page 171, [savepath], page 170, [pathsep], page 171.

[Function File]val = pathdef ()
Return the default path for Octave. The path information is extracted from one of
three sources. In order of preference, those are;

1. ‘~/.octaverc’

2. ‘<octave-home>/.../<version>/m/startup/octaverc’

3. Octave’s path prior to changes by any octaverc.

See also: [path], page 171, [addpath], page 170, [rmpath], page 170, [genpath],
page 170, [savepath], page 170, [pathsep], page 171.

[Built-in Function]val = pathsep ()
[Built-in Function]old_val = pathsep (new_val)

Query or set the character used to separate directories in a path.

See also: [filesep], page 635.

[Built-in Function]rehash ()
Reinitialize Octave’s load path directory cache.

[Built-in Function]file_in_loadpath (file)
[Built-in Function]file_in_loadpath (file, "all")

Return the absolute name of file if it can be found in the list of directories specified
by path. If no file is found, return an empty character string.

If the first argument is a cell array of strings, search each directory of the loadpath
for element of the cell array and return the first that matches.

If the second optional argument "all" is supplied, return a cell array containing the
list of all files that have the same name in the path. If no files are found, return an
empty cell array.

See also: [file in path], page 635, [path], page 171.

[Built-in Function]restoredefaultpath (. . .)
Restore Octave’s path to its initial state at startup.

See also: [path], page 171, [addpath], page 170, [rmpath], page 170, [genpath],
page 170, [pathdef], page 171, [savepath], page 170, [pathsep], page 171.

172 GNU Octave

[Built-in Function]command_line_path (. . .)
Return the command line path variable.

See also: [path], page 171, [addpath], page 170, [rmpath], page 170, [genpath],
page 170, [pathdef], page 171, [savepath], page 170, [pathsep], page 171.

[Built-in Function]find_dir_in_path (dir)
[Built-in Function]find_dir_in_path (dir, "all")

Return the full name of the path element matching dir. The match is performed
at the end of each path element. For example, if dir is "foo/bar", it matches
the path element "/some/dir/foo/bar", but not "/some/dir/foo/bar/baz" or
"/some/dir/allfoo/bar".

The second argument is optional. If it is supplied, return a cell array containing all
name matches rather than just the first.

11.8.2 Subfunctions

A function file may contain secondary functions called subfunctions. These secondary func-
tions are only visible to the other functions in the same function file. For example, a file
‘f.m’ containing

function f ()

printf ("in f, calling g\n");

g ()

endfunction

function g ()

printf ("in g, calling h\n");

h ()

endfunction

function h ()

printf ("in h\n")

endfunction

defines a main function f and two subfunctions. The subfunctions g and h may only be
called from the main function f or from the other subfunctions, but not from outside the
file ‘f.m’.

11.8.3 Private Functions

In many cases one function needs to access one or more helper functions. If the helper
function is limited to the scope of a single function, then subfunctions as discussed above
might be used. However, if a single helper function is used by more than one function,
then this is no longer possible. In this case the helper functions might be placed in a
subdirectory, called "private", of the directory in which the functions needing access to this
helper function are found.

As a simple example, consider a function func1, that calls a helper function func2 to
do much of the work. For example:

function y = func1 (x)

y = func2 (x);

endfunction

Chapter 11: Functions and Scripts 173

Then if the path to func1 is <directory>/func1.m, and if func2 is found in the directory
<directory>/private/func2.m, then func2 is only available for use of the functions, like
func1, that are found in <directory>.

11.8.4 Overloading and Autoloading

Functions can be overloaded to work with different input arguments. For example, the oper-
ator ’+’ has been overloaded in Octave to work with single, double, uint8, int32, and many
other arguments. The preferred way to overload functions is through classes and object
oriented programming (see Section 34.4.1 [Function Overloading], page 603). Occasionally,
however, one needs to undo user overloading and call the default function associated with
a specific type. The builtin function exists for this purpose.

[Loadable Function][...] builtin (f, . . .)
Call the base function f even if f is overloaded to another function for the given type
signature.

A single dynamically linked file might define several functions. However, as Octave
searches for functions based on the functions filename, Octave needs a manner in which to
find each of the functions in the dynamically linked file. On operating systems that support
symbolic links, it is possible to create a symbolic link to the original file for each of the
functions which it contains.

However, there is at least one well known operating system that doesn’t support symbolic
links. Making copies of the original file for each of the functions is undesirable as it increases
the amount of disk space used by Octave. Instead Octave supplies the autoload function,
that permits the user to define in which file a certain function will be found.

[Built-in Function]autoload (function, file)
Define function to autoload from file.

The second argument, file, should be an absolute file name or a file name in the same
directory as the function or script from which the autoload command was run. file
should not depend on the Octave load path.

Normally, calls to autoload appear in PKG ADD script files that are evaluated when
a directory is added to the Octave’s load path. To avoid having to hardcode directory
names in file, if file is in the same directory as the PKG ADD script then

autoload ("foo", "bar.oct");

will load the function foo from the file bar.oct. The above when bar.oct is not in
the same directory or uses like

autoload ("foo", file_in_loadpath ("bar.oct"))

are strongly discouraged, as their behavior might be unpredictable.

With no arguments, return a structure containing the current autoload map.

See also: [PKG ADD], page 662.

11.8.5 Function Locking

It is sometime desirable to lock a function into memory with the mlock function. This is
typically used for dynamically linked functions in Oct-files or mex-files that contain some
initialization, and it is desirable that calling clear does not remove this initialization.

174 GNU Octave

As an example,

mlock ("my_function");

prevents my_function from being removed from memory, even if clear is called. It is
possible to determine if a function is locked into memory with the mislocked, and to
unlock a function with munlock, which the following illustrates.

mlock ("my_function");

mislocked ("my_function")

⇒ ans = 1

munlock ("my_function");

mislocked ("my_function")

⇒ ans = 0

A common use of mlock is to prevent persistent variables from being removed from
memory, as the following example shows:

function count_calls()

persistent calls = 0;

printf ("’count_calls’ has been called %d times\n",

++calls);

endfunction

mlock ("count_calls");

count_calls ();

a ’count_calls’ has been called 1 times

clear count_calls

count_calls ();

a ’count_calls’ has been called 2 times

It is, however, often inconvenient to lock a function from the prompt, so it is also possible
to lock a function from within its body. This is simply done by calling mlock from within
the function.

function count_calls ()

mlock ();

persistent calls = 0;

printf ("’count_calls’ has been called %d times\n",

++calls);

endfunction

mlock might equally be used to prevent changes to a function from having effect in
Octave, though a similar effect can be had with the ignore_function_time_stamp function.

[Built-in Function]mlock ()
Lock the current function into memory so that it can’t be cleared.

See also: [munlock], page 174, [mislocked], page 175, [persistent], page 116.

[Built-in Function]munlock ()
[Built-in Function]munlock (fcn)

Unlock the named function fcn. If no function is named then unlock the current
function.

Chapter 11: Functions and Scripts 175

See also: [mlock], page 174, [mislocked], page 175, [persistent], page 116.

[Built-in Function]mislocked ()
[Built-in Function]mislocked (fcn)

Return true if the named function fcn is locked. If no function is named then return
true if the current function is locked.

See also: [mlock], page 174, [munlock], page 174, [persistent], page 116.

11.8.6 Function Precedence

Given the numerous different ways that Octave can define a function, it is possible and even
likely that multiple versions of a function, might be defined within a particular scope. The
precedence of which function will be used within a particular scope is given by

1. Subfunction A subfunction with the required function name in the given scope.

2. Private function A function defined within a private directory of the directory which
contains the current function.

3. Class constructor A function that constuctors a user class as defined in chapter
Chapter 34 [Object Oriented Programming], page 593.

4. Class method An overloaded function of a class as in chapter Chapter 34 [Object
Oriented Programming], page 593.

5. Legacy Dispatch An overloaded function as defined by dispatch.

6. Command-line Function A function that has been defined on the command-line.

7. Autoload function A function that is marked as autoloaded with See [doc-autoload],
page 173.

8. A Function on the Path A function that can be found on the users load-path. There can
also be Oct-file, mex-file or m-file versions of this function and the precedence between
these versions are in that order.

9. Built-in function A function that is builtin to Octave itself such as numel, size, etc.

11.9 Script Files

A script file is a file containing (almost) any sequence of Octave commands. It is read and
evaluated just as if you had typed each command at the Octave prompt, and provides a
convenient way to perform a sequence of commands that do not logically belong inside a
function.

Unlike a function file, a script file must not begin with the keyword function. If it does,
Octave will assume that it is a function file, and that it defines a single function that should
be evaluated as soon as it is defined.

A script file also differs from a function file in that the variables named in a script file
are not local variables, but are in the same scope as the other variables that are visible on
the command line.

Even though a script file may not begin with the function keyword, it is possible to
define more than one function in a single script file and load (but not execute) all of them
at once. To do this, the first token in the file (ignoring comments and other white space)
must be something other than function. If you have no other statements to evaluate, you
can use a statement that has no effect, like this:

176 GNU Octave

Prevent Octave from thinking that this

is a function file:

1;

Define function one:

function one ()

...

To have Octave read and compile these functions into an internal form, you need to
make sure that the file is in Octave’s load path (accessible through the path function), then
simply type the base name of the file that contains the commands. (Octave uses the same
rules to search for script files as it does to search for function files.)

If the first token in a file (ignoring comments) is function, Octave will compile the func-
tion and try to execute it, printing a message warning about any non-whitespace characters
that appear after the function definition.

Note that Octave does not try to look up the definition of any identifier until it needs
to evaluate it. This means that Octave will compile the following statements if they appear
in a script file, or are typed at the command line,

not a function file:

1;

function foo ()

do_something ();

endfunction

function do_something ()

do_something_else ();

endfunction

even though the function do_something is not defined before it is referenced in the function
foo. This is not an error because Octave does not need to resolve all symbols that are
referenced by a function until the function is actually evaluated.

Since Octave doesn’t look for definitions until they are needed, the following code will
always print ‘bar = 3’ whether it is typed directly on the command line, read from a script
file, or is part of a function body, even if there is a function or script file called ‘bar.m’ in
Octave’s path.

eval ("bar = 3");

bar

Code like this appearing within a function body could fool Octave if definitions were
resolved as the function was being compiled. It would be virtually impossible to make
Octave clever enough to evaluate this code in a consistent fashion. The parser would have
to be able to perform the call to eval at compile time, and that would be impossible unless
all the references in the string to be evaluated could also be resolved, and requiring that
would be too restrictive (the string might come from user input, or depend on things that
are not known until the function is evaluated).

Although Octave normally executes commands from script files that have the name
‘file.m’, you can use the function source to execute commands from any file.

Chapter 11: Functions and Scripts 177

[Built-in Function]source (file)
Parse and execute the contents of file. This is equivalent to executing commands from
a script file, but without requiring the file to be named ‘file.m’.

11.10 Function Handles, Inline Functions, and Anonymous
Functions

It can be very convenient store a function in a variable so that it can be passed to a different
function. For example, a function that performs numerical minimization needs access to
the function that should be minimized.

11.10.1 Function Handles

A function handle is a pointer to another function and is defined with the syntax

@function-name

For example,

f = @sin;

creates a function handle called f that refers to the function sin.

Function handles are used to call other functions indirectly, or to pass a function as an
argument to another function like quad or fsolve. For example:

f = @sin;

quad (f, 0, pi)

⇒ 2

You may use feval to call a function using function handle, or simply write the name
of the function handle followed by an argument list. If there are no arguments, you must
use an empty argument list ‘()’. For example:

f = @sin;

feval (f, pi/4)

⇒ 0.70711

f (pi/4)

⇒ 0.70711

[Built-in Function]is_function_handle (x)
Return true if x is a function handle.

See also: [isa], page 37, [typeinfo], page 37, [class], page 37.

[Built-in Function]functions (fcn_handle)
Return a struct containing information about the function handle fcn handle.

[Built-in Function]func2str (fcn_handle)
Return a string containing the name of the function referenced by the function handle
fcn handle.

[Built-in Function]str2func (fcn_name)
[Built-in Function]str2func (fcn_name, "global")

Return a function handle constructed from the string fcn name. If the optional
"global" argument is passed, locally visible functions are ignored in the lookup.

178 GNU Octave

11.10.2 Anonymous Functions

Anonymous functions are defined using the syntax

@(argument-list) expression

Any variables that are not found in the argument list are inherited from the enclosing scope.
Anonymous functions are useful for creating simple unnamed functions from expressions or
for wrapping calls to other functions to adapt them for use by functions like quad. For
example,

f = @(x) x.^2;

quad (f, 0, 10)

⇒ 333.33

creates a simple unnamed function from the expression x.^2 and passes it to quad,

quad (@(x) sin (x), 0, pi)

⇒ 2

wraps another function, and

a = 1;

b = 2;

quad (@(x) betainc (x, a, b), 0, 0.4)

⇒ 0.13867

adapts a function with several parameters to the form required by quad. In this example,
the values of a and b that are passed to betainc are inherited from the current environment.

11.10.3 Inline Functions

An inline function is created from a string containing the function body using the inline

function. The following code defines the function f(x) = x2 + 2.

f = inline("x^2 + 2");

After this it is possible to evaluate f at any x by writing f(x).

[Built-in Function]inline (str)
[Built-in Function]inline (str, arg1, . . .)
[Built-in Function]inline (str, n)

Create an inline function from the character string str. If called with a single argu-
ment, the arguments of the generated function are extracted from the function itself.
The generated function arguments will then be in alphabetical order. It should be
noted that i, and j are ignored as arguments due to the ambiguity between their use as
a variable or their use as an inbuilt constant. All arguments followed by a parenthesis
are considered to be functions.

If the second and subsequent arguments are character strings, they are the names of
the arguments of the function.

If the second argument is an integer n, the arguments are "x", "P1", . . . , "PN".

See also: [argnames], page 178, [formula], page 179, [vectorize], page 398.

[Built-in Function]argnames (fun)
Return a cell array of character strings containing the names of the arguments of the
inline function fun.

See also: [inline], page 178, [formula], page 179, [vectorize], page 398.

Chapter 11: Functions and Scripts 179

[Built-in Function]formula (fun)
Return a character string representing the inline function fun. Note that char (fun)

is equivalent to formula (fun).

See also: [argnames], page 178, [inline], page 178, [vectorize], page 398.

[Function File]symvar (s)
Identify the argument names in the function defined by a string. Common constant
names such as pi, NaN, Inf, eps, i or j are ignored. The arguments that are found
are returned in a cell array of strings. If no variables are found then the returned cell
array is empty.

11.11 Commands

Commands are a special class of functions that only accept string input arguments. A
command can be called as an ordinary function, but it can also be called without the
parentheses. For example,

my_command hello world

is equivalent to

my_command("hello", "world")

The general form of a command call is

cmdname arg1 arg2 ...

which translates directly to

cmdname ("arg1", "arg2", ...)

Any regular function can be used as a command if it accepts string input arguments.
For example:

toupper lower_case_arg

⇒ ans = LOWER_CASE_ARG

One difficulty of commands occurs when one of the string input arguments is stored in a
variable. Because Octave can’t tell the difference between a variable name and an ordinary
string, it is not possible to pass a variable as input to a command. In such a situation a
command must be called as a function. For example:

strvar = "hello world";

toupper strvar

⇒ ans = STRVAR

toupper (strvar)

⇒ ans = HELLO WORLD

11.12 Organization of Functions Distributed with Octave

Many of Octave’s standard functions are distributed as function files. They are loosely
organized by topic, in subdirectories of ‘octave-home/lib/octave/version/m’, to make
it easier to find them.

The following is a list of all the function file subdirectories, and the types of functions
you will find there.

‘audio’ Functions for playing and recording sounds.

180 GNU Octave

‘deprecated’
Out-of-date functions which will eventually be removed from Octave.

‘elfun’ Elementary functions, principally trigonometric.

‘@ftp’ Class functions for the FTP object.

‘general’ Miscellaneous matrix manipulations, like flipud, rot90, and triu, as well as
other basic functions, like ismatrix, nargchk, etc.

‘geometry’
Functions related to Delaunay triangulation.

‘help’ Functions for Octave’s built-in help system.

‘image’ Image processing tools. These functions require the X Window System.

‘io’ Input-output functions.

‘linear-algebra’
Functions for linear algebra.

‘miscellaneous’
Functions that don’t really belong anywhere else.

‘optimization’
Functions related to minimization, optimization, and root finding.

‘path’ Functions to manage the directory path Octave uses to find functions.

‘pkg’ Package manager for installing external packages of functions in Octave.

‘plot’ Functions for displaying and printing two- and three-dimensional graphs.

‘polynomial’
Functions for manipulating polynomials.

‘prefs’ Functions implementing user-defined preferences.

‘set’ Functions for creating and manipulating sets of unique values.

‘signal’ Functions for signal processing applications.

‘sparse’ Functions for handling sparse matrices.

‘specfun’ Special functions such as bessel or factor.

‘special-matrix’
Functions that create special matrix forms such as Hilbert or Vandermonde
matrices.

‘startup’ Octave’s system-wide startup file.

‘statistics’
Statistical functions.

‘strings’ Miscellaneous string-handling functions.

‘testfun’ Functions for performing unit tests on other functions.

‘time’ Functions related to time and date processing.

Chapter 12: Errors and Warnings 181

12 Errors and Warnings

Octave includes several functions for printing error and warning messages. When you write
functions that need to take special action when they encounter abnormal conditions, you
should print the error messages using the functions described in this chapter.

Since many of Octave’s functions use these functions, it is also useful to understand
them, so that errors and warnings can be handled.

12.1 Handling Errors

An error is something that occurs when a program is in a state where it doesn’t make sense
to continue. An example is when a function is called with too few input arguments. In this
situation the function should abort with an error message informing the user of the lacking
input arguments.

Since an error can occur during the evaluation of a program, it is very convenient to be
able to detect that an error occurred, so that the error can be fixed. This is possible with
the try statement described in Section 10.9 [The try Statement], page 154.

12.1.1 Raising Errors

The most common use of errors is for checking input arguments to functions. The following
example calls the error function if the function f is called without any input arguments.

function f (arg1)

if (nargin == 0)

error("not enough input arguments");

endif

endfunction

When the error function is called, it prints the given message and returns to the Octave
prompt. This means that no code following a call to error will be executed.

[Built-in Function]error (template, . . .)
[Built-in Function]error (id, template, . . .)

Format the optional arguments under the control of the template string template
using the same rules as the printf family of functions (see Section 14.2.4 [Formatted
Output], page 222) and print the resulting message on the stderr stream. The
message is prefixed by the character string ‘error: ’.

Calling error also sets Octave’s internal error state such that control will return to
the top level without evaluating any more commands. This is useful for aborting from
functions or scripts.

If the error message does not end with a new line character, Octave will print a
traceback of all the function calls leading to the error. For example, given the following
function definitions:

function f () g (); end

function g () h (); end

function h () nargin == 1 || error ("nargin != 1"); end

calling the function f will result in a list of messages that can help you to quickly
locate the exact location of the error:

182 GNU Octave

f ()

error: nargin != 1

error: called from:

error: error at line -1, column -1

error: h at line 1, column 27

error: g at line 1, column 15

error: f at line 1, column 15

If the error message ends in a new line character, Octave will print the message but
will not display any traceback messages as it returns control to the top level. For
example, modifying the error message in the previous example to end in a new line
causes Octave to only print a single message:

function h () nargin == 1 || error ("nargin != 1\n"); end

f ()

error: nargin != 1

Since it is common to use errors when there is something wrong with the input to a
function, Octave supports functions to simplify such code. When the print_usage function
is called, it reads the help text of the function calling print_usage, and presents a useful
error. If the help text is written in Texinfo it is possible to present an error message that
only contains the function prototypes as described by the @deftypefn parts of the help
text. When the help text isn’t written in Texinfo, the error message contains the entire
help message.

Consider the following function.

-*- texinfo -*-

@deftypefn {Function File} f (@var{arg1})

Function help text goes here...

@end deftypefn

function f (arg1)

if (nargin == 0)

print_usage ();

endif

endfunction

When it is called with no input arguments it produces the following error.

Chapter 12: Errors and Warnings 183

f ()

a error: Invalid call to f. Correct usage is:

a
a -- Function File: f (ARG1)

a
a
a Additional help for built-in functions and operators is

a available in the on-line version of the manual. Use the command

a ‘doc <topic>’ to search the manual index.

a
a Help and information about Octave is also available on the WWW

a at http://www.octave.org and via the help@octave.org

a mailing list.

[Function File]print_usage ()
[Function File]print_usage (name)

Print the usage message for a function. When called with no input arguments the
print_usage function displays the usage message of the currently executing function.

See also: [help], page 20.

[Built-in Function]usage (msg)
Print the message msg, prefixed by the string ‘usage: ’, and set Octave’s internal
error state such that control will return to the top level without evaluating any more
commands. This is useful for aborting from functions.

After usage is evaluated, Octave will print a traceback of all the function calls leading
to the usage message.

You should use this function for reporting problems errors that result from an im-
proper call to a function, such as calling a function with an incorrect number of
arguments, or with arguments of the wrong type. For example, most functions dis-
tributed with Octave begin with code like this

if (nargin != 2)

usage ("foo (a, b)");

endif

to check for the proper number of arguments.

[Function File]beep ()
Produce a beep from the speaker (or visual bell).

See also: [puts], page 221, [fputs], page 220, [printf], page 222, [fprintf], page 222.

[Built-in Function]val = beep_on_error ()
[Built-in Function]old_val = beep_on_error (new_val)
[Built-in Function]beep_on_error (new_val, "local")

Query or set the internal variable that controls whether Octave will try to ring the
terminal bell before printing an error message.

184 GNU Octave

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

12.1.2 Catching Errors

When an error occurs, it can be detected and handled using the try statement as described
in Section 10.9 [The try Statement], page 154. As an example, the following piece of code
counts the number of errors that occurs during a for loop.

number_of_errors = 0;

for n = 1:100

try

...

catch

number_of_errors++;

end_try_catch

endfor

The above example treats all errors the same. In many situations it can however be
necessary to discriminate between errors, and take different actions depending on the error.
The lasterror function returns a structure containing information about the last error
that occurred. As an example, the code above could be changed to count the number of
errors related to the ‘*’ operator.

number_of_errors = 0;

for n = 1:100

try

...

catch

msg = lasterror.message;

if (strfind (msg, "operator *"))

number_of_errors++;

endif

end_try_catch

endfor

[Built-in Function]lasterr = lasterror ()
[Built-in Function]lasterror (err)
[Built-in Function]lasterror (’reset’)

Query or set the last error message structure. When called without arguments, return
a structure containing the last error message and other information related to this
error. The elements of the structure are:

’message’ The text of the last error message

’identifier’ The message identifier of this error message

’stack’ A structure containing information on where the message occurred. This
may be an empty structure if the information cannot be obtained. The
fields of the structure are:

’file’ The name of the file where the error occurred

Chapter 12: Errors and Warnings 185

’name’ The name of function in which the error occurred

’line’ The line number at which the error occurred

’column’ An optional field with the column number at which the error
occurred

The last error structure may be set by passing a scalar structure, err, as input. Any
fields of err that match those above are set while any unspecified fields are initialized
with default values.

If lasterror is called with the argument ’reset’, all fields are set to their default
values.

See also: [lasterr], page 185.

[Built-in Function][msg, msgid] = lasterr ()
[Built-in Function]lasterr (msg)
[Built-in Function]lasterr (msg, msgid)

Query or set the last error message. When called without input arguments, return
the last error message and message identifier. With one argument, set the last error
message to msg. With two arguments, also set the last message identifier.

See also: [lasterror], page 184.

When an error has been handled it is possible to raise it again. This can be useful when
an error needs to be detected, but the program should still abort. This is possible using
the rethrow function. The previous example can now be changed to count the number of
errors related to the ‘*’ operator, but still abort if another kind of error occurs.

number_of_errors = 0;

for n = 1:100

try

...

catch

msg = lasterror.message;

if (strfind (msg, "operator *"))

number_of_errors++;

else

rethrow (lasterror);

endif

end_try_catch

endfor

[Built-in Function]rethrow (err)
Reissue a previous error as defined by err. err is a structure that must contain at
least the ’message’ and ’identifier’ fields. err can also contain a field ’stack’ that gives
information on the assumed location of the error. Typically err is returned from
lasterror.

See also: [lasterror], page 184, [lasterr], page 185, [error], page 181.

186 GNU Octave

[Built-in Function]err = errno ()
[Built-in Function]err = errno (val)
[Built-in Function]err = errno (name)

Return the current value of the system-dependent variable errno, set its value to
val and return the previous value, or return the named error code given name as a
character string, or -1 if name is not found.

[Built-in Function]errno_list ()
Return a structure containing the system-dependent errno values.

12.1.3 Recovering From Errors

Octave provides several ways of recovering from errors. There are try/catch blocks,
unwind_protect/unwind_protect_cleanup blocks, and finally the onCleanup command.

The onCleanup command associates an ordinary Octave variable (the trigger) with an
arbitrary function (the action). Whenever the Octave variable ceases to exist—whether
due to a function return, an error, or simply because the variable has been removed with
clear—then the assigned function is executed.

The function can do anything necessary for cleanup such as closing open file handles,
printing an error message, or restoring global variables to their initial values. The last
example is a very convenient idiom for Octave code. For example:

function rand42

old_state = rand (’state’);

restore_state = onCleanup (@() rand (’state’, old_state);

rand (’state’, 42);

...

endfunction # rand generator state restored by onCleanup

[Loadable Function]c = onCleanup (action)
Create a special object that executes a given function upon destruction. If the object
is copied to multiple variables (or cell or struct array elements) or returned from
a function, action will be executed after clearing the last copy of the object. Note
that if multiple local onCleanup variables are created, the order in which they are
called is unspecified. For similar functionality See Section 10.8 [The unwind_protect
Statement], page 154.

12.2 Handling Warnings

Like an error, a warning is issued when something unexpected happens. Unlike an error,
a warning doesn’t abort the currently running program. A simple example of a warning is
when a number is divided by zero. In this case Octave will issue a warning and assign the
value Inf to the result.

a = 1/0

a warning: division by zero

⇒ a = Inf

12.2.1 Issuing Warnings

It is possible to issue warnings from any code using the warning function. In its most simple
form, the warning function takes a string describing the warning as its input argument. As

Chapter 12: Errors and Warnings 187

an example, the following code controls if the variable ‘a’ is non-negative, and if not issues
a warning and sets ‘a’ to zero.

a = -1;

if (a < 0)

warning ("’a’ must be non-negative. Setting ’a’ to zero.");

a = 0;

endif

a ’a’ must be non-negative. Setting ’a’ to zero.

Since warnings aren’t fatal to a running program, it is not possible to catch a warning
using the try statement or something similar. It is however possible to access the last
warning as a string using the lastwarn function.

It is also possible to assign an identification string to a warning. If a warning has such
an ID the user can enable and disable this warning as will be described in the next section.
To assign an ID to a warning, simply call warning with two string arguments, where the
first is the identification string, and the second is the actual warning.

[Built-in Function]warning (template, . . .)
[Built-in Function]warning (id, template, . . .)
[Built-in Function]warning ("on", id)
[Built-in Function]warning ("off", id)
[Built-in Function]warning ("query", id)
[Built-in Function]warning ("error", id)

Format the optional arguments under the control of the template string template
using the same rules as the printf family of functions (see Section 14.2.4 [Formatted
Output], page 222) and print the resulting message on the stderr stream. The
message is prefixed by the character string ‘warning: ’. You should use this function
when you want to notify the user of an unusual condition, but only when it makes
sense for your program to go on.

The optional message identifier allows users to enable or disable warnings tagged by
id. The special identifier ‘"all"’ may be used to set the state of all warnings.

If the first argument is ‘"on"’ or ‘"off"’, set the state of a particular warning using
the identifier id. If the first argument is ‘"query"’, query the state of this warning
instead. If the identifier is omitted, a value of ‘"all"’ is assumed. If you set the state
of a warning to ‘"error"’, the warning named by id is handled as if it were an error
instead. So, for example, the following handles all warnings as errors:

warning ("error");

See also: [warning ids], page 188.

[Built-in Function][msg, msgid] = lastwarn (msg, msgid)
Without any arguments, return the last warning message. With one argument, set
the last warning message to msg. With two arguments, also set the last message
identifier.

188 GNU Octave

12.2.2 Enabling and Disabling Warnings

The warning function also allows you to control which warnings are actually printed to
the screen. If the warning function is called with a string argument that is either "on" or
"off" all warnings will be enabled or disabled.

It is also possible to enable and disable individual warnings through their string identi-
fications. The following code will issue a warning

warning ("non-negative-variable",

"’a’ must be non-negative. Setting ’a’ to zero.");

while the following won’t issue a warning

warning ("off", "non-negative-variable");

warning ("non-negative-variable",

"’a’ must be non-negative. Setting ’a’ to zero.");

The functions distributed with Octave can issue one of the following warnings.

Octave:abbreviated-property-match

By default, the Octave:abbreviated-property-match warning is enabled.

Octave:array-to-scalar

If the Octave:array-to-scalar warning is enabled, Octave will warn when an
implicit conversion from an array to a scalar value is attempted. By default,
the Octave:array-to-scalar warning is disabled.

Octave:array-to-vector

If the Octave:array-to-vector warning is enabled, Octave will warn when an
implicit conversion from an array to a vector value is attempted. By default,
the Octave:array-to-vector warning is disabled.

Octave:assign-as-truth-value

If the Octave:assign-as-truth-value warning is enabled, a warning is issued
for statements like

if (s = t)

...

since such statements are not common, and it is likely that the intent was to
write

if (s == t)

...

instead.

There are times when it is useful to write code that contains assignments within
the condition of a while or if statement. For example, statements like

while (c = getc ())

...

are common in C programming.

It is possible to avoid all warnings about such statements by disabling the
Octave:assign-as-truth-value warning, but that may also let real errors
like

Chapter 12: Errors and Warnings 189

if (x = 1) # intended to test (x == 1)!

...

slip by.

In such cases, it is possible suppress errors for specific statements by writing
them with an extra set of parentheses. For example, writing the previous ex-
ample as

while ((c = getc ()))

...

will prevent the warning from being printed for this statement, while allowing
Octave to warn about other assignments used in conditional contexts.

By default, the Octave:assign-as-truth-value warning is enabled.

Octave:associativity-change

If the Octave:associativity-change warning is enabled, Octave will warn
about possible changes in the meaning of some code due to changes in associa-
tivity for some operators. Associativity changes have typically been made for
matlab compatibility. By default, the Octave:associativity-change warn-
ing is enabled.

Octave:autoload-relative-file-name

If the Octave:autoload-relative-file-name is enabled, Octave will warn
when parsing autoload() function calls with relative paths to function files.
This usually happens when using autoload() calls in PKG ADD files, when the
PKG ADD file is not in the same directory as the .oct file referred to by the
autoload() command. By default, the Octave:autoload-relative-file-name
warning is enabled.

Octave:broadcast

Warn when performing broadcasting operations. By default, this is enabled.
See Section 19.2 [Broadcasting], page 399 in the chapter Vectorization and
Faster Code Execution of the manual.

Octave:built-in-variable-assignment

By default, the Octave:built-in-variable-assignment warning is enabled.

Octave:divide-by-zero

If the Octave:divide-by-zero warning is enabled, a warning is issued when
Octave encounters a division by zero. By default, the Octave:divide-by-zero
warning is enabled.

Octave:fopen-file-in-path

By default, the Octave:fopen-file-in-path warning is enabled.

Octave:function-name-clash

If the Octave:function-name-clash warning is enabled, a warning is issued
when Octave finds that the name of a function defined in a function file differs
from the name of the file. (If the names disagree, the name declared inside
the file is ignored.) By default, the Octave:function-name-clash warning is
enabled.

190 GNU Octave

Octave:future-time-stamp

If the Octave:future-time-stamp warning is enabled, Octave will print a
warning if it finds a function file with a time stamp that is in the future. By
default, the Octave:future-time-stamp warning is enabled.

Octave:glyph-render

By default, the Octave:glyph-render warning is enabled.

Octave:imag-to-real

If the Octave:imag-to-real warning is enabled, a warning is printed for
implicit conversions of complex numbers to real numbers. By default, the
Octave:imag-to-real warning is disabled.

Octave:load-file-in-path

By default, the Octave:load-file-in-path warning is enabled.

Octave:logical-conversion

By default, the Octave:logical-conversion warning is enabled.

Octave:matlab-incompatible

Print warnings for Octave language features that may cause compatibility prob-
lems with matlab. By default, the Octave:matlab-incompatible warning is
disabled.

Octave:md5sum-file-in-path

By default, the Octave:md5sum-file-in-path warning is enabled.

Octave:missing-glyph

By default, the Octave:missing-glyph warning is enabled.

Octave:missing-semicolon

If the Octave:missing-semicolon warning is enabled, Octave will warn when
statements in function definitions don’t end in semicolons. By default the
Octave:missing-semicolon warning is disabled.

Octave:mixed-string-concat

If the Octave:mixed-string-concat warning is enabled, print a warning when
concatenating a mixture of double and single quoted strings. By default, the
Octave:mixed-string-concat warning is disabled.

Octave:neg-dim-as-zero

If the Octave:neg-dim-as-zero warning is enabled, print a warning for ex-
pressions like

eye (-1)

By default, the Octave:neg-dim-as-zero warning is disabled.

Octave:nested-functions-coerced

By default, the Octave:nested-functions-coerced warning is enabled.

Octave:noninteger-range-as-index

By default, the Octave:noninteger-range-as-index warning is enabled.

Octave:num-to-str

If the Octave:num-to-str warning is enable, a warning is printed for implicit
conversions of numbers to their ASCII character equivalents when strings are

Chapter 12: Errors and Warnings 191

constructed using a mixture of strings and numbers in matrix notation. For
example,

["f", 111, 111]

⇒ "foo"

elicits a warning if the Octave:num-to-str warning is enabled. By default, the
Octave:num-to-str warning is enabled.

Octave:possible-matlab-short-circuit-operator

If the Octave:possible-matlab-short-circuit-operator warning is
enabled, Octave will warn about using the not short circuiting operators &

and | inside if or while conditions. They normally never short circuit, but
matlab always short circuits if any logical operators are used in a condition.
You can turn on the option

do_braindead_shortcircuit_evaluation (1)

if you would like to enable this short-circuit evaluation in Octave. Note that the
&& and || operators always short circuit in both Octave and matlab, so it’s only
necessary to enable matlab-style short-circuiting it’s too arduous to modify
existing code that relies on this behavior. By default, the Octave:possible-

matlab-short-circuit-operator warning is enabled.

Octave:precedence-change

If the Octave:precedence-change warning is enabled, Octave will warn about
possible changes in the meaning of some code due to changes in precedence
for some operators. Precedence changes have typically been made for matlab
compatibility. By default, the Octave:precedence-change warning is enabled.

Octave:recursive-path-search

By default, the Octave:recursive-path-search warning is enabled.

Octave:reload-forces-clear

If several functions have been loaded from the same file, Octave must clear all
the functions before any one of them can be reloaded. If the Octave:reload-

forces-clear warning is enabled, Octave will warn you when this happens,
and print a list of the additional functions that it is forced to clear. By default,
the Octave:reload-forces-clear warning is enabled.

Octave:resize-on-range-error

If the Octave:resize-on-range-error warning is enabled, print a warning
when a matrix is resized by an indexed assignment with indices outside the
current bounds. By default, the ## Octave:resize-on-range-error warning
is disabled.

Octave:separator-insert

Print warning if commas or semicolons might be inserted automatically in literal
matrices. By default, the Octave:separator-insert warning is disabled.

Octave:shadowed-function

By default, the Octave:shadowed-function warning is enabled.

192 GNU Octave

Octave:single-quote-string

Print warning if a single quote character is used to introduce a string constant.
By default, the Octave:single-quote-string warning is disabled.

Octave:singular-matrix-div

By default, the Octave:singular-matrix-div warning is enabled.

Octave:sqrtm:SingularMatrix

By default, the Octave:sqrtm:SingularMatrix warning is enabled.

Octave:str-to-num

If the Octave:str-to-num warning is enabled, a warning is printed for implicit
conversions of strings to their numeric ASCII equivalents. For example,

"abc" + 0

⇒ 97 98 99

elicits a warning if the Octave:str-to-num warning is enabled. By default, the
Octave:str-to-num warning is disabled.

Octave:undefined-return-values

If the Octave:undefined-return-values warning is disabled, print a warning
if a function does not define all the values in the return list which are expected.
By default, the Octave:undefined-return-values warning is enabled.

Octave:variable-switch-label

If the Octave:variable-switch-label warning is enabled, Octave will print a
warning if a switch label is not a constant or constant expression. By default,
the Octave:variable-switch-label warning is disabled.

Chapter 13: Debugging 193

13 Debugging

Octave includes a built-in debugger to aid in the development of scripts. This can be used
to interrupt the execution of an Octave script at a certain point, or when certain conditions
are met. Once execution has stopped, and debug mode is entered, the symbol table at the
point where execution has stopped can be examined and modified to check for errors.

The normal command-line editing and history functions are available in debug mode.

13.1 Entering Debug Mode

There are two basic means of interrupting the execution of an Octave script. These are
breakpoints see Section 13.3 [Breakpoints], page 194, discussed in the next section and
interruption based on some condition.

Octave supports three means to stop execution based on the values set in the functions
debug_on_interrupt, debug_on_warning and debug_on_error.

[Built-in Function]val = debug_on_interrupt ()
[Built-in Function]old_val = debug_on_interrupt (new_val)
[Built-in Function]debug_on_interrupt (new_val, "local")

Query or set the internal variable that controls whether Octave will try to enter
debugging mode when it receives an interrupt signal (typically generated with C-c).
If a second interrupt signal is received before reaching the debugging mode, a normal
interrupt will occur.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

[Built-in Function]val = debug_on_warning ()
[Built-in Function]old_val = debug_on_warning (new_val)
[Built-in Function]debug_on_warning (new_val, "local")

Query or set the internal variable that controls whether Octave will try to enter the
debugger when a warning is encountered.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

[Built-in Function]val = debug_on_error ()
[Built-in Function]old_val = debug_on_error (new_val)
[Built-in Function]debug_on_error (new_val, "local")

Query or set the internal variable that controls whether Octave will try to enter the
debugger when an error is encountered. This will also inhibit printing of the normal
traceback message (you will only see the top-level error message).

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

194 GNU Octave

13.2 Leaving Debug Mode

To leave the debug mode, use either dbcont or return.

[Command]dbcont
Leave command-line debugging mode and continue code execution normally.

See also: [dbstep], page 196, [dbquit], page 194.

To quit debug mode and return directly to the prompt dbquit should be used instead

[Command]dbquit
Quit debugging mode immediately without further code execution and return to the
Octave prompt.

See also: [dbcont], page 194, [dbstep], page 196.

Finally, typing exit or quit at the debug prompt will result in Octave terminating
normally.

13.3 Breakpoints

Breakpoints can be set in any Octave function, using the dbstop function.

[Loadable Function]rline = dbstop ("func")
[Loadable Function]rline = dbstop ("func", line, . . .)

Set a breakpoint in function func.

Arguments are

func Function name as a string variable. When already in debug mode this
should be left out and only the line should be given.

line Line number where the breakpoint should be set. Multiple lines may be
given as separate arguments or as a vector.

When called with a single argument func, the breakpoint is set at the first executable
line in the named function.

The optional output rline is the real line number where the breakpoint was set.
This can differ from specified line if the line is not executable. For example, if a
breakpoint attempted on a blank line then Octave will set the real breakpoint at the
next executable line.

See also: [dbclear], page 195, [dbstatus], page 194, [dbstep], page 196,
[debug on error], page 193, [debug on warning], page 193, [debug on interrupt],
page 193.

Note that breakpoints cannot be set in built-in functions (e.g., sin, etc.) or dynamically
loaded function (i.e., oct-files). To set a breakpoint immediately on entering a function,
the breakpoint should be set to line 1. The leading comment block will be ignored and the
breakpoint will be set to the first executable statement in the function. For example:

dbstop ("asind", 1)

⇒ 28

Note that the return value of 27 means that the breakpoint was effectively set to line 27.
The status of breakpoints in a function can be queried with the dbstatus function.

Chapter 13: Debugging 195

[Loadable Function]dbstatus ()
[Loadable Function]brk_list = dbstatus ()
[Loadable Function]brk_list = dbstatus ("func")

Report the location of active breakpoints.

When called with no input or output arguments, print the list of all functions with
breakpoints and the line numbers where those breakpoints are set. If a function name
func is specified then only report breakpoints for the named function.

The optional return argument brk list is a struct array with the following fields.

name The name of the function with a breakpoint.

file The name of the m-file where the function code is located.

line A line number, or vector of line numbers, with a breakpoint.

See also: [dbclear], page 195, [dbwhere], page 196.

Taking the above as an example, dbstatus ("asind") should return 28. The breakpoints
can then be cleared with the dbclear function

[Loadable Function]dbclear ("func")
[Loadable Function]dbclear ("func", line, . . .)

Delete a breakpoint in the function func.

Arguments are

func Function name as a string variable. When already in debug mode this
should be left out and only the line should be given.

line Line number from which to remove a breakpoint. Multiple lines may be
given as separate arguments or as a vector.

When called without a line number specification all breakpoints in the named function
are cleared.

If the requested line is not a breakpoint no action is performed.

See also: [dbstop], page 194, [dbstatus], page 194, [dbwhere], page 196.

These functions can be used to clear all the breakpoints in a function. For example:

dbclear ("asind", dbstatus ("asind"));

A breakpoint can be set in a subfunction. For example if a file contains the functions

function y = func1 (x)

y = func2 (x);

endfunction

function y = func2 (x)

y = x + 1;

endfunction

then a breakpoint can be set at the start of the subfunction directly with

dbstop (["func1", filemarker(), "func2"])

⇒ 5

Note that filemarker returns a character that marks the subfunctions from the file
containing them.

196 GNU Octave

Another simple way of setting a breakpoint in an Octave script is the use of the keyboard
function.

[Built-in Function]keyboard ()
[Built-in Function]keyboard (prompt)

This function is normally used for simple debugging. When the keyboard function
is executed, Octave prints a prompt and waits for user input. The input strings are
then evaluated and the results are printed. This makes it possible to examine the
values of variables within a function, and to assign new values if necessary. To leave
the prompt and return to normal execution type ‘return’ or ‘dbcont’. The keyboard
function does not return an exit status.

If keyboard is invoked without arguments, a default prompt of ‘debug> ’ is used.

See also: [dbcont], page 194, [dbquit], page 194.

The keyboard function is typically placed in a script at the point where the user desires
that the execution is stopped. It automatically sets the running script into the debug mode.

13.4 Debug Mode

There are two additional support functions that allow the user to interrogate where in the
execution of a script Octave entered the debug mode and to print the code in the script
surrounding the point where Octave entered debug mode.

[Loadable Function]dbwhere ()
In debugging mode, report the current file and line number where execution is
stopped.

See also: [dbstatus], page 194, [dbcont], page 194, [dbstep], page 196, [dbup], page 197.

[Loadable Function]dbtype ()
[Loadable Function]dbtype ("startl:endl")
[Loadable Function]dbtype ("func")
[Loadable Function]dbtype ("func", "startl:endl")

When in debugging mode and called with no arguments, list the script file being
debugged with line numbers. An optional range specification, specified as a string,
can be used to list only a portion of the file.

When called with the name of a function, list that script file with line numbers.

See also: [dbstatus], page 194, [dbstop], page 194.

You may also use isdebugmode to determine whether the debugger is currently active.

[Loadable Function]isdebugmode ()
Return true if in debugging mode, otherwise false.

See also: [dbwhere], page 196, [dbstack], page 197, [dbstatus], page 194.

Debug mode also allows single line stepping through a function using the commands
dbstep.

Chapter 13: Debugging 197

[Command]dbstep
[Command]dbstep n
[Command]dbstep in
[Command]dbstep out
[Command]dbnext . . .

In debugging mode, execute the next n lines of code. If n is omitted, execute the
next single line of code. If the next line of code is itself defined in terms of an m-file
remain in the existing function.

Using dbstep in will cause execution of the next line to step into any m-files defined
on the next line. Using dbstep out will cause execution to continue until the current
function returns.

dbnext is an alias for dbstep.

See also: [dbcont], page 194, [dbquit], page 194.

13.5 Call Stack

[Loadable Function]dbstack ()
[Loadable Function]dbstack (n)
[Loadable Function][stack, idx] = dbstack (. . .)

Display or return current debugging function stack information. With optional argu-
ment n, omit the n innermost stack frames.

The optional return argument stack is a struct array with the following fields:

file The name of the m-file where the function code is located.

name The name of the function with a breakpoint.

line The line number of an active breakpoint.

column The column number of the line where the breakpoint begins.

scope Undocumented.

context Undocumented.

The return argument idx specifies which element of the stack struct array is currently
active.

See also: [dbup], page 197, [dbdown], page 197, [dbwhere], page 196, [dbstatus],
page 194.

[Loadable Function]dbup
[Loadable Function]dbup (n)

In debugging mode, move up the execution stack n frames. If n is omitted, move up
one frame.

See also: [dbstack], page 197, [dbdown], page 197.

[Loadable Function]dbdown
[Loadable Function]dbdown (n)

In debugging mode, move down the execution stack n frames. If n is omitted, move
down one frame.

See also: [dbstack], page 197, [dbup], page 197.

198 GNU Octave

13.6 Profiling

Octave supports profiling of code execution on a per-function level. If profiling is enabled,
each call to a function (supporting built-ins, operators, functions in oct- and mex-files, user-
defined functions in Octave code and anonymous functions) is recorded while running Octave
code. After that, this data can aid in analyzing the code behavior, and is in particular helpful
for finding “hot spots” in the code which use up a lot of computation time and are the best
targets to spend optimization efforts on.

The main command for profiling is profile, which can be used to start or stop the
profiler and also to query collected data afterwards. The data is returned in an Octave data
structure which can then be examined or further processed by other routines or tools.

[Command]profile on
[Command]profile off
[Command]profile resume
[Command]profile clear

[Function File]S = profile (’status’)
[Function File]T = profile (’info’)

Control the built-in profiler.

profile on

Start the profiler, clearing all previously collected data if there is any.

profile off

Stop profiling. The collected data can later be retrieved and examined
with calls like S = profile (’info’).

profile clear

Clear all collected profiler data.

profile resume

Restart profiling without cleaning up the old data and instead all newly
collected statistics are added to the already existing ones.

S = profile (’status’)

Return a structure filled with certain information about the current status
of the profiler. At the moment, the only field is ProfilerStatus which
is either ’on’ or ’off’.

T = profile (’info’)

Return the collected profiling statistics in the structure T. The flat profile
is returned in the field FunctionTable which is an array of structures,
each entry corresponding to a function which was called and for which pro-
filing statistics are present. Furthermore, the field Hierarchical contains
the hierarchical call-tree. Each node has an index into the FunctionTable
identifying the function it corresponds to as well as data fields for number
of calls and time spent at this level in the call-tree.

See also: [profshow], page 199, [profexplore], page 199.

An easy way to get an overview over the collected data is profshow. This function takes
the profiler data returned by profile as input and prints a flat profile, for instance:

Chapter 13: Debugging 199

Function Attr Time (s) Calls

--

>myfib R 2.195 13529

binary <= 0.061 13529

binary - 0.050 13528

binary + 0.026 6764

This shows that most of the run time was spent executing the function ‘myfib’, and
some minor proportion evaluating the listed binary operators. Furthermore, it is shown
how often the function was called and the profiler also records that it is recursive.

[Function File]profshow (data)
[Function File]profshow (data, n)

Show flat profiler results.

This command prints out profiler data as a flat profile. data is the structure returned
by profile (’info’). If n is given, it specifies the number of functions to show in
the profile; functions are sorted in descending order by total time spent in them. If
there are more than n included in the profile, those will not be shown. n defaults to
20.

The attribute column shows ‘R’ for recursive functions and nothing otherwise.

See also: [profexplore], page 199, [profile], page 198.

[Function File]profexplore (data)
Interactively explore hierarchical profiler output.

Assuming data is the structure with profile data returned by profile (’info’), this
command opens an interactive prompt that can be used to explore the call-tree. Type
help to get a list of possible commands.

See also: [profile], page 198, [profshow], page 199.

13.7 Profiler Example

Below, we will give a short example of a profiler session. See also Section 13.6 [Profiling],
page 198 for the documentation of the profiler functions in detail. Consider the code:

global N A;

N = 300;

A = rand (N, N);

function xt = timesteps (steps, x0, expM)

global N;

if (steps == 0)

xt = NA (N, 0);

else

xt = NA (N, steps);

x1 = expM * x0;

xt(:, 1) = x1;

200 GNU Octave

xt(:, 2 : end) = timesteps (steps - 1, x1, expM);

endif

endfunction

function foo ()

global N A;

initial = @(x) sin (x);

x0 = (initial (linspace (0, 2 * pi, N)))’;

expA = expm (A);

xt = timesteps (100, x0, expA);

endfunction

function fib = bar (N)

if (N <= 2)

fib = 1;

else

fib = bar (N - 1) + bar (N - 2);

endif

endfunction

If we execute the two main functions, we get:

tic; foo; toc;

⇒ Elapsed time is 2.37338 seconds.

tic; bar (20); toc;

⇒ Elapsed time is 2.04952 seconds.

But this does not give much information about where this time is spent; for instance,
whether the single call to expm is more expensive or the recursive time-stepping itself. To
get a more detailed picture, we can use the profiler.

profile on;

foo;

profile off;

data = profile (’info’);

profshow (data, 10);

This prints a table like:

Chapter 13: Debugging 201

Function Attr Time (s) Calls

7 expm 1.034 1

3 binary * 0.823 117

41 binary \ 0.188 1

38 binary ^ 0.126 2

43 timesteps R 0.111 101

44 NA 0.029 101

39 binary + 0.024 8

34 norm 0.011 1

40 binary - 0.004 101

33 balance 0.003 1

The entries are the individual functions which have been executed (only the 10 most
important ones), together with some information for each of them. The entries like ‘binary
*’ denote operators, while other entries are ordinary functions. They include both built-
ins like expm and our own routines (for instance timesteps). From this profile, we can
immediately deduce that expm uses up the largest proportion of the processing time, even
though it is only called once. The second expensive operation is the matrix-vector product
in the routine timesteps.1

Timing, however, is not the only information available from the profile. The attribute
column shows us that timesteps calls itself recursively. This may not be that remarkable
in this example (since it’s clear anyway), but could be helpful in a more complex setting.
As to the question of why is there a ‘binary \’ in the output, we can easily shed some light
on that too. Note that data is a structure array (Section 6.1.2 [Structure Arrays], page 94)
which contains the field FunctionTable. This stores the raw data for the profile shown.
The number in the first column of the table gives the index under which the shown function
can be found there. Looking up data.FunctionTable(41) gives:

scalar structure containing the fields:

FunctionName = binary \

TotalTime = 0.18765

NumCalls = 1

IsRecursive = 0

Parents = 7

Children = [](1x0)

Here we see the information from the table again, but have additional fields Parents

and Children. Those are both arrays, which contain the indices of functions which have
directly called the function in question (which is entry 7, expm, in this case) or been called
by it (no functions). Hence, the backslash operator has been used internally by expm.

Now let’s take a look at bar. For this, we start a fresh profiling session (profile on

does this; the old data is removed before the profiler is restarted):

1 We only know it is the binary multiplication operator, but fortunately this operator appears only at one
place in the code and thus we know which occurrence takes so much time. If there were multiple places,
we would have to use the hierarchical profile to find out the exact place which uses up the time which is
not covered in this example.

202 GNU Octave

profile on;

bar (20);

profile off;

profshow (profile (’info’));

This gives:

Function Attr Time (s) Calls

1 bar R 2.091 13529

2 binary <= 0.062 13529

3 binary - 0.042 13528

4 binary + 0.023 6764

5 profile 0.000 1

8 false 0.000 1

6 nargin 0.000 1

7 binary != 0.000 1

9 __profiler_enable__ 0.000 1

Unsurprisingly, bar is also recursive. It has been called 13,529 times in the course of
recursively calculating the Fibonacci number in a suboptimal way, and most of the time
was spent in bar itself.

Finally, let’s say we want to profile the execution of both foo and bar together. Since
we already have the run-time data collected for bar, we can restart the profiler without
clearing the existing data and collect the missing statistics about foo. This is done by:

profile resume;

foo;

profile off;

profshow (profile (’info’), 10);

As you can see in the table below, now we have both profiles mixed together.

Function Attr Time (s) Calls

1 bar R 2.091 13529

16 expm 1.122 1

12 binary * 0.798 117

46 binary \ 0.185 1

45 binary ^ 0.124 2

48 timesteps R 0.115 101

2 binary <= 0.062 13529

3 binary - 0.045 13629

4 binary + 0.041 6772

49 NA 0.036 101

Chapter 14: Input and Output 203

14 Input and Output

Octave supports several ways of reading and writing data to or from the prompt or a file.
The simplest functions for data Input and Output (I/O) are easy to use, but only provide
limited control of how data is processed. For more control, a set of functions modelled after
the C standard library are also provided by Octave.

14.1 Basic Input and Output

14.1.1 Terminal Output

Since Octave normally prints the value of an expression as soon as it has been evaluated, the
simplest of all I/O functions is a simple expression. For example, the following expression
will display the value of ‘pi’

pi

a pi = 3.1416

This works well as long as it is acceptable to have the name of the variable (or ‘ans’)
printed along with the value. To print the value of a variable without printing its name,
use the function disp.

The format command offers some control over the way Octave prints values with disp

and through the normal echoing mechanism.

[Built-in Function]disp (x)
Display the value of x. For example:

disp ("The value of pi is:"), disp (pi)

a the value of pi is:

a 3.1416

Note that the output from disp always ends with a newline.

If an output value is requested, disp prints nothing and returns the formatted output
in a string.

See also: [fdisp], page 213.

[Built-in Function]list_in_columns (arg, width)
Return a string containing the elements of arg listed in columns with an overall
maximum width of width. The argument arg must be a cell array of character strings
or a character array. If width is not specified, the width of the terminal screen is used.
Newline characters are used to break the lines in the output string. For example:

204 GNU Octave

list_in_columns ({"abc", "def", "ghijkl", "mnop", "qrs", "tuv"}, 20)
⇒ ans = abc mnop

def qrs

ghijkl tuv

whos ans
⇒
Variables in the current scope:

Attr Name Size Bytes Class

==== ==== ==== ===== =====

ans 1x37 37 char

Total is 37 elements using 37 bytes

See also: [terminal size], page 204.

[Built-in Function]terminal_size ()
Return a two-element row vector containing the current size of the terminal window
in characters (rows and columns).

See also: [list in columns], page 203.

[Command]format
[Command]format options

Reset or specify the format of the output produced by disp and Octave’s normal
echoing mechanism. This command only affects the display of numbers but not how
they are stored or computed. To change the internal representation from the default
double use one of the conversion functions such as single, uint8, int64, etc.

By default, Octave displays 5 significant digits in a human readable form (option
‘short’ paired with ‘loose’ format for matrices). If format is invoked without any
options, this default format is restored.

Valid formats for floating point numbers are listed in the following table.

short Fixed point format with 5 significant figures in a field that is a maximum
of 10 characters wide. (default).

If Octave is unable to format a matrix so that columns line up on the
decimal point and all numbers fit within the maximum field width then
it switches to an exponential ‘e’ format.

long Fixed point format with 15 significant figures in a field that is a maximum
of 20 characters wide.

As with the ‘short’ format, Octave will switch to an exponential ‘e’
format if it is unable to format a matrix properly using the current format.

short e

long e Exponential format. The number to be represented is split between a
mantissa and an exponent (power of 10). The mantissa has 5 significant
digits in the short format and 15 digits in the long format. For example,
with the ‘short e’ format, pi is displayed as 3.1416e+00.

Chapter 14: Input and Output 205

short E

long E Identical to ‘short e’ or ‘long e’ but displays an uppercase ‘E’ to indicate
the exponent. For example, with the ‘long E’ format, pi is displayed as
3.14159265358979E+00.

short g

long g Optimally choose between fixed point and exponential format based on
the magnitude of the number. For example, with the ‘short g’ format,
pi .^ [2; 4; 8; 16; 32] is displayed as

ans =

9.8696

97.409

9488.5

9.0032e+07

8.1058e+15

short eng

long eng Identical to ‘short e’ or ‘long e’ but displays the value using an engi-
neering format, where the exponent is divisible by 3. For example, with
the ‘short eng’ format, 10 * pi is displayed as 31.4159e+00.

long G

short G Identical to ‘short g’ or ‘long g’ but displays an uppercase ‘E’ to indicate
the exponent.

free

none Print output in free format, without trying to line up columns of matrices
on the decimal point. This also causes complex numbers to be format-
ted as numeric pairs like this ‘(0.60419, 0.60709)’ instead of like this
‘0.60419 + 0.60709i’.

The following formats affect all numeric output (floating point and integer types).

+

+ chars

plus

plus chars

Print a ‘+’ symbol for nonzero matrix elements and a space for zero matrix
elements. This format can be very useful for examining the structure of
a large sparse matrix.

The optional argument chars specifies a list of 3 characters to use for
printing values greater than zero, less than zero and equal to zero. For
example, with the ‘+ "+-."’ format, [1, 0, -1; -1, 0, 1] is displayed
as

ans =

+.-

-.+

bank Print in a fixed format with two digits to the right of the decimal point.

206 GNU Octave

native-hex

Print the hexadecimal representation of numbers as they are stored in
memory. For example, on a workstation which stores 8 byte real values
in IEEE format with the least significant byte first, the value of pi when
printed in native-hex format is 400921fb54442d18.

hex The same as native-hex, but always print the most significant byte first.

native-bit

Print the bit representation of numbers as stored in memory. For example,
the value of pi is

01000000000010010010000111111011

01010100010001000010110100011000

(shown here in two 32 bit sections for typesetting purposes) when printed
in native-bit format on a workstation which stores 8 byte real values in
IEEE format with the least significant byte first.

bit The same as native-bit, but always print the most significant bits first.

rat Print a rational approximation, i.e., values are approximated as the ratio
of small integers. For example, with the ‘rat’ format, pi is displayed as
355/113.

The following two options affect the display of all matrices.

compact Remove blank lines around column number labels and between matrices
producing more compact output with more data per page.

loose Insert blank lines above and below column number labels and between
matrices to produce a more readable output with less data per page.
(default).

See also: [fixed point format], page 48, [output max field width], page 47,
[output precision], page 48, [split long rows], page 48, [rats], page 372.

14.1.1.1 Paging Screen Output

When running interactively, Octave normally sends any output intended for your terminal
that is more than one screen long to a paging program, such as less or more. This avoids
the problem of having a large volume of output stream by before you can read it. With
less (and some versions of more) you can also scan forward and backward, and search for
specific items.

Normally, no output is displayed by the pager until just before Octave is ready to print
the top level prompt, or read from the standard input (for example, by using the fscanf or
scanf functions). This means that there may be some delay before any output appears on
your screen if you have asked Octave to perform a significant amount of work with a single
command statement. The function fflush may be used to force output to be sent to the
pager (or any other stream) immediately.

You can select the program to run as the pager using the PAGER function, and you can
turn paging off by using the function more.

Chapter 14: Input and Output 207

[Command]more
[Command]more on
[Command]more off

Turn output pagination on or off. Without an argument, more toggles the current
state. The current state can be determined via page_screen_output.

[Built-in Function]val = PAGER ()
[Built-in Function]old_val = PAGER (new_val)
[Built-in Function]PAGER (new_val, "local")

Query or set the internal variable that specifies the program to use to display ter-
minal output on your system. The default value is normally "less", "more", or
"pg", depending on what programs are installed on your system. See Appendix G
[Installation], page 739.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [more], page 206, [page screen output], page 207, [page output immediately],
page 207, [PAGER FLAGS], page 207.

[Built-in Function]val = PAGER_FLAGS ()
[Built-in Function]old_val = PAGER_FLAGS (new_val)
[Built-in Function]PAGER_FLAGS (new_val, "local")

Query or set the internal variable that specifies the options to pass to the pager.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [PAGER], page 207.

[Built-in Function]val = page_screen_output ()
[Built-in Function]old_val = page_screen_output (new_val)
[Built-in Function]page_screen_output (new_val, "local")

Query or set the internal variable that controls whether output intended for the
terminal window that is longer than one page is sent through a pager. This allows
you to view one screenful at a time. Some pagers (such as less—see Appendix G
[Installation], page 739) are also capable of moving backward on the output.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

[Built-in Function]val = page_output_immediately ()
[Built-in Function]old_val = page_output_immediately (new_val)
[Built-in Function]page_output_immediately (new_val, "local")

Query or set the internal variable that controls whether Octave sends output to the
pager as soon as it is available. Otherwise, Octave buffers its output and waits until
just before the prompt is printed to flush it to the pager.

208 GNU Octave

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

[Built-in Function]fflush (fid)
Flush output to fid. This is useful for ensuring that all pending output makes it to
the screen before some other event occurs. For example, it is always a good idea to
flush the standard output stream before calling input.

fflush returns 0 on success and an OS dependent error value (−1 on Unix) on error.

See also: [fopen], page 219, [fclose], page 220.

14.1.2 Terminal Input

Octave has three functions that make it easy to prompt users for input. The input and
menu functions are normally used for managing an interactive dialog with a user, and the
keyboard function is normally used for doing simple debugging.

[Built-in Function]input (prompt)
[Built-in Function]input (prompt, "s")

Print a prompt and wait for user input. For example,

input ("Pick a number, any number! ")

prints the prompt

Pick a number, any number!

and waits for the user to enter a value. The string entered by the user is evaluated
as an expression, so it may be a literal constant, a variable name, or any other valid
expression.

Currently, input only returns one value, regardless of the number of values produced
by the evaluation of the expression.

If you are only interested in getting a literal string value, you can call input with the
character string "s" as the second argument. This tells Octave to return the string
entered by the user directly, without evaluating it first.

Because there may be output waiting to be displayed by the pager, it is a good
idea to always call fflush (stdout) before calling input. This will ensure that all
pending output is written to the screen before your prompt. See Chapter 14 [Input
and Output], page 203.

[Function File]menu (title, opt1, . . .)
Print a title string followed by a series of options. Each option will be printed along
with a number. The return value is the number of the option selected by the user.
This function is useful for interactive programs. There is no limit to the number of
options that may be passed in, but it may be confusing to present more than will fit
easily on one screen.

See also: [disp], page 203, [printf], page 222, [input], page 208.

[Built-in Function]yes_or_no (prompt)
Ask the user a yes-or-no question. Return 1 if the answer is yes. Takes one argu-
ment, which is the string to display to ask the question. It should end in a space;

Chapter 14: Input and Output 209

‘yes-or-no-p’ adds ‘(yes or no) ’ to it. The user must confirm the answer with
RET and can edit it until it has been confirmed.

For input, the normal command line history and editing functions are available at the
prompt.

Octave also has a function that makes it possible to get a single character from the
keyboard without requiring the user to type a carriage return.

[Built-in Function]kbhit ()
Read a single keystroke from the keyboard. If called with one argument, don’t wait
for a keypress. For example,

x = kbhit ();

will set x to the next character typed at the keyboard as soon as it is typed.

x = kbhit (1);

identical to the above example, but don’t wait for a keypress, returning the empty
string if no key is available.

14.1.3 Simple File I/O

The save and load commands allow data to be written to and read from disk files in various
formats. The default format of files written by the save command can be controlled using
the functions default_save_options and save_precision.

As an example the following code creates a 3-by-3 matrix and saves it to the file
‘myfile.mat’.

A = [1:3; 4:6; 7:9];

save myfile.mat A

Once one or more variables have been saved to a file, they can be read into memory
using the load command.

load myfile.mat

A

a A =

a
a 1 2 3

a 4 5 6

a 7 8 9

[Command]save file
[Command]save options file
[Command]save options file v1 v2 . . .
[Command]save options file -struct STRUCT f1 f2 . . .

Save the named variables v1, v2, . . . , in the file file. The special filename ‘-’ may
be used to write output to the terminal. If no variable names are listed, Octave
saves all the variables in the current scope. Otherwise, full variable names or pattern
syntax can be used to specify the variables to save. If the ‘-struct’ modifier is used,
fields f1 f2 . . . of the scalar structure STRUCT are saved as if they were variables
with corresponding names. Valid options for the save command are listed in the

210 GNU Octave

following table. Options that modify the output format override the format specified
by default_save_options.

If save is invoked using the functional form

save ("-option1", ..., "file", "v1", ...)

then the options, file, and variable name arguments (v1, . . .) must be specified as
character strings.

-append Append to the destination instead of overwriting.

-ascii Save a single matrix in a text file without header or any other information.

-binary Save the data in Octave’s binary data format.

-float-binary

Save the data in Octave’s binary data format but only using single pre-
cision. Only use this format if you know that all the values to be saved
can be represented in single precision.

-hdf5 Save the data in hdf5 format. (HDF5 is a free, portable binary format
developed by the National Center for Supercomputing Applications at
the University of Illinois.) This format is only available if Octave was
built with a link to the hdf5 libraries.

-float-hdf5

Save the data in hdf5 format but only using single precision. Only use
this format if you know that all the values to be saved can be represented
in single precision.

-V7

-v7

-7

-mat7-binary

Save the data in matlab’s v7 binary data format.

-V6

-v6

-6

-mat

-mat-binary

Save the data in matlab’s v6 binary data format.

-V4

-v4

-4

-mat4-binary

Save the data in the binary format written by matlab version 4.

-text Save the data in Octave’s text data format. (default).

-zip

-z Use the gzip algorithm to compress the file. This works equally on files
that are compressed with gzip outside of octave, and gzip can equally be

Chapter 14: Input and Output 211

used to convert the files for backward compatibility. This option is only
available if Octave was built with a link to the zlib libraries.

The list of variables to save may use wildcard patterns containing the following special
characters:

? Match any single character.

* Match zero or more characters.

[list] Match the list of characters specified by list. If the first character is ! or
^, match all characters except those specified by list. For example, the
pattern [a-zA-Z] will match all lower and uppercase alphabetic charac-
ters.

Wildcards may also be used in the field name specifications when using
the ‘-struct’ modifier (but not in the struct name itself).

Except when using the matlab binary data file format or the ‘-ascii’ format, saving
global variables also saves the global status of the variable. If the variable is restored
at a later time using ‘load’, it will be restored as a global variable.

The command

save -binary data a b*

saves the variable ‘a’ and all variables beginning with ‘b’ to the file ‘data’ in Octave’s
binary format.

See also: [load], page 211, [default save options], page 213, [save header format string],
page 213, [dlmread], page 215, [csvread], page 215, [fread], page 230.

[Command]load file
[Command]load options file
[Command]load options file v1 v2 . . .
[Command]S = load ("options", "file", "v1", "v2", . . .)
[Command]load file options
[Command]load file options v1 v2 . . .
[Command]S = load ("file", "options", "v1", "v2", . . .)

Load the named variables v1, v2, . . . , from the file file. If no variables are specified
then all variables found in the file will be loaded. As with save, the list of variables
to extract can be full names or use a pattern syntax. The format of the file is
automatically detected but may be overridden by supplying the appropriate option.

If load is invoked using the functional form

load ("-option1", ..., "file", "v1", ...)

then the options, file, and variable name arguments (v1, . . .) must be specified as
character strings.

If a variable that is not marked as global is loaded from a file when a global symbol
with the same name already exists, it is loaded in the global symbol table. Also, if
a variable is marked as global in a file and a local symbol exists, the local symbol is
moved to the global symbol table and given the value from the file.

If invoked with a single output argument, Octave returns data instead of insert-
ing variables in the symbol table. If the data file contains only numbers (TAB- or

212 GNU Octave

space-delimited columns), a matrix of values is returned. Otherwise, load returns a
structure with members corresponding to the names of the variables in the file.

The load command can read data stored in Octave’s text and binary formats,
and matlab’s binary format. If compiled with zlib support, it can also load
gzip-compressed files. It will automatically detect the type of file and do conversion
from different floating point formats (currently only IEEE big and little endian,
though other formats may be added in the future).

Valid options for load are listed in the following table.

-force This option is accepted for backward compatibility but is ignored. Octave
now overwrites variables currently in memory with those of the same name
found in the file.

-ascii Force Octave to assume the file contains columns of numbers in text
format without any header or other information. Data in the file will be
loaded as a single numeric matrix with the name of the variable derived
from the name of the file.

-binary Force Octave to assume the file is in Octave’s binary format.

-hdf5 Force Octave to assume the file is in hdf5 format. (hdf5 is a free,
portable binary format developed by the National Center for Supercom-
puting Applications at the University of Illinois.) Note that Octave can
read hdf5 files not created by itself, but may skip some datasets in for-
mats that it cannot support. This format is only available if Octave was
built with a link to the hdf5 libraries.

-import This option is accepted for backward compatibility but is ignored. Octave
can now support multi-dimensional HDF data and automatically modifies
variable names if they are invalid Octave identifiers.

-mat

-mat-binary

-6

-v6

-7

-v7 Force Octave to assume the file is in matlab’s version 6 or 7 binary
format.

-mat4-binary

-4

-v4

-V4 Force Octave to assume the file is in the binary format written by matlab
version 4.

-text Force Octave to assume the file is in Octave’s text format.

See also: [save], page 209, [dlmwrite], page 214, [csvwrite], page 215, [fwrite], page 233.

[Function File]str = fileread (filename)
Read the contents of filename and return it as a string.

See also: [fread], page 230, [textread], page 215, [sscanf], page 228.

Chapter 14: Input and Output 213

There are three functions that modify the behavior of save.

[Built-in Function]val = default_save_options ()
[Built-in Function]old_val = default_save_options (new_val)
[Built-in Function]default_save_options (new_val, "local")

Query or set the internal variable that specifies the default options for the save

command, and defines the default format. Typical values include "-ascii", "-text
-zip". The default value is ‘-text’.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [save], page 209.

[Built-in Function]val = save_precision ()
[Built-in Function]old_val = save_precision (new_val)
[Built-in Function]save_precision (new_val, "local")

Query or set the internal variable that specifies the number of digits to keep when
saving data in text format.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

[Built-in Function]val = save_header_format_string ()
[Built-in Function]old_val = save_header_format_string (new_val)
[Built-in Function]save_header_format_string (new_val, "local")

Query or set the internal variable that specifies the format string used for the comment
line written at the beginning of text-format data files saved by Octave. The format
string is passed to strftime and should begin with the character ‘#’ and contain no
newline characters. If the value of save_header_format_string is the empty string,
the header comment is omitted from text-format data files. The default value is

"# Created by Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USER@HOST>"

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [strftime], page 621, [save], page 209.

[Built-in Function]native_float_format ()
Return the native floating point format as a string

It is possible to write data to a file in a similar way to the disp function for writing data
to the screen. The fdisp works just like disp except its first argument is a file pointer as
created by fopen. As an example, the following code writes to data ‘myfile.txt’.

fid = fopen ("myfile.txt", "w");

fdisp (fid, "3/8 is ");

fdisp (fid, 3/8);

fclose (fid);

See Section 14.2.1 [Opening and Closing Files], page 219, for details on how to use fopen

and fclose.

214 GNU Octave

[Built-in Function]fdisp (fid, x)
Display the value of x on the stream fid. For example:

fdisp (stdout, "The value of pi is:"), fdisp (stdout, pi)

a the value of pi is:

a 3.1416

Note that the output from fdisp always ends with a newline.

See also: [disp], page 203.

Octave can also read and write matrices text files such as comma separated lists.

[Function File]dlmwrite (file, M)
[Function File]dlmwrite (file, M, delim, r, c)
[Function File]dlmwrite (file, M, key, val . . .)
[Function File]dlmwrite (file, M, "-append", . . .)
[Function File]dlmwrite (fid, . . .)

Write the matrix M to the named file using delimiters.

file should be a file name or writable file ID given by fopen.

The parameter delim specifies the delimiter to use to separate values on a row.

The value of r specifies the number of delimiter-only lines to add to the start of the
file.

The value of c specifies the number of delimiters to prepend to each line of data.

If the argument "-append" is given, append to the end of file.

In addition, the following keyword value pairs may appear at the end of the argument
list:

"append" Either ‘"on"’ or ‘"off"’. See ‘"-append"’ above.

"delimiter"
See delim above.

"newline" The character(s) to use to separate each row. Three special cases exist
for this option. ‘"unix"’ is changed into "\n", ‘"pc"’ is changed into
"\r\n", and ‘"mac"’ is changed into "\r". Other values for this option
are kept as is.

"roffset" See r above.

"coffset" See c above.

"precision"
The precision to use when writing the file. It can either be a format string
(as used by fprintf) or a number of significant digits.

dlmwrite ("file.csv", reshape (1:16, 4, 4));

dlmwrite ("file.tex", a, "delimiter", "&", "newline", "\\n")

See also: [dlmread], page 215, [csvread], page 215, [csvwrite], page 215.

Chapter 14: Input and Output 215

[Loadable Function]data = dlmread (file)
[Loadable Function]data = dlmread (file, sep)
[Loadable Function]data = dlmread (file, sep, r0, c0)
[Loadable Function]data = dlmread (file, sep, range)
[Loadable Function]data = dlmread (. . . , "emptyvalue", EMPTYVAL)

Read the matrix data from a text file. If not defined the separator between fields is
determined from the file itself. Otherwise the separation character is defined by sep.

Given two scalar arguments r0 and c0, these define the starting row and column of
the data to be read. These values are indexed from zero, such that the first row
corresponds to an index of zero.

The range parameter may be a 4-element vector containing the upper left and lower
right corner [R0,C0,R1,C1] where the lowest index value is zero. Alternatively,
a spreadsheet style range such as ’A2..Q15’ or ’T1:AA5’ can be used. The lowest
alphabetical index ’A’ refers to the first column. The lowest row index is 1.

file should be a file name or file id given by fopen. In the latter case, the file is read
until end of file is reached.

The "emptyvalue" option may be used to specify the value used to fill empty fields.
The default is zero.

See also: [csvread], page 215, [textscan], page 216, [textread], page 215, [dlmwrite],
page 214.

[Function File]csvwrite (filename, x)
[Function File]csvwrite (filename, x, dlm_opts)

Write the matrix x to the file filename in comma-separated-value format.

This function is equivalent to

dlmwrite (filename, x, ",", ...)

See also: [csvread], page 215, [dlmwrite], page 214, [dlmread], page 215.

[Function File]x = csvread (filename)
[Function File]x = csvread (filename, dlm_opts)

Read the comma-separated-value file filename into the matrix x.

This function is equivalent to

x = dlmread (filename, "," , ...)

See also: [csvwrite], page 215, [dlmread], page 215, [dlmwrite], page 214.

Formatted data from can be read from, or written to, text files as well.

[Function File][a, ...] = textread (filename)
[Function File][a, ...] = textread (filename, format)
[Function File][a, ...] = textread (filename, format, n)
[Function File][a, ...] = textread (filename, format, prop1, value1, . . .)
[Function File][a, ...] = textread (filename, format, n, prop1, value1, . . .)

Read data from a text file.

The file filename is read and parsed according to format. The function behaves like
strread except it works by parsing a file instead of a string. See the documentation
of strread for details.

216 GNU Octave

In addition to the options supported by strread, this function supports two more:

• "headerlines": The first value number of lines of filename are skipped.

• "endofline": Specify a single character or "\r\n". If no value is given, it will be
inferred from the file. If set to "" (empty string) EOLs are ignored as delimiters.

The optional input n specifes the number of times to use format when parsing, i.e.,
the format repeat count.

See also: [strread], page 76, [load], page 211, [dlmread], page 215, [fscanf], page 227,
[textscan], page 216.

[Function File]C = textscan (fid, format)
[Function File]C = textscan (fid, format, n)
[Function File]C = textscan (fid, format, param, value, . . .)
[Function File]C = textscan (fid, format, n, param, value, . . .)
[Function File]C = textscan (str, . . .)
[Function File][C, position] = textscan (fid, . . .)

Read data from a text file or string.

The file associated with fid is read and parsed according to format. The function
behaves like strread except it works by parsing a file instead of a string. See the
documentation of strread for details.

In addition to the options supported by strread, this function supports a few more:

• "collectoutput": A value of 1 or true instructs textscan to concatenate consec-
utive columns of the same class in the output cell array. A value of 0 or false
(default) leaves output in distinct columns.

• "endofline": Specify "\r", "\n" or "\r\n" (for CR, LF, or CRLF). If no value
is given, it will be inferred from the file. If set to "" (empty string) EOLs are
ignored as delimiters and added to whitespace.

• "headerlines": The first value number of lines of fid are skipped.

• "returnonerror": If set to numerical 1 or true (default), return normally when
read errors have been encountered. If set to 0 or false, return an error and no
data.

The optional input n specifes the number of times to use format when parsing, i.e.,
the format repeat count.

The output C is a cell array whose length is given by the number of format specifiers.

The second output, position, provides the position, in characters, from the beginning
of the file.

See also: [dlmread], page 215, [fscanf], page 227, [load], page 211, [strread], page 76,
[textread], page 215.

14.1.3.1 Saving Data on Unexpected Exits

If Octave for some reason exits unexpectedly it will by default save the variables available in
the workspace to a file in the current directory. By default this file is named ‘octave-core’
and can be loaded into memory with the load command. While the default behavior most
often is reasonable it can be changed through the following functions.

Chapter 14: Input and Output 217

[Built-in Function]val = crash_dumps_octave_core ()
[Built-in Function]old_val = crash_dumps_octave_core (new_val)
[Built-in Function]crash_dumps_octave_core (new_val, "local")

Query or set the internal variable that controls whether Octave tries to save all current
variables to the file "octave-core" if it crashes or receives a hangup, terminate or
similar signal.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [octave core file limit], page 217, [octave core file name], page 218,
[octave core file options], page 217.

[Built-in Function]val = sighup_dumps_octave_core ()
[Built-in Function]old_val = sighup_dumps_octave_core (new_val)
[Built-in Function]sighup_dumps_octave_core (new_val, "local")

Query or set the internal variable that controls whether Octave tries to save all current
variables to the file "octave-core" if it receives a hangup signal.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

[Built-in Function]val = sigterm_dumps_octave_core ()
[Built-in Function]old_val = sigterm_dumps_octave_core (new_val)
[Built-in Function]sigterm_dumps_octave_core (new_val, "local")

Query or set the internal variable that controls whether Octave tries to save all current
variables to the file "octave-core" if it receives a terminate signal.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

[Built-in Function]val = octave_core_file_options ()
[Built-in Function]old_val = octave_core_file_options (new_val)
[Built-in Function]octave_core_file_options (new_val, "local")

Query or set the internal variable that specifies the options used for saving the
workspace data if Octave aborts. The value of octave_core_file_options should
follow the same format as the options for the save function. The default value is
Octave’s binary format.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [crash dumps octave core], page 216, [octave core file name], page 218,
[octave core file limit], page 217.

[Built-in Function]val = octave_core_file_limit ()
[Built-in Function]old_val = octave_core_file_limit (new_val)

218 GNU Octave

[Built-in Function]octave_core_file_limit (new_val, "local")
Query or set the internal variable that specifies the maximum amount of memory (in
kilobytes) of the top-level workspace that Octave will attempt to save when writing
data to the crash dump file (the name of the file is specified by octave core file name).
If octave core file options flags specify a binary format, then octave core file limit
will be approximately the maximum size of the file. If a text file format is used, then
the file could be much larger than the limit. The default value is -1 (unlimited)

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [crash dumps octave core], page 216, [octave core file name], page 218,
[octave core file options], page 217.

[Built-in Function]val = octave_core_file_name ()
[Built-in Function]old_val = octave_core_file_name (new_val)
[Built-in Function]octave_core_file_name (new_val, "local")

Query or set the internal variable that specifies the name of the file used for saving
data from the top-level workspace if Octave aborts. The default value is "octave-

core"

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [crash dumps octave core], page 216, [octave core file name], page 218,
[octave core file options], page 217.

14.2 C-Style I/O Functions

Octave’s C-style input and output functions provide most of the functionality of the C
programming language’s standard I/O library. The argument lists for some of the input
functions are slightly different, however, because Octave has no way of passing arguments
by reference.

In the following, file refers to a file name and fid refers to an integer file number, as
returned by fopen.

There are three files that are always available. Although these files can be accessed using
their corresponding numeric file ids, you should always use the symbolic names given in the
table below, since it will make your programs easier to understand.

[Built-in Function]stdin ()
Return the numeric value corresponding to the standard input stream. When Octave
is used interactively, this is filtered through the command line editing functions.

See also: [stdout], page 218, [stderr], page 219.

[Built-in Function]stdout ()
Return the numeric value corresponding to the standard output stream. Data written
to the standard output is normally filtered through the pager.

See also: [stdin], page 218, [stderr], page 219.

Chapter 14: Input and Output 219

[Built-in Function]stderr ()
Return the numeric value corresponding to the standard error stream. Even if paging
is turned on, the standard error is not sent to the pager. It is useful for error messages
and prompts.

See also: [stdin], page 218, [stdout], page 218.

14.2.1 Opening and Closing Files

When reading data from a file it must be opened for reading first, and likewise when writing
to a file. The fopen function returns a pointer to an open file that is ready to be read or
written. Once all data has been read from or written to the opened file it should be closed.
The fclose function does this. The following code illustrates the basic pattern for writing
to a file, but a very similar pattern is used when reading a file.

filename = "myfile.txt";

fid = fopen (filename, "w");

Do the actual I/O here...

fclose (fid);

[Built-in Function][fid, msg] = fopen (name, mode, arch)
[Built-in Function]fid_list = fopen ("all")
[Built-in Function][file, mode, arch] = fopen (fid)

The first form of the fopen function opens the named file with the specified mode
(read-write, read-only, etc.) and architecture interpretation (IEEE big endian, IEEE
little endian, etc.), and returns an integer value that may be used to refer to the file
later. If an error occurs, fid is set to −1 and msg contains the corresponding system
error message. The mode is a one or two character string that specifies whether the
file is to be opened for reading, writing, or both.

The second form of the fopen function returns a vector of file ids corresponding to
all the currently open files, excluding the stdin, stdout, and stderr streams.

The third form of the fopen function returns information about the open file given
its file id.

For example,

myfile = fopen ("splat.dat", "r", "ieee-le");

opens the file ‘splat.dat’ for reading. If necessary, binary numeric values will be
read assuming they are stored in IEEE format with the least significant bit first, and
then converted to the native representation.

Opening a file that is already open simply opens it again and returns a separate file
id. It is not an error to open a file several times, though writing to the same file
through several different file ids may produce unexpected results.

The possible values ‘mode’ may have are

‘r’ Open a file for reading.

‘w’ Open a file for writing. The previous contents are discarded.

‘a’ Open or create a file for writing at the end of the file.

‘r+’ Open an existing file for reading and writing.

220 GNU Octave

‘w+’ Open a file for reading or writing. The previous contents are discarded.

‘a+’ Open or create a file for reading or writing at the end of the file.

Append a "t" to the mode string to open the file in text mode or a "b" to open in
binary mode. On Windows and Macintosh systems, text mode reading and writing
automatically converts linefeeds to the appropriate line end character for the system
(carriage-return linefeed on Windows, carriage-return on Macintosh). The default if
no mode is specified is binary mode.

Additionally, you may append a "z" to the mode string to open a gzipped file for
reading or writing. For this to be successful, you must also open the file in binary
mode.

The parameter arch is a string specifying the default data format for the file. Valid
values for arch are:

‘native’ The format of the current machine (this is the default).

‘ieee-be’ IEEE big endian format.

‘ieee-le’ IEEE little endian format.

‘vaxd’ VAX D floating format.

‘vaxg’ VAX G floating format.

‘cray’ Cray floating format.

however, conversions are currently only supported for ‘native’ ‘ieee-be’, and
‘ieee-le’ formats.

See also: [fclose], page 220, [fgets], page 221, [fputs], page 220, [fread], page 230,
[fseek], page 235, [ferror], page 234, [fprintf], page 222, [fscanf], page 227, [ftell],
page 235, [fwrite], page 233.

[Built-in Function]fclose (fid)
[Built-in Function]fclose ("all")

Close the specified file. If successful, fclose returns 0, otherwise, it returns -1. The
second form of the fclose call closes all open files except stdout, stderr, and stdin.

See also: [fopen], page 219, [fseek], page 235, [ftell], page 235.

[Function File]is_valid_file_id (fid)
Return true if fid refers to an open file.

See also: [fopen], page 219.

14.2.2 Simple Output

Once a file has been opened for writing a string can be written to the file using the fputs

function. The following example shows how to write the string ‘Free Software is needed

for Free Science’ to the file ‘free.txt’.

filename = "free.txt";

fid = fopen (filename, "w");

fputs (fid, "Free Software is needed for Free Science");

fclose (fid);

Chapter 14: Input and Output 221

[Built-in Function]fputs (fid, string)
Write a string to a file with no formatting.

Return a non-negative number on success and EOF on error.

See also: [scanf], page 227, [sscanf], page 228, [fread], page 230, [fprintf], page 222,
[fgets], page 221, [fscanf], page 227.

A function much similar to fputs is available for writing data to the screen. The puts

function works just like fputs except it doesn’t take a file pointer as its input.

[Built-in Function]puts (string)
Write a string to the standard output with no formatting.

Return a non-negative number on success and EOF on error.

14.2.3 Line-Oriented Input

To read from a file it must be opened for reading using fopen. Then a line can be read
from the file using fgetl as the following code illustrates

fid = fopen ("free.txt");

txt = fgetl (fid)

a Free Software is needed for Free Science

fclose (fid);

This of course assumes that the file ‘free.txt’ exists and contains the line ‘Free Software

is needed for Free Science’.

[Built-in Function]fgetl (fid, len)
Read characters from a file, stopping after a newline, or EOF, or len characters have
been read. The characters read, excluding the possible trailing newline, are returned
as a string.

If len is omitted, fgetl reads until the next newline character.

If there are no more characters to read, fgetl returns −1.
See also: [fread], page 230, [fscanf], page 227.

[Built-in Function]fgets (fid)
[Built-in Function]fgets (fid, len)

Read characters from a file, stopping after a newline, or EOF, or len characters have
been read. The characters read, including the possible trailing newline, are returned
as a string.

If len is omitted, fgets reads until the next newline character.

If there are no more characters to read, fgets returns −1.
See also: [fputs], page 220, [fopen], page 219, [fread], page 230, [fscanf], page 227.

[Built-in Function]fskipl (fid, count)
Skip a given number of lines, i.e., discards characters until an end-of-line is met exactly
count-times, or end-of-file occurs. Returns the number of lines skipped (end-of-line
sequences encountered). If count is omitted, it defaults to 1. count may also be Inf,
in which case lines are skipped to the end of file. This form is suitable for counting
lines in a file.

See also: [fgetl], page 221, [fgets], page 221.

222 GNU Octave

14.2.4 Formatted Output

This section describes how to call printf and related functions.

The following functions are available for formatted output. They are modelled after the
C language functions of the same name, but they interpret the format template differently
in order to improve the performance of printing vector and matrix values.

[Built-in Function]printf (template, . . .)
Print optional arguments under the control of the template string template to the
stream stdout and return the number of characters printed.

See the Formatted Output section of the GNU Octave manual for a complete descrip-
tion of the syntax of the template string.

See also: [fprintf], page 222, [sprintf], page 222, [scanf], page 227.

[Built-in Function]fprintf (fid, template, . . .)
This function is just like printf, except that the output is written to the stream fid
instead of stdout. If fid is omitted, the output is written to stdout.

See also: [printf], page 222, [sprintf], page 222, [fread], page 230, [fscanf], page 227,
[fopen], page 219, [fclose], page 220.

[Built-in Function]sprintf (template, . . .)
This is like printf, except that the output is returned as a string. Unlike the C
library function, which requires you to provide a suitably sized string as an argument,
Octave’s sprintf function returns the string, automatically sized to hold all of the
items converted.

See also: [printf], page 222, [fprintf], page 222, [sscanf], page 228.

The printf function can be used to print any number of arguments. The template
string argument you supply in a call provides information not only about the number of
additional arguments, but also about their types and what style should be used for printing
them.

Ordinary characters in the template string are simply written to the output stream
as-is, while conversion specifications introduced by a ‘%’ character in the template cause
subsequent arguments to be formatted and written to the output stream. For example,

pct = 37;

filename = "foo.txt";

printf ("Processed %d%% of ‘%s’.\nPlease be patient.\n",

pct, filename);

produces output like

Processed 37% of ‘foo.txt’.

Please be patient.

This example shows the use of the ‘%d’ conversion to specify that a scalar argument
should be printed in decimal notation, the ‘%s’ conversion to specify printing of a string
argument, and the ‘%%’ conversion to print a literal ‘%’ character.

There are also conversions for printing an integer argument as an unsigned value in
octal, decimal, or hexadecimal radix (‘%o’, ‘%u’, or ‘%x’, respectively); or as a character
value (‘%c’).

Chapter 14: Input and Output 223

Floating-point numbers can be printed in normal, fixed-point notation using the ‘%f’
conversion or in exponential notation using the ‘%e’ conversion. The ‘%g’ conversion uses
either ‘%e’ or ‘%f’ format, depending on what is more appropriate for the magnitude of the
particular number.

You can control formatting more precisely by writing modifiers between the ‘%’ and
the character that indicates which conversion to apply. These slightly alter the ordinary
behavior of the conversion. For example, most conversion specifications permit you to
specify a minimum field width and a flag indicating whether you want the result left- or
right-justified within the field.

The specific flags and modifiers that are permitted and their interpretation vary de-
pending on the particular conversion. They’re all described in more detail in the following
sections.

14.2.5 Output Conversion for Matrices

When given a matrix value, Octave’s formatted output functions cycle through the format
template until all the values in the matrix have been printed. For example:

printf ("%4.2f %10.2e %8.4g\n", hilb (3));

a 1.00 5.00e-01 0.3333

a 0.50 3.33e-01 0.25

a 0.33 2.50e-01 0.2

If more than one value is to be printed in a single call, the output functions do not
return to the beginning of the format template when moving on from one value to the next.
This can lead to confusing output if the number of elements in the matrices are not exact
multiples of the number of conversions in the format template. For example:

printf ("%4.2f %10.2e %8.4g\n", [1, 2], [3, 4]);

a 1.00 2.00e+00 3

a 4.00

If this is not what you want, use a series of calls instead of just one.

14.2.6 Output Conversion Syntax

This section provides details about the precise syntax of conversion specifications that can
appear in a printf template string.

Characters in the template string that are not part of a conversion specification are
printed as-is to the output stream.

The conversion specifications in a printf template string have the general form:

% flags width [. precision] type conversion

For example, in the conversion specifier ‘%-10.8ld’, the ‘-’ is a flag, ‘10’ specifies the field
width, the precision is ‘8’, the letter ‘l’ is a type modifier, and ‘d’ specifies the conversion
style. (This particular type specifier says to print a numeric argument in decimal notation,
with a minimum of 8 digits left-justified in a field at least 10 characters wide.)

In more detail, output conversion specifications consist of an initial ‘%’ character followed
in sequence by:

224 GNU Octave

• Zero or more flag characters that modify the normal behavior of the conversion speci-
fication.

• An optional decimal integer specifying the minimum field width. If the normal conver-
sion produces fewer characters than this, the field is padded with spaces to the specified
width. This is a minimum value; if the normal conversion produces more characters
than this, the field is not truncated. Normally, the output is right-justified within the
field.

You can also specify a field width of ‘*’. This means that the next argument in the
argument list (before the actual value to be printed) is used as the field width. The
value is rounded to the nearest integer. If the value is negative, this means to set the
‘-’ flag (see below) and to use the absolute value as the field width.

• An optional precision to specify the number of digits to be written for the numeric
conversions. If the precision is specified, it consists of a period (‘.’) followed optionally
by a decimal integer (which defaults to zero if omitted).

You can also specify a precision of ‘*’. This means that the next argument in the
argument list (before the actual value to be printed) is used as the precision. The value
must be an integer, and is ignored if it is negative.

• An optional type modifier character. This character is ignored by Octave’s printf

function, but is recognized to provide compatibility with the C language printf.

• A character that specifies the conversion to be applied.

The exact options that are permitted and how they are interpreted vary between the
different conversion specifiers. See the descriptions of the individual conversions for infor-
mation about the particular options that they use.

14.2.7 Table of Output Conversions

Here is a table summarizing what all the different conversions do:

‘%d’, ‘%i’ Print an integer as a signed decimal number. See Section 14.2.8 [Integer Con-
versions], page 225, for details. ‘%d’ and ‘%i’ are synonymous for output, but are
different when used with scanf for input (see Section 14.2.13 [Table of Input
Conversions], page 229).

‘%o’ Print an integer as an unsigned octal number. See Section 14.2.8 [Integer Con-
versions], page 225, for details.

‘%u’ Print an integer as an unsigned decimal number. See Section 14.2.8 [Integer
Conversions], page 225, for details.

‘%x’, ‘%X’ Print an integer as an unsigned hexadecimal number. ‘%x’ uses lowercase letters
and ‘%X’ uses uppercase. See Section 14.2.8 [Integer Conversions], page 225, for
details.

‘%f’ Print a floating-point number in normal (fixed-point) notation. See
Section 14.2.9 [Floating-Point Conversions], page 225, for details.

‘%e’, ‘%E’ Print a floating-point number in exponential notation. ‘%e’ uses lowercase
letters and ‘%E’ uses uppercase. See Section 14.2.9 [Floating-Point Conversions],
page 225, for details.

Chapter 14: Input and Output 225

‘%g’, ‘%G’ Print a floating-point number in either normal (fixed-point) or exponential
notation, whichever is more appropriate for its magnitude. ‘%g’ uses lowercase
letters and ‘%G’ uses uppercase. See Section 14.2.9 [Floating-Point Conversions],
page 225, for details.

‘%c’ Print a single character. See Section 14.2.10 [Other Output Conversions],
page 226.

‘%s’ Print a string. See Section 14.2.10 [Other Output Conversions], page 226.

‘%%’ Print a literal ‘%’ character. See Section 14.2.10 [Other Output Conversions],
page 226.

If the syntax of a conversion specification is invalid, unpredictable things will happen,
so don’t do this. If there aren’t enough function arguments provided to supply values for
all the conversion specifications in the template string, or if the arguments are not of the
correct types, the results are unpredictable. If you supply more arguments than conversion
specifications, the extra argument values are simply ignored; this is sometimes useful.

14.2.8 Integer Conversions

This section describes the options for the ‘%d’, ‘%i’, ‘%o’, ‘%u’, ‘%x’, and ‘%X’ conversion
specifications. These conversions print integers in various formats.

The ‘%d’ and ‘%i’ conversion specifications both print an numeric argument as a signed
decimal number; while ‘%o’, ‘%u’, and ‘%x’ print the argument as an unsigned octal, decimal,
or hexadecimal number (respectively). The ‘%X’ conversion specification is just like ‘%x’
except that it uses the characters ‘ABCDEF’ as digits instead of ‘abcdef’.

The following flags are meaningful:

‘-’ Left-justify the result in the field (instead of the normal right-justification).

‘+’ For the signed ‘%d’ and ‘%i’ conversions, print a plus sign if the value is positive.

‘ ’ For the signed ‘%d’ and ‘%i’ conversions, if the result doesn’t start with a plus
or minus sign, prefix it with a space character instead. Since the ‘+’ flag ensures
that the result includes a sign, this flag is ignored if you supply both of them.

‘#’ For the ‘%o’ conversion, this forces the leading digit to be ‘0’, as if by increasing
the precision. For ‘%x’ or ‘%X’, this prefixes a leading ‘0x’ or ‘0X’ (respectively) to
the result. This doesn’t do anything useful for the ‘%d’, ‘%i’, or ‘%u’ conversions.

‘0’ Pad the field with zeros instead of spaces. The zeros are placed after any
indication of sign or base. This flag is ignored if the ‘-’ flag is also specified, or
if a precision is specified.

If a precision is supplied, it specifies the minimum number of digits to appear; leading
zeros are produced if necessary. If you don’t specify a precision, the number is printed with
as many digits as it needs. If you convert a value of zero with an explicit precision of zero,
then no characters at all are produced.

14.2.9 Floating-Point Conversions

This section discusses the conversion specifications for floating-point numbers: the ‘%f’,
‘%e’, ‘%E’, ‘%g’, and ‘%G’ conversions.

226 GNU Octave

The ‘%f’ conversion prints its argument in fixed-point notation, producing output of the
form [-]ddd.ddd, where the number of digits following the decimal point is controlled by
the precision you specify.

The ‘%e’ conversion prints its argument in exponential notation, producing output of
the form [-]d.ddde[+|-]dd. Again, the number of digits following the decimal point is
controlled by the precision. The exponent always contains at least two digits. The ‘%E’
conversion is similar but the exponent is marked with the letter ‘E’ instead of ‘e’.

The ‘%g’ and ‘%G’ conversions print the argument in the style of ‘%e’ or ‘%E’ (respectively)
if the exponent would be less than -4 or greater than or equal to the precision; otherwise
they use the ‘%f’ style. Trailing zeros are removed from the fractional portion of the result
and a decimal-point character appears only if it is followed by a digit.

The following flags can be used to modify the behavior:

‘-’ Left-justify the result in the field. Normally the result is right-justified.

‘+’ Always include a plus or minus sign in the result.

‘ ’ If the result doesn’t start with a plus or minus sign, prefix it with a space
instead. Since the ‘+’ flag ensures that the result includes a sign, this flag is
ignored if you supply both of them.

‘#’ Specifies that the result should always include a decimal point, even if no digits
follow it. For the ‘%g’ and ‘%G’ conversions, this also forces trailing zeros after
the decimal point to be left in place where they would otherwise be removed.

‘0’ Pad the field with zeros instead of spaces; the zeros are placed after any sign.
This flag is ignored if the ‘-’ flag is also specified.

The precision specifies how many digits follow the decimal-point character for the ‘%f’,
‘%e’, and ‘%E’ conversions. For these conversions, the default precision is 6. If the precision
is explicitly 0, this suppresses the decimal point character entirely. For the ‘%g’ and ‘%G’
conversions, the precision specifies how many significant digits to print. Significant digits
are the first digit before the decimal point, and all the digits after it. If the precision is 0
or not specified for ‘%g’ or ‘%G’, it is treated like a value of 1. If the value being printed
cannot be expressed precisely in the specified number of digits, the value is rounded to the
nearest number that fits.

14.2.10 Other Output Conversions

This section describes miscellaneous conversions for printf.

The ‘%c’ conversion prints a single character. The ‘-’ flag can be used to specify left-
justification in the field, but no other flags are defined, and no precision or type modifier
can be given. For example:

printf ("%c%c%c%c%c", "h", "e", "l", "l", "o");

prints ‘hello’.

The ‘%s’ conversion prints a string. The corresponding argument must be a string. A
precision can be specified to indicate the maximum number of characters to write; otherwise
characters in the string up to but not including the terminating null character are written
to the output stream. The ‘-’ flag can be used to specify left-justification in the field, but
no other flags or type modifiers are defined for this conversion. For example:

Chapter 14: Input and Output 227

printf ("%3s%-6s", "no", "where");

prints ‘ nowhere ’ (note the leading and trailing spaces).

14.2.11 Formatted Input

Octave provides the scanf, fscanf, and sscanf functions to read formatted input. There
are two forms of each of these functions. One can be used to extract vectors of data from
a file, and the other is more ‘C-like’.

[Built-in Function][val, count, errmsg] = fscanf (fid, template, size)
[Built-in Function][v1, v2, ..., count, errmsg] = fscanf (fid, template,

"C")
In the first form, read from fid according to template, returning the result in the
matrix val.

The optional argument size specifies the amount of data to read and may be one of

Inf Read as much as possible, returning a column vector.

nr Read up to nr elements, returning a column vector.

[nr, Inf] Read as much as possible, returning a matrix with nr rows. If the number
of elements read is not an exact multiple of nr, the last column is padded
with zeros.

[nr, nc] Read up to nr * nc elements, returning a matrix with nr rows. If the
number of elements read is not an exact multiple of nr, the last column
is padded with zeros.

If size is omitted, a value of Inf is assumed.

A string is returned if template specifies only character conversions.

The number of items successfully read is returned in count.

If an error occurs, errmsg contains a system-dependent error message.

In the second form, read from fid according to template, with each conversion specifier
in template corresponding to a single scalar return value. This form is more ‘C-like’,
and also compatible with previous versions of Octave. The number of successful
conversions is returned in count

See the Formatted Input section of the GNU Octave manual for a complete description
of the syntax of the template string.

See also: [scanf], page 227, [sscanf], page 228, [fread], page 230, [fprintf], page 222,
[fgets], page 221, [fputs], page 220.

[Built-in Function][val, count, errmsg] = scanf (template, size)
[Built-in Function][v1, v2, ..., count, errmsg]] = scanf (template, "C")

This is equivalent to calling fscanf with fid = stdin.

It is currently not useful to call scanf in interactive programs.

See also: [fscanf], page 227, [sscanf], page 228, [printf], page 222.

228 GNU Octave

[Built-in Function][val, count, errmsg, pos] = sscanf (string, template,
size)

[Built-in Function][v1, v2, ..., count, errmsg] = sscanf (string,
template, "C")

This is like fscanf, except that the characters are taken from the string string instead
of from a stream. Reaching the end of the string is treated as an end-of-file condition.
In addition to the values returned by fscanf, the index of the next character to be
read is returned in pos.

See also: [fscanf], page 227, [scanf], page 227, [sprintf], page 222.

Calls to scanf are superficially similar to calls to printf in that arbitrary arguments are
read under the control of a template string. While the syntax of the conversion specifications
in the template is very similar to that for printf, the interpretation of the template is
oriented more towards free-format input and simple pattern matching, rather than fixed-
field formatting. For example, most scanf conversions skip over any amount of “white
space” (including spaces, tabs, and newlines) in the input file, and there is no concept
of precision for the numeric input conversions as there is for the corresponding output
conversions. Ordinarily, non-whitespace characters in the template are expected to match
characters in the input stream exactly.

When a matching failure occurs, scanf returns immediately, leaving the first non-
matching character as the next character to be read from the stream, and scanf returns all
the items that were successfully converted.

The formatted input functions are not used as frequently as the formatted output func-
tions. Partly, this is because it takes some care to use them properly. Another reason is
that it is difficult to recover from a matching error.

14.2.12 Input Conversion Syntax

A scanf template string is a string that contains ordinary multibyte characters interspersed
with conversion specifications that start with ‘%’.

Any whitespace character in the template causes any number of whitespace characters
in the input stream to be read and discarded. The whitespace characters that are matched
need not be exactly the same whitespace characters that appear in the template string. For
example, write ‘ , ’ in the template to recognize a comma with optional whitespace before
and after.

Other characters in the template string that are not part of conversion specifications
must match characters in the input stream exactly; if this is not the case, a matching
failure occurs.

The conversion specifications in a scanf template string have the general form:

% flags width type conversion

In more detail, an input conversion specification consists of an initial ‘%’ character fol-
lowed in sequence by:

• An optional flag character ‘*’, which says to ignore the text read for this specification.
When scanf finds a conversion specification that uses this flag, it reads input as directed
by the rest of the conversion specification, but it discards this input, does not return
any value, and does not increment the count of successful assignments.

Chapter 14: Input and Output 229

• An optional decimal integer that specifies the maximum field width. Reading of char-
acters from the input stream stops either when this maximum is reached or when a
non-matching character is found, whichever happens first. Most conversions discard
initial whitespace characters, and these discarded characters don’t count towards the
maximum field width. Conversions that do not discard initial whitespace are explicitly
documented.

• An optional type modifier character. This character is ignored by Octave’s scanf

function, but is recognized to provide compatibility with the C language scanf.

• A character that specifies the conversion to be applied.

The exact options that are permitted and how they are interpreted vary between the
different conversion specifiers. See the descriptions of the individual conversions for infor-
mation about the particular options that they allow.

14.2.13 Table of Input Conversions

Here is a table that summarizes the various conversion specifications:

‘%d’ Matches an optionally signed integer written in decimal. See Section 14.2.14
[Numeric Input Conversions], page 230.

‘%i’ Matches an optionally signed integer in any of the formats that the C language
defines for specifying an integer constant. See Section 14.2.14 [Numeric Input
Conversions], page 230.

‘%o’ Matches an unsigned integer written in octal radix. See Section 14.2.14 [Nu-
meric Input Conversions], page 230.

‘%u’ Matches an unsigned integer written in decimal radix. See Section 14.2.14
[Numeric Input Conversions], page 230.

‘%x’, ‘%X’ Matches an unsigned integer written in hexadecimal radix. See Section 14.2.14
[Numeric Input Conversions], page 230.

‘%e’, ‘%f’, ‘%g’, ‘%E’, ‘%G’
Matches an optionally signed floating-point number. See Section 14.2.14 [Nu-
meric Input Conversions], page 230.

‘%s’ Matches a string containing only non-whitespace characters. See Section 14.2.15
[String Input Conversions], page 230.

‘%c’ Matches a string of one or more characters; the number of characters read is con-
trolled by the maximum field width given for the conversion. See Section 14.2.15
[String Input Conversions], page 230.

‘%%’ This matches a literal ‘%’ character in the input stream. No corresponding
argument is used.

If the syntax of a conversion specification is invalid, the behavior is undefined. If there
aren’t enough function arguments provided to supply addresses for all the conversion spec-
ifications in the template strings that perform assignments, or if the arguments are not of
the correct types, the behavior is also undefined. On the other hand, extra arguments are
simply ignored.

230 GNU Octave

14.2.14 Numeric Input Conversions

This section describes the scanf conversions for reading numeric values.

The ‘%d’ conversion matches an optionally signed integer in decimal radix.

The ‘%i’ conversion matches an optionally signed integer in any of the formats that the
C language defines for specifying an integer constant.

For example, any of the strings ‘10’, ‘0xa’, or ‘012’ could be read in as integers under
the ‘%i’ conversion. Each of these specifies a number with decimal value 10.

The ‘%o’, ‘%u’, and ‘%x’ conversions match unsigned integers in octal, decimal, and hex-
adecimal radices, respectively.

The ‘%X’ conversion is identical to the ‘%x’ conversion. They both permit either uppercase
or lowercase letters to be used as digits.

Unlike the C language scanf, Octave ignores the ‘h’, ‘l’, and ‘L’ modifiers.

14.2.15 String Input Conversions

This section describes the scanf input conversions for reading string and character values:
‘%s’ and ‘%c’.

The ‘%c’ conversion is the simplest: it matches a fixed number of characters, always. The
maximum field with says how many characters to read; if you don’t specify the maximum,
the default is 1. This conversion does not skip over initial whitespace characters. It reads
precisely the next n characters, and fails if it cannot get that many.

The ‘%s’ conversion matches a string of non-whitespace characters. It skips and dis-
cards initial whitespace, but stops when it encounters more whitespace after having read
something.

For example, reading the input:

hello, world

with the conversion ‘%10c’ produces " hello, wo", but reading the same input with the
conversion ‘%10s’ produces "hello,".

14.2.16 Binary I/O

Octave can read and write binary data using the functions fread and fwrite, which are
patterned after the standard C functions with the same names. They are able to automat-
ically swap the byte order of integer data and convert among the supported floating point
formats as the data are read.

[Built-in Function][val, count] = fread (fid, size, precision, skip, arch)
Read binary data of type precision from the specified file ID fid.

The optional argument size specifies the amount of data to read and may be one of

Inf Read as much as possible, returning a column vector.

nr Read up to nr elements, returning a column vector.

[nr, Inf] Read as much as possible, returning a matrix with nr rows. If the number
of elements read is not an exact multiple of nr, the last column is padded
with zeros.

Chapter 14: Input and Output 231

[nr, nc] Read up to nr * nc elements, returning a matrix with nr rows. If the
number of elements read is not an exact multiple of nr, the last column
is padded with zeros.

If size is omitted, a value of Inf is assumed.

The optional argument precision is a string specifying the type of data to read and
may be one of

"schar"
"signed char"

Signed character.

"uchar"
"unsigned char"

Unsigned character.

"int8"
"integer*1"

8-bit signed integer.

"int16"
"integer*2"

16-bit signed integer.

"int32"
"integer*4"

32-bit signed integer.

"int64"
"integer*8"

64-bit signed integer.

"uint8" 8-bit unsigned integer.

"uint16" 16-bit unsigned integer.

"uint32" 32-bit unsigned integer.

"uint64" 64-bit unsigned integer.

"single"
"float32"
"real*4" 32-bit floating point number.

"double"
"float64"
"real*8" 64-bit floating point number.

"char"
"char*1" Single character.

"short" Short integer (size is platform dependent).

"int" Integer (size is platform dependent).

"long" Long integer (size is platform dependent).

232 GNU Octave

"ushort"
"unsigned short"

Unsigned short integer (size is platform dependent).

"uint"
"unsigned int"

Unsigned integer (size is platform dependent).

"ulong"
"unsigned long"

Unsigned long integer (size is platform dependent).

"float" Single precision floating point number (size is platform dependent).

The default precision is "uchar".

The precision argument may also specify an optional repeat count. For example,
‘32*single’ causes fread to read a block of 32 single precision floating point numbers.
Reading in blocks is useful in combination with the skip argument.

The precision argument may also specify a type conversion. For example,
‘int16=>int32’ causes fread to read 16-bit integer values and return an array of
32-bit integer values. By default, fread returns a double precision array. The special
form ‘*TYPE’ is shorthand for ‘TYPE=>TYPE’.

The conversion and repeat counts may be combined. For example, the specification
‘32*single=>single’ causes fread to read blocks of single precision floating point
values and return an array of single precision values instead of the default array of
double precision values.

The optional argument skip specifies the number of bytes to skip after each element
(or block of elements) is read. If it is not specified, a value of 0 is assumed. If the
final block read is not complete, the final skip is omitted. For example,

fread (f, 10, "3*single=>single", 8)

will omit the final 8-byte skip because the last read will not be a complete block of 3
values.

The optional argument arch is a string specifying the data format for the file. Valid
values are

"native" The format of the current machine.

"ieee-be"

IEEE big endian.

"ieee-le"

IEEE little endian.

"vaxd" VAX D floating format.

"vaxg" VAX G floating format.

"cray" Cray floating format.

Conversions are currently only supported for "ieee-be" and "ieee-le" formats.

The data read from the file is returned in val, and the number of values read is
returned in count

See also: [fwrite], page 233, [fopen], page 219, [fclose], page 220.

Chapter 14: Input and Output 233

[Built-in Function]count = fwrite (fid, data, precision, skip, arch)
Write data in binary form of type precision to the specified file ID fid, returning the
number of values successfully written to the file.

The argument data is a matrix of values that are to be written to the file. The values
are extracted in column-major order.

The remaining arguments precision, skip, and arch are optional, and are interpreted
as described for fread.

The behavior of fwrite is undefined if the values in data are too large to fit in the
specified precision.

See also: [fread], page 230, [fopen], page 219, [fclose], page 220.

14.2.17 Temporary Files

Sometimes one needs to write data to a file that is only temporary. This is most commonly
used when an external program launched from within Octave needs to access data. When
Octave exits all temporary files will be deleted, so this step need not be executed manually.

[Built-in Function][fid, name, msg] = mkstemp (template, delete)
Return the file ID corresponding to a new temporary file with a unique name created
from template. The last six characters of template must be XXXXXX and these are
replaced with a string that makes the filename unique. The file is then created with
mode read/write and permissions that are system dependent (on GNU/Linux systems,
the permissions will be 0600 for versions of glibc 2.0.7 and later). The file is opened
in binary mode and with the O_EXCL flag.

If the optional argument delete is supplied and is true, the file will be deleted auto-
matically when Octave exits, or when the function purge_tmp_files is called.

If successful, fid is a valid file ID, name is the name of the file, and msg is an empty
string. Otherwise, fid is -1, name is empty, and msg contains a system-dependent
error message.

See also: [tmpfile], page 233, [tmpnam], page 233, [P tmpdir], page 636.

[Built-in Function][fid, msg] = tmpfile ()
Return the file ID corresponding to a new temporary file with a unique name. The file
is opened in binary read/write ("w+b") mode. The file will be deleted automatically
when it is closed or when Octave exits.

If successful, fid is a valid file ID and msg is an empty string. Otherwise, fid is -1
and msg contains a system-dependent error message.

See also: [tmpnam], page 233, [mkstemp], page 233, [P tmpdir], page 636.

[Built-in Function]tmpnam ()
[Built-in Function]tmpnam (dir)
[Built-in Function]tmpnam (dir, prefix)

Return a unique temporary file name as a string.

If prefix is omitted, a value of "oct-" is used. If dir is also omitted, the default
directory for temporary files is used. If dir is provided, it must exist, otherwise the
default directory for temporary files is used. Since the named file is not opened, by

234 GNU Octave

tmpnam, it is possible (though relatively unlikely) that it will not be available by the
time your program attempts to open it.

See also: [tmpfile], page 233, [mkstemp], page 233, [P tmpdir], page 636.

14.2.18 End of File and Errors

Once a file has been opened its status can be acquired. As an example the feof functions
determines if the end of the file has been reached. This can be very useful when reading
small parts of a file at a time. The following example shows how to read one line at a time
from a file until the end has been reached.

filename = "myfile.txt";

fid = fopen (filename, "r");

while (! feof (fid))

text_line = fgetl (fid);

endwhile

fclose (fid);

Note that in some situations it is more efficient to read the entire contents of a file and then
process it, than it is to read it line by line. This has the potential advantage of removing
the loop in the above code.

[Built-in Function]feof (fid)
Return 1 if an end-of-file condition has been encountered for a given file and 0 other-
wise. Note that it will only return 1 if the end of the file has already been encountered,
not if the next read operation will result in an end-of-file condition.

See also: [fread], page 230, [fopen], page 219, [fclose], page 220.

[Built-in Function][err, msg] = ferror (fid, "clear")
Return 1 if an error condition has been encountered for the file ID fid and 0 otherwise.
Note that it will only return 1 if an error has already been encountered, not if the
next operation will result in an error condition.

The second argument is optional. If it is supplied, also clear the error condition.

[Built-in Function]fclear (fid)
Clear the stream state for the specified file.

[Built-in Function]freport ()
Print a list of which files have been opened, and whether they are open for reading,
writing, or both. For example:

freport ()

a number mode name

a
a 0 r stdin

a 1 w stdout

a 2 w stderr

a 3 r myfile

Chapter 14: Input and Output 235

14.2.19 File Positioning

Three functions are available for setting and determining the position of the file pointer for
a given file.

[Built-in Function]ftell (fid)
Return the position of the file pointer as the number of characters from the beginning
of the file fid.

See also: [fseek], page 235, [fopen], page 219, [fclose], page 220.

[Built-in Function]fseek (fid, offset, origin)
Set the file pointer to any location within the file fid.

The pointer is positioned offset characters from the origin, which may be one of the
predefined variables SEEK_CUR (current position), SEEK_SET (beginning), or SEEK_END
(end of file) or strings "cof", "bof" or "eof". If origin is omitted, SEEK_SET is assumed.
The offset must be zero, or a value returned by ftell (in which case origin must be
SEEK_SET).

Return 0 on success and -1 on error.

See also: [ftell], page 235, [fopen], page 219, [fclose], page 220.

[Built-in Function]SEEK_SET ()
[Built-in Function]SEEK_CUR ()
[Built-in Function]SEEK_END ()

Return the numerical value to pass to fseek to perform one of the following actions:

SEEK_SET Position file relative to the beginning.

SEEK_CUR Position file relative to the current position.

SEEK_END Position file relative to the end.

See also: [fseek], page 235.

[Built-in Function]frewind (fid)
Move the file pointer to the beginning of the file fid, returning 0 for success, and -1 if
an error was encountered. It is equivalent to fseek (fid, 0, SEEK_SET).

The following example stores the current file position in the variable marker, moves the
pointer to the beginning of the file, reads four characters, and then returns to the original
position.

marker = ftell (myfile);

frewind (myfile);

fourch = fgets (myfile, 4);

fseek (myfile, marker, SEEK_SET);

Chapter 15: Plotting 237

15 Plotting

15.1 Introduction to Plotting

Earlier versions of Octave provided plotting through the use of gnuplot. This capability is
still available. But, a newer plotting capability is provided by access to OpenGL. Which
plotting system is used is controlled by the graphics_toolkit function. (See Section 15.4.7
[Graphics Toolkits], page 329.)

The function call graphics_toolkit ("fltk") selects the FLTK/OpenGL system, and
graphics_toolkit ("gnuplot") selects the gnuplot system. The two systems may be used
selectively through the use of the graphics_toolkit property of the graphics handle for
each figure. This is explained in Section 15.3 [Graphics Data Structures], page 293. Caution:
The FLTK toolkit uses single precision variables internally which limits the maximum value
that can be displayed to approximately 1038. If your data contains larger values you must
use the gnuplot toolkit which supports values up to 10308.

15.2 High-Level Plotting

Octave provides simple means to create many different types of two- and three-dimensional
plots using high-level functions.

If you need more detailed control, see Section 15.3 [Graphics Data Structures], page 293
and Section 15.4 [Advanced Plotting], page 315.

15.2.1 Two-Dimensional Plots

The plot function allows you to create simple x-y plots with linear axes. For example,

x = -10:0.1:10;

plot (x, sin (x));

displays a sine wave shown in Figure 15.1. On most systems, this command will open a
separate plot window to display the graph.

238 GNU Octave

-1

-0.5

0

0.5

1

-10 -5 0 5 10

Figure 15.1: Simple Two-Dimensional Plot.

[Function File]plot (y)
[Function File]plot (x, y)
[Function File]plot (x, y, property, value, . . .)
[Function File]plot (x, y, fmt)
[Function File]plot (h, . . .)
[Function File]h = plot (. . .)

Produce two-dimensional plots.

Many different combinations of arguments are possible. The simplest form is

plot (y)

where the argument is taken as the set of y coordinates and the x coordinates are
taken to be the indices of the elements starting with 1.

To save a plot, in one of several image formats such as PostScript or PNG, use the
print command.

If more than one argument is given, they are interpreted as

plot (y, property, value, ...)

or

plot (x, y, property, value, ...)

or

plot (x, y, fmt, ...)

and so on. Any number of argument sets may appear. The x and y values are
interpreted as follows:

• If a single data argument is supplied, it is taken as the set of y coordinates and
the x coordinates are taken to be the indices of the elements, starting with 1.

• If the x is a vector and y is a matrix, then the columns (or rows) of y are plotted
versus x. (using whichever combination matches, with columns tried first.)

Chapter 15: Plotting 239

• If the x is a matrix and y is a vector, y is plotted versus the columns (or rows)
of x. (using whichever combination matches, with columns tried first.)

• If both arguments are vectors, the elements of y are plotted versus the elements
of x.

• If both arguments are matrices, the columns of y are plotted versus the columns
of x. In this case, both matrices must have the same number of rows and columns
and no attempt is made to transpose the arguments to make the number of rows
match.

If both arguments are scalars, a single point is plotted.

Multiple property-value pairs may be specified, but they must appear in pairs. These
arguments are applied to the lines drawn by plot.

If the fmt argument is supplied, it is interpreted as follows. If fmt is missing, the
default gnuplot line style is assumed.

‘-’ Set lines plot style (default).

‘.’ Set dots plot style.

‘n ’ Interpreted as the plot color if n is an integer in the range 1 to 6.

‘nm ’ If nm is a two digit integer and m is an integer in the range 1 to 6, m is
interpreted as the point style. This is only valid in combination with the
@ or -@ specifiers.

‘c ’ If c is one of "k" (black), "r" (red), "g" (green), "b" (blue), "m" (ma-
genta), "c" (cyan), or "w" (white), it is interpreted as the line plot color.

‘";title;"’
Here "title" is the label for the key.

‘+’
‘*’
‘o’
‘x’
‘^’ Used in combination with the points or linespoints styles, set the point

style.

‘@’ Select the next unused point style.

The fmt argument may also be used to assign key titles. To do so, include the desired
title between semi-colons after the formatting sequence described above, e.g., "+3;Key
Title;" Note that the last semi-colon is required and will generate an error if it is left
out.

Here are some plot examples:

plot (x, y, "@12", x, y2, x, y3, "4", x, y4, "+")

This command will plot y with points of type 2 (displayed as ‘+’) and color 1 (red),
y2 with lines, y3 with lines of color 4 (magenta) and y4 with points displayed as ‘+’.

plot (b, "*", "markersize", 3)

This command will plot the data in the variable b, with points displayed as ‘*’ with
a marker size of 3.

240 GNU Octave

t = 0:0.1:6.3;

plot (t, cos(t), "-;cos(t);", t, sin(t), "+3;sin(t);");

This will plot the cosine and sine functions and label them accordingly in the key.

If the first argument is an axis handle, then plot into these axes, rather than the
current axis handle returned by gca.

The optional return value h is a graphics handle to the created plot.

See also: [semilogx], page 240, [semilogy], page 241, [loglog], page 241, [polar],
page 252, [mesh], page 262, [contour], page 247, [bar], page 242, [stairs], page 244,
[errorbar], page 250, [xlabel], page 278, [ylabel], page 278, [title], page 276, [print],
page 287.

The plotyy function may be used to create a plot with two independent y axes.

[Function File]plotyy (x1, y1, x2, y2)
[Function File]plotyy (. . . , fun)
[Function File]plotyy (. . . , fun1, fun2)
[Function File]plotyy (h, . . .)
[Function File][ax, h1, h2] = plotyy (. . .)

Plot two sets of data with independent y-axes. The arguments x1 and y1 define the
arguments for the first plot and x1 and y2 for the second.

By default the arguments are evaluated with feval (@plot, x, y). However the type
of plot can be modified with the fun argument, in which case the plots are generated
by feval (fun, x, y). fun can be a function handle, an inline function or a string
of a function name.

The function to use for each of the plots can be independently defined with fun1 and
fun2.

If given, h defines the principal axis in which to plot the x1 and y1 data. The return
value ax is a two element vector with the axis handles of the two plots. h1 and h2
are handles to the objects generated by the plot commands.

x = 0:0.1:2*pi;

y1 = sin (x);

y2 = exp (x - 1);

ax = plotyy (x, y1, x - 1, y2, @plot, @semilogy);

xlabel ("X");

ylabel (ax(1), "Axis 1");

ylabel (ax(2), "Axis 2");

The functions semilogx, semilogy, and loglog are similar to the plot function, but
produce plots in which one or both of the axes use log scales.

[Function File]semilogx (y)
[Function File]semilogx (x, y)
[Function File]semilogx (x, y, property, value, . . .)
[Function File]semilogx (x, y, fmt)
[Function File]semilogx (h, . . .)

Chapter 15: Plotting 241

[Function File]h = semilogx (. . .)
Produce a two-dimensional plot using a logarithmic scale for the x axis. See the
documentation of plot for a description of the arguments that semilogx will accept.

The optional return value h is a graphics handle to the created plot.

See also: [plot], page 238, [semilogy], page 241, [loglog], page 241.

[Function File]semilogy (y)
[Function File]semilogy (x, y)
[Function File]semilogy (x, y, property, value, . . .)
[Function File]semilogy (x, y, fmt)
[Function File]semilogy (h, . . .)
[Function File]h = semilogy (. . .)

Produce a two-dimensional plot using a logarithmic scale for the y axis. See the
documentation of plot for a description of the arguments that semilogy will accept.

The optional return value h is a graphics handle to the created plot.

See also: [plot], page 238, [semilogx], page 240, [loglog], page 241.

[Function File]loglog (y)
[Function File]loglog (x, y)
[Function File]loglog (x, y, property, value, . . .)
[Function File]loglog (x, y, fmt)
[Function File]loglog (h, . . .)
[Function File]h = loglog (. . .)

Produce a two-dimensional plot using log scales for both axes. See the documentation
of plot for a description of the arguments that loglog will accept.

The optional return value h is a graphics handle to the created plot.

See also: [plot], page 238, [semilogx], page 240, [semilogy], page 241.

The functions bar, barh, stairs, and stem are useful for displaying discrete data. For
example,

hist (randn (10000, 1), 30);

produces the histogram of 10,000 normally distributed random numbers shown in
Figure 15.2.

242 GNU Octave

0

200

400

600

800

1000

1200

1400

-6 -4 -2 0 2 4 6

Figure 15.2: Histogram.

[Function File]bar (x, y)
[Function File]bar (y)
[Function File]bar (x, y, w)
[Function File]bar (x, y, w, style)
[Function File]h = bar (. . . , prop, val)
[Function File]bar (h, . . .)

Produce a bar graph from two vectors of x-y data.

If only one argument is given, y, it is taken as a vector of y-values and the x coordinates
are taken to be the indices of the elements.

The default width of 0.8 for the bars can be changed using w.

If y is a matrix, then each column of y is taken to be a separate bar graph plotted
on the same graph. By default the columns are plotted side-by-side. This behavior
can be changed by the style argument, which can take the values "grouped" (the
default), or "stacked".

The optional return value h is a handle to the created "bar series" object with one
handle per column of the variable y. This series allows common elements of the group
of bar series objects to be changed in a single bar series and the same properties are
changed in the other "bar series". For example,

h = bar (rand (5, 10));

set (h(1), "basevalue", 0.5);

changes the position on the base of all of the bar series.

The optional input handle h allows an axis handle to be passed.

The bar graph’s appearance may be modified by specifying property/value pairs. The
following example modifies the face and edge colors.

bar (randn (1, 100), "facecolor", "r", "edgecolor", "b")

The color of the bars is taken from the figure’s colormap, such that

Chapter 15: Plotting 243

bar (rand (10, 3));

colormap (summer (64));

will change the colors used for the bars. The color of bars can also be set manually
using the "facecolor" property as shown below.

h = bar (rand (10, 3));

set (h(1), "facecolor", "r")

set (h(2), "facecolor", "g")

set (h(3), "facecolor", "b")

See also: [barh], page 243, [plot], page 238.

[Function File]barh (x, y)
[Function File]barh (y)
[Function File]barh (x, y, w)
[Function File]barh (x, y, w, style)
[Function File]h = barh (. . . , prop, val)
[Function File]barh (h, . . .)

Produce a horizontal bar graph from two vectors of x-y data.

If only one argument is given, it is taken as a vector of y-values and the x coordinates
are taken to be the indices of the elements.

The default width of 0.8 for the bars can be changed using w.

If y is a matrix, then each column of y is taken to be a separate bar graph plotted
on the same graph. By default the columns are plotted side-by-side. This behavior
can be changed by the style argument, which can take the values "grouped" (the
default), or "stacked".

The optional input handle h allows an axis handle to be passed. Properties of the
patch graphics object can be changed using prop, val pairs.

The optional return value h is a graphics handle to the created bar series object. See
bar for a description of the use of the bar series.

See also: [bar], page 242, [plot], page 238.

[Function File]hist (y)
[Function File]hist (y, x)
[Function File]hist (y, nbins)
[Function File]hist (y, x, norm)
[Function File][nn, xx] = hist (. . .)
[Function File][...] = hist (. . . , prop, val)

Produce histogram counts or plots.

With one vector input argument, y, plot a histogram of the values with 10 bins. The
range of the histogram bins is determined by the range of the data. With one matrix
input argument, y, plot a histogram where each bin contains a bar per input column.

Given a second vector argument, x, use that as the centers of the bins, with the width
of the bins determined from the adjacent values in the vector.

If scalar, the second argument, nbins, defines the number of bins.

If a third argument is provided, the histogram is normalized such that the sum of the
bars is equal to norm.

244 GNU Octave

Extreme values are lumped in the first and last bins.

With two output arguments, produce the values nn and xx such that bar (xx, nn)

will plot the histogram.

The histogram’s appearance may be modified by specifying property/value pairs, prop
and val pairs. For example the face and edge color may be modified.

hist (randn (1, 100), 25, "facecolor", "r", "edgecolor", "b");

The histograms colors also depend upon the colormap.

hist (rand (10, 3));

colormap (summer ());

See also: [bar], page 242.

[Function File]stairs (y)
[Function File]stairs (x, y)
[Function File]stairs (. . . , style)
[Function File]stairs (. . . , prop, val)
[Function File]stairs (h, . . .)
[Function File]h = stairs (. . .)
[Function File][xstep, ystep] = stairs (. . .)

Produce a stairstep plot. The arguments may be vectors or matrices.

If only one argument is given, it is taken as a vector of y-values and the x coordinates
are taken to be the indices of the elements.

If one output argument is requested, return a graphics handle to the plot. If two
output arguments are specified, the data are generated but not plotted. For example,

stairs (x, y);

and

[xs, ys] = stairs (x, y);

plot (xs, ys);

are equivalent.

See also: [plot], page 238, [semilogx], page 240, [semilogy], page 241, [loglog], page 241,
[polar], page 252, [mesh], page 262, [contour], page 247, [bar], page 242, [xlabel],
page 278, [ylabel], page 278, [title], page 276.

[Function File]stem (x)
[Function File]stem (x, y)
[Function File]stem (x, y, linespec)
[Function File]stem (. . . , "filled")
[Function File]h = stem (. . .)

Plot a stem graph from two vectors of x-y data. If only one argument is given, it is
taken as the y-values and the x coordinates are taken from the indices of the elements.

If y is a matrix, then each column of the matrix is plotted as a separate stem graph.
In this case x can either be a vector, the same length as the number of rows in y, or
it can be a matrix of the same size as y.

The default color is "b" (blue). The default line style is "-" and the default marker
is "o". The line style can be altered by the linespec argument in the same manner
as the plot command. For example,

Chapter 15: Plotting 245

x = 1:10;

y = 2*x;

stem (x, y, "r");

plots 10 stems with heights from 2 to 20 in red;

The optional return value h is a vector of "stem series" graphics handles with one
handle per column of the variable y. The handle regroups the elements of the stem
graph together as the children of the "stem series" handle, allowing them to be altered
together. For example,

x = [0:10]’;

y = [sin(x), cos(x)]

h = stem (x, y);

set (h(2), "color", "g");

set (h(1), "basevalue", -1)

changes the color of the second "stem series" and moves the base line of the first.

See also: [bar], page 242, [barh], page 243, [plot], page 238.

[Function File]h = stem3 (x, y, z, linespec)
Plot a three-dimensional stem graph and return the handles of the line and marker
objects used to draw the stems as "stem series" object. The default color is "r" (red).
The default line style is "-" and the default marker is "o".

For example,

theta = 0:0.2:6;

stem3 (cos (theta), sin (theta), theta)

plots 31 stems with heights from 0 to 6 lying on a circle. Color definitions with
RGB-triples are not valid!

See also: [bar], page 242, [barh], page 243, [stem], page 244, [plot], page 238.

[Function File]scatter (x, y)
[Function File]scatter (x, y, s)
[Function File]scatter (x, y, c)
[Function File]scatter (x, y, s, c)
[Function File]scatter (x, y, s, c, style)
[Function File]scatter (x, y, s, c, prop, val)
[Function File]scatter (. . . , "filled")
[Function File]scatter (h, . . .)
[Function File]h = scatter (. . .)

Plot a scatter plot of the data. A marker is plotted at each point defined by the
points in the vectors x and y. The size of the markers used is determined by the s,
which can be a scalar, a vector of the same length of x and y. If s is not given or is
an empty matrix, then the default value of 8 points is used.

The color of the markers is determined by c, which can be a string defining a fixed
color; a 3-element vector giving the red, green,and blue components of the color; a
vector of the same length as x that gives a scaled index into the current colormap; or
a n-by-3 matrix defining the colors of each of the markers individually.

246 GNU Octave

The marker to use can be changed with the style argument, that is a string defining
a marker in the same manner as the plot command. If the argument "filled" is
given then the markers as filled. All additional arguments are passed to the underlying
patch command.

The optional return value h provides a handle to the patch object

x = randn (100, 1);

y = randn (100, 1);

scatter (x, y, [], sqrt(x.^2 + y.^2));

See also: [plot], page 238, [patch], page 281, [scatter3], page 271.

[Function File]plotmatrix (x, y)
[Function File]plotmatrix (x)
[Function File]plotmatrix (. . . , style)
[Function File]plotmatrix (h, . . .)
[Function File][h, ax, bigax, p, pax] = plotmatrix (. . .)

Scatter plot of the columns of one matrix against another. Given the arguments x and
y, that have a matching number of rows, plotmatrix plots a set of axes corresponding
to

plot (x (:, i), y (:, j)

Given a single argument x, then this is equivalent to

plotmatrix (x, x)

except that the diagonal of the set of axes will be replaced with the histogram hist

(x (:, i)).

The marker to use can be changed with the style argument, that is a string defining
a marker in the same manner as the plot command. If a leading axes handle h is
passed to plotmatrix, then this axis will be used for the plot.

The optional return value h provides handles to the individual graphics objects in the
scatter plots, whereas ax returns the handles to the scatter plot axis objects. bigax is
a hidden axis object that surrounds the other axes, such that the commands xlabel,
title, etc., will be associated with this hidden axis. Finally p returns the graphics
objects associated with the histogram and pax the corresponding axes objects.

plotmatrix (randn (100, 3), "g+")

[Function File]pareto (x)
[Function File]pareto (x, y)
[Function File]pareto (h, . . .)
[Function File]h = pareto (. . .)

Draw a Pareto chart, also called ABC chart. A Pareto chart is a bar graph used
to arrange information in such a way that priorities for process improvement can be
established. It organizes and displays information to show the relative importance of
data. The chart is similar to the histogram or bar chart, except that the bars are
arranged in decreasing order from left to right along the abscissa.

The fundamental idea (Pareto principle) behind the use of Pareto diagrams is that the
majority of an effect is due to a small subset of the causes, so for quality improvement
the first few (as presented on the diagram) contributing causes to a problem usually

Chapter 15: Plotting 247

account for the majority of the result. Thus, targeting these "major causes" for
elimination results in the most cost-effective improvement scheme.

The data are passed as x and the abscissa as y. If y is absent, then the abscissa are
assumed to be 1 : length (x). y can be a string array, a cell array of strings or a
numerical vector.

The optional return value h is a 2-element vector with a graphics handle for the
created bar plot and a second handle for the created line plot.

An example of the use of pareto is

Cheese = {"Cheddar", "Swiss", "Camembert", ...

"Munster", "Stilton", "Blue"};

Sold = [105, 30, 70, 10, 15, 20];

pareto (Sold, Cheese);

[Function File]rose (th, r)
[Function File]rose (h, . . .)
[Function File]h = rose (. . .)
[Function File][r, th] = rose (. . .)

Plot an angular histogram. With one vector argument th, plots the histogram with 20
angular bins. If th is a matrix, then each column of th produces a separate histogram.

If r is given and is a scalar, then the histogram is produced with r bins. If r is a
vector, then the center of each bin are defined by the values of r.

The optional return value h is a vector of graphics handles to the line objects repre-
senting each histogram.

If two output arguments are requested then, rather than plotting the histogram, the
polar vectors necessary to plot the histogram are returned.

[r, t] = rose ([2*randn(1e5,1), pi + 2*randn(1e5,1)]);

polar (r, t);

See also: [polar], page 252, [compass], page 254, [hist], page 243.

The contour, contourf and contourc functions produce two-dimensional contour plots
from three-dimensional data.

[Function File]contour (z)
[Function File]contour (z, vn)
[Function File]contour (x, y, z)
[Function File]contour (x, y, z, vn)
[Function File]contour (. . . , style)
[Function File]contour (h, . . .)
[Function File][c, h] = contour (. . .)

Plot level curves (contour lines) of the matrix z, using the contour matrix c computed
by contourc from the same arguments; see the latter for their interpretation. The
set of contour levels, c, is only returned if requested. For example:

x = 0:2;

y = x;

z = x’ * y;

contour (x, y, z, 2:3)

248 GNU Octave

The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command. Any markers defined by style are
ignored.

The optional input and output argument h allows an axis handle to be passed to
contour and the handles to the contour objects to be returned.

See also: [contourc], page 248, [patch], page 281, [plot], page 238.

[Function File][c, h] = contourf (x, y, z, lvl)
[Function File][c, h] = contourf (x, y, z, n)
[Function File][c, h] = contourf (x, y, z)
[Function File][c, h] = contourf (z, n)
[Function File][c, h] = contourf (z, lvl)
[Function File][c, h] = contourf (z)
[Function File][c, h] = contourf (ax, . . .)
[Function File][c, h] = contourf (. . . , "property", val)

Compute and plot filled contours of the matrix z. Parameters x, y and n or lvl are
optional.

The return value c is a 2xn matrix containing the contour lines as described in the
help to the contourc function.

The return value h is handle-vector to the patch objects creating the filled contours.

If x and y are omitted they are taken as the row/column index of z. n is a scalar
denoting the number of lines to compute. Alternatively lvl is a vector containing the
contour levels. If only one value (e.g., lvl0) is wanted, set lvl to [lvl0, lvl0]. If both n
or lvl are omitted a default value of 10 contour level is assumed.

If provided, the filled contours are added to the axes object ax instead of the current
axis.

The following example plots filled contours of the peaks function.

[x, y, z] = peaks (50);

contourf (x, y, z, -7:9)

See also: [contour], page 247, [contourc], page 248, [patch], page 281.

[Function File][c, lev] = contourc (x, y, z, vn)
Compute isolines (contour lines) of the matrix z. Parameters x, y and vn are optional.

The return value lev is a vector of the contour levels. The return value c is a 2 by n
matrix containing the contour lines in the following format

c = [lev1, x1, x2, ..., levn, x1, x2, ...

len1, y1, y2, ..., lenn, y1, y2, ...]

in which contour line n has a level (height) of levn and length of lenn.

If x and y are omitted they are taken as the row/column index of z. vn is either a
scalar denoting the number of lines to compute or a vector containing the values of
the lines. If only one value is wanted, set vn = [val, val]; If vn is omitted it defaults
to 10.

For example:

Chapter 15: Plotting 249

x = 0:2;

y = x;

z = x’ * y;

contourc (x, y, z, 2:3)

⇒ 2.0000 2.0000 1.0000 3.0000 1.5000 2.0000

2.0000 1.0000 2.0000 2.0000 2.0000 1.5000

See also: [contour], page 247.

[Function File]contour3 (z)
[Function File]contour3 (z, vn)
[Function File]contour3 (x, y, z)
[Function File]contour3 (x, y, z, vn)
[Function File]contour3 (. . . , style)
[Function File]contour3 (h, . . .)
[Function File][c, h] = contour3 (. . .)

Plot level curves (contour lines) of the matrix z, using the contour matrix c computed
by contourc from the same arguments; see the latter for their interpretation. The
contours are plotted at the Z level corresponding to their contour. The set of contour
levels, c, is only returned if requested. For example:

contour3 (peaks (19));

hold on

surface (peaks (19), "facecolor", "none", "EdgeColor", "black");

colormap hot;

The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command. Any markers defined by style are
ignored.

The optional input and output argument h allows an axis handle to be passed to
contour and the handles to the contour objects to be returned.

See also: [contourc], page 248, [patch], page 281, [plot], page 238.

The errorbar, semilogxerr, semilogyerr, and loglogerr functions produce plots
with error bar markers. For example,

x = 0:0.1:10;

y = sin (x);

yp = 0.1 .* randn (size (x));

ym = -0.1 .* randn (size (x));

errorbar (x, sin (x), ym, yp);

produces the figure shown in Figure 15.3.

250 GNU Octave

-1

-0.5

0

0.5

1

0 2 4 6 8 10

Figure 15.3: Errorbar plot.

[Function File]errorbar (args)
This function produces two-dimensional plots with errorbars. Many different combi-
nations of arguments are possible. The simplest form is

errorbar (y, ey)

where the first argument is taken as the set of y coordinates and the second argument
ey is taken as the errors of the y values. x coordinates are taken to be the indices of
the elements, starting with 1.

If more than two arguments are given, they are interpreted as

errorbar (x, y, ..., fmt, ...)

where after x and y there can be up to four error parameters such as ey, ex, ly, uy,
etc., depending on the plot type. Any number of argument sets may appear, as long
as they are separated with a format string fmt.

If y is a matrix, x and error parameters must also be matrices having same dimensions.
The columns of y are plotted versus the corresponding columns of x and errorbars
are drawn from the corresponding columns of error parameters.

If fmt is missing, yerrorbars ("~") plot style is assumed.

If the fmt argument is supplied, it is interpreted as in normal plots. In addition, fmt
may include an errorbar style which must precede the line and marker format. The
following plot styles are supported by errorbar:

‘~’ Set yerrorbars plot style (default).

‘>’ Set xerrorbars plot style.

‘~>’ Set xyerrorbars plot style.

‘#’ Set boxes plot style.

‘#~’ Set boxerrorbars plot style.

Chapter 15: Plotting 251

‘#~>’ Set boxxyerrorbars plot style.

Examples:

errorbar (x, y, ex, ">")

produces an xerrorbar plot of y versus x with x errorbars drawn from x-ex to x+ex.

errorbar (x, y1, ey, "~",

x, y2, ly, uy)

produces yerrorbar plots with y1 and y2 versus x. Errorbars for y1 are drawn from
y1-ey to y1+ey, errorbars for y2 from y2-ly to y2+uy.

errorbar (x, y, lx, ux,

ly, uy, "~>")

produces an xyerrorbar plot of y versus x in which x errorbars are drawn from x-lx
to x+ux and y errorbars from y-ly to y+uy.

See also: [semilogxerr], page 251, [semilogyerr], page 251, [loglogerr], page 251.

[Function File]semilogxerr (args)
Produce two-dimensional plots using a logarithmic scale for the x axis and errorbars
at each data point. Many different combinations of arguments are possible. The most
used form is

semilogxerr (x, y, ey, fmt)

which produces a semi-logarithmic plot of y versus x with errors in the y-scale defined
by ey and the plot format defined by fmt. See errorbar for available formats and
additional information.

See also: [errorbar], page 250, [loglogerr], page 251, [semilogyerr], page 251.

[Function File]semilogyerr (args)
Produce two-dimensional plots using a logarithmic scale for the y axis and errorbars
at each data point. Many different combinations of arguments are possible. The most
used form is

semilogyerr (x, y, ey, fmt)

which produces a semi-logarithmic plot of y versus x with errors in the y-scale defined
by ey and the plot format defined by fmt. See errorbar for available formats and
additional information.

See also: [errorbar], page 250, [loglogerr], page 251, [semilogxerr], page 251.

[Function File]loglogerr (args)
Produce two-dimensional plots on double logarithm axis with errorbars. Many differ-
ent combinations of arguments are possible. The most used form is

loglogerr (x, y, ey, fmt)

which produces a double logarithm plot of y versus x with errors in the y-scale
defined by ey and the plot format defined by fmt. See errorbar for available formats
and additional information.

See also: [errorbar], page 250, [semilogxerr], page 251, [semilogyerr], page 251.

252 GNU Octave

Finally, the polar function allows you to easily plot data in polar coordinates. However,
the display coordinates remain rectangular and linear. For example,

polar (0:0.1:10*pi, 0:0.1:10*pi);

produces the spiral plot shown in Figure 15.4.

-30

-20

-10

0

10

20

30

-30 -20 -10 0 10 20 30

Figure 15.4: Polar plot.

[Function File]polar (theta, rho)
[Function File]polar (theta, rho, fmt)
[Function File]polar (h, . . .)
[Function File]h = polar (. . .)

Create a two-dimensional plot from polar coordinates theta and rho.

The optional argument fmt specifies the line format.

The optional return value h is a graphics handle to the created plot.

See also: [plot], page 238.

[Function File]pie (x)
[Function File]pie (x, explode)
[Function File]pie (. . . , labels)
[Function File]pie (h, . . .);
[Function File]h = pie (. . .);

Produce a 2-D pie chart.

Called with a single vector argument, produces a pie chart of the elements in x, with
the size of the slice determined by percentage size of the values of x.

The variable explode is a vector of the same length as x that if non zero ’explodes’
the slice from the pie chart.

If given labels is a cell array of strings of the same length as x, giving the labels of
each of the slices of the pie chart.

The optional return value h is a list of handles to the patch and text objects generating
the plot.

Chapter 15: Plotting 253

See also: [pie3], page 253, [bar], page 242, [stem], page 244.

[Function File]pie3 (x)
[Function File]pie3 (x, explode)
[Function File]pie3 (. . . , labels)
[Function File]pie3 (h, . . .);
[Function File]h = pie3 (. . .);

Draw a 3-D pie chart.

Called with a single vector argument, produces a 3-D pie chart of the elements in x,
with the size of the slice determined by percentage size of the values of x.

The variable explode is a vector of the same length as x that if non zero ’explodes’
the slice from the pie chart.

If given labels is a cell array of strings of the same length as x, giving the labels of
each of the slices of the pie chart.

The optional return value h is a list of graphics handles to the patch, surface, and
text objects generating the plot.

See also: [pie], page 252, [bar], page 242, [stem], page 244.

[Function File]quiver (u, v)
[Function File]quiver (x, y, u, v)
[Function File]quiver (. . . , s)
[Function File]quiver (. . . , style)
[Function File]quiver (. . . , ’filled’)
[Function File]quiver (h, . . .)
[Function File]h = quiver (. . .)

Plot the (u, v) components of a vector field in an (x, y) meshgrid. If the grid is
uniform, you can specify x and y as vectors.

If x and y are undefined they are assumed to be (1:m, 1:n) where [m, n] = size(u).

The variable s is a scalar defining a scaling factor to use for the arrows of the field
relative to the mesh spacing. A value of 0 disables all scaling. The default value is 1.

The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command. If a marker is specified then markers
at the grid points of the vectors are printed rather than arrows. If the argument
’filled’ is given then the markers as filled.

The optional return value h is a graphics handle to a quiver object. A quiver object
regroups the components of the quiver plot (body, arrow, and marker), and allows
them to be changed together.

[x, y] = meshgrid (1:2:20);

h = quiver (x, y, sin (2*pi*x/10), sin (2*pi*y/10));

set (h, "maxheadsize", 0.33);

See also: [plot], page 238.

[Function File]quiver3 (u, v, w)
[Function File]quiver3 (x, y, z, u, v, w)
[Function File]quiver3 (. . . , s)

254 GNU Octave

[Function File]quiver3 (. . . , style)
[Function File]quiver3 (. . . , ’filled’)
[Function File]quiver3 (h, . . .)
[Function File]h = quiver3 (. . .)

Plot the (u, v, w) components of a vector field in an (x, y), z meshgrid. If the
grid is uniform, you can specify x, y z as vectors.

If x, y and z are undefined they are assumed to be (1:m, 1:n, 1:p) where [m, n]

= size(u) and p = max (size (w)).

The variable s is a scalar defining a scaling factor to use for the arrows of the field
relative to the mesh spacing. A value of 0 disables all scaling. The default value is 1.

The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command. If a marker is specified then markers
at the grid points of the vectors are printed rather than arrows. If the argument
’filled’ is given then the markers as filled.

The optional return value h is a graphics handle to a quiver object. A quiver object
regroups the components of the quiver plot (body, arrow, and marker), and allows
them to be changed together.

[x, y, z] = peaks (25);

surf (x, y, z);

hold on;

[u, v, w] = surfnorm (x, y, z / 10);

h = quiver3 (x, y, z, u, v, w);

set (h, "maxheadsize", 0.33);

See also: [plot], page 238.

[Function File]compass (u, v)
[Function File]compass (z)
[Function File]compass (. . . , style)
[Function File]compass (h, . . .)
[Function File]h = compass (. . .)

Plot the (u, v) components of a vector field emanating from the origin of a polar
plot. If a single complex argument z is given, then u = real (z) and v = imag (z).

The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command.

The optional return value h is a vector of graphics handles to the line objects repre-
senting the drawn vectors.

a = toeplitz ([1;randn(9,1)], [1,randn(1,9)]);

compass (eig (a));

See also: [polar], page 252, [quiver], page 253, [feather], page 254, [plot], page 238.

[Function File]feather (u, v)
[Function File]feather (z)
[Function File]feather (. . . , style)
[Function File]feather (h, . . .)

Chapter 15: Plotting 255

[Function File]h = feather (. . .)
Plot the (u, v) components of a vector field emanating from equidistant points on
the x-axis. If a single complex argument z is given, then u = real (z) and v = imag

(z).

The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command.

The optional return value h is a vector of graphics handles to the line objects repre-
senting the drawn vectors.

phi = [0 : 15 : 360] * pi/180;

feather (sin (phi), cos (phi));

See also: [plot], page 238, [quiver], page 253, [compass], page 254.

[Function File]pcolor (x, y, c)
[Function File]pcolor (c)

Density plot for given matrices x, and y from meshgrid and a matrix c corresponding
to the x and y coordinates of the mesh’s vertices. If x and y are vectors, then a typical
vertex is (x(j), y(i), c(i,j)). Thus, columns of c correspond to different x values and
rows of c correspond to different y values.

The colormap is scaled to the extents of c. Limits may be placed on the color axis
by the command caxis, or by setting the clim property of the parent axis.

The face color of each cell of the mesh is determined by interpolating the values of
c for the cell’s vertices. Contrast this with imagesc which renders one cell for each
element of c.

shading modifies an attribute determining the manner by which the face color of
each cell is interpolated from the values of c, and the visibility of the cells’ edges. By
default the attribute is "faceted", which renders a single color for each cell’s face with
the edge visible.

h is the handle to the surface object.

See also: [caxis], page 257, [contour], page 247, [meshgrid], page 269, [imagesc],
page 585, [shading], page 271.

[Function File]area (x, y)
[Function File]area (x, y, lvl)
[Function File]area (. . . , prop, val, . . .)
[Function File]area (y, . . .)
[Function File]area (h, . . .)
[Function File]h = area (. . .)

Area plot of cumulative sum of the columns of y. This shows the contributions of a
value to a sum, and is functionally similar to plot (x, cumsum (y, 2)), except that
the area under the curve is shaded.

If the x argument is omitted it is assumed to be given by 1 : rows (y). A value lvl
can be defined that determines where the base level of the shading under the curve
should be defined.

Additional arguments to the area function are passed to patch.

256 GNU Octave

The optional return value h is a graphics handle to the hggroup object representing
the area patch objects.

See also: [plot], page 238, [patch], page 281.

[Function File]comet (y)
[Function File]comet (x, y)
[Function File]comet (x, y, p)
[Function File]comet (ax, . . .)

Produce a simple comet style animation along the trajectory provided by the input
coordinate vectors (x, y), where x will default to the indices of y.

The speed of the comet may be controlled by p, which represents the time which
passes as the animation passes from one point to the next. The default for p is 0.1
seconds.

If ax is specified the animation is produced in that axis rather than the gca.

[Function File]comet3 (z)
[Function File]comet3 (x, y, z, p)
[Function File]comet3 (ax, . . .)

Produce a simple comet style animation along the trajectory provided by the input
coordinate vectors (x, y), where x will default to the indices of y.

The speed of the comet may be controlled by p, which represents the time which
passes as the animation passes from one point to the next. The default for p is 0.1
seconds.

If ax is specified the animation is produced in that axis rather than the gca.

15.2.1.1 Axis Configuration

The axis function may be used to change the axis limits of an existing plot and various
other axis properties, such as the aspect ratio and the appearance of tic marks.

[Function File]axis ()
[Function File]axis ([x lo x hi])
[Function File]axis ([x lo x hi y lo y hi])
[Function File]axis ([x lo x hi y lo y hi z lo z hi])
[Function File]axis (option)
[Function File]axis (. . . , option)
[Function File]axis (h, . . .)
[Function File]limits = axis ()

Set axis limits for plots.

The argument limits should be a 2-, 4-, or 6-element vector. The first and second
elements specify the lower and upper limits for the x-axis. The third and fourth
specify the limits for the y-axis, and the fifth and sixth specify the limits for the
z-axis.

Without any arguments, axis turns autoscaling on.

With one output argument, x = axis returns the current axes.

The vector argument specifying limits is optional, and additional string arguments
may be used to specify various axis properties. For example,

Chapter 15: Plotting 257

axis ([1, 2, 3, 4], "square");

forces a square aspect ratio, and

axis ("tic", "labely");

turns tic marks on for all axes and tic mark labels on for the y-axis only.

The following options control the aspect ratio of the axes.

"square" Force a square aspect ratio.

"equal" Force x distance to equal y-distance.

"normal" Restore the balance.

The following options control the way axis limits are interpreted.

"auto" Set the specified axes to have nice limits around the data or all if no axes
are specified.

"manual" Fix the current axes limits.

"tight" Fix axes to the limits of the data.

The option "image" is equivalent to "tight" and "equal".

The following options affect the appearance of tic marks.

"on" Turn tic marks and labels on for all axes.

"off" Turn tic marks off for all axes.

"tic[xyz]" Turn tic marks on for all axes, or turn them on for the specified axes and
off for the remainder.

"label[xyz]"
Turn tic labels on for all axes, or turn them on for the specified axes and
off for the remainder.

"nolabel" Turn tic labels off for all axes.

Note, if there are no tic marks for an axis, there can be no labels.

The following options affect the direction of increasing values on the axes.

"ij" Reverse y-axis, so lower values are nearer the top.

"xy" Restore y-axis, so higher values are nearer the top.

If an axes handle is passed as the first argument, then operate on this axes rather
than the current axes.

Similarly the axis limits of the colormap can be changed with the caxis function.

[Function File]caxis (limits)
[Function File]caxis (h, . . .)

Set color axis limits for plots.

The argument limits should be a 2-element vector specifying the lower and upper
limits to assign to the first and last value in the colormap. Values outside this range
are clamped to the first and last colormap entries.

258 GNU Octave

If limits is ’auto’, then automatic colormap scaling is applied, whereas if limits is
’manual’ the colormap scaling is set to manual.

Called without any arguments to current color axis limits are returned.

If an axes handle is passed as the first argument, then operate on this axes rather
than the current axes.

The xlim, ylim, and zlim functions may be used to get or set individual axis limits.
Each has the same form.

[Function File]xl = xlim ()
[Function File]xlim (xl)
[Function File]m = xlim (’mode’)
[Function File]xlim (m)
[Function File]xlim (h, . . .)

Get or set the limits of the x-axis of the current plot. Called without arguments xlim
returns the x-axis limits of the current plot. If passed a two element vector xl, the
limits of the x-axis are set to this value.

The current mode for calculation of the x-axis can be returned with a call xlim
(’mode’), and can be either ’auto’ or ’manual’. The current plotting mode can be
set by passing either ’auto’ or ’manual’ as the argument.

If passed a handle as the first argument, then operate on this handle rather than the
current axes handle.

See also: [ylim], page 258, [zlim], page 258, [set], page 296, [get], page 296, [gca],
page 295.

15.2.1.2 Two-dimensional Function Plotting

Octave can plot a function from a function handle inline function or string defining the
function without the user needing to explicitly create the data to be plotted. The function
fplot also generates two-dimensional plots with linear axes using a function name and
limits for the range of the x-coordinate instead of the x and y data. For example,

fplot (@sin, [-10, 10], 201);

produces a plot that is equivalent to the one above, but also includes a legend displaying
the name of the plotted function.

[Function File]fplot (fn, limits)
[Function File]fplot (fn, limits, tol)
[Function File]fplot (fn, limits, n)
[Function File]fplot (. . . , fmt)

Plot a function fn within defined limits. fn is a function handle, inline function, or
string containing the name of the function to evaluate. The limits of the plot are
given by limits of the form [xlo, xhi] or [xlo, xhi, ylo, yhi]. tol is the default
tolerance to use for the plot, and if tol is an integer it is assumed that it defines the
number points to use in the plot. The fmt argument is passed to the plot command.

fplot ("cos", [0, 2*pi])

fplot ("[cos(x), sin(x)]", [0, 2*pi])

See also: [plot], page 238.

Chapter 15: Plotting 259

Other functions that can create two-dimensional plots directly from a function include
ezplot, ezcontour, ezcontourf and ezpolar.

[Function File]ezplot (f)
[Function File]ezplot (fx, fy)
[Function File]ezplot (. . . , dom)
[Function File]ezplot (. . . , n)
[Function File]ezplot (h, . . .)
[Function File]h = ezplot (. . .)

Plot the curve defined by f in two dimensions. The function f may be a string, inline
function or function handle and can have either one or two variables. If f has one
variable, then the function is plotted over the domain -2*pi < x < 2*pi with 500
points.

If f has two variables then f(x,y) = 0 is calculated over the meshed domain -2*pi

< x | y < 2*pi with 60 by 60 in the mesh. For example:

ezplot (@(x, y) x.^2 - y.^2 - 1)

If two functions are passed as strings, inline functions or function handles, then the
parametric function

x = fx (t)

y = fy (t)

is plotted over the domain -2*pi < t < 2*pi with 500 points.

If dom is a two element vector, it represents the minimum and maximum value of x,
y and t. If it is a four element vector, then the minimum and maximum values of x
and t are determined by the first two elements and the minimum and maximum of y
by the second pair of elements.

n is a scalar defining the number of points to use in plotting the function.

The optional return value h is a graphics handle to the created plot.

See also: [plot], page 238, [ezplot3], page 273.

[Function File]ezcontour (f)
[Function File]ezcontour (. . . , dom)
[Function File]ezcontour (. . . , n)
[Function File]ezcontour (h, . . .)
[Function File]h = ezcontour (. . .)

Plot the contour lines of a function. f is a string, inline function or function handle
with two arguments defining the function. By default the plot is over the domain
-2*pi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each dimension.

If dom is a two element vector, it represents the minimum and maximum value of
both x and y. If dom is a four element vector, then the minimum and maximum
value of x and y are specify separately.

n is a scalar defining the number of points to use in each dimension.

The optional return value h is a graphics handle to the created plot.

f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);

ezcontour (f, [-3, 3]);

260 GNU Octave

See also: [ezplot], page 259, [ezcontourf], page 260, [ezsurfc], page 275, [ezmeshc],
page 274.

[Function File]ezcontourf (f)
[Function File]ezcontourf (. . . , dom)
[Function File]ezcontourf (. . . , n)
[Function File]ezcontourf (h, . . .)
[Function File]h = ezcontourf (. . .)

Plot the filled contour lines of a function. f is a string, inline function or function
handle with two arguments defining the function. By default the plot is over the
domain -2*pi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each dimension.

If dom is a two element vector, it represents the minimum and maximum value of
both x and y. If dom is a four element vector, then the minimum and maximum
value of x and y are specify separately.

n is a scalar defining the number of points to use in each dimension.

The optional return value h is a graphics handle to the created plot.

f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);

ezcontourf (f, [-3, 3]);

See also: [ezplot], page 259, [ezcontour], page 259, [ezsurfc], page 275, [ezmeshc],
page 274.

[Function File]ezpolar (f)
[Function File]ezpolar (. . . , dom)
[Function File]ezpolar (. . . , n)
[Function File]ezpolar (h, . . .)
[Function File]h = ezpolar (. . .)

Plot a function in polar coordinates. The function f is either a string, inline function
or function handle with one arguments defining the function. By default the plot is
over the domain 0 < x < 2*pi with 60 points.

If dom is a two element vector, it represents the minimum and maximum value of
both t. n is a scalar defining the number of points to use.

The optional return value h is a graphics handle to the created plot.

ezpolar (@(t) 1 + sin (t));

See also: [polar], page 252, [ezplot], page 259, [ezsurf], page 274, [ezmesh], page 273.

15.2.1.3 Two-dimensional Geometric Shapes

[Function File]rectangle ()
[Function File]rectangle (. . . , "Position", pos)
[Function File]rectangle (. . . , "Curvature", curv)
[Function File]rectangle (. . . , "EdgeColor", ec)
[Function File]rectangle (. . . , "FaceColor", fc)
[Function File]h = rectangle (. . .)

Draw rectangular patch defined by pos and curv. The variable pos(1:2) defines the
lower left-hand corner of the patch and pos(3:4) defines its width and height. By
default, the value of pos is [0, 0, 1, 1].

Chapter 15: Plotting 261

The variable curv defines the curvature of the sides of the rectangle and may be a
scalar or two-element vector with values between 0 and 1. A value of 0 represents
no curvature of the side, whereas a value of 1 means that the side is entirely curved
into the arc of a circle. If curv is a two-element vector, then the first element is the
curvature along the x-axis of the patch and the second along y-axis.

If curv is a scalar, it represents the curvature of the shorter of the two sides of the
rectangle and the curvature of the other side is defined by

min (pos (1:2)) / max (pos (1:2)) * curv

Other properties are passed to the underlying patch command.

The optional return value h is a graphics handle to the created rectangle object.

See also: [patch], page 281.

15.2.2 Three-Dimensional Plots

The function mesh produces mesh surface plots. For example,

tx = ty = linspace (-8, 8, 41)’;

[xx, yy] = meshgrid (tx, ty);

r = sqrt (xx .^ 2 + yy .^ 2) + eps;

tz = sin (r) ./ r;

mesh (tx, ty, tz);

produces the familiar “sombrero” plot shown in Figure 15.5. Note the use of the function
meshgrid to create matrices of X and Y coordinates to use for plotting the Z data. The
ndgrid function is similar to meshgrid, but works for N-dimensional matrices.

-10

-5

0

5

10

-10

-5

0

5

10-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 15.5: Mesh plot.

The meshc function is similar to mesh, but also produces a plot of contours for the
surface.

The plot3 function displays arbitrary three-dimensional data, without requiring it to
form a surface. For example,

262 GNU Octave

t = 0:0.1:10*pi;

r = linspace (0, 1, numel (t));

z = linspace (0, 1, numel (t));

plot3 (r.*sin(t), r.*cos(t), z);

displays the spiral in three dimensions shown in Figure 15.6.

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

10

0.2

0.4

0.6

0.8

1

Figure 15.6: Three-dimensional spiral.

Finally, the view function changes the viewpoint for three-dimensional plots.

[Function File]mesh (x, y, z)
[Function File]mesh (z)
[Function File]mesh (. . . , c)
[Function File]mesh (hax, . . .)
[Function File]h = mesh (. . .)

Plot a mesh given matrices x, and y from meshgrid and a matrix z corresponding to
the x and y coordinates of the mesh. If x and y are vectors, then a typical vertex is
(x(j), y(i), z(i,j)). Thus, columns of z correspond to different x values and rows of z
correspond to different y values.

The color of the mesh is derived from the colormap and the value of z. Optionally
the color of the mesh can be specified independent of z, by adding a fourth matrix, c.

The optional return value h is a graphics handle to the created surface object.

See also: [colormap], page 586, [contour], page 247, [meshgrid], page 269, [surf],
page 263.

[Function File]meshc (x, y, z)
Plot a mesh and contour given matrices x, and y from meshgrid and a matrix z
corresponding to the x and y coordinates of the mesh. If x and y are vectors, then
a typical vertex is (x(j), y(i), z(i,j)). Thus, columns of z correspond to different x
values and rows of z correspond to different y values.

See also: [meshgrid], page 269, [mesh], page 262, [contour], page 247.

Chapter 15: Plotting 263

[Function File]meshz (x, y, z)
Plot a curtain mesh given matrices x, and y from meshgrid and a matrix z corre-
sponding to the x and y coordinates of the mesh. If x and y are vectors, then a typical
vertex is (x(j), y(i), z(i,j)). Thus, columns of z correspond to different x values and
rows of z correspond to different y values.

See also: [meshgrid], page 269, [mesh], page 262, [contour], page 247.

[Function File]hidden (mode)
[Function File]hidden ()

Manipulation the mesh hidden line removal. Called with no argument the hidden line
removal is toggled. The argument mode can be either ’on’ or ’off’ and the set of the
hidden line removal is set accordingly.

See also: [mesh], page 262, [meshc], page 262, [surf], page 263.

[Function File]surf (x, y, z)
[Function File]surf (z)
[Function File]surf (. . . , c)
[Function File]surf (hax, . . .)
[Function File]h = surf (. . .)

Plot a surface given matrices x, and y from meshgrid and a matrix z corresponding
to the x and y coordinates of the mesh. If x and y are vectors, then a typical vertex
is (x(j), y(i), z(i,j)). Thus, columns of z correspond to different x values and rows of
z correspond to different y values.

The color of the surface is derived from the colormap and the value of z. Optionally
the color of the surface can be specified independent of z, by adding a fourth matrix,
c.

The optional return value h is a graphics handle to the created surface object.

See also: [colormap], page 586, [contour], page 247, [meshgrid], page 269, [mesh],
page 262.

[Function File]surfc (x, y, z)
Plot a surface and contour given matrices x, and y from meshgrid and a matrix z
corresponding to the x and y coordinates of the mesh. If x and y are vectors, then
a typical vertex is (x(j), y(i), z(i,j)). Thus, columns of z correspond to different x
values and rows of z correspond to different y values.

See also: [meshgrid], page 269, [surf], page 263, [contour], page 247.

[Function File]surfl (x, y, z)
[Function File]surfl (z)
[Function File]surfl (x, y, z, L)
[Function File]surfl (x, y, z, L, P)
[Function File]surfl (. . . , "light")

Plot a lighted surface given matrices x, and y from meshgrid and a matrix z cor-
responding to the x and y coordinates of the mesh. If x and y are vectors, then
a typical vertex is (x(j), y(i), z(i,j)). Thus, columns of z correspond to different x
values and rows of z correspond to different y values.

264 GNU Octave

The light direction can be specified using L. It can be given as 2-element vector
[azimuth, elevation] in degrees or as 3-element vector [lx, ly, lz]. The default value is
rotated 45 counter-clockwise from the current view.

The material properties of the surface can specified using a 4-element vector P = [AM
D SP exp] which defaults to p = [0.55 0.6 0.4 10].

"AM" strength of ambient light
"D" strength of diffuse reflection
"SP" strength of specular reflection
"EXP" specular exponent

The default lighting mode "cdata", changes the cdata property to give the impression
of a lighted surface. Please note: the alternative "light" mode, which creates a light
object to illuminate the surface is not implemented (yet).

Example:

colormap (bone (64));

surfl (peaks);

shading interp;

See also: [surf], page 263, [diffuse], page 268, [specular], page 268, [surface], page 282.

[Function File]surfnorm (x, y, z)
[Function File]surfnorm (z)
[Function File][nx, ny, nz] = surfnorm (. . .)
[Function File]surfnorm (h, . . .)

Find the vectors normal to a meshgridded surface. The meshed gridded surface is
defined by x, y, and z. If x and y are not defined, then it is assumed that they are
given by

[x, y] = meshgrid (1:size (z, 1),

1:size (z, 2));

If no return arguments are requested, a surface plot with the normal vectors to the
surface is plotted. Otherwise the components of the normal vectors at the mesh
gridded points are returned in nx, ny, and nz.

The normal vectors are calculated by taking the cross product of the diagonals of
each of the quadrilaterals in the meshgrid to find the normal vectors of the centers
of these quadrilaterals. The four nearest normal vectors to the meshgrid points are
then averaged to obtain the normal to the surface at the meshgridded points.

An example of the use of surfnorm is

surfnorm (peaks (25));

See also: [surf], page 263, [quiver3], page 253.

[Function File][fv] = isosurface (val, iso)
[Function File][fv] = isosurface (x, y, z, val, iso)
[Function File][fv] = isosurface (. . . , "noshare", "verbose")
[Function File][fvc] = isosurface (. . . , col)
[Function File][f, v] = isosurface (x, y, z, val, iso)
[Function File][f, v, c] = isosurface (x, y, z, val, iso, col)

Chapter 15: Plotting 265

[Function File]isosurface (x, y, z, val, iso, col, opt)
If called with one output argument and the first input argument val is a three-
dimensional array that contains the data of an isosurface geometry and the second
input argument iso keeps the isovalue as a scalar value then return a structure ar-
ray fv that contains the fields Faces and Vertices at computed points [x, y, z] =

meshgrid (1:l, 1:m, 1:n). The output argument fv can directly be taken as an
input argument for the patch function.

If called with further input arguments x, y and z which are three–dimensional arrays
with the same size than val then the volume data is taken at those given points.

The string input argument "noshare" is only for compatibility and has no effect. If
given the string input argument "verbose" then print messages to the command line
interface about the current progress.

If called with the input argument col which is a three-dimensional array of the same
size than val then take those values for the interpolation of coloring the isosurface
geometry. Add the field FaceVertexCData to the structure array fv.

If called with two or three output arguments then return the information about the
faces f, vertices v and color data c as seperate arrays instead of a single structure
array.

If called with no output argument then directly process the isosurface geometry with
the patch command.

For example,

[x, y, z] = meshgrid (1:5, 1:5, 1:5);

val = rand (5, 5, 5);

isosurface (x, y, z, val, .5);

will directly draw a random isosurface geometry in a graphics window. Another
example for an isosurface geometry with different additional coloring

N = 15; # Increase number of vertices in each direction

iso = .4; # Change isovalue to .1 to display a sphere

lin = linspace (0, 2, N);

[x, y, z] = meshgrid (lin, lin, lin);

c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);

figure (); # Open another figure window

subplot (2,2,1); view (-38, 20);

[f, v] = isosurface (x, y, z, c, iso);

p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");

set (gca, "PlotBoxAspectRatioMode", "manual", ...

"PlotBoxAspectRatio", [1 1 1]);

set (p, "FaceColor", "green", "FaceLighting", "phong");

light ("Position", [1 1 5]); # Available with the JHandles package

subplot (2,2,2); view (-38, 20);

p = patch ("Faces", f, "Vertices", v, "EdgeColor", "blue");

set (gca, "PlotBoxAspectRatioMode", "manual", ...

"PlotBoxAspectRatio", [1 1 1]);

set (p, "FaceColor", "none", "FaceLighting", "phong");

light ("Position", [1 1 5]);

subplot (2,2,3); view (-38, 20);

[f, v, c] = isosurface (x, y, z, c, iso, y);

266 GNU Octave

p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", c, ...

"FaceColor", "interp", "EdgeColor", "none");

set (gca, "PlotBoxAspectRatioMode", "manual", ...

"PlotBoxAspectRatio", [1 1 1]);

set (p, "FaceLighting", "phong");

light ("Position", [1 1 5]);

subplot (2,2,4); view (-38, 20);

p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", c, ...

"FaceColor", "interp", "EdgeColor", "blue");

set (gca, "PlotBoxAspectRatioMode", "manual", ...

"PlotBoxAspectRatio", [1 1 1]);

set (p, "FaceLighting", "phong");

light ("Position", [1 1 5]);

See also: [isonormals], page 266, [isocolors], page 267.

[Function File][n] = isonormals (val, v)
[Function File][n] = isonormals (val, p)
[Function File][n] = isonormals (x, y, z, val, v)
[Function File][n] = isonormals (x, y, z, val, p)
[Function File][n] = isonormals (. . . , "negate")
[Function File]isonormals (. . . , p)

If called with one output argument and the first input argument val is a three-
dimensional array that contains the data for an isosurface geometry and the sec-
ond input argument v keeps the vertices of an isosurface then return the normals
n in form of a matrix with the same size than v at computed points [x, y, z] =

meshgrid (1:l, 1:m, 1:n). The output argument n can be taken to manually set
VertexNormals of a patch.

If called with further input arguments x, y and z which are three–dimensional arrays
with the same size than val then the volume data is taken at those given points.
Instead of the vertices data v a patch handle p can be passed to this function.

If given the string input argument "negate" as last input argument then compute the
reverse vector normals of an isosurface geometry.

If no output argument is given then directly redraw the patch that is given by the
patch handle p.

For example:
function [] = isofinish (p)

set (gca, "PlotBoxAspectRatioMode", "manual", ...

"PlotBoxAspectRatio", [1 1 1]);

set (p, "VertexNormals", -get (p,"VertexNormals")); # Revert normals

set (p, "FaceColor", "interp");

set (p, "FaceLighting", "phong");

light ("Position", [1 1 5]); # Available with JHandles

endfunction

N = 15; # Increase number of vertices in each direction

iso = .4; # Change isovalue to .1 to display a sphere

lin = linspace (0, 2, N);

[x, y, z] = meshgrid (lin, lin, lin);

c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);

figure (); # Open another figure window

Chapter 15: Plotting 267

subplot (2,2,1); view (-38, 20);

[f, v, cdat] = isosurface (x, y, z, c, iso, y);

p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, ...

"FaceColor", "interp", "EdgeColor", "none");

isofinish (p); ## Call user function isofinish

subplot (2,2,2); view (-38, 20);

p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, ...

"FaceColor", "interp", "EdgeColor", "none");

isonormals (x, y, z, c, p); # Directly modify patch

isofinish (p);

subplot (2,2,3); view (-38, 20);

p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, ...

"FaceColor", "interp", "EdgeColor", "none");

n = isonormals (x, y, z, c, v); # Compute normals of isosurface

set (p, "VertexNormals", n); # Manually set vertex normals

isofinish (p);

subplot (2,2,4); view (-38, 20);

p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, ...

"FaceColor", "interp", "EdgeColor", "none");

isonormals (x, y, z, c, v, "negate"); # Use reverse directly

isofinish (p);

See also: [isosurface], page 264, [isocolors], page 267.

[Function File][cd] = isocolors (c, v)
[Function File][cd] = isocolors (x, y, z, c, v)
[Function File][cd] = isocolors (x, y, z, r, g, b, v)
[Function File][cd] = isocolors (r, g, b, v)
[Function File][cd] = isocolors (. . . , p)
[Function File]isocolors (. . .)

If called with one output argument and the first input argument c is a
three-dimensional array that contains color values and the second input argument v
keeps the vertices of a geometry then return a matrix cd with color data information
for the geometry at computed points [x, y, z] = meshgrid (1:l, 1:m, 1:n). The
output argument cd can be taken to manually set FaceVertexCData of a patch.

If called with further input arguments x, y and z which are three–dimensional arrays
of the same size than c then the color data is taken at those given points. Instead
of the color data c this function can also be called with RGB values r, g, b. If input
argumnets x, y, z are not given then again meshgrid computed values are taken.

Optionally, the patch handle p can be given as the last input argument to all variations
of function calls instead of the vertices data v. Finally, if no output argument is given
then directly change the colors of a patch that is given by the patch handle p.

For example:

function [] = isofinish (p)

set (gca, "PlotBoxAspectRatioMode", "manual", ...

"PlotBoxAspectRatio", [1 1 1]);

set (p, "FaceColor", "interp");

set (p, "FaceLighting", "flat");

light ("Position", [1 1 5]); ## Available with JHandles

268 GNU Octave

endfunction

N = 15; # Increase number of vertices in each direction

iso = .4; # Change isovalue to .1 to display a sphere

lin = linspace (0, 2, N);

[x, y, z] = meshgrid (lin, lin, lin);

c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);

figure (); # Open another figure window

subplot (2,2,1); view (-38, 20);

[f, v] = isosurface (x, y, z, c, iso);

p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");

cdat = rand (size (c)); # Compute random patch color data

isocolors (x, y, z, cdat, p); # Directly set colors of patch

isofinish (p); # Call user function isofinish

subplot (2,2,2); view (-38, 20);

p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");

[r, g, b] = meshgrid (lin, 2-lin, 2-lin);

cdat = isocolors (x, y, z, c, v); # Compute color data vertices

set (p, "FaceVertexCData", cdat); # Set color data manually

isofinish (p);

subplot (2,2,3); view (-38, 20);

p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");

cdat = isocolors (r, g, b, c, p); # Compute color data patch

set (p, "FaceVertexCData", cdat); # Set color data manually

isofinish (p);

subplot (2,2,4); view (-38, 20);

p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");

r = g = b = repmat ([1:N] / N, [N, 1, N]); # Black to white

cdat = isocolors (x, y, z, r, g, b, v);

set (p, "FaceVertexCData", cdat);

isofinish (p);

See also: [isosurface], page 264, [isonormals], page 266.

[Function File]diffuse (sx, sy, sz, lv)
Calculate diffuse reflection strength of a surface defined by the normal vector elements
sx, sy, sz. The light vector can be specified using parameter lv. It can be given as
2-element vector [azimuth, elevation] in degrees or as 3-element vector [lx, ly, lz].

See also: [specular], page 268, [surfl], page 263.

[Function File]specular (sx, sy, sz, lv, vv)
[Function File]specular (sx, sy, sz, lv, vv, se)

Calculate specular reflection strength of a surface defined by the normal vector el-
ements sx, sy, sz using Phong’s approximation. The light and view vectors can be

Chapter 15: Plotting 269

specified using parameter lv and vv respectively. Both can be given as 2-element
vectors [azimuth, elevation] in degrees or as 3-element vector [x, y, z]. An optional
6th argument describes the specular exponent (spread) se.

See also: [surfl], page 263, [diffuse], page 268.

[Function File][xx, yy, zz] = meshgrid (x, y, z)
[Function File][xx, yy] = meshgrid (x, y)
[Function File][xx, yy] = meshgrid (x)

Given vectors of x and y and z coordinates, and returning 3 arguments, return three-
dimensional arrays corresponding to the x, y, and z coordinates of a mesh. When
returning only 2 arguments, return matrices corresponding to the x and y coordinates
of a mesh. The rows of xx are copies of x, and the columns of yy are copies of y. If y
is omitted, then it is assumed to be the same as x, and z is assumed the same as y.

See also: [mesh], page 262, [contour], page 247.

[Function File][y1, y2, ..., yn] = ndgrid (x1, x2, . . . , xn)
[Function File][y1, y2, ..., yn] = ndgrid (x)

Given n vectors x1, . . . xn, ndgrid returns n arrays of dimension n. The elements
of the i-th output argument contains the elements of the vector xi repeated over all
dimensions different from the i-th dimension. Calling ndgrid with only one input
argument x is equivalent of calling ndgrid with all n input arguments equal to x:

[y1, y2, . . . , yn] = ndgrid (x, . . . , x)

See also: [meshgrid], page 269.

[Function File]plot3 (args)
Produce three-dimensional plots. Many different combinations of arguments are pos-
sible. The simplest form is

plot3 (x, y, z)

in which the arguments are taken to be the vertices of the points to be plotted in three
dimensions. If all arguments are vectors of the same length, then a single continuous
line is drawn. If all arguments are matrices, then each column of the matrices is
treated as a separate line. No attempt is made to transpose the arguments to make
the number of rows match.

If only two arguments are given, as

plot3 (x, c)

the real and imaginary parts of the second argument are used as the y and z coordi-
nates, respectively.

If only one argument is given, as

plot3 (c)

the real and imaginary parts of the argument are used as the y and z values, and
they are plotted versus their index.

Arguments may also be given in groups of three as

plot3 (x1, y1, z1, x2, y2, z2, ...)

270 GNU Octave

in which each set of three arguments is treated as a separate line or set of lines in
three dimensions.

To plot multiple one- or two-argument groups, separate each group with an empty
format string, as

plot3 (x1, c1, "", c2, "", ...)

An example of the use of plot3 is

z = [0:0.05:5];

plot3 (cos (2*pi*z), sin (2*pi*z), z, ";helix;");

plot3 (z, exp (2i*pi*z), ";complex sinusoid;");

See also: [plot], page 238, [xlabel], page 278, [ylabel], page 278, [zlabel], page 278,
[title], page 276, [print], page 287.

[Function File][azimuth, elevation] = view ()
[Function File]view (azimuth, elevation)
[Function File]view ([azimuth elevation])
[Function File]view ([x y z])
[Function File]view (dims)
[Function File]view (ax, . . .)

Query or set the viewpoint for the current axes. The parameters azimuth and eleva-
tion can be given as two arguments or as 2-element vector. The viewpoint can also be
given with Cartesian coordinates x, y, and z. The call view (2) sets the viewpoint to
azimuth = 0 and elevation = 90, which is the default for 2-D graphs. The call view
(3) sets the viewpoint to azimuth = -37.5 and elevation = 30, which is the default
for 3-D graphs. If ax is given, the viewpoint is set for this axes, otherwise it is set for
the current axes.

[Function File]slice (x, y, z, v, sx, sy, sz)
[Function File]slice (x, y, z, v, xi, yi, zi)
[Function File]slice (v, sx, sy, sz)
[Function File]slice (v, xi, yi, zi)
[Function File]h = slice (. . .)
[Function File]h = slice (. . . , method)

Plot slices of 3-D data/scalar fields. Each element of the 3-dimensional array v repre-
sents a scalar value at a location given by the parameters x, y, and z. The parameters
x, x, and z are either 3-dimensional arrays of the same size as the array v in the
"meshgrid" format or vectors. The parameters xi, etc. respect a similar format to x,
etc., and they represent the points at which the array vi is interpolated using interp3.
The vectors sx, sy, and sz contain points of orthogonal slices of the respective axes.

If x, y, z are omitted, they are assumed to be x = 1:size (v, 2), y = 1:size (v, 1)

and z = 1:size (v, 3).

Method is one of:

"nearest" Return the nearest neighbor.

"linear" Linear interpolation from nearest neighbors.

"cubic" Cubic interpolation from four nearest neighbors (not implemented yet).

Chapter 15: Plotting 271

"spline" Cubic spline interpolation—smooth first and second derivatives through-
out the curve.

The default method is "linear".

The optional return value h is a graphics handle to the created surface object.

Examples:

[x, y, z] = meshgrid (linspace (-8, 8, 32));

v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));

slice (x, y, z, v, [], 0, []);

[xi, yi] = meshgrid (linspace (-7, 7));

zi = xi + yi;

slice (x, y, z, v, xi, yi, zi);

See also: [interp3], page 552, [surface], page 282, [pcolor], page 255.

[Function File]ribbon (x, y, width)
[Function File]ribbon (y)
[Function File]h = ribbon (. . .)

Plot a ribbon plot for the columns of y vs. x. The optional parameter width specifies
the width of a single ribbon (default is 0.75). If x is omitted, a vector containing the
row numbers is assumed (1:rows(Y)).

The optional return value h is a vector of graphics handles to the surface objects
representing each ribbon.

[Function File]shading (type)
[Function File]shading (ax, . . .)

Set the shading of surface or patch graphic objects. Valid arguments for type are

"flat" Single colored patches with invisible edges.

"faceted" Single colored patches with visible edges.

"interp" Color between patch vertices are interpolated and the patch edges are
invisible.

If ax is given the shading is applied to axis ax instead of the current axis.

[Function File]scatter3 (x, y, z, s, c)
[Function File]scatter3 (. . . , ’filled’)
[Function File]scatter3 (. . . , style)
[Function File]scatter3 (. . . , prop, val)
[Function File]scatter3 (h, . . .)
[Function File]h = scatter3 (. . .)

Plot a scatter plot of the data in 3D. A marker is plotted at each point defined by
the points in the vectors x, y and z. The size of the markers used is determined by s,
which can be a scalar or a vector of the same length of x, y and z. If s is not given
or is an empty matrix, then the default value of 8 points is used.

The color of the markers is determined by c, which can be a string defining a fixed
color; a 3-element vector giving the red, green, and blue components of the color; a

272 GNU Octave

vector of the same length as x that gives a scaled index into the current colormap; or
a n-by-3 matrix defining the colors of each of the markers individually.

The marker to use can be changed with the style argument, that is a string defining
a marker in the same manner as the plot command. If the argument ’filled’ is given
then the markers as filled. All additional arguments are passed to the underlying
patch command.

The optional return value h is a graphics handle to the hggroup object representing
the points.

[x, y, z] = peaks (20);

scatter3 (x(:), y(:), z(:), [], z(:));

See also: [plot], page 238, [patch], page 281, [scatter], page 245.

15.2.2.1 Aspect Ratio

For three-dimensional plots the aspect ratio can be set for data with daspect and for the
plot box with pbaspect. See Section 15.2.1.1 [Axis Configuration], page 256 for controlling
the x-, y-, and z-limits for plotting.

[Function File]daspect (data_aspect_ratio)
Set the data aspect ratio of the current axes. The aspect ratio is a normalized 3-
element vector representing the span of the x, y, and z-axes limits.

[Function File]data_aspect_ratio = daspect ()
Return the data aspect ratio of the current axes.

[Function File]daspect (mode)
Set the data aspect ratio mode of the current axes.

[Function File]data_aspect_ratio_mode = daspect ("mode")
Return the data aspect ratio mode of the current axes.

[Function File]daspect (hax, . . .)
Use the axes, with handle hax, instead of the current axes.

See also: [axis], page 256, [pbaspect], page 272, [xlim], page 258, [ylim], page 258,
[zlim], page 258.

[Function File]pbaspect (plot_box_aspect_ratio)
Set the plot box aspect ratio of the current axes. The aspect ratio is a normalized
3-element vector representing the rendered lengths of the x, y, and z-axes.

[Function File]plot_box_aspect_ratio = pbaspect ()
Return the plot box aspect ratio of the current axes.

[Function File]pbaspect (mode)
Set the plot box aspect ratio mode of the current axes.

[Function File]plot_box_aspect_ratio_mode = pbaspect ("mode")
Return the plot box aspect ratio mode of the current axes.

[Function File]pbaspect (hax, . . .)
Use the axes, with handle hax, instead of the current axes.

See also: [axis], page 256, [daspect], page 272, [xlim], page 258, [ylim], page 258,
[zlim], page 258.

Chapter 15: Plotting 273

15.2.2.2 Three-dimensional Function Plotting

[Function File]ezplot3 (fx, fy, fz)
[Function File]ezplot3 (. . . , dom)
[Function File]ezplot3 (. . . , n)
[Function File]ezplot3 (h, . . .)
[Function File]h = ezplot3 (. . .)

Plot a parametrically defined curve in three dimensions. fx, fy, and fz are strings,
inline functions or function handles with one arguments defining the function. By
default the plot is over the domain -2*pi < x < 2*pi with 60 points.

If dom is a two element vector, it represents the minimum and maximum value of t.
n is a scalar defining the number of points to use.

The optional return value h is a graphics handle to the created plot.

fx = @(t) cos (t);

fy = @(t) sin (t);

fz = @(t) t;

ezplot3 (fx, fy, fz, [0, 10*pi], 100);

See also: [plot3], page 269, [ezplot], page 259, [ezsurf], page 274, [ezmesh], page 273.

[Function File]ezmesh (f)
[Function File]ezmesh (fx, fy, fz)
[Function File]ezmesh (. . . , dom)
[Function File]ezmesh (. . . , n)
[Function File]ezmesh (. . . , ’circ’)
[Function File]ezmesh (h, . . .)
[Function File]h = ezmesh (. . .)

Plot the mesh defined by a function. f is a string, inline function or function handle
with two arguments defining the function. By default the plot is over the domain
-2*pi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each dimension.

If dom is a two element vector, it represents the minimum and maximum value of
both x and y. If dom is a four element vector, then the minimum and maximum
value of x and y are specify separately.

n is a scalar defining the number of points to use in each dimension.

If three functions are passed, then plot the parametrically defined function [fx (s,

t), fy (s, t), fz (s, t)].

If the argument ’circ’ is given, then the function is plotted over a disk centered on
the middle of the domain dom.

The optional return value h is a graphics handle to the created surface object.

f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);

ezmesh (f, [-3, 3]);

An example of a parametrically defined function is

fx = @(s,t) cos (s) .* cos(t);

fy = @(s,t) sin (s) .* cos(t);

fz = @(s,t) sin(t);

ezmesh (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);

274 GNU Octave

See also: [ezplot], page 259, [ezmeshc], page 274, [ezsurf], page 274, [ezsurfc], page 275.

[Function File]ezmeshc (f)
[Function File]ezmeshc (fx, fy, fz)
[Function File]ezmeshc (. . . , dom)
[Function File]ezmeshc (. . . , n)
[Function File]ezmeshc (. . . , ’circ’)
[Function File]ezmeshc (h, . . .)
[Function File]h = ezmeshc (. . .)

Plot the mesh and contour lines defined by a function. f is a string, inline function
or function handle with two arguments defining the function. By default the plot
is over the domain -2*pi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each
dimension.

If dom is a two element vector, it represents the minimum and maximum value of
both x and y. If dom is a four element vector, then the minimum and maximum
value of x and y are specify separately.

n is a scalar defining the number of points to use in each dimension.

If three functions are passed, then plot the parametrically defined function [fx (s,

t), fy (s, t), fz (s, t)].

If the argument ’circ’ is given, then the function is plotted over a disk centered on
the middle of the domain dom.

The optional return value h is a 2-element vector with a graphics handle for the
created mesh plot and a second handle for the created contour plot.

f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);

ezmeshc (f, [-3, 3]);

See also: [ezplot], page 259, [ezsurfc], page 275, [ezsurf], page 274, [ezmesh], page 273.

[Function File]ezsurf (f)
[Function File]ezsurf (fx, fy, fz)
[Function File]ezsurf (. . . , dom)
[Function File]ezsurf (. . . , n)
[Function File]ezsurf (. . . , ’circ’)
[Function File]ezsurf (h, . . .)
[Function File]h = ezsurf (. . .)

Plot the surface defined by a function. f is a string, inline function or function handle
with two arguments defining the function. By default the plot is over the domain
-2*pi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each dimension.

If dom is a two element vector, it represents the minimum and maximum value of
both x and y. If dom is a four element vector, then the minimum and maximum
value of x and y are specify separately.

n is a scalar defining the number of points to use in each dimension.

If three functions are passed, then plot the parametrically defined function [fx (s,

t), fy (s, t), fz (s, t)].

If the argument ’circ’ is given, then the function is plotted over a disk centered on
the middle of the domain dom.

Chapter 15: Plotting 275

The optional return value h is a graphics handle to the created surface object.

f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);

ezsurf (f, [-3, 3]);

An example of a parametrically defined function is

fx = @(s,t) cos (s) .* cos (t);

fy = @(s,t) sin (s) .* cos (t);

fz = @(s,t) sin (t);

ezsurf (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);

See also: [ezplot], page 259, [ezmesh], page 273, [ezsurfc], page 275, [ezmeshc],
page 274.

[Function File]ezsurfc (f)
[Function File]ezsurfc (fx, fy, fz)
[Function File]ezsurfc (. . . , dom)
[Function File]ezsurfc (. . . , n)
[Function File]ezsurfc (. . . , ’circ’)
[Function File]ezsurfc (h, . . .)
[Function File]h = ezsurfc (. . .)

Plot the surface and contour lines defined by a function. f is a string, inline function
or function handle with two arguments defining the function. By default the plot
is over the domain -2*pi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each
dimension.

If dom is a two element vector, it represents the minimum and maximum value of
both x and y. If dom is a four element vector, then the minimum and maximum
value of x and y are specify separately.

n is a scalar defining the number of points to use in each dimension.

If three functions are passed, then plot the parametrically defined function [fx (s,

t), fy (s, t), fz (s, t)].

If the argument ’circ’ is given, then the function is plotted over a disk centered on
the middle of the domain dom.

The optional return value h is a 2-element vector with a graphics for the created
surface plot and a second handle for the created contour plot.

f = @(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);

ezsurfc (f, [-3, 3]);

See also: [ezplot], page 259, [ezmeshc], page 274, [ezsurf], page 274, [ezmesh],
page 273.

15.2.2.3 Three-dimensional Geometric Shapes

[Function File]cylinder
[Function File]cylinder (r)
[Function File]cylinder (r, n)
[Function File][x, y, z] = cylinder (. . .)

276 GNU Octave

[Function File]cylinder (ax, . . .)
Generate three matrices in meshgrid format, such that surf (x, y, z) generates a
unit cylinder. The matrices are of size n+1-by-n+1. r is a vector containing the radius
along the z-axis. If n or r are omitted then default values of 20 or [1 1] are assumed.

Called with no return arguments, cylinder calls directly surf (x, y, z). If an axes
handle ax is passed as the first argument, the surface is plotted to this set of axes.

Examples:

[x, y, z] = cylinder (10:-1:0, 50);

surf (x, y, z);

title ("a cone");

See also: [sphere], page 276.

[Function File][x, y, z] = sphere (n)
[Function File]sphere (h, . . .)

Generate three matrices in meshgrid format, such that surf (x, y, z) generates a
unit sphere. The matrices of n+1-by-n+1. If n is omitted then a default value of 20
is assumed.

Called with no return arguments, sphere call directly surf (x, y, z). If an axes
handle is passed as the first argument, the surface is plotted to this set of axes.

See also: [peaks], page 292.

[Function File][x, y, z] = ellipsoid (xc, yc, zc, xr, yr, zr, n)
[Function File]ellipsoid (h, . . .)

Generate three matrices in meshgrid format that define an ellipsoid. Called with
no return arguments, ellipsoid calls directly surf (x, y, z). If an axes handle is
passed as the first argument, the surface is plotted to this set of axes.

See also: [sphere], page 276.

15.2.3 Plot Annotations

You can add titles, axis labels, legends, and arbitrary text to an existing plot. For example:

x = -10:0.1:10;

plot (x, sin (x));

title ("sin(x) for x = -10:0.1:10");

xlabel ("x");

ylabel ("sin (x)");

text (pi, 0.7, "arbitrary text");

legend ("sin (x)");

The functions grid and box may also be used to add grid and border lines to the plot.
By default, the grid is off and the border lines are on.

[Function File]title (string)
[Function File]title (string, p1, v1, . . .)
[Function File]title (h, . . .)
[Function File]h = title (. . .)

Create a title object for a plot.

The optional return value h is a graphics handle to the created object.

Chapter 15: Plotting 277

[Function File]legend (str1, str2, . . .)
[Function File]legend (matstr)
[Function File]legend (cell)
[Function File]legend (. . . , "location", pos)
[Function File]legend (. . . , "orientation", orient)
[Function File]legend (hax, . . .)
[Function File]legend (hobjs, . . .)
[Function File]legend (hax, hobjs, . . .)
[Function File]legend ("option")

Display a legend for the axes with handle hax, or the current axes, using the specified
strings as labels. Legend entries may be specified as individual character string argu-
ments, a character array, or a cell array of character strings. If the handles, hobjs, are
not specified then the legend’s strings will be associated with the axes’ descendants.
Legend works on line graphs, bar graphs, etc. A plot must exist before legend is
called.

The optional parameter pos specifies the location of the legend as follows:

pos location of the legend

north center top

south center bottom

east right center

west left center

northeast right top (default)

northwest left top

southeast right bottom

southwest left bottom

outside can be appended to any location string

The optional parameter orient determines if the key elements are placed vertically or
horizontally. The allowed values are "vertical" or "horizontal" with the default being
"vertical".

The following customizations are available using option:

"show" Show legend on the plot

"hide" Hide legend on the plot
"toggle" Toggles between "hide" and "show"

"boxon" Show a box around legend

278 GNU Octave

"boxoff" Hide the box around legend

"left" Place text to the left of the keys

"right" Place text to the right of the keys
"off" Delete the legend object

[Function File]text (x, y, label)
[Function File]text (x, y, z, label)
[Function File]text (x, y, label, p1, v1, . . .)
[Function File]text (x, y, z, label, p1, v1, . . .)
[Function File]h = text (. . .)

Create a text object with text label at position x, y, z on the current axes. Property-
value pairs following label may be used to specify the appearance of the text.

The optional return value h is a graphics handle to the created text object.

See Section 15.3.3.5 [Text Properties], page 307 for the properties that you can set.

[Function File]xlabel (string)
[Function File]xlabel (h, string)
[Function File]h = xlabel (. . .)
[Function File]ylabel (. . .)
[Function File]zlabel (. . .)

Specify x-, y-, or z-axis labels for the current axis. If h is specified then label the axis
defined by h.

The optional return value h is a graphics handle to the created object.

See also: [title], page 276, [text], page 278.

[Function File]clabel (c, h)
[Function File]clabel (c, h, v)
[Function File]clabel (c, h, "manual")
[Function File]clabel (c)
[Function File]clabel (c, h)
[Function File]clabel (. . . , prop, val, . . .)
[Function File]h = clabel (. . .)

Add labels to the contours of a contour plot. The contour plot is specified by the
contour matrix c and optionally the contourgroup object h that are returned by
contour, contourf and contour3. The contour labels are rotated and placed in the
contour itself.

By default, all contours are labeled. However, the contours to label can be specified
by the vector v. If the "manual" argument is given then the contours to label can be
selected with the mouse.

Additional property/value pairs that are valid properties of text objects can be given
and are passed to the underlying text objects. Additionally, the property "LabelSpac-
ing" is available allowing the spacing between labels on a contour (in points) to be
specified. The default is 144 points, or 2 inches.

The optional return value h is a vector of graphics handles to the text objects repre-
senting each label. The "userdata" property of the text objects contains the numerical
value of the contour label.

Chapter 15: Plotting 279

An example of the use of clabel is

[c, h] = contour (peaks (), -4 : 6);

clabel (c, h, -4:2:6, "fontsize", 12);

See also: [contour], page 247, [contourf], page 248, [contour3], page 249, [meshc],
page 262, [surfc], page 263, [text], page 278.

[Function File]box (arg)
[Function File]box (h, . . .)

Control the display of a border around the plot. The argument may be either "on"
or "off". If it is omitted, the current box state is toggled.

See also: [grid], page 279.

[Function File]grid (arg)
[Function File]grid ("minor", arg2)
[Function File]grid (hax, . . .)

Force the display of a grid on the plot. The argument may be either "on", or "off".
If it is omitted, the current grid state is toggled.

If arg is "minor" then the minor grid is toggled. When using a minor grid a second
argument arg2 is allowed, which can be either "on" or "off" to explicitly set the
state of the minor grid.

If the first argument is an axis handle, hax, operate on the specified axis object.

See also: [plot], page 238.

[Function File]colorbar (s)
[Function File]colorbar ("peer", h, . . .)

Add a colorbar to the current axes. Valid values for s are

"EastOutside"
Place the colorbar outside the plot to the right. This is the default.

"East" Place the colorbar inside the plot to the right.

"WestOutside"
Place the colorbar outside the plot to the left.

"West" Place the colorbar inside the plot to the left.

"NorthOutside"
Place the colorbar above the plot.

"North" Place the colorbar at the top of the plot.

"SouthOutside"
Place the colorbar under the plot.

"South" Place the colorbar at the bottom of the plot.

"Off", "None"
Remove any existing colorbar from the plot.

If the argument "peer" is given, then the following argument is treated as the axes
handle on which to add the colorbar.

280 GNU Octave

15.2.4 Multiple Plots on One Page

Octave can display more than one plot in a single figure. The simplest way to do this is to
use the subplot function to divide the plot area into a series of subplot windows that are
indexed by an integer. For example,

subplot (2, 1, 1)

fplot (@sin, [-10, 10]);

subplot (2, 1, 2)

fplot (@cos, [-10, 10]);

creates a figure with two separate axes, one displaying a sine wave and the other a cosine
wave. The first call to subplot divides the figure into two plotting areas (two rows and one
column) and makes the first plot area active. The grid of plot areas created by subplot is
numbered in column-major order (top to bottom, left to right).

[Function File]subplot (rows, cols, index)
[Function File]subplot (rcn)

Set up a plot grid with rows by cols subwindows and plot in location given by index.

If only one argument is supplied, then it must be a three digit value specifying the
location in digits 1 (rows) and 2 (columns) and the plot index in digit 3.

The plot index runs row-wise. First all the columns in a row are filled and then the
next row is filled.

For example, a plot with 2 by 3 grid will have plot indices running as follows:

1 2 3

4 5 6

See also: [axes], page 281, [plot], page 238.

15.2.5 Multiple Plot Windows

You can open multiple plot windows using the figure function. For example,

figure (1);

fplot (@sin, [-10, 10]);

figure (2);

fplot (@cos, [-10, 10]);

creates two figures, with the first displaying a sine wave and the second a cosine wave.
Figure numbers must be positive integers.

[Function File]figure (n)
[Function File]figure (n, property, value, . . .)

Set the current plot window to plot window n. If no arguments are specified, the next
available window number is chosen.

Multiple property-value pairs may be specified for the figure, but they must appear
in pairs.

Chapter 15: Plotting 281

15.2.6 Use of axis, line, and patch functions

You can create axes, line, and patch objects directly using the axes, line, and patch

functions. These objects become children of the current axes object.

[Function File]axes ()
[Function File]axes (property, value, . . .)
[Function File]axes (h)

Create an axes object and return a handle to it.

[Function File]line ()
[Function File]line (x, y)
[Function File]line (x, y, z)
[Function File]line (x, y, z, property, value, . . .)

Create line object from x and y and insert in current axes object. Return a handle
(or vector of handles) to the line objects created.

Multiple property-value pairs may be specified for the line, but they must appear in
pairs.

[Function File]patch ()
[Function File]patch (x, y, c)
[Function File]patch (x, y, z, c)
[Function File]patch (fv)
[Function File]patch (’Faces’, f, ’Vertices’, v, . . .)
[Function File]patch (. . . , prop, val)
[Function File]patch (h, . . .)
[Function File]h = patch (. . .)

Create patch object from x and y with color c and insert in the current axes object.
Return handle to patch object.

For a uniform colored patch, c can be given as an RGB vector, scalar value referring
to the current colormap, or string value (for example, "r" or "red").

If passed a structure fv contain the fields "vertices", "faces" and optionally "facev-
ertexcdata", create the patch based on these properties.

The optional return value h is a graphics handle to the created patch object.

See also: [fill], page 281.

[Function File]fill (x, y, c)
[Function File]fill (x1, y1, c1, x2, y2, c2)
[Function File]fill (. . . , prop, val)
[Function File]fill (h, . . .)
[Function File]h = fill (. . .)

Create one or more filled patch objects.

The optional return value h is an array of graphics handles to the created patch
objects.

See also: [patch], page 281.

282 GNU Octave

[Function File]surface (x, y, z, c)
[Function File]surface (x, y, z)
[Function File]surface (z, c)
[Function File]surface (z)
[Function File]surface (. . . , prop, val)
[Function File]surface (h, . . .)
[Function File]h = surface (. . .)

Plot a surface graphic object given matrices x, and y from meshgrid and a matrix
z corresponding to the x and y coordinates of the surface. If x and y are vectors,
then a typical vertex is (x(j), y(i), z(i,j)). Thus, columns of z correspond to different
x values and rows of z correspond to different y values. If x and y are missing, they
are constructed from size of the matrix z.

Any additional properties passed are assigned to the surface.

The optional return value h is a graphics handle to the created surface object.

See also: [surf], page 263, [mesh], page 262, [patch], page 281, [line], page 281.

15.2.7 Manipulation of plot windows

By default, Octave refreshes the plot window when a prompt is printed, or when waiting
for input. The drawnow function is used to cause a plot window to be updated.

[Built-in Function]drawnow ()
[Built-in Function]drawnow ("expose")
[Built-in Function]drawnow (term, file, mono, debug_file)

Update figure windows and their children. The event queue is flushed and any call-
backs generated are executed. With the optional argument "expose", only graphic
objects are updated and no other events or callbacks are processed. The third calling
form of drawnow is for debugging and is undocumented.

Only figures that are modified will be updated. The refresh function can also be used
to force an update of the current figure, even if it is not modified.

[Function File]refresh ()
[Function File]refresh (h)

Refresh a figure, forcing it to be redrawn. Called without an argument the current
figure is redrawn, otherwise the figure pointed to by h is redrawn.

See also: [drawnow], page 282.

Normally, high-level plot functions like plot or mesh call newplot to initialize the state
of the current axes so that the next plot is drawn in a blank window with default property
settings. To have two plots superimposed over one another, use the hold function. For
example,

hold on;

x = -10:0.1:10;

plot (x, sin (x));

plot (x, cos (x));

hold off;

Chapter 15: Plotting 283

displays sine and cosine waves on the same axes. If the hold state is off, consecutive plotting
commands like this will only display the last plot.

[Function File]newplot ()
Prepare graphics engine to produce a new plot. This function is called at the beginning
of all high-level plotting functions. It is not normally required in user programs.

[Command]hold
[Command]hold state

[Function File]hold (hax, . . .)
Toggle or set the ’hold’ state of the plotting engine which determines whether new
graphic objects are added to the plot or replace the existing objects.

hold on Retain plot data and settings so that subsequent plot commands are
displayed on a single graph.

hold all Retain plot line color, line style, data and settings so that subsequent
plot commands are displayed on a single graph with the next line color
and style.

hold off Clear plot and restore default graphics settings before each new plot com-
mand. (default).

hold Toggle the current ’hold’ state.

When given the additional argument hax, the hold state is modified only for the given
axis handle.

To query the current ’hold’ state use the ishold function.

See also: [ishold], page 283, [cla], page 284, [newplot], page 283, [clf], page 283.

[Command]ishold
[Function File]ishold (h)

Return true if the next plot will be added to the current plot, or false if the plot
device will be cleared before drawing the next plot.

Optionally, operate on the graphics handle h rather than the current plot.

See also: [hold], page 283.

To clear the current figure, call the clf function. To clear the current axis, call the cla
function. To bring the current figure to the top of the window stack, call the shg function.
To delete a graphics object, call delete on its index. To close the figure window, call the
close function.

[Function File]clf ()
[Function File]clf ("reset")
[Function File]clf (hfig)
[Function File]clf (hfig, "reset")
[Function File]h = clf (. . .)

Clear the current figure window. clf operates by deleting child graphics objects with
visible handles (handlevisibility = on). If hfig is specified operate on it instead of

284 GNU Octave

the current figure. If the optional argument "reset" is specified, all objects including
those with hidden handles are deleted.

The optional return value h is the graphics handle of the figure window that was
cleared.

See also: [cla], page 284, [close], page 284, [delete], page 284.

[Function File]cla ()
[Function File]cla ("reset")
[Function File]cla (hax)
[Function File]cla (hax, "reset")

Delete the children of the current axes with visible handles. If hax is specified and
is an axes object handle, operate on it instead of the current axes. If the optional
argument "reset" is specified, also delete the children with hidden handles.

See also: [clf], page 283.

[Command]shg
Show the graph window. Currently, this is the same as executing drawnow.

See also: [drawnow], page 282, [figure], page 280.

[Function File]delete (file)
[Function File]delete (handle)

Delete the named file or graphics handle.

Deleting graphics objects is the proper way to remove features from a plot without
clearing the entire figure.

See also: [clf], page 283, [cla], page 284, [unlink], page 630.

[Command]close
[Command]close (n)
[Command]close all
[Command]close all hidden

Close figure window(s) by calling the function specified by the "closerequestfcn"

property for each figure. By default, the function closereq is used.

See also: [closereq], page 284.

[Function File]closereq ()
Close the current figure and delete all graphics objects associated with it.

See also: [close], page 284, [delete], page 284.

15.2.8 Use of the interpreter Property

All text objects, including titles, labels, legends, and text, include the property ’interpreter’,
this property determines the manner in which special control sequences in the text are
rendered. If the interpreter is set to ’none’, then no rendering occurs. At this point the
’latex’ option is not implemented and so the ’latex’ interpreter also does not interpret the
text.

The ’tex’ option implements a subset of TEX functionality in the rendering of the text.
This allows the insertion of special characters such as Greek or mathematical symbols within

Chapter 15: Plotting 285

the text. The special characters are also inserted with a code starting with the back-slash
(\) character, as in the table Table 15.1.

In addition, the formatting of the text can be changed within the string with the codes

\bf Bold font
\it Italic font
\sl Oblique Font
\rm Normal font

These are be used in conjunction with the { and } characters to limit the change in the
font to part of the string. For example,

xlabel (’{\bf H} = a {\bf V}’)

where the character ’a’ will not appear in a bold font. Note that to avoid having Octave
interpret the backslash characters in the strings, the strings should be in single quotes.

It is also possible to change the fontname and size within the text

\fontname{fontname} Specify the font to use
\fontsize{size} Specify the size of the font to use

Finally, the superscript and subscripting can be controlled with the ’^’ and ’ ’ characters.
If the ’^’ or ’ ’ is followed by a { character, then all of the block surrounded by the { } pair
is super- or sub-scripted. Without the { } pair, only the character immediately following
the ’^’ or ’ ’ is super- or sub-scripted.

286 GNU Octave

Code Sym Code Sym Code Sym

\forall ∀ \exists ∃ \ni 3
\cong ∼= \Delta Δ \Phi Φ

\Gamma Γ \vartheta ϑ \Lambda Λ

\Pi Π \Theta Θ \Sigma Σ

\varsigma ς \Omega Ω \Xi Ξ

\Psi Ψ \perp ⊥ \alpha α

\beta β \chi χ \delta δ

\epsilon ε \phi φ \gamma γ

\eta η \iota ι \varphi ϕ

\kappa κ \lambda λ \mu µ

\nu ν \o ≤ \pi π

\theta θ \rho ρ \sigma σ

\tau τ \upsilon υ \varpi $

\omega ω \xi ξ \psi ψ

\zeta ζ \sim ∼ \Upsilon ϒ

\prime ′ \leq ≤ \infty ∞
\clubsuit ♣ \diamondsuit ♦ \heartsuit ♥
\spadesuit ♠ \leftrightarrow ↔ \leftarrow ←
\uparrow ↑ \rightarrow → \downarrow ↓
\circ ◦ \pm ± \geq ≥
\times × \propto ∝ \partial ∂

\bullet • \div ÷ \neq 6=
\equiv ≡ \approx ≈ \ldots . . .

\mid | \aleph ℵ \Im =
\Re < \wp ℘ \otimes ⊗
\oplus ⊕ \oslash � \cap ∩
\cup ∪ \supset ⊃ \supseteq ⊇
\subset ⊂ \subseteq ⊆ \in ∈
\notin /∈ \angle 6 \bigtriangledown 5
\langle 〈 \rangle 〉 \nabla ∇
\prod

∏
\surd

√
\cdot ·

\neg ¬ \wedge ∧ \vee ∨
\Leftrightarrow ⇔ \Leftarrow ⇐ \Uparrow ⇑
\Rightarrow ⇒ \Downarrow ⇓ \diamond �
\copyright c© \rfloor c \lceil d
\lfloor b \rceil e \int

∫
Table 15.1: Available special characters in TEX mode

A complete example showing the capabilities of the extended text is

Chapter 15: Plotting 287

x = 0:0.01:3;

plot(x,erf(x));

hold on;

plot(x,x,"r");

axis([0, 3, 0, 1]);

text(0.65, 0.6175, strcat(’\leftarrow x = {2/\surd\pi’,

’ {\fontsize{16}\int_{\fontsize{8}0}^{\fontsize{8}x}}’,

’ e^{-t^2} dt} = 0.6175’))

The result of which can be seen in Figure 15.7

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

← x = 2/√π ∫
0

x

 e
-t

2

 dt = 0.6175

Figure 15.7: Example of inclusion of text with the TEX interpreter

15.2.9 Printing and Saving Plots

The print command allows you to save plots in a variety of formats. For example,

print -deps foo.eps

writes the current figure to an encapsulated PostScript file called ‘foo.eps’.

[Function File]print ()
[Function File]print (options)
[Function File]print (filename, options)
[Function File]print (h, filename, options)

Print a graph, or save it to a file

filename defines the file name of the output file. If the file name has no suffix, one
is inferred from the specified device and appended to the file name. If no filename is
specified, the output is sent to the printer.

h specifies the figure handle. If no handle is specified the handle for the current figure
is used.

options:

-fh Specify the handle, h, of the figure to be printed. The default is the
current figure.

288 GNU Octave

-Pprinter

Set the printer name to which the graph is sent if no filename is specified.

-Gghostscript_command

Specify the command for calling Ghostscript. For Unix and Windows,
the defaults are ’gs’ and ’gswin32c’, respectively.

-color

-mono Monochrome or color output.

-solid

-dashed Forces all lines to be solid or dashed, respectively.

-portrait

-landscape

Specify the orientation of the plot for printed output. For non-printed
output the aspect ratio of the output corresponds to the plot area defined
by the "paperposition" property in the orientation specified. This options
is equivalent to changing the figure’s "paperorientation" property.

-ddevice Output device, where device is one of:

ps

ps2

psc

psc2 Postscript (level 1 and 2, mono and color). The FLTK graph-
ics toolkit generates Postscript level 3.0.

eps

eps2

epsc

epsc2 Encapsulated postscript (level 1 and 2, mono and color). The
FLTK graphic toolkit generates Postscript level 3.0.

tex

epslatex

epslatexstandalone

pstex

pslatex

pdflatex Generate a LATEX (or TEX) file for labels, and eps/ps/pdf for
graphics. The file produced by epslatexstandalone can be
processed directly by LATEX. The other formats are intended
to be included in a LATEX (or TEX) document. The tex device
is the same as the epslatex device. The pdflatex device is
only available for the FLTK graphics toolkit.

tikz Generate a LATEX file using PGF/TikZ. For the FLTK the
result is PGF.

ill

aifm Adobe Illustrator (Obsolete for Gnuplot versions > 4.2)

cdr

corel CorelDraw

Chapter 15: Plotting 289

dxf AutoCAD

emf

meta Microsoft Enhanced Metafile

fig XFig. For the Gnuplot graphics toolkit, the additional op-
tions ‘-textspecial’ or ‘-textnormal’ can be used to con-
trol whether the special flag should be set for the text in the
figure (default is ‘-textnormal’).

hpgl HP plotter language

mf Metafont

png Portable network graphics

jpg

jpeg JPEG image

gif GIF image (only available for the Gnuplot graphics toolkit)

pbm PBMplus

svg Scalable vector graphics

pdf Portable document format

If the device is omitted, it is inferred from the file extension, or if there
is no filename it is sent to the printer as postscript.

-dghostscript_device

Additional devices are supported by Ghostscript. Some examples are;

ljet2p HP LaserJet IIP

ljet3 HP LaserJet III

deskjet HP DeskJet and DeskJet Plus

cdj550 HP DeskJet 550C

paintjet HP PointJet

pcx24b 24-bit color PCX file format

ppm Portable Pixel Map file format

pdfwrite Produces pdf output from eps

For a complete list, type ‘system ("gs -h")’ to see what formats and
devices are available.

When Ghostscript output is sent to a printer the size is determined by
the figure’s "papersize" property. When the output is sent to a file the
size is determined by the plot box defined by the figure’s "paperposition"
property.

-append Appends the PS, or PDF output to a pre-existing file of the same type.
-rNUM Resolution of bitmaps in pixels per inch. For both metafiles and SVG the

default is the screen resolution, for other it is 150 dpi. To specify screen
resolution, use "-r0".

290 GNU Octave

-tight Forces a tight bounding box for eps-files.

-preview Adds a preview to eps-files. Supported formats are;

-interchange

Provides an interchange preview.

-metalfile

Provides a metafile preview.

-pict Provides pict preview.

-tiff Provides a tiff preview.

-Sxsize,ysize

Plot size in pixels for EMF, GIF, JPEG, PBM, PNG and SVG. For PS,
EPS, PDF, and other vector formats the plot size is in points. This option
is equivalent to changing the size of the plot box associated with "paper-
position" property. Using the command form of the print function, you
must quote the xsize,ysize option. For example, by writing "-S640,480".

-Ffontname

-Ffontname:size

-F:size Associates all text with the fontname and/or fontsize. fontname is ig-
nored for some devices; dxf, fig, hpgl, etc.

The filename and options can be given in any order.

Example: Print to a file, using the svg device.

figure (1);

clf ();

surf (peaks);

print -dsvg figure1.svg

Example: Print to an HP Deskjet 550C.

figure (1);

clf ();

surf (peaks);

print -dcdj550

See also: [figure], page 280, [orient], page 291, [saveas], page 290.

[Function File]saveas (h, filename)
[Function File]saveas (h, filename, fmt)

Save graphic object h to the file filename in graphic format fmt.

fmt should be one of the following formats:

ps Postscript

eps Encapsulated Postscript

jpg JPEG Image

png PNG Image

emf Enhanced Meta File

Chapter 15: Plotting 291

pdf Portable Document Format

All device formats specified in printmay also be used. If fmt is omitted it is extracted
from the extension of filename. The default format is "pdf".

clf ();

surf (peaks);

saveas (1, "figure1.png");

See also: [print], page 287.

[Function File]orient (orientation)
Set the default print orientation. Valid values for orientation include "landscape",
"portrait", and "tall".

The "tall" option sets the orientation to portait and fills the page with the plot,
while leaving a 0.25in border.

If called with no arguments, return the default print orientation.

15.2.10 Interacting with Plots

The user can select points on a plot with the ginput function or selection the position at
which to place text on the plot with the gtext function using the mouse. Menus may also
be created and populated with specific user commands via the uimenu function.

[Function File][x, y, buttons] = ginput (n)
Return which mouse buttons were pressed and keys were hit on the current figure. If
n is defined, then wait for n mouse clicks before returning. If n is not defined, then
ginput will loop until the return key RET is pressed.

[Function File]b = waitforbuttonpress ()
Wait for button or mouse press.over a figure window. The value of b returns 0 if a
mouse button was pressed or 1 is a key was pressed.

See also: [ginput], page 291.

[Function File]gtext (s)
[Function File]gtext ({s1 ; s2 ; . . .})
[Function File]gtext (. . . , prop, val)

Place text on the current figure using the mouse. The text is defined by the string
s. If s is a cell array, each element of the cell array is written to a separate line.
Additional arguments are passed to the underlying text object as properties.

See also: [ginput], page 291, [text], page 278.

[Function File]uimenu (property, value, . . .)
[Function File]uimenu (h, property, value, . . .)

Create a uimenu object and return a handle to it. If h is ommited then a top-level
menu for the current figure is created. If h is given then a submenu relative to h is
created.

uimenu objects have the following specific properties:

292 GNU Octave

"accelerator"
A string containing the key combination together with CTRL to execute
this menu entry (e.g., "x" for CTRL+x).

"callback" Is the function called when this menu entry is executed. It can be either
a function string (e.g., "myfun"), a function handle (e.g., @myfun) or a
cell array containing the function handle and arguments for the callback
function (e.g., {@myfun, arg1, arg2}).

"checked" Can be set "on" or "off". Sets a mark at this menu entry.

"enable" Can be set "on" or "off". If disabled the menu entry cannot be selected
and it is grayed out.

"foregroundcolor"
A color value setting the text color for this menu entry.

"label" A string containing the label for this menu entry. A "&"-symbol can be
used to mark the "accelerator" character (e.g., "E&xit")

"position" An scalar value containing the relative menu position. The entry with
the lowest value is at the first position starting from left or top.

"separator"
Can be set "on" or "off". If enabled it draws a separator line above the
current position. It is ignored for top level entries.

Examples:

f = uimenu ("label", "&File", "accelerator", "f");

e = uimenu ("label", "&Edit", "accelerator", "e");

uimenu (f, "label", "Close", "accelerator", "q", ...

"callback", "close (gcf)");

uimenu (e, "label", "Toggle &Grid", "accelerator", "g", ...

"callback", "grid (gca)");

See also: [figure], page 280.

15.2.11 Test Plotting Functions

The functions sombrero and peaks provide a way to check that plotting is working. Typing
either sombrero or peaks at the Octave prompt should display a three-dimensional plot.

[Function File]sombrero (n)
Produce the familiar three-dimensional sombrero plot using n grid lines. If n is omit-
ted, a value of 41 is assumed.

The function plotted is

z = sin (sqrt (x^2 + y^2)) / (sqrt (x^2 + y^2))

See also: [surf], page 263, [meshgrid], page 269, [mesh], page 262.

[Function File]peaks ()
[Function File]peaks (n)
[Function File]peaks (x, y)

Chapter 15: Plotting 293

[Function File]z = peaks (. . .)
[Function File][x, y, z] = peaks (. . .)

Generate a function with lots of local maxima and minima. The function has the
form

f(x, y) = 3(1− x)2e(−x
2−(y+1)2) − 10

(
x
5
− x3 − y5)

)
− 1

3
e(−(x+1)2−y2)

Called without a return argument, peaks plots the surface of the above function using
mesh. If n is a scalar, the peaks returns the values of the above function on a n-by-n
mesh over the range [-3,3]. The default value for n is 49.

If n is a vector, then it represents the x and y values of the grid on which to calculate
the above function. The x and y values can be specified separately.

See also: [surf], page 263, [mesh], page 262, [meshgrid], page 269.

15.3 Graphics Data Structures

15.3.1 Introduction to Graphics Structures

The graphics functions use pointers, which are of class graphics handle, in order to address
the data structures which control graphical displays. A graphics handle may point any one
of a number of different object types. The objects are the graphics data structures. The
types of objects are: figure, axes, line, text, patch, surface, text and image.

Each of these objects has a function by the same name. and, each of these functions
returns a graphics handle pointing to an object of corresponding type. In addition there
are several functions which operate on properties of the graphics objects and which return
handles: the functions plot and plot3 return a handle pointing to an object of type line,
the function subplot returns a handle pointing to an object of type axes, the function
fill returns a handle pointing to an object of type patch, the functions area, bar, barh,
contour, contourf, contour3, surf, mesh, surfc, meshc, errorbar, quiver, quiver3,
scatter, scatter3, stair, stem, stem3 each return a handle as documented in [Data
Sources], page 321.

The graphics objects are arranged in a hierarchy:

1. The root is at 0. i.e., get (0) returns the properties of the root object.

2. Below the root are figure objects.

3. Below the figure objects are axes.

4. Below the axes objects are line, text, patch, surface, and image objects.

Graphics handles may be distinguished from function handles (Section 11.10.1 [Function
Handles], page 177) by means of the function ishandle. ishandle returns true if its
argument is a handle of a graphics object. In addition, the figure object may be tested using
isfigure. isfigure returns true only if its argument is a handle of a figure. ishghandle()
is synonymous with ishandle(). The whos function can be used to show the object type
of each currently defined graphics handle. (Note: this is not true today, but it is, I hope,
considered an error in whos. It may be better to have whos just show graphics handle as
the class, and provide a new function which, given a graphics handle, returns its object
type. This could generalize the ishandle() functions and, in fact, replace them.)

The get and set commands are used to obtain and set the values of properties of graphics
objects. In addition, the get command may be used to obtain property names.

294 GNU Octave

For example, the property "type" of the graphics object pointed to by the graphics
handle h may be displayed by:

get (h, "type")

The properties and their current values are returned by get (h) where h is a handle
of a graphics object. If only the names of the allowed properties are wanted they may be
displayed by: get (h, "").

Thus, for example,
h = figure ();

get (h, "type")

ans = figure

get (h, "");

error: get: ambiguous figure property name ; possible matches:

__graphics_toolkit__ hittest resize

__enhanced__ integerhandle resizefcn

__modified__ interruptible selected

__myhandle__ inverthardcopy selectionhighlight

__plot_stream__ keypressfcn selectiontype

alphamap keyreleasefcn tag

beingdeleted menubar toolbar

busyaction mincolormap type

buttondownfcn name uicontextmenu

children nextplot units

clipping numbertitle userdata

closerequestfcn paperorientation visible

color paperposition windowbuttondownfcn

colormap paperpositionmode windowbuttonmotionfcn

createfcn papersize windowbuttonupfcn

currentaxes papertype windowbuttonwheelfcn

currentcharacter paperunits windowstyle

currentobject parent wvisual

currentpoint pointer wvisualmode

deletefcn pointershapecdata xdisplay

dockcontrols pointershapehotspot xvisual

doublebuffer position xvisualmode

filename renderer

handlevisibility renderermode

The root figure has index 0. Its properties may be displayed by: get (0, "").

The uses of get and set are further explained in [get], page 296, [set], page 296.

[Function File]res = isprop (h, prop)
Return true if prop is a property of the object with handle h.

See also: [get], page 296, [set], page 296.

15.3.2 Graphics Objects

The hierarchy of graphics objects was explained above. (See Section 15.3.1 [Introduction to
Graphics Structures], page 293. Here the specific objects are described, and the properties
contained in these objects are discussed. Keep in mind that graphics objects are always
referenced by handle.

root figure the top level of the hierarchy and the parent of all figure objects. The handle

index of the root figure is 0.

Chapter 15: Plotting 295

figure A figure window.

axes A set of axes. This object is a child of a figure object and may be a parent of
line, text, image, patch, or surface objects.

line A line in two or three dimensions.

text Text annotations.

image A bitmap image.

patch A filled polygon, currently limited to two dimensions.

surface A three-dimensional surface.

15.3.2.1 Handle Functions

To determine whether a variable is a graphics object index or a figure index, use the functions
ishandle and isfigure.

[Built-in Function]ishandle (h)
Return true if h is a graphics handle and false otherwise. h may also be a matrix of
handles in which case a logical array is returned that is true where the elements of h
are graphics handles and false where they are not.

See also: [isfigure], page 295.

[Function File]ishghandle (h)
Return true if h is a graphics handle and false otherwise.

[Function File]isfigure (h)
Return true if h is a graphics handle that contains a figure object.

See also: [ishandle], page 295.

The function gcf returns an index to the current figure object, or creates one if none
exists. Similarly, gca returns the current axes object, or creates one (and its parent figure
object) if none exists.

[Function File]gcf ()
Return the current figure handle. If a figure does not exist, create one and return its
handle. The handle may then be used to examine or set properties of the figure. For
example,

fplot (@sin, [-10, 10]);

fig = gcf ();

set (fig, "visible", "off");

plots a sine wave, finds the handle of the current figure, and then makes that figure
invisible. Setting the visible property of the figure to "on" will cause it to be displayed
again.

See also: [get], page 296, [set], page 296.

[Function File]gca ()
Return a handle to the current axis object. If no axis object exists, create one and
return its handle. The handle may then be used to examine or set properties of the
axes. For example,

296 GNU Octave

ax = gca ();

set (ax, "position", [0.5, 0.5, 0.5, 0.5]);

creates an empty axes object, then changes its location and size in the figure window.

See also: [get], page 296, [set], page 296.

The get and set functions may be used to examine and set properties for graphics
objects. For example,

get (0)

⇒ ans =

{

type = root

currentfigure = [](0x0)

children = [](0x0)

visible = on

...

}

returns a structure containing all the properties of the root figure. As with all functions
in Octave, the structure is returned by value, so modifying it will not modify the internal
root figure plot object. To do that, you must use the set function. Also, note that in this
case, the currentfigure property is empty, which indicates that there is no current figure
window.

The get function may also be used to find the value of a single property. For example,

get (gca (), "xlim")

⇒ [0 1]

returns the range of the x-axis for the current axes object in the current figure.

To set graphics object properties, use the set function. For example,

set (gca (), "xlim", [-10, 10]);

sets the range of the x-axis for the current axes object in the current figure to ‘[-10,
10]’. Additionally, calling set with a graphics object index as the only argument returns a
structure containing the default values for all the properties for the given object type. For
example,

set (gca ())

returns a structure containing the default property values for axes objects.

[Built-in Function]get (h, p)
Return the named property p from the graphics handle h. If p is omitted, return the
complete property list for h. If h is a vector, return a cell array including the property
values or lists respectively.

[Built-in Function]set (h, property, value, . . .)
[Built-in Function]set (h, properties, values)
[Built-in Function]set (h, pv)

Set named property values for the graphics handle (or vector of graphics handles) h.
There are three ways how to give the property names and values:

Chapter 15: Plotting 297

• as a comma separated list of property, value pairs

Here, each property is a string containing the property name, each value is a
value of the appropriate type for the property.

• as a cell array of strings properties containing property names and a cell array
values containing property values.

In this case, the number of columns of values must match the number of elements
in properties. The first column of values contains values for the first entry in
properties, etc. The number of rows of values must be 1 or match the number
of elements of h. In the first case, each handle in h will be assigned the same
values. In the latter case, the first handle in h will be assigned the values from
the first row of values and so on.

• as a structure array pv

Here, the field names of pv represent the property names, and the field values
give the property values. In contrast to the previous case, all elements of pv will
be set in all handles in h independent of the dimensions of pv.

[Function File]parent = ancestor (h, type)
[Function File]parent = ancestor (h, type, ’toplevel’)

Return the first ancestor of handle object h whose type matches type, where type is
a character string. If type is a cell array of strings, return the first parent whose type
matches any of the given type strings.

If the handle object h is of type type, return h.

If "toplevel" is given as a 3rd argument, return the highest parent in the object
hierarchy that matches the condition, instead of the first (nearest) one.

See also: [get], page 296, [set], page 296.

[Function File]h = allchild (handles)
Find all children, including hidden children, of a graphics object.

This function is similar to get (h, "children"), but also returns hidden objects. If
handles is a scalar, h will be a vector. Otherwise, h will be a cell matrix of the same
size as handles and each cell will contain a vector of handles.

See also: [get], page 296, [set], page 296, [findall], page 313, [findobj], page 313.

15.3.3 Graphics Object Properties

In this Section the object properties are discussed in detail, starting with the root figure
properties and continuing through the graphics object hierarchy.

15.3.3.1 Root Figure Properties

The root figure properties are:

__modified__

— Values: "on," "off"

__myhandle__

beingdeleted

— Values: "on," "off"

298 GNU Octave

busyaction

buttondownfcn

callbackobject

children

clipping — Values: "on," "off"

createfcn

currentfigure

deletefcn

handlevisibility

— Values: "on," "off"

hittest — Values: "on," "off"

interruptible

— Values: "on," "off"

parent

screendepth

screenpixelsperinch

screensize

selected

selectionhighlight

screendepth

screenpixelsperinch

showhiddenhandles

— Values: "on," "off"

tag

type

uicontextmenu

units

userdata

visible

15.3.3.2 Figure Properties

The figure properties are:

__graphics_toolkit__

— The graphics toolkit currently in use.

__enhanced__

__modified__

__myhandle__

__plot_stream__

alphamap

beingdeleted

— Values: "on," "off"

Chapter 15: Plotting 299

busyaction

buttondownfcn

children Handle to children.

clipping — Values: "on," "off"

closerequestfcn

— Handle of function to call on close.

color

colormap An N-by-3 matrix containing the color map for the current axes.

paperorientation

createfcn

currentaxes

Handle to graphics object of current axes.

currentcharacter

currentobject

currentpoint

Holds the coordinates of the point over which the mouse pointer was when
the mouse button was pressed. If a mouse callback function is defined,
"currentpoint" holds the coordinates of the point over which the mouse
pointer is when the function gets called.

deletefcn

dockcontrols

— Values: "on," "off"

doublebuffer

— Values: "on," "off"

filename

handlevisibility

— Values: "on," "off"

hittest

integerhandle

interruptible

— Values: "on," "off"

inverthardcopy

keypressfcn

see "keypressfcn"

keyreleasefcn

With "keypressfcn", The keyboard callback functions. These callback func-
tions get called when a key is pressed/released respectively. The functions are
called with two input arguments. The first argument holds the handle of the
calling figure. The second argument holds the event structure which has the
following members:

300 GNU Octave

Character

The ASCII value of the key

Key lowercase value of the key

Modifier A cell array containing strings representing the modifiers pressed
with the key. Possible values are "shift", "alt", and "control".

menubar

mincolormap

name

nextplot May be one of

"new"

"add"

"replace"

"replacechildren"

numbertitle

paperorientation

Indicates the orientation for printing. Either "landscape" or "portrait".

paperposition

paperpositionmode

papersize

papertype

paperunits

pointer

pointershapecdata

pointershapehotspot

position

renderer

renderermode

resize

resizefcn

selected

selectionhighlight

— Values: "on," "off"

selectiontype

tag

toolbar

type

units

userdata

Chapter 15: Plotting 301

visible Either "on" or "off" to toggle display of the figure.

windowbuttondownfcn

See "windowbuttonupfcn"

windowbuttonmotionfcn

See "windowbuttonupfcn"

windowbuttonupfcn

With "windowbuttondownfcn" and "windowbuttonmotionfcn", The mouse
callback functions. These callback functions get called when the mouse button
is pressed, dragged, and released respectively. When these callback functions
are called, the "currentpoint" property holds the current coordinates of the
cursor.

windowbuttonwheelfcn

windowstyle

wvisual

wvisualmode

xdisplay

xvisual

xvisualmode

15.3.3.3 Axes Properties

The axes properties are:

__modified__

__myhandle__

activepositionproperty

alim

alimmode

ambientlightcolor

beingdeleted

box Box surrounding axes. — Values: "on," "off"

busyaction

buttondownfcn

cameraposition

camerapositionmode

cameratarget

cameratargetmode

cameraupvector

cameraupvectormode

cameraviewangle

cameraviewanglemode

children

clim Two-element vector defining the limits for the c axis of an image. See pcolor

property. Setting this property also forces the corresponding mode property to
be set to "manual".

302 GNU Octave

climmode Either "manual" or "auto".

clipping

color

colororder

createfcn

currentpoint

Holds the coordinates of the point over which the mouse pointer was when
the mouse button was pressed. If a mouse callback function is defined,
"currentpoint" holds the coordinates of the point over which the mouse
pointer is when the function gets called.

dataaspectratio

A two-element vector specifying the relative height and width of the data dis-
played in the axes. Setting dataaspectratio to ‘1, 2]’ causes the length of
one unit as displayed on the y-axis to be the same as the length of 2 units
on the x-axis. Setting dataaspectratio also forces the dataaspectratiomode
property to be set to "manual".

dataaspectratiomode

Either "manual" or "auto".

deletefcn

drawmode

fontangle

fontname

fontsize

fontunits

fontweight

gridlinestyle

handlevisibility

hittest

interpreter

interruptible

key Toggle display of the legend. — Values: "on," "off" Note that this property is
not compatible with matlab and may be removed in a future version of Octave.

keybox Toggle display of a box around the legend. — Values: "on," "off" Note that
this property is not compatible with matlab and may be removed in a future
version of Octave.

keypos An integer from 1 to 4 specifying the position of the legend. 1 indicates upper
right corner, 2 indicates upper left, 3 indicates lower left, and 4 indicates lower
right. Note that this property is not compatible with matlab and may be
removed in a future version of Octave.

keyreverse

layer

Chapter 15: Plotting 303

linestyleorder

linewidth

minorgridlinestyle

nextplot May be one of

"new"

"add"

"replace"

"replacechildren"

outerposition

A vector specifying the position of the plot, including titles, axes and legend.
The four elements of the vector are the coordinates of the lower left corner and
width and height of the plot, in units normalized to the width and height of the
plot window. For example, [0.2, 0.3, 0.4, 0.5] sets the lower left corner of
the axes at (0.2, 0.3) and the width and height to be 0.4 and 0.5 respectively.
See also the position property.

parent

plotboxaspectratio

plotboxaspectratiomode

position A vector specifying the position of the plot, excluding titles, axes and legend.
The four elements of the vector are the coordinates of the lower left corner and
width and height of the plot, in units normalized to the width and height of the
plot window. For example, [0.2, 0.3, 0.4, 0.5] sets the lower left corner of
the axes at (0.2, 0.3) and the width and height to be 0.4 and 0.5 respectively.
See also the outerposition property.

projection

selected

selectionhighlight

tag

tickdir

tickdirmode

ticklength

tightinset

title Index of text object for the axes title.

type

uicontextmenu

units

userdata

view A three element vector specifying the view point for three-dimensional plots.

visible Either "on" or "off" to toggle display of the axes.

304 GNU Octave

x_normrendertransform

x_projectiontransform

x_rendertransform

x_viewporttransform

x_viewtransform

xaxislocation

Either "top" or "bottom".

xcolor

xdir Either "forward" or "reverse".

xgrid Either "on" or "off" to toggle display of grid lines.

xlabel Indices to text objects for the axes labels.

xlim Two-element vector defining the limits for the x-axis. Setting this property also
forces the corresponding mode property to be set to "manual".

xlimmode Either "manual" or "auto".

xminorgrid

Either "on" or "off" to toggle display of minor grid lines.

xminortick

xscale Either "linear" or "log".

xtick Set position of tick marks. Setting this property also forces the corresponding
mode property to be set to "manual".

xticklabel

Setting this property also forces the corresponding mode property to be set to
"manual".

xticklabelmode

Either "manual" or "auto".

xtickmode

Either "manual" or "auto".

yaxislocation

Either "left" or "right"

ycolor

ydir Either "forward" or "reverse".

ygrid Either "on" or "off" to toggle display of grid lines.

ylabel Indices to text objects for the axes labels.

ylim Two-element vectors defining the limits for the x, y, and z axes and the Setting
one of these properties also forces the corresponding mode property to be set
to "manual".

ylimmode Either "manual" or "auto".

yminorgrid

Either "on" or "off" to toggle display of minor grid lines.

Chapter 15: Plotting 305

yminortick

yscale Either "linear" or "log".

ytick Set position of tick marks. Setting this property also forces the corresponding
mode property to be set to "manual".

yticklabel

Setting this property also forces the corresponding mode property to be set to
"manual".

yticklabelmode

Either "manual" or "auto".

ytickmode

Either "manual" or "auto".

zcolor

zdir Either "forward" or "reverse".

zgrid Either "on" or "off" to toggle display of grid lines.

zlabel Indices to text objects for the axes labels.

zlim Two-element vector defining the limits for z-axis. Setting this property also
forces the corresponding mode property to be set to "manual".

zlimmode Either "manual" or "auto".

zminorgrid

Either "on" or "off" to toggle display of minor grid lines.

zminortick

zscale Either "linear" or "log".

ztick Set position of tick marks. Setting this property also forces the corresponding
mode property to be set to "manual".

zticklabel

Setting this property also forces the corresponding mode property to be set to
"manual".

zticklabelmode

Either "manual" or "auto".

ztickmode

Either "manual" or "auto".

15.3.3.4 Line Properties

The line properties are:

__modified__

__myhandle__

beingdeleted

busyaction

buttondownfcn

children

306 GNU Octave

clipping

color The RGB color of the line, or a color name. See Section 15.4.1 [Colors], page 315.

createfcn

deletefcn

displayname

The text of the legend entry corresponding to this line.

erasemode

handlevisibility

hittest

interpreter

interruptible

ldata The lower errorbar in the y direction to be plotted.

linestyle

linewidth

See Section 15.4.2 [Line Styles], page 315.

linewidth

marker

markeredgecolor

markerfacecolor

markersize

See Section 15.4.3 [Marker Styles], page 315.

parent

selected

selectionhighlight

tag

type

udata The upper errorbar in the y direction to be plotted.

uicontextmenu

userdata

visible

xdata The data to be plotted.

xdatasource

xldata The lower errorbar to be plotted.

xlim

xliminclude

xudata The upper errorbar to be plotted.

ydata The data to be plotted.

ydatasource

ylim

Chapter 15: Plotting 307

yliminclude

zdata The data to be plotted.

zdatasource

zlim

zliminclude

15.3.3.5 Text Properties

The text properties are:

__modified__

__myhandle__

backgroundcolor

beingdeleted

busyaction

buttondownfcn

children

clipping

color The color of the text. See Section 15.4.1 [Colors], page 315.

createfcn

deletefcn

displayname

The text of the legend entry corresponding to this line.

edgecolor

editing

erasemode

fontangle

Flag whether the font is italic or normal. Valid values are ’normal’, ’italic’ and
’oblique’.

fontname The font used for the text.

fontsize The size of the font, in points to use.

fontunits

fontweight

Flag whether the font is bold, etc. Valid values are ’normal’, ’bold’, ’demi’ or
’light’.

handlevisibility

hittest

horizontalalignment

May be "left", "center", or "right".

interpreter

Determines how the text is rendered. Valid values are ’none’, ’tex’ or ’latex’.

308 GNU Octave

interruptible

linestyle

linewidth

margin

parent

position The coordinates of the text object.

rotation The angle of rotation for the displayed text, measured in degrees.

selected

selectionhighlight

string The character string contained by the text object.

tag

type

uicontextmenu

units May be "normalized" or "graph".

userdata

verticalalignment

visible

xlim

xliminclude

ylim

yliminclude

zlim

zliminclude

15.3.3.6 Image Properties

The image properties are:

__modified__

__myhandle__

beingdeleted

busyaction

buttondownfcn

cdata The data for the image. Each pixel of the image corresponds to an element
of cdata. The value of an element of cdata specifies the row-index into the
colormap of the axes object containing the image. The color value found in the
color map for the given index determines the color of the pixel.

cdatamapping

children

clim

climinclude

clipping

Chapter 15: Plotting 309

createfcn

deletefcn

handlevisibility

hittest

interruptible

parent

selected

selectionhighlight

tag

type

uicontextmenu

userdata

visible

xdata Two-element vector specifying the range of the x-coordinates for the image.

xlim

xliminclude

ydata Two-element vector specifying the range of the y-coordinates for the image.

ylim

yliminclude

15.3.3.7 Patch Properties

The patch properties are:

__modified__

__myhandle__

alim

aliminclude

alphadatamapping

ambientstrength

backfacelighting

beingdeleted

busyaction

buttondownfcn

cdata Data defining the patch object.

cdatamapping

children

clim

climinclude

clipping

310 GNU Octave

createfcn

deletefcn

diffusestrength

displayname

The text of the legend entry corresponding to this line.

edgealpha

edgecolor

The color of the line defining the patch. See Section 15.4.1 [Colors], page 315.

edgelighting

erasemode

facealpha

A number in the range [0, 1] indicating the transparency of the patch.

facecolor

The fill color of the patch. See Section 15.4.1 [Colors], page 315.

facelighting

faces

facevertexalphadata

facevertexcdata

handlevisibility

hittest

interpreter

interruptible

linestyle

See Section 15.4.2 [Line Styles], page 315.

linewidth

See Section 15.4.2 [Line Styles], page 315.

marker See Section 15.4.3 [Marker Styles], page 315.

markeredgecolor

See Section 15.4.3 [Marker Styles], page 315.

markerfacecolor

See Section 15.4.3 [Marker Styles], page 315.

markersize

See Section 15.4.3 [Marker Styles], page 315.

normalmode

parent

selected

selectionhighlight

specularcolorreflectance

specularexponent

specularstrength

tag

Chapter 15: Plotting 311

type

uicontextmenu

userdata

vertexnormals

vertices

visible

xdata Data defining the patch object.

xlim

xliminclude

ydata Data defining the patch object.

ylim

yliminclude

zdata Data defining the patch object.

zlim

zliminclude

15.3.3.8 Surface Properties

The surface properties are:

__modified__

__myhandle__

alim

aliminclude

alphadata

alphadatamapping

ambientstrength

backfacelighting

beingdeleted

busyaction

buttondownfcn

cdata

cdatamapping

cdatasource

children

clim

climinclude

clipping

createfcn

deletefcn

diffusestrength

displayname

The text of the legend entry corresponding to this surface.

312 GNU Octave

edgealpha

edgecolor

edgelighting

erasemode

facealpha

facecolor

facelighting

handlevisibility

hittest

interpreter

interruptible

linestyle

linewidth

marker

markeredgecolor

markerfacecolor

markersize

meshstyle

normalmode

parent

selected

selectionhighlight

specularcolorreflectance

specularexponent

specularstrength

tag

type

uicontextmenu

userdata

vertexnormals

visible

xdata The data determining the surface. The xdata and ydata elements are vectors
and zdata must be a matrix.

xdatasource

xlim

xliminclude

ydata The data determining the surface. The xdata and ydata elements are vectors
and zdata must be a matrix.

ydatasource

ylim

yliminclude

zdata The data determining the surface. The xdata and ydata elements are vectors
and zdata must be a matrix.

Chapter 15: Plotting 313

zdatasource

zlim

zliminclude

15.3.4 Searching Properties

[Function File]h = findobj ()
[Function File]h = findobj (prop_name, prop_value)
[Function File]h = findobj ("-property", prop_name)
[Function File]h = findobj ("-regexp", prop_name, pattern)
[Function File]h = findobj ("flat", . . .)
[Function File]h = findobj (h, . . .)
[Function File]h = findobj (h, "-depth", d, . . .)

Find graphics object with specified property values. The simplest form is

findobj (prop_name, prop_value)

which returns all of the handles to the objects with the name prop name and the
name prop value. The search can be limited to a particular object or set of objects
and their descendants by passing a handle or set of handles h as the first argument
to findobj.

The depth of hierarchy of objects to which to search to can be limited with the
"-depth" argument. To limit the number depth of the hierarchy to search to d gen-
erations of children, and example is

findobj (h, "-depth", d, prop_name, prop_value)

Specifying a depth d of 0, limits the search to the set of object passed in h. A depth
d of 0 is equivalent to the "-flat" argument.

A specified logical operator may be applied to the pairs of prop name and prop value.
The supported logical operators are "-and", "-or", "-xor", "-not".

The objects may also be matched by comparing a regular expression to the prop-
erty values, where property values that match regexp (prop_value, pattern) are
returned. Finally, objects may be matched by property name only, using the "-
property" option.

See also: [get], page 296, [set], page 296.

[Function File]h = findall ()
[Function File]h = findall (prop_name, prop_value)
[Function File]h = findall (h, . . .)
[Function File]h = findall (h, "-depth", d, . . .)

Find graphics object with specified property values including hidden handles.

This function performs the same function as findobj, but it includes hidden objects
in its search. For full documentation, see findobj.

See also: [get], page 296, [set], page 296, [findobj], page 313, [allchild], page 297.

314 GNU Octave

15.3.5 Managing Default Properties

Object properties have two classes of default values, factory defaults (the initial values) and
user-defined defaults, which may override the factory defaults.

Although default values may be set for any object, they are set in parent objects and
apply to child objects, of the specified object type. For example, setting the default color
property of line objects to "green", for the root object, will result in all line objects
inheriting the color "green" as the default value.

set (0, "defaultlinecolor", "green");

sets the default line color for all objects. The rule for constructing the property name to
set a default value is

default + object-type + property-name

This rule can lead to some strange looking names, for example defaultlinelinewidth"
specifies the default linewidth property for line objects.

The example above used the root figure object, 0, so the default property value will
apply to all line objects. However, default values are hierarchical, so defaults set in a figure
objects override those set in the root figure object. Likewise, defaults set in axes objects
override those set in figure or root figure objects. For example,

subplot (2, 1, 1);

set (0, "defaultlinecolor", "red");

set (1, "defaultlinecolor", "green");

set (gca (), "defaultlinecolor", "blue");

line (1:10, rand (1, 10));

subplot (2, 1, 2);

line (1:10, rand (1, 10));

figure (2)

line (1:10, rand (1, 10));

produces two figures. The line in first subplot window of the first figure is blue because it
inherits its color from its parent axes object. The line in the second subplot window of the
first figure is green because it inherits its color from its parent figure object. The line in the
second figure window is red because it inherits its color from the global root figure parent
object.

To remove a user-defined default setting, set the default property to the value "remove".
For example,

set (gca (), "defaultlinecolor", "remove");

removes the user-defined default line color setting from the current axes object. To quickly
remove all user-defined defaults use the reset function.

[Built-in Function]reset (h, property)
Remove any defaults set for the handle h. The default figure properties of "posi-
tion", "units", "windowstyle" and "paperunits" and the default axes properties of
"position" and "units" are not reset.

Getting the "default" property of an object returns a list of user-defined defaults set
for the object. For example,

Chapter 15: Plotting 315

get (gca (), "default");

returns a list of user-defined default values for the current axes object.

Factory default values are stored in the root figure object. The command

get (0, "factory");

returns a list of factory defaults.

15.4 Advanced Plotting

15.4.1 Colors

Colors may be specified as RGB triplets with values ranging from zero to one, or by name.
Recognized color names include "blue", "black", "cyan", "green", "magenta", "red",
"white", and "yellow".

15.4.2 Line Styles

Line styles are specified by the following properties:

linestyle

May be one of

"-" Solid line. [default]

"--" Dashed line.

":" Dotted line.

"-." A dash-dot line.

"none" No line. Points will still be marked using the current Marker Style.

linewidth

A number specifying the width of the line. The default is 1. A value of 2 is
twice as wide as the default, etc.

15.4.3 Marker Styles

Marker styles are specified by the following properties:

marker A character indicating a plot marker to be place at each data point, or "none",
meaning no markers should be displayed.

markeredgecolor

The color of the edge around the marker, or "auto", meaning that the edge
color is the same as the face color. See Section 15.4.1 [Colors], page 315.

markerfacecolor

The color of the marker, or "none" to indicate that the marker should not be
filled. See Section 15.4.1 [Colors], page 315.

markersize

A number specifying the size of the marker. The default is 1. A value of 2 is
twice as large as the default, etc.

The colstyle function will parse a plot-style specification and will return the color,
line, and marker values that would result.

316 GNU Octave

[Function File][style, color, marker, msg] = colstyle (linespec)
Parse linespec and return the line style, color, and markers given. In the case of an
error, the string msg will return the text of the error.

15.4.4 Callbacks

Callback functions can be associated with graphics objects and triggered after certain events
occur. The basic structure of all callback function is

function mycallback (src, data)

...

endfunction

where src gives a handle to the source of the callback, and code gives some event specific
data. This can then be associated with an object either at the objects creation or later with
the set function. For example,

plot (x, "DeleteFcn", @(s, e) disp("Window Deleted"))

where at the moment that the plot is deleted, the message "Window Deleted" will be
displayed.

Additional user arguments can be passed to callback functions, and will be passed after
the 2 default arguments. For example:

plot (x, "DeleteFcn", {@mycallback, "1"})

...

function mycallback (src, data, a1)

fprintf ("Closing plot %d\n", a1);

endfunction

The basic callback functions that are available for all graphics objects are

• CreateFcn This is the callback that is called at the moment of the objects creation. It
is not called if the object is altered in any way, and so it only makes sense to define
this callback in the function call that defines the object. Callbacks that are added to
CreateFcn later with the set function will never be executed.

• DeleteFcn This is the callback that is called at the moment an object is deleted.

• ButtonDownFcn This is the callback that is called if a mouse button is pressed while
the pointer is over this object. Note, that the gnuplot interface does not respect this
callback.

The object and figure that the event occurred in that resulted in the callback being
called can be found with the gcbo and gcbf functions.

[Function File]h = gcbo ()
[Function File][h, fig] = gcbo ()

Return a handle to the object whose callback is currently executing. If no callback is
executing, this function returns the empty matrix. This handle is obtained from the
root object property "CallbackObject".

Additionally return the handle of the figure containing the object whose callback is
currently executing. If no callback is executing, the second output is also set to the
empty matrix.

See also: [gcf], page 295, [gca], page 295, [gcbf], page 317.

Chapter 15: Plotting 317

[Function File]fig = gcbf ()
Return a handle to the figure containing the object whose callback is currently ex-
ecuting. If no callback is executing, this function returns the empty matrix. The
handle returned by this function is the same as the second output argument of gcbo.

See also: [gcf], page 295, [gca], page 295, [gcbo], page 316.

Callbacks can equally be added to properties with the addlistener function described
below.

15.4.5 Application-defined Data

Octave has a provision for attaching application-defined data to a graphics handle. The
data can be anything which is meaningful to the application, and will be completely ignored
by Octave.

[Function File]setappdata (h, name, value)
Set the named application data to value for the object(s) with handle(s) h. If the
application data with the specified name does not exist, it is created.

[Function File]value = getappdata (h, name)
Return the value for named application data for the object(s) with

handle(s) h. [Function File]appdata = getappdata (h)
Return a structure, appdata, whose fields correspond to the appdata properties.

[Function File]rmappdata (h, name)
Delete the named application data for the object(s) with handle(s) h.

[Function File]V = isappdata (h, name)
Return true if the named application data, name, exists for the object with handle h.

See also: [getappdata], page 317, [setappdata], page 317, [rmappdata], page 317.

15.4.6 Object Groups

A number of Octave high level plot functions return groups of other graphics objects or
they return graphics objects that have their properties linked in such a way that changes to
one of the properties results in changes in the others. A graphic object that groups other
objects is an hggroup

[Function File]hggroup ()
[Function File]hggroup (h)
[Function File]hggroup (. . . , property, value, . . .)

Create group object with parent h. If no parent is specified, the group is created in
the current axes. Return the handle of the group object created.

Multiple property-value pairs may be specified for the group, but they must appear
in pairs.

For example a simple use of a hggroup might be

318 GNU Octave

x = 0:0.1:10;

hg = hggroup ();

plot (x, sin (x), "color", [1, 0, 0], "parent", hg);

hold on

plot (x, cos (x), "color", [0, 1, 0], "parent", hg);

set (hg, "visible", "off");

which groups the two plots into a single object and controls their visibility directly. The
default properties of an hggroup are the same as the set of common properties for the other
graphics objects. Additional properties can be added with the addproperty function.

[Built-in Function]addproperty (name, h, type)
[Built-in Function]addproperty (name, h, type, arg, . . .)

Create a new property named name in graphics object h. type determines the type
of the property to create. args usually contains the default value of the property, but
additional arguments might be given, depending on the type of the property.

The supported property types are:

string A string property. arg contains the default string value.

any An un-typed property. This kind of property can hold any octave value.
args contains the default value.

radio A string property with a limited set of accepted values. The first argu-
ment must be a string with all accepted values separated by a vertical
bar (’|’). The default value can be marked by enclosing it with a ’{’ ’}’
pair. The default value may also be given as an optional second string
argument.

boolean A boolean property. This property type is equivalent to a radio property
with "on|off" as accepted values. arg contains the default property value.

double A scalar double property. arg contains the default value.

handle A handle property. This kind of property holds the handle of a graphics
object. arg contains the default handle value. When no default value is
given, the property is initialized to the empty matrix.

data A data (matrix) property. arg contains the default data value. When no
default value is given, the data is initialized to the empty matrix.

color A color property. arg contains the default color value. When no default
color is given, the property is set to black. An optional second string
argument may be given to specify an additional set of accepted string
values (like a radio property).

type may also be the concatenation of a core object type and a valid property name
for that object type. The property created then has the same characteristics as the
referenced property (type, possible values, hidden state. . .). This allows to clone an
existing property into the graphics object h.

Examples:

addproperty ("my_property", gcf, "string", "a string value");

addproperty ("my_radio", gcf, "radio", "val_1|val_2|{val_3}");

addproperty ("my_style", gcf, "linelinestyle", "--");

Chapter 15: Plotting 319

Once a property in added to an hggroup, it is not linked to any other property of either
the children of the group, or any other graphics object. Add so to control the way in which
this newly added property is used, the addlistener function is used to define a callback
function that is executed when the property is altered.

[Built-in Function]addlistener (h, prop, fcn)
Register fcn as listener for the property prop of the graphics object h. Property
listeners are executed (in order of registration) when the property is set. The new
value is already available when the listeners are executed.

prop must be a string naming a valid property in h.

fcn can be a function handle, a string or a cell array whose first element is a function
handle. If fcn is a function handle, the corresponding function should accept at least
2 arguments, that will be set to the object handle and the empty matrix respectively.
If fcn is a string, it must be any valid octave expression. If fcn is a cell array, the first
element must be a function handle with the same signature as described above. The
next elements of the cell array are passed as additional arguments to the function.

Example:

function my_listener (h, dummy, p1)

fprintf ("my_listener called with p1=%s\n", p1);

endfunction

addlistener (gcf, "position", {@my_listener, "my string"})

[Built-in Function]dellistener (h, prop, fcn)
Remove the registration of fcn as a listener for the property prop of the graphics
object h. The function fcn must be the same variable (not just the same value), as
was passed to the original call to addlistener.

If fcn is not defined then all listener functions of prop are removed.

Example:

function my_listener (h, dummy, p1)

fprintf ("my_listener called with p1=%s\n", p1);

endfunction

c = {@my_listener, "my string"};

addlistener (gcf, "position", c);

dellistener (gcf, "position", c);

An example of the use of these two functions might be

320 GNU Octave

x = 0:0.1:10;

hg = hggroup ();

h = plot (x, sin (x), "color", [1, 0, 0], "parent", hg);

addproperty ("linestyle", hg, "linelinestyle", get (h, "linestyle"));

addlistener (hg, "linestyle", @update_props);

hold on

plot (x, cos (x), "color", [0, 1, 0], "parent", hg);

function update_props (h, d)

set (get (h, "children"), "linestyle", get (h, "linestyle"));

endfunction

that adds a linestyle property to the hggroup and propagating any changes its value to
the children of the group. The linkprop function can be used to simplify the above to be

x = 0:0.1:10;

hg = hggroup ();

h1 = plot (x, sin (x), "color", [1, 0, 0], "parent", hg);

addproperty ("linestyle", hg, "linelinestyle", get (h, "linestyle"));

hold on

h2 = plot (x, cos (x), "color", [0, 1, 0], "parent", hg);

hlink = linkprop ([hg, h1, h2], "color");

[Function File]hlink = linkprop (h, prop)
Link graphics object properties, such that a change in one is propagated to the others.
The properties to link are given as a string of cell string array by prop and the objects
containing these properties by the handle array h.

An example of the use of linkprop is

x = 0:0.1:10;

subplot (1,2,1);

h1 = plot (x, sin (x));

subplot (1,2,2);

h2 = plot (x, cos (x));

hlink = linkprop ([h1, h2], {"color","linestyle"});

set (h1, "color", "green");

set (h2, "linestyle", "--");

These capabilities are used in a number of basic graphics objects. The hggroup objects
created by the functions of Octave contain one or more graphics object and are used to:

• group together multiple graphics objects,

• create linked properties between different graphics objects, and

• to hide the nominal user data, from the actual data of the objects.

For example the stem function creates a stem series where each hggroup of the stem series
contains two line objects representing the body and head of the stem. The ydata property
of the hggroup of the stem series represents the head of the stem, whereas the body of the
stem is between the baseline and this value. For example

Chapter 15: Plotting 321

h = stem (1:4)

get (h, "xdata")

⇒ [1 2 3 4]’

get (get (h, "children")(1), "xdata")

⇒ [1 1 NaN 2 2 NaN 3 3 NaN 4 4 NaN]’

shows the difference between the xdata of the hggroup of a stem series object and the
underlying line.

The basic properties of such group objects is that they consist of one or more linked
hggroup, and that changes in certain properties of these groups are propagated to other
members of the group. Whereas, certain properties of the members of the group only apply
to the current member.

In addition the members of the group can also be linked to other graphics objects through
callback functions. For example the baseline of the bar or stem functions is a line object,
whose length and position are automatically adjusted, based on changes to the correspond-
ing hggroup elements.

15.4.6.1 Data Sources in Object Groups

All of the group objects contain data source parameters. There are string parameters that
contain an expression that is evaluated to update the relevant data property of the group
when the refreshdata function is called.

[Function File]refreshdata ()
[Function File]refreshdata (h)
[Function File]refreshdata (h, workspace)

Evaluate any ‘datasource’ properties of the current figure and update the plot if the
corresponding data has changed. If called with one or more arguments h is a scalar
or array of figure handles to refresh. The optional second argument workspace can
take the following values.

"base" Evaluate the datasource properties in the base workspace. (default).

"caller" Evaluate the datasource properties in the workspace of the function that
called refreshdata.

An example of the use of refreshdata is:

x = 0:0.1:10;

y = sin (x);

plot (x, y, "ydatasource", "y");

for i = 1 : 100

pause (0.1);

y = sin (x + 0.1*i);

refreshdata ();

endfor

15.4.6.2 Area Series

Area series objects are created by the area function. Each of the hggroup elements contains
a single patch object. The properties of the area series are

322 GNU Octave

basevalue

The value where the base of the area plot is drawn.

linewidth

linestyle

The line width and style of the edge of the patch objects making up the areas.
See Section 15.4.2 [Line Styles], page 315.

edgecolor

facecolor

The line and fill color of the patch objects making up the areas. See
Section 15.4.1 [Colors], page 315.

xdata

ydata The x and y coordinates of the original columns of the data passed to area

prior to the cumulative summation used in the area function.

xdatasource

ydatasource

Data source variables.

15.4.6.3 Bar Series

Bar series objects are created by the bar or barh functions. Each hggroup element contains
a single patch object. The properties of the bar series are

showbaseline

baseline

basevalue

The property showbaseline flags whether the baseline of the bar series is dis-
played (default is "on"). The handle of the graphics object representing the
baseline is given by the baseline property and the y-value of the baseline by
the basevalue property.

Changes to any of these property are propagated to the other members of the
bar series and to the baseline itself. Equally changes in the properties of the
base line itself are propagated to the members of the corresponding bar series.

barwidth

barlayout

horizontal

The property barwidth is the width of the bar corresponding to the width vari-
able passed to bar or barh. Whether the bar series is "grouped" or "stacked"
is determined by the barlayout property and whether the bars are horizontal
or vertical by the horizontal property.

Changes to any of these property are propagated to the other members of the
bar series.

linewidth

linestyle

The line width and style of the edge of the patch objects making up the bars.
See Section 15.4.2 [Line Styles], page 315.

Chapter 15: Plotting 323

edgecolor

facecolor

The line and fill color of the patch objects making up the bars. See Section 15.4.1
[Colors], page 315.

xdata The nominal x positions of the bars. Changes in this property and propagated
to the other members of the bar series.

ydata The y value of the bars in the hggroup.

xdatasource

ydatasource

Data source variables.

15.4.6.4 Contour Groups

Contour group objects are created by the contour, contourf and contour3 functions. The
are equally one of the handles returned by the surfc and meshc functions. The properties
of the contour group are

contourmatrix

A read only property that contains the data return by contourc used to create
the contours of the plot.

fill A radio property that can have the values "on" or "off" that flags whether the
contours to plot are to be filled.

zlevelmode

zlevel The radio property zlevelmode can have the values "none", "auto" or "man-
ual". When its value is "none" there is no z component to the plotted contours.
When its value is "auto" the z value of the plotted contours is at the same value
as the contour itself. If the value is "manual", then the z value at which to plot
the contour is determined by the zlevel property.

levellistmode

levellist

levelstepmode

levelstep

If levellistmode is "manual", then the levels at which to plot the contours
is determined by levellist. If levellistmode is set to "auto", then the
distance between contours is determined by levelstep. If both levellistmode

and levelstepmode are set to "auto", then there are assumed to be 10 equal
spaced contours.

textlistmode

textlist

textstepmode

textstep If textlistmode is "manual", then the labeled contours is determined by
textlist. If textlistmode is set to "auto", then the distance between labeled
contours is determined by textstep. If both textlistmode and textstepmode

are set to "auto", then there are assumed to be 10 equal spaced labeled con-
tours.

324 GNU Octave

showtext Flag whether the contour labels are shown or not.

labelspacing

The distance between labels on a single contour in points.

linewidth

linestyle

linecolor

The properties of the contour lines. The properties linewidth and linestyle

are similar to the corresponding properties for lines. The property linecolor

is a color property (see Section 15.4.1 [Colors], page 315), that can also have
the values of "none" or "auto". If linecolor is "none", then no contour line
is drawn. If linecolor is "auto" then the line color is determined by the
colormap.

xdata

ydata

zdata The original x, y, and z data of the contour lines.

xdatasource

ydatasource

zdatasource

Data source variables.

15.4.6.5 Error Bar Series

Error bar series are created by the errorbar function. Each hggroup element contains two
line objects representing the data and the errorbars separately. The properties of the error
bar series are

color The RGB color or color name of the line objects of the error bars. See
Section 15.4.1 [Colors], page 315.

linewidth

linestyle

The line width and style of the line objects of the error bars. See Section 15.4.2
[Line Styles], page 315.

marker

markeredgecolor

markerfacecolor

markersize

The line and fill color of the markers on the error bars. See Section 15.4.1
[Colors], page 315.

xdata

ydata

ldata

udata

xldata

xudata The original x, y, l, u, xl, xu data of the error bars.

Chapter 15: Plotting 325

xdatasource

ydatasource

ldatasource

udatasource

xldatasource

xudatasource

Data source variables.

15.4.6.6 Line Series

Line series objects are created by the plot and plot3 functions and are of the type line.
The properties of the line series with the ability to add data sources.

color The RGB color or color name of the line objects. See Section 15.4.1 [Colors],
page 315.

linewidth

linestyle

The line width and style of the line objects. See Section 15.4.2 [Line Styles],
page 315.

marker

markeredgecolor

markerfacecolor

markersize

The line and fill color of the markers. See Section 15.4.1 [Colors], page 315.

xdata

ydata

zdata The original x, y and z data.

xdatasource

ydatasource

zdatasource

Data source variables.

15.4.6.7 Quiver Group

Quiver series objects are created by the quiver or quiver3 functions. Each hggroup element
of the series contains three line objects as children representing the body and head of the
arrow, together with a marker as the point of origin of the arrows. The properties of the
quiver series are

autoscale

autoscalefactor

Flag whether the length of the arrows is scaled or defined directly from
the u, v and w data. If the arrow length is flagged as being scaled by the
autoscale property, then the length of the autoscaled arrow is controlled by
the autoscalefactor.

maxheadsize

This property controls the size of the head of the arrows in the quiver series.
The default value is 0.2.

326 GNU Octave

showarrowhead

Flag whether the arrow heads are displayed in the quiver plot.

color The RGB color or color name of the line objects of the quiver. See Section 15.4.1
[Colors], page 315.

linewidth

linestyle

The line width and style of the line objects of the quiver. See Section 15.4.2
[Line Styles], page 315.

marker

markerfacecolor

markersize

The line and fill color of the marker objects at the original of the arrows. See
Section 15.4.1 [Colors], page 315.

xdata

ydata

zdata The origins of the values of the vector field.

udata

vdata

wdata The values of the vector field to plot.

xdatasource

ydatasource

zdatasource

udatasource

vdatasource

wdatasource

Data source variables.

15.4.6.8 Scatter Group

Scatter series objects are created by the scatter or scatter3 functions. A single hggroup
element contains as many children as there are points in the scatter plot, with each child
representing one of the points. The properties of the stem series are

linewidth

The line width of the line objects of the points. See Section 15.4.2 [Line Styles],
page 315.

marker

markeredgecolor

markerfacecolor

The line and fill color of the markers of the points. See Section 15.4.1 [Colors],
page 315.

xdata

ydata

zdata The original x, y and z data of the stems.

Chapter 15: Plotting 327

cdata The color data for the points of the plot. Each point can have a separate color,
or a unique color can be specified.

sizedata The size data for the points of the plot. Each point can its own size or a unique
size can be specified.

xdatasource

ydatasource

zdatasource

cdatasource

sizedatasource

Data source variables.

15.4.6.9 Stair Group

Stair series objects are created by the stair function. Each hggroup element of the series
contains a single line object as a child representing the stair. The properties of the stair
series are

color The RGB color or color name of the line objects of the stairs. See Section 15.4.1
[Colors], page 315.

linewidth

linestyle

The line width and style of the line objects of the stairs. See Section 15.4.2
[Line Styles], page 315.

marker

markeredgecolor

markerfacecolor

markersize

The line and fill color of the markers on the stairs. See Section 15.4.1 [Colors],
page 315.

xdata

ydata The original x and y data of the stairs.

xdatasource

ydatasource

Data source variables.

15.4.6.10 Stem Series

Stem series objects are created by the stem or stem3 functions. Each hggroup element
contains a single line object as a child representing the stems. The properties of the stem
series are

showbaseline

baseline

basevalue

The property showbaseline flags whether the baseline of the stem series is
displayed (default is "on"). The handle of the graphics object representing
the baseline is given by the baseline property and the y-value (or z-value for
stem3) of the baseline by the basevalue property.

328 GNU Octave

Changes to any of these property are propagated to the other members of the
stem series and to the baseline itself. Equally changes in the properties of the
base line itself are propagated to the members of the corresponding stem series.

color The RGB color or color name of the line objects of the stems. See Section 15.4.1
[Colors], page 315.

linewidth

linestyle

The line width and style of the line objects of the stems. See Section 15.4.2
[Line Styles], page 315.

marker

markeredgecolor

markerfacecolor

markersize

The line and fill color of the markers on the stems. See Section 15.4.1 [Colors],
page 315.

xdata

ydata

zdata The original x, y and z data of the stems.

xdatasource

ydatasource

zdatasource

Data source variables.

15.4.6.11 Surface Group

Surface group objects are created by the surf or mesh functions, but are equally one of
the handles returned by the surfc or meshc functions. The surface group is of the type
surface.

The properties of the surface group are

edgecolor

facecolor

The RGB color or color name of the edges or faces of the surface. See
Section 15.4.1 [Colors], page 315.

linewidth

linestyle

The line width and style of the lines on the surface. See Section 15.4.2 [Line
Styles], page 315.

marker

markeredgecolor

markerfacecolor

markersize

The line and fill color of the markers on the surface. See Section 15.4.1 [Colors],
page 315.

Chapter 15: Plotting 329

xdata

ydata

zdata

cdata The original x, y, z and c data.

xdatasource

ydatasource

zdatasource

cdatasource

Data source variables.

15.4.7 Graphics Toolkits

[Function File]name = graphics_toolkit ()
[Function File]old_name = graphics_toolkit (name)
[Function File]graphics_toolkit (hlist, name)

Query or set the default graphics toolkit to name. If the toolkit is not already loaded,
it is first initialized by calling the function __init_name__.

When called with a list of figure handles, hlist, the graphics toolkit is changed only
for the listed figures.

See also: [available graphics toolkits], page 329.

[Built-in Function]available_graphics_toolkits ()
Return a cell array of registered graphics toolkits.

See also: [graphics toolkit], page 329, [register graphics toolkit], page 329.

[Built-in Function]loaded_graphics_toolkits ()
Return a cell array of the currently loaded graphics toolkits.

See also: [available graphics toolkits], page 329.

[Built-in Function]register_graphics_toolkit (toolkit)
List toolkit as an available graphics toolkit.

See also: [available graphics toolkits], page 329.

15.4.7.1 Customizing Toolkit Behavior

The specific behavior of the backend toolkit may be modified using the following utility
functions. Note: Not all functions apply to every graphics toolkit.

[Loadable Function][prog, args] = gnuplot_binary ()
[Loadable Function][old_prog, old_args] = gnuplot_binary (new_prog,

arg1, . . .)
Query or set the name of the program invoked by the plot command when the graph-
ics toolkit is set to "gnuplot". Additional arguments to pass to the external plotting
program may also be given. The default value is "gnuplot" without additional argu-
ments. See Appendix G [Installation], page 739.

330 GNU Octave

[Built-in Function]mode = gui_mode ()
[Built-in Function]gui_mode (mode)

Query or set the GUI mode for the current graphics toolkit. The mode argument can
be one of the following strings:

’2d’ Allows panning and zooming of current axes.

’3d’ Allows rotating and zooming of current axes.

’none’ Mouse inputs have no effect.

This function is currently implemented only for the FLTK graphics toolkit.

See also: [mouse wheel zoom], page 330.

[Built-in Function]speed = mouse_wheel_zoom ()
[Built-in Function]mouse_wheel_zoom (speed)

Query or set the mouse wheel zoom factor.

This function is currently implemented only for the FLTK graphics toolkit.

See also: [gui mode], page 330.

Chapter 16: Matrix Manipulation 331

16 Matrix Manipulation

There are a number of functions available for checking to see if the elements of a matrix
meet some condition, and for rearranging the elements of a matrix. For example, Octave
can easily tell you if all the elements of a matrix are finite, or are less than some specified
value. Octave can also rotate the elements, extract the upper- or lower-triangular parts, or
sort the columns of a matrix.

16.1 Finding Elements and Checking Conditions

The functions any and all are useful for determining whether any or all of the elements
of a matrix satisfy some condition. The find function is also useful in determining which
elements of a matrix meet a specified condition.

[Built-in Function]any (x)
[Built-in Function]any (x, dim)

For a vector argument, return true (logical 1) if any element of the vector is nonzero.

For a matrix argument, return a row vector of logical ones and zeros with each element
indicating whether any of the elements of the corresponding column of the matrix are
nonzero. For example:

any (eye (2, 4))

⇒ [1, 1, 0, 0]

If the optional argument dim is supplied, work along dimension dim. For example:

any (eye (2, 4), 2)

⇒ [1; 1]

See also: [all], page 331.

[Built-in Function]all (x)
[Built-in Function]all (x, dim)

For a vector argument, return true (logical 1) if all elements of the vector are nonzero.

For a matrix argument, return a row vector of logical ones and zeros with each element
indicating whether all of the elements of the corresponding column of the matrix are
nonzero. For example:

all ([2, 3; 1, 0]))

⇒ [1, 0]

If the optional argument dim is supplied, work along dimension dim.

See also: [any], page 331.

Since the comparison operators (see Section 8.4 [Comparison Ops], page 132) return
matrices of ones and zeros, it is easy to test a matrix for many things, not just whether the
elements are nonzero. For example,

all (all (rand (5) < 0.9))

⇒ 0

tests a random 5 by 5 matrix to see if all of its elements are less than 0.9.

Note that in conditional contexts (like the test clause of if and while statements) Octave
treats the test as if you had typed all (all (condition)).

332 GNU Octave

[Mapping Function]z = xor (x, y)
Return the ‘exclusive or’ of the entries of x and y. For boolean expressions x and y,
xor (x, y) is true if and only if one of x or y is true. Otherwise, for x and y both
true or both false, xor returns false.

The truth table for the xor operation is

x y z
0 0 0
1 0 1
0 1 1
1 1 0

See also: [and], page 134, [or], page 134, [not], page 134.

[Built-in Function]diff (x)
[Built-in Function]diff (x, k)
[Built-in Function]diff (x, k, dim)

If x is a vector of length n, diff (x) is the vector of first differences x2−x1, . . . , xn−
xn−1.

If x is a matrix, diff (x) is the matrix of column differences along the first non-
singleton dimension.

The second argument is optional. If supplied, diff (x, k), where k is a non-negative
integer, returns the k-th differences. It is possible that k is larger than the first non-
singleton dimension of the matrix. In this case, diff continues to take the differences
along the next non-singleton dimension.

The dimension along which to take the difference can be explicitly stated with the
optional variable dim. In this case the k-th order differences are calculated along this
dimension. In the case where k exceeds size (x, dim) an empty matrix is returned.

[Mapping Function]isinf (x)
Return a logical array which is true where the elements of x are are infinite and false
where they are not. For example:

isinf ([13, Inf, NA, NaN])

⇒ [0, 1, 0, 0]

See also: [isfinite], page 332, [isnan], page 332, [isna], page 40.

[Mapping Function]isnan (x)
Return a logical array which is true where the elements of x are NaN values and false
where they are not. NA values are also considered NaN values. For example:

isnan ([13, Inf, NA, NaN])

⇒ [0, 0, 1, 1]

See also: [isna], page 40, [isinf], page 332, [isfinite], page 332.

[Mapping Function]isfinite (x)
[Mapping Function]finite (x)

Return a logical array which is true where the elements of x are finite values and false
where they are not. For example:

Chapter 16: Matrix Manipulation 333

finite ([13, Inf, NA, NaN])

⇒ [1, 0, 0, 0]

See also: [isinf], page 332, [isnan], page 332, [isna], page 40.

[Function File][err, y1, ...] = common_size (x1, . . .)
Determine if all input arguments are either scalar or of common size. If so, err is
zero, and yi is a matrix of the common size with all entries equal to xi if this is a
scalar or xi otherwise. If the inputs cannot be brought to a common size, err is 1,
and yi is xi. For example:

[errorcode, a, b] = common_size ([1 2; 3 4], 5)

⇒ errorcode = 0

⇒ a = [1, 2; 3, 4]

⇒ b = [5, 5; 5, 5]

This is useful for implementing functions where arguments can either be scalars or of
common size.

[Loadable Function]idx = find (x)
[Loadable Function]idx = find (x, n)
[Loadable Function]idx = find (x, n, direction)
[Loadable Function][i, j] = find (. . .)
[Loadable Function][i, j, v] = find (. . .)

Return a vector of indices of nonzero elements of a matrix, as a row if x is a row vector
or as a column otherwise. To obtain a single index for each matrix element, Octave
pretends that the columns of a matrix form one long vector (like Fortran arrays are
stored). For example:

find (eye (2))

⇒ [1; 4]

If two outputs are requested, find returns the row and column indices of nonzero
elements of a matrix. For example:

[i, j] = find (2 * eye (2))

⇒ i = [1; 2]

⇒ j = [1; 2]

If three outputs are requested, find also returns a vector containing the nonzero
values. For example:

[i, j, v] = find (3 * eye (2))

⇒ i = [1; 2]

⇒ j = [1; 2]

⇒ v = [3; 3]

If two inputs are given, n indicates the maximum number of elements to find from
the beginning of the matrix or vector.

If three inputs are given, direction should be one of "first" or "last", requesting only
the first or last n indices, respectively. However, the indices are always returned in
ascending order.

Note that this function is particularly useful for sparse matrices, as it extracts the
non-zero elements as vectors, which can then be used to create the original matrix.
For example:

334 GNU Octave

sz = size (a);

[i, j, v] = find (a);

b = sparse (i, j, v, sz(1), sz(2));

See also: [nonzeros], page 431.

[Loadable Function]idx = lookup (table, y)
[Loadable Function]idx = lookup (table, y, opt)

Lookup values in a sorted table. Usually used as a prelude to interpolation.

If table is increasing and idx = lookup (table, y), then table(idx(i)) <= y(i) <

table(idx(i+1)) for all y(i) within the table. If y(i) < table(1) then idx(i) is
0. If y(i) >= table(end) or isnan (y(i)) then idx(i) is n.

If the table is decreasing, then the tests are reversed. For non-strictly monotonic
tables, empty intervals are always skipped. The result is undefined if table is not
monotonic, or if table contains a NaN.

The complexity of the lookup is O(M*log(N)) where N is the size of table and
M is the size of y. In the special case when y is also sorted, the complexity is
O(min(M*log(N),M+N)).

table and y can also be cell arrays of strings (or y can be a single string). In this
case, string lookup is performed using lexicographical comparison.

If opts is specified, it must be a string with letters indicating additional options.

m table(idx(i)) == val(i) if val(i) occurs in table; otherwise, idx(i)
is zero.

b idx(i) is a logical 1 or 0, indicating whether val(i) is contained in table
or not.

l For numeric lookups the leftmost subinterval shall be extended to infinity
(i.e., all indices at least 1)

r For numeric lookups the rightmost subinterval shall be extended to infin-
ity (i.e., all indices at most n-1).

If you wish to check if a variable exists at all, instead of properties its elements may
have, consult Section 7.3 [Status of Variables], page 117.

16.2 Rearranging Matrices

[Function File]fliplr (x)
Return a copy of x with the order of the columns reversed. In other words, x is
flipped left-to-right about a vertical axis. For example:

fliplr ([1, 2; 3, 4])

⇒ 2 1

4 3

Note that fliplr only works with 2-D arrays. To flip N-D arrays use flipdim instead.

See also: [flipud], page 335, [flipdim], page 335, [rot90], page 335, [rotdim], page 335.

Chapter 16: Matrix Manipulation 335

[Function File]flipud (x)
Return a copy of x with the order of the rows reversed. In other words, x is flipped
upside-down about a horizontal axis. For example:

flipud ([1, 2; 3, 4])

⇒ 3 4

1 2

Note that flipud only works with 2-D arrays. To flip N-D arrays use flipdim instead.

See also: [fliplr], page 334, [flipdim], page 335, [rot90], page 335, [rotdim], page 335.

[Function File]flipdim (x)
[Function File]flipdim (x, dim)

Return a copy of x flipped about the dimension dim. dim defaults to the first non-
singleton dimension. For example:

flipdim ([1, 2; 3, 4], 2)

⇒ 2 1

4 3

See also: [fliplr], page 334, [flipud], page 335, [rot90], page 335, [rotdim], page 335.

[Function File]rot90 (A)
[Function File]rot90 (A, k)

Return a copy of A with the elements rotated counterclockwise in 90-degree incre-
ments. The second argument is optional, and specifies how many 90-degree rotations
are to be applied (the default value is 1). Negative values of k rotate the matrix in a
clockwise direction. For example,

rot90 ([1, 2; 3, 4], -1)

⇒ 3 1

4 2

rotates the given matrix clockwise by 90 degrees. The following are all equivalent
statements:

rot90 ([1, 2; 3, 4], -1)

rot90 ([1, 2; 3, 4], 3)

rot90 ([1, 2; 3, 4], 7)

Note that rot90 only works with 2-D arrays. To rotate N-D arrays use rotdim

instead.

See also: [rotdim], page 335, [flipud], page 335, [fliplr], page 334, [flipdim], page 335.

[Function File]rotdim (x)
[Function File]rotdim (x, n)
[Function File]rotdim (x, n, plane)

Return a copy of x with the elements rotated counterclockwise in 90-degree incre-
ments. The second argument n is optional, and specifies how many 90-degree rota-
tions are to be applied (the default value is 1). The third argument is also optional
and defines the plane of the rotation. If present, plane is a two element vector con-
taining two different valid dimensions of the matrix. When plane is not given the
first two non-singleton dimensions are used.

Negative values of n rotate the matrix in a clockwise direction. For example,

336 GNU Octave

rotdim ([1, 2; 3, 4], -1, [1, 2])

⇒ 3 1

4 2

rotates the given matrix clockwise by 90 degrees. The following are all equivalent
statements:

rotdim ([1, 2; 3, 4], -1, [1, 2])

rotdim ([1, 2; 3, 4], 3, [1, 2])

rotdim ([1, 2; 3, 4], 7, [1, 2])

See also: [rot90], page 335, [flipud], page 335, [fliplr], page 334, [flipdim], page 335.

[Built-in Function]cat (dim, array1, array2, . . . , arrayN)
Return the concatenation of N-D array objects, array1, array2, . . . , arrayN along
dimension dim.

A = ones (2, 2);

B = zeros (2, 2);

cat (2, A, B)

⇒ 1 1 0 0

1 1 0 0

Alternatively, we can concatenate A and B along the second dimension the following
way:

[A, B].

dim can be larger than the dimensions of the N-D array objects and the result will
thus have dim dimensions as the following example shows:

cat (4, ones (2, 2), zeros (2, 2))

⇒ ans =

ans(:,:,1,1) =

1 1

1 1

ans(:,:,1,2) =

0 0

0 0

See also: [horzcat], page 336, [vertcat], page 337.

[Built-in Function]horzcat (array1, array2, . . . , arrayN)
Return the horizontal concatenation of N-D array objects, array1, array2, . . . , arrayN
along dimension 2.

Arrays may also be concatenated horizontally using the syntax for creating new ma-
trices. For example:

hcat = [array1, array2, ...];

See also: [cat], page 336, [vertcat], page 337.

Chapter 16: Matrix Manipulation 337

[Built-in Function]vertcat (array1, array2, . . . , arrayN)
Return the vertical concatenation of N-D array objects, array1, array2, . . . , arrayN
along dimension 1.

Arrays may also be concatenated vertically using the syntax for creating new matrices.
For example:

vcat = [array1; array2; ...];

See also: [cat], page 336, [horzcat], page 336.

[Built-in Function]permute (A, perm)
Return the generalized transpose for an N-D array object A. The permutation vector
perm must contain the elements 1:ndims(A) (in any order, but each element must
appear only once).

See also: [ipermute], page 337.

[Built-in Function]ipermute (A, iperm)
The inverse of the permute function. The expression

ipermute (permute (A, perm), perm)

returns the original array A.

See also: [permute], page 337.

[Built-in Function]reshape (A, m, n, . . .)
[Built-in Function]reshape (A, [m n . . .])
[Built-in Function]reshape (A, . . . , [], . . .)
[Built-in Function]reshape (A, size)

Return a matrix with the specified dimensions (m, n, . . .) whose elements are taken
from the matrix A. The elements of the matrix are accessed in column-major order
(like Fortran arrays are stored).

The following code demonstrates reshaping a 1x4 row vector into a 2x2 square matrix.

reshape ([1, 2, 3, 4], 2, 2)

⇒ 1 3

2 4

Note that the total number of elements in the original matrix (prod (size (A)))
must match the total number of elements in the new matrix (prod ([m n ...])).

A single dimension of the return matrix may be left unspecified and Octave will
determine its size automatically. An empty matrix ([]) is used to flag the unspecified
dimension.

See also: [resize], page 337.

[Built-in Function]resize (x, m)
[Built-in Function]resize (x, m, n, . . .)
[Built-in Function]resize (x, [m n . . .])

Resize x cutting off elements as necessary.

In the result, element with certain indices is equal to the corresponding element of x
if the indices are within the bounds of x; otherwise, the element is set to zero.

In other words, the statement

338 GNU Octave

y = resize (x, dv);

is equivalent to the following code:

y = zeros (dv, class (x));

sz = min (dv, size (x));

for i = 1:length (sz), idx{i} = 1:sz(i); endfor

y(idx{:}) = x(idx{:});

but is performed more efficiently.

If only m is supplied, and it is a scalar, the dimension of the result is m-by-m. If m,
n, . . . are all scalars, then the dimensions of the result are m-by-n-by-. . . . If given a
vector as input, then the dimensions of the result are given by the elements of that
vector.

An object can be resized to more dimensions than it has; in such case the missing
dimensions are assumed to be 1. Resizing an object to fewer dimensions is not possible.

See also: [reshape], page 337, [postpad], page 342.

[Function File]y = circshift (x, n)
Circularly shift the values of the array x. n must be a vector of integers no longer than
the number of dimensions in x. The values of n can be either positive or negative,
which determines the direction in which the values or x are shifted. If an element of
n is zero, then the corresponding dimension of x will not be shifted. For example:

x = [1, 2, 3; 4, 5, 6; 7, 8, 9];

circshift (x, 1)

⇒ 7, 8, 9

1, 2, 3

4, 5, 6

circshift (x, -2)

⇒ 7, 8, 9

1, 2, 3

4, 5, 6

circshift (x, [0,1])

⇒ 3, 1, 2

6, 4, 5

9, 7, 8

See also: permute, ipermute, shiftdim.

[Function File]shift (x, b)
[Function File]shift (x, b, dim)

If x is a vector, perform a circular shift of length b of the elements of x.

If x is a matrix, do the same for each column of x. If the optional dim argument is
given, operate along this dimension.

[Function File]y = shiftdim (x, n)
[Function File][y, ns] = shiftdim (x)

Shift the dimensions of x by n, where n must be an integer scalar. When n is positive,
the dimensions of x are shifted to the left, with the leading dimensions circulated to

Chapter 16: Matrix Manipulation 339

the end. If n is negative, then the dimensions of x are shifted to the right, with n
leading singleton dimensions added.

Called with a single argument, shiftdim, removes the leading singleton dimensions,
returning the number of dimensions removed in the second output argument ns.

For example:

x = ones (1, 2, 3);

size (shiftdim (x, -1))

⇒ [1, 1, 2, 3]

size (shiftdim (x, 1))

⇒ [2, 3]

[b, ns] = shiftdim (x)

⇒ b = [1, 1, 1; 1, 1, 1]

⇒ ns = 1

See also: reshape, permute, ipermute, circshift, squeeze.

[Loadable Function][s, i] = sort (x)
[Loadable Function][s, i] = sort (x, dim)
[Loadable Function][s, i] = sort (x, mode)
[Loadable Function][s, i] = sort (x, dim, mode)

Return a copy of x with the elements arranged in increasing order. For matrices,
sort orders the elements within columns

For example:

sort ([1, 2; 2, 3; 3, 1])

⇒ 1 1

2 2

3 3

If the optional argument dim is given, then the matrix is sorted along the dimension
defined by dim. The optional argument mode defines the order in which the values
will be sorted. Valid values of mode are ‘ascend’ or ‘descend’.

The sort function may also be used to produce a matrix containing the original row
indices of the elements in the sorted matrix. For example:

[s, i] = sort ([1, 2; 2, 3; 3, 1])

⇒ s = 1 1

2 2

3 3

⇒ i = 1 3

2 1

3 2

For equal elements, the indices are such that equal elements are listed in the order in
which they appeared in the original list.

Sorting of complex entries is done first by magnitude (abs (z)) and for any ties by
phase angle (angle (z)). For example:

340 GNU Octave

sort ([1+i; 1; 1-i])

⇒ 1 + 0i

1 - 1i

1 + 1i

NaN values are treated as being greater than any other value and are sorted to the
end of the list.

The sort function may also be used to sort strings and cell arrays of strings, in which
case ASCII dictionary order (uppercase ’A’ precedes lowercase ’a’) of the strings is
used.

The algorithm used in sort is optimized for the sorting of partially ordered lists.

[Function File][s, i] = sortrows (A)
[Function File][s, i] = sortrows (A, c)

Sort the rows of the matrix A according to the order of the columns specified in c. If c
is omitted, a lexicographical sort is used. By default ascending order is used however
if elements of c are negative then the corresponding column is sorted in descending
order.

See also: [sort], page 339.

[Built-in Function]issorted (a)
[Built-in Function]issorted (a, mode)
[Built-in Function]issorted (a, "rows", mode)

Return true if the array is sorted according tomode, which may be either "ascending",
"descending", or "either". By default, mode is "ascending". NaNs are treated in the
same manner as sort.

If the optional argument "rows" is supplied, check whether the array is sorted by
rows as output by the function sortrows (with no options).

This function does not support sparse matrices.

See also: [sort], page 339, [sortrows], page 340.

[Built-in Function]nth_element (x, n)
[Built-in Function]nth_element (x, n, dim)

Select the n-th smallest element of a vector, using the ordering defined by sort. In
other words, the result is equivalent to sort(x)(n). n can also be a contiguous
range, either ascending l:u or descending u:-1:l, in which case a range of elements
is returned. If x is an array, nth_element operates along the dimension defined by
dim, or the first non-singleton dimension if dim is not given.

nth element encapsulates the C++ standard library algorithms nth element and
partial sort. On average, the complexity of the operation is O(M*log(K)), where
M = size (x, dim) and K = length (n). This function is intended for cases where
the ratio K/M is small; otherwise, it may be better to use sort.

See also: [sort], page 339, [min], page 362, [max], page 361.

[Function File]tril (A)
[Function File]tril (A, k)
[Function File]tril (A, k, pack)

Chapter 16: Matrix Manipulation 341

[Function File]triu (A)
[Function File]triu (A, k)
[Function File]triu (A, k, pack)

Return a new matrix formed by extracting the lower (tril) or upper (triu) triangular
part of the matrix A, and setting all other elements to zero. The second argument is
optional, and specifies how many diagonals above or below the main diagonal should
also be set to zero.

The default value of k is zero, so that triu and tril normally include the main
diagonal as part of the result.

If the value of k is negative, additional elements above (for tril) or below (for triu)
the main diagonal are also selected.

The absolute value of k must not be greater than the number of sub-diagonals or
super-diagonals.

For example:

tril (ones (3), -1)

⇒ 0 0 0

1 0 0

1 1 0

and

tril (ones (3), 1)

⇒ 1 1 0

1 1 1

1 1 1

If the option "pack" is given as third argument, the extracted elements are not inserted
into a matrix, but rather stacked column-wise one above other.

See also: [diag], page 342.

[Built-in Function]v = vec (x)
[Built-in Function]v = vec (x, dim)

Return the vector obtained by stacking the columns of the matrix x one above the
other. Without dim this is equivalent to x(:). If dim is supplied, the dimensions
of v are set to dim with all elements along the last dimension. This is equivalent to
shiftdim (x(:), 1-dim).

See also: [vech], page 341.

[Function File]vech (x)
Return the vector obtained by eliminating all supradiagonal elements of the square
matrix x and stacking the result one column above the other. This has uses in matrix
calculus where the underlying matrix is symmetric and it would be pointless to keep
values above the main diagonal.

See also: [vec], page 341.

[Function File]prepad (x, l)
[Function File]prepad (x, l, c)

342 GNU Octave

[Function File]prepad (x, l, c, dim)
Prepend the scalar value c to the vector x until it is of length l. If c is not given, a
value of 0 is used.

If length (x) > l , elements from the beginning of x are removed until a vector of
length l is obtained.

If x is a matrix, elements are prepended or removed from each row.

If the optional argument dim is given, operate along this dimension.

See also: [postpad], page 342, [cat], page 336, [resize], page 337.

[Function File]postpad (x, l)
[Function File]postpad (x, l, c)
[Function File]postpad (x, l, c, dim)

Append the scalar value c to the vector x until it is of length l. If c is not given, a
value of 0 is used.

If length (x) > l , elements from the end of x are removed until a vector of length l
is obtained.

If x is a matrix, elements are appended or removed from each row.

If the optional argument dim is given, operate along this dimension.

See also: [prepad], page 341, [cat], page 336, [resize], page 337.

[Built-in Function]M = diag (v)
[Built-in Function]M = diag (v, k)
[Built-in Function]M = diag (v, m, n)
[Built-in Function]v = diag (M)
[Built-in Function]v = diag (M, k)

Return a diagonal matrix with vector v on diagonal k. The second argument is
optional. If it is positive, the vector is placed on the k-th super-diagonal. If it is
negative, it is placed on the -k-th sub-diagonal. The default value of k is 0, and the
vector is placed on the main diagonal. For example:

diag ([1, 2, 3], 1)

⇒ 0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

The 3-input form returns a diagonal matrix with vector v on the main diagonal and
the resulting matrix being of size m rows x n columns.

Given a matrix argument, instead of a vector, diag extracts the k-th diagonal of the
matrix.

[Function File]blkdiag (A, B, C, . . .)
Build a block diagonal matrix from A, B, C, . . . All the arguments must be numeric
and are two-dimensional matrices or scalars. If any argument is of type sparse, the
output will also be sparse.

See also: [diag], page 342, [horzcat], page 336, [vertcat], page 337, [sparse], page 430.

Chapter 16: Matrix Manipulation 343

16.3 Special Utility Matrices

[Built-in Function]eye (n)
[Built-in Function]eye (m, n)
[Built-in Function]eye ([m n])
[Built-in Function]eye (. . . , class)

Return an identity matrix. If invoked with a single scalar argument n, return a square
NxN identity matrix. If supplied two scalar arguments (m, n), eye takes them to be
the number of rows and columns. If given a vector with two elements, eye uses the
values of the elements as the number of rows and columns, respectively. For example:

eye (3)

⇒ 1 0 0

0 1 0

0 0 1

The following expressions all produce the same result:

eye (2)

≡
eye (2, 2)

≡
eye (size ([1, 2; 3, 4])

The optional argument class, allows eye to return an array of the specified type, like

val = zeros (n,m, "uint8")

Calling eye with no arguments is equivalent to calling it with an argument of 1. Any
negative dimensions are treated as zero. These odd definitions are for compatibility
with matlab.

See also: [speye], page 427.

[Built-in Function]ones (n)
[Built-in Function]ones (m, n)
[Built-in Function]ones (m, n, k, . . .)
[Built-in Function]ones ([m n . . .])
[Built-in Function]ones (. . . , class)

Return a matrix or N-dimensional array whose elements are all 1. If invoked with a
single scalar integer argument n, return a square NxN matrix. If invoked with two or
more scalar integer arguments, or a vector of integer values, return an array with the
given dimensions.

If you need to create a matrix whose values are all the same, you should use an
expression like

val_matrix = val * ones (m, n)

The optional argument class specifies the class of the return array and defaults to
double. For example:

val = ones (m,n, "uint8")

See also: [zeros], page 344.

344 GNU Octave

[Built-in Function]zeros (n)
[Built-in Function]zeros (m, n)
[Built-in Function]zeros (m, n, k, . . .)
[Built-in Function]zeros ([m n . . .])
[Built-in Function]zeros (. . . , class)

Return a matrix or N-dimensional array whose elements are all 0. If invoked with a
single scalar integer argument, return a square NxN matrix. If invoked with two or
more scalar integer arguments, or a vector of integer values, return an array with the
given dimensions.

The optional argument class specifies the class of the return array and defaults to
double. For example:

val = zeros (m,n, "uint8")

See also: [ones], page 343.

[Function File]repmat (A, m)
[Function File]repmat (A, m, n)
[Function File]repmat (A, m, n, p, . . .)
[Function File]repmat (A, [m n])
[Function File]repmat (A, [m n p . . .])

Form a block matrix of size m by n, with a copy of matrix A as each element. If n is
not specified, form an m by m block matrix.

See also: [repelems], page 344.

[Built-in Function]repelems (x, r)
Construct a vector of repeated elements from x. r is a 2xN integer matrix specifying
which elements to repeat and how often to repeat each element.

Entries in the first row, r(1,j), select an element to repeat. The corresponding entry
in the second row, r(2,j), specifies the repeat count. If x is a matrix then the columns
of x are imagined to be stacked on top of each other for purposes of the selection
index. A row vector is always returned.

Conceptually the result is calculated as follows:

y = [];

for i = 1:columns (r)

y = [y, x(r(1,i)*ones(1, r(2,i)))];

endfor

See also: [repmat], page 344.

The functions linspace and logspace make it very easy to create vectors with evenly
or logarithmically spaced elements. See Section 4.2 [Ranges], page 50.

[Built-in Function]linspace (base, limit)
[Built-in Function]linspace (base, limit, n)

Return a row vector with n linearly spaced elements between base and limit. If
the number of elements is greater than one, then the endpoints base and limit are
always included in the range. If base is greater than limit, the elements are stored in
decreasing order. If the number of points is not specified, a value of 100 is used.

Chapter 16: Matrix Manipulation 345

The linspace function always returns a row vector if both base and limit are scalars.
If one, or both, of them are column vectors, linspace returns a matrix.

For compatibility with matlab, return the second argument (limit) if fewer than two
values are requested.

[Function File]logspace (a, b)
[Function File]logspace (b, b, n)
[Function File]logspace (a, pi, n)

Return a row vector with n elements logarithmically spaced from 10a to 10b. If n is
unspecified it defaults to 50.

If b is equal to π, the points are between 10a and π, not 10a and 10π, in order to be
compatible with the corresponding matlab function.

Also for compatibility with matlab, return the second argument b if fewer than two
values are requested.

See also: [linspace], page 344.

[Loadable Function]rand (n)
[Loadable Function]rand (n, m, . . .)
[Loadable Function]rand ([n m . . .])
[Loadable Function]v = rand ("state")
[Loadable Function]rand ("state", v)
[Loadable Function]rand ("state", "reset")
[Loadable Function]v = rand ("seed")
[Loadable Function]rand ("seed", v)
[Loadable Function]rand ("seed", "reset")

Return a matrix with random elements uniformly distributed on the interval (0, 1).
The arguments are handled the same as the arguments for eye.

You can query the state of the random number generator using the form

v = rand ("state")

This returns a column vector v of length 625. Later, you can restore the random
number generator to the state v using the form

rand ("state", v)

You may also initialize the state vector from an arbitrary vector of length ≤ 625 for
v. This new state will be a hash based on the value of v, not v itself.

By default, the generator is initialized from /dev/urandom if it is available, otherwise
from CPU time, wall clock time, and the current fraction of a second.

To compute the pseudo-random sequence, rand uses the Mersenne Twister with a
period of 219937 − 1 (See M. Matsumoto and T. Nishimura, Mersenne Twister: A
623-dimensionally equidistributed uniform pseudorandom number generator, ACM
Trans. on Modeling and Computer Simulation Vol. 8, No. 1, pp. 3-30, January 1998,
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html). Do not use for
cryptography without securely hashing several returned values together, otherwise
the generator state can be learned after reading 624 consecutive values.

Older versions of Octave used a different random number generator. The new genera-
tor is used by default as it is significantly faster than the old generator, and produces

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

346 GNU Octave

random numbers with a significantly longer cycle time. However, in some circum-
stances it might be desirable to obtain the same random sequences as used by the old
generators. To do this the keyword "seed" is used to specify that the old generators
should be use, as in

rand ("seed", val)

which sets the seed of the generator to val. The seed of the generator can be queried
with

s = rand ("seed")

However, it should be noted that querying the seed will not cause rand to use the
old generators, only setting the seed will. To cause rand to once again use the new
generators, the keyword "state" should be used to reset the state of the rand.

The state or seed of the generator can be reset to a new random value using the
"reset" keyword.

See also: [randn], page 346, [rande], page 347, [randg], page 348, [randp], page 347.

[Function File]randi (imax)
[Function File]randi (imax, n)
[Function File]randi (imax, m, n, . . .)
[Function File]randi ([imin imax], . . .)
[Function File]randi (. . . , "class")

Return random integers in the range 1:imax.

Additional arguments determine the shape of the return matrix. When no arguments
are specified a single random integer is returned. If one argument n is specified then
a square matrix (n x n) is returned. Two or more arguments will return a multi-
dimensional matrix (m x n x . . .).

The integer range may optionally be described by a two element matrix with a
lower and upper bound in which case the returned integers will be on the interval
[imin, imax].

The optional argument "class" will return a matrix of the requested type. The default
is "double".

The following example returns 150 integers in the range 1-10.

ri = randi (10, 150, 1)

Implementation Note: randi relies internally on rand which uses class "double" to
represent numbers. This limits the maximum integer (imax) and range (imax - imin)
to the value returned by the bitmax function. For IEEE floating point numbers this
value is 253 − 1.

See also: [rand], page 345.

[Loadable Function]randn (n)
[Loadable Function]randn (n, m, . . .)
[Loadable Function]randn ([n m . . .])
[Loadable Function]v = randn ("state")
[Loadable Function]randn ("state", v)
[Loadable Function]randn ("state", "reset")

Chapter 16: Matrix Manipulation 347

[Loadable Function]v = randn ("seed")
[Loadable Function]randn ("seed", v)
[Loadable Function]randn ("seed", "reset")

Return a matrix with normally distributed random elements having zero mean and
variance one. The arguments are handled the same as the arguments for rand.

By default, randn uses the Marsaglia and Tsang “Ziggurat technique” to transform
from a uniform to a normal distribution.

Reference: G. Marsaglia and W.W. Tsang, Ziggurat Method for
Generating Random Variables, J. Statistical Software, vol 5, 2000,
http://www.jstatsoft.org/v05/i08/)

See also: [rand], page 345, [rande], page 347, [randg], page 348, [randp], page 347.

[Loadable Function]rande (n)
[Loadable Function]rande (n, m, . . .)
[Loadable Function]rande ([n m . . .])
[Loadable Function]v = rande ("state")
[Loadable Function]rande ("state", v)
[Loadable Function]rande ("state", "reset")
[Loadable Function]v = rande ("seed")
[Loadable Function]rande ("seed", v)
[Loadable Function]rande ("seed", "reset")

Return a matrix with exponentially distributed random elements. The arguments are
handled the same as the arguments for rand.

By default, randn uses the Marsaglia and Tsang “Ziggurat technique” to transform
from a uniform to an exponential distribution.

Reference: G. Marsaglia and W.W. Tsang, Ziggurat Method for
Generating Random Variables, J. Statistical Software, vol 5, 2000,
http://www.jstatsoft.org/v05/i08/)

See also: [rand], page 345, [randn], page 346, [randg], page 348, [randp], page 347.

[Loadable Function]randp (l, n)
[Loadable Function]randp (l, n, m, . . .)
[Loadable Function]randp (l, [n m . . .])
[Loadable Function]v = randp ("state")
[Loadable Function]randp ("state", v)
[Loadable Function]randp ("state", "reset")
[Loadable Function]v = randp ("seed")
[Loadable Function]randp ("seed", v)
[Loadable Function]randp ("seed", "reset")

Return a matrix with Poisson distributed random elements with mean value param-
eter given by the first argument, l. The arguments are handled the same as the
arguments for rand, except for the argument l.

Five different algorithms are used depending on the range of l and whether or not l
is a scalar or a matrix.

http://www.jstatsoft.org/v05/i08/
http://www.jstatsoft.org/v05/i08/

348 GNU Octave

For scalar l ≤ 12, use direct method.
W.H. Press, et al., Numerical Recipes in C, Cambridge University Press,
1992.

For scalar l > 12, use rejection method.[1]
W.H. Press, et al., Numerical Recipes in C, Cambridge University Press,
1992.

For matrix l ≤ 10, use inversion method.[2]
E. Stadlober, et al., WinRand source code, available via FTP.

For matrix l > 10, use patchwork rejection method.
E. Stadlober, et al., WinRand source code, available via FTP, or H. Zech-
ner, Efficient sampling from continuous and discrete unimodal distribu-
tions, Doctoral Dissertation, 156pp., Technical University Graz, Austria,
1994.

For l > 1e8, use normal approximation.
L. Montanet, et al., Review of Particle Properties, Physical Review D 50
p1284, 1994.

See also: [rand], page 345, [randn], page 346, [rande], page 347, [randg], page 348.

[Loadable Function]randg (n)
[Loadable Function]randg (n, m, . . .)
[Loadable Function]randg ([n m . . .])
[Loadable Function]v = randg ("state")
[Loadable Function]randg ("state", v)
[Loadable Function]randg ("state", "reset")
[Loadable Function]v = randg ("seed")
[Loadable Function]randg ("seed", v)
[Loadable Function]randg ("seed", "reset")

Return a matrix with gamma(a,1) distributed random elements. The arguments are
handled the same as the arguments for rand, except for the argument a.

This can be used to generate many distributions:

gamma (a, b) for a > -1, b > 0

r = b * randg (a)

beta (a, b) for a > -1, b > -1

r1 = randg (a, 1)

r = r1 / (r1 + randg (b, 1))

Erlang (a, n)

r = a * randg (n)

chisq (df) for df > 0

r = 2 * randg (df / 2)

t (df) for 0 < df < inf (use randn if df is infinite)
r = randn () / sqrt (2 * randg (df / 2) / df)

Chapter 16: Matrix Manipulation 349

F (n1, n2) for 0 < n1, 0 < n2

r1 equals 1 if n1 is infinite

r1 = 2 * randg (n1 / 2) / n1

r2 equals 1 if n2 is infinite

r2 = 2 * randg (n2 / 2) / n2

r = r1 / r2

negative binomial (n, p) for n > 0, 0 < p <= 1

r = randp ((1 - p) / p * randg (n))

non-central chisq (df, L), for df >= 0 and L > 0

(use chisq if L = 0)

r = randp (L / 2)

r(r > 0) = 2 * randg (r(r > 0))

r(df > 0) += 2 * randg (df(df > 0)/2)

Dirichlet (a1, ... ak)

r = (randg (a1), ..., randg (ak))

r = r / sum (r)

See also: [rand], page 345, [randn], page 346, [rande], page 347, [randp], page 347.

The generators operate in the new or old style together, it is not possible to mix the
two. Initializing any generator with "state" or "seed" causes the others to switch to the
same style for future calls.

The state of each generator is independent and calls to different generators can be
interleaved without affecting the final result. For example,

rand ("state", [11, 22, 33]);

randn ("state", [44, 55, 66]);

u = rand (100, 1);

n = randn (100, 1);

and

rand ("state", [11, 22, 33]);

randn ("state", [44, 55, 66]);

u = zeros (100, 1);

n = zeros (100, 1);

for i = 1:100

u(i) = rand ();

n(i) = randn ();

end

produce equivalent results. When the generators are initialized in the old style with "seed"

only rand and randn are independent, because the old rande, randg and randp generators
make calls to rand and randn.

The generators are initialized with random states at start-up, so that the sequences of
random numbers are not the same each time you run Octave.1 If you really do need to
reproduce a sequence of numbers exactly, you can set the state or seed to a specific value.

1 The old versions of rand and randn obtain their initial seeds from the system clock.

350 GNU Octave

If invoked without arguments, rand and randn return a single element of a random
sequence.

The original rand and randn functions use Fortran code from ranlib, a library of Fortran
routines for random number generation, compiled by Barry W. Brown and James Lovato
of the Department of Biomathematics at The University of Texas, M.D. Anderson Cancer
Center, Houston, TX 77030.

[Loadable Function]randperm (n)
[Loadable Function]randperm (n, m)

Return a row vector containing a random permutation of 1:n . If m is supplied, return
m unique entries, sampled without replacement from 1:n . The complexity is O(n)
in memory and O(m) in time, unless m < n/5, in which case O(m) memory is used
as well. The randomization is performed using rand(). All permutations are equally
likely.

See also: [perms], page 506.

16.4 Famous Matrices

The following functions return famous matrix forms.

[Function File]hadamard (n)
Construct a Hadamard matrix (Hn) of size n-by-n. The size n must be of the form
2k ∗p in which p is one of 1, 12, 20 or 28. The returned matrix is normalized, meaning
Hn(:,1) == 1 and Hn(1,:) == 1.

Some of the properties of Hadamard matrices are:

• kron (Hm, Hn) is a Hadamard matrix of size m-by-n.

• Hn * Hn’ = n * eye (n).

• The rows of Hn are orthogonal.

• det (A) <= abs (det (Hn)) for all A with abs (A(i, j)) <= 1.

• Multiplying any row or column by -1 and the matrix will remain a Hadamard
matrix.

See also: [compan], page 538, [hankel], page 350, [toeplitz], page 352.

[Function File]hankel (c)
[Function File]hankel (c, r)

Return the Hankel matrix constructed from the first column c, and (optionally) the
last row r. If the last element of c is not the same as the first element of r, the last
element of c is used. If the second argument is omitted, it is assumed to be a vector
of zeros with the same size as c.

A Hankel matrix formed from an m-vector c, and an n-vector r, has the elements

H(i, j) =

{
ci+j−1, i+ j − 1 ≤ m;
ri+j−m, otherwise.

See also: [hadamard], page 350, [toeplitz], page 352.

Chapter 16: Matrix Manipulation 351

[Function File]hilb (n)
Return the Hilbert matrix of order n. The i, j element of a Hilbert matrix is defined
as

H(i, j) =
1

(i+ j − 1)

Hilbert matrices are close to being singular which make them difficult to invert with
numerical routines. Comparing the condition number of a random matrix 5x5 matrix
with that of a Hilbert matrix of order 5 reveals just how difficult the problem is.

cond (rand (5))

⇒ 14.392

cond (hilb (5))

⇒ 4.7661e+05

See also: [invhilb], page 351.

[Function File]invhilb (n)
Return the inverse of the Hilbert matrix of order n. This can be computed exactly
using

Aij = −1i+j(i+ j − 1)

(
n+ i− 1
n− j

)(
n+ j − 1
n− i

)(
i+ j − 2
i− 2

)2

=
p(i)p(j)

(i+ j − 1)

where

p(k) = −1k
(
k + n− 1
k − 1

)(
n
k

)
The validity of this formula can easily be checked by expanding the binomial coeffi-
cients in both formulas as factorials. It can be derived more directly via the theory
of Cauchy matrices. See J. W. Demmel, Applied Numerical Linear Algebra, p. 92.

Compare this with the numerical calculation of inverse (hilb (n)), which suffers
from the ill-conditioning of the Hilbert matrix, and the finite precision of your com-
puter’s floating point arithmetic.

See also: [hilb], page 351.

[Function File]magic (n)
Create an n-by-n magic square. A magic square is an arrangement of the integers
1:n^2 such that the row sums, column sums, and diagonal sums are all equal to the
same value.

Note: n must be greater than 2 for the magic square to exist.

[Function File]pascal (n)
[Function File]pascal (n, t)

Return the Pascal matrix of order n if t = 0. t defaults to 0. Return the pseudo-lower
triangular Cholesky factor of the Pascal matrix if t = 1 (The sign of some columns
may be negative). This matrix is its own inverse, that is pascal (n, 1) ^ 2 == eye

(n). If t = -1, return the true Cholesky factor with strictly positive values on the

352 GNU Octave

diagonal. If t = 2, return a transposed and permuted version of pascal (n, 1), which
is the cube root of the identity matrix. That is, pascal (n, 2) ^ 3 == eye (n).

See also: [chol], page 383.

[Function File]rosser ()
Return the Rosser matrix. This is a difficult test case used to evaluate eigenvalue
algorithms.

See also: [wilkinson], page 352, [eig], page 378.

[Function File]toeplitz (c)
[Function File]toeplitz (c, r)

Return the Toeplitz matrix constructed from the first column c, and (optionally) the
first row r. If the first element of r is not the same as the first element of c, the first
element of c is used. If the second argument is omitted, the first row is taken to be
the same as the first column.

A square Toeplitz matrix has the form:
c0 r1 r2 · · · rn
c1 c0 r1 · · · rn−1
c2 c1 c0 · · · rn−2
...

...
...

. . .
...

cn cn−1 cn−2 . . . c0

See also: [hankel], page 350.

[Function File]vander (c)
[Function File]vander (c, n)

Return the Vandermonde matrix whose next to last column is c. If n is specified, it
determines the number of columns; otherwise, n is taken to be equal to the length of
c.

A Vandermonde matrix has the form:
cn−11 · · · c21 c1 1
cn−12 · · · c22 c2 1
...

. . .
...

...
...

cn−1n · · · c2n cn 1

See also: [polyfit], page 542.

[Function File]wilkinson (n)
Return the Wilkinson matrix of order n. Wilkinson matrices are symmetric and
tridiagonal with pairs of nearly, but not exactly, equal eigenvalues. They are useful
in testing the behavior and performance of eigenvalue solvers.

See also: [rosser], page 352, [eig], page 378.

Chapter 17: Arithmetic 353

17 Arithmetic

Unless otherwise noted, all of the functions described in this chapter will work for real and
complex scalar, vector, or matrix arguments. Functions described as mapping functions
apply the given operation individually to each element when given a matrix argument. For
example:

sin ([1, 2; 3, 4])

⇒ 0.84147 0.90930

0.14112 -0.75680

17.1 Exponents and Logarithms

[Mapping Function]exp (x)
Compute ex for each element of x. To compute the matrix exponential, see Chapter 18
[Linear Algebra], page 377.

See also: [log], page 353.

[Mapping Function]expm1 (x)
Compute ex − 1 accurately in the neighborhood of zero.

See also: [exp], page 353.

[Mapping Function]log (x)
Compute the natural logarithm, ln (x), for each element of x. To compute the matrix
logarithm, see Chapter 18 [Linear Algebra], page 377.

See also: [exp], page 353, [log1p], page 353, [log2], page 353, [log10], page 353,
[logspace], page 345.

[Function File]reallog (x)
Return the real-valued natural logarithm of each element of x. Report an error if any
element results in a complex return value.

See also: [log], page 353, [realpow], page 354, [realsqrt], page 354.

[Mapping Function]log1p (x)
Compute ln (1 + x) accurately in the neighborhood of zero.

See also: [log], page 353, [exp], page 353, [expm1], page 353.

[Mapping Function]log10 (x)
Compute the base-10 logarithm of each element of x.

See also: [log], page 353, [log2], page 353, [logspace], page 345, [exp], page 353.

[Mapping Function]log2 (x)
[Mapping Function][f, e] = log2 (x)

Compute the base-2 logarithm of each element of x.

If called with two output arguments, split x into binary mantissa and exponent so
that 1

2
≤ |f | < 1 and e is an integer. If x = 0, f = e = 0.

See also: [pow2], page 354, [log], page 353, [log10], page 353, [exp], page 353.

354 GNU Octave

[Mapping Function]pow2 (x)
[Mapping Function]pow2 (f, e)

With one argument, computes 2x for each element of x.

With two arguments, returns f · 2e.

See also: [log2], page 353, [nextpow2], page 354.

[Function File]nextpow2 (x)
If x is a scalar, return the first integer n such that 2n ≥ |x|.
If x is a vector, return nextpow2 (length (x)).

See also: [pow2], page 354, [log2], page 353.

[Function File]realpow (x, y)
Compute the real-valued, element-by-element power operator. This is equivalent to
x .^ y , except that realpow reports an error if any return value is complex.

See also: [reallog], page 353, [realsqrt], page 354.

[Mapping Function]sqrt (x)
Compute the square root of each element of x. If x is negative, a complex result
is returned. To compute the matrix square root, see Chapter 18 [Linear Algebra],
page 377.

See also: [realsqrt], page 354, [nthroot], page 354.

[Function File]realsqrt (x)
Return the real-valued square root of each element of x. Report an error if any
element results in a complex return value.

See also: [sqrt], page 354, [realpow], page 354, [reallog], page 353.

[Mapping Function]cbrt (x)
Compute the real cube root of each element of x. Unlike x^(1/3), the result will be
negative if x is negative.

See also: [nthroot], page 354.

[Function File]nthroot (x, n)
Compute the n-th root of x, returning real results for real components of x. For
example:

nthroot (-1, 3)

⇒ -1

(-1) ^ (1 / 3)

⇒ 0.50000 - 0.86603i

x must have all real entries. n must be a scalar. If n is an even integer and X has
negative entries, an error is produced.

See also: [realsqrt], page 354, [sqrt], page 354, [cbrt], page 354.

Chapter 17: Arithmetic 355

17.2 Complex Arithmetic

In the descriptions of the following functions, z is the complex number x + iy, where i is
defined as

√
−1.

[Mapping Function]abs (z)
Compute the magnitude of z, defined as |z| =

√
x2 + y2.

For example:

abs (3 + 4i)

⇒ 5

[Mapping Function]arg (z)
[Mapping Function]angle (z)

Compute the argument of z, defined as, θ = atan2(y, x), in radians.

For example:

arg (3 + 4i)

⇒ 0.92730

[Mapping Function]conj (z)
Return the complex conjugate of z, defined as z̄ = x− iy.

See also: [real], page 355, [imag], page 355.

[Function File]cplxpair (z)
[Function File]cplxpair (z, tol)
[Function File]cplxpair (z, tol, dim)

Sort the numbers z into complex conjugate pairs ordered by increasing real part.
Place the negative imaginary complex number first within each pair. Place all the
real numbers (those with abs (imag (z) / z) < tol)) after the complex pairs.

If tol is unspecified the default value is 100*eps.

By default the complex pairs are sorted along the first non-singleton dimension of z.
If dim is specified, then the complex pairs are sorted along this dimension.

Signal an error if some complex numbers could not be paired. Signal an error if all
complex numbers are not exact conjugates (to within tol). Note that there is no
defined order for pairs with identical real parts but differing imaginary parts.

cplxpair (exp(2i*pi*[0:4]’/5)) == exp(2i*pi*[3; 2; 4; 1; 0]/5)

[Mapping Function]imag (z)
Return the imaginary part of z as a real number.

See also: [real], page 355, [conj], page 355.

[Mapping Function]real (z)
Return the real part of z.

See also: [imag], page 355, [conj], page 355.

356 GNU Octave

17.3 Trigonometry

Octave provides the following trigonometric functions where angles are specified in radians.
To convert from degrees to radians multiply by π/180 (e.g., sin (30 * pi/180) returns the
sine of 30 degrees). As an alternative, Octave provides a number of trigonometric functions
which work directly on an argument specified in degrees. These functions are named after
the base trigonometric function with a ‘d’ suffix. For example, sin expects an angle in
radians while sind expects an angle in degrees.

[Mapping Function]sin (x)
Compute the sine for each element of x in radians.

See also: [asin], page 356, [sind], page 358, [sinh], page 357.

[Mapping Function]cos (x)
Compute the cosine for each element of x in radians.

See also: [acos], page 356, [cosd], page 358, [cosh], page 357.

[Mapping Function]tan (z)
Compute the tangent for each element of x in radians.

See also: [atan], page 356, [tand], page 358, [tanh], page 357.

[Mapping Function]sec (x)
Compute the secant for each element of x in radians.

See also: [asec], page 356, [secd], page 358, [sech], page 357.

[Mapping Function]csc (x)
Compute the cosecant for each element of x in radians.

See also: [acsc], page 357, [cscd], page 358, [csch], page 357.

[Mapping Function]cot (x)
Compute the cotangent for each element of x in radians.

See also: [acot], page 357, [cotd], page 358, [coth], page 357.

[Mapping Function]asin (x)
Compute the inverse sine in radians for each element of x.

See also: [sin], page 356, [asind], page 359.

[Mapping Function]acos (x)
Compute the inverse cosine in radians for each element of x.

See also: [cos], page 356, [acosd], page 359.

[Mapping Function]atan (x)
Compute the inverse tangent in radians for each element of x.

See also: [tan], page 356, [atand], page 359.

[Mapping Function]asec (x)
Compute the inverse secant in radians for each element of x.

See also: [sec], page 356, [asecd], page 359.

Chapter 17: Arithmetic 357

[Mapping Function]acsc (x)
Compute the inverse cosecant in radians for each element of x.

See also: [csc], page 356, [acscd], page 359.

[Mapping Function]acot (x)
Compute the inverse cotangent in radians for each element of x.

See also: [cot], page 356, [acotd], page 359.

[Mapping Function]sinh (x)
Compute the hyperbolic sine for each element of x.

See also: [asinh], page 357, [cosh], page 357, [tanh], page 357.

[Mapping Function]cosh (x)
Compute the hyperbolic cosine for each element of x.

See also: [acosh], page 357, [sinh], page 357, [tanh], page 357.

[Mapping Function]tanh (x)
Compute hyperbolic tangent for each element of x.

See also: [atanh], page 357, [sinh], page 357, [cosh], page 357.

[Mapping Function]sech (x)
Compute the hyperbolic secant of each element of x.

See also: [asech], page 357.

[Mapping Function]csch (x)
Compute the hyperbolic cosecant of each element of x.

See also: [acsch], page 358.

[Mapping Function]coth (x)
Compute the hyperbolic cotangent of each element of x.

See also: [acoth], page 358.

[Mapping Function]asinh (x)
Compute the inverse hyperbolic sine for each element of x.

See also: [sinh], page 357.

[Mapping Function]acosh (x)
Compute the inverse hyperbolic cosine for each element of x.

See also: [cosh], page 357.

[Mapping Function]atanh (x)
Compute the inverse hyperbolic tangent for each element of x.

See also: [tanh], page 357.

[Mapping Function]asech (x)
Compute the inverse hyperbolic secant of each element of x.

See also: [sech], page 357.

358 GNU Octave

[Mapping Function]acsch (x)
Compute the inverse hyperbolic cosecant of each element of x.

See also: [csch], page 357.

[Mapping Function]acoth (x)
Compute the inverse hyperbolic cotangent of each element of x.

See also: [coth], page 357.

[Mapping Function]atan2 (y, x)
Compute atan (y / x) for corresponding elements of y and x. Signal an error if y
and x do not match in size and orientation.

Octave provides the following trigonometric functions where angles are specified in de-
grees. These functions produce true zeros at the appropriate intervals rather than the small
round-off error that occurs when using radians. For example:

cosd (90)

⇒ 0

cos (pi/2)

⇒ 6.1230e-17

[Function File]sind (x)
Compute the sine for each element of x in degrees. Returns zero for elements where
x/180 is an integer.

See also: [asind], page 359, [sin], page 356.

[Function File]cosd (x)
Compute the cosine for each element of x in degrees. Returns zero for elements where
(x-90)/180 is an integer.

See also: [acosd], page 359, [cos], page 356.

[Function File]tand (x)
Compute the tangent for each element of x in degrees. Returns zero for elements
where x/180 is an integer and Inf for elements where (x-90)/180 is an integer.

See also: [atand], page 359, [tan], page 356.

[Function File]secd (x)
Compute the secant for each element of x in degrees.

See also: [asecd], page 359, [sec], page 356.

[Function File]cscd (x)
Compute the cosecant for each element of x in degrees.

See also: [acscd], page 359, [csc], page 356.

[Function File]cotd (x)
Compute the cotangent for each element of x in degrees.

See also: [acotd], page 359, [cot], page 356.

Chapter 17: Arithmetic 359

[Function File]asind (x)
Compute the inverse sine in degrees for each element of x.

See also: [sind], page 358, [asin], page 356.

[Function File]acosd (x)
Compute the inverse cosine in degrees for each element of x.

See also: [cosd], page 358, [acos], page 356.

[Function File]atand (x)
Compute the inverse tangent in degrees for each element of x.

See also: [tand], page 358, [atan], page 356.

[Function File]asecd (x)
Compute the inverse secant in degrees for each element of x.

See also: [secd], page 358, [asec], page 356.

[Function File]acscd (x)
Compute the inverse cosecant in degrees for each element of x.

See also: [cscd], page 358, [acsc], page 357.

[Function File]acotd (x)
Compute the inverse cotangent in degrees for each element of x.

See also: [cotd], page 358, [acot], page 357.

17.4 Sums and Products

[Built-in Function]sum (x)
[Built-in Function]sum (x, dim)
[Built-in Function]sum (. . . , ’native’)
[Built-in Function]sum (. . . , ’double’)
[Built-in Function]sum (. . . , ’extra’)

Sum of elements along dimension dim. If dim is omitted, it defaults to the first
non-singleton dimension.

If the optional argument ’native’ is given, then the sum is performed in the same type
as the original argument, rather than in the default double type. For example:

sum ([true, true])

⇒ 2

sum ([true, true], ’native’)

⇒ true

On the contrary, if ’double’ is given, the sum is performed in double precision even
for single precision inputs.

For double precision inputs, ’extra’ indicates that a more accurate algorithm than
straightforward summation is to be used. For single precision inputs, ’extra’ is the
same as ’double’. Otherwise, ’extra’ has no effect.

See also: [cumsum], page 360, [sumsq], page 360, [prod], page 360.

360 GNU Octave

[Built-in Function]prod (x)
[Built-in Function]prod (x, dim)

Product of elements along dimension dim. If dim is omitted, it defaults to the first
non-singleton dimension.

See also: [cumprod], page 360, [sum], page 359.

[Built-in Function]cumsum (x)
[Built-in Function]cumsum (x, dim)
[Built-in Function]cumsum (. . . , ’native’)
[Built-in Function]cumsum (. . . , ’double’)
[Built-in Function]cumsum (. . . , ’extra’)

Cumulative sum of elements along dimension dim. If dim is omitted, it defaults to
the first non-singleton dimension.

See sum for an explanation of the optional parameters ’native’, ’double’, and ’extra’.

See also: [sum], page 359, [cumprod], page 360.

[Built-in Function]cumprod (x)
[Built-in Function]cumprod (x, dim)

Cumulative product of elements along dimension dim. If dim is omitted, it defaults
to the first non-singleton dimension.

See also: [prod], page 360, [cumsum], page 360.

[Built-in Function]sumsq (x)
[Built-in Function]sumsq (x, dim)

Sum of squares of elements along dimension dim. If dim is omitted, it defaults to the
first non-singleton dimension.

This function is conceptually equivalent to computing

sum (x .* conj (x), dim)

but it uses less memory and avoids calling conj if x is real.

See also: [sum], page 359.

17.5 Utility Functions

[Mapping Function]ceil (x)
Return the smallest integer not less than x. This is equivalent to rounding towards
positive infinity. If x is complex, return ceil (real (x)) + ceil (imag (x)) * I.

ceil ([-2.7, 2.7])

⇒ -2 3

See also: [floor], page 361, [round], page 361, [fix], page 360.

[Mapping Function]fix (x)
Truncate fractional portion of x and return the integer portion. This is equivalent to
rounding towards zero. If x is complex, return fix (real (x)) + fix (imag (x)) *

I.

Chapter 17: Arithmetic 361

fix ([-2.7, 2.7])

⇒ -2 2

See also: [ceil], page 360, [floor], page 361, [round], page 361.

[Mapping Function]floor (x)
Return the largest integer not greater than x. This is equivalent to rounding towards
negative infinity. If x is complex, return floor (real (x)) + floor (imag (x)) *

I.

floor ([-2.7, 2.7])

⇒ -3 2

See also: [ceil], page 360, [round], page 361, [fix], page 360.

[Mapping Function]round (x)
Return the integer nearest to x. If x is complex, return round (real (x)) + round

(imag (x)) * I. If there are two nearest integers, return the one further away from
zero.

round ([-2.7, 2.7])

⇒ -3 3

See also: [ceil], page 360, [floor], page 361, [fix], page 360, [roundb], page 361.

[Mapping Function]roundb (x)
Return the integer nearest to x. If there are two nearest integers, return the even
one (banker’s rounding). If x is complex, return roundb (real (x)) + roundb (imag

(x)) * I.

See also: [round], page 361.

[Loadable Function]max (x)
[Loadable Function]max (x, y)
[Loadable Function]max (x, [], dim)
[Loadable Function]max (x, y, dim)
[Loadable Function][w, iw] = max (x)

For a vector argument, return the maximum value. For a matrix argument, return
the maximum value from each column, as a row vector, or over the dimension dim if
defined, in which case y should be set to the empty matrix (it’s ignored otherwise).
For two matrices (or a matrix and scalar), return the pair-wise maximum. Thus,

max (max (x))

returns the largest element of the matrix x, and

max (2:5, pi)

⇒ 3.1416 3.1416 4.0000 5.0000

compares each element of the range 2:5 with pi, and returns a row vector of the
maximum values.

For complex arguments, the magnitude of the elements are used for comparison.

If called with one input and two output arguments, max also returns the first index
of the maximum value(s). Thus,

362 GNU Octave

[x, ix] = max ([1, 3, 5, 2, 5])

⇒ x = 5

ix = 3

See also: [min], page 362, [cummax], page 362, [cummin], page 363.

[Loadable Function]min (x)
[Loadable Function]min (x, y)
[Loadable Function]min (x, [], dim)
[Loadable Function]min (x, y, dim)
[Loadable Function][w, iw] = min (x)

For a vector argument, return the minimum value. For a matrix argument, return
the minimum value from each column, as a row vector, or over the dimension dim if
defined, in which case y should be set to the empty matrix (it’s ignored otherwise).
For two matrices (or a matrix and scalar), return the pair-wise minimum. Thus,

min (min (x))

returns the smallest element of x, and

min (2:5, pi)

⇒ 2.0000 3.0000 3.1416 3.1416

compares each element of the range 2:5 with pi, and returns a row vector of the
minimum values.

For complex arguments, the magnitude of the elements are used for comparison.

If called with one input and two output arguments, min also returns the first index
of the minimum value(s). Thus,

[x, ix] = min ([1, 3, 0, 2, 0])

⇒ x = 0

ix = 3

See also: [max], page 361, [cummin], page 363, [cummax], page 362.

[Loadable Function]cummax (x)
[Loadable Function]cummax (x, dim)
[Loadable Function][w, iw] = cummax (x)

Return the cumulative maximum values along dimension dim. If dim is unspecified
it defaults to column-wise operation. For example:

cummax ([1 3 2 6 4 5])

⇒ 1 3 3 6 6 6

The call

[w, iw] = cummax (x, dim)

with x a vector, is equivalent to the following code:

w = iw = zeros (size (x));

for i = 1:length (x)

[w(i), iw(i)] = max (x(1:i));

endfor

but computed in a much faster manner.

See also: [cummin], page 363, [max], page 361, [min], page 362.

Chapter 17: Arithmetic 363

[Loadable Function]cummin (x)
[Loadable Function]cummin (x, dim)
[Loadable Function][w, iw] = cummin (x)

Return the cumulative minimum values along dimension dim. If dim is unspecified it
defaults to column-wise operation. For example:

cummin ([5 4 6 2 3 1])

⇒ 5 4 4 2 2 1

The call

[w, iw] = cummin (x)

with x a vector, is equivalent to the following code:

w = iw = zeros (size (x));

for i = 1:length (x)

[w(i), iw(i)] = max (x(1:i));

endfor

but computed in a much faster manner.

See also: [cummax], page 362, [min], page 362, [max], page 361.

[Built-in Function]hypot (x, y)
[Built-in Function]hypot (x, y, z, . . .)

Compute the element-by-element square root of the sum of the squares of x and y.
This is equivalent to sqrt (x.^2 + y.^2), but calculated in a manner that avoids
overflows for large values of x or y. hypot can also be called with more than 2
arguments; in this case, the arguments are accumulated from left to right:

hypot (hypot (x, y), z)

hypot (hypot (hypot (x, y), z), w), etc.

[Function File]dx = gradient (m)
[Function File][dx, dy, dz, ...] = gradient (m)
[Function File][...] = gradient (m, s)
[Function File][...] = gradient (m, x, y, z, . . .)
[Function File][...] = gradient (f, x0)
[Function File][...] = gradient (f, x0, s)
[Function File][...] = gradient (f, x0, x, y, . . .)

Calculate the gradient of sampled data or a function. If m is a vector, calculate the
one-dimensional gradient of m. If m is a matrix the gradient is calculated for each
dimension.

[dx, dy] = gradient (m) calculates the one dimensional gradient for x and y direc-
tion if m is a matrix. Additional return arguments can be use for multi-dimensional
matrices.

A constant spacing between two points can be provided by the s parameter. If s is a
scalar, it is assumed to be the spacing for all dimensions. Otherwise, separate values
of the spacing can be supplied by the x, . . . arguments. Scalar values specify an
equidistant spacing. Vector values for the x, . . . arguments specify the coordinate for
that dimension. The length must match their respective dimension of m.

At boundary points a linear extrapolation is applied. Interior points are calculated
with the first approximation of the numerical gradient

364 GNU Octave

y’(i) = 1/(x(i+1)-x(i-1)) * (y(i-1)-y(i+1)).

If the first argument f is a function handle, the gradient of the function at the points
in x0 is approximated using central difference. For example, gradient (@cos, 0)

approximates the gradient of the cosine function in the point x0 = 0. As with sampled
data, the spacing values between the points from which the gradient is estimated can
be set via the s or dx, dy, . . . arguments. By default a spacing of 1 is used.

See also: [diff], page 332, [del2], page 365.

[Loadable Function]dot (x, y, dim)
Compute the dot product of two vectors. If x and y are matrices, calculate the dot
products along the first non-singleton dimension. If the optional argument dim is
given, calculate the dot products along this dimension.

This is equivalent to sum (conj (X) .* Y, dim), but avoids forming a temporary
array and is faster. When X and Y are column vectors, the result is equivalent to X’

* Y .

See also: [cross], page 364, [divergence], page 364.

[Function File]cross (x, y)
[Function File]cross (x, y, dim)

Compute the vector cross product of two 3-dimensional vectors x and y.

cross ([1,1,0], [0,1,1])

⇒ [1; -1; 1]

If x and y are matrices, the cross product is applied along the first dimension with 3
elements. The optional argument dim forces the cross product to be calculated along
the specified dimension.

See also: [dot], page 364, [curl], page 364, [divergence], page 364.

[Function File]div = divergence (x, y, z, fx, fy, fz)
[Function File]div = divergence (fx, fy, fz)
[Function File]div = divergence (x, y, fx, fy)
[Function File]div = divergence (fx, fy)

Calculate divergence of a vector field given by the arrays fx, fy, and fz or fx, fy
respectively.

divF (x, y, z) = ∂xF + ∂yF + ∂zF

The coordinates of the vector field can be given by the arguments x, y, z or x, y
respectively.

See also: [curl], page 364, [gradient], page 363, [del2], page 365, [dot], page 364.

[Function File][cx, cy, cz, v] = curl (x, y, z, fx, fy, fz)
[Function File][cz, v] = curl (x, y, fx, fy)
[Function File][...] = curl (fx, fy, fz)
[Function File][...] = curl (fx, fy)
[Function File]v = curl (. . .)

Calculate curl of vector field given by the arrays fx, fy, and fz or fx, fy respectively.

curlF (x, y, z) =

(
∂d

∂y
Fz −

∂d

∂z
Fy,

∂d

∂z
Fx −

∂d

∂x
Fz,

∂d

∂x
Fy −

∂d

∂y
Fx

)

Chapter 17: Arithmetic 365

The coordinates of the vector field can be given by the arguments x, y, z or x, y
respectively. v calculates the scalar component of the angular velocity vector in
direction of the z-axis for two-dimensional input. For three-dimensional input the
scalar rotation is calculated at each grid point in direction of the vector field at that
point.

See also: [divergence], page 364, [gradient], page 363, [del2], page 365, [cross],
page 364.

[Function File]d = del2 (M)
[Function File]d = del2 (M, h)
[Function File]d = del2 (M, dx, dy, . . .)

Calculate the discrete Laplace operator (∇2). For a 2-dimensional matrix M this is
defined as

d =
1

4

(
d2

dx2
M(x, y) +

d2

dy2
M(x, y)

)
For N-dimensional arrays the sum in parentheses is expanded to include second deriva-
tives over the additional higher dimensions.

The spacing between evaluation points may be defined by h, which is a scalar defining
the equidistant spacing in all dimensions. Alternatively, the spacing in each dimen-
sion may be defined separately by dx, dy, etc. A scalar spacing argument defines
equidistant spacing, whereas a vector argument can be used to specify variable spac-
ing. The length of the spacing vectors must match the respective dimension of M.
The default spacing value is 1.

At least 3 data points are needed for each dimension. Boundary points are calculated
from the linear extrapolation of interior points.

See also: [gradient], page 363, [diff], page 332.

[Function File]factorial (n)
Return the factorial of n where n is a positive integer. If n is a scalar, this is equivalent
to prod (1:n). For vector or matrix arguments, return the factorial of each element
in the array. For non-integers see the generalized factorial function gamma.

See also: [prod], page 360, [gamma], page 370.

[Function File]p = factor (q)
[Function File][p, n] = factor (q)

Return prime factorization of q. That is, prod (p) == q and every element of p is a
prime number. If q == 1, return 1.

With two output arguments, return the unique primes p and their multiplicities. That
is, prod (p .^ n) == q .

See also: [gcd], page 365, [lcm], page 366.

[Loadable Function]g = gcd (a1, a2, . . .)
[Loadable Function][g, v1, ...] = gcd (a1, a2, . . .)

Compute the greatest common divisor of a1, a2, If more than one argument is
given all arguments must be the same size or scalar. In this case the greatest common
divisor is calculated for each element individually. All elements must be ordinary or

366 GNU Octave

Gaussian (complex) integers. Note that for Gaussian integers, the gcd is not unique
up to units (multiplication by 1, -1, i or -i), so an arbitrary greatest common divisor
amongst four possible is returned. For example,

and

gcd ([15, 9], [20, 18])

⇒ 5 9

Optional return arguments v1, etc., contain integer vectors such that,

g = v1a1 + v2a2 + · · ·
See also: [lcm], page 366, [factor], page 365.

[Mapping Function]lcm (x, y)
[Mapping Function]lcm (x, y, . . .)

Compute the least common multiple of x and y, or of the list of all arguments. All
elements must be the same size or scalar.

See also: [factor], page 365, [gcd], page 365.

[Function File]chop (x, ndigits, base)
Truncate elements of x to a length of ndigits such that the resulting numbers are
exactly divisible by base. If base is not specified it defaults to 10.

chop (-pi, 5, 10)

⇒ -3.14200000000000

chop (-pi, 5, 5)

⇒ -3.14150000000000

[Mapping Function]rem (x, y)
[Mapping Function]fmod (x, y)

Return the remainder of the division x / y , computed using the expression

x - y .* fix (x ./ y)

An error message is printed if the dimensions of the arguments do not agree, or if
either of the arguments is complex.

See also: [mod], page 366.

[Mapping Function]mod (x, y)
Compute the modulo of x and y. Conceptually this is given by

x - y .* floor (x ./ y)

and is written such that the correct modulus is returned for integer types. This
function handles negative values correctly. That is, mod (-1, 3) is 2, not -1, as rem
(-1, 3) returns. mod (x, 0) returns x.

An error results if the dimensions of the arguments do not agree, or if either of the
arguments is complex.

See also: [rem], page 366.

[Function File]primes (n)
Return all primes up to n.

The algorithm used is the Sieve of Eratosthenes.

Chapter 17: Arithmetic 367

Note that if you need a specific number of primes you can use the fact that the
distance from one prime to the next is, on average, proportional to the logarithm of
the prime. Integrating, one finds that there are about k primes less than k log(5k).

See also: [list primes], page 367, [isprime], page 61.

[Function File]list_primes ()
[Function File]list_primes (n)

List the first n primes. If n is unspecified, the first 25 primes are listed.

The algorithm used is from page 218 of the TEXbook.

See also: [primes], page 366, [isprime], page 61.

[Mapping Function]sign (x)
Compute the signum function, which is defined as

sign(x) =

1, x > 0;
0, x = 0;
−1, x < 0.

For complex arguments, sign returns x ./ abs (x).

17.6 Special Functions

[Loadable Function][a, ierr] = airy (k, z, opt)
Compute Airy functions of the first and second kind, and their derivatives.

K Function Scale factor (if ’opt’ is supplied)

--- -------- ---------------------------------------

0 Ai (Z) exp ((2/3) * Z * sqrt (Z))

1 dAi(Z)/dZ exp ((2/3) * Z * sqrt (Z))

2 Bi (Z) exp (-abs (real ((2/3) * Z *sqrt (Z))))

3 dBi(Z)/dZ exp (-abs (real ((2/3) * Z *sqrt (Z))))

The function call airy (z) is equivalent to airy (0, z).

The result is the same size as z.

If requested, ierr contains the following status information and is the same size as the
result.

0. Normal return.

1. Input error, return NaN.

2. Overflow, return Inf.

3. Loss of significance by argument reduction results in less than half of machine
accuracy.

4. Complete loss of significance by argument reduction, return NaN.

5. Error—no computation, algorithm termination condition not met, return NaN.

[Loadable Function][j, ierr] = besselj (alpha, x, opt)
[Loadable Function][y, ierr] = bessely (alpha, x, opt)
[Loadable Function][i, ierr] = besseli (alpha, x, opt)

368 GNU Octave

[Loadable Function][k, ierr] = besselk (alpha, x, opt)
[Loadable Function][h, ierr] = besselh (alpha, k, x, opt)

Compute Bessel or Hankel functions of various kinds:

besselj Bessel functions of the first kind. If the argument opt is supplied, the
result is multiplied by exp(-abs(imag(x))).

bessely Bessel functions of the second kind. If the argument opt is supplied, the
result is multiplied by exp(-abs(imag(x))).

besseli

Modified Bessel functions of the first kind. If the argument opt is supplied,
the result is multiplied by exp(-abs(real(x))).

besselk

Modified Bessel functions of the second kind. If the argument opt is
supplied, the result is multiplied by exp(x).

besselh Compute Hankel functions of the first (k = 1) or second (k = 2) kind. If
the argument opt is supplied, the result is multiplied by exp (-I*x) for
k = 1 or exp (I*x) for k = 2.

If alpha is a scalar, the result is the same size as x. If x is a scalar, the result is the
same size as alpha. If alpha is a row vector and x is a column vector, the result is a
matrix with length (x) rows and length (alpha) columns. Otherwise, alpha and
x must conform and the result will be the same size.

The value of alpha must be real. The value of x may be complex.

If requested, ierr contains the following status information and is the same size as the
result.

0. Normal return.

1. Input error, return NaN.

2. Overflow, return Inf.

3. Loss of significance by argument reduction results in less than half of machine
accuracy.

4. Complete loss of significance by argument reduction, return NaN.

5. Error—no computation, algorithm termination condition not met, return NaN.

[Mapping Function]beta (a, b)
For real inputs, return the Beta function,

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

[Mapping Function]betainc (x, a, b)
Return the regularized incomplete Beta function,

I(x, a, b) =
1

B(a, b)

∫ x

0

t(a−z)(1− t)(b−1)dt.

If x has more than one component, both a and b must be scalars. If x is a scalar, a
and b must be of compatible dimensions.

Chapter 17: Arithmetic 369

[Mapping Function]betaln (a, b)
Return the natural logarithm of the Beta function,

betaln(a, b) = ln(B(a, b)) ≡ ln(
Γ(a)Γ(b)

Γ(a+ b)
).

calculated in a way to reduce the occurrence of underflow.

See also: [beta], page 368, [betainc], page 368, [gammaln], page 371.

[Mapping Function]bincoeff (n, k)
Return the binomial coefficient of n and k, defined as(

n

k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

k!

For example:

bincoeff (5, 2)

⇒ 10

In most cases, the nchoosek function is faster for small scalar integer arguments. It
also warns about loss of precision for big arguments.

See also: [nchoosek], page 505.

[Function File]commutation_matrix (m, n)
Return the commutation matrix Km,n which is the unique mn×mn matrix such that
Km,n · vec(A) = vec(AT) for all m× n matrices A.

If only one argument m is given, Km,m is returned.

See Magnus and Neudecker (1988), Matrix Differential Calculus with Applications in
Statistics and Econometrics.

[Function File]duplication_matrix (n)
Return the duplication matrix Dn which is the unique n2 × n(n + 1)/2 matrix such
that Dn ∗ vech(A) = vec(A) for all symmetric n× n matrices A.

See Magnus and Neudecker (1988), Matrix differential calculus with applications in
statistics and econometrics.

[Mapping Function]erf (z)
Compute the error function,

erf(z) =
2√
π

∫ z

0

e−t
2

dt

See also: [erfc], page 369, [erfcx], page 370, [erfinv], page 370.

[Mapping Function]erfc (z)
Compute the complementary error function, 1− erf(z).

See also: [erfcx], page 370, [erf], page 369, [erfinv], page 370.

370 GNU Octave

[Mapping Function]erfcx (z)
Compute the scaled complementary error function,

ez
2

erfc(z) ≡ ez
2

(1− erf(z))

See also: [erfc], page 369, [erf], page 369, [erfinv], page 370.

[Mapping Function]erfinv (x)
Compute the inverse error function, i.e., y such that

erf (y) == x

See also: [erf], page 369, [erfc], page 369, [erfcx], page 370.

[Mapping Function]gamma (z)
Compute the Gamma function,

Γ(z) =

∫ ∞
0

tz−1e−tdt.

See also: [gammainc], page 370, [lgamma], page 371.

[Mapping Function]gammainc (x, a)
[Mapping Function]gammainc (x, a, "lower")
[Mapping Function]gammainc (x, a, "upper")

Compute the normalized incomplete gamma function,

γ(x, a) =
1

Γ(a)

∫ x

0

ta−1e−tdt

with the limiting value of 1 as x approaches infinity. The standard notation is P (a, x),
e.g., Abramowitz and Stegun (6.5.1).

If a is scalar, then gammainc (x, a) is returned for each element of x and vice versa.

If neither x nor a is scalar, the sizes of x and a must agree, and gammainc is applied
element-by-element.

By default the incomplete gamma function integrated from 0 to x is computed. If
"upper" is given then the complementary function integrated from x to infinity is
calculated. It should be noted that

gammainc (x, a) ≡ 1 - gammainc (x, a, "upper")

See also: [gamma], page 370, [lgamma], page 371.

[Function File]l = legendre (n, x)
[Function File]l = legendre (n, x, normalization)

Compute the Legendre function of degree n and order m = 0 . . . N. The optional
argument, normalization, may be one of "unnorm", "sch", or "norm". The default is
"unnorm". The value of n must be a non-negative scalar integer.

If the optional argument normalization is missing or is "unnorm", compute the Leg-
endre function of degree n and order m and return all values for m = 0 . . . n. The
return value has one dimension more than x.

Chapter 17: Arithmetic 371

The Legendre Function of degree n and order m:

Pm
n (x) = (−1)m(1− x2)m/2

dm

dxm
Pn(x)

with Legendre polynomial of degree n:

P (x) =
1

2nn!

(
dn

dxn
(x2 − 1)n

)

legendre (3, [-1.0, -0.9, -0.8]) returns the matrix:

x | -1.0 | -0.9 | -0.8

m=0 | -1.00000 | -0.47250 | -0.08000

m=1 | 0.00000 | -1.99420 | -1.98000

m=2 | 0.00000 | -2.56500 | -4.32000

m=3 | 0.00000 | -1.24229 | -3.24000

If the optional argument normalization is "sch", compute the Schmidt
semi-normalized associated Legendre function. The Schmidt semi-normalized
associated Legendre function is related to the unnormalized Legendre functions by
the following:

For Legendre functions of degree n and order 0:

SP 0
n(x) = P 0

n(x)

For Legendre functions of degree n and order m:

SPm
n (x) = Pm

n (x)(−1)m
(
2(n−m)!

(n+m)!

)0.5

If the optional argument normalization is "norm", compute the fully normalized as-
sociated Legendre function. The fully normalized associated Legendre function is
related to the unnormalized Legendre functions by the following:

For Legendre functions of degree n and order m

NPm
n (x) = Pm

n (x)(−1)m
(
(n+ 0.5)(n−m)!

(n+m)!

)0.5

[Mapping Function]lgamma (x)
[Mapping Function]gammaln (x)

Return the natural logarithm of the gamma function of x.

See also: [gamma], page 370, [gammainc], page 370.

372 GNU Octave

17.7 Rational Approximations

[Function File]s = rat (x, tol)
[Function File][n, d] = rat (x, tol)

Find a rational approximation to x within the tolerance defined by tol using a con-
tinued fraction expansion. For example:

rat (pi) = 3 + 1/(7 + 1/16) = 355/113

rat (e) = 3 + 1/(-4 + 1/(2 + 1/(5 + 1/(-2 + 1/(-7)))))

= 1457/536

Called with two arguments returns the numerator and denominator separately as two
matrices.

See also: [rats], page 372.

[Built-in Function]rats (x, len)
Convert x into a rational approximation represented as a string. You can convert the
string back into a matrix as follows:

r = rats(hilb(4));

x = str2num(r)

The optional second argument defines the maximum length of the string representing
the elements of x. By default len is 9.

See also: [format], page 204, [rat], page 372.

17.8 Coordinate Transformations

[Function File][theta, r] = cart2pol (x, y)
[Function File][theta, r, z] = cart2pol (x, y, z)
[Function File][theta, r] = cart2pol (c)
[Function File][theta, r, z] = cart2pol (c)
[Function File]p = cart2pol (. . .)

Transform Cartesian to polar or cylindrical coordinates.

theta describes the angle relative to the positive x-axis. r is the distance to the z-axis
(0, 0, z). x, y (and z) must be the same shape, or scalar. If called with a single
matrix argument then each row of c represents the Cartesian coordinate (x, y (, z)).

If only a single return argument is requested then return a matrix p where each row
represents one polar/(cylindrical) coordinate (theta, phi (, z)).

See also: [pol2cart], page 372, [cart2sph], page 373, [sph2cart], page 373.

[Function File][x, y] = pol2cart (theta, r)
[Function File][x, y, z] = pol2cart (theta, r, z)
[Function File][x, y] = pol2cart (p)
[Function File][x, y, z] = pol2cart (p)
[Function File]C = pol2cart (. . .)

Transform polar or cylindrical to Cartesian coordinates.

theta, r, (and z) must be the same shape, or scalar. theta describes the angle relative
to the positive x-axis. r is the distance to the z-axis (0, 0, z). If called with a single

Chapter 17: Arithmetic 373

matrix argument then each row of p represents the polar/(cylindrical) coordinate (x,
y (, z)).

If only a single return argument is requested then return a matrix C where each row
represents one Cartesian coordinate (x, y (, z)).

See also: [cart2pol], page 372, [sph2cart], page 373, [cart2sph], page 373.

[Function File][theta, phi, r] = cart2sph (x, y, z)
[Function File][theta, phi, r] = cart2sph (C)
[Function File]S = cart2sph (. . .)

Transform Cartesian to spherical coordinates.

theta describes the angle relative to the positive x-axis. phi is the angle relative to
the xy-plane. r is the distance to the origin (0, 0, 0). x, y, and z must be the same
shape, or scalar. If called with a single matrix argument then each row of c represents
the Cartesian coordinate (x, y, z).

If only a single return argument is requested then return a matrix s where each row
represents one spherical coordinate (theta, phi, r).

See also: [sph2cart], page 373, [cart2pol], page 372, [pol2cart], page 372.

[Function File][x, y, z] = sph2cart (theta, phi, r)
[Function File][x, y, z] = sph2cart (S)
[Function File]C = sph2cart (. . .)

Transform spherical to Cartesian coordinates.

theta describes the angle relative to the positive x-axis. phi is the angle relative to
the xy-plane. r is the distance to the origin (0, 0, 0). theta, phi, and r must be the
same shape, or scalar. If called with a single matrix argument then each row of s
represents the spherical coordinate (theta, phi, r).

If only a single return argument is requested then return a matrix C where each row
represents one Cartesian coordinate (x, y, z).

See also: [cart2sph], page 373, [pol2cart], page 372, [cart2pol], page 372.

17.9 Mathematical Constants

[Built-in Function]e
[Built-in Function]e (n)
[Built-in Function]e (n, m)
[Built-in Function]e (n, m, k, . . .)
[Built-in Function]e (. . . , class)

Return a scalar, matrix, or N-dimensional array whose elements are all equal to the
base of natural logarithms. The constant e satisfies the equation log(e) = 1.

When called with no arguments, return a scalar with the value e. When called with
a single argument, return a square matrix with the dimension specified. When called
with more than one scalar argument the first two arguments are taken as the number
of rows and columns and any further arguments specify additional matrix dimensions.
The optional argument class specifies the return type and may be either "double" or
"single".

374 GNU Octave

[Built-in Function]pi
[Built-in Function]pi (n)
[Built-in Function]pi (n, m)
[Built-in Function]pi (n, m, k, . . .)
[Built-in Function]pi (. . . , class)

Return a scalar, matrix, or N-dimensional array whose elements are all equal to the
ratio of the circumference of a circle to its diameter(π). Internally, pi is computed as
‘4.0 * atan (1.0)’.

When called with no arguments, return a scalar with the value of π. When called
with a single argument, return a square matrix with the dimension specified. When
called with more than one scalar argument the first two arguments are taken as the
number of rows and columns and any further arguments specify additional matrix
dimensions. The optional argument class specifies the return type and may be either
"double" or "single".

[Built-in Function]I
[Built-in Function]I (n)
[Built-in Function]I (n, m)
[Built-in Function]I (n, m, k, . . .)
[Built-in Function]I (. . . , class)

Return a scalar, matrix, or N-dimensional array whose elements are all equal to the
pure imaginary unit, defined as

√
−1. I, and its equivalents i, J, and j, are functions so

any of the names may be reused for other purposes (such as i for a counter variable).

When called with no arguments, return a scalar with the value i. When called with
a single argument, return a square matrix with the dimension specified. When called
with more than one scalar argument the first two arguments are taken as the number
of rows and columns and any further arguments specify additional matrix dimensions.
The optional argument class specifies the return type and may be either "double" or
"single".

[Built-in Function]Inf
[Built-in Function]Inf (n)
[Built-in Function]Inf (n, m)
[Built-in Function]Inf (n, m, k, . . .)
[Built-in Function]Inf (. . . , class)

Return a scalar, matrix or N-dimensional array whose elements are all equal to the
IEEE representation for positive infinity.

Infinity is produced when results are too large to be represented using the the IEEE
floating point format for numbers. Two common examples which produce infinity are
division by zero and overflow.

[1/0 e^800]

⇒
Inf Inf

When called with no arguments, return a scalar with the value ‘Inf’. When called
with a single argument, return a square matrix with the dimension specified. When
called with more than one scalar argument the first two arguments are taken as the

Chapter 17: Arithmetic 375

number of rows and columns and any further arguments specify additional matrix
dimensions. The optional argument class specifies the return type and may be either
"double" or "single".

See also: [isinf], page 332.

[Built-in Function]NaN
[Built-in Function]NaN (n)
[Built-in Function]NaN (n, m)
[Built-in Function]NaN (n, m, k, . . .)
[Built-in Function]NaN (. . . , class)

Return a scalar, matrix, or N-dimensional array whose elements are all equal to the
IEEE symbol NaN (Not a Number). NaN is the result of operations which do not
produce a well defined numerical result. Common operations which produce a NaN
are arithmetic with infinity (∞−∞), zero divided by zero (0/0), and any operation
involving another NaN value (5 + NaN).

Note that NaN always compares not equal to NaN (NaN != NaN). This behavior is
specified by the IEEE standard for floating point arithmetic. To find NaN values, use
the isnan function.

When called with no arguments, return a scalar with the value ‘NaN’. When called
with a single argument, return a square matrix with the dimension specified. When
called with more than one scalar argument the first two arguments are taken as the
number of rows and columns and any further arguments specify additional matrix
dimensions. The optional argument class specifies the return type and may be either
"double" or "single".

See also: [isnan], page 332.

[Built-in Function]eps
[Built-in Function]eps (x)
[Built-in Function]eps (n, m)
[Built-in Function]eps (n, m, k, . . .)
[Built-in Function]eps (. . . , class)

Return a scalar, matrix or N-dimensional array whose elements are all eps, the ma-
chine precision. More precisely, eps is the relative spacing between any two adjacent
numbers in the machine’s floating point system. This number is obviously system
dependent. On machines that support IEEE floating point arithmetic, eps is approx-
imately 2.2204× 10−16 for double precision and 1.1921× 10−7 for single precision.

When called with no arguments, return a scalar with the value eps(1.0). Given a
single argument x, return the distance between x and the next largest value. When
called with more than one argument the first two arguments are taken as the number
of rows and columns and any further arguments specify additional matrix dimensions.
The optional argument class specifies the return type and may be either "double" or
"single".

[Built-in Function]realmax
[Built-in Function]realmax (n)
[Built-in Function]realmax (n, m)

376 GNU Octave

[Built-in Function]realmax (n, m, k, . . .)
[Built-in Function]realmax (. . . , class)

Return a scalar, matrix or N-dimensional array whose elements are all equal to the
largest floating point number that is representable. The actual value is system de-
pendent. On machines that support IEEE floating point arithmetic, realmax is ap-
proximately 1.7977× 10308 for double precision and 3.4028× 1038 for single precision.

When called with no arguments, return a scalar with the value realmax("double").
When called with a single argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments
are taken as the number of rows and columns and any further arguments specify
additional matrix dimensions. The optional argument class specifies the return type
and may be either "double" or "single".

See also: [realmin], page 376, [intmax], page 53, [bitmax], page 55.

[Built-in Function]realmin
[Built-in Function]realmin (n)
[Built-in Function]realmin (n, m)
[Built-in Function]realmin (n, m, k, . . .)
[Built-in Function]realmin (. . . , class)

Return a scalar, matrix or N-dimensional array whose elements are all equal to the
smallest normalized floating point number that is representable. The actual value
is system dependent. On machines that support IEEE floating point arithmetic,
realmin is approximately 2.2251× 10−308 for double precision and 1.1755× 10−38 for
single precision.

When called with no arguments, return a scalar with the value realmin("double").
When called with a single argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments
are taken as the number of rows and columns and any further arguments specify
additional matrix dimensions. The optional argument class specifies the return type
and may be either "double" or "single".

See also: [realmax], page 375, [intmin], page 53.

Chapter 18: Linear Algebra 377

18 Linear Algebra

This chapter documents the linear algebra functions of Octave. Reference material for many
of these functions may be found in Golub and Van Loan, Matrix Computations, 2nd Ed.,
Johns Hopkins, 1989, and in the lapack Users’ Guide, SIAM, 1992.

18.1 Techniques Used for Linear Algebra

Octave includes a polymorphic solver, that selects an appropriate matrix factorization de-
pending on the properties of the matrix itself. Generally, the cost of determining the matrix
type is small relative to the cost of factorizing the matrix itself, but in any case the matrix
type is cached once it is calculated, so that it is not re-determined each time it is used in a
linear equation.

The selection tree for how the linear equation is solve or a matrix inverse is form is given
by

1. If the matrix is upper or lower triangular sparse a forward or backward substitution
using the lapack xTRTRS function, and goto 4.

2. If the matrix is square, Hermitian with a real positive diagonal, attempt Cholesky fac-
torization using the lapack xPOTRF function.

3. If the Cholesky factorization failed or the matrix is not Hermitian with a real positive
diagonal, and the matrix is square, factorize using the lapack xGETRF function.

4. If the matrix is not square, or any of the previous solvers flags a singular or near
singular matrix, find a least squares solution using the lapack xGELSD function.

The user can force the type of the matrix with the matrix_type function. This overcomes
the cost of discovering the type of the matrix. However, it should be noted that identifying
the type of the matrix incorrectly will lead to unpredictable results, and so matrix_type

should be used with care.

It should be noted that the test for whether a matrix is a candidate for Cholesky factor-
ization, performed above and by the matrix_type function, does not give a certainty that
the matrix is Hermitian. However, the attempt to factorize the matrix will quickly flag a
non-Hermitian matrix.

18.2 Basic Matrix Functions

[Loadable Function]AA = balance (A)
[Loadable Function]AA = balance (A, opt)
[Loadable Function][DD, AA] = balance (A, opt)
[Loadable Function][D, P, AA] = balance (A, opt)
[Loadable Function][CC, DD, AA, BB] = balance (A, B, opt)

Compute AA = DD \ A * DD in which AA is a matrix whose row and column norms
are roughly equal in magnitude, and DD = P * D , in which P is a permutation matrix
and D is a diagonal matrix of powers of two. This allows the equilibration to be
computed without round-off. Results of eigenvalue calculation are typically improved
by balancing first.

378 GNU Octave

If two output values are requested, balance returns the diagonal D and the permu-
tation P separately as vectors. In this case, DD = eye(n)(:,P) * diag (D), where n
is the matrix size.

If four output values are requested, compute AA = CC*A*DD and BB = CC*B*DD , in
which AA and BB have non-zero elements of approximately the same magnitude and
CC and DD are permuted diagonal matrices as in DD for the algebraic eigenvalue
problem.

The eigenvalue balancing option opt may be one of:

"noperm", "S"
Scale only; do not permute.

"noscal", "P"
Permute only; do not scale.

Algebraic eigenvalue balancing uses standard lapack routines.

Generalized eigenvalue problem balancing uses Ward’s algorithm (SIAM Journal on
Scientific and Statistical Computing, 1981).

[Function File]cond (A)
[Function File]cond (A, p)

Compute the p-norm condition number of a matrix.

cond (A) is ## defined as ‖ A ‖p ∗ ‖ A−1 ‖p .
By default p = 2 is used which implies a (relatively slow) singular value decomposition.
Other possible selections are p = 1, Inf, "fro" which are generally faster. See norm
for a full discussion of possible p values.

See also: [condest], page 447, [rcond], page 382, [norm], page 380, [svd], page 390.

[Loadable Function]det (A)
[Loadable Function][d, rcond] = det (A)

Compute the determinant of A.

Return an estimate of the reciprocal condition number if requested.

Routines from lapack are used for full matrices and code from umfpack is used for
sparse matrices.

The determinant should not be used to check a matrix for singularity. For that, use
any of the condition number functions: cond, condest, rcond.

See also: [cond], page 378, [condest], page 447, [rcond], page 382.

[Loadable Function]lambda = eig (A)
[Loadable Function]lambda = eig (A, B)
[Loadable Function][V, lambda] = eig (A)
[Loadable Function][V, lambda] = eig (A, B)

Compute the eigenvalues and eigenvectors of a matrix.

Eigenvalues are computed in a several step process which begins with a Hessenberg
decomposition, followed by a Schur decomposition, from which the eigenvalues are
apparent. The eigenvectors, when desired, are computed by further manipulations of
the Schur decomposition.

Chapter 18: Linear Algebra 379

The eigenvalues returned by eig are not ordered.

See also: [eigs], page 449, [svd], page 390.

[Loadable Function]g = givens (x, y)
[Loadable Function][c, s] = givens (x, y)

Return a 2× 2 orthogonal matrix

G =

[
c s
−s′ c

]
such that

G

[
x
y

]
=

[
∗
0

]
with x and y scalars.

For example:

givens (1, 1)

⇒ 0.70711 0.70711

-0.70711 0.70711

[Function File][g, y] = planerot (x)
Given a two-element column vector, returns the 2× 2 orthogonal matrix G such that
y = g * x and y(2) = 0.

See also: [givens], page 379.

[Loadable Function]x = inv (A)
[Loadable Function][x, rcond] = inv (A)

Compute the inverse of the square matrix A. Return an estimate of the reciprocal
condition number if requested, otherwise warn of an ill-conditioned matrix if the
reciprocal condition number is small.

In general it is best to avoid calculating the inverse of a matrix directly. For example,
it is both faster and more accurate to solve systems of equations (A*x = b) with y =

A \ b, rather than y = inv (A) * b.

If called with a sparse matrix, then in general x will be a full matrix requiring signif-
icantly more storage. Avoid forming the inverse of a sparse matrix if possible.

See also: [ldivide], page 131, [rdivide], page 132.

[Loadable Function]type = matrix_type (A)
[Loadable Function]type = matrix_type (A, ’nocompute’)
[Loadable Function]A = matrix_type (A, type)
[Loadable Function]A = matrix_type (A, ’upper’, perm)
[Loadable Function]A = matrix_type (A, ’lower’, perm)
[Loadable Function]A = matrix_type (A, ’banded’, nl, nu)

Identify the matrix type or mark a matrix as a particular type. This allows more
rapid solutions of linear equations involving A to be performed. Called with a single
argument, matrix_type returns the type of the matrix and caches it for future use.
Called with more than one argument, matrix_type allows the type of the matrix to
be defined.

380 GNU Octave

If the option ’nocompute’ is given, the function will not attempt to guess the type if
it is still unknown. This is useful for debugging purposes.

The possible matrix types depend on whether the matrix is full or sparse, and can be
one of the following

’unknown’ Remove any previously cached matrix type, and mark type as unknown.

’full’ Mark the matrix as full.

’positive definite’
Probable full positive definite matrix.

’diagonal’ Diagonal matrix. (Sparse matrices only)

’permuted diagonal’
Permuted Diagonal matrix. The permutation does not need to be specifi-
cally indicated, as the structure of the matrix explicitly gives this. (Sparse
matrices only)

’upper’ Upper triangular. If the optional third argument perm is given, the ma-
trix is assumed to be a permuted upper triangular with the permutations
defined by the vector perm.

’lower’ Lower triangular. If the optional third argument perm is given, the matrix
is assumed to be a permuted lower triangular with the permutations
defined by the vector perm.

’banded’
’banded positive definite’

Banded matrix with the band size of nl below the diagonal and nu above
it. If nl and nu are 1, then the matrix is tridiagonal and treated with
specialized code. In addition the matrix can be marked as probably a
positive definite. (Sparse matrices only)

’singular’ The matrix is assumed to be singular and will be treated with a minimum
norm solution.

Note that the matrix type will be discovered automatically on the first attempt to
solve a linear equation involving A. Therefore matrix_type is only useful to give
Octave hints of the matrix type. Incorrectly defining the matrix type will result in
incorrect results from solutions of linear equations; it is entirely the responsibility of
the user to correctly identify the matrix type.

Also, the test for positive definiteness is a low-cost test for a Hermitian matrix with
a real positive diagonal. This does not guarantee that the matrix is positive defi-
nite, but only that it is a probable candidate. When such a matrix is factorized, a
Cholesky factorization is first attempted, and if that fails the matrix is then treated
with an LU factorization. Once the matrix has been factorized, matrix_type will
return the correct classification of the matrix.

[Built-in Function]norm (A)
[Built-in Function]norm (A, p)

Chapter 18: Linear Algebra 381

[Built-in Function]norm (A, p, opt)
Compute the p-norm of the matrix A. If the second argument is missing, p = 2 is
assumed.

If A is a matrix (or sparse matrix):

p = 1 1-norm, the largest column sum of the absolute values of A.

p = 2 Largest singular value of A.

p = Inf or "inf"
Infinity norm, the largest row sum of the absolute values of A.

p = "fro"

Frobenius norm of A, sqrt (sum (diag (A’ * A))).

other p, p > 1

maximum norm (A*x, p) such that norm (x, p) == 1

If A is a vector or a scalar:

p = Inf or "inf"
max (abs (A)).

p = -Inf min (abs (A)).

p = "fro"

Frobenius norm of A, sqrt (sumsq (abs (A))).

p = 0 Hamming norm - the number of nonzero elements.

other p, p > 1

p-norm of A, (sum (abs (A) .^ p)) ^ (1/p).

other p p < 1

the p-pseudonorm defined as above.

If opt is the value "rows", treat each row as a vector and compute its norm. The
result is returned as a column vector. Similarly, if opt is "columns" or "cols" then
compute the norms of each column and return a row vector.

See also: [cond], page 378, [svd], page 390.

[Function File]null (A)
[Function File]null (A, tol)

Return an orthonormal basis of the null space of A.

The dimension of the null space is taken as the number of singular values of A not
greater than tol. If the argument tol is missing, it is computed as

max (size (A)) * max (svd (A)) * eps

See also: [orth], page 381.

[Function File]orth (A)
[Function File]orth (A, tol)

Return an orthonormal basis of the range space of A.

The dimension of the range space is taken as the number of singular values of A
greater than tol. If the argument tol is missing, it is computed as

382 GNU Octave

max (size (A)) * max (svd (A)) * eps

See also: [null], page 381.

[Loadable Function][y, h] = mgorth (x, v)
Orthogonalize a given column vector x with respect to a given orthonormal basis v
using a modified Gram-Schmidt orthogonalization. On exit, y is a unit vector such
that:

norm (y) = 1

v’ * y = 0

x = h*[v, y]

[Loadable Function]pinv (x)
[Loadable Function]pinv (x, tol)

Return the pseudoinverse of x. Singular values less than tol are ignored.

If the second argument is omitted, it is taken to be

tol = max (size (x)) * sigma_max (x) * eps,

where sigma_max (x) is the maximal singular value of x.

[Function File]rank (A)
[Function File]rank (A, tol)

Compute the rank of A, using the singular value decomposition. The rank is taken
to be the number of singular values of A that are greater than the specified tolerance
tol. If the second argument is omitted, it is taken to be

tol = max (size (A)) * sigma(1) * eps;

where eps is machine precision and sigma(1) is the largest singular value of A.

[Loadable Function]c = rcond (A)
Compute the 1-norm estimate of the reciprocal condition number as returned by
lapack. If the matrix is well-conditioned then c will be near 1 and if the matrix is
poorly conditioned it will be close to zero.

The matrix A must not be sparse. If the matrix is sparse then condest (A) or rcond
(full (A)) should be used instead.

See also: [cond], page 378, [condest], page 447.

[Function File]trace (A)
Compute the trace of A, sum (diag (A)).

[Function File]rref (A)
[Function File]rref (A, tol)
[Function File][r, k] = rref (. . .)

Return the reduced row echelon form of A. tol defaults to eps * max (size (A)) *

norm (A, inf).

Called with two return arguments, k returns the vector of "bound variables", which
are those columns on which elimination has been performed.

Chapter 18: Linear Algebra 383

18.3 Matrix Factorizations

[Loadable Function]R = chol (A)
[Loadable Function][R, p] = chol (A)
[Loadable Function][R, p, Q] = chol (S)
[Loadable Function][R, p, Q] = chol (S, ’vector’)
[Loadable Function][L, ...] = chol (. . . , ’lower’)
[Loadable Function][L, ...] = chol (. . . , ’upper’)

Compute the Cholesky factor, R, of the symmetric positive definite matrix A, where
RTR = A.

Called with one output argument chol fails if A or S is not positive definite. With
two or more output arguments p flags whether the matrix was positive definite and
chol does not fail. A zero value indicated that the matrix was positive definite and
the R gives the factorization, and p will have a positive value otherwise.

If called with 3 outputs then a sparsity preserving row/column permutation is applied
to A prior to the factorization. That is R is the factorization of A(Q,Q) such that
RTR = QTAQ.

The sparsity preserving permutation is generally returned as a matrix. However,
given the flag ’vector’, Q will be returned as a vector such that RTR = A(Q,Q).

Called with either a sparse or full matrix and using the ’lower’ flag, chol returns the
lower triangular factorization such that LLT = A.

For full matrices, if the ’lower’ flag is set only the lower triangular part of the matrix
is used for the factorization, otherwise the upper triangular part is used.

In general the lower triangular factorization is significantly faster for sparse matrices.

See also: [cholinv], page 383, [chol2inv], page 383.

[Loadable Function]cholinv (A)
Use the Cholesky factorization to compute the inverse of the symmetric positive
definite matrix A.

See also: [chol], page 383, [chol2inv], page 383, [inv], page 379.

[Loadable Function]chol2inv (U)
Invert a symmetric, positive definite square matrix from its Cholesky decomposition,
U. Note that U should be an upper-triangular matrix with positive diagonal elements.
chol2inv (U) provides inv (U’*U) but it is much faster than using inv.

See also: [chol], page 383, [cholinv], page 383, [inv], page 379.

[Loadable Function][R1, info] = cholupdate (R, u, op)
Update or downdate a Cholesky factorization. Given an upper triangular matrix R
and a column vector u, attempt to determine another upper triangular matrix R1
such that

• R1’*R1 = R’*R + u*u’ if op is "+"

• R1’*R1 = R’*R - u*u’ if op is "-"

If op is "-", info is set to

384 GNU Octave

• 0 if the downdate was successful,

• 1 if R’*R - u*u’ is not positive definite,

• 2 if R is singular.

If info is not present, an error message is printed in cases 1 and 2.

See also: [chol], page 383, [qrupdate], page 387.

[Loadable Function]R1 = cholinsert (R, j, u)
[Loadable Function][R1, info] = cholinsert (R, j, u)

Given a Cholesky factorization of a real symmetric or complex Hermitian positive
definite matrix A = R’*R, R upper triangular, return the Cholesky factorization of
A1, where A1(p,p) = A, A1(:,j) = A1(j,:)’ = u and p = [1:j-1,j+1:n+1]. u(j) should
be positive. On return, info is set to

• 0 if the insertion was successful,

• 1 if A1 is not positive definite,

• 2 if R is singular.

If info is not present, an error message is printed in cases 1 and 2.

See also: [chol], page 383, [cholupdate], page 383, [choldelete], page 384.

[Loadable Function]R1 = choldelete (R, j)
Given a Cholesky factorization of a real symmetric or complex Hermitian positive
definite matrix A = R’*R, R upper triangular, return the Cholesky factorization of
A(p,p), where p = [1:j-1,j+1:n+1].

See also: [chol], page 383, [cholupdate], page 383, [cholinsert], page 384.

[Loadable Function]R1 = cholshift (R, i, j)
Given a Cholesky factorization of a real symmetric or complex Hermitian positive
definite matrix A = R’*R, R upper triangular, return the Cholesky factorization of
A(p,p), where p is the permutation
p = [1:i-1, shift(i:j, 1), j+1:n] if i < j
or
p = [1:j-1, shift(j:i,-1), i+1:n] if j < i.

See also: [chol], page 383, [cholinsert], page 384, [choldelete], page 384.

[Loadable Function]H = hess (A)
[Loadable Function][P, H] = hess (A)

Compute the Hessenberg decomposition of the matrix A.

The Hessenberg decomposition is

A = PHP T

where P is a square unitary matrix (P TP = I), and H is upper Hessenberg (Hi,j =
0,∀i ≥ j + 1).

The Hessenberg decomposition is usually used as the first step in an eigenvalue com-
putation, but has other applications as well (see Golub, Nash, and Van Loan, IEEE
Transactions on Automatic Control, 1979).

Chapter 18: Linear Algebra 385

[Loadable Function][L, U] = lu (A)
[Loadable Function][L, U, P] = lu (A)
[Loadable Function][L, U, P, Q] = lu (S)
[Loadable Function][L, U, P, Q, R] = lu (S)
[Loadable Function][...] = lu (S, thres)
[Loadable Function]y = lu (. . .)
[Loadable Function][...] = lu (. . . , ’vector’)

Compute the LU decomposition of A. If A is full subroutines from lapack are used
and if A is sparse then umfpack is used. The result is returned in a permuted form,
according to the optional return value P. For example, given the matrix a = [1, 2;

3, 4],

[l, u, p] = lu (a)

returns

l =

1.00000 0.00000

0.33333 1.00000

u =

3.00000 4.00000

0.00000 0.66667

p =

0 1

1 0

The matrix is not required to be square.

When called with two or three output arguments and a spare input matrix, lu does not
attempt to perform sparsity preserving column permutations. Called with a fourth
output argument, the sparsity preserving column transformation Q is returned, such
that P * A * Q = L * U .

Called with a fifth output argument and a sparse input matrix, lu attempts to use
a scaling factor R on the input matrix such that P * (R \ A) * Q = L * U . This
typically leads to a sparser and more stable factorization.

An additional input argument thres, that defines the pivoting threshold can be given.
thres can be a scalar, in which case it defines the umfpack pivoting tolerance for
both symmetric and unsymmetric cases. If thres is a 2-element vector, then the
first element defines the pivoting tolerance for the unsymmetric umfpack pivoting
strategy and the second for the symmetric strategy. By default, the values defined by
spparms are used ([0.1, 0.001]).

Given the string argument ’vector’, lu returns the values of P and Q as vector values,
such that for full matrix, A (P,:) = L * U , and R(P,:) * A (:, Q) = L * U .

With two output arguments, returns the permuted forms of the upper and lower
triangular matrices, such that A = L * U . With one output argument y, then the

386 GNU Octave

matrix returned by the lapack routines is returned. If the input matrix is sparse
then the matrix L is embedded into U to give a return value similar to the full case.
For both full and sparse matrices, lu loses the permutation information.

[Loadable Function][L, U] = luupdate (L, U, x, y)
[Loadable Function][L, U, P] = luupdate (L, U, P, x, y)

Given an LU factorization of a real or complex matrix A = L*U , L lower unit trape-
zoidal and U upper trapezoidal, return the LU factorization of A + x*y.’, where x
and y are column vectors (rank-1 update) or matrices with equal number of columns
(rank-k update). Optionally, row-pivoted updating can be used by supplying a row
permutation (pivoting) matrix P; in that case, an updated permutation matrix is
returned. Note that if L, U, P is a pivoted LU factorization as obtained by lu:

[L, U, P] = lu (A);

then a factorization of A+x*y.’ can be obtained either as

[L1, U1] = lu (L, U, P*x, y)

or

[L1, U1, P1] = lu (L, U, P, x, y)

The first form uses the unpivoted algorithm, which is faster, but less stable. The
second form uses a slower pivoted algorithm, which is more stable.

The matrix case is done as a sequence of rank-1 updates; thus, for large enough k, it
will be both faster and more accurate to recompute the factorization from scratch.

See also: [lu], page 385, [qrupdate], page 387, [cholupdate], page 383.

[Loadable Function][Q, R, P] = qr (A)
[Loadable Function][Q, R, P] = qr (A, ’0’)
[Loadable Function][C, R] = qr (A, B)
[Loadable Function][C, R] = qr (A, B, ’0’)

Compute the QR factorization of A, using standard lapack subroutines. For exam-
ple, given the matrix A = [1, 2; 3, 4],

[Q, R] = qr (A)

returns

Q =

-0.31623 -0.94868

-0.94868 0.31623

R =

-3.16228 -4.42719

0.00000 -0.63246

The qr factorization has applications in the solution of least squares problems

min
x
‖Ax− b‖2

for overdetermined systems of equations (i.e., A is a tall, thin matrix). The QR fac-
torization is QR = A where Q is an orthogonal matrix and R is upper triangular.

Chapter 18: Linear Algebra 387

If given a second argument of ’0’, qr returns an economy-sized QR factorization,
omitting zero rows of R and the corresponding columns of Q.

If the matrix A is full, the permuted QR factorization [Q, R, P] = qr (A) forms the
QR factorization such that the diagonal entries of R are decreasing in magnitude
order. For example, given the matrix a = [1, 2; 3, 4],

[Q, R, P] = qr (A)

returns

Q =

-0.44721 -0.89443

-0.89443 0.44721

R =

-4.47214 -3.13050

0.00000 0.44721

P =

0 1

1 0

The permuted qr factorization [Q, R, P] = qr (A) factorization allows the construc-
tion of an orthogonal basis of span (A).

If the matrix A is sparse, then compute the sparse QR factorization of A, using
CSparse. As the matrix Q is in general a full matrix, this function returns the
Q-less factorization R of A, such that R = chol (A’ * A).

If the final argument is the scalar 0 and the number of rows is larger than the number
of columns, then an economy factorization is returned. That is R will have only size

(A,1) rows.

If an additional matrix B is supplied, then qr returns C, where C = Q’ * B . This
allows the least squares approximation of A \ B to be calculated as

[C, R] = qr (A, B)

x = R \ C

[Loadable Function][Q1, R1] = qrupdate (Q, R, u, v)
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and
R upper trapezoidal, return the QR factorization of A + u*v ’, where u and v are
column vectors (rank-1 update) or matrices with equal number of columns (rank-k
update). Notice that the latter case is done as a sequence of rank-1 updates; thus, for
k large enough, it will be both faster and more accurate to recompute the factorization
from scratch.

The QR factorization supplied may be either full (Q is square) or economized (R is
square).

See also: [qr], page 386, [qrinsert], page 388, [qrdelete], page 388.

388 GNU Octave

[Loadable Function][Q1, R1] = qrinsert (Q, R, j, x, orient)
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and
R upper trapezoidal, return the QR factorization of [A(:,1:j-1) x A(:,j:n)], where u is
a column vector to be inserted into A (if orient is "col"), or the QR factorization
of [A(1:j-1,:);x;A(:,j:n)], where x is a row vector to be inserted into A (if orient is
"row").

The default value of orient is "col". If orient is "col", u may be a matrix and j an
index vector resulting in the QR factorization of a matrix B such that B(:,j) gives u
and B(:,j) = [] gives A. Notice that the latter case is done as a sequence of k insertions;
thus, for k large enough, it will be both faster and more accurate to recompute the
factorization from scratch.

If orient is "col", the QR factorization supplied may be either full (Q is square) or
economized (R is square).

If orient is "row", full factorization is needed.

See also: [qr], page 386, [qrupdate], page 387, [qrdelete], page 388.

[Loadable Function][Q1, R1] = qrdelete (Q, R, j, orient)
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R up-
per trapezoidal, return the QR factorization of [A(:,1:j-1) A(:,j+1:n)], i.e., A with one
column deleted (if orient is "col"), or the QR factorization of [A(1:j-1,:);A(j+1:n,:)],
i.e., A with one row deleted (if orient is "row").

The default value of orient is "col".

If orient is "col", j may be an index vector resulting in the QR factorization of a
matrix B such that A(:,j) = [] gives B. Notice that the latter case is done as a sequence
of k deletions; thus, for k large enough, it will be both faster and more accurate to
recompute the factorization from scratch.

If orient is "col", the QR factorization supplied may be either full (Q is square) or
economized (R is square).

If orient is "row", full factorization is needed.

See also: [qr], page 386, [qrinsert], page 388, [qrupdate], page 387.

[Loadable Function][Q1, R1] = qrshift (Q, R, i, j)
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and
R upper trapezoidal, return the QR factorization ofA(:,p), where p is the permutation
p = [1:i-1, shift(i:j, 1), j+1:n] if i < j
or
p = [1:j-1, shift(j:i,-1), i+1:n] if j < i.

See also: [qr], page 386, [qrinsert], page 388, [qrdelete], page 388.

[Loadable Function]lambda = qz (A, B)
[Loadable Function]lambda = qz (A, B, opt)

QZ decomposition of the generalized eigenvalue problem (Ax = sBx). There are
three ways to call this function:

Chapter 18: Linear Algebra 389

1. lambda = qz (A, B)

Computes the generalized eigenvalues λ of (A− sB).

2. [AA, BB, Q, Z, V, W, lambda] = qz (A, B)

Computes QZ decomposition, generalized eigenvectors, and generalized eigenval-
ues of (A− sB)

AV = BV diag(λ)

W TA = diag(λ)W TB

AA = QTAZ,BB = QTBZ

with Q and Z orthogonal (unitary)= I

3. [AA,BB,Z{, lambda}] = qz (A, B, opt)

As in form [2], but allows ordering of generalized eigenpairs for (e.g.) solution
of discrete time algebraic Riccati equations. Form 3 is not available for com-
plex matrices, and does not compute the generalized eigenvectors V, W, nor the
orthogonal matrix Q.

opt for ordering eigenvalues of the GEP pencil. The leading block of the
revised pencil contains all eigenvalues that satisfy:

"N" = unordered (default)

"S" = small: leading block has all |lambda| ≤ 1

"B" = big: leading block has all |lambda| ≥ 1

"-" = negative real part: leading block has all eigenvalues in
the open left half-plane

"+" = non-negative real part: leading block has all eigenval-
ues in the closed right half-plane

Note: qz performs permutation balancing, but not scaling (see [doc-balance],
page 377). The order of output arguments was selected for compatibility with
matlab.

See also: [balance], page 377, [eig], page 378, [schur], page 390.

[Function File][aa, bb, q, z] = qzhess (A, B)
Compute the Hessenberg-triangular decomposition of the matrix pencil (A, B), re-
turning aa = q * A * z , bb = q * B * z , with q and z orthogonal. For example:

[aa, bb, q, z] = qzhess ([1, 2; 3, 4], [5, 6; 7, 8])

⇒ aa = [-3.02244, -4.41741; 0.92998, 0.69749]

⇒ bb = [-8.60233, -9.99730; 0.00000, -0.23250]

⇒ q = [-0.58124, -0.81373; -0.81373, 0.58124]

⇒ z = [1, 0; 0, 1]

The Hessenberg-triangular decomposition is the first step in Moler and Stewart’s
QZ decomposition algorithm.

Algorithm taken from Golub and Van Loan, Matrix Computations, 2nd edition.

390 GNU Octave

[Loadable Function]S = schur (A)
[Loadable Function]S = schur (A, "real")
[Loadable Function]S = schur (A, "complex")
[Loadable Function]S = schur (A, opt)
[Loadable Function][U, S] = schur (A, . . .)

Compute the Schur decomposition of A

S = UTAU

where U is a unitary matrix (UTU is identity) and S is upper triangular. The eigen-
values of A (and S) are the diagonal elements of S. If the matrix A is real, then the
real Schur decomposition is computed, in which the matrix U is orthogonal and S
is block upper triangular with blocks of size at most 2 × 2 along the diagonal. The
diagonal elements of S (or the eigenvalues of the 2× 2 blocks, when appropriate) are
the eigenvalues of A and S.

The default for real matrices is a real Schur decomposition. A complex decomposition
may be forced by passing the flag "complex".

The eigenvalues are optionally ordered along the diagonal according to the value of
opt. opt = "a" indicates that all eigenvalues with negative real parts should be moved
to the leading block of S (used in are), opt = "d" indicates that all eigenvalues with
magnitude less than one should be moved to the leading block of S (used in dare),
and opt = "u", the default, indicates that no ordering of eigenvalues should occur.
The leading k columns of U always span the A-invariant subspace corresponding to
the k leading eigenvalues of S.

The Schur decomposition is used to compute eigenvalues of a square matrix, and has
applications in the solution of algebraic Riccati equations in control (see are and
dare).

See also: [rsf2csf], page 390.

[Function File][U, T] = rsf2csf (UR, TR)
Convert a real, upper quasi-triangular Schur form TR to a complex, upper triangular
Schur form T.

Note that the following relations hold:

UR · TR · URT = UTU † and U †U is the identity matrix I.

Note also that U and T are not unique.

See also: [schur], page 390.

[Function File]angle = subspace (A, B)
Determine the largest principal angle between two subspaces spanned by the columns
of matrices A and B.

[Loadable Function]s = svd (A)
[Loadable Function][U, S, V] = svd (A)
[Loadable Function][U, S, V] = svd (A, econ)

Compute the singular value decomposition of A

A = USV †

Chapter 18: Linear Algebra 391

The function svd normally returns only the vector of singular values. When called
with three return values, it computes U , S, and V . For example,

svd (hilb (3))

returns

ans =

1.4083189

0.1223271

0.0026873

and

[u, s, v] = svd (hilb (3))

returns

u =

-0.82704 0.54745 0.12766

-0.45986 -0.52829 -0.71375

-0.32330 -0.64901 0.68867

s =

1.40832 0.00000 0.00000

0.00000 0.12233 0.00000

0.00000 0.00000 0.00269

v =

-0.82704 0.54745 0.12766

-0.45986 -0.52829 -0.71375

-0.32330 -0.64901 0.68867

If given a second argument, svd returns an economy-sized decomposition, eliminating
the unnecessary rows or columns of U or V.

See also: [svd driver], page 391, [svds], page 452, [eig], page 378.

[Loadable Function]val = svd_driver ()
[Loadable Function]old_val = svd_driver (new_val)
[Loadable Function]svd_driver (new_val, "local")

Query or set the underlying lapack driver used by svd. Currently recognized values
are "gesvd" and "gesdd". The default is "gesvd".

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [svd], page 390.

[Function File][housv, beta, zer] = housh (x, j, z)
Compute Householder reflection vector housv to reflect x to be the j-th column of
identity, i.e.,

392 GNU Octave

(I - beta*housv*housv’)x = norm(x)*e(j) if x(j) < 0,

(I - beta*housv*housv’)x = -norm(x)*e(j) if x(j) >= 0

Inputs

x vector

j index into vector

z threshold for zero (usually should be the number 0)

Outputs (see Golub and Van Loan):

beta If beta = 0, then no reflection need be applied (zer set to 0)

housv householder vector

[Function File][u, h, nu] = krylov (A, V, k, eps1, pflg)
Construct an orthogonal basis u of block Krylov subspace

[v a*v a^2*v ... a^(k+1)*v]

Using Householder reflections to guard against loss of orthogonality.

If V is a vector, then h contains the Hessenberg matrix such that a*u == u*h+rk*ek’,
in which rk = a*u(:,k)-u*h(:,k), and ek’ is the vector [0, 0, ..., 1] of length
k. Otherwise, h is meaningless.

If V is a vector and k is greater than length(A)-1, then h contains the Hessenberg
matrix such that a*u == u*h.

The value of nu is the dimension of the span of the Krylov subspace (based on eps1).

If b is a vector and k is greater than m-1, then h contains the Hessenberg decompo-
sition of A.

The optional parameter eps1 is the threshold for zero. The default value is 1e-12.

If the optional parameter pflg is nonzero, row pivoting is used to improve numerical
behavior. The default value is 0.

Reference: A. Hodel, P. Misra, Partial Pivoting in the Computation of Krylov Sub-
spaces of Large Sparse Systems, Proceedings of the 42nd IEEE Conference on Decision
and Control, December 2003.

18.4 Functions of a Matrix

[Function File]expm (A)
Return the exponential of a matrix, defined as the infinite Taylor series

exp(A) = I +A+
A2

2!
+
A3

3!
+ · · ·

The Taylor series is not the way to compute the matrix exponential; see Moler and
Van Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix, SIAM
Review, 1978. This routine uses Ward’s diagonal Padé approximation method with
three step preconditioning (SIAM Journal on Numerical Analysis, 1977). Diagonal
Padé approximations are rational polynomials of matrices Dq(A)

−1Nq(A) whose Tay-
lor series matches the first 2q + 1 terms of the Taylor series above; direct evaluation
of the Taylor series (with the same preconditioning steps) may be desirable in lieu of
the Padé approximation when Dq(A) is ill-conditioned.

See also: [logm], page 393, [sqrtm], page 393.

Chapter 18: Linear Algebra 393

[Function File]s = logm (A)
[Function File]s = logm (A, opt_iters)
[Function File][s, iters] = logm (. . .)

Compute the matrix logarithm of the square matrix A. The implementation utilizes
a Padé approximant and the identity

logm (A) = 2^k * logm (A^(1 / 2^k))

The optional argument opt iters is the maximum number of square roots to compute
and defaults to 100. The optional output iters is the number of square roots actually
computed.

See also: [expm], page 392, [sqrtm], page 393.

[Loadable Function]s = sqrtm (A)
[Loadable Function][s, error_estimate] = sqrtm (A)

Compute the matrix square root of the square matrix A.

Ref: N.J. Higham. A New sqrtm for matlab. Numerical Analysis Report No. 336,
Manchester Centre for Computational Mathematics, Manchester, England, January
1999.

See also: [expm], page 392, [logm], page 393.

[Loadable Function]kron (A, B)
[Loadable Function]kron (A1, A2, . . .)

Form the Kronecker product of two or more matrices, defined block by block as

x = [a(i, j) b]

For example:

kron (1:4, ones (3, 1))

⇒ 1 2 3 4

1 2 3 4

1 2 3 4

If there are more than two input arguments A1, A2, . . . , An the Kronecker product
is computed as

kron (kron (A1, A2), ..., An)

Since the Kronecker product is associative, this is well-defined.

[Loadable Function]blkmm (A, B)
Compute products of matrix blocks. The blocks are given as 2-dimensional subarrays
of the arrays A, B. The size of A must have the form [m,k,...] and size of B must
be [k,n,...]. The result is then of size [m,n,...] and is computed as follows:

for i = 1:prod (size (A)(3:end))

C(:,:,i) = A(:,:,i) * B(:,:,i)

endfor

[Loadable Function]x = syl (A, B, C)
Solve the Sylvester equation

AX +XB + C = 0

using standard lapack subroutines. For example:

394 GNU Octave

syl ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])

⇒ [-0.50000, -0.66667; -0.66667, -0.50000]

18.5 Specialized Solvers

[Function File]x = bicg (A, b, rtol, maxit, M1, M2, x0)
[Function File]x = bicg (A, b, rtol, maxit, P)
[Function File][x, flag, relres, iter, resvec] = bicg (A, b, . . .)

Solve A x = b using the Bi-conjugate gradient iterative method.

− rtol is the relative tolerance, if not given or set to [] the default value 1e-6 is used.

− maxit the maximum number of outer iterations, if not given or set to [] the default
value min (20, numel (b)) is used.

− x0 the initial guess, if not given or set to [] the default value zeros (size (b))

is used.

A can be passed as a matrix or as a function handle or inline function f such that
f(x, "notransp") = A*x and f(x, "transp") = A’*x.

The preconditioner P is given as P = M1 * M2. Both M1 and M2 can be passed as a
matrix or as a function handle or inline function g such that g(x, ’notransp’) = M1 \

x or g(x, ’notransp’) = M2 \ x and g(x, ’transp’) = M1’ \ x or g(x, ’transp’)

= M2’ \ x.

If called with more than one output parameter

− flag indicates the exit status:

− 0: iteration converged to the within the chosen tolerance

− 1: the maximum number of iterations was reached before convergence

− 3: the algorithm reached stagnation

(the value 2 is unused but skipped for compatibility).

− relres is the final value of the relative residual.

− iter is the number of iterations performed.

− resvec is a vector containing the relative residual at each iteration.

See also: [bicgstab], page 394, [cgs], page 395, [gmres], page 396, [pcg], page 453.

[Function File]x = bicgstab (A, b, rtol, maxit, M1, M2, x0)
[Function File]x = bicgstab (A, b, rtol, maxit, P)
[Function File][x, flag, relres, iter, resvec] = bicgstab (A, b, . . .)

Solve A x = b using the stabilizied Bi-conjugate gradient iterative method.

− rtol is the relative tolerance, if not given or set to [] the default value 1e-6 is used.

− maxit the maximum number of outer iterations, if not given or set to [] the default
value min (20, numel (b)) is used.

− x0 the initial guess, if not given or set to [] the default value zeros (size (b))

is used.

A can be passed as a matrix or as a function handle or inline function f such that
f(x) = A*x.

Chapter 18: Linear Algebra 395

The preconditioner P is given as P = M1 * M2. Both M1 and M2 can be passed as a
matrix or as a function handle or inline function g such that g(x) = M1 \ x or g(x)
= M2 \ x.

If called with more than one output parameter

− flag indicates the exit status:

− 0: iteration converged to the within the chosen tolerance

− 1: the maximum number of iterations was reached before convergence

− 3: the algorithm reached stagnation

(the value 2 is unused but skipped for compatibility).

− relres is the final value of the relative residual.

− iter is the number of iterations performed.

− resvec is a vector containing the relative residual at each iteration.

See also: [bicg], page 394, [cgs], page 395, [gmres], page 396, [pcg], page 453.

[Function File]x = cgs (A, b, rtol, maxit, M1, M2, x0)
[Function File]x = cgs (A, b, rtol, maxit, P)
[Function File][x, flag, relres, iter, resvec] = cgs (A, b, . . .)

Solve A x = b, where A is a square matrix, using the Conjugate Gradients Squared
method.

− rtol is the relative tolerance, if not given or set to [] the default value 1e-6 is used.

− maxit the maximum number of outer iterations, if not given or set to [] the default
value min (20, numel (b)) is used.

− x0 the initial guess, if not given or set to [] the default value zeros (size (b))

is used.

A can be passed as a matrix or as a function handle or inline function f such that
f(x) = A*x.

The preconditioner P is given as P = M1 * M2. Both M1 and M2 can be passed as a
matrix or as a function handle or inline function g such that g(x) = M1 \ x or g(x)
= M2 \ x.

If called with more than one output parameter

− flag indicates the exit status:

− 0: iteration converged to the within the chosen tolerance

− 1: the maximum number of iterations was reached before convergence

− 3: the algorithm reached stagnation

(the value 2 is unused but skipped for compatibility).

− relres is the final value of the relative residual.

− iter is the number of iterations performed.

− resvec is a vector containing the relative residual at each iteration.

See also: [pcg], page 453, [bicgstab], page 394, [bicg], page 394, [gmres], page 396.

396 GNU Octave

[Function File]x = gmres (A, b, m, rtol, maxit, M1, M2, x0)
[Function File]x = gmres (A, b, m, rtol, maxit, P)
[Function File][x, flag, relres, iter, resvec] = gmres (. . .)

Solve A x = b using the Preconditioned GMRES iterative method with restart, a.k.a.
PGMRES(m).

− rtol is the relative tolerance, if not given or set to [] the default value 1e-6 is used.

− maxit is the maximum number of outer iterations, if not given or set to [] the
default value min (10, numel (b) / restart) is used.

− x0 is the initial guess, if not given or set to [] the default value zeros(size (b))

is used.

− m is the restart parameter, if not given or set to [] the default value numel (b)

is used.

Argument A can be passed as a matrix, function handle, or inline function f such
that f(x) = A*x.

The preconditioner P is given as P = M1 * M2. Both M1 and M2 can be passed as a
matrix, function handle, or inline function g such that g(x) = M1\x or g(x) = M2\x.

Besides the vector x, additional outputs are:

− flag indicates the exit status:

0 : iteration converged to within the specified tolerance
1 : maximum number of iterations exceeded
2 : unused, but skipped for compatibility
3 : algorithm reached stagnation

− relres is the final value of the relative residual.

− iter is a vector containing the number of outer iterations and total iterations
performed.

− resvec is a vector containing the relative residual at each iteration.

See also: [bicg], page 394, [bicgstab], page 394, [cgs], page 395, [pcg], page 453.

Chapter 19: Vectorization and Faster Code Execution 397

19 Vectorization and Faster Code Execution

Vectorization is a programming technique that uses vector operations instead of element-by-
element loop-based operations. Besides frequently producing more succinct Octave code,
vectorization also allows for better optimization in the subsequent implementation. The
optimizations may occur either in Octave’s own Fortran, C, or C++ internal implementation,
or even at a lower level depending on the compiler and external numerical libraries used to
build Octave. The ultimate goal is to make use of your hardware’s vector instructions if
possible or to perform other optimizations in software.

Vectorization is not a concept unique to Octave, but it is particularly important because
Octave is a matrix-oriented language. Vectorized Octave code will see a dramatic speed up
(10X–100X) in most cases.

This chapter discusses vectorization and other techniques for writing faster code.

19.1 Basic Vectorization

To a very good first approximation, the goal in vectorization is to write code that avoids
loops and uses whole-array operations. As a trivial example, consider

for i = 1:n

for j = 1:m

c(i,j) = a(i,j) + b(i,j);

endfor

endfor

compared to the much simpler

c = a + b;

This isn’t merely easier to write; it is also internally much easier to optimize. Octave del-
egates this operation to an underlying implementation which, among other optimizations,
may use special vector hardware instructions or could conceivably even perform the addi-
tions in parallel. In general, if the code is vectorized, the underlying implementation has
more freedom about the assumptions it can make in order to achieve faster execution.

This is especially important for loops with "cheap" bodies. Often it suffices to vectorize
just the innermost loop to get acceptable performance. A general rule of thumb is that the
"order" of the vectorized body should be greater or equal to the "order" of the enclosing
loop.

As a less trivial example, instead of

for i = 1:n-1

a(i) = b(i+1) - b(i);

endfor

write

a = b(2:n) - b(1:n-1);

This shows an important general concept about using arrays for indexing instead of
looping over an index variable. See Section 8.1 [Index Expressions], page 123. Also use
boolean indexing generously. If a condition needs to be tested, this condition can also be
written as a boolean index. For instance, instead of

398 GNU Octave

for i = 1:n

if a(i) > 5

a(i) -= 20

endif

endfor

write

a(a>5) -= 20;

which exploits the fact that a > 5 produces a boolean index.

Use elementwise vector operators whenever possible to avoid looping (operators like .*

and .^). See Section 8.3 [Arithmetic Ops], page 129. For simple inline functions, the
vectorize function can do this automatically.

[Built-in Function]vectorize (fun)
Create a vectorized version of the inline function fun by replacing all occurrences of
, /, etc., with ., ./, etc.

This may be useful, for example, when using inline functions with numerical integra-
tion or optimization where a vector-valued function is expected.

fcn = vectorize (inline ("x^2 - 1"))

⇒ fcn = f(x) = x.^2 - 1

quadv (fcn, 0, 3)

⇒ 6

See also: [inline], page 178, [formula], page 179, [argnames], page 178.

Also exploit broadcasting in these elementwise operators both to avoid looping and
unnecessary intermediate memory allocations. See Section 19.2 [Broadcasting], page 399.

Use built-in and library functions if possible. Built-in and compiled functions are very
fast. Even with an m-file library function, chances are good that it is already optimized, or
will be optimized more in a future release.

For instance, even better than

a = b(2:n) - b(1:n-1);

is

a = diff (b);

Most Octave functions are written with vector and array arguments in mind. If you
find yourself writing a loop with a very simple operation, chances are that such a function
already exists. The following functions occur frequently in vectorized code:

• Index manipulation

• find

• sub2ind

• ind2sub

• sort

• unique

• lookup

• ifelse / merge

Chapter 19: Vectorization and Faster Code Execution 399

• Repetition

• repmat

• repelems

• Vectorized arithmetic

• sum

• prod

• cumsum

• cumprod

• sumsq

• diff

• dot

• cummax

• cummin

• Shape of higher dimensional arrays

• reshape

• resize

• permute

• squeeze

• deal

19.2 Broadcasting

Broadcasting refers to how Octave binary operators and functions behave when their matrix
or array operands or arguments differ in size. Since version 3.6.0, Octave now automati-
cally broadcasts vectors, matrices, and arrays when using elementwise binary operators and
functions. Broadly speaking, smaller arrays are “broadcast” across the larger one, until
they have a compatible shape. The rule is that corresponding array dimensions must either

1. be equal, or

2. one of them must be 1.

In case all dimensions are equal, no broadcasting occurs and ordinary element-by-element
arithmetic takes place. For arrays of higher dimensions, if the number of dimensions isn’t
the same, then missing trailing dimensions are treated as 1. When one of the dimensions is
1, the array with that singleton dimension gets copied along that dimension until it matches
the dimension of the other array. For example, consider

x = [1 2 3;

4 5 6;

7 8 9];

y = [10 20 30];

x + y

Without broadcasting, x + y would be an error because the dimensions do not agree. How-
ever, with broadcasting it is as if the following operation were performed:

400 GNU Octave

x = [1 2 3

4 5 6

7 8 9];

y = [10 20 30

10 20 30

10 20 30];

x + y

⇒ 11 22 33

14 25 36

17 28 39

That is, the smaller array of size [1 3] gets copied along the singleton dimension (the
number of rows) until it is [3 3]. No actual copying takes place, however. The internal im-
plementation reuses elements along the necessary dimension in order to achieve the desired
effect without copying in memory.

Both arrays can be broadcast across each other, for example, all pairwise differences of
the elements of a vector with itself:

y - y’

⇒ 0 10 20

-10 0 10

-20 -10 0

Here the vectors of size [1 3] and [3 1] both get broadcast into matrices of size [3 3]

before ordinary matrix subtraction takes place.

A special case of broadcasting that may be familiar is when all dimensions of the array
being broadcast are 1, i.e. the array is a scalar. Thus for example, operations like x - 42

and max (x, 2) are basic examples of broadcasting.

For a higher-dimensional example, suppose img is an RGB image of size [m n 3] and we
wish to multiply each color by a different scalar. The following code accomplishes this with
broadcasting,

img .*= permute ([0.8, 0.9, 1.2], [1, 3, 2]);

Note the usage of permute to match the dimensions of the [0.8, 0.9, 1.2] vector with
img.

For functions that are not written with broadcasting semantics, bsxfun can be useful
for coercing them to broadcast.

[Loadable Function]bsxfun (f, A, B)
The binary singleton expansion function applier performs broadcasting, that is, ap-
plies a binary function f element-by-element to two array arguments A and B, and
expands as necessary singleton dimensions in either input argument. f is a function
handle, inline function, or string containing the name of the function to evaluate.
The function f must be capable of accepting two column-vector arguments of equal
length, or one column vector argument and a scalar.

The dimensions of A and B must be equal or singleton. The singleton dimensions of
the arrays will be expanded to the same dimensionality as the other array.

Chapter 19: Vectorization and Faster Code Execution 401

See also: [arrayfun], page 402, [cellfun], page 404.

Broadcasting is only applied if either of the two broadcasting conditions hold. As usual,
however, broadcasting does not apply when two dimensions differ and neither is 1:

x = [1 2 3

4 5 6];

y = [10 20

30 40];

x + y

This will produce an error about nonconformant arguments.

Besides common arithmetic operations, several functions of two arguments also broad-
cast. The full list of functions and operators that broadcast is

plus + .+

minus - .-

times .*

rdivide ./

ldivide .\

power .^ .**

lt <

le <=

eq ==

gt >

ge >=

ne != ~=

and &

or |

atan2

hypot

max

min

mod

rem

xor

+= -= .+= .-= .*= ./= .\= .^= .**= &= |=

Beware of resorting to broadcasting if a simpler operation will suffice. For matrices a
and b, consider the following:

c = sum (permute (a, [1, 3, 2]) .* permute (b, [3, 2, 1]), 3);

This operation broadcasts the two matrices with permuted dimensions across each other
during elementwise multiplication in order to obtain a larger 3-D array, and this array is
then summed along the third dimension. A moment of thought will prove that this operation
is simply the much faster ordinary matrix multiplication, c = a*b;.

A note on terminology: “broadcasting” is the term popularized by the Numpy numerical
environment in the Python programming language. In other programming languages and
environments, broadcasting may also be known as binary singleton expansion (BSX, in

402 GNU Octave

matlab, and the origin of the name of the bsxfun function), recycling (R programming
language), single-instruction multiple data (SIMD), or replication.

19.2.1 Broadcasting and Legacy Code

The new broadcasting semantics almost never affect code that worked in previous versions
of Octave. Consequently, all code inherited from matlab that worked in previous versions
of Octave should still work without change in Octave. The only exception is code such as

try

c = a.*b;

catch

c = a.*a;

end_try_catch

that may have relied on matrices of different size producing an error. Due to how broadcast-
ing changes semantics with older versions of Octave, by default Octave warns if a broadcast-
ing operation is performed. To disable this warning, refer to its ID (see [doc-warning ids],
page 188):

warning ("off", "Octave:broadcast");

If you want to recover the old behavior and produce an error, turn this warning into an
error:

warning ("error", "Octave:broadcast");

For broadcasting on scalars that worked in previous versions of Octave, this warning will
not be emitted.

19.3 Function Application

As a general rule, functions should already be written with matrix arguments in mind
and should consider whole matrix operations in a vectorized manner. Sometimes, writing
functions in this way appears difficult or impossible for various reasons. For those situations,
Octave provides facilities for applying a function to each element of an array, cell, or struct.

[Function File]arrayfun (func, A)
[Function File]x = arrayfun (func, A)
[Function File]x = arrayfun (func, A, b, . . .)
[Function File][x, y, ...] = arrayfun (func, A, . . .)
[Function File]arrayfun (. . . , "UniformOutput", val)
[Function File]arrayfun (. . . , "ErrorHandler", errfunc)

Execute a function on each element of an array. This is useful for functions that do
not accept array arguments. If the function does accept array arguments it is better
to call the function directly.

The first input argument func can be a string, a function handle, an inline function, or
an anonymous function. The input argument A can be a logic array, a numeric array,
a string array, a structure array, or a cell array. By a call of the function arrayfun

all elements of A are passed on to the named function func individually.

The named function can also take more than two input arguments, with the input
arguments given as third input argument b, fourth input argument c, . . . If given

Chapter 19: Vectorization and Faster Code Execution 403

more than one array input argument then all input arguments must have the same
sizes, for example:

arrayfun (@atan2, [1, 0], [0, 1])

⇒ ans = [1.5708 0.0000]

If the parameter val after a further string input argument "UniformOutput" is set
true (the default), then the named function func must return a single element which
then will be concatenated into the return value and is of type matrix. Otherwise, if
that parameter is set to false, then the outputs are concatenated in a cell array. For
example:

arrayfun (@(x,y) x:y, "abc", "def", "UniformOutput", false)

⇒ ans =

{

[1,1] = abcd

[1,2] = bcde

[1,3] = cdef

}

If more than one output arguments are given then the named function must return
the number of return values that also are expected, for example:

[A, B, C] = arrayfun (@find, [10; 0], "UniformOutput", false)

⇒
A =

{

[1,1] = 1

[2,1] = [](0x0)

}

B =

{

[1,1] = 1

[2,1] = [](0x0)

}

C =

{

[1,1] = 10

[2,1] = [](0x0)

}

If the parameter errfunc after a further string input argument "ErrorHandler" is
another string, a function handle, an inline function, or an anonymous function,
then errfunc defines a function to call in the case that func generates an error. The
definition of the function must be of the form

function [...] = errfunc (s, ...)

where there is an additional input argument to errfunc relative to func, given by
s. This is a structure with the elements "identifier", "message", and "index" giving,
respectively, the error identifier, the error message, and the index of the array elements
that caused the error. The size of the output argument of errfunc must have the same
size as the output argument of func, otherwise a real error is thrown. For example:

404 GNU Octave

function y = ferr (s, x), y = "MyString"; endfunction

arrayfun (@str2num, [1234],

"UniformOutput", false, "ErrorHandler", @ferr)

⇒ ans =

{

[1,1] = MyString

}

See also: [spfun], page 404, [cellfun], page 404, [structfun], page 406.

[Function File]y = spfun (f, S)
Compute f(S) for the non-zero values of S. This results in a sparse matrix with the
same structure as S. The function f can be passed as a string, a function handle, or
an inline function.

See also: [arrayfun], page 402, [cellfun], page 404, [structfun], page 406.

[Loadable Function]cellfun (name, C)
[Loadable Function]cellfun ("size", C, k)
[Loadable Function]cellfun ("isclass", C, class)
[Loadable Function]cellfun (func, C)
[Loadable Function]cellfun (func, C, D)
[Loadable Function][a, ...] = cellfun (. . .)
[Loadable Function]cellfun (. . . , ’ErrorHandler’, errfunc)
[Loadable Function]cellfun (. . . , ’UniformOutput’, val)

Evaluate the function named name on the elements of the cell array C. Elements in
C are passed on to the named function individually. The function name can be one
of the functions

isempty Return 1 for empty elements.

islogical

Return 1 for logical elements.

isreal Return 1 for real elements.

length Return a vector of the lengths of cell elements.

ndims Return the number of dimensions of each element.

numel

prodofsize

Return the number of elements contained within each cell element. The
number is the product of the dimensions of the object at each cell element.

size Return the size along the k-th dimension.

isclass Return 1 for elements of class.

Additionally, cellfun accepts an arbitrary function func in the form of an inline
function, function handle, or the name of a function (in a character string). In the
case of a character string argument, the function must accept a single argument named
x, and it must return a string value. The function can take one or more arguments,
with the inputs arguments given by C, D, etc. Equally the function can return one
or more output arguments. For example:

Chapter 19: Vectorization and Faster Code Execution 405

cellfun ("atan2", {1, 0}, {0, 1})

⇒ans = [1.57080 0.00000]

The number of output arguments of cellfun matches the number of output argu-
ments of the function. The outputs of the function will be collected into the output
arguments of cellfun like this:

function [a, b] = twoouts (x)

a = x;

b = x*x;

endfunction

[aa, bb] = cellfun(@twoouts, {1, 2, 3})

⇒
aa =

1 2 3

bb =

1 4 9

Note that per default the output argument(s) are arrays of the same size as the input
arguments. Input arguments that are singleton (1x1) cells will be automatically
expanded to the size of the other arguments.

If the parameter ’UniformOutput’ is set to true (the default), then the function must
return scalars which will be concatenated into the return array(s). If ’UniformOutput’
is false, the outputs are concatenated into a cell array (or cell arrays). For example:

cellfun ("tolower", {"Foo", "Bar", "FooBar"},

"UniformOutput",false)

⇒ ans = {"foo", "bar", "foobar"}

Given the parameter ’ErrorHandler’, then errfunc defines a function to call in case
func generates an error. The form of the function is

function [...] = errfunc (s, ...)

where there is an additional input argument to errfunc relative to func, given by s.
This is a structure with the elements ’identifier’, ’message’ and ’index’, giving respec-
tively the error identifier, the error message, and the index into the input arguments
of the element that caused the error. For example:

function y = foo (s, x), y = NaN; endfunction

cellfun ("factorial", {-1,2}, ’ErrorHandler’, @foo)

⇒ ans = [NaN 2]

Use cellfun intelligently. The cellfun function is a useful tool for avoiding loops.
It is often used with anonymous function handles; however, calling an anonymous
function involves an overhead quite comparable to the overhead of an m-file function.
Passing a handle to a built-in function is faster, because the interpreter is not involved
in the internal loop. For example:

a = {...}

v = cellfun (@(x) det(x), a); # compute determinants

v = cellfun (@det, a); # faster

See also: [arrayfun], page 402, [structfun], page 406, [spfun], page 404.

406 GNU Octave

[Function File]structfun (func, S)
[Function File][A, ...] = structfun (. . .)
[Function File]structfun (. . . , "ErrorHandler", errfunc)
[Function File]structfun (. . . , "UniformOutput", val)

Evaluate the function named name on the fields of the structure S. The fields of S
are passed to the function func individually.

structfun accepts an arbitrary function func in the form of an inline function, func-
tion handle, or the name of a function (in a character string). In the case of a
character string argument, the function must accept a single argument named x, and
it must return a string value. If the function returns more than one argument, they
are returned as separate output variables.

If the parameter "UniformOutput" is set to true (the default), then the function
must return a single element which will be concatenated into the return value. If
"UniformOutput" is false, the outputs are placed into a structure with the same
fieldnames as the input structure.

s.name1 = "John Smith";

s.name2 = "Jill Jones";

structfun (@(x) regexp (x, ’(\w+)$’, "matches"){1}, s,

"UniformOutput", false)

⇒
{

name1 = Smith

name2 = Jones

}

Given the parameter "ErrorHandler", errfunc defines a function to call in case func
generates an error. The form of the function is

function [...] = errfunc (se, ...)

where there is an additional input argument to errfunc relative to func, given by
se. This is a structure with the elements "identifier", "message" and "index", giving
respectively the error identifier, the error message, and the index into the input argu-
ments of the element that caused the error. For an example on how to use an error
handler, see [doc-cellfun], page 404.

See also: [cellfun], page 404, [arrayfun], page 402, [spfun], page 404.

19.4 Accumulation

Whenever it’s possible to categorize according to indices the elements of an array when
performing a computation, accumulation functions can be useful.

[Function File]accumarray (subs, vals, sz, func, fillval, issparse)
[Function File]accumarray (subs, vals, . . .)

Create an array by accumulating the elements of a vector into the positions defined
by their subscripts. The subscripts are defined by the rows of the matrix subs and
the values by vals. Each row of subs corresponds to one of the values in vals. If vals
is a scalar, it will be used for each of the row of subs. If subs is a cell array of vectors,

Chapter 19: Vectorization and Faster Code Execution 407

all vectors must be of the same length, and the subscripts in the kth vector must
correspond to the kth dimension of the result.

The size of the matrix will be determined by the subscripts themselves. However, if
sz is defined it determines the matrix size. The length of sz must correspond to the
number of columns in subs. An exception is if subs has only one column, in which
case sz may be the dimensions of a vector and the subscripts of subs are taken as the
indices into it.

The default action of accumarray is to sum the elements with the same subscripts.
This behavior can be modified by defining the func function. This should be a function
or function handle that accepts a column vector and returns a scalar. The result of
the function should not depend on the order of the subscripts.

The elements of the returned array that have no subscripts associated with them are
set to zero. Defining fillval to some other value allows these values to be defined. This
behavior changes, however, for certain values of func. If func is min (respectively, max)
then the result will be filled with the minimum (respectively, maximum) integer if
vals is of integral type, logical false (respectively, logical true) if vals is of logical type,
zero if fillval is zero and all values are non-positive (respectively, non-negative), and
NaN otherwise.

By default accumarray returns a full matrix. If issparse is logically true, then a sparse
matrix is returned instead.

The following accumarray example constructs a frequency table that in the first
column counts how many occurrences each number in the second column has, taken
from the vector x. Note the usage of unique for assigning to all repeated elements of
x the same index (see [doc-unique], page 533).

x = [91, 92, 90, 92, 90, 89, 91, 89, 90, 100, 100, 100];

[u, ~, j] = unique (x);

[accumarray(j’, 1), u’]

⇒ 2 89

3 90

2 91

2 92

3 100

Another example, where the result is a multi-dimensional 3-D array and the default
value (zero) appears in the output:

accumarray ([1, 1, 1;

2, 1, 2;

2, 3, 2;

2, 1, 2;

2, 3, 2], 101:105)

⇒ ans(:,:,1) = [101, 0, 0; 0, 0, 0]

⇒ ans(:,:,2) = [0, 0, 0; 206, 0, 208]

The sparse option can be used as an alternative to the sparse constructor (see [doc-
sparse], page 430). Thus

sparse (i, j, sv)

can be written with accumarray as

408 GNU Octave

accumarray ([i, j], sv’, [], [], 0, true)

For repeated indices, sparse adds the corresponding value. To take the minimum
instead, use min as an accumulator function:

accumarray ([i, j], sv’, [], @min, 0, true)

The complexity of accumarray in general for the non-sparse case is generally O(M+N),
where N is the number of subscripts and M is the maximum subscript (linearized in
multi-dimensional case). If func is one of @sum (default), @max, @min or @(x) {x}, an
optimized code path is used. Note that for general reduction function the interpreter
overhead can play a major part and it may be more efficient to do multiple accumarray
calls and compute the results in a vectorized manner.

See also: [accumdim], page 408, [unique], page 533, [sparse], page 430.

[Function File]accumdim (subs, vals, dim, n, func, fillval)
Create an array by accumulating the slices of an array into the positions defined by
their subscripts along a specified dimension. The subscripts are defined by the index
vector subs. The dimension is specified by dim. If not given, it defaults to the first
non-singleton dimension. The length of subs must be equal to size (vals, dim).

The extent of the result matrix in the working dimension will be determined by the
subscripts themselves. However, if n is defined it determines this extent.

The default action of accumdim is to sum the subarrays with the same subscripts. This
behavior can be modified by defining the func function. This should be a function or
function handle that accepts an array and a dimension, and reduces the array along
this dimension. As a special exception, the built-in min and max functions can be
used directly, and accumdim accounts for the middle empty argument that is used in
their calling.

The slices of the returned array that have no subscripts associated with them are set
to zero. Defining fillval to some other value allows these values to be defined.

An example of the use of accumdim is:

accumdim ([1, 2, 1, 2, 1], [7, -10, 4;

-5, -12, 8;

-12, 2, 8;

-10, 9, -3;

-5, -3, -13])

⇒ [-10,-11,-1;-15,-3,5]

See also: [accumarray], page 406.

19.5 Miscellaneous Techniques

Here are some other ways of improving the execution speed of Octave programs.

• Avoid computing costly intermediate results multiple times. Octave currently does
not eliminate common subexpressions. Also, certain internal computation results are
cached for variables. For instance, if a matrix variable is used multiple times as an
index, checking the indices (and internal conversion to integers) is only done once.

Chapter 19: Vectorization and Faster Code Execution 409

• Be aware of lazy copies (copy-on-write). When a copy of an object is created, the data
is not immediately copied, but rather shared. The actual copying is postponed until
the copied data needs to be modified. For example:

a = zeros (1000); # create a 1000x1000 matrix

b = a; # no copying done here

b(1) = 1; # copying done here

Lazy copying applies to whole Octave objects such as matrices, cells, struct, and also
individual cell or struct elements (not array elements).

Additionally, index expressions also use lazy copying when Octave can determine that
the indexed portion is contiguous in memory. For example:

a = zeros (1000); # create a 1000x1000 matrix

b = a(:,10:100); # no copying done here

b = a(10:100,:); # copying done here

This applies to arrays (matrices), cell arrays, and structs indexed using ‘()’. Index
expressions generating comma-separated lists can also benefit from shallow copying in
some cases. In particular, when a is a struct array, expressions like {a.x}, {a(:,2).x}

will use lazy copying, so that data can be shared between a struct array and a cell array.

Most indexing expressions do not live longer than their parent objects. In rare cases,
however, a lazily copied slice outlasts its parent, in which case it becomes orphaned,
still occupying unnecessarily more memory than needed. To provide a remedy working
in most real cases, Octave checks for orphaned lazy slices at certain situations, when a
value is stored into a "permanent" location, such as a named variable or cell or struct
element, and possibly economizes them. For example:

a = zeros (1000); # create a 1000x1000 matrix

b = a(:,10:100); # lazy slice

a = []; # the original a array is still allocated

c{1} = b; # b is reallocated at this point

• Avoid deep recursion. Function calls to m-file functions carry a relatively significant
overhead, so rewriting a recursion as a loop often helps. Also, note that the maximum
level of recursion is limited.

• Avoid resizing matrices unnecessarily. When building a single result matrix from a
series of calculations, set the size of the result matrix first, then insert values into it.
Write

result = zeros (big_n, big_m)

for i = over:and_over

ridx = ...

cidx = ...

result(ridx, cidx) = new_value ();

endfor

instead of

result = [];

for i = ever:and_ever

result = [result, new_value()];

endfor

410 GNU Octave

Sometimes the number of items can not be computed in advance, and stack-like oper-
ations are needed. When elements are being repeatedly inserted or removed from the
end of an array, Octave detects it as stack usage and attempts to use a smarter memory
management strategy by pre-allocating the array in bigger chunks. This strategy is also
applied to cell and struct arrays.

a = [];

while (condition)

...

a(end+1) = value; # "push" operation

...

a(end) = []; # "pop" operation

...

endwhile

• Avoid calling eval or feval excessively. Parsing input or looking up the name of a
function in the symbol table are relatively expensive operations.

If you are using eval merely as an exception handling mechanism, and not because you
need to execute some arbitrary text, use the try statement instead. See Section 10.9
[The try Statement], page 154.

• Use ignore_function_time_stamp when appropriate. If you are calling lots of func-
tions, and none of them will need to change during your run, set the variable ignore_
function_time_stamp to "all". This will stop Octave from checking the time stamp
of a function file to see if it has been updated while the program is being run.

19.6 Examples

The following are examples of vectorization questions asked by actual users of Octave and
their solutions.

• For a vector A, the following loop

n = length (A);

B = zeros (n, 2);

for i = 1:length(A)

this will be two columns, the first is the difference and

the second the mean of the two elements used for the diff.

B(i,:) = [A(i+1)-A(i), (A(i+1) + A(i))/2)];

endfor

can be turned into the following one-liner:

B = [diff(A)(:), 0.5*(A(1:end-1)+A(2:end))(:)]

Note the usage of colon indexing to flatten an intermediate result into a column vector.
This is a common vectorization trick.

Chapter 20: Nonlinear Equations 411

20 Nonlinear Equations

20.1 Solvers

Octave can solve sets of nonlinear equations of the form

f(x) = 0

using the function fsolve, which is based on the minpack subroutine hybrd. This is an
iterative technique so a starting point must be provided. This also has the consequence
that convergence is not guaranteed even if a solution exists.

[Function File]fsolve (fcn, x0, options)
[Function File][x, fvec, info, output, fjac] = fsolve (fcn, . . .)

Solve a system of nonlinear equations defined by the function fcn. fcn should accept
a vector (array) defining the unknown variables, and return a vector of left-hand
sides of the equations. Right-hand sides are defined to be zeros. In other words, this
function attempts to determine a vector x such that fcn (x) gives (approximately)
all zeros. x0 determines a starting guess. The shape of x0 is preserved in all calls to
fcn, but otherwise it is treated as a column vector. options is a structure specifying
additional options. Currently, fsolve recognizes these options: "FunValCheck",
"OutputFcn", "TolX", "TolFun", "MaxIter", "MaxFunEvals", "Jacobian",
"Updating", "ComplexEqn" "TypicalX", "AutoScaling" and "FinDiffType".

If "Jacobian" is "on", it specifies that fcn, called with 2 output arguments, also re-
turns the Jacobian matrix of right-hand sides at the requested point. "TolX" specifies
the termination tolerance in the unknown variables, while "TolFun" is a tolerance for
equations. Default is 1e-7 for both "TolX" and "TolFun".

If "AutoScaling" is on, the variables will be automatically scaled according to the
column norms of the (estimated) Jacobian. As a result, TolF becomes scaling-
independent. By default, this option is off, because it may sometimes deliver un-
expected (though mathematically correct) results.

If "Updating" is "on", the function will attempt to use Broyden updates to update
the Jacobian, in order to reduce the amount of Jacobian calculations. If your user
function always calculates the Jacobian (regardless of number of output arguments),
this option provides no advantage and should be set to false.

"ComplexEqn" is "on", fsolve will attempt to solve complex equations in complex
variables, assuming that the equations possess a complex derivative (i.e., are holo-
morphic). If this is not what you want, should unpack the real and imaginary parts
of the system to get a real system.

For description of the other options, see optimset.

On return, fval contains the value of the function fcn evaluated at x, and info may
be one of the following values:

1 Converged to a solution point. Relative residual error is less than specified
by TolFun.

2 Last relative step size was less that TolX.

412 GNU Octave

3 Last relative decrease in residual was less than TolF.

0 Iteration limit exceeded.

-3 The trust region radius became excessively small.

Note: If you only have a single nonlinear equation of one variable, using fzero is
usually a much better idea.

Note about user-supplied Jacobians: As an inherent property of the algorithm, Jaco-
bian is always requested for a solution vector whose residual vector is already known,
and it is the last accepted successful step. Often this will be one of the last two calls,
but not always. If the savings by reusing intermediate results from residual calcula-
tion in Jacobian calculation are significant, the best strategy is to employ OutputFcn:
After a vector is evaluated for residuals, if OutputFcn is called with that vector, then
the intermediate results should be saved for future Jacobian evaluation, and should
be kept until a Jacobian evaluation is requested or until outputfcn is called with a
different vector, in which case they should be dropped in favor of this most recent
vector. A short example how this can be achieved follows:

function [fvec, fjac] = user_func (x, optimvalues, state)

persistent sav = [], sav0 = [];

if (nargin == 1)

evaluation call

if (nargout == 1)

sav0.x = x; # mark saved vector

calculate fvec, save results to sav0.

elseif (nargout == 2)

calculate fjac using sav.

endif

else

outputfcn call.

if (all (x == sav0.x))

sav = sav0;

endif

maybe output iteration status, etc.

endif

endfunction

...

fsolve (@user_func, x0, optimset ("OutputFcn", @user_func, ...))

See also: [fzero], page 413, [optimset], page 496.

The following is a complete example. To solve the set of equations

−2x2 + 3xy + 4 sin(y)− 6 = 0

3x2 − 2xy2 + 3 cos(x) + 4 = 0

you first need to write a function to compute the value of the given function. For example:

Chapter 20: Nonlinear Equations 413

function y = f (x)

y = zeros (2, 1);

y(1) = -2*x(1)^2 + 3*x(1)*x(2) + 4*sin(x(2)) - 6;

y(2) = 3*x(1)^2 - 2*x(1)*x(2)^2 + 3*cos(x(1)) + 4;

endfunction

Then, call fsolve with a specified initial condition to find the roots of the system of
equations. For example, given the function f defined above,

[x, fval, info] = fsolve (@f, [1; 2])

results in the solution

x =

0.57983

2.54621

fval =

-5.7184e-10

5.5460e-10

info = 1

A value of info = 1 indicates that the solution has converged.

When no Jacobian is supplied (as in the example above) it is approximated numerically.
This requires more function evaluations, and hence is less efficient. In the example above
we could compute the Jacobian analytically as

[∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
=

[
3x2 − 4x1 4 cos(x2) + 3x1

−2x2
2 − 3 sin(x1) + 6x1 −4x1x2

]
and compute it with the following Octave function

function [y, jac] = f (x)

y = zeros (2, 1);

y(1) = -2*x(1)^2 + 3*x(1)*x(2) + 4*sin(x(2)) - 6;

y(2) = 3*x(1)^2 - 2*x(1)*x(2)^2 + 3*cos(x(1)) + 4;

if (nargout == 2)

jac = zeros (2, 2);

jac(1,1) = 3*x(2) - 4*x(1);

jac(1,2) = 4*cos(x(2)) + 3*x(1);

jac(2,1) = -2*x(2)^2 - 3*sin(x(1)) + 6*x(1);

jac(2,2) = -4*x(1)*x(2);

endif

endfunction

The Jacobian can then be used with the following call to fsolve:

[x, fval, info] = fsolve (@f, [1; 2], optimset ("jacobian", "on"));

which gives the same solution as before.

414 GNU Octave

[Function File]fzero (fun, x0)
[Function File]fzero (fun, x0, options)
[Function File][x, fval, info, output] = fzero (. . .)

Find a zero of a univariate function.

fun is a function handle, inline function, or string containing the name of the function
to evaluate. x0 should be a two-element vector specifying two points which bracket
a zero. In other words, there must be a change in sign of the function between x0(1)
and x0(2). More mathematically, the following must hold

sign (fun(x0(1))) * sign (fun(x0(2))) <= 0

If x0 is a single scalar then several nearby and distant values are probed in an at-
tempt to obtain a valid bracketing. If this is not successful, the function fails. options
is a structure specifying additional options. Currently, fzero recognizes these op-
tions: "FunValCheck", "OutputFcn", "TolX", "MaxIter", "MaxFunEvals". For a
description of these options, see [optimset], page 496.

On exit, the function returns x, the approximate zero point and fval, the function
value thereof. info is an exit flag that can have these values:

• 1 The algorithm converged to a solution.

• 0 Maximum number of iterations or function evaluations has been reached.

• -1 The algorithm has been terminated from user output function.

• -5 The algorithm may have converged to a singular point.

output is a structure containing runtime information about the fzero algorithm.
Fields in the structure are:

• iterations Number of iterations through loop.

• nfev Number of function evaluations.

• bracketx A two-element vector with the final bracketing of the zero along the
x-axis.

• brackety A two-element vector with the final bracketing of the zero along the
y-axis.

See also: [optimset], page 496, [fsolve], page 411.

20.2 Minimizers

Often it is useful to find the minimum value of a function rather than just the zeroes where
it crosses the x-axis. fminbnd is designed for the simpler, but very common, case of a
univariate function where the interval to search is bounded. For unbounded minimization
of a function with potentially many variables use fminunc. See Chapter 25 [Optimization],
page 485, for minimization with the presence of constraint functions. Note that searches
can be made for maxima by simply inverting the objective function (Fmax = −Fmin).

[Function File][x, fval, info, output] = fminbnd (fun, a, b, options)
Find a minimum point of a univariate function. fun should be a function handle or
name. a, b specify a starting interval. options is a structure specifying additional
options. Currently, fminbnd recognizes these options: "FunValCheck", "OutputFcn",

Chapter 20: Nonlinear Equations 415

"TolX", "MaxIter", "MaxFunEvals". For description of these options, see [optimset],
page 496.

On exit, the function returns x, the approximate minimum point and fval, the function
value thereof. info is an exit flag that can have these values:

• 1 The algorithm converged to a solution.

• 0 Maximum number of iterations or function evaluations has been exhausted.

• -1 The algorithm has been terminated from user output function.

See also: [optimset], page 496, [fzero], page 413, [fminunc], page 415.

[Function File]fminunc (fcn, x0)
[Function File]fminunc (fcn, x0, options)
[Function File][x, fvec, info, output, grad, hess] = fminunc (fcn, . . .)

Solve an unconstrained optimization problem defined by the function fcn. fcn should
accepts a vector (array) defining the unknown variables, and return the objective func-
tion value, optionally with gradient. In other words, this function attempts to deter-
mine a vector x such that fcn (x) is a local minimum. x0 determines a starting guess.
The shape of x0 is preserved in all calls to fcn, but otherwise is treated as a column
vector. options is a structure specifying additional options. Currently, fminunc rec-
ognizes these options: "FunValCheck", "OutputFcn", "TolX", "TolFun", "MaxIter",
"MaxFunEvals", "GradObj", "FinDiffType", "TypicalX", "AutoScaling".

If "GradObj" is "on", it specifies that fcn, called with 2 output arguments, also returns
the Jacobian matrix of right-hand sides at the requested point. "TolX" specifies the
termination tolerance in the unknown variables, while "TolFun" is a tolerance for
equations. Default is 1e-7 for both "TolX" and "TolFun".

For description of the other options, see optimset.

On return, fval contains the value of the function fcn evaluated at x, and info may
be one of the following values:

1 Converged to a solution point. Relative gradient error is less than speci-
fied by TolFun.

2 Last relative step size was less that TolX.

3 Last relative decrease in function value was less than TolF.

0 Iteration limit exceeded.

-3 The trust region radius became excessively small.

Optionally, fminunc can also yield a structure with convergence statistics (output),
the output gradient (grad) and approximate Hessian (hess).

Note: If you only have a single nonlinear equation of one variable, using fminbnd is
usually a much better idea.

See also: [fminbnd], page 414, [optimset], page 496.

Chapter 21: Diagonal and Permutation Matrices 417

21 Diagonal and Permutation Matrices

21.1 Creating and Manipulating Diagonal and Permutation
Matrices

A diagonal matrix is defined as a matrix that has zero entries outside the main diagonal;
that is, Dij = 0 if i 6= j Most often, square diagonal matrices are considered; however, the
definition can equally be applied to non-square matrices, in which case we usually speak of
a rectangular diagonal matrix.

A permutation matrix is defined as a square matrix that has a single element equal to
unity in each row and each column; all other elements are zero. That is, there exists a
permutation (vector) p such that Pij = 1 if j = pi and Pij = 0 otherwise.

Octave provides special treatment of real and complex rectangular diagonal matrices,
as well as permutation matrices. They are stored as special objects, using efficient storage
and algorithms, facilitating writing both readable and efficient matrix algebra expressions
in the Octave language.

21.1.1 Creating Diagonal Matrices

The most common and easiest way to create a diagonal matrix is using the built-in function
diag. The expression diag (v), with v a vector, will create a square diagonal matrix with
elements on the main diagonal given by the elements of v, and size equal to the length of v.
diag (v, m, n) can be used to construct a rectangular diagonal matrix. The result of these
expressions will be a special diagonal matrix object, rather than a general matrix object.

Diagonal matrix with unit elements can be created using eye. Some other built-in func-
tions can also return diagonal matrices. Examples include balance or inv.

Example:

diag (1:4)

⇒
Diagonal Matrix

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

diag(1:3,5,3)

⇒
Diagonal Matrix

1 0 0

0 2 0

0 0 3

0 0 0

0 0 0

418 GNU Octave

21.1.2 Creating Permutation Matrices

For creating permutation matrices, Octave does not introduce a new function, but rather
overrides an existing syntax: permutation matrices can be conveniently created by indexing
an identity matrix by permutation vectors. That is, if q is a permutation vector of length
n, the expression

P = eye (n) (:, q);

will create a permutation matrix - a special matrix object.

eye (n) (q, :)

will also work (and create a row permutation matrix), as well as

eye (n) (q1, q2).

For example:

eye (4) ([1,3,2,4],:)

⇒
Permutation Matrix

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

eye (4) (:,[1,3,2,4])

⇒
Permutation Matrix

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

Mathematically, an identity matrix is both diagonal and permutation matrix. In Oc-
tave, eye (n) returns a diagonal matrix, because a matrix can only have one class. You
can convert this diagonal matrix to a permutation matrix by indexing it by an identity
permutation, as shown below. This is a special property of the identity matrix; indexing
other diagonal matrices generally produces a full matrix.

Chapter 21: Diagonal and Permutation Matrices 419

eye (3)

⇒
Diagonal Matrix

1 0 0

0 1 0

0 0 1

eye(3)(1:3,:)

⇒
Permutation Matrix

1 0 0

0 1 0

0 0 1

Some other built-in functions can also return permutation matrices. Examples include
inv or lu.

21.1.3 Explicit and Implicit Conversions

The diagonal and permutation matrices are special objects in their own right. A number of
operations and built-in functions are defined for these matrices to use special, more efficient
code than would be used for a full matrix in the same place. Examples are given in further
sections.

To facilitate smooth mixing with full matrices, backward compatibility, and compatibility
with matlab, the diagonal and permutation matrices should allow any operation that works
on full matrices, and will either treat it specially, or implicitly convert themselves to full
matrices.

Instances include matrix indexing, except for extracting a single element or a leading
submatrix, indexed assignment, or applying most mapper functions, such as exp.

An explicit conversion to a full matrix can be requested using the built-in function full.
It should also be noted that the diagonal and permutation matrix objects will cache the
result of the conversion after it is first requested (explicitly or implicitly), so that subsequent
conversions will be very cheap.

21.2 Linear Algebra with Diagonal and Permutation
Matrices

As has been already said, diagonal and permutation matrices make it possible to use efficient
algorithms while preserving natural linear algebra syntax. This section describes in detail
the operations that are treated specially when performed on these special matrix objects.

21.2.1 Expressions Involving Diagonal Matrices

Assume D is a diagonal matrix. If M is a full matrix, then D*M will scale the rows of M.
That means, if S = D*M, then for each pair of indices i,j it holds

Sij = DiiMij

420 GNU Octave

Similarly, M*D will do a column scaling.

The matrix D may also be rectangular, m-by-n where m != n. If m < n, then the expres-
sion D*M is equivalent to

D(:,1:m) * M(1:m,:),

i.e., trailing n-m rows of M are ignored. If m > n, then D*M is equivalent to

[D(1:n,n) * M; zeros(m-n, columns (M))],

i.e., null rows are appended to the result. The situation for right-multiplication M*D is
analogous.

The expressions D \ M and M / D perform inverse scaling. They are equivalent to solv-
ing a diagonal (or rectangular diagonal) in a least-squares minimum-norm sense. In exact
arithmetic, this is equivalent to multiplying by a pseudoinverse. The pseudoinverse of a rec-
tangular diagonal matrix is again a rectangular diagonal matrix with swapped dimensions,
where each nonzero diagonal element is replaced by its reciprocal. The matrix division algo-
rithms do, in fact, use division rather than multiplication by reciprocals for better numerical
accuracy; otherwise, they honor the above definition. Note that a diagonal matrix is never
truncated due to ill-conditioning; otherwise, it would not be much useful for scaling. This
is typically consistent with linear algebra needs. A full matrix that only happens to be
diagonal (an is thus not a special object) is of course treated normally.

Multiplication and division by diagonal matrices works efficiently also when combined
with sparse matrices, i.e., D*S, where D is a diagonal matrix and S is a sparse matrix scales
the rows of the sparse matrix and returns a sparse matrix. The expressions S*D, D\S, S/D
work analogically.

If D1 and D2 are both diagonal matrices, then the expressions

D1 + D2

D1 - D2

D1 * D2

D1 / D2

D1 \ D2

again produce diagonal matrices, provided that normal dimension matching rules are
obeyed. The relations used are same as described above.

Also, a diagonal matrix D can be multiplied or divided by a scalar, or raised to a scalar
power if it is square, producing diagonal matrix result in all cases.

A diagonal matrix can also be transposed or conjugate-transposed, giving the expected
result. Extracting a leading submatrix of a diagonal matrix, i.e., D(1:m,1:n), will produce
a diagonal matrix, other indexing expressions will implicitly convert to full matrix.

Adding a diagonal matrix to a full matrix only operates on the diagonal elements. Thus,

A = A + eps * eye (n)

is an efficient method of augmenting the diagonal of a matrix. Subtraction works analogi-
cally.

When involved in expressions with other element-by-element operators, .*, ./, .\ or .^,
an implicit conversion to full matrix will take place. This is not always strictly necessary
but chosen to facilitate better consistency with matlab.

Chapter 21: Diagonal and Permutation Matrices 421

21.2.2 Expressions Involving Permutation Matrices

If P is a permutation matrix and M a matrix, the expression P*M will permute the rows
of M. Similarly, M*P will yield a column permutation. Matrix division P\M and M/P can be
used to do inverse permutation.

The previously described syntax for creating permutation matrices can actually help an
user to understand the connection between a permutation matrix and a permuting vector.
Namely, the following holds, where I = eye (n) is an identity matrix:

I(p,:) * M = (I*M) (p,:) = M(p,:)

Similarly,

M * I(:,p) = (M*I) (:,p) = M(:,p)

The expressions I(p,:) and I(:,p) are permutation matrices.

A permutation matrix can be transposed (or conjugate-transposed, which is the same,
because a permutation matrix is never complex), inverting the permutation, or equivalently,
turning a row-permutation matrix into a column-permutation one. For permutation ma-
trices, transpose is equivalent to inversion, thus P\M is equivalent to P’*M. Transpose of a
permutation matrix (or inverse) is a constant-time operation, flipping only a flag internally,
and thus the choice between the two above equivalent expressions for inverse permuting is
completely up to the user’s taste.

Multiplication and division by permutation matrices works efficiently also when com-
bined with sparse matrices, i.e., P*S, where P is a permutation matrix and S is a sparse
matrix permutes the rows of the sparse matrix and returns a sparse matrix. The expressions
S*P, P\S, S/P work analogically.

Two permutation matrices can be multiplied or divided (if their sizes match), performing
a composition of permutations. Also a permutation matrix can be indexed by a permutation
vector (or two vectors), giving again a permutation matrix. Any other operations do not
generally yield a permutation matrix and will thus trigger the implicit conversion.

21.3 Functions That Are Aware of These Matrices

This section lists the built-in functions that are aware of diagonal and permutation matrices
on input, or can return them as output. Passed to other functions, these matrices will in
general trigger an implicit conversion. (Of course, user-defined dynamically linked functions
may also work with diagonal or permutation matrices).

21.3.1 Diagonal Matrix Functions

inv and pinv can be applied to a diagonal matrix, yielding again a diagonal matrix. det will
use an efficient straightforward calculation when given a diagonal matrix, as well as cond.
The following mapper functions can be applied to a diagonal matrix without converting it
to a full one: abs, real, imag, conj, sqrt. A diagonal matrix can also be returned from the
balance and svd functions. The sparse function will convert a diagonal matrix efficiently
to a sparse matrix.

21.3.2 Permutation Matrix Functions

inv and pinv will invert a permutation matrix, preserving its specialness. det can be applied
to a permutation matrix, efficiently calculating the sign of the permutation (which is equal
to the determinant).

422 GNU Octave

A permutation matrix can also be returned from the built-in functions lu and qr, if a
pivoted factorization is requested.

The sparse function will convert a permutation matrix efficiently to a sparse matrix.
The find function will also work efficiently with a permutation matrix, making it possible
to conveniently obtain the permutation indices.

21.4 Some Examples of Usage

The following can be used to solve a linear system A*x = b using the pivoted LU factoriza-
tion:

[L, U, P] = lu (A); ## now L*U = P*A

x = U \ L \ P*b;

This is how you normalize columns of a matrix X to unit norm:

s = norm (X, "columns");

X = diag (s) \ X;

The following expression is a way to efficiently calculate the sign of a permutation, given
by a permutation vector p. It will also work in earlier versions of Octave, but slowly.

det (eye (length (p))(p, :))

Finally, here’s how you solve a linear system A*x = b with Tikhonov regularization (ridge
regression) using SVD (a skeleton only):

m = rows (A); n = columns (A);

[U, S, V] = svd (A);

determine the regularization factor alpha

alpha = ...

transform to orthogonal basis

b = U’*b;

Use the standard formula, replacing A with S.

S is diagonal, so the following will be very fast and accurate.

x = (S’*S + alpha^2 * eye (n)) \ (S’ * b);

transform to solution basis

x = V*x;

21.5 The Differences in Treatment of Zero Elements

Making diagonal and permutation matrices special matrix objects in their own right and the
consequent usage of smarter algorithms for certain operations implies, as a side effect, small
differences in treating zeros. The contents of this section applies also to sparse matrices,
discussed in the following chapter.

The IEEE standard defines the result of the expressions 0*Inf and 0*NaN as NaN, as
it has been generally agreed that this is the best compromise. Numerical software dealing
with structured and sparse matrices (including Octave) however, almost always makes a
distinction between a "numerical zero" and an "assumed zero". A "numerical zero" is a
zero value occurring in a place where any floating-point value could occur. It is normally
stored somewhere in memory as an explicit value. An "assumed zero", on the contrary, is
a zero matrix element implied by the matrix structure (diagonal, triangular) or a sparsity

Chapter 21: Diagonal and Permutation Matrices 423

pattern; its value is usually not stored explicitly anywhere, but is implied by the underlying
data structure.

The primary distinction is that an assumed zero, when multiplied by any number, or
divided by any nonzero number, yields *always* a zero, even when, e.g., multiplied by Inf

or divided by NaN. The reason for this behavior is that the numerical multiplication is not
actually performed anywhere by the underlying algorithm; the result is just assumed to be
zero. Equivalently, one can say that the part of the computation involving assumed zeros
is performed symbolically, not numerically.

This behavior not only facilitates the most straightforward and efficient implementation
of algorithms, but also preserves certain useful invariants, like:

• scalar * diagonal matrix is a diagonal matrix

• sparse matrix / scalar preserves the sparsity pattern

• permutation matrix * matrix is equivalent to permuting rows

all of these natural mathematical truths would be invalidated by treating assumed zeros
as numerical ones.

Note that matlab does not strictly follow this principle and converts assumed zeros to
numerical zeros in certain cases, while not doing so in other cases. As of today, there are
no intentions to mimic such behavior in Octave.

Examples of effects of assumed zeros vs. numerical zeros:

Inf * eye (3)

⇒
Inf 0 0

0 Inf 0

0 0 Inf

Inf * speye (3)

⇒
Compressed Column Sparse (rows = 3, cols = 3, nnz = 3 [33%])

(1, 1) -> Inf

(2, 2) -> Inf

(3, 3) -> Inf

Inf * full (eye (3))

⇒
Inf NaN NaN

NaN Inf NaN

NaN NaN Inf

424 GNU Octave

diag(1:3) * [NaN; 1; 1]

⇒
NaN

2

3

sparse(1:3,1:3,1:3) * [NaN; 1; 1]

⇒
NaN

2

3

[1,0,0;0,2,0;0,0,3] * [NaN; 1; 1]

⇒
NaN

NaN

NaN

Chapter 22: Sparse Matrices 425

22 Sparse Matrices

22.1 The Creation and Manipulation of Sparse Matrices

The size of mathematical problems that can be treated at any particular time is generally
limited by the available computing resources. Both, the speed of the computer and its
available memory place limitation on the problem size.

There are many classes of mathematical problems which give rise to matrices, where a
large number of the elements are zero. In this case it makes sense to have a special matrix
type to handle this class of problems where only the non-zero elements of the matrix are
stored. Not only does this reduce the amount of memory to store the matrix, but it also
means that operations on this type of matrix can take advantage of the a-priori knowledge
of the positions of the non-zero elements to accelerate their calculations.

A matrix type that stores only the non-zero elements is generally called sparse. It is the
purpose of this document to discuss the basics of the storage and creation of sparse matrices
and the fundamental operations on them.

22.1.1 Storage of Sparse Matrices

It is not strictly speaking necessary for the user to understand how sparse matrices are
stored. However, such an understanding will help to get an understanding of the size of
sparse matrices. Understanding the storage technique is also necessary for those users
wishing to create their own oct-files.

There are many different means of storing sparse matrix data. What all of the methods
have in common is that they attempt to reduce the complexity and storage given a-priori
knowledge of the particular class of problems that will be solved. A good summary of
the available techniques for storing sparse matrix is given by Saad1. With full matrices,
knowledge of the point of an element of the matrix within the matrix is implied by its
position in the computers memory. However, this is not the case for sparse matrices, and
so the positions of the non-zero elements of the matrix must equally be stored.

An obvious way to do this is by storing the elements of the matrix as triplets, with two
elements being their position in the array (rows and column) and the third being the data
itself. This is conceptually easy to grasp, but requires more storage than is strictly needed.

The storage technique used within Octave is the compressed column format. In this
format the position of each element in a row and the data are stored as previously. However,
if we assume that all elements in the same column are stored adjacent in the computers
memory, then we only need to store information on the number of non-zero elements in
each column, rather than their positions. Thus assuming that the matrix has more non-
zero elements than there are columns in the matrix, we win in terms of the amount of
memory used.

In fact, the column index contains one more element than the number of columns, with
the first element always being zero. The advantage of this is a simplification in the code, in
that there is no special case for the first or last columns. A short example, demonstrating
this in C is.

1 Y. Saad "SPARSKIT: A basic toolkit for sparse matrix computation", 1994, http://www-users.cs.umn.edu/~saad/software/SPARSKIT/paper.ps

http://www-users.cs.umn.edu/~saad/software/SPARSKIT/paper.ps

426 GNU Octave

for (j = 0; j < nc; j++)

for (i = cidx (j); i < cidx(j+1); i++)

printf ("non-zero element (%i,%i) is %d\n",

ridx(i), j, data(i));

A clear understanding might be had by considering an example of how the above applies
to an example matrix. Consider the matrix

1 2 0 0

0 0 0 3

0 0 0 4

The non-zero elements of this matrix are

(1, 1) ⇒ 1

(1, 2) ⇒ 2

(2, 4) ⇒ 3

(3, 4) ⇒ 4

This will be stored as three vectors cidx, ridx and data, representing the column indexing,
row indexing and data respectively. The contents of these three vectors for the above matrix
will be

cidx = [0, 1, 2, 2, 4]

ridx = [0, 0, 1, 2]

data = [1, 2, 3, 4]

Note that this is the representation of these elements with the first row and column
assumed to start at zero, while in Octave itself the row and column indexing starts at one.
Thus the number of elements in the i-th column is given by cidx (i + 1) - cidx (i).

Although Octave uses a compressed column format, it should be noted that compressed
row formats are equally possible. However, in the context of mixed operations between
mixed sparse and dense matrices, it makes sense that the elements of the sparse matrices
are in the same order as the dense matrices. Octave stores dense matrices in column major
ordering, and so sparse matrices are equally stored in this manner.

A further constraint on the sparse matrix storage used by Octave is that all elements in
the rows are stored in increasing order of their row index, which makes certain operations
faster. However, it imposes the need to sort the elements on the creation of sparse matrices.
Having disordered elements is potentially an advantage in that it makes operations such as
concatenating two sparse matrices together easier and faster, however it adds complexity
and speed problems elsewhere.

22.1.2 Creating Sparse Matrices

There are several means to create sparse matrix.

Returned from a function
There are many functions that directly return sparse matrices. These include
speye, sprand, diag, etc.

Constructed from matrices or vectors
The function sparse allows a sparse matrix to be constructed from three vectors
representing the row, column and data. Alternatively, the function spconvert

Chapter 22: Sparse Matrices 427

uses a three column matrix format to allow easy importation of data from
elsewhere.

Created and then filled
The function sparse or spalloc can be used to create an empty matrix that is
then filled by the user

From a user binary program
The user can directly create the sparse matrix within an oct-file.

There are several basic functions to return specific sparse matrices. For example the
sparse identity matrix, is a matrix that is often needed. It therefore has its own function to
create it as speye (n) or speye (r, c), which creates an n-by-n or r-by-c sparse identity
matrix.

Another typical sparse matrix that is often needed is a random distribution of random
elements. The functions sprand and sprandn perform this for uniform and normal random
distributions of elements. They have exactly the same calling convention, where sprand

(r, c, d), creates an r-by-c sparse matrix with a density of filled elements of d.

Other functions of interest that directly create sparse matrices, are diag or its general-
ization spdiags, that can take the definition of the diagonals of the matrix and create the
sparse matrix that corresponds to this. For example,

s = diag (sparse(randn(1,n)), -1);

creates a sparse (n+1)-by-(n+1) sparse matrix with a single diagonal defined.

[Function File][b, c] = spdiags (A)
[Function File]b = spdiags (A, c)
[Function File]b = spdiags (v, c, A)
[Function File]b = spdiags (v, c, m, n)

A generalization of the function diag. Called with a single input argument, the non-
zero diagonals c of A are extracted. With two arguments the diagonals to extract are
given by the vector c.

The other two forms of spdiags modify the input matrix by replacing the diagonals.
They use the columns of v to replace the columns represented by the vector c. If the
sparse matrix A is defined then the diagonals of this matrix are replaced. Otherwise
a matrix of m by n is created with the diagonals given by v.

Negative values of c represent diagonals below the main diagonal, and positive values
of c diagonals above the main diagonal.

For example:

spdiags (reshape (1:12, 4, 3), [-1 0 1], 5, 4)

⇒ 5 10 0 0

1 6 11 0

0 2 7 12

0 0 3 8

0 0 0 4

[Function File]y = speye (m)
[Function File]y = speye (m, n)

428 GNU Octave

[Function File]y = speye (sz)
Return a sparse identity matrix. This is significantly more efficient than sparse (eye

(m)) as the full matrix is not constructed.

Called with a single argument a square matrix of size m by m is created. Otherwise
a matrix of m by n is created. If called with a single vector argument, this argument
is taken to be the size of the matrix to create.

[Function File]r = spones (S)
Replace the non-zero entries of S with ones. This creates a sparse matrix with the
same structure as S.

[Function File]sprand (m, n, d)
[Function File]sprand (s)

Generate a random sparse matrix. The size of the matrix will be m by n, with a
density of values given by d. d should be between 0 and 1. Values will be uniformly
distributed between 0 and 1.

If called with a single matrix argument, a random sparse matrix is generated wherever
the matrix S is non-zero.

See also: [sprandn], page 428, [sprandsym], page 428.

[Function File]sprandn (m, n, d)
[Function File]sprandn (s)

Generate a random sparse matrix. The size of the matrix will be m by n, with a
density of values given by d. d should be between 0 and 1. Values will be normally
distributed with mean of zero and variance 1.

If called with a single matrix argument, a random sparse matrix is generated wherever
the matrix S is non-zero.

See also: [sprand], page 428, [sprandsym], page 428.

[Function File]sprandsym (n, d)
[Function File]sprandsym (s)

Generate a symmetric random sparse matrix. The size of the matrix will be n by n,
with a density of values given by d. d should be between 0 and 1. Values will be
normally distributed with mean of zero and variance 1.

If called with a single matrix argument, a random sparse matrix is generated wherever
the matrix S is non-zero in its lower triangular part.

See also: [sprand], page 428, [sprandn], page 428.

The recommended way for the user to create a sparse matrix, is to create two vectors
containing the row and column index of the data and a third vector of the same size
containing the data to be stored. For example,

ri = ci = d = [];

for j = 1:c

ri = [ri; randperm(r,n)’];

ci = [ci; j*ones(n,1)];

d = [d; rand(n,1)];

endfor

s = sparse (ri, ci, d, r, c);

Chapter 22: Sparse Matrices 429

creates an r-by-c sparse matrix with a random distribution of n (<r) elements per column.
The elements of the vectors do not need to be sorted in any particular order as Octave will
sort them prior to storing the data. However, pre-sorting the data will make the creation
of the sparse matrix faster.

The function spconvert takes a three or four column real matrix. The first two columns
represent the row and column index respectively and the third and four columns, the real
and imaginary parts of the sparse matrix. The matrix can contain zero elements and the
elements can be sorted in any order. Adding zero elements is a convenient way to define
the size of the sparse matrix. For example:

s = spconvert ([1 2 3 4; 1 3 4 4; 1 2 3 0]’)

⇒ Compressed Column Sparse (rows=4, cols=4, nnz=3)

(1 , 1) -> 1

(2 , 3) -> 2

(3 , 4) -> 3

An example of creating and filling a matrix might be

k = 5;

nz = r * k;

s = spalloc (r, c, nz)

for j = 1:c

idx = randperm (r);

s (:, j) = [zeros(r - k, 1); ...

rand(k, 1)] (idx);

endfor

It should be noted, that due to the way that the Octave assignment functions are written
that the assignment will reallocate the memory used by the sparse matrix at each iteration
of the above loop. Therefore the spalloc function ignores the nz argument and does not
pre-assign the memory for the matrix. Therefore, it is vitally important that code using
to above structure should be vectorized as much as possible to minimize the number of
assignments and reduce the number of memory allocations.

[Loadable Function]FM = full (SM)
Return a full storage matrix from a sparse, diagonal, permutation matrix or a range.

See also: [sparse], page 430.

[Loadable Function]s = spalloc (m, n, nz)
Create an m-by-n sparse matrix with pre-allocated space for at most nz nonzero
elements. This is useful for building the matrix incrementally by a sequence of indexed
assignments. Subsequent indexed assignments will reuse the pre-allocated memory,
provided they are of one of the simple forms

• s(I:J) = x

• s(:,I:J) = x

• s(K:L,I:J) = x

and that the following conditions are met:

• the assignment does not decrease nnz(S).

• after the assignment, nnz(S) does not exceed nz.

430 GNU Octave

• no index is out of bounds.

Partial movement of data may still occur, but in general the assignment will be more
memory and time-efficient under these circumstances. In particular, it is possible to
efficiently build a pre-allocated sparse matrix from contiguous block of columns.

The amount of pre-allocated memory for a given matrix may be queried using the
function nzmax.

See also: [nzmax], page 431, [sparse], page 430.

[Loadable Function]s = sparse (a)
[Loadable Function]s = sparse (i, j, sv, m, n, nzmax)
[Loadable Function]s = sparse (i, j, sv)
[Loadable Function]s = sparse (i, j, s, m, n, "unique")
[Loadable Function]s = sparse (m, n)

Create a sparse matrix from the full matrix or row, column, value triplets. If a is a
full matrix, convert it to a sparse matrix representation, removing all zero values in
the process.

Given the integer index vectors i and j, a 1-by-nnz vector of real of complex values
sv, overall dimensions m and n of the sparse matrix. The argument nzmax is ignored
but accepted for compatibility with matlab. If m or n are not specified their values
are derived from the maximum index in the vectors i and j as given by m = max (i),
n = max (j).

Note: if multiple values are specified with the same i, j indices, the corresponding
values in s will be added.

The following are all equivalent:

s = sparse (i, j, s, m, n)

s = sparse (i, j, s, m, n, "summation")

s = sparse (i, j, s, m, n, "sum")

Given the option "unique". if more than two values are specified for the same i, j
indices, the last specified value will be used.

sparse(m, n) is equivalent to sparse ([], [], [], m, n, 0)

If any of sv, i or j are scalars, they are expanded to have a common size.

See also: [full], page 429.

[Function File]x = spconvert (m)
This function converts for a simple sparse matrix format easily produced by other
programs into Octave’s internal sparse format. The input x is either a 3 or 4 column
real matrix, containing the row, column, real and imaginary parts of the elements of
the sparse matrix. An element with a zero real and imaginary part can be used to
force a particular matrix size.

The above problem of memory reallocation can be avoided in oct-files. However, the
construction of a sparse matrix from an oct-file is more complex than can be discussed here,
and you are referred to chapter Appendix A [Dynamically Linked Functions], page 667, to
have a full description of the techniques involved.

Chapter 22: Sparse Matrices 431

22.1.3 Finding out Information about Sparse Matrices

There are a number of functions that allow information concerning sparse matrices to be
obtained. The most basic of these is issparse that identifies whether a particular Octave
object is in fact a sparse matrix.

Another very basic function is nnz that returns the number of non-zero entries there are
in a sparse matrix, while the function nzmax returns the amount of storage allocated to the
sparse matrix. Note that Octave tends to crop unused memory at the first opportunity for
sparse objects. There are some cases of user created sparse objects where the value returned
by nzmax will not be the same as nnz, but in general they will give the same result. The
function spstats returns some basic statistics on the columns of a sparse matrix including
the number of elements, the mean and the variance of each column.

[Loadable Function]issparse (x)
Return true if x is a sparse matrix.

See also: [ismatrix], page 59.

[Built-in Function]scalar = nnz (a)
Return the number of non zero elements in a.

See also: [sparse], page 430.

[Function File]nonzeros (s)
Return a vector of the non-zero values of the sparse matrix s.

[Built-in Function]scalar = nzmax (SM)
Return the amount of storage allocated to the sparse matrix SM. Note that Octave
tends to crop unused memory at the first opportunity for sparse objects. There are
some cases of user created sparse objects where the value returned by nzmax will not
be the same as nnz, but in general they will give the same result.

See also: [sparse], page 430, [spalloc], page 429.

[Function File][count, mean, var] = spstats (S)
[Function File][count, mean, var] = spstats (S, j)

Return the stats for the non-zero elements of the sparse matrix S. count is the number
of non-zeros in each column, mean is the mean of the non-zeros in each column, and
var is the variance of the non-zeros in each column.

Called with two input arguments, if S is the data and j is the bin number for the
data, compute the stats for each bin. In this case, bins can contain data values of
zero, whereas with spstats (S) the zeros may disappear.

When solving linear equations involving sparse matrices Octave determines the means
to solve the equation based on the type of the matrix as discussed in Section 22.2 [Sparse
Linear Algebra], page 445. Octave probes the matrix type when the div (/) or ldiv (\)
operator is first used with the matrix and then caches the type. However the matrix type
function can be used to determine the type of the sparse matrix prior to use of the div or
ldiv operators. For example,

432 GNU Octave

a = tril (sprandn(1024, 1024, 0.02), -1) ...

+ speye(1024);

matrix_type (a);

ans = Lower

shows that Octave correctly determines the matrix type for lower triangular matrices. ma-
trix type can also be used to force the type of a matrix to be a particular type. For
example:

a = matrix_type (tril (sprandn (1024, ...

1024, 0.02), -1) + speye(1024), ’Lower’);

This allows the cost of determining the matrix type to be avoided. However, incorrectly
defining the matrix type will result in incorrect results from solutions of linear equations,
and so it is entirely the responsibility of the user to correctly identify the matrix type

There are several graphical means of finding out information about sparse matrices.
The first is the spy command, which displays the structure of the non-zero elements of
the matrix. See Figure 22.1, for an example of the use of spy. More advanced graphical
information can be obtained with the treeplot, etreeplot and gplot commands.

0

50

100

150

200

0 50 100 150 200

Figure 22.1: Structure of simple sparse matrix.

One use of sparse matrices is in graph theory, where the interconnections between nodes
are represented as an adjacency matrix. That is, if the i-th node in a graph is connected
to the j-th node. Then the ij-th node (and in the case of undirected graphs the ji-th node)
of the sparse adjacency matrix is non-zero. If each node is then associated with a set of
coordinates, then the gplot command can be used to graphically display the interconnections
between nodes.

As a trivial example of the use of gplot consider the example,

A = sparse([2,6,1,3,2,4,3,5,4,6,1,5],

[1,1,2,2,3,3,4,4,5,5,6,6],1,6,6);

xy = [0,4,8,6,4,2;5,0,5,7,5,7]’;

gplot(A,xy)

Chapter 22: Sparse Matrices 433

which creates an adjacency matrix A where node 1 is connected to nodes 2 and 6, node 2
with nodes 1 and 3, etc. The coordinates of the nodes are given in the n-by-2 matrix xy.
See Figure 22.2.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

Figure 22.2: Simple use of the gplot command.

The dependencies between the nodes of a Cholesky factorization can be calculated
in linear time without explicitly needing to calculate the Cholesky factorization by the
etree command. This command returns the elimination tree of the matrix and can
be displayed graphically by the command treeplot(etree(A)) if A is symmetric or
treeplot(etree(A+A’)) otherwise.

[Function File]spy (x)
[Function File]spy (. . . , markersize)
[Function File]spy (. . . , line_spec)

Plot the sparsity pattern of the sparse matrix x. If the argument markersize is given
as a scalar value, it is used to determine the point size in the plot. If the string
line spec is given it is passed to plot and determines the appearance of the plot.

See also: [plot], page 238.

[Loadable Function]p = etree (S)
[Loadable Function]p = etree (S, typ)
[Loadable Function][p, q] = etree (S, typ)

Return the elimination tree for the matrix S. By default S is assumed to be symmetric
and the symmetric elimination tree is returned. The argument typ controls whether
a symmetric or column elimination tree is returned. Valid values of typ are ’sym’ or
’col’, for symmetric or column elimination tree respectively

Called with a second argument, etree also returns the postorder permutations on
the tree.

434 GNU Octave

[Function File]etreeplot (A)
[Function File]etreeplot (A, node_style, edge_style)

Plot the elimination tree of the matrix A or A+A’ if A in not symmetric. The optional
parameters node style and edge style define the output style.

See also: [treeplot], page 434, [gplot], page 434.

[Function File]gplot (A, xy)
[Function File]gplot (A, xy, line_style)
[Function File][x, y] = gplot (A, xy)

Plot a graph defined by A and xy in the graph theory sense. A is the adjacency matrix
of the array to be plotted and xy is an n-by-2 matrix containing the coordinates of
the nodes of the graph.

The optional parameter line style defines the output style for the plot. Called with
no output arguments the graph is plotted directly. Otherwise, return the coordinates
of the plot in x and y.

See also: [treeplot], page 434, [etreeplot], page 434, [spy], page 433.

[Function File]treeplot (tree)
[Function File]treeplot (tree, node_style, edge_style)

Produce a graph of tree or forest. The first argument is vector of predecessors, optional
parameters node style and edge style define the output style. The complexity of the
algorithm is O(n) in terms of is time and memory requirements.

See also: [etreeplot], page 434, [gplot], page 434.

[Function File]treelayout (tree)
[Function File]treelayout (tree, permutation)

treelayout lays out a tree or a forest. The first argument tree is a vector of prede-
cessors, optional parameter permutation is an optional postorder permutation. The
complexity of the algorithm is O(n) in terms of time and memory requirements.

See also: [etreeplot], page 434, [gplot], page 434, [treeplot], page 434.

22.1.4 Basic Operators and Functions on Sparse Matrices

22.1.4.1 Sparse Functions

Many Octave functions have been overloaded to work with either sparse or full matrices.
There is no difference in calling convention when using an overloaded function with a sparse
matrix, however, there is also no access to potentially sparse-specific features. At any time
the sparse matrix specific version of a function can be used by explicitly calling its function
name.

The table below lists all of the sparse functions of Octave. Note that the names of the
specific sparse forms of the functions are typically the same as the general versions with a
sp prefix. In the table below, and in the rest of this article, the specific sparse versions of
functions are used.

Generate sparse matrices:
spalloc, spdiags, speye, sprand, sprandn, sprandsym

Chapter 22: Sparse Matrices 435

Sparse matrix conversion:
full, sparse, spconvert

Manipulate sparse matrices
issparse, nnz, nonzeros, nzmax, spfun, spones, spy

Graph Theory:
etree, etreeplot, gplot, treeplot

Sparse matrix reordering:
amd, ccolamd, colamd, colperm, csymamd, dmperm, symamd, randperm, sym-
rcm

Linear algebra:
condest, eigs, matrix type, normest, sprank, spaugment, svds

Iterative techniques:
luinc, pcg, pcr

Miscellaneous:
spparms, symbfact, spstats

In addition all of the standard Octave mapper functions (i.e., basic math functions that
take a single argument) such as abs, etc. can accept sparse matrices. The reader is referred
to the documentation supplied with these functions within Octave itself for further details.

22.1.4.2 The Return Types of Operators and Functions

The two basic reasons to use sparse matrices are to reduce the memory usage and to not have
to do calculations on zero elements. The two are closely related in that the computation
time on a sparse matrix operator or function is roughly linear with the number of non-zero
elements.

Therefore, there is a certain density of non-zero elements of a matrix where it no longer
makes sense to store it as a sparse matrix, but rather as a full matrix. For this reason
operators and functions that have a high probability of returning a full matrix will always
return one. For example adding a scalar constant to a sparse matrix will almost always
make it a full matrix, and so the example,

speye(3) + 0

⇒ 1 0 0

0 1 0

0 0 1

returns a full matrix as can be seen.

Additionally, if sparse_auto_mutate is true, all sparse functions test the amount of
memory occupied by the sparse matrix to see if the amount of storage used is larger than
the amount used by the full equivalent. Therefore speye (2) * 1 will return a full matrix
as the memory used is smaller for the full version than the sparse version.

As all of the mixed operators and functions between full and sparse matrices exist, in
general this does not cause any problems. However, one area where it does cause a problem
is where a sparse matrix is promoted to a full matrix, where subsequent operations would
resparsify the matrix. Such cases are rare, but can be artificially created, for example

436 GNU Octave

(fliplr(speye(3)) + speye(3)) - speye(3) gives a full matrix when it should give a
sparse one. In general, where such cases occur, they impose only a small memory penalty.

There is however one known case where this behavior of Octave’s sparse matrices will
cause a problem. That is in the handling of the diag function. Whether diag returns a
sparse or full matrix depending on the type of its input arguments. So

a = diag (sparse([1,2,3]), -1);

should return a sparse matrix. To ensure this actually happens, the sparse function, and
other functions based on it like speye, always returns a sparse matrix, even if the memory
used will be larger than its full representation.

[Built-in Function]val = sparse_auto_mutate ()
[Built-in Function]old_val = sparse_auto_mutate (new_val)
[Built-in Function]sparse_auto_mutate (new_val, "local")

Query or set the internal variable that controls whether Octave will automatically
mutate sparse matrices to full matrices to save memory. For example:

s = speye (3);

sparse_auto_mutate (false)

s(:, 1) = 1;

typeinfo (s)

⇒ sparse matrix

sparse_auto_mutate (true)

s(1, :) = 1;

typeinfo (s)

⇒ matrix

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

Note that the sparse_auto_mutate option is incompatible with matlab, and so it is
off by default.

22.1.4.3 Mathematical Considerations

The attempt has been made to make sparse matrices behave in exactly the same manner
as there full counterparts. However, there are certain differences and especially differences
with other products sparse implementations.

Firstly, the "./" and ".^" operators must be used with care. Consider what the examples

s = speye (4);

a1 = s .^ 2;

a2 = s .^ s;

a3 = s .^ -2;

a4 = s ./ 2;

a5 = 2 ./ s;

a6 = s ./ s;

will give. The first example of s raised to the power of 2 causes no problems. However s
raised element-wise to itself involves a large number of terms 0 .^ 0 which is 1. There s .^

s is a full matrix.

Chapter 22: Sparse Matrices 437

Likewise s .^ -2 involves terms like 0 .^ -2 which is infinity, and so s .^ -2 is equally
a full matrix.

For the "./" operator s ./ 2 has no problems, but 2 ./ s involves a large number of
infinity terms as well and is equally a full matrix. The case of s ./ s involves terms like
0 ./ 0 which is a NaN and so this is equally a full matrix with the zero elements of s filled
with NaN values.

The above behavior is consistent with full matrices, but is not consistent with sparse
implementations in other products.

A particular problem of sparse matrices comes about due to the fact that as the zeros
are not stored, the sign-bit of these zeros is equally not stored. In certain cases the sign-bit
of zero is important. For example:

a = 0 ./ [-1, 1; 1, -1];

b = 1 ./ a

⇒ -Inf Inf

Inf -Inf

c = 1 ./ sparse (a)

⇒ Inf Inf

Inf Inf

To correct this behavior would mean that zero elements with a negative sign-bit would
need to be stored in the matrix to ensure that their sign-bit was respected. This is not done
at this time, for reasons of efficiency, and so the user is warned that calculations where the
sign-bit of zero is important must not be done using sparse matrices.

In general any function or operator used on a sparse matrix will result in a sparse
matrix with the same or a larger number of non-zero elements than the original matrix.
This is particularly true for the important case of sparse matrix factorizations. The usual
way to address this is to reorder the matrix, such that its factorization is sparser than
the factorization of the original matrix. That is the factorization of L * U = P * S * Q has
sparser terms L and U than the equivalent factorization L * U = S.

Several functions are available to reorder depending on the type of the matrix to be
factorized. If the matrix is symmetric positive-definite, then symamd or csymamd should be
used. Otherwise amd, colamd or ccolamd should be used. For completeness the reordering
functions colperm and randperm are also available.

See Figure 22.3, for an example of the structure of a simple positive definite matrix.

438 GNU Octave

0

50

100

150

200

0 50 100 150 200

Figure 22.3: Structure of simple sparse matrix.

The standard Cholesky factorization of this matrix can be obtained by the same com-
mand that would be used for a full matrix. This can be visualized with the command r

= chol(A); spy(r);. See Figure 22.4. The original matrix had 598 non-zero terms, while
this Cholesky factorization has 10200, with only half of the symmetric matrix being stored.
This is a significant level of fill in, and although not an issue for such a small test case, can
represents a large overhead in working with other sparse matrices.

The appropriate sparsity preserving permutation of the original matrix is given by
symamd and the factorization using this reordering can be visualized using the command
q = symamd(A); r = chol(A(q,q)); spy(r). This gives 399 non-zero terms which is a sig-
nificant improvement.

The Cholesky factorization itself can be used to determine the appropriate sparsity
preserving reordering of the matrix during the factorization, In that case this might be
obtained with three return arguments as r[r, p, q] = chol(A); spy(r).

Chapter 22: Sparse Matrices 439

0

50

100

150

200

0 50 100 150 200

Figure 22.4: Structure of the un-permuted Cholesky factorization of the above matrix.

0

50

100

150

200

0 50 100 150 200

Figure 22.5: Structure of the permuted Cholesky factorization of the above matrix.

In the case of an asymmetric matrix, the appropriate sparsity preserving permutation is
colamd and the factorization using this reordering can be visualized using the command q

= colamd(A); [l, u, p] = lu(A(:,q)); spy(l+u).

Finally, Octave implicitly reorders the matrix when using the div (/) and ldiv (\) op-
erators, and so no the user does not need to explicitly reorder the matrix to maximize
performance.

[Loadable Function]p = amd (S)
[Loadable Function]p = amd (S, opts)

Return the approximate minimum degree permutation of a matrix. This permuta-
tion such that the Cholesky factorization of S (p, p) tends to be sparser than the

440 GNU Octave

Cholesky factorization of S itself. amd is typically faster than symamd but serves a
similar purpose.

The optional parameter opts is a structure that controls the behavior of amd. The
fields of the structure are

opts.dense Determines what amd considers to be a dense row or column of the input
matrix. Rows or columns with more than max(16, (dense * sqrt (n)

entries, where n is the order of the matrix S, are ignored by amd during
the calculation of the permutation The value of dense must be a positive
scalar and its default value is 10.0

opts.aggressive
If this value is a non zero scalar, then amd performs aggressive absorption.
The default is not to perform aggressive absorption.

The author of the code itself is Timothy A. Davis davis@cise.ufl.edu, University
of Florida (see http://www.cise.ufl.edu/research/sparse/amd).

See also: [symamd], page 443, [colamd], page 441.

[Loadable Function]p = ccolamd (S)
[Loadable Function]p = ccolamd (S, knobs)
[Loadable Function]p = ccolamd (S, knobs, cmember)
[Loadable Function][p, stats] = ccolamd (. . .)

Constrained column approximate minimum degree permutation. p = ccolamd (S)

returns the column approximate minimum degree permutation vector for the sparse
matrix S. For a non-symmetric matrix S, S(:, p) tends to have sparser LU factors
than S. chol (S(:, p)’ * S(:, p)) also tends to be sparser than chol (S’ * S). p
= ccolamd (S, 1) optimizes the ordering for lu (S(:, p)). The ordering is followed
by a column elimination tree post-ordering.

knobs is an optional 1-element to 5-element input vector, with a default value of [0
10 10 1 0] if not present or empty. Entries not present are set to their defaults.

knobs(1) if nonzero, the ordering is optimized for lu (S(:, p)). It will be a poor
ordering for chol (S(:, p)’ * S(:, p)). This is the most important
knob for ccolamd.

knobs(2) if S is m-by-n, rows with more than max (16, knobs(2) * sqrt (n))

entries are ignored.

knobs(3) columns with more than max (16, knobs(3) * sqrt (min (m, n))) en-
tries are ignored and ordered last in the output permutation (subject to
the cmember constraints).

knobs(4) if nonzero, aggressive absorption is performed.

knobs(5) if nonzero, statistics and knobs are printed.

cmember is an optional vector of length n. It defines the constraints on the column
ordering. If cmember(j) = c , then column j is in constraint set c (c must be in the
range 1 to n). In the output permutation p, all columns in set 1 appear first, followed
by all columns in set 2, and so on. cmember = ones(1,n) if not present or empty.
ccolamd (S, [], 1 : n) returns 1 : n

mailto:davis@cise.ufl.edu
http://www.cise.ufl.edu/research/sparse/amd

Chapter 22: Sparse Matrices 441

p = ccolamd (S) is about the same as p = colamd (S). knobs and its default values
differ. colamd always does aggressive absorption, and it finds an ordering suitable for
both lu (S(:, p)) and chol (S(:, p)’ * S(:, p)); it cannot optimize its ordering
for lu (S(:, p)) to the extent that ccolamd (S, 1) can.

stats is an optional 20-element output vector that provides data about the order-
ing and the validity of the input matrix S. Ordering statistics are in stats(1 : 3).
stats(1) and stats(2) are the number of dense or empty rows and columns ignored
by ccolamd and stats(3) is the number of garbage collections performed on the
internal data structure used by ccolamd (roughly of size 2.2 * nnz (S) + 4 * m + 7

* n integers).

stats(4 : 7) provide information if CCOLAMD was able to continue. The matrix is
OK if stats(4) is zero, or 1 if invalid. stats(5) is the rightmost column index that
is unsorted or contains duplicate entries, or zero if no such column exists. stats(6)
is the last seen duplicate or out-of-order row index in the column index given by
stats(5), or zero if no such row index exists. stats(7) is the number of duplicate
or out-of-order row indices. stats(8 : 20) is always zero in the current version of
ccolamd (reserved for future use).

The authors of the code itself are S. Larimore, T. Davis (Univ. of Florida) and
S. Rajamanickam in collaboration with J. Bilbert and E. Ng. Supported by the
National Science Foundation (DMS-9504974, DMS-9803599, CCR-0203270), and a
grant from Sandia National Lab. See http://www.cise.ufl.edu/research/sparse
for ccolamd, csymamd, amd, colamd, symamd, and other related orderings.

See also: [colamd], page 441, [csymamd], page 442.

[Loadable Function]p = colamd (S)
[Loadable Function]p = colamd (S, knobs)
[Loadable Function][p, stats] = colamd (S)
[Loadable Function][p, stats] = colamd (S, knobs)

Column approximate minimum degree permutation. p = colamd (S) returns the col-
umn approximate minimum degree permutation vector for the sparse matrix S. For
a non-symmetric matrix S, S(:,p) tends to have sparser LU factors than S. The
Cholesky factorization of S(:,p)’ * S(:,p) also tends to be sparser than that of S’
* S .

knobs is an optional one- to three-element input vector. If S is m-by-n, then rows
with more than max(16,knobs(1)*sqrt(n)) entries are ignored. Columns with more
than max(16,knobs(2)*sqrt(min(m,n))) entries are removed prior to ordering, and
ordered last in the output permutation p. Only completely dense rows or columns
are removed if knobs(1) and knobs(2) are < 0, respectively. If knobs(3) is nonzero,
stats and knobs are printed. The default is knobs = [10 10 0]. Note that knobs
differs from earlier versions of colamd.

stats is an optional 20-element output vector that provides data about the order-
ing and the validity of the input matrix S. Ordering statistics are in stats(1:3).
stats(1) and stats(2) are the number of dense or empty rows and columns ig-
nored by colamd and stats(3) is the number of garbage collections performed on
the internal data structure used by colamd (roughly of size 2.2 * nnz(S) + 4 * m +

7 * n integers).

http://www.cise.ufl.edu/research/sparse

442 GNU Octave

Octave built-in functions are intended to generate valid sparse matrices, with no
duplicate entries, with ascending row indices of the nonzeros in each column, with a
non-negative number of entries in each column (!) and so on. If a matrix is invalid,
then colamd may or may not be able to continue. If there are duplicate entries (a
row index appears two or more times in the same column) or if the row indices in
a column are out of order, then colamd can correct these errors by ignoring the
duplicate entries and sorting each column of its internal copy of the matrix S (the
input matrix S is not repaired, however). If a matrix is invalid in other ways then
colamd cannot continue, an error message is printed, and no output arguments (p
or stats) are returned. colamd is thus a simple way to check a sparse matrix to see
if it’s valid.

stats(4:7) provide information if COLAMD was able to continue. The matrix is
OK if stats(4) is zero, or 1 if invalid. stats(5) is the rightmost column index that
is unsorted or contains duplicate entries, or zero if no such column exists. stats(6)
is the last seen duplicate or out-of-order row index in the column index given by
stats(5), or zero if no such row index exists. stats(7) is the number of duplicate
or out-of-order row indices. stats(8:20) is always zero in the current version of
colamd (reserved for future use).

The ordering is followed by a column elimination tree post-ordering.

The authors of the code itself are Stefan I. Larimore and Timothy A. Davis
davis@cise.ufl.edu, University of Florida. The algorithm was developed in
collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National
Laboratory. (see http://www.cise.ufl.edu/research/sparse/colamd)

See also: [colperm], page 442, [symamd], page 443, [ccolamd], page 440.

[Function File]p = colperm (s)
Return the column permutations such that the columns of s (:, p) are ordered in
terms of increase number of non-zero elements. If s is symmetric, then p is chosen
such that s (p, p) orders the rows and columns with increasing number of non zeros
elements.

[Loadable Function]p = csymamd (S)
[Loadable Function]p = csymamd (S, knobs)
[Loadable Function]p = csymamd (S, knobs, cmember)
[Loadable Function][p, stats] = csymamd (. . .)

For a symmetric positive definite matrix S, returns the permutation vector p such
that S(p,p) tends to have a sparser Cholesky factor than S. Sometimes csymamd

works well for symmetric indefinite matrices too. The matrix S is assumed to be
symmetric; only the strictly lower triangular part is referenced. S must be square.
The ordering is followed by an elimination tree post-ordering.

knobs is an optional 1-element to 3-element input vector, with a default value of [10
1 0] if present or empty. Entries not present are set to their defaults.

knobs(1) If S is n-by-n, then rows and columns with more than
max(16,knobs(1)*sqrt(n)) entries are ignored, and ordered
last in the output permutation (subject to the cmember constraints).

knobs(2) If nonzero, aggressive absorption is performed.

mailto:davis@cise.ufl.edu
http://www.cise.ufl.edu/research/sparse/colamd

Chapter 22: Sparse Matrices 443

knobs(3) If nonzero, statistics and knobs are printed.

cmember is an optional vector of length n. It defines the constraints on the ordering.
If cmember(j) = S , then row/column j is in constraint set c (c must be in the range
1 to n). In the output permutation p, rows/columns in set 1 appear first, followed by
all rows/columns in set 2, and so on. cmember = ones(1,n) if not present or empty.
csymamd(S,[],1:n) returns 1:n.

p = csymamd(S) is about the same as p = symamd(S). knobs and its default values
differ.

stats(4:7) provide information if CCOLAMD was able to continue. The matrix is
OK if stats(4) is zero, or 1 if invalid. stats(5) is the rightmost column index that
is unsorted or contains duplicate entries, or zero if no such column exists. stats(6)
is the last seen duplicate or out-of-order row index in the column index given by
stats(5), or zero if no such row index exists. stats(7) is the number of duplicate
or out-of-order row indices. stats(8:20) is always zero in the current version of
ccolamd (reserved for future use).

The authors of the code itself are S. Larimore, T. Davis (Uni of Florida) and S.
Rajamanickam in collaboration with J. Bilbert and E. Ng. Supported by the Na-
tional Science Foundation (DMS-9504974, DMS-9803599, CCR-0203270), and a grant
from Sandia National Lab. See http://www.cise.ufl.edu/research/sparse for
ccolamd, csymamd, amd, colamd, symamd, and other related orderings.

See also: [symamd], page 443, [ccolamd], page 440.

[Loadable Function]p = dmperm (S)
[Loadable Function][p, q, r, S] = dmperm (S)

Perform a Dulmage-Mendelsohn permutation of the sparse matrix S. With a single
output argument dmperm performs the row permutations p such that S(p,:) has no
zero elements on the diagonal.

Called with two or more output arguments, returns the row and column permutations,
such that S(p, q) is in block triangular form. The values of r and S define the
boundaries of the blocks. If S is square then r == S .

The method used is described in: A. Pothen & C.-J. Fan. Computing the Block
Triangular Form of a Sparse Matrix. ACM Trans. Math. Software, 16(4):303-324,
1990.

See also: [colamd], page 441, [ccolamd], page 440.

[Loadable Function]p = symamd (S)
[Loadable Function]p = symamd (S, knobs)
[Loadable Function][p, stats] = symamd (S)
[Loadable Function][p, stats] = symamd (S, knobs)

For a symmetric positive definite matrix S, returns the permutation vector p such that
S(p, p) tends to have a sparser Cholesky factor than S. Sometimes symamd works
well for symmetric indefinite matrices too. The matrix S is assumed to be symmetric;
only the strictly lower triangular part is referenced. S must be square.

knobs is an optional one- to two-element input vector. If S is n-by-n, then rows and
columns with more than max(16,knobs(1)*sqrt(n)) entries are removed prior to

http://www.cise.ufl.edu/research/sparse

444 GNU Octave

ordering, and ordered last in the output permutation p. No rows/columns are removed
if knobs(1) < 0. If knobs (2) is nonzero, stats and knobs are printed. The default
is knobs = [10 0]. Note that knobs differs from earlier versions of symamd.

stats is an optional 20-element output vector that provides data about the order-
ing and the validity of the input matrix S. Ordering statistics are in stats(1:3).
stats(1) = stats(2) is the number of dense or empty rows and columns ignored
by SYMAMD and stats(3) is the number of garbage collections performed on the
internal data structure used by SYMAMD (roughly of size 8.4 * nnz (tril (S, -1))

+ 9 * n integers).

Octave built-in functions are intended to generate valid sparse matrices, with no
duplicate entries, with ascending row indices of the nonzeros in each column, with a
non-negative number of entries in each column (!) and so on. If a matrix is invalid,
then SYMAMD may or may not be able to continue. If there are duplicate entries
(a row index appears two or more times in the same column) or if the row indices in
a column are out of order, then SYMAMD can correct these errors by ignoring the
duplicate entries and sorting each column of its internal copy of the matrix S (the
input matrix S is not repaired, however). If a matrix is invalid in other ways then
SYMAMD cannot continue, an error message is printed, and no output arguments (p
or stats) are returned. SYMAMD is thus a simple way to check a sparse matrix to
see if it’s valid.

stats(4:7) provide information if SYMAMD was able to continue. The matrix is
OK if stats (4) is zero, or 1 if invalid. stats(5) is the rightmost column index that
is unsorted or contains duplicate entries, or zero if no such column exists. stats(6)
is the last seen duplicate or out-of-order row index in the column index given by
stats(5), or zero if no such row index exists. stats(7) is the number of duplicate
or out-of-order row indices. stats(8:20) is always zero in the current version of
SYMAMD (reserved for future use).

The ordering is followed by a column elimination tree post-ordering.

The authors of the code itself are Stefan I. Larimore and Timothy A. Davis
davis@cise.ufl.edu, University of Florida. The algorithm was developed in
collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National
Laboratory. (see http://www.cise.ufl.edu/research/sparse/colamd)

See also: [colperm], page 442, [colamd], page 441.

[Loadable Function]p = symrcm (S)
Return the symmetric reverse Cuthill-McKee permutation of S. p is a permutation
vector such that S(p, p) tends to have its diagonal elements closer to the diagonal
than S. This is a good preordering for LU or Cholesky factorization of matrices that
come from ’long, skinny’ problems. It works for both symmetric and asymmetric S.

The algorithm represents a heuristic approach to the NP-complete bandwidth mini-
mization problem. The implementation is based in the descriptions found in

E. Cuthill, J. McKee. Reducing the Bandwidth of Sparse Symmetric Matrices. Pro-
ceedings of the 24th ACM National Conference, 157–172 1969, Brandon Press, New
Jersey.

mailto:davis@cise.ufl.edu
http://www.cise.ufl.edu/research/sparse/colamd

Chapter 22: Sparse Matrices 445

A. George, J.W.H. Liu. Computer Solution of Large Sparse Positive Definite Systems,
Prentice Hall Series in Computational Mathematics, ISBN 0-13-165274-5, 1981.

See also: [colperm], page 442, [colamd], page 441, [symamd], page 443.

22.2 Linear Algebra on Sparse Matrices

Octave includes a polymorphic solver for sparse matrices, where the exact solver used to
factorize the matrix, depends on the properties of the sparse matrix itself. Generally, the
cost of determining the matrix type is small relative to the cost of factorizing the matrix
itself, but in any case the matrix type is cached once it is calculated, so that it is not
re-determined each time it is used in a linear equation.

The selection tree for how the linear equation is solve is

1. If the matrix is diagonal, solve directly and goto 8

2. If the matrix is a permuted diagonal, solve directly taking into account the permuta-
tions. Goto 8

3. If the matrix is square, banded and if the band density is less than that given by
spparms ("bandden") continue, else goto 4.

a. If the matrix is tridiagonal and the right-hand side is not sparse continue, else goto
3b.

1. If the matrix is Hermitian, with a positive real diagonal, attempt Cholesky fac-
torization using lapack xPTSV.

2. If the above failed or the matrix is not Hermitian with a positive real diagonal
use Gaussian elimination with pivoting using lapack xGTSV, and goto 8.

b. If the matrix is Hermitian with a positive real diagonal, attempt Cholesky factor-
ization using lapack xPBTRF.

c. if the above failed or the matrix is not Hermitian with a positive real diagonal use
Gaussian elimination with pivoting using lapack xGBTRF, and goto 8.

4. If the matrix is upper or lower triangular perform a sparse forward or backward sub-
stitution, and goto 8

5. If the matrix is an upper triangular matrix with column permutations or lower triangu-
lar matrix with row permutations, perform a sparse forward or backward substitution,
and goto 8

6. If the matrix is square, Hermitian with a real positive diagonal, attempt sparse
Cholesky factorization using cholmod.

7. If the sparse Cholesky factorization failed or the matrix is not Hermitian with a real
positive diagonal, and the matrix is square, factorize using umfpack.

8. If the matrix is not square, or any of the previous solvers flags a singular or near
singular matrix, find a minimum norm solution using cxsparse2.

The band density is defined as the number of non-zero values in the matrix divided by
the number of non-zero values in the matrix. The banded matrix solvers can be entirely
disabled by using spparms to set bandden to 1 (i.e., spparms ("bandden", 1)).

2 The cholmod, umfpack and cxsparse packages were written by Tim Davis and are available at
http://www.cise.ufl.edu/research/sparse/

446 GNU Octave

The QR solver factorizes the problem with a Dulmage-Mendelsohn, to separate the
problem into blocks that can be treated as over-determined, multiple well determined blocks,
and a final over-determined block. For matrices with blocks of strongly connected nodes
this is a big win as LU decomposition can be used for many blocks. It also significantly
improves the chance of finding a solution to over-determined problems rather than just
returning a vector of NaN ’s.

All of the solvers above, can calculate an estimate of the condition number. This can
be used to detect numerical stability problems in the solution and force a minimum norm
solution to be used. However, for narrow banded, triangular or diagonal matrices, the cost
of calculating the condition number is significant, and can in fact exceed the cost of factoring
the matrix. Therefore the condition number is not calculated in these cases, and Octave
relies on simpler techniques to detect singular matrices or the underlying lapack code in
the case of banded matrices.

The user can force the type of the matrix with the matrix_type function. This overcomes
the cost of discovering the type of the matrix. However, it should be noted that identifying
the type of the matrix incorrectly will lead to unpredictable results, and so matrix_type

should be used with care.

[Function File]n = normest (A)
[Function File]n = normest (A, tol)
[Function File][n, c] = normest (. . .)

Estimate the 2-norm of the matrix A using a power series analysis. This is typically
used for large matrices, where the cost of calculating norm (A) is prohibitive and an
approximation to the 2-norm is acceptable.

tol is the tolerance to which the 2-norm is calculated. By default tol is 1e-6. c returns
the number of iterations needed for normest to converge.

[Function File][est, v, w, iter] = onenormest (A, t)
[Function File][est, v, w, iter] = onenormest (apply, apply_t, n, t)

Apply Higham and Tisseur’s randomized block 1-norm estimator to matrix A using
t test vectors. If t exceeds 5, then only 5 test vectors are used.

If the matrix is not explicit, e.g., when estimating the norm of inv (A) given an
LU factorization, onenormest applies A and its conjugate transpose through a pair
of functions apply and apply t, respectively, to a dense matrix of size n by t. The
implicit version requires an explicit dimension n.

Returns the norm estimate est, two vectors v and w related by norm (w, 1) = est *

norm (v, 1), and the number of iterations iter. The number of iterations is limited
to 10 and is at least 2.

References:

• N.J. Higham and F. Tisseur, A Block Algorithm for Matrix 1-Norm Estimation,
with an Application to 1-Norm Pseudospectra. SIMAX vol 21, no 4, pp 1185-
1201. http://dx.doi.org/10.1137/S0895479899356080

• N.J. Higham and F. Tisseur, A Block Algorithm for Matrix 1-
Norm Estimation, with an Application to 1-Norm Pseudospectra.
http://citeseer.ist.psu.edu/223007.html

See also: [condest], page 447, [norm], page 380, [cond], page 378.

http://dx.doi.org/10.1137/S0895479899356080
http://citeseer.ist.psu.edu/223007.html

Chapter 22: Sparse Matrices 447

[Function File]condest (A)
[Function File]condest (A, t)
[Function File][est, v] = condest (. . .)
[Function File][est, v] = condest (A, solve, solve_t, t)
[Function File][est, v] = condest (apply, apply_t, solve, solve_t, n, t)

Estimate the 1-norm condition number of a matrix A using t test vectors using a
randomized 1-norm estimator. If t exceeds 5, then only 5 test vectors are used.

If the matrix is not explicit, e.g., when estimating the condition number of A given
an LU factorization, condest uses the following functions:

apply A*x for a matrix x of size n by t.

apply t A’*x for a matrix x of size n by t.

solve A \ b for a matrix b of size n by t.

solve t A’ \ b for a matrix b of size n by t.

The implicit version requires an explicit dimension n.

condest uses a randomized algorithm to approximate the 1-norms.

condest returns the 1-norm condition estimate est and a vector v satisfying norm

(A*v, 1) == norm (A, 1) * norm (v, 1) / est . When est is large, v is an approxi-
mate null vector.

References:

• N.J. Higham and F. Tisseur, A Block Algorithm for Matrix 1-Norm Estimation,
with an Application to 1-Norm Pseudospectra. SIMAX vol 21, no 4, pp 1185-
1201. http://dx.doi.org/10.1137/S0895479899356080

• N.J. Higham and F. Tisseur, A Block Algorithm for Matrix 1-
Norm Estimation, with an Application to 1-Norm Pseudospectra.
http://citeseer.ist.psu.edu/223007.html

See also: [cond], page 378, [norm], page 380, [onenormest], page 446.

[Loadable Function]spparms ()
[Loadable Function]vals = spparms ()
[Loadable Function][keys, vals] = spparms ()
[Loadable Function]val = spparms (key)
[Loadable Function]spparms (vals)
[Loadable Function]spparms (’defaults’)
[Loadable Function]spparms (’tight’)
[Loadable Function]spparms (key, val)

Query or set the parameters used by the sparse solvers and factorization functions.
The first four calls above get information about the current settings, while the others
change the current settings. The parameters are stored as pairs of keys and values,
where the values are all floats and the keys are one of the following strings:

‘spumoni’ Printing level of debugging information of the solvers (default 0)

‘ths_rel’ Included for compatibility. Not used. (default 1)

‘ths_abs’ Included for compatibility. Not used. (default 1)

http://dx.doi.org/10.1137/S0895479899356080
http://citeseer.ist.psu.edu/223007.html

448 GNU Octave

‘exact_d’ Included for compatibility. Not used. (default 0)

‘supernd’ Included for compatibility. Not used. (default 3)

‘rreduce’ Included for compatibility. Not used. (default 3)

‘wh_frac’ Included for compatibility. Not used. (default 0.5)

‘autommd’ Flag whether the LU/QR and the ’\’ and ’/’ operators will automatically
use the sparsity preserving mmd functions (default 1)

‘autoamd’ Flag whether the LU and the ’\’ and ’/’ operators will automatically use
the sparsity preserving amd functions (default 1)

‘piv_tol’ The pivot tolerance of the umfpack solvers (default 0.1)

‘sym_tol’ The pivot tolerance of the umfpack symmetric solvers (default 0.001)

‘bandden’ The density of non-zero elements in a banded matrix before it is treated
by the lapack banded solvers (default 0.5)

‘umfpack’ Flag whether the umfpack or mmd solvers are used for the LU, ’\’ and
’/’ operations (default 1)

The value of individual keys can be set with spparms (key, val). The default values
can be restored with the special keyword ’defaults’. The special keyword ’tight’ can
be used to set the mmd solvers to attempt a sparser solution at the potential cost of
longer running time.

[Loadable Function]p = sprank (S)
Calculate the structural rank of the sparse matrix S. Note that only the structure of
the matrix is used in this calculation based on a Dulmage-Mendelsohn permutation
to block triangular form. As such the numerical rank of the matrix S is bounded by
sprank (S) >= rank (S). Ignoring floating point errors sprank (S) == rank (S).

See also: [dmperm], page 443.

[Loadable Function][count, h, parent, post, r] = symbfact (S)
[Loadable Function][...] = symbfact (S, typ)
[Loadable Function][...] = symbfact (S, typ, mode)

Perform a symbolic factorization analysis on the sparse matrix S. Where

S S is a complex or real sparse matrix.

typ Is the type of the factorization and can be one of

‘sym’ Factorize S. This is the default.

‘col’ Factorize S’ * S .

‘row’ Factorize S * S’.

‘lo’ Factorize S’

mode The default is to return the Cholesky factorization for r, and if mode is
’L’, the conjugate transpose of the Cholesky factorization is returned. The
conjugate transpose version is faster and uses less memory, but returns
the same values for count, h, parent and post outputs.

Chapter 22: Sparse Matrices 449

The output variables are

count The row counts of the Cholesky factorization as determined by typ.

h The height of the elimination tree.

parent The elimination tree itself.

post A sparse boolean matrix whose structure is that of the Cholesky factor-
ization as determined by typ.

For non square matrices, the user can also utilize the spaugment function to find a least
squares solution to a linear equation.

[Function File]s = spaugment (A, c)
Create the augmented matrix of A. This is given by

[c * eye(m, m), A;

A’, zeros(n, n)]

This is related to the least squares solution of A \ b , by

s * [r / c; x] = [b, zeros(n, columns(b))]

where r is the residual error

r = b - A * x

As the matrix s is symmetric indefinite it can be factorized with lu, and the minimum
norm solution can therefore be found without the need for a qr factorization. As the
residual error will be zeros (m, m) for under determined problems, and example can
be

m = 11; n = 10; mn = max (m, n);

A = spdiags ([ones(mn,1), 10*ones(mn,1), -ones(mn,1)],

[-1, 0, 1], m, n);

x0 = A \ ones (m,1);

s = spaugment (A);

[L, U, P, Q] = lu (s);

x1 = Q * (U \ (L \ (P * [ones(m,1); zeros(n,1)])));

x1 = x1(end - n + 1 : end);

To find the solution of an overdetermined problem needs an estimate of the residual
error r and so it is more complex to formulate a minimum norm solution using the
spaugment function.

In general the left division operator is more stable and faster than using the spaugment
function.

Finally, the function eigs can be used to calculate a limited number of eigenvalues and
eigenvectors based on a selection criteria and likewise for svds which calculates a limited
number of singular values and vectors.

[Loadable Function]d = eigs (A)
[Loadable Function]d = eigs (A, k)
[Loadable Function]d = eigs (A, k, sigma)
[Loadable Function]d = eigs (A, k, sigma, opts)

450 GNU Octave

[Loadable Function]d = eigs (A, B)
[Loadable Function]d = eigs (A, B, k)
[Loadable Function]d = eigs (A, B, k, sigma)
[Loadable Function]d = eigs (A, B, k, sigma, opts)
[Loadable Function]d = eigs (af, n)
[Loadable Function]d = eigs (af, n, B)
[Loadable Function]d = eigs (af, n, k)
[Loadable Function]d = eigs (af, n, B, k)
[Loadable Function]d = eigs (af, n, k, sigma)
[Loadable Function]d = eigs (af, n, B, k, sigma)
[Loadable Function]d = eigs (af, n, k, sigma, opts)
[Loadable Function]d = eigs (af, n, B, k, sigma, opts)
[Loadable Function][V, d] = eigs (A, . . .)
[Loadable Function][V, d] = eigs (af, n, . . .)
[Loadable Function][V, d, flag] = eigs (A, . . .)
[Loadable Function][V, d, flag] = eigs (af, n, . . .)

Calculate a limited number of eigenvalues and eigenvectors of A, based on a selection
criteria. The number of eigenvalues and eigenvectors to calculate is given by k and
defaults to 6.

By default, eigs solve the equation Aν = λν, where λ is a scalar representing one of
the eigenvalues, and ν is the corresponding eigenvector. If given the positive definite
matrix B then eigs solves the general eigenvalue equation Aν = λBν.

The argument sigma determines which eigenvalues are returned. sigma can be either
a scalar or a string. When sigma is a scalar, the k eigenvalues closest to sigma are
returned. If sigma is a string, it must have one of the following values.

’lm’ Largest Magnitude (default).

’sm’ Smallest Magnitude.

’la’ Largest Algebraic (valid only for real symmetric problems).

’sa’ Smallest Algebraic (valid only for real symmetric problems).

’be’ Both Ends, with one more from the high-end if k is odd (valid only for
real symmetric problems).

’lr’ Largest Real part (valid only for complex or unsymmetric problems).

’sr’ Smallest Real part (valid only for complex or unsymmetric problems).

’li’ Largest Imaginary part (valid only for complex or unsymmetric prob-
lems).

’si’ Smallest Imaginary part (valid only for complex or unsymmetric prob-
lems).

If opts is given, it is a structure defining possible options that eigs should use. The
fields of the opts structure are:

issym If af is given, then flags whether the function af defines a symmetric
problem. It is ignored if A is given. The default is false.

Chapter 22: Sparse Matrices 451

isreal If af is given, then flags whether the function af defines a real problem.
It is ignored if A is given. The default is true.

tol Defines the required convergence tolerance, calculated as tol * norm (A).
The default is eps.

maxit The maximum number of iterations. The default is 300.

p The number of Lanzcos basis vectors to use. More vectors will result in
faster convergence, but a greater use of memory. The optimal value of
p is problem dependent and should be in the range k to n. The default
value is 2 * k .

v0 The starting vector for the algorithm. An initial vector close to the final
vector will speed up convergence. The default is for arpack to randomly
generate a starting vector. If specified, v0 must be an n-by-1 vector where
n = rows (A)

disp The level of diagnostic printout (0|1|2). If disp is 0 then diagnostics are
disabled. The default value is 0.

cholB Flag if chol (B) is passed rather than B. The default is false.

permB The permutation vector of the Cholesky factorization of B if cholB is
true. That is chol (B(permB, permB)). The default is 1:n .

It is also possible to represent A by a function denoted af. af must be followed by a
scalar argument n defining the length of the vector argument accepted by af. af can
be a function handle, an inline function, or a string. When af is a string it holds the
name of the function to use.

af is a function of the form y = af (x) where the required return value of af is
determined by the value of sigma. The four possible forms are

A * x if sigma is not given or is a string other than ’sm’.

A \ x if sigma is 0 or ’sm’.

(A - sigma * I) \ x

for the standard eigenvalue problem, where I is the identity matrix of the
same size as A.

(A - sigma * B) \ x

for the general eigenvalue problem.

The return arguments of eigs depend on the number of return arguments requested.
With a single return argument, a vector d of length k is returned containing the k
eigenvalues that have been found. With two return arguments, V is a n-by-k matrix
whose columns are the k eigenvectors corresponding to the returned eigenvalues. The
eigenvalues themselves are returned in d in the form of a n-by-k matrix, where the
elements on the diagonal are the eigenvalues.

Given a third return argument flag, eigs returns the status of the convergence. If
flag is 0 then all eigenvalues have converged. Any other value indicates a failure to
converge.

452 GNU Octave

This function is based on the arpack package, written by R. Lehoucq,
K. Maschhoff, D. Sorensen, and C. Yang. For more information see
http://www.caam.rice.edu/software/ARPACK/.

See also: [eig], page 378, [svds], page 452.

[Function File]s = svds (A)
[Function File]s = svds (A, k)
[Function File]s = svds (A, k, sigma)
[Function File]s = svds (A, k, sigma, opts)
[Function File][u, s, v] = svds (. . .)
[Function File][u, s, v, flag] = svds (. . .)

Find a few singular values of the matrix A. The singular values are calculated using

[m, n] = size (A);

s = eigs ([sparse(m, m), A;

A’, sparse(n, n)])

The eigenvalues returned by eigs correspond to the singular values of A. The number
of singular values to calculate is given by k and defaults to 6.

The argument sigma specifies which singular values to find. When sigma is the string
’L’, the default, the largest singular values of A are found. Otherwise, sigma must be
a real scalar and the singular values closest to sigma are found. As a corollary, sigma
= 0 finds the smallest singular values. Note that for relatively small values of sigma,
there is a chance that the requested number of singular values will not be found. In
that case sigma should be increased.

opts is a structure defining options that svds will pass to eigs. The possible fields
of this structure are documented in eigs. By default, svds sets the following three
fields:

tol The required convergence tolerance for the singular values. The default
value is 1e-10. eigs is passed tol / sqrt(2).

maxit The maximum number of iterations. The default is 300.

disp The level of diagnostic printout (0|1|2). If disp is 0 then diagnostics are
disabled. The default value is 0.

If more than one output is requested then svds will return an approximation of the
singular value decomposition of A

A_approx = u*s*v’

where A approx is a matrix of size A but only rank k.

flag returns 0 if the algorithm has succesfully converged, and 1 otherwise. The test
for convergence is

norm (A*v - u*s, 1) <= tol * norm (A, 1)

svds is best for finding only a few singular values from a large sparse matrix. Other-
wise, svd (full(A)) will likely be more efficient.

See also: [svd], page 390, [eigs], page 449.

http://www.caam.rice.edu/software/ARPACK/

Chapter 22: Sparse Matrices 453

22.3 Iterative Techniques applied to sparse matrices

The left division \ and right division / operators, discussed in the previous section, use
direct solvers to resolve a linear equation of the form x = A \ b or x = b / A . Octave equally
includes a number of functions to solve sparse linear equations using iterative techniques.

[Function File]x = pcg (A, b, tol, maxit, m1, m2, x0, . . .)
[Function File][x, flag, relres, iter, resvec, eigest] = pcg (. . .)

Solve the linear system of equations A * x = b by means of the Preconditioned Con-
jugate Gradient iterative method. The input arguments are

• A can be either a square (preferably sparse) matrix or a function handle, inline
function or string containing the name of a function which computes A * x . In
principle A should be symmetric and positive definite; if pcg finds A to not be
positive definite, you will get a warning message and the flag output parameter
will be set.

• b is the right hand side vector.

• tol is the required relative tolerance for the residual error, b - A * x . The iter-
ation stops if norm (b - A * x) <= tol * norm (b - A * x0). If tol is empty or
is omitted, the function sets tol = 1e-6 by default.

• maxit is the maximum allowable number of iterations; if [] is supplied for maxit,
or pcg has less arguments, a default value equal to 20 is used.

• m = m1 * m2 is the (left) preconditioning matrix, so that the iteration is (the-
oretically) equivalent to solving by pcg P * x = m \ b , with P = m \ A . Note
that a proper choice of the preconditioner may dramatically improve the overall
performance of the method. Instead of matrices m1 and m2, the user may pass
two functions which return the results of applying the inverse of m1 and m2 to
a vector (usually this is the preferred way of using the preconditioner). If []
is supplied for m1, or m1 is omitted, no preconditioning is applied. If m2 is
omitted, m = m1 will be used as preconditioner.

• x0 is the initial guess. If x0 is empty or omitted, the function sets x0 to a zero
vector by default.

The arguments which follow x0 are treated as parameters, and passed in a proper
way to any of the functions (A or m) which are passed to pcg. See the examples
below for further details. The output arguments are

• x is the computed approximation to the solution of A * x = b .

• flag reports on the convergence. flag = 0 means the solution converged and the
tolerance criterion given by tol is satisfied. flag = 1 means that the maxit limit
for the iteration count was reached. flag = 3 reports that the (preconditioned)
matrix was found not positive definite.

• relres is the ratio of the final residual to its initial value, measured in the Eu-
clidean norm.

• iter is the actual number of iterations performed.

• resvec describes the convergence history of the method. resvec (i,1) is the
Euclidean norm of the residual, and resvec (i,2) is the preconditioned residual
norm, after the (i-1)-th iteration, i = 1, 2, ..., iter+1. The preconditioned

454 GNU Octave

residual norm is defined as norm (r) ^ 2 = r’ * (m \ r) where r = b - A * x ,
see also the description of m. If eigest is not required, only resvec (:,1) is
returned.

• eigest returns the estimate for the smallest eigest (1) and largest eigest (2)

eigenvalues of the preconditioned matrix P = m \ A . In particular, if no precon-
ditioning is used, the estimates for the extreme eigenvalues of A are returned.
eigest (1) is an overestimate and eigest (2) is an underestimate, so that
eigest (2) / eigest (1) is a lower bound for cond (P, 2), which nevertheless
in the limit should theoretically be equal to the actual value of the condition
number. The method which computes eigest works only for symmetric positive
definite A and m, and the user is responsible for verifying this assumption.

Let us consider a trivial problem with a diagonal matrix (we exploit the sparsity of
A)

n = 10;

A = diag (sparse (1:n));

b = rand (n, 1);

[l, u, p, q] = luinc (A, 1.e-3);

Example 1: Simplest use of pcg

x = pcg (A,b)

Example 2: pcg with a function which computes A * x

function y = apply_a (x)

y = [1:N]’ .* x;

endfunction

x = pcg ("apply_a", b)

Example 3: pcg with a preconditioner: l * u

x = pcg (A, b, 1.e-6, 500, l*u)

Example 4: pcg with a preconditioner: l * u. Faster than Example 3 since lower
and upper triangular matrices are easier to invert

x = pcg (A, b, 1.e-6, 500, l, u)

Example 5: Preconditioned iteration, with full diagnostics. The preconditioner
(quite strange, because even the original matrix A is trivial) is defined as a function

function y = apply_m (x)

k = floor (length (x) - 2);

y = x;

y(1:k) = x(1:k) ./ [1:k]’;

endfunction

[x, flag, relres, iter, resvec, eigest] = ...

pcg (A, b, [], [], "apply_m");

semilogy (1:iter+1, resvec);

Example 6: Finally, a preconditioner which depends on a parameter k.

Chapter 22: Sparse Matrices 455

function y = apply_M (x, varargin)

K = varargin{1};

y = x;

y(1:K) = x(1:K) ./ [1:K]’;

endfunction

[x, flag, relres, iter, resvec, eigest] = ...

pcg (A, b, [], [], "apply_m", [], [], 3)

References:

1. C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, 1995.
(the base PCG algorithm)

2. Y. Saad, Iterative Methods for Sparse Linear Systems, PWS 1996. (condition
number estimate from PCG) Revised version of this book is available online at
http://www-users.cs.umn.edu/~saad/books.html

See also: [sparse], page 430, [pcr], page 455.

[Function File]x = pcr (A, b, tol, maxit, m, x0, . . .)
[Function File][x, flag, relres, iter, resvec] = pcr (. . .)

Solve the linear system of equations A * x = b by means of the Preconditioned Con-
jugate Residuals iterative method. The input arguments are

• A can be either a square (preferably sparse) matrix or a function handle, inline
function or string containing the name of a function which computes A * x . In
principle A should be symmetric and non-singular; if pcr finds A to be numeri-
cally singular, you will get a warning message and the flag output parameter will
be set.

• b is the right hand side vector.

• tol is the required relative tolerance for the residual error, b - A * x . The iter-
ation stops if norm (b - A * x) <= tol * norm (b - A * x0). If tol is empty or
is omitted, the function sets tol = 1e-6 by default.

• maxit is the maximum allowable number of iterations; if [] is supplied for maxit,
or pcr has less arguments, a default value equal to 20 is used.

• m is the (left) preconditioning matrix, so that the iteration is (theoretically)
equivalent to solving by pcr P * x = m \ b , with P = m \ A . Note that a proper
choice of the preconditioner may dramatically improve the overall performance
of the method. Instead of matrix m, the user may pass a function which returns
the results of applying the inverse of m to a vector (usually this is the preferred
way of using the preconditioner). If [] is supplied for m, or m is omitted, no
preconditioning is applied.

• x0 is the initial guess. If x0 is empty or omitted, the function sets x0 to a zero
vector by default.

The arguments which follow x0 are treated as parameters, and passed in a proper
way to any of the functions (A or m) which are passed to pcr. See the examples
below for further details. The output arguments are

• x is the computed approximation to the solution of A * x = b .

http://www-users.cs.umn.edu/~saad/books.html

456 GNU Octave

• flag reports on the convergence. flag = 0 means the solution converged and the
tolerance criterion given by tol is satisfied. flag = 1 means that the maxit limit
for the iteration count was reached. flag = 3 reports t pcr breakdown, see [1]
for details.

• relres is the ratio of the final residual to its initial value, measured in the Eu-
clidean norm.

• iter is the actual number of iterations performed.

• resvec describes the convergence history of the method, so that resvec (i) con-
tains the Euclidean norms of the residual after the (i-1)-th iteration, i = 1,2,

..., iter+1.

Let us consider a trivial problem with a diagonal matrix (we exploit the sparsity of
A)

n = 10;

A = sparse (diag (1:n));

b = rand (N, 1);

Example 1: Simplest use of pcr

x = pcr (A, b)

Example 2: pcr with a function which computes A * x .

function y = apply_a (x)

y = [1:10]’ .* x;

endfunction

x = pcr ("apply_a", b)

Example 3: Preconditioned iteration, with full diagnostics. The preconditioner
(quite strange, because even the original matrix A is trivial) is defined as a function

function y = apply_m (x)

k = floor (length (x) - 2);

y = x;

y(1:k) = x(1:k) ./ [1:k]’;

endfunction

[x, flag, relres, iter, resvec] = ...

pcr (A, b, [], [], "apply_m")

semilogy ([1:iter+1], resvec);

Example 4: Finally, a preconditioner which depends on a parameter k.

function y = apply_m (x, varargin)

k = varargin{1};

y = x;

y(1:k) = x(1:k) ./ [1:k]’;

endfunction

[x, flag, relres, iter, resvec] = ...

pcr (A, b, [], [], "apply_m"’, [], 3)

References:

Chapter 22: Sparse Matrices 457

[1] W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, section
9.5.4; Springer, 1994

See also: [sparse], page 430, [pcg], page 453.

The speed with which an iterative solver converges to a solution can be accelerated with
the use of a pre-conditioning matrix M. In this case the linear equation M^-1 * x = M^-1 *

A \ b is solved instead. Typical pre-conditioning matrices are partial factorizations of the
original matrix.

[Loadable Function][L, U, P, Q] = luinc (A, ’0’)
[Loadable Function][L, U, P, Q] = luinc (A, droptol)
[Loadable Function][L, U, P, Q] = luinc (A, opts)

Produce the incomplete LU factorization of the sparse matrix A. Two types of incom-
plete factorization are possible, and the type is determined by the second argument
to luinc.

Called with a second argument of ’0’, the zero-level incomplete LU factorization
is produced. This creates a factorization of A where the position of the non-zero
arguments correspond to the same positions as in the matrix A.

Alternatively, the fill-in of the incomplete LU factorization can be controlled through
the variable droptol or the structure opts. The umfpack multifrontal factoriza-
tion code by Tim A. Davis is used for the incomplete LU factorization, (availability
http://www.cise.ufl.edu/research/sparse/umfpack/)

droptol determines the values below which the values in the LU factorization are
dropped and replaced by zero. It must be a positive scalar, and any values in the
factorization whose absolute value are less than this value are dropped, expect if
leaving them increase the sparsity of the matrix. Setting droptol to zero results in a
complete LU factorization which is the default.

opts is a structure containing one or more of the fields

droptol The drop tolerance as above. If opts only contains droptol then this is
equivalent to using the variable droptol.

milu A logical variable flagging whether to use the modified incomplete LU fac-
torization. In the case that milu is true, the dropped values are sub-
tracted from the diagonal of the matrix U of the factorization. The
default is false.

udiag A logical variable that flags whether zero elements on the diagonal of U
should be replaced with droptol to attempt to avoid singular factors. The
default is false.

thresh Defines the pivot threshold in the interval [0,1]. Values outside that range
are ignored.

All other fields in opts are ignored. The outputs from luinc are the same as for lu.

Given the string argument ’vector’, luinc returns the values of p q as vector values.

See also: [sparse], page 430, [lu], page 385.

http://www.cise.ufl.edu/research/sparse/umfpack/

458 GNU Octave

22.4 Real Life Example of the use of Sparse Matrices

A common application for sparse matrices is in the solution of Finite Element Models.
Finite element models allow numerical solution of partial differential equations that do not
have closed form solutions, typically because of the complex shape of the domain.

In order to motivate this application, we consider the boundary value Laplace equation.
This system can model scalar potential fields, such as heat or electrical potential. Given
a medium Ω with boundary ∂Ω. At all points on the ∂Ω the boundary conditions are
known, and we wish to calculate the potential in Ω. Boundary conditions may specify the
potential (Dirichlet boundary condition), its normal derivative across the boundary (Neu-
mann boundary condition), or a weighted sum of the potential and its derivative (Cauchy
boundary condition).

In a thermal model, we want to calculate the temperature in Ω and know the boundary
temperature (Dirichlet condition) or heat flux (from which we can calculate the Neumann
condition by dividing by the thermal conductivity at the boundary). Similarly, in an electri-
cal model, we want to calculate the voltage in Ω and know the boundary voltage (Dirichlet)
or current (Neumann condition after diving by the electrical conductivity). In an electrical
model, it is common for much of the boundary to be electrically isolated; this is a Neumann
boundary condition with the current equal to zero.

The simplest finite element models will divide Ω into simplexes (triangles in 2D, pyramids
in 3D). We take as a 3-D example a cylindrical liquid filled tank with a small non-conductive
ball from the EIDORS project3. This is model is designed to reflect an application of
electrical impedance tomography, where current patterns are applied to such a tank in order
to image the internal conductivity distribution. In order to describe the FEM geometry, we
have a matrix of vertices nodes and simplices elems.

The following example creates a simple rectangular 2-D electrically conductive medium
with 10 V and 20 V imposed on opposite sides (Dirichlet boundary conditions). All other
edges are electrically isolated.

3 EIDORS - Electrical Impedance Tomography and Diffuse optical Tomography Reconstruction Software
http://eidors3d.sourceforge.net

http://eidors3d.sourceforge.net

Chapter 22: Sparse Matrices 459

node_y= [1;1.2;1.5;1.8;2]*ones(1,11);

node_x= ones(5,1)*[1,1.05,1.1,1.2, ...

1.3,1.5,1.7,1.8,1.9,1.95,2];

nodes= [node_x(:), node_y(:)];

[h,w]= size(node_x);

elems= [];

for idx= 1:w-1

widx= (idx-1)*h;

elems= [elems; ...

widx+[(1:h-1);(2:h);h+(1:h-1)]’; ...

widx+[(2:h);h+(2:h);h+(1:h-1)]’];

endfor

E= size(elems,1); # No. of simplices

N= size(nodes,1); # No. of vertices

D= size(elems,2); # dimensions+1

This creates a N-by-2 matrix nodes and a E-by-3 matrix elems with values, which define
finite element triangles:

nodes(1:7,:)’

1.00 1.00 1.00 1.00 1.00 1.05 1.05 ...

1.00 1.20 1.50 1.80 2.00 1.00 1.20 ...

elems(1:7,:)’

1 2 3 4 2 3 4 ...

2 3 4 5 7 8 9 ...

6 7 8 9 6 7 8 ...

Using a first order FEM, we approximate the electrical conductivity distribution in Ω
as constant on each simplex (represented by the vector conductivity). Based on the
finite element geometry, we first calculate a system (or stiffness) matrix for each simplex
(represented as 3-by-3 elements on the diagonal of the element-wise system matrix SE.
Based on SE and a N-by-DE connectivity matrix C, representing the connections between
simplices and vertices, the global connectivity matrix S is calculated.

Element conductivity

conductivity= [1*ones(1,16), ...

2*ones(1,48), 1*ones(1,16)];

Connectivity matrix

C = sparse ((1:D*E), reshape (elems’, ...

D*E, 1), 1, D*E, N);

Calculate system matrix

Siidx = floor ([0:D*E-1]’/D) * D * ...

ones(1,D) + ones(D*E,1)*(1:D) ;

Sjidx = [1:D*E]’*ones(1,D);

Sdata = zeros(D*E,D);

460 GNU Octave

dfact = factorial(D-1);

for j=1:E

a = inv([ones(D,1), ...

nodes(elems(j,:), :)]);

const = conductivity(j) * 2 / ...

dfact / abs(det(a));

Sdata(D*(j-1)+(1:D),:) = const * ...

a(2:D,:)’ * a(2:D,:);

endfor

Element-wise system matrix

SE= sparse(Siidx,Sjidx,Sdata);

Global system matrix

S= C’* SE *C;

The system matrix acts like the conductivity S in Ohm’s law SV = I. Based on the
Dirichlet and Neumann boundary conditions, we are able to solve for the voltages at each
vertex V.

Dirichlet boundary conditions

D_nodes=[1:5, 51:55];

D_value=[10*ones(1,5), 20*ones(1,5)];

V= zeros(N,1);

V(D_nodes) = D_value;

idx = 1:N; # vertices without Dirichlet

boundary condns

idx(D_nodes) = [];

Neumann boundary conditions. Note that

N_value must be normalized by the

boundary length and element conductivity

N_nodes=[];

N_value=[];

Q = zeros(N,1);

Q(N_nodes) = N_value;

V(idx) = S(idx,idx) \ (Q(idx) - ...

S(idx,D_nodes) * V(D_nodes));

Finally, in order to display the solution, we show each solved voltage value in the z-axis
for each simplex vertex. See Figure 22.6.

elemx = elems(:,[1,2,3,1])’;

xelems = reshape (nodes(elemx, 1), 4, E);

yelems = reshape (nodes(elemx, 2), 4, E);

velems = reshape (V(elemx), 4, E);

plot3 (xelems,yelems,velems,’k’);

print (’grid.eps’);

Chapter 22: Sparse Matrices 461

1 1.2 1.4 1.6 1.8 2 1
1.2
1.4
1.6
1.8
2

10

12

14

16

18

20

Figure 22.6: Example finite element model the showing triangular elements. The height
of each vertex corresponds to the solution value.

Chapter 23: Numerical Integration 463

23 Numerical Integration

Octave comes with several built-in functions for computing the integral of a function numer-
ically (termed quadrature). These functions all solve 1-dimensional integration problems.

23.1 Functions of One Variable

Octave supports five different algorithms for computing the integral

∫ b

a

f(x)dx

of a function f over the interval from a to b. These are

quad Numerical integration based on Gaussian quadrature.

quadv Numerical integration using an adaptive vectorized Simpson’s rule.

quadl Numerical integration using an adaptive Lobatto rule.

quadgk Numerical integration using an adaptive Gauss-Konrod rule.

quadcc Numerical integration using adaptive Clenshaw-Curtis rules.

trapz, cumtrapz

Numerical integration of data using the trapezoidal method.

The best quadrature algorithm to use depends on the integrand. If you have empirical data,
rather than a function, the choice is trapz or cumtrapz. If you are uncertain about the
characteristics of the integrand, quadcc will be the most robust as it can handle discon-
tinuities, singularities, oscillatory functions, and infinite intervals. When the integrand is
smooth quadgk may be the fastest of the algorithms.

Function Characteristics
quad Low accuracy with nonsmooth integrands
quadv Medium accuracy with smooth integrands
quadl Medium accuracy with smooth integrands. Slower than quadgk.
quadgk Medium accuracy (1e−6–1e−9) with smooth integrands.

Handles oscillatory functions and infinite bounds
quadcc Low to High accuracy with nonsmooth/smooth integrands

Handles oscillatory functions, singularities, and infinite bounds

Here is an example of using quad to integrate the function

f(x) = x sin(1/x)
√
|1− x|

from x = 0 to x = 3.

This is a fairly difficult integration (plot the function over the range of integration to see
why).

The first step is to define the function:

464 GNU Octave

function y = f (x)

y = x .* sin (1./x) .* sqrt (abs (1 - x));

endfunction

Note the use of the ‘dot’ forms of the operators. This is not necessary for the quad

integrator, but is required by the other integrators. In any case, it makes it much easier to
generate a set of points for plotting because it is possible to call the function with a vector
argument to produce a vector result.

The second step is to call quad with the limits of integration:

[q, ier, nfun, err] = quad ("f", 0, 3)

⇒ 1.9819

⇒ 1

⇒ 5061

⇒ 1.1522e-07

Although quad returns a nonzero value for ier, the result is reasonably accurate (to see
why, examine what happens to the result if you move the lower bound to 0.1, then 0.01,
then 0.001, etc.).

The function "f" can be the string name of a function, a function handle, or an inline
function. These options make it quite easy to do integration without having to fully define
a function in an m-file. For example:

Verify integral (x^3) = x^4/4

f = inline ("x.^3");

quadgk (f, 0, 1)

⇒ 0.25000

Verify gamma function = (n-1)! for n = 4

f = @(x) x.^3 .* exp (-x);

quadcc (f, 0, Inf)

⇒ 6.0000

[Loadable Function]q = quad (f, a, b)
[Loadable Function]q = quad (f, a, b, tol)
[Loadable Function]q = quad (f, a, b, tol, sing)
[Loadable Function][q, ier, nfun, err] = quad (. . .)

Numerically evaluate the integral of f from a to b using Fortran routines from
quadpack. f is a function handle, inline function, or a string containing the name
of the function to evaluate. The function must have the form y = f (x) where y and
x are scalars.

a and b are the lower and upper limits of integration. Either or both may be infinite.

The optional argument tol is a vector that specifies the desired accuracy of the result.
The first element of the vector is the desired absolute tolerance, and the second
element is the desired relative tolerance. To choose a relative test only, set the absolute
tolerance to zero. To choose an absolute test only, set the relative tolerance to zero.
Both tolerances default to sqrt(eps) or approximately 1.5e−8.

The optional argument sing is a vector of values at which the integrand is known to
be singular.

Chapter 23: Numerical Integration 465

The result of the integration is returned in q. ier contains an integer error code (0
indicates a successful integration). nfun indicates the number of function evaluations
that were made, and err contains an estimate of the error in the solution.

The function quad_options can set other optional parameters for quad.

Note: because quad is written in Fortran it cannot be called recursively. This pre-
vents its use in integrating over more than one variable by routines dblquad and
triplequad.

See also: [quad options], page 465, [quadv], page 465, [quadl], page 466, [quadgk],
page 466, [quadcc], page 468, [trapz], page 469, [dblquad], page 471, [triplequad],
page 472.

[Loadable Function]quad_options ()
[Loadable Function]val = quad_options (opt)
[Loadable Function]quad_options (opt, val)

Query or set options for the function quad. When called with no arguments, the names
of all available options and their current values are displayed. Given one argument,
return the value of the corresponding option. When called with two arguments,
quad_options set the option opt to value val.

Options include

"absolute tolerance"

Absolute tolerance; may be zero for pure relative error test.

"relative tolerance"

Non-negative relative tolerance. If the absolute tolerance is zero, the rel-
ative tolerance must be greater than or equal to max (50*eps, 0.5e-28).

"single precision absolute tolerance"

Absolute tolerance for single precision; may be zero for pure relative error
test.

"single precision relative tolerance"

Non-negative relative tolerance for single precision. If the absolute tol-
erance is zero, the relative tolerance must be greater than or equal to
max (50*eps, 0.5e-28).

[Function File]q = quadv (f, a, b)
[Function File]q = quadv (f, a, b, tol)
[Function File]q = quadv (f, a, b, tol, trace)
[Function File]q = quadv (f, a, b, tol, trace, p1, p2, . . .)
[Function File][q, nfun] = quadv (. . .)

Numerically evaluate the integral of f from a to b using an adaptive Simpson’s rule.
f is a function handle, inline function, or string containing the name of the function
to evaluate. quadv is a vectorized version of quad and the function defined by f must
accept a scalar or vector as input and return a scalar, vector, or array as output.

a and b are the lower and upper limits of integration. Both limits must be finite.

The optional argument tol defines the tolerance used to stop the adaptation procedure.
The default value is 1e−6.

466 GNU Octave

The algorithm used by quadv involves recursively subdividing the integration interval
and applying Simpson’s rule on each subinterval. If trace is true then after computing
each of these partial integrals display: (1) the total number of function evaluations, (2)
the left end of the subinterval, (3) the length of the subinterval, (4) the approximation
of the integral over the subinterval.

Additional arguments p1, etc., are passed directly to the function f. To use default
values for tol and trace, one may pass empty matrices ([]).

The result of the integration is returned in q. nfun indicates the number of function
evaluations that were made.

Note: quadv is written in Octave’s scripting language and can be used recursively in
dblquad and triplequad, unlike the similar quad function.

See also: [quad], page 464, [quadl], page 466, [quadgk], page 466, [quadcc], page 468,
[trapz], page 469, [dblquad], page 471, [triplequad], page 472.

[Function File]q = quadl (f, a, b)
[Function File]q = quadl (f, a, b, tol)
[Function File]q = quadl (f, a, b, tol, trace)
[Function File]q = quadl (f, a, b, tol, trace, p1, p2, . . .)

Numerically evaluate the integral of f from a to b using an adaptive Lobatto rule. f
is a function handle, inline function, or string containing the name of the function to
evaluate. The function f must be vectorized and return a vector of output values if
given a vector of input values.

a and b are the lower and upper limits of integration. Both limits must be finite.

The optional argument tol defines the relative tolerance with which to perform the
integration. The default value is eps.

The algorithm used by quadl involves recursively subdividing the integration interval.
If trace is defined then for each subinterval display: (1) the left end of the subinter-
val, (2) the length of the subinterval, (3) the approximation of the integral over the
subinterval.

Additional arguments p1, etc., are passed directly to the function f. To use default
values for tol and trace, one may pass empty matrices ([]).

Reference: W. Gander and W. Gautschi, Adaptive Quadrature - Revisited, BIT Vol.
40, No. 1, March 2000, pp. 84–101. http://www.inf.ethz.ch/personal/gander/

See also: [quad], page 464, [quadv], page 465, [quadgk], page 466, [quadcc], page 468,
[trapz], page 469, [dblquad], page 471, [triplequad], page 472.

[Function File]q = quadgk (f, a, b)
[Function File]q = quadgk (f, a, b, abstol)
[Function File]q = quadgk (f, a, b, abstol, trace)
[Function File]q = quadgk (f, a, b, prop, val, . . .)
[Function File][q, err] = quadgk (. . .)

Numerically evaluate the integral of f from a to b using adaptive Gauss-Konrod
quadrature. f is a function handle, inline function, or string containing the name of
the function to evaluate. The formulation is based on a proposal by L.F. Shampine,
"Vectorized adaptive quadrature in matlab", Journal of Computational and Applied

http://www.inf.ethz.ch/personal/gander/

Chapter 23: Numerical Integration 467

Mathematics, pp131-140, Vol 211, Issue 2, Feb 2008 where all function evaluations at
an iteration are calculated with a single call to f. Therefore, the function f must be
vectorized and must accept a vector of input values x and return an output vector
representing the function evaluations at the given values of x.

a and b are the lower and upper limits of integration. Either or both limits may be
infinite or contain weak end singularities. Variable transformation will be used to
treat any infinite intervals and weaken the singularities. For example:

quadgk (@(x) 1 ./ (sqrt (x) .* (x + 1)), 0, Inf)

Note that the formulation of the integrand uses the element-by-element operator ./
and all user functions to quadgk should do the same.

The optional argument tol defines the absolute tolerance used to stop the integration
procedure. The default value is 1e−10.

The algorithm used by quadgk involves subdividing the integration interval and eval-
uating each subinterval. If trace is true then after computing each of these partial
integrals display: (1) the number of subintervals at this step, (2) the current estimate
of the error err, (3) the current estimate for the integral q.

Alternatively, properties of quadgk can be passed to the function as pairs "prop",

val . Valid properties are

AbsTol Define the absolute error tolerance for the quadrature. The default ab-
solute tolerance is 1e-10.

RelTol Define the relative error tolerance for the quadrature. The default relative
tolerance is 1e-5.

MaxIntervalCount

quadgk initially subdivides the interval on which to perform the quadra-
ture into 10 intervals. Subintervals that have an unacceptable error are
subdivided and re-evaluated. If the number of subintervals exceeds 650
subintervals at any point then a poor convergence is signaled and the
current estimate of the integral is returned. The property ’MaxInterval-
Count’ can be used to alter the number of subintervals that can exist
before exiting.

WayPoints

Discontinuities in the first derivative of the function to integrate can be
flagged with the "WayPoints" property. This forces the ends of a subin-
terval to fall on the breakpoints of the function and can result in signif-
icantly improved estimation of the error in the integral, faster computa-
tion, or both. For example,

quadgk (@(x) abs (1 - x.^2), 0, 2, "Waypoints", 1)

signals the breakpoint in the integrand at x = 1.

Trace If logically true quadgk prints information on the convergence of the
quadrature at each iteration.

If any of a, b, or waypoints is complex then the quadrature is treated as a contour
integral along a piecewise continuous path defined by the above. In this case the
integral is assumed to have no edge singularities. For example,

468 GNU Octave

quadgk (@(z) log (z), 1+1i, 1+1i, "WayPoints",

[1-1i, -1,-1i, -1+1i])

integrates log (z) along the square defined by [1+1i, 1-1i, -1-1i, -1+1i]

The result of the integration is returned in q. err is an approximate bound on the
error in the integral abs (q - I), where I is the exact value of the integral.

See also: [quad], page 464, [quadv], page 465, [quadl], page 466, [quadcc], page 468,
[trapz], page 469, [dblquad], page 471, [triplequad], page 472.

[Function File]q = quadcc (f, a, b)
[Function File]q = quadcc (f, a, b, tol)
[Function File]q = quadcc (f, a, b, tol, sing)
[Function File][q, err, nr_points] = quadcc (. . .)

Numerically evaluate the integral of f from a to b using the doubly-adaptive Clenshaw-
Curtis quadrature described by P. Gonnet in Increasing the Reliability of Adaptive
Quadrature Using Explicit Interpolants. f is a function handle, inline function, or
string containing the name of the function to evaluate. The function f must be
vectorized and must return a vector of output values if given a vector of input values.
For example,

f = @(x) x .* sin (1./x) .* sqrt (abs (1 - x));

which uses the element-by-element ‘dot’ form for all operators.

a and b are the lower and upper limits of integration. Either or both limits may be
infinite. quadcc handles an inifinite limit by substituting the variable of integration
with x=tan(pi/2*u).

The optional argument tol defines the relative tolerance used to stop the integration
procedure. The default value is 1e−6.

The optional argument sing contains a list of points where the integrand has known
singularities, or discontinuities in any of its derivatives, inside the integration interval.
For the example above, which has a discontinuity at x=1, the call to quadcc would
be as follows

int = quadcc (f, a, b, 1.0e-6, [1]);

The result of the integration is returned in q. err is an estimate of the absolute
integration error and nr points is the number of points at which the integrand was
evaluated. If the adaptive integration did not converge, the value of err will be larger
than the requested tolerance. Therefore, it is recommended to verify this value for
difficult integrands.

quadcc is capable of dealing with non-numeric values of the integrand such as NaN or
Inf. If the integral diverges, and quadcc detects this, then a warning is issued and
Inf or -Inf is returned.

Note: quadcc is a general purpose quadrature algorithm and, as such, may be less
efficient for a smooth or otherwise well-behaved integrand than other methods such
as quadgk.

The algorithm uses Clenshaw-Curtis quadrature rules of increasing degree in each
interval and bisects the interval if either the function does not appear to be smooth
or a rule of maximum degree has been reached. The error estimate is computed from

Chapter 23: Numerical Integration 469

the L2-norm of the difference between two successive interpolations of the integrand
over the nodes of the respective quadrature rules.

Reference: P. Gonnet, Increasing the Reliability of Adaptive Quadrature Using Ex-
plicit Interpolants, ACM Transactions on Mathematical Software, Vol. 37, Issue 3,
Article No. 3, 2010.

See also: [quad], page 464, [quadv], page 465, [quadl], page 466, [quadgk], page 466,
[trapz], page 469, [dblquad], page 471, [triplequad], page 472.

Sometimes one does not have the function, but only the raw (x, y) points from which to
perform an integration. This can occur when collecting data in an experiment. The trapz
function can integrate these values as shown in the following example where "data" has
been collected on the cosine function over the range [0, pi/2).

x = 0:0.1:pi/2; # Uniformly spaced points

y = cos (x);

trapz (x, y)

⇒ 0.99666

The answer is reasonably close to the exact value of 1. Ordinary quadrature is sensitive
to the characteristics of the integrand. Empirical integration depends not just on the
integrand, but also on the particular points chosen to represent the function. Repeating the
example above with the sine function over the range [0, pi/2) produces far inferior results.

x = 0:0.1:pi/2; # Uniformly spaced points

y = sin (x);

trapz (x, y)

⇒ 0.92849

However, a slightly different choice of data points can change the result significantly.
The same integration, with the same number of points, but spaced differently produces a
more accurate answer.

x = linspace (0, pi/2, 16); # Uniformly spaced, but including endpoint

y = sin (x);

trapz (x, y)

⇒ 0.99909

In general there may be no way of knowing the best distribution of points ahead of time.
Or the points may come from an experiment where there is no freedom to select the best
distribution. In any case, one must remain aware of this issue when using trapz.

[Function File]q = trapz (y)
[Function File]q = trapz (x, y)
[Function File]q = trapz (. . . , dim)

Numerically evaluate the integral of points y using the trapezoidal method.
trapz (y) computes the integral of y along the first non-singleton dimension. When
the argument x is omitted an equally spaced x vector with unit spacing (1) is
assumed. trapz (x, y) evaluates the integral with respect to the spacing in x and
the values in y. This is useful if the points in y have been sampled unevenly. If the
optional dim argument is given, operate along this dimension.

If x is not specified then unit spacing will be used. To scale the integral to the correct
value you must multiply by the actual spacing value (deltaX). As an example, the

470 GNU Octave

integral of x3 over the range [0, 1] is x4/4 or 0.25. The following code uses trapz to
calculate the integral in three different ways.

x = 0:0.1:1;

y = x.^3;

q = trapz (y)

⇒ q = 2.525 # No scaling

q * 0.1

⇒ q = 0.2525 # Approximation to integral by scaling

trapz (x, y)

⇒ q = 0.2525 # Same result by specifying x

See also: [cumtrapz], page 470.

[Function File]q = cumtrapz (y)
[Function File]q = cumtrapz (x, y)
[Function File]q = cumtrapz (. . . , dim)

Cumulative numerical integration of points y using the trapezoidal method.
cumtrapz (y) computes the cumulative integral of y along the first non-singleton
dimension. Where trapz reports only the overall integral sum, cumtrapz reports
the current partial sum value at each point of y. When the argument x is omitted
an equally spaced x vector with unit spacing (1) is assumed. cumtrapz (x, y)

evaluates the integral with respect to the spacing in x and the values in y. This is
useful if the points in y have been sampled unevenly. If the optional dim argument
is given, operate along this dimension.

If x is not specified then unit spacing will be used. To scale the integral to the correct
value you must multiply by the actual spacing value (deltaX).

See also: [trapz], page 469, [cumsum], page 360.

23.2 Orthogonal Collocation

[Loadable Function][r, amat, bmat, q] = colloc (n, "left", "right")
Compute derivative and integral weight matrices for orthogonal collocation using
the subroutines given in J. Villadsen and M. L. Michelsen, Solution of Differential
Equation Models by Polynomial Approximation.

Here is an example of using colloc to generate weight matrices for solving the second
order differential equation u′−αu′′ = 0 with the boundary conditions u(0) = 0 and u(1) = 1.

First, we can generate the weight matrices for n points (including the endpoints of the
interval), and incorporate the boundary conditions in the right hand side (for a specific
value of α).

n = 7;

alpha = 0.1;

[r, a, b] = colloc (n-2, "left", "right");

at = a(2:n-1,2:n-1);

bt = b(2:n-1,2:n-1);

rhs = alpha * b(2:n-1,n) - a(2:n-1,n);

Then the solution at the roots r is

Chapter 23: Numerical Integration 471

u = [0; (at - alpha * bt) \ rhs; 1]

⇒ [0.00; 0.004; 0.01 0.00; 0.12; 0.62; 1.00]

23.3 Functions of Multiple Variables

Octave does not have built-in functions for computing the integral of functions of multiple
variables directly. It is possible, however, to compute the integral of a function of multiple
variables using the existing functions for one-dimensional integrals.

To illustrate how the integration can be performed, we will integrate the function

f(x, y) = sin(πxy)
√
xy

for x and y between 0 and 1.

The first approach creates a function that integrates f with respect to x, and then
integrates that function with respect to y. Because quad is written in Fortran it cannot
be called recursively. This means that quad cannot integrate a function that calls quad,
and hence cannot be used to perform the double integration. Any of the other integrators,
however, can be used which is what the following code demonstrates.

function q = g(y)

q = ones (size (y));

for i = 1:length (y)

f = @(x) sin (pi*x.*y(i)) .* sqrt (x.*y(i));

q(i) = quadgk (f, 0, 1);

endfor

endfunction

I = quadgk ("g", 0, 1)

⇒ 0.30022

The above process can be simplified with the dblquad and triplequad functions for
integrals over two and three variables. For example:

I = dblquad (@(x, y) sin (pi*x.*y) .* sqrt (x.*y), 0, 1, 0, 1)

⇒ 0.30022

[Function File]dblquad (f, xa, xb, ya, yb)
[Function File]dblquad (f, xa, xb, ya, yb, tol)
[Function File]dblquad (f, xa, xb, ya, yb, tol, quadf)
[Function File]dblquad (f, xa, xb, ya, yb, tol, quadf, . . .)

Numerically evaluate the double integral of f. f is a function handle, inline function,
or string containing the name of the function to evaluate. The function f must have
the form z = f(x, y) where x is a vector and y is a scalar. It should return a vector
of the same length and orientation as x.

xa, ya and xb, yb are the lower and upper limits of integration for x and y respectively.
The underlying integrator determines whether infinite bounds are accepted.

The optional argument tol defines the absolute tolerance used to integrate each sub-
integral. The default value is 1e−6.

The optional argument quadf specifies which underlying integrator function to use.
Any choice but quad is available and the default is quadcc.

472 GNU Octave

Additional arguments, are passed directly to f. To use the default value for tol or
quadf one may pass ’:’ or an empty matrix ([]).

See also: [triplequad], page 472, [quad], page 464, [quadv], page 465, [quadl], page 466,
[quadgk], page 466, [quadcc], page 468, [trapz], page 469.

[Function File]triplequad (f, xa, xb, ya, yb, za, zb)
[Function File]triplequad (f, xa, xb, ya, yb, za, zb, tol)
[Function File]triplequad (f, xa, xb, ya, yb, za, zb, tol, quadf)
[Function File]triplequad (f, xa, xb, ya, yb, za, zb, tol, quadf, . . .)

Numerically evaluate the triple integral of f. f is a function handle, inline function,
or string containing the name of the function to evaluate. The function f must have
the form w = f(x, y, z) where either x or y is a vector and the remaining inputs are
scalars. It should return a vector of the same length and orientation as x or y.

xa, ya, za and xb, yb, zb are the lower and upper limits of integration for x, y,
and z respectively. The underlying integrator determines whether infinite bounds are
accepted.

The optional argument tol defines the absolute tolerance used to integrate each sub-
integral. The default value is 1e−6.

The optional argument quadf specifies which underlying integrator function to use.
Any choice but quad is available and the default is quadcc.

Additional arguments, are passed directly to f. To use the default value for tol or
quadf one may pass ’:’ or an empty matrix ([]).

See also: [dblquad], page 471, [quad], page 464, [quadv], page 465, [quadl], page 466,
[quadgk], page 466, [quadcc], page 468, [trapz], page 469.

The above mentioned approach works, but is fairly slow, and that problem increases
exponentially with the dimensionality of the integral. Another possible solution is to use
Orthogonal Collocation as described in the previous section (see Section 23.2 [Orthogonal
Collocation], page 470). The integral of a function f(x, y) for x and y between 0 and 1 can
be approximated using n points by∫ 1

0

∫ 1

0

f(x, y)dxdy ≈
n∑
i=1

n∑
j=1

qiqjf(ri, rj),

where q and r is as returned by colloc(n). The generalization to more than two variables
is straight forward. The following code computes the studied integral using n = 8 points.

f = @(x,y) sin (pi*x*y’) .* sqrt (x*y’);

n = 8;

[t, ~, ~, q] = colloc (n);

I = q’*f(t,t)*q;

⇒ 0.30022

It should be noted that the number of points determines the quality of the approximation.
If the integration needs to be performed between a and b, instead of 0 and 1, then a change
of variables is needed.

Chapter 24: Differential Equations 473

24 Differential Equations

Octave has built-in functions for solving ordinary differential equations, and differential-
algebraic equations. All solvers are based on reliable ODE routines written in Fortran.

24.1 Ordinary Differential Equations

The function lsode can be used to solve ODEs of the form

dx

dt
= f(x, t)

using Hindmarsh’s ODE solver lsode.

[Loadable Function][x, istate, msg] = lsode (fcn, x_0, t)
[Loadable Function][x, istate, msg] = lsode (fcn, x_0, t, t_crit)

Solve the set of differential equations

dx

dt
= f(x, t)

with

x(t0) = x0

The solution is returned in the matrix x, with each row corresponding to an element
of the vector t. The first element of t should be t0 and should correspond to the initial
state of the system x 0, so that the first row of the output is x 0.

The first argument, fcn, is a string, inline, or function handle that names the function
f to call to compute the vector of right hand sides for the set of equations. The
function must have the form

xdot = f (x, t)

in which xdot and x are vectors and t is a scalar.

If fcn is a two-element string array or a two-element cell array of strings, inline
functions, or function handles, the first element names the function f described above,
and the second element names a function to compute the Jacobian of f . The Jacobian
function must have the form

jac = j (x, t)

in which jac is the matrix of partial derivatives

J =
∂fi
∂xj

=

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xN

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xN

...
...

. . .
...

∂f3
∂x1

∂f3
∂x2

· · · ∂f3
∂xN

The second and third arguments specify the initial state of the system, x0, and the
initial value of the independent variable t0.

474 GNU Octave

The fourth argument is optional, and may be used to specify a set of times that
the ODE solver should not integrate past. It is useful for avoiding difficulties with
singularities and points where there is a discontinuity in the derivative.

After a successful computation, the value of istate will be 2 (consistent with the
Fortran version of lsode).

If the computation is not successful, istate will be something other than 2 and msg
will contain additional information.

You can use the function lsode_options to set optional parameters for lsode.

See also: [daspk], page 475, [dassl], page 479, [dasrt], page 481.

[Loadable Function]lsode_options ()
[Loadable Function]val = lsode_options (opt)
[Loadable Function]lsode_options (opt, val)

Query or set options for the function lsode. When called with no arguments, the
names of all available options and their current values are displayed. Given one argu-
ment, return the value of the corresponding option. When called with two arguments,
lsode_options set the option opt to value val.

Options include

"absolute tolerance"

Absolute tolerance. May be either vector or scalar. If a vector, it must
match the dimension of the state vector.

"relative tolerance"

Relative tolerance parameter. Unlike the absolute tolerance, this param-
eter may only be a scalar.

The local error test applied at each integration step is

abs (local error in x(i)) <= ...

rtol * abs (y(i)) + atol(i)

"integration method"

A string specifying the method of integration to use to solve the ODE
system. Valid values are

"adams"
"non-stiff"

No Jacobian used (even if it is available).

"bdf"
"stiff" Use stiff backward differentiation formula (BDF) method. If

a function to compute the Jacobian is not supplied, lsode
will compute a finite difference approximation of the Jacobian
matrix.

"initial step size"

The step size to be attempted on the first step (default is determined
automatically).

Chapter 24: Differential Equations 475

"maximum order"

Restrict the maximum order of the solution method. If using the Adams
method, this option must be between 1 and 12. Otherwise, it must be
between 1 and 5, inclusive.

"maximum step size"

Setting the maximum stepsize will avoid passing over very large regions
(default is not specified).

"minimum step size"

The minimum absolute step size allowed (default is 0).

"step limit"

Maximum number of steps allowed (default is 100000).

Here is an example of solving a set of three differential equations using lsode. Given
the function

function xdot = f (x, t)

xdot = zeros (3,1);

xdot(1) = 77.27 * (x(2) - x(1)*x(2) + x(1) \

- 8.375e-06*x(1)^2);

xdot(2) = (x(3) - x(1)*x(2) - x(2)) / 77.27;

xdot(3) = 0.161*(x(1) - x(3));

endfunction

and the initial condition x0 = [4; 1.1; 4], the set of equations can be integrated using
the command

t = linspace (0, 500, 1000);

y = lsode ("f", x0, t);

If you try this, you will see that the value of the result changes dramatically between t
= 0 and 5, and again around t = 305. A more efficient set of output points might be

t = [0, logspace (-1, log10(303), 150), \

logspace (log10(304), log10(500), 150)];

See Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE Solvers, in
Scientific Computing, R. S. Stepleman, editor, (1983) for more information about the inner
workings of lsode.

24.2 Differential-Algebraic Equations

The function daspk can be used to solve DAEs of the form

0 = f(ẋ, x, t), x(t = 0) = x0, ẋ(t = 0) = ẋ0

where ẋ = dx
dt

is the derivative of x. The equation is solved using Petzold’s DAE solver
daspk.

476 GNU Octave

[Loadable Function][x, xdot, istate, msg] = daspk (fcn, x_0, xdot_0, t,
t_crit)

Solve the set of differential-algebraic equations

0 = f(x, ẋ, t)

with
x(t0) = x0, ẋ(t0) = ẋ0

The solution is returned in the matrices x and xdot, with each row in the result
matrices corresponding to one of the elements in the vector t. The first element of t
should be t0 and correspond to the initial state of the system x 0 and its derivative
xdot 0, so that the first row of the output x is x 0 and the first row of the output
xdot is xdot 0.

The first argument, fcn, is a string, inline, or function handle that names the function
f to call to compute the vector of residuals for the set of equations. It must have the
form

res = f (x, xdot, t)

in which x, xdot, and res are vectors, and t is a scalar.

If fcn is a two-element string array or a two-element cell array of strings, inline
functions, or function handles, the first element names the function f described above,
and the second element names a function to compute the modified Jacobian

J =
∂f

∂x
+ c

∂f

∂ẋ

The modified Jacobian function must have the form

jac = j (x, xdot, t, c)

The second and third arguments to daspk specify the initial condition of the states
and their derivatives, and the fourth argument specifies a vector of output times at
which the solution is desired, including the time corresponding to the initial condition.

The set of initial states and derivatives are not strictly required to be consistent.
If they are not consistent, you must use the daspk_options function to provide
additional information so that daspk can compute a consistent starting point.

The fifth argument is optional, and may be used to specify a set of times that the DAE
solver should not integrate past. It is useful for avoiding difficulties with singularities
and points where there is a discontinuity in the derivative.

After a successful computation, the value of istate will be greater than zero (consistent
with the Fortran version of daspk).

If the computation is not successful, the value of istate will be less than zero and msg
will contain additional information.

You can use the function daspk_options to set optional parameters for daspk.

See also: [dassl], page 479.

Chapter 24: Differential Equations 477

[Loadable Function]daspk_options ()
[Loadable Function]val = daspk_options (opt)
[Loadable Function]daspk_options (opt, val)

Query or set options for the function daspk. When called with no arguments, the
names of all available options and their current values are displayed. Given one argu-
ment, return the value of the corresponding option. When called with two arguments,
daspk_options set the option opt to value val.

Options include

"absolute tolerance"

Absolute tolerance. May be either vector or scalar. If a vector, it must
match the dimension of the state vector, and the relative tolerance must
also be a vector of the same length.

"relative tolerance"

Relative tolerance. May be either vector or scalar. If a vector, it must
match the dimension of the state vector, and the absolute tolerance must
also be a vector of the same length.

The local error test applied at each integration step is

abs (local error in x(i))

<= rtol(i) * abs (Y(i)) + atol(i)

"compute consistent initial condition"

Denoting the differential variables in the state vector by ‘Y_d’ and the
algebraic variables by ‘Y_a’, ddaspk can solve one of two initialization
problems:

1. Given Y d, calculate Y a and Y’ d

2. Given Y’, calculate Y.

In either case, initial values for the given components are input, and
initial guesses for the unknown components must also be provided as
input. Set this option to 1 to solve the first problem, or 2 to solve the
second (the default is 0, so you must provide a set of initial conditions
that are consistent).

If this option is set to a nonzero value, you must also set the "algebraic
variables" option to declare which variables in the problem are alge-
braic.

"use initial condition heuristics"

Set to a nonzero value to use the initial condition heuristics options de-
scribed below.

"initial condition heuristics"

A vector of the following parameters that can be used to control the initial
condition calculation.

MXNIT Maximum number of Newton iterations (default is 5).

MXNJ Maximum number of Jacobian evaluations (default is 6).

478 GNU Octave

MXNH Maximum number of values of the artificial stepsize
parameter to be tried if the "compute consistent initial

condition" option has been set to 1 (default is 5).

Note that the maximum total number of Newton iterations
allowed is MXNIT*MXNJ*MXNH if the "compute consistent

initial condition" option has been set to 1 and
MXNIT*MXNJ if it is set to 2.

LSOFF Set to a nonzero value to disable the linesearch algorithm
(default is 0).

STPTOL Minimum scaled step in linesearch algorithm (default is
eps^(2/3)).

EPINIT Swing factor in the Newton iteration convergence test. The
test is applied to the residual vector, premultiplied by the
approximate Jacobian. For convergence, the weighted RMS
norm of this vector (scaled by the error weights) must be less
than EPINIT*EPCON, where EPCON = 0.33 is the analogous
test constant used in the time steps. The default is EPINIT
= 0.01.

"print initial condition info"

Set this option to a nonzero value to display detailed information about
the initial condition calculation (default is 0).

"exclude algebraic variables from error test"

Set to a nonzero value to exclude algebraic variables from the error test.
You must also set the "algebraic variables" option to declare which
variables in the problem are algebraic (default is 0).

"algebraic variables"

A vector of the same length as the state vector. A nonzero element
indicates that the corresponding element of the state vector is an algebraic
variable (i.e., its derivative does not appear explicitly in the equation set.

This option is required by the compute consistent initial condition"

and "exclude algebraic variables from error test" options.

"enforce inequality constraints"

Set to one of the following values to enforce the inequality constraints
specified by the "inequality constraint types" option (default is 0).

1. To have constraint checking only in the initial condition calculation.

2. To enforce constraint checking during the integration.

3. To enforce both options 1 and 2.

"inequality constraint types"

A vector of the same length as the state specifying the type of inequality
constraint. Each element of the vector corresponds to an element of the
state and should be assigned one of the following codes

-2 Less than zero.

Chapter 24: Differential Equations 479

-1 Less than or equal to zero.

0 Not constrained.

1 Greater than or equal to zero.

2 Greater than zero.

This option only has an effect if the "enforce inequality constraints"

option is nonzero.

"initial step size"

Differential-algebraic problems may occasionally suffer from severe scaling
difficulties on the first step. If you know a great deal about the scaling
of your problem, you can help to alleviate this problem by specifying an
initial stepsize (default is computed automatically).

"maximum order"

Restrict the maximum order of the solution method. This option must
be between 1 and 5, inclusive (default is 5).

"maximum step size"

Setting the maximum stepsize will avoid passing over very large regions
(default is not specified).

Octave also includes dassl, an earlier version of daspk, and dasrt, which can be used
to solve DAEs with constraints (stopping conditions).

[Loadable Function][x, xdot, istate, msg] = dassl (fcn, x_0, xdot_0, t,
t_crit)

Solve the set of differential-algebraic equations

0 = f(x, ẋ, t)

with
x(t0) = x0, ẋ(t0) = ẋ0

The solution is returned in the matrices x and xdot, with each row in the result
matrices corresponding to one of the elements in the vector t. The first element of t
should be t0 and correspond to the initial state of the system x 0 and its derivative
xdot 0, so that the first row of the output x is x 0 and the first row of the output
xdot is xdot 0.

The first argument, fcn, is a string, inline, or function handle that names the function
f to call to compute the vector of residuals for the set of equations. It must have the
form

res = f (x, xdot, t)

in which x, xdot, and res are vectors, and t is a scalar.

If fcn is a two-element string array or a two-element cell array of strings, inline
functions, or function handles, the first element names the function f described above,
and the second element names a function to compute the modified Jacobian

J =
∂f

∂x
+ c

∂f

∂ẋ

The modified Jacobian function must have the form

480 GNU Octave

jac = j (x, xdot, t, c)

The second and third arguments to dassl specify the initial condition of the states
and their derivatives, and the fourth argument specifies a vector of output times at
which the solution is desired, including the time corresponding to the initial condition.

The set of initial states and derivatives are not strictly required to be consistent. In
practice, however, dassl is not very good at determining a consistent set for you, so
it is best if you ensure that the initial values result in the function evaluating to zero.

The fifth argument is optional, and may be used to specify a set of times that the DAE
solver should not integrate past. It is useful for avoiding difficulties with singularities
and points where there is a discontinuity in the derivative.

After a successful computation, the value of istate will be greater than zero (consistent
with the Fortran version of dassl).

If the computation is not successful, the value of istate will be less than zero and msg
will contain additional information.

You can use the function dassl_options to set optional parameters for dassl.

See also: [daspk], page 475, [dasrt], page 481, [lsode], page 473.

[Loadable Function]dassl_options ()
[Loadable Function]val = dassl_options (opt)
[Loadable Function]dassl_options (opt, val)

Query or set options for the function dassl. When called with no arguments, the
names of all available options and their current values are displayed. Given one argu-
ment, return the value of the corresponding option. When called with two arguments,
dassl_options set the option opt to value val.

Options include

"absolute tolerance"

Absolute tolerance. May be either vector or scalar. If a vector, it must
match the dimension of the state vector, and the relative tolerance must
also be a vector of the same length.

"relative tolerance"

Relative tolerance. May be either vector or scalar. If a vector, it must
match the dimension of the state vector, and the absolute tolerance must
also be a vector of the same length.

The local error test applied at each integration step is

abs (local error in x(i))

<= rtol(i) * abs (Y(i)) + atol(i)

"compute consistent initial condition"

If nonzero, dassl will attempt to compute a consistent set of initial con-
ditions. This is generally not reliable, so it is best to provide a consistent
set and leave this option set to zero.

Chapter 24: Differential Equations 481

"enforce nonnegativity constraints"

If you know that the solutions to your equations will always be non-
negative, it may help to set this parameter to a nonzero value. However,
it is probably best to try leaving this option set to zero first, and only
setting it to a nonzero value if that doesn’t work very well.

"initial step size"

Differential-algebraic problems may occasionally suffer from severe scaling
difficulties on the first step. If you know a great deal about the scaling
of your problem, you can help to alleviate this problem by specifying an
initial stepsize.

"maximum order"

Restrict the maximum order of the solution method. This option must
be between 1 and 5, inclusive.

"maximum step size"

Setting the maximum stepsize will avoid passing over very large regions
(default is not specified).

"step limit"

Maximum number of integration steps to attempt on a single call to the
underlying Fortran code.

[Loadable Function][x, xdot, t_out, istat, msg] = dasrt (fcn, [], x_0,
xdot_0, t)

[Loadable Function]... = dasrt (fcn, g, x_0, xdot_0, t)
[Loadable Function]... = dasrt (fcn, [], x_0, xdot_0, t, t_crit)
[Loadable Function]... = dasrt (fcn, g, x_0, xdot_0, t, t_crit)

Solve the set of differential-algebraic equations

0 = f(x, ẋ, t)

with

x(t0) = x0, ẋ(t0) = ẋ0

with functional stopping criteria (root solving).

The solution is returned in the matrices x and xdot, with each row in the result
matrices corresponding to one of the elements in the vector t out. The first element
of t should be t0 and correspond to the initial state of the system x 0 and its derivative
xdot 0, so that the first row of the output x is x 0 and the first row of the output
xdot is xdot 0.

The vector t provides an upper limit on the length of the integration. If the stopping
condition is met, the vector t out will be shorter than t, and the final element of t out
will be the point at which the stopping condition was met, and may not correspond
to any element of the vector t.

The first argument, fcn, is a string, inline, or function handle that names the function
f to call to compute the vector of residuals for the set of equations. It must have the
form

482 GNU Octave

res = f (x, xdot, t)

in which x, xdot, and res are vectors, and t is a scalar.

If fcn is a two-element string array or a two-element cell array of strings, inline
functions, or function handles, the first element names the function f described above,
and the second element names a function to compute the modified Jacobian

J =
∂f

∂x
+ c

∂f

∂ẋ

The modified Jacobian function must have the form

jac = j (x, xdot, t, c)

The optional second argument names a function that defines the constraint functions
whose roots are desired during the integration. This function must have the form

g_out = g (x, t)

and return a vector of the constraint function values. If the value of any of the
constraint functions changes sign, dasrt will attempt to stop the integration at the
point of the sign change.

If the name of the constraint function is omitted, dasrt solves the same problem as
daspk or dassl.

Note that because of numerical errors in the constraint functions due to round-off
and integration error, dasrt may return false roots, or return the same root at two
or more nearly equal values of T. If such false roots are suspected, the user should
consider smaller error tolerances or higher precision in the evaluation of the constraint
functions.

If a root of some constraint function defines the end of the problem, the input to
dasrt should nevertheless allow integration to a point slightly past that root, so that
dasrt can locate the root by interpolation.

The third and fourth arguments to dasrt specify the initial condition of the states
and their derivatives, and the fourth argument specifies a vector of output times at
which the solution is desired, including the time corresponding to the initial condition.

The set of initial states and derivatives are not strictly required to be consistent. In
practice, however, dassl is not very good at determining a consistent set for you, so
it is best if you ensure that the initial values result in the function evaluating to zero.

The sixth argument is optional, and may be used to specify a set of times that the DAE
solver should not integrate past. It is useful for avoiding difficulties with singularities
and points where there is a discontinuity in the derivative.

After a successful computation, the value of istate will be greater than zero (consistent
with the Fortran version of dassl).

If the computation is not successful, the value of istate will be less than zero and msg
will contain additional information.

You can use the function dasrt_options to set optional parameters for dasrt.

See also: [dasrt options], page 483, [daspk], page 475, [dasrt], page 481, [lsode],
page 473.

Chapter 24: Differential Equations 483

[Loadable Function]dasrt_options ()
[Loadable Function]val = dasrt_options (opt)
[Loadable Function]dasrt_options (opt, val)

Query or set options for the function dasrt. When called with no arguments, the
names of all available options and their current values are displayed. Given one argu-
ment, return the value of the corresponding option. When called with two arguments,
dasrt_options set the option opt to value val.

Options include

"absolute tolerance"

Absolute tolerance. May be either vector or scalar. If a vector, it must
match the dimension of the state vector, and the relative tolerance must
also be a vector of the same length.

"relative tolerance"

Relative tolerance. May be either vector or scalar. If a vector, it must
match the dimension of the state vector, and the absolute tolerance must
also be a vector of the same length.

The local error test applied at each integration step is

abs (local error in x(i)) <= ...

rtol(i) * abs (Y(i)) + atol(i)

"initial step size"

Differential-algebraic problems may occasionally suffer from severe scaling
difficulties on the first step. If you know a great deal about the scaling
of your problem, you can help to alleviate this problem by specifying an
initial stepsize.

"maximum order"

Restrict the maximum order of the solution method. This option must
be between 1 and 5, inclusive.

"maximum step size"

Setting the maximum stepsize will avoid passing over very large regions.

"step limit"

Maximum number of integration steps to attempt on a single call to the
underlying Fortran code.

See K. E. Brenan, et al., Numerical Solution of Initial-Value Problems in Differential-
Algebraic Equations, North-Holland (1989) for more information about the implementation
of dassl.

Chapter 25: Optimization 485

25 Optimization

Octave comes with support for solving various kinds of optimization problems. Specifically
Octave can solve problems in Linear Programming, Quadratic Programming, Nonlinear
Programming, and Linear Least Squares Minimization.

25.1 Linear Programming

Octave can solve Linear Programming problems using the glpk function. That is, Octave
can solve

min
x
cTx

subject to the linear constraints Ax = b where x ≥ 0.

The glpk function also supports variations of this problem.

[Function File][xopt, fmin, status, extra] = glpk (c, A, b, lb, ub, ctype,
vartype, sense, param)

Solve a linear program using the GNU glpk library. Given three arguments, glpk
solves the following standard LP:

min
x
CTx

subject to
Ax = b x ≥ 0

but may also solve problems of the form

[min
x
|max

x
]CTx

subject to
Ax[= | ≤ | ≥]b LB ≤ x ≤ UB

Input arguments:

c A column array containing the objective function coefficients.

A A matrix containing the constraints coefficients.

b A column array containing the right-hand side value for each constraint
in the constraint matrix.

lb An array containing the lower bound on each of the variables. If lb is not
supplied, the default lower bound for the variables is zero.

ub An array containing the upper bound on each of the variables. If ub is
not supplied, the default upper bound is assumed to be infinite.

ctype An array of characters containing the sense of each constraint in the
constraint matrix. Each element of the array may be one of the following
values

486 GNU Octave

"F" A free (unbounded) constraint (the constraint is ignored).

"U" An inequality constraint with an upper bound (A(i,:)*x <=

b(i)).

"S" An equality constraint (A(i,:)*x = b(i)).

"L" An inequality with a lower bound (A(i,:)*x >= b(i)).

"D" An inequality constraint with both upper and lower bounds
(A(i,:)*x >= -b(i) and (A(i,:)*x <= b(i)).

vartype A column array containing the types of the variables.

"C" A continuous variable.

"I" An integer variable.

sense If sense is 1, the problem is a minimization. If sense is -1, the problem is
a maximization. The default value is 1.

param A structure containing the following parameters used to define the be-
havior of solver. Missing elements in the structure take on default values,
so you only need to set the elements that you wish to change from the
default.

Integer parameters:

msglev (LPX_K_MSGLEV, default: 1)

Level of messages output by solver routines:

0 No output.

1 Error messages only.

2 Normal output.

3 Full output (includes informational messages).

scale (LPX_K_SCALE, default: 1)

Scaling option:

0 No scaling.

1 Equilibration scaling.

2 Geometric mean scaling, then equilibration scal-
ing.

dual (LPX_K_DUAL, default: 0)

Dual simplex option:

0 Do not use the dual simplex.

1 If initial basic solution is dual feasible, use the
dual simplex.

price (LPX_K_PRICE, default: 1)

Pricing option (for both primal and dual simplex):

0 Textbook pricing.

Chapter 25: Optimization 487

1 Steepest edge pricing.

round (LPX_K_ROUND, default: 0)

Solution rounding option:

0 Report all primal and dual values "as is".

1 Replace tiny primal and dual values by exact
zero.

itlim (LPX_K_ITLIM, default: -1)

Simplex iterations limit. If this value is positive, it is de-
creased by one each time when one simplex iteration has been
performed, and reaching zero value signals the solver to stop
the search. Negative value means no iterations limit.

itcnt (LPX_K_OUTFRQ, default: 200)

Output frequency, in iterations. This parameter specifies how
frequently the solver sends information about the solution to
the standard output.

branch (LPX_K_BRANCH, default: 2)

Branching heuristic option (for MIP only):

0 Branch on the first variable.

1 Branch on the last variable.

2 Branch using a heuristic by Driebeck and Tomlin.

btrack (LPX_K_BTRACK, default: 2)

Backtracking heuristic option (for MIP only):

0 Depth first search.

1 Breadth first search.

2 Backtrack using the best projection heuristic.

presol (LPX_K_PRESOL, default: 1)

If this flag is set, the routine lpx simplex solves the problem
using the built-in LP presolver. Otherwise the LP presolver
is not used.

lpsolver (default: 1)

Select which solver to use. If the problem is a MIP problem
this flag will be ignored.

1 Revised simplex method.

2 Interior point method.

save (default: 0)

If this parameter is nonzero, save a copy of the problem in
CPLEX LP format to the file ‘"outpb.lp"’. There is cur-
rently no way to change the name of the output file.

Real parameters:

488 GNU Octave

relax (LPX_K_RELAX, default: 0.07)

Relaxation parameter used in the ratio test. If it is zero,
the textbook ratio test is used. If it is non-zero (should be
positive), Harris’ two-pass ratio test is used. In the latter case
on the first pass of the ratio test basic variables (in the case
of primal simplex) or reduced costs of non-basic variables (in
the case of dual simplex) are allowed to slightly violate their
bounds, but not more than relax*tolbnd or relax*toldj

(thus, relax is a percentage of tolbnd or toldj.

tolbnd (LPX_K_TOLBND, default: 10e-7)

Relative tolerance used to check if the current basic solution
is primal feasible. It is not recommended that you change
this parameter unless you have a detailed understanding of
its purpose.

toldj (LPX_K_TOLDJ, default: 10e-7)

Absolute tolerance used to check if the current basic solution
is dual feasible. It is not recommended that you change this
parameter unless you have a detailed understanding of its
purpose.

tolpiv (LPX_K_TOLPIV, default: 10e-9)

Relative tolerance used to choose eligible pivotal elements of
the simplex table. It is not recommended that you change
this parameter unless you have a detailed understanding of
its purpose.

objll (LPX_K_OBJLL, default: -DBL_MAX)

Lower limit of the objective function. If on the phase II the
objective function reaches this limit and continues decreasing,
the solver stops the search. This parameter is used in the dual
simplex method only.

objul (LPX_K_OBJUL, default: +DBL_MAX)

Upper limit of the objective function. If on the phase II the
objective function reaches this limit and continues increasing,
the solver stops the search. This parameter is used in the dual
simplex only.

tmlim (LPX_K_TMLIM, default: -1.0)

Searching time limit, in seconds. If this value is positive, it
is decreased each time when one simplex iteration has been
performed by the amount of time spent for the iteration, and
reaching zero value signals the solver to stop the search. Neg-
ative value means no time limit.

outdly (LPX_K_OUTDLY, default: 0.0)

Output delay, in seconds. This parameter specifies how long
the solver should delay sending information about the solu-

Chapter 25: Optimization 489

tion to the standard output. Non-positive value means no
delay.

tolint (LPX_K_TOLINT, default: 10e-5)

Relative tolerance used to check if the current basic solution
is integer feasible. It is not recommended that you change
this parameter unless you have a detailed understanding of
its purpose.

tolobj (LPX_K_TOLOBJ, default: 10e-7)

Relative tolerance used to check if the value of the objective
function is not better than in the best known integer feasible
solution. It is not recommended that you change this param-
eter unless you have a detailed understanding of its purpose.

Output values:

xopt The optimizer (the value of the decision variables at the optimum).

fopt The optimum value of the objective function.

status Status of the optimization.

Simplex Method:

180 (LPX_OPT)
Solution is optimal.

181 (LPX_FEAS)
Solution is feasible.

182 (LPX_INFEAS)
Solution is infeasible.

183 (LPX_NOFEAS)
Problem has no feasible solution.

184 (LPX_UNBND)
Problem has no unbounded solution.

185 (LPX_UNDEF)
Solution status is undefined.

Interior Point Method:

150 (LPX_T_UNDEF)
The interior point method is undefined.

151 (LPX_T_OPT)
The interior point method is optimal.

Mixed Integer Method:

170 (LPX_I_UNDEF)
The status is undefined.

171 (LPX_I_OPT)
The solution is integer optimal.

490 GNU Octave

172 (LPX_I_FEAS)
Solution integer feasible but its optimality has not been
proven

173 (LPX_I_NOFEAS)
No integer feasible solution.

If an error occurs, status will contain one of the following codes:

204 (LPX_E_FAULT)
Unable to start the search.

205 (LPX_E_OBJLL)
Objective function lower limit reached.

206 (LPX_E_OBJUL)
Objective function upper limit reached.

207 (LPX_E_ITLIM)
Iterations limit exhausted.

208 (LPX_E_TMLIM)
Time limit exhausted.

209 (LPX_E_NOFEAS)
No feasible solution.

210 (LPX_E_INSTAB)
Numerical instability.

211 (LPX_E_SING)
Problems with basis matrix.

212 (LPX_E_NOCONV)
No convergence (interior).

213 (LPX_E_NOPFS)
No primal feasible solution (LP presolver).

214 (LPX_E_NODFS)
No dual feasible solution (LP presolver).

extra A data structure containing the following fields:

lambda Dual variables.

redcosts Reduced Costs.

time Time (in seconds) used for solving LP/MIP problem.

mem Memory (in bytes) used for solving LP/MIP problem (this is
not available if the version of glpk is 4.15 or later).

Example:

Chapter 25: Optimization 491

c = [10, 6, 4]’;

A = [1, 1, 1;

10, 4, 5;

2, 2, 6];

b = [100, 600, 300]’;

lb = [0, 0, 0]’;

ub = [];

ctype = "UUU";

vartype = "CCC";

s = -1;

param.msglev = 1;

param.itlim = 100;

[xmin, fmin, status, extra] = ...

glpk (c, A, b, lb, ub, ctype, vartype, s, param);

25.2 Quadratic Programming

Octave can also solve Quadratic Programming problems, this is

min
x

1

2
xTHx+ xT q

subject to
Ax = b lb ≤ x ≤ ub Alb ≤ Ain ≤ Aub

[Function File][x, obj, info, lambda] = qp (x0, H)
[Function File][x, obj, info, lambda] = qp (x0, H, q)
[Function File][x, obj, info, lambda] = qp (x0, H, q, A, b)
[Function File][x, obj, info, lambda] = qp (x0, H, q, A, b, lb, ub)
[Function File][x, obj, info, lambda] = qp (x0, H, q, A, b, lb, ub, A_lb,

A_in, A_ub)
[Function File][x, obj, info, lambda] = qp (. . . , options)

Solve the quadratic program

min
x

1

2
xTHx+ xT q

subject to
Ax = b lb ≤ x ≤ ub Alb ≤ Ain ≤ Aub

using a null-space active-set method.

Any bound (A, b, lb, ub, A lb, A ub) may be set to the empty matrix ([]) if not
present. If the initial guess is feasible the algorithm is faster.

options An optional structure containing the following parameter(s) used to define
the behavior of the solver. Missing elements in the structure take on
default values, so you only need to set the elements that you wish to
change from the default.

492 GNU Octave

MaxIter (default: 200)

Maximum number of iterations.

info Structure containing run-time information about the algorithm. The fol-
lowing fields are defined:

solveiter

The number of iterations required to find the solution.

info An integer indicating the status of the solution.

0 The problem is feasible and convex. Global solu-
tion found.

1 The problem is not convex. Local solution found.

2 The problem is not convex and unbounded.

3 Maximum number of iterations reached.

6 The problem is infeasible.

[Function File]x = pqpnonneg (c, d)
[Function File]x = pqpnonneg (c, d, x0)
[Function File][x, minval] = pqpnonneg (. . .)
[Function File][x, minval, exitflag] = pqpnonneg (. . .)
[Function File][x, minval, exitflag, output] = pqpnonneg (. . .)
[Function File][x, minval, exitflag, output, lambda] = pqpnonneg (. . .)

Minimize 1/2*x’*c*x + d’*x subject to x >= 0. c and d must be real, and c must
be symmetric and positive definite. x0 is an optional initial guess for x.

Outputs:

• minval

The minimum attained model value, 1/2*xmin’*c*xmin + d’*xmin

• exitflag

An indicator of convergence. 0 indicates that the iteration count was exceeded,
and therefore convergence was not reached; >0 indicates that the algorithm con-
verged. (The algorithm is stable and will converge given enough iterations.)

• output

A structure with two fields:

• "algorithm": The algorithm used ("nnls")

• "iterations": The number of iterations taken.

• lambda

Not implemented.

See also: [optimset], page 496, [lsqnonneg], page 495, [qp], page 491.

Chapter 25: Optimization 493

25.3 Nonlinear Programming

Octave can also perform general nonlinear minimization using a successive quadratic pro-
gramming solver.

[Function File][x, obj, info, iter, nf, lambda] = sqp (x0, phi)
[Function File][...] = sqp (x0, phi, g)
[Function File][...] = sqp (x0, phi, g, h)
[Function File][...] = sqp (x0, phi, g, h, lb, ub)
[Function File][...] = sqp (x0, phi, g, h, lb, ub, maxiter)
[Function File][...] = sqp (x0, phi, g, h, lb, ub, maxiter, tol)

Solve the nonlinear program
min
x
φ(x)

subject to
g(x) = 0 h(x) ≥ 0 lb ≤ x ≤ ub

using a sequential quadratic programming method.

The first argument is the initial guess for the vector x0.

The second argument is a function handle pointing to the objective function phi. The
objective function must accept one vector argument and return a scalar.

The second argument may also be a 2- or 3-element cell array of function handles.
The first element should point to the objective function, the second should point
to a function that computes the gradient of the objective function, and the third
should point to a function that computes the Hessian of the objective function. If the
gradient function is not supplied, the gradient is computed by finite differences. If
the Hessian function is not supplied, a BFGS update formula is used to approximate
the Hessian.

When supplied, the gradient function phi{2} must accept one vector argument and
return a vector. When supplied, the Hessian function phi{3} must accept one vector
argument and return a matrix.

The third and fourth arguments g and h are function handles pointing to functions
that compute the equality constraints and the inequality constraints, respectively. If
the problem does not have equality (or inequality) constraints, then use an empty
matrix ([]) for g (or h). When supplied, these equality and inequality constraint
functions must accept one vector argument and return a vector.

The third and fourth arguments may also be 2-element cell arrays of function handles.
The first element should point to the constraint function and the second should point
to a function that computes the gradient of the constraint function:(

∂f(x)

∂x1

,
∂f(x)

∂x2

, . . . ,
∂f(x)

∂xN

)T
The fifth and sixth arguments, lb and ub, contain lower and upper bounds on x.
These must be consistent with the equality and inequality constraints g and h. If the
arguments are vectors then x(i) is bound by lb(i) and ub(i). A bound can also be a
scalar in which case all elements of x will share the same bound. If only one bound
(lb, ub) is specified then the other will default to (-realmax, +realmax).

494 GNU Octave

The seventh argument maxiter specifies the maximum number of iterations. The
default value is 100.

The eighth argument tol specifies the tolerance for the stopping criteria. The default
value is sqrt(eps).

The value returned in info may be one of the following:

101 The algorithm terminated normally. Either all constraints meet the re-
quested tolerance, or the stepsize, Δx, is less than tol * norm (x).

102 The BFGS update failed.

103 The maximum number of iterations was reached.

An example of calling sqp:

function r = g (x)

r = [sumsq(x)-10;

x(2)*x(3)-5*x(4)*x(5);

x(1)^3+x(2)^3+1];

endfunction

function obj = phi (x)

obj = exp (prod (x)) - 0.5*(x(1)^3+x(2)^3+1)^2;

endfunction

x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];

[x, obj, info, iter, nf, lambda] = sqp (x0, @phi, @g, [])

x =

-1.71714

1.59571

1.82725

-0.76364

-0.76364

obj = 0.053950

info = 101

iter = 8

nf = 10

lambda =

-0.0401627

0.0379578

-0.0052227

See also: [qp], page 491.

Chapter 25: Optimization 495

25.4 Linear Least Squares

Octave also supports linear least squares minimization. That is, Octave can find the param-
eter b such that the model y = xb fits data (x, y) as well as possible, assuming zero-mean
Gaussian noise. If the noise is assumed to be isotropic the problem can be solved using the
‘\’ or ‘/’ operators, or the ols function. In the general case where the noise is assumed to
be anisotropic the gls is needed.

[Function File][beta, sigma, r] = ols (y, x)
Ordinary least squares estimation for the multivariate model y = xb+ e with ē = 0,
and cov(vec(e)) = kron (s, I) where y is a t × p matrix, x is a t × k matrix, b is a
k × p matrix, and e is a t× p matrix.

Each row of y and x is an observation and each column a variable.

The return values beta, sigma, and r are defined as follows.

beta The OLS estimator for b. beta is calculated directly via (xTx)−1xTy if
the matrix xTx is of full rank. Otherwise, beta = pinv (x) * y where
pinv (x) denotes the pseudoinverse of x.

sigma The OLS estimator for the matrix s,

sigma = (y-x*beta)’

* (y-x*beta)

/ (t-rank(x))

r The matrix of OLS residuals, r = y - x*beta .

See also: [gls], page 495, [pinv], page 382.

[Function File][beta, v, r] = gls (y, x, o)
Generalized least squares estimation for the multivariate model y = xb+ e with ē = 0
and cov(vec(e)) = (s2)o, where y is a t × p matrix, x is a t × k matrix, b is a k × p
matrix, e is a t× p matrix, and o is a tp× tp matrix.

Each row of y and x is an observation and each column a variable. The return values
beta, v, and r are defined as follows.

beta The GLS estimator for b.

v The GLS estimator for s2.

r The matrix of GLS residuals, r = y − x ∗ beta.

See also: [ols], page 495.

[Function File]x = lsqnonneg (c, d)
[Function File]x = lsqnonneg (c, d, x0)
[Function File][x, resnorm] = lsqnonneg (. . .)
[Function File][x, resnorm, residual] = lsqnonneg (. . .)
[Function File][x, resnorm, residual, exitflag] = lsqnonneg (. . .)
[Function File][x, resnorm, residual, exitflag, output] = lsqnonneg

(. . .)

496 GNU Octave

[Function File][x, resnorm, residual, exitflag, output, lambda] =
lsqnonneg (. . .)

Minimize norm (c*x - d) subject to x >= 0. c and d must be real. x0 is an optional
initial guess for x.

Outputs:

• resnorm

The squared 2-norm of the residual: norm(c*x-d)^2

• residual

The residual: d-c*x

• exitflag

An indicator of convergence. 0 indicates that the iteration count was exceeded,
and therefore convergence was not reached; >0 indicates that the algorithm con-
verged. (The algorithm is stable and will converge given enough iterations.)

• output

A structure with two fields:

• "algorithm": The algorithm used ("nnls")

• "iterations": The number of iterations taken.

• lambda

Not implemented.

See also: [optimset], page 496, [pqpnonneg], page 492.

[Function File]optimset ()
[Function File]optimset (par, val, . . .)
[Function File]optimset (old, par, val, . . .)
[Function File]optimset (old, new)

Create options struct for optimization functions.

Valid parameters are:

• AutoScaling

• ComplexEqn

• FinDiffType

• FunValCheck When enabled, display an error if the objective function returns a
complex value or NaN. Must be set to "on" or "off" [default].

• GradObj When set to "on", the function to be minimized must return a second
argument which is the gradient, or first derivative, of the function at the point
x. If set to "off" [default], the gradient is computed via finite differences.

• Jacobian When set to "on", the function to be minimized must return a second
argument which is the Jacobian, or first derivative, of the function at the point
x. If set to "off" [default], the Jacobian is computed via finite differences.

• MaxFunEvals Maximum number of function evaluations before optimization
stops. Must be a positive integer.

• MaxIter Maximum number of algorithm iterations before optimization stops.
Must be a positive integer.

Chapter 25: Optimization 497

• OutputFcn A user-defined function executed once per algorithm iteration.

• TolFun Termination criterion for the function output. If the difference in the
calculated objective function between one algorithm iteration and the next is
less than TolFun the optimization stops. Must be a positive scalar.

• TolX Termination criterion for the function input. If the difference in x, the
current search point, between one algorithm iteration and the next is less than
TolX the optimization stops. Must be a positive scalar.

• TypicalX

• Updating

[Function File]optimget (options, parname)
[Function File]optimget (options, parname, default)

Return a specific option from a structure created by optimset. If parname is not a
field of the options structure, return default if supplied, otherwise return an empty
matrix.

Chapter 26: Statistics 499

26 Statistics

Octave has support for various statistical methods. This includes basic descriptive statistics,
probability distributions, statistical tests, random number generation, and much more.

The functions that analyze data all assume that multi-dimensional data is arranged in a
matrix where each row is an observation, and each column is a variable. Thus, the matrix
defined by

a = [0.9, 0.7;

0.1, 0.1;

0.5, 0.4];

contains three observations from a two-dimensional distribution. While this is the default
data arrangement, most functions support different arrangements.

It should be noted that the statistics functions don’t test for data containing NaN, NA,
or Inf. These values need to be detected and dealt with explicitly. See [isnan], page 332,
[isna], page 40, [isinf], page 332, [isfinite], page 332.

26.1 Descriptive Statistics

One principal goal of descriptive statistics is to represent the essence of a large data set
concisely. Octave provides the mean, median, and mode functions which all summarize a
data set with just a single number corresponding to the central tendency of the data.

[Function File]mean (x)
[Function File]mean (x, dim)
[Function File]mean (x, opt)
[Function File]mean (x, dim, opt)

Compute the mean of the elements of the vector x.

mean(x) = x̄ =
1

N

N∑
i=1

xi

If x is a matrix, compute the mean for each column and return them in a row vector.

The optional argument opt selects the type of mean to compute. The following options
are recognized:

"a" Compute the (ordinary) arithmetic mean. [default]

"g" Compute the geometric mean.

"h" Compute the harmonic mean.

If the optional argument dim is given, operate along this dimension.

Both dim and opt are optional. If both are supplied, either may appear first.

See also: [median], page 499, [mode], page 500.

[Function File]median (x)
[Function File]median (x, dim)

Compute the median value of the elements of the vector x. If the elements of x are
sorted, the median is defined as

median(x) =

{
x(dN/2e), N odd;
(x(N/2) + x(N/2 + 1))/2, N even.

500 GNU Octave

If x is a matrix, compute the median value for each column and return them in a row
vector. If the optional dim argument is given, operate along this dimension.

See also: [mean], page 499, [mode], page 500.

[Function File]mode (x)
[Function File]mode (x, dim)
[Function File][m, f, c] = mode (. . .)

Compute the most frequently occurring value in a dataset (mode). mode determines
the frequency of values along the first non-singleton dimension and returns the value
with the highest frequency. If two, or more, values have the same frequency mode

returns the smallest.

If the optional argument dim is given, operate along this dimension.

The return variable f is the number of occurrences of the mode in in the dataset. The
cell array c contains all of the elements with the maximum frequency.

See also: [mean], page 499, [median], page 499.

Using just one number, such as the mean, to represent an entire data set may not give
an accurate picture of the data. One way to characterize the fit is to measure the dispersion
of the data. Octave provides several functions for measuring dispersion.

[Function File]range (x)
[Function File]range (x, dim)

Return the range, i.e., the difference between the maximum and the minimum of the
input data. If x is a vector, the range is calculated over the elements of x. If x is a
matrix, the range is calculated over each column of x.

If the optional argument dim is given, operate along this dimension.

The range is a quickly computed measure of the dispersion of a data set, but is less
accurate than iqr if there are outlying data points.

See also: [iqr], page 500, [std], page 501.

[Function File]iqr (x)
[Function File]iqr (x, dim)

Return the interquartile range, i.e., the difference between the upper and lower quar-
tile of the input data. If x is a matrix, do the above for first non-singleton dimension
of x.

If the optional argument dim is given, operate along this dimension.

As a measure of dispersion, the interquartile range is less affected by outliers than
either range or std.

See also: [range], page 500, [std], page 501.

[Function File]meansq (x)
[Function File]meansq (x, dim)

Compute the mean square of the elements of the vector x.

meansq(x) =

∑N
i=1 xi

2

N

Chapter 26: Statistics 501

where x̄ is the mean value of x. For matrix arguments, return a row vector containing
the mean square of each column.

If the optional argument dim is given, operate along this dimension.

See also: [var], page 501, [std], page 501, [moment], page 502.

[Function File]std (x)
[Function File]std (x, opt)
[Function File]std (x, opt, dim)

Compute the standard deviation of the elements of the vector x.

std(x) = σ =

√∑N
i=1(xi − x̄)2
N − 1

where x̄ is the mean value of x and N is the number of elements.

If x is a matrix, compute the standard deviation for each column and return them in
a row vector.

The argument opt determines the type of normalization to use. Valid values are

0: normalize with N − 1, provides the square root of the best unbiased
estimator of the variance [default]

1: normalize with N , this provides the square root of the second moment
around the mean

If the optional argument dim is given, operate along this dimension.

See also: [var], page 501, [range], page 500, [iqr], page 500, [mean], page 499, [median],
page 499.

In addition to knowing the size of a dispersion it is useful to know the shape of the data
set. For example, are data points massed to the left or right of the mean? Octave provides
several common measures to describe the shape of the data set. Octave can also calculate
moments allowing arbitrary shape measures to be developed.

[Function File]var (x)
[Function File]var (x, opt)
[Function File]var (x, opt, dim)

Compute the variance of the elements of the vector x.

var(x) = σ2 =

∑N
i=1(xi − x̄)2

N − 1

where x̄ is the mean value of x. If x is a matrix, compute the variance for each column
and return them in a row vector.

The argument opt determines the type of normalization to use. Valid values are

0: normalize with N−1, provides the best unbiased estimator of the variance
[default]

1: normalizes with N , this provides the second moment around the mean

If the optional argument dim is given, operate along this dimension.

See also: [cov], page 508, [std], page 501, [skewness], page 502, [kurtosis], page 502,
[moment], page 502.

502 GNU Octave

[Function File]skewness (x)
[Function File]skewness (x, dim)

Compute the skewness of the elements of the vector x.

skewness(x) =
1

Nσ3

N∑
i=1

(xi − x̄)3

where x̄ is the mean value of x.

If x is a matrix, return the skewness along the first non-singleton dimension of the
matrix. If the optional dim argument is given, operate along this dimension.

See also: [var], page 501, [kurtosis], page 502, [moment], page 502.

[Function File]kurtosis (x)
[Function File]kurtosis (x, dim)

Compute the kurtosis of the elements of the vector x.

kurtosis(x) =
1

Nσ4

N∑
i=1

(xi − x̄)4 − 3

where x̄ is the mean value of x. If x is a matrix, return the kurtosis over the first
non-singleton dimension of the matrix. If the optional dim argument is given, operate
along this dimension.

Note: The definition of kurtosis above yields a kurtosis of zero for the stdnormal
distribution and is sometimes referred to as "excess kurtosis". To calculate kurtosis
without the normalization factor of −3 use moment (x, 4, ’c’) / std (x)^4.

See also: [var], page 501, [skewness], page 502, [moment], page 502.

[Function File]moment (x, p)
[Function File]moment (x, p, type)
[Function File]moment (x, p, dim)
[Function File]moment (x, p, type, dim)
[Function File]moment (x, p, dim, type)

Compute the p-th moment of the vector x about zero.

moment(x) =

∑N
i=1 xi

p

N

If x is a matrix, return the row vector containing the p-th moment of each column.

The optional string type specifies the type of moment to be computed. Valid options
are:

"c" Central Moment. The moment about the mean defined as∑N
i=1(xi − x̄)p

N

"a" Absolute Moment. The moment about zero ignoring sign defined as∑N
i=1 |xi|

p

N

Chapter 26: Statistics 503

"ac" Absolute Central Moment. Defined as∑N
i=1 |xi − x̄|

p

N

If the optional argument dim is given, operate along this dimension.

If both type and dim are given they may appear in any order.

See also: [var], page 501, [skewness], page 502, [kurtosis], page 502.

[Function File]q = quantile (x, p)
[Function File]q = quantile (x, p, dim)
[Function File]q = quantile (x, p, dim, method)

For a sample, x, calculate the quantiles, q, corresponding to the cumulative probability
values in p. All non-numeric values (NaNs) of x are ignored.

If x is a matrix, compute the quantiles for each column and return them in a matrix,
such that the i-th row of q contains the p(i)th quantiles of each column of x.

The optional argument dim determines the dimension along which the quantiles are
calculated. If dim is omitted, and x is a vector or matrix, it defaults to 1 (column-wise
quantiles). If x is an N-D array, dim defaults to the first non-singleton dimension.

The methods available to calculate sample quantiles are the nine methods used by R
(http://www.r-project.org/). The default value is METHOD = 5.

Discontinuous sample quantile methods 1, 2, and 3

1. Method 1: Inverse of empirical distribution function.

2. Method 2: Similar to method 1 but with averaging at discontinuities.

3. Method 3: SAS definition: nearest even order statistic.

Continuous sample quantile methods 4 through 9, where p(k) is the linear interpola-
tion function respecting each methods’ representative cdf.

4. Method 4: p(k) = k / n. That is, linear interpolation of the empirical cdf.

5. Method 5: p(k) = (k - 0.5) / n. That is a piecewise linear function where the
knots are the values midway through the steps of the empirical cdf.

6. Method 6: p(k) = k / (n + 1).

7. Method 7: p(k) = (k - 1) / (n - 1).

8. Method 8: p(k) = (k - 1/3) / (n + 1/3). The resulting quantile estimates are
approximately median-unbiased regardless of the distribution of x.

9. Method 9: p(k) = (k - 3/8) / (n + 1/4). The resulting quantile estimates are
approximately unbiased for the expected order statistics if x is normally dis-
tributed.

Hyndman and Fan (1996) recommend method 8. Maxima, S, and R (versions prior to
2.0.0) use 7 as their default. Minitab and SPSS use method 6. matlab uses method
5.

References:

• Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.
Wadsworth & Brooks/Cole.

504 GNU Octave

• Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in statistical packages,
American Statistician, 50, 361–365.

• R: A Language and Environment for Statistical Computing;
http://cran.r-project.org/doc/manuals/fullrefman.pdf.

Examples:

x = randi (1000, [10, 1]); # Create empirical data in range 1-1000

q = quantile (x, [0, 1]); # Return minimum, maximum of distribution

q = quantile (x, [0.25 0.5 0.75]); # Return quartiles of distribution

See also: [prctile], page 504.

[Function File]q = prctile (x)
[Function File]q = prctile (x, p)
[Function File]q = prctile (x, p, dim)

For a sample x, compute the quantiles, q, corresponding to the cumulative probability
values, p, in percent. All non-numeric values (NaNs) of x are ignored.

If x is a matrix, compute the percentiles for each column and return them in a matrix,
such that the i-th row of y contains the p(i)th percentiles of each column of x.

If p is unspecified, return the quantiles for [0 25 50 75 100]. The optional argument
dim determines the dimension along which the percentiles are calculated. If dim is
omitted, and x is a vector or matrix, it defaults to 1 (column-wise quantiles). When
x is an N-D array, dim defaults to the first non-singleton dimension.

See also: [quantile], page 503.

A summary view of a data set can be generated quickly with the statistics function.

[Function File]statistics (x)
[Function File]statistics (x, dim)

Return a vector with the minimum, first quartile, median, third quartile, maximum,
mean, standard deviation, skewness, and kurtosis of the elements of the vector x.

If x is a matrix, calculate statistics over the first non-singleton dimension. If the
optional argument dim is given, operate along this dimension.

See also: [min], page 362, [max], page 361, [median], page 499, [mean], page 499,
[std], page 501, [skewness], page 502, [kurtosis], page 502.

26.2 Basic Statistical Functions

Octave supports various helpful statistical functions. Many are useful as initial steps to
prepare a data set for further analysis. Others provide different measures from those of the
basic descriptive statistics.

[Function File]center (x)
[Function File]center (x, dim)

If x is a vector, subtract its mean. If x is a matrix, do the above for each column. If
the optional argument dim is given, operate along this dimension.

See also: [zscore], page 505.

http://cran.r-project.org/doc/manuals/fullrefman.pdf

Chapter 26: Statistics 505

[Function File]zscore (x)
[Function File]zscore (x, dim)

If x is a vector, subtract its mean and divide by its standard deviation.

If x is a matrix, do the above along the first non-singleton dimension. If the optional
argument dim is given, operate along this dimension.

See also: [center], page 504.

[Function File]n = histc (x, edges)
[Function File]n = histc (x, edges, dim)
[Function File][n, idx] = histc (. . .)

Produce histogram counts.

When x is a vector, the function counts the number of elements of x that fall in the
histogram bins defined by edges. This must be a vector of monotonically increasing
values that define the edges of the histogram bins. n(k) contains the number of ele-
ments in x for which edges(k) <= x < edges(k+1). The final element of n contains
the number of elements of x exactly equal to the last element of edges.

When x is an N -dimensional array, the computation is carried out along dimension
dim. If not specified dim defaults to the first non-singleton dimension.

When a second output argument is requested an index matrix is also returned. The
idx matrix has the same size as x. Each element of idx contains the index of the
histogram bin in which the corresponding element of x was counted.

See also: [hist], page 243.

[Function File]c = nchoosek (n, k)
[Function File]c = nchoosek (set, k)

Compute the binomial coefficient or all combinations of a set of items.

If n is a scalar then calculate the binomial coefficient of n and k which is defined as(
n

k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

k!
=

n!

k!(n− k)!

This is the number of combinations of n items taken in groups of size k.

If the first argument is a vector, set, then generate all combinations of the elements
of set, taken k at a time, with one row per combination. The result c has k columns
and nchoosek (length (set), k) rows.

For example:

How many ways can three items be grouped into pairs?

nchoosek (3, 2)

⇒ 3

What are the possible pairs?

nchoosek (1:3, 2)

⇒ 1 2

1 3

2 3

506 GNU Octave

nchoosek works only for non-negative, integer arguments. Use bincoeff for non-
integer and negative scalar arguments, or for computing many binomial coefficients
at once with vector inputs for n or k.

See also: [bincoeff], page 369, [perms], page 506.

[Function File]perms (v)
Generate all permutations of v, one row per permutation. The result has size
factorial (n) * n , where n is the length of v.

As an example, perms([1, 2, 3]) returns the matrix

1 2 3

2 1 3

1 3 2

2 3 1

3 1 2

3 2 1

[Function File]ranks (x, dim)
Return the ranks of x along the first non-singleton dimension adjusted for ties. If the
optional argument dim is given, operate along this dimension.

See also: [spearman], page 508, [kendall], page 509.

[Function File]run_count (x, n)
[Function File]run_count (x, n, dim)

Count the upward runs along the first non-singleton dimension of x of length 1, 2,
. . . , n-1 and greater than or equal to n.

If the optional argument dim is given then operate along this dimension.

[Function File][count, value] = runlength (x)
Find the lengths of all sequences of common values. Return the vector of lengths and
the value that was repeated.

runlength ([2, 2, 0, 4, 4, 4, 0, 1, 1, 1, 1])

⇒ [2, 1, 3, 1, 4]

[Function File]probit (p)
For each component of p, return the probit (the quantile of the standard normal
distribution) of p.

[Function File]logit (p)
For each component of p, return the logit of p defined as

logit(p) = log
(p

1− p

)
See also: [logistic cdf], page 514.

[Function File]cloglog (x)
Return the complementary log-log function of x, defined as

cloglog(x) = − log(− log(x))

Chapter 26: Statistics 507

[Function File]mahalanobis (x, y)
Return the Mahalanobis’ D-square distance between the multivariate samples x and
y, which must have the same number of components (columns), but may have a
different number of observations (rows).

[Function File][t, l_x] = table (x)
[Function File][t, l_x, l_y] = table (x, y)

Create a contingency table t from data vectors. The l x and l y vectors are the
corresponding levels.

Currently, only 1- and 2-dimensional tables are supported.

26.3 Statistical Plots

Octave can create Quantile Plots (QQ-Plots), and Probability Plots (PP-Plots). These are
simple graphical tests for determining if a data set comes from a certain distribution.

Note that Octave can also show histograms of data using the hist function as described
in Section 15.2.1 [Two-Dimensional Plots], page 237.

[Function File][q, s] = qqplot (x)
[Function File][q, s] = qqplot (x, dist)
[Function File][q, s] = qqplot (x, dist, params)
[Function File]qqplot (. . .)

Perform a QQ-plot (quantile plot).

If F is the CDF of the distribution dist with parameters params and G its inverse,
and x a sample vector of length n, the QQ-plot graphs ordinate s(i) = i-th largest
element of x versus abscissa q(if) = G((i - 0.5)/n).

If the sample comes from F, except for a transformation of location and scale, the
pairs will approximately follow a straight line.

The default for dist is the standard normal distribution. The optional argument
params contains a list of parameters of dist. For example, for a quantile plot of the
uniform distribution on [2,4] and x, use

qqplot (x, "unif", 2, 4)

dist can be any string for which a function distinv or dist inv exists that calculates
the inverse CDF of distribution dist.

If no output arguments are given, the data are plotted directly.

[Function File][p, y] = ppplot (x, dist, params)
Perform a PP-plot (probability plot).

If F is the CDF of the distribution dist with parameters params and x a sample vector
of length n, the PP-plot graphs ordinate y(i) = F (i-th largest element of x) versus
abscissa p(i) = (i - 0.5)/n. If the sample comes from F, the pairs will approximately
follow a straight line.

The default for dist is the standard normal distribution. The optional argument
params contains a list of parameters of dist. For example, for a probability plot of
the uniform distribution on [2,4] and x, use

508 GNU Octave

ppplot (x, "uniform", 2, 4)

dist can be any string for which a function dist cdf that calculates the CDF of
distribution dist exists.

If no output arguments are given, the data are plotted directly.

26.4 Correlation and Regression Analysis

[Function File]cov (x)
[Function File]cov (x, opt)
[Function File]cov (x, y)
[Function File]cov (x, y, opt)

Compute the covariance matrix.

If each row of x and y is an observation, and each column is a variable, then the
(i, j)-th entry of cov (x, y) is the covariance between the i-th variable in x and the
j-th variable in y.

σij =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ)

where x̄ and ȳ are the mean values of x and y.

If called with one argument, compute cov (x, x), the covariance between the columns
of x.

The argument opt determines the type of normalization to use. Valid values are

0: normalize with N −1, provides the best unbiased estimator of the covari-
ance [default]

1: normalize with N , this provides the second moment around the mean

See also: [corr], page 508.

[Function File]corr (x)
[Function File]corr (x, y)

Compute matrix of correlation coefficients.

If each row of x and y is an observation and each column is a variable, then the
(i, j)-th entry of corr (x, y) is the correlation between the i-th variable in x and the
j-th variable in y.

corr(x, y) =
cov(x, y)

std(x)std(y)

If called with one argument, compute corr (x, x), the correlation between the
columns of x.

See also: [cov], page 508.

[Function File]spearman (x)
[Function File]spearman (x, y)

Compute Spearman’s rank correlation coefficient rho.

For two data vectors x and y, Spearman’s rho is the correlation coefficient of the
ranks of x and y.

Chapter 26: Statistics 509

If x and y are drawn from independent distributions, rho has zero mean and variance
1 / (n - 1), and is asymptotically normally distributed.

spearman (x) is equivalent to spearman (x, x).

See also: [ranks], page 506, [kendall], page 509.

[Function File]kendall (x)
[Function File]kendall (x, y)

Compute Kendall’s tau.

For two data vectors x, y of common length n, Kendall’s tau is the correlation of the
signs of all rank differences of x and y ; i.e., if both x and y have distinct entries, then

τ =
1

n(n− 1)

∑
i,j

sign(qi − qj)sign(ri − rj)

in which the qi and ri are the ranks of x and y, respectively.

If x and y are drawn from independent distributions, Kendall’s tau is asymptotically
normal with mean 0 and variance 2(2n+5)

9n(n−1) .

kendall (x) is equivalent to kendall (x, x).

See also: [ranks], page 506, [spearman], page 508.

[Function File][theta, beta, dev, dl, d2l, p] = logistic_regression
(y, x, print, theta, beta)

Perform ordinal logistic regression.

Suppose y takes values in k ordered categories, and let gamma_i (x) be the cumulative
probability that y falls in one of the first i categories given the covariate x. Then

[theta, beta] = logistic_regression (y, x)

fits the model

logit (gamma_i (x)) = theta_i - beta’ * x, i = 1 ... k-1

The number of ordinal categories, k, is taken to be the number of distinct values of
round (y). If k equals 2, y is binary and the model is ordinary logistic regression.
The matrix x is assumed to have full column rank.

Given y only, theta = logistic_regression (y) fits the model with baseline logit
odds only.

The full form is

[theta, beta, dev, dl, d2l, gamma]

= logistic_regression (y, x, print, theta, beta)

in which all output arguments and all input arguments except y are optional.

Setting print to 1 requests summary information about the fitted model to be dis-
played. Setting print to 2 requests information about convergence at each iteration.
Other values request no information to be displayed. The input arguments theta and
beta give initial estimates for theta and beta.

The returned value dev holds minus twice the log-likelihood.

The returned values dl and d2l are the vector of first and the matrix of second
derivatives of the log-likelihood with respect to theta and beta.

p holds estimates for the conditional distribution of y given x.

510 GNU Octave

26.5 Distributions

Octave has functions for computing the Probability Density Function (PDF), the Cumu-
lative Distribution function (CDF), and the quantile (the inverse of the CDF) for a large
number of distributions.

The following table summarizes the supported distributions (in alphabetical order).

Distribution PDF CDF Quantile

Beta betapdf betacdf betainv

Binomial binopdf binocdf binoinv

Cauchy cauchy pdf cauchy cdf cauchy inv

Chi-Square chi2pdf chi2cdf chi2inv

Univariate Discrete discrete pdf discrete cdf discrete inv

Empirical empirical pdf empirical cdf empirical inv

Exponential exppdf expcdf expinv

F fpdf fcdf finv

Gamma gampdf gamcdf gaminv

Geometric geopdf geocdf geoinv

Hypergeometric hygepdf hygecdf hygeinv

Kolmogorov Smirnov Not Available kolmogorov Not Available

smirnov cdf

Laplace laplace pdf laplace cdf laplace inv

Logistic logistic pdf logistic cdf logistic inv

Log-Normal lognpdf logncdf logninv

Univariate Normal normpdf normcdf norminv

Pascal nbinpdf nbincdf nbininv

Poisson poisspdf poisscdf poissinv

Standard Normal stdnormal pdf stdnormal cdf stdnormal inv

t (Student) tpdf tcdf tinv

Uniform Discrete unidpdf unidcdf unidinv

Uniform unifpdf unifcdf unifinv

Weibull wblpdf wblcdf wblinv

[Function File]betapdf (x, a, b)
For each element of x, compute the probability density function (PDF) at x of the
Beta distribution with parameters a and b.

[Function File]betacdf (x, a, b)
For each element of x, compute the cumulative distribution function (CDF) at x of
the Beta distribution with parameters a and b.

[Function File]betainv (x, a, b)
For each element of x, compute the quantile (the inverse of the CDF) at x of the Beta
distribution with parameters a and b.

Chapter 26: Statistics 511

[Function File]binopdf (x, n, p)
For each element of x, compute the probability density function (PDF) at x of the
binomial distribution with parameters n and p, where n is the number of trials and
p is the probability of success.

[Function File]binocdf (x, n, p)
For each element of x, compute the cumulative distribution function (CDF) at x of
the binomial distribution with parameters n and p, where n is the number of trials
and p is the probability of success.

[Function File]binoinv (x, n, p)
For each element of x, compute the quantile (the inverse of the CDF) at x of the
binomial distribution with parameters n and p, where n is the number of trials and
p is the probability of success.

[Function File]cauchy_pdf (x)
[Function File]cauchy_pdf (x, location, scale)

For each element of x, compute the probability density function (PDF) at x of the
Cauchy distribution with location parameter location and scale parameter scale > 0.
Default values are location = 0, scale = 1.

[Function File]cauchy_cdf (x)
[Function File]cauchy_cdf (x, location, scale)

For each element of x, compute the cumulative distribution function (CDF) at x of
the Cauchy distribution with location parameter location and scale parameter scale.
Default values are location = 0, scale = 1.

[Function File]cauchy_inv (x)
[Function File]cauchy_inv (x, location, scale)

For each element of x, compute the quantile (the inverse of the CDF) at x of the
Cauchy distribution with location parameter location and scale parameter scale. De-
fault values are location = 0, scale = 1.

[Function File]chi2pdf (x, n)
For each element of x, compute the probability density function (PDF) at x of the
chi-square distribution with n degrees of freedom.

[Function File]chi2cdf (x, n)
For each element of x, compute the cumulative distribution function (CDF) at x of
the chi-square distribution with n degrees of freedom.

[Function File]chi2inv (x, n)
For each element of x, compute the quantile (the inverse of the CDF) at x of the
chi-square distribution with n degrees of freedom.

[Function File]discrete_pdf (x, v, p)
For each element of x, compute the probability density function (PDF) at x of a
univariate discrete distribution which assumes the values in v with probabilities p.

512 GNU Octave

[Function File]discrete_cdf (x, v, p)
For each element of x, compute the cumulative distribution function (CDF) at x of a
univariate discrete distribution which assumes the values in v with probabilities p.

[Function File]discrete_inv (x, v, p)
For each element of x, compute the quantile (the inverse of the CDF) at x of the
univariate distribution which assumes the values in v with probabilities p.

[Function File]empirical_pdf (x, data)
For each element of x, compute the probability density function (PDF) at x of the
empirical distribution obtained from the univariate sample data.

[Function File]empirical_cdf (x, data)
For each element of x, compute the cumulative distribution function (CDF) at x of
the empirical distribution obtained from the univariate sample data.

[Function File]empirical_inv (x, data)
For each element of x, compute the quantile (the inverse of the CDF) at x of the
empirical distribution obtained from the univariate sample data.

[Function File]exppdf (x, lambda)
For each element of x, compute the probability density function (PDF) at x of the
exponential distribution with mean lambda.

[Function File]expcdf (x, lambda)
For each element of x, compute the cumulative distribution function (CDF) at x of
the exponential distribution with mean lambda.

The arguments can be of common size or scalars.

[Function File]expinv (x, lambda)
For each element of x, compute the quantile (the inverse of the CDF) at x of the
exponential distribution with mean lambda.

[Function File]fpdf (x, m, n)
For each element of x, compute the probability density function (PDF) at x of the F
distribution with m and n degrees of freedom.

[Function File]fcdf (x, m, n)
For each element of x, compute the cumulative distribution function (CDF) at x of
the F distribution with m and n degrees of freedom.

[Function File]finv (x, m, n)
For each element of x, compute the quantile (the inverse of the CDF) at x of the F
distribution with m and n degrees of freedom.

[Function File]gampdf (x, a, b)
For each element of x, return the probability density function (PDF) at x of the
Gamma distribution with shape parameter a and scale b.

[Function File]gamcdf (x, a, b)
For each element of x, compute the cumulative distribution function (CDF) at x of
the Gamma distribution with shape parameter a and scale b.

Chapter 26: Statistics 513

[Function File]gaminv (x, a, b)
For each element of x, compute the quantile (the inverse of the CDF) at x of the
Gamma distribution with shape parameter a and scale b.

[Function File]geopdf (x, p)
For each element of x, compute the probability density function (PDF) at x of the
geometric distribution with parameter p.

[Function File]geocdf (x, p)
For each element of x, compute the cumulative distribution function (CDF) at x of
the geometric distribution with parameter p.

[Function File]geoinv (x, p)
For each element of x, compute the quantile (the inverse of the CDF) at x of the
geometric distribution with parameter p.

[Function File]hygepdf (x, t, m, n)
Compute the probability density function (PDF) at x of the hypergeometric distribu-
tion with parameters t, m, and n. This is the probability of obtaining x marked items
when randomly drawing a sample of size n without replacement from a population of
total size t containing m marked items.

The parameters t, m, and n must be positive integers with m and n not greater than
t.

[Function File]hygecdf (x, t, m, n)
Compute the cumulative distribution function (CDF) at x of the hypergeometric
distribution with parameters t, m, and n. This is the probability of obtaining not more
than x marked items when randomly drawing a sample of size n without replacement
from a population of total size t containing m marked items.

The parameters t, m, and n must be positive integers with m and n not greater than
t.

[Function File]hygeinv (x, t, m, n)
For each element of x, compute the quantile (the inverse of the CDF) at x of the
hypergeometric distribution with parameters t, m, and n. This is the probability
of obtaining x marked items when randomly drawing a sample of size n without
replacement from a population of total size t containing m marked items.

The parameters t, m, and n must be positive integers with m and n not greater than
t.

[Function File]kolmogorov_smirnov_cdf (x, tol)
Return the cumulative distribution function (CDF) at x of the Kolmogorov-Smirnov
distribution,

Q(x) =
∞∑

k=−∞
(−1)k exp(−2k2x2)

for x > 0.

The optional parameter tol specifies the precision up to which the series should be
evaluated; the default is tol = eps.

514 GNU Octave

[Function File]laplace_pdf (x)
For each element of x, compute the probability density function (PDF) at x of the
Laplace distribution.

[Function File]laplace_cdf (x)
For each element of x, compute the cumulative distribution function (CDF) at x of
the Laplace distribution.

[Function File]laplace_inv (x)
For each element of x, compute the quantile (the inverse of the CDF) at x of the
Laplace distribution.

[Function File]logistic_pdf (x)
For each element of x, compute the PDF at x of the logistic distribution.

[Function File]logistic_cdf (x)
For each element of x, compute the cumulative distribution function (CDF) at x of
the logistic distribution.

[Function File]logistic_inv (x)
For each element of x, compute the quantile (the inverse of the CDF) at x of the
logistic distribution.

[Function File]lognpdf (x)
[Function File]lognpdf (x, mu, sigma)

For each element of x, compute the probability density function (PDF) at x of the
lognormal distribution with parameters mu and sigma. If a random variable follows
this distribution, its logarithm is normally distributed with mean mu and standard
deviation sigma.

Default values are mu = 1, sigma = 1.

[Function File]logncdf (x)
[Function File]logncdf (x, mu, sigma)

For each element of x, compute the cumulative distribution function (CDF) at x of the
lognormal distribution with parameters mu and sigma. If a random variable follows
this distribution, its logarithm is normally distributed with mean mu and standard
deviation sigma.

Default values are mu = 1, sigma = 1.

[Function File]logninv (x)
[Function File]logninv (x, mu, sigma)

For each element of x, compute the quantile (the inverse of the CDF) at x of the log-
normal distribution with parameters mu and sigma. If a random variable follows this
distribution, its logarithm is normally distributed with mean log (mu) and variance
sigma.

Default values are mu = 1, sigma = 1.

Chapter 26: Statistics 515

[Function File]nbinpdf (x, n, p)
For each element of x, compute the probability density function (PDF) at x of the
negative binomial distribution with parameters n and p.

When n is integer this is the Pascal distribution. When n is extended to real numbers
this is the Polya distribution.

The number of failures in a Bernoulli experiment with success probability p before
the n-th success follows this distribution.

[Function File]nbincdf (x, n, p)
For each element of x, compute the cumulative distribution function (CDF) at x of
the negative binomial distribution with parameters n and p.

When n is integer this is the Pascal distribution. When n is extended to real numbers
this is the Polya distribution.

The number of failures in a Bernoulli experiment with success probability p before
the n-th success follows this distribution.

[Function File]nbininv (x, n, p)
For each element of x, compute the quantile (the inverse of the CDF) at x of the
negative binomial distribution with parameters n and p.

When n is integer this is the Pascal distribution. When n is extended to real numbers
this is the Polya distribution.

The number of failures in a Bernoulli experiment with success probability p before
the n-th success follows this distribution.

[Function File]normpdf (x)
[Function File]normpdf (x, mu, sigma)

For each element of x, compute the probability density function (PDF) at x of the
normal distribution with mean mu and standard deviation sigma.

Default values are mu = 0, sigma = 1.

[Function File]normcdf (x)
[Function File]normcdf (x, mu, sigma)

For each element of x, compute the cumulative distribution function (CDF) at x of
the normal distribution with mean mu and standard deviation sigma.

Default values are mu = 0, sigma = 1.

[Function File]norminv (x)
[Function File]norminv (x, mu, sigma)

For each element of x, compute the quantile (the inverse of the CDF) at x of the
normal distribution with mean mu and standard deviation sigma.

Default values are mu = 0, sigma = 1.

[Function File]poisspdf (x, lambda)
For each element of x, compute the probability density function (PDF) at x of the
Poisson distribution with parameter lambda.

516 GNU Octave

[Function File]poisscdf (x, lambda)
For each element of x, compute the cumulative distribution function (CDF) at x of
the Poisson distribution with parameter lambda.

[Function File]poissinv (x, lambda)
For each element of x, compute the quantile (the inverse of the CDF) at x of the
Poisson distribution with parameter lambda.

[Function File]stdnormal_pdf (x)
For each element of x, compute the probability density function (PDF) at x of the
standard normal distribution (mean = 0, standard deviation = 1).

[Function File]stdnormal_cdf (x)
For each element of x, compute the cumulative distribution function (CDF) at x of
the standard normal distribution (mean = 0, standard deviation = 1).

[Function File]stdnormal_inv (x)
For each element of x, compute the quantile (the inverse of the CDF) at x of the
standard normal distribution (mean = 0, standard deviation = 1).

[Function File]tpdf (x, n)
For each element of x, compute the probability density function (PDF) at x of the t
(Student) distribution with n degrees of freedom.

[Function File]tcdf (x, n)
For each element of x, compute the cumulative distribution function (CDF) at x of
the t (Student) distribution with n degrees of freedom, i.e., PROB (t(n) ≤ x).

[Function File]tinv (x, n)
For each element of x, compute the quantile (the inverse of the CDF) at x of the
t (Student) distribution with n degrees of freedom. This function is analogous to
looking in a table for the t-value of a single-tailed distribution.

[Function File]unidpdf (x, n)
For each element of x, compute the probability density function (PDF) at x of a
discrete uniform distribution which assumes the integer values 1–n with equal prob-
ability.

Warning: The underlying implementation uses the double class and will only be
accurate for n ≤ bitmax (253 − 1 on IEEE-754 compatible systems).

[Function File]unidcdf (x, n)
For each element of x, compute the cumulative distribution function (CDF) at x
of a discrete uniform distribution which assumes the integer values 1–n with equal
probability.

[Function File]unidinv (x, n)
For each element of x, compute the quantile (the inverse of the CDF) at x of the
discrete uniform distribution which assumes the integer values 1–n with equal prob-
ability.

Chapter 26: Statistics 517

[Function File]unifpdf (x)
[Function File]unifpdf (x, a, b)

For each element of x, compute the probability density function (PDF) at x of the
uniform distribution on the interval [a, b].

Default values are a = 0, b = 1.

[Function File]unifcdf (x)
[Function File]unifcdf (x, a, b)

For each element of x, compute the cumulative distribution function (CDF) at x of
the uniform distribution on the interval [a, b].

Default values are a = 0, b = 1.

[Function File]unifinv (x)
[Function File]unifinv (x, a, b)

For each element of x, compute the quantile (the inverse of the CDF) at x of the
uniform distribution on the interval [a, b].

Default values are a = 0, b = 1.

[Function File]wblpdf (x)
[Function File]wblpdf (x, scale)
[Function File]wblpdf (x, scale, shape)

Compute the probability density function (PDF) at x of the Weibull distribution with
scale parameter scale and shape parameter shape which is given by

shape

scaleshape
· xshape−1 · e−(x

scale)
shape

for x ≥ 0.

Default values are scale = 1, shape = 1.

[Function File]wblcdf (x)
[Function File]wblcdf (x, scale)
[Function File]wblcdf (x, scale, shape)

Compute the cumulative distribution function (CDF) at x of the Weibull distribution
with scale parameter scale and shape parameter shape, which is

1− e−(x
scale)

shape

for x ≥ 0.

[Function File]wblinv (x)
[Function File]wblinv (x, scale)
[Function File]wblinv (x, scale, shape)

Compute the quantile (the inverse of the CDF) at x of the Weibull distribution with
scale parameter scale and shape parameter shape.

Default values are scale = 1, shape = 1.

518 GNU Octave

26.6 Tests

Octave can perform many different statistical tests. The following table summarizes the
available tests.

Hypothesis Test Functions

Equal mean values anova, hotelling test2, t test 2,

welch test, wilcoxon test, z test 2

Equal medians kruskal wallis test, sign test

Equal variances bartlett test, manova, var test

Equal distributions chisquare test homogeneity,

kolmogorov smirnov test 2, u test

Equal marginal frequencies mcnemar test

Equal success probabilities prop test 2

Independent observations chisquare test independence,

run test

Uncorrelated observations cor test

Given mean value hotelling test, t test, z test

Observations from distribution kolmogorov smirnov test

Regression f test regression, t test regression

The tests return a p-value that describes the outcome of the test. Assuming that the
test hypothesis is true, the p-value is the probability of obtaining a worse result than the
observed one. So large p-values corresponds to a successful test. Usually a test hypothesis
is accepted if the p-value exceeds 0.05.

[Function File][pval, f, df_b, df_w] = anova (y, g)
Perform a one-way analysis of variance (ANOVA). The goal is to test whether the
population means of data taken from k different groups are all equal.

Data may be given in a single vector y with groups specified by a corresponding
vector of group labels g (e.g., numbers from 1 to k). This is the general form which
does not impose any restriction on the number of data in each group or the group
labels.

If y is a matrix and g is omitted, each column of y is treated as a group. This form
is only appropriate for balanced ANOVA in which the numbers of samples from each
group are all equal.

Under the null of constant means, the statistic f follows an F distribution with df b
and df w degrees of freedom.

The p-value (1 minus the CDF of this distribution at f) is returned in pval.

If no output argument is given, the standard one-way ANOVA table is printed.

[Function File][pval, chisq, df] = bartlett_test (x1, . . .)
Perform a Bartlett test for the homogeneity of variances in the data vectors x1, x2,
. . . , xk, where k > 1.

Under the null of equal variances, the test statistic chisq approximately follows a
chi-square distribution with df degrees of freedom.

The p-value (1 minus the CDF of this distribution at chisq) is returned in pval.

Chapter 26: Statistics 519

If no output argument is given, the p-value is displayed.

[Function File][pval, chisq, df] = chisquare_test_homogeneity (x, y, c)
Given two samples x and y, perform a chisquare test for homogeneity of the null
hypothesis that x and y come from the same distribution, based on the partition
induced by the (strictly increasing) entries of c.

For large samples, the test statistic chisq approximately follows a chisquare distribu-
tion with df = length (c) degrees of freedom.

The p-value (1 minus the CDF of this distribution at chisq) is returned in pval.

If no output argument is given, the p-value is displayed.

[Function File][pval, chisq, df] = chisquare_test_independence (x)
Perform a chi-square test for independence based on the contingency table x. Under
the null hypothesis of independence, chisq approximately has a chi-square distribution
with df degrees of freedom.

The p-value (1 minus the CDF of this distribution at chisq) of the test is returned in
pval.

If no output argument is given, the p-value is displayed.

[Function File]cor_test (x, y, alt, method)
Test whether two samples x and y come from uncorrelated populations.

The optional argument string alt describes the alternative hypothesis, and can be
"!=" or "<>" (non-zero), ">" (greater than 0), or "<" (less than 0). The default is
the two-sided case.

The optional argument string method specifies which correlation coefficient to use
for testing. If method is "pearson" (default), the (usual) Pearson’s product moment
correlation coefficient is used. In this case, the data should come from a bivariate
normal distribution. Otherwise, the other two methods offer nonparametric alterna-
tives. If method is "kendall", then Kendall’s rank correlation tau is used. If method
is "spearman", then Spearman’s rank correlation rho is used. Only the first character
is necessary.

The output is a structure with the following elements:

pval The p-value of the test.

stat The value of the test statistic.

dist The distribution of the test statistic.

params The parameters of the null distribution of the test statistic.

alternative
The alternative hypothesis.

method The method used for testing.

If no output argument is given, the p-value is displayed.

520 GNU Octave

[Function File][pval, f, df_num, df_den] = f_test_regression (y, x, rr,
r)

Perform an F test for the null hypothesis rr * b = r in a classical normal regression
model y = X * b + e.

Under the null, the test statistic f follows an F distribution with df num and df den
degrees of freedom.

The p-value (1 minus the CDF of this distribution at f) is returned in pval.

If not given explicitly, r = 0.

If no output argument is given, the p-value is displayed.

[Function File][pval, tsq] = hotelling_test (x, m)
For a sample x from a multivariate normal distribution with unknown mean and
covariance matrix, test the null hypothesis that mean (x) == m .

Hotelling’s T 2 is returned in tsq. Under the null, (n − p)T 2/(p(n − 1)) has an F
distribution with p and n− p degrees of freedom, where n and p are the numbers of
samples and variables, respectively.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[Function File][pval, tsq] = hotelling_test_2 (x, y)
For two samples x from multivariate normal distributions with the same number of
variables (columns), unknown means and unknown equal covariance matrices, test
the null hypothesis mean (x) == mean (y).

Hotelling’s two-sample T 2 is returned in tsq. Under the null,

nx + ny − p− 1)T 2

p(nx + ny − 2)

has an F distribution with p and nx + ny − p − 1 degrees of freedom, where nx and
ny are the sample sizes and p is the number of variables.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[Function File][pval, ks] = kolmogorov_smirnov_test (x, dist, params,
alt)

Perform a Kolmogorov-Smirnov test of the null hypothesis that the sample x comes
from the (continuous) distribution dist. I.e., if F and G are the CDFs corresponding
to the sample and dist, respectively, then the null is that F == G.

The optional argument params contains a list of parameters of dist. For example, to
test whether a sample x comes from a uniform distribution on [2,4], use

kolmogorov_smirnov_test(x, "unif", 2, 4)

dist can be any string for which a function dist cdf that calculates the CDF of
distribution dist exists.

With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative F != G. In

Chapter 26: Statistics 521

this case, the test statistic ks follows a two-sided Kolmogorov-Smirnov distribution.
If alt is ">", the one-sided alternative F > G is considered. Similarly for "<", the
one-sided alternative F > G is considered. In this case, the test statistic ks has a
one-sided Kolmogorov-Smirnov distribution. The default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value is displayed.

[Function File][pval, ks, d] = kolmogorov_smirnov_test_2 (x, y, alt)
Perform a 2-sample Kolmogorov-Smirnov test of the null hypothesis that the samples
x and y come from the same (continuous) distribution. I.e., if F and G are the CDFs
corresponding to the x and y samples, respectively, then the null is that F == G.

With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative F != G. In
this case, the test statistic ks follows a two-sided Kolmogorov-Smirnov distribution.
If alt is ">", the one-sided alternative F > G is considered. Similarly for "<", the
one-sided alternative F < G is considered. In this case, the test statistic ks has a
one-sided Kolmogorov-Smirnov distribution. The default is the two-sided case.

The p-value of the test is returned in pval.

The third returned value, d, is the test statistic, the maximum vertical distance
between the two cumulative distribution functions.

If no output argument is given, the p-value is displayed.

[Function File][pval, k, df] = kruskal_wallis_test (x1, . . .)
Perform a Kruskal-Wallis one-factor "analysis of variance".

Suppose a variable is observed for k > 1 different groups, and let x1, . . . , xk be the
corresponding data vectors.

Under the null hypothesis that the ranks in the pooled sample are not affected by the
group memberships, the test statistic k is approximately chi-square with df = k - 1
degrees of freedom.

If the data contains ties (some value appears more than once) k is divided by

1 - sum ties / (n^3 - n)

where sum ties is the sum of t^2 - t over each group of ties where t is the number of
ties in the group and n is the total number of values in the input data. For more info
on this adjustment see "Use of Ranks in One-Criterion Variance Analysis" in Journal
of the American Statistical Association, Vol. 47, No. 260 (Dec 1952) by William H.
Kruskal and W. Allen Wallis.

The p-value (1 minus the CDF of this distribution at k) is returned in pval.

If no output argument is given, the p-value is displayed.

[Function File]manova (x, g)
Perform a one-way multivariate analysis of variance (MANOVA). The goal is to test
whether the p-dimensional population means of data taken from k different groups
are all equal. All data are assumed drawn independently from p-dimensional normal
distributions with the same covariance matrix.

522 GNU Octave

The data matrix is given by x. As usual, rows are observations and columns are
variables. The vector g specifies the corresponding group labels (e.g., numbers from
1 to k).

The LR test statistic (Wilks’ Lambda) and approximate p-values are computed and
displayed.

[Function File][pval, chisq, df] = mcnemar_test (x)
For a square contingency table x of data cross-classified on the row and column
variables, McNemar’s test can be used for testing the null hypothesis of symmetry of
the classification probabilities.

Under the null, chisq is approximately distributed as chisquare with df degrees of
freedom.

The p-value (1 minus the CDF of this distribution at chisq) is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[Function File][pval, z] = prop_test_2 (x1, n1, x2, n2, alt)
If x1 and n1 are the counts of successes and trials in one sample, and x2 and n2
those in a second one, test the null hypothesis that the success probabilities p1 and
p2 are the same. Under the null, the test statistic z approximately follows a standard
normal distribution.

With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative p1 != p2. If
alt is ">", the one-sided alternative p1 > p2 is used. Similarly for "<", the one-sided
alternative p1 < p2 is used. The default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[Function File][pval, chisq] = run_test (x)
Perform a chi-square test with 6 degrees of freedom based on the upward runs in the
columns of x. Can be used to test whether x contains independent data.

The p-value of the test is returned in pval.

If no output argument is given, the p-value is displayed.

[Function File][pval, b, n] = sign_test (x, y, alt)
For two matched-pair samples x and y, perform a sign test of the null hypothesis
PROB (x > y) == PROB (x < y) == 1/2. Under the null, the test statistic b
roughly follows a binomial distribution with parameters n = sum (x != y) and p =
1/2.

With the optional argument alt, the alternative of interest can be selected. If alt is
"!=" or "<>", the null hypothesis is tested against the two-sided alternative PROB
(x < y) != 1/2. If alt is ">", the one-sided alternative PROB (x > y) > 1/2 ("x
is stochastically greater than y") is considered. Similarly for "<", the one-sided
alternative PROB (x > y) < 1/2 ("x is stochastically less than y") is considered. The
default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

Chapter 26: Statistics 523

[Function File][pval, t, df] = t_test (x, m, alt)
For a sample x from a normal distribution with unknown mean and variance, perform
a t-test of the null hypothesis mean (x) == m . Under the null, the test statistic t
follows a Student distribution with df = length (x) - 1 degrees of freedom.

With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative mean (x) != m .
If alt is ">", the one-sided alternative mean (x) > m is considered. Similarly for "<",
the one-sided alternative mean (x) < m is considered. The default is the two-sided
case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[Function File][pval, t, df] = t_test_2 (x, y, alt)
For two samples x and y from normal distributions with unknown means and unknown
equal variances, perform a two-sample t-test of the null hypothesis of equal means.
Under the null, the test statistic t follows a Student distribution with df degrees of
freedom.

With the optional argument string alt, the alternative of interest can be selected.
If alt is "!=" or "<>", the null is tested against the two-sided alternative mean (x)

!= mean (y). If alt is ">", the one-sided alternative mean (x) > mean (y) is used.
Similarly for "<", the one-sided alternative mean (x) < mean (y) is used. The default
is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[Function File][pval, t, df] = t_test_regression (y, x, rr, r, alt)
Perform an t test for the null hypothesis rr * b = r in a classical normal regression
model y = x * b + e . Under the null, the test statistic t follows a t distribution with
df degrees of freedom.

If r is omitted, a value of 0 is assumed.

With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative rr * b !=

r . If alt is ">", the one-sided alternative rr * b > r is used. Similarly for "<", the
one-sided alternative rr * b < r is used. The default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[Function File][pval, z] = u_test (x, y, alt)
For two samples x and y, perform a Mann-Whitney U-test of the null hypothesis
PROB (x > y) == 1/2 == PROB (x < y). Under the null, the test statistic z
approximately follows a standard normal distribution. Note that this test is equivalent
to the Wilcoxon rank-sum test.

With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative PROB (x >

y) != 1/2. If alt is ">", the one-sided alternative PROB (x > y) > 1/2 is considered.

524 GNU Octave

Similarly for "<", the one-sided alternative PROB (x > y) < 1/2 is considered. The
default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[Function File][pval, f, df_num, df_den] = var_test (x, y, alt)
For two samples x and y from normal distributions with unknown means and unknown
variances, perform an F-test of the null hypothesis of equal variances. Under the
null, the test statistic f follows an F-distribution with df num and df den degrees of
freedom.

With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative var (x) !=

var (y). If alt is ">", the one-sided alternative var (x) > var (y) is used. Similarly
for "<", the one-sided alternative var (x) > var (y) is used. The default is the
two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[Function File][pval, t, df] = welch_test (x, y, alt)
For two samples x and y from normal distributions with unknown means and unknown
and not necessarily equal variances, perform a Welch test of the null hypothesis of
equal means. Under the null, the test statistic t approximately follows a Student
distribution with df degrees of freedom.

With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative mean (x) !=

m . If alt is ">", the one-sided alternative mean(x) > m is considered. Similarly for
"<", the one-sided alternative mean(x) < m is considered. The default is the two-sided
case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[Function File][pval, z] = wilcoxon_test (x, y, alt)
For two matched-pair sample vectors x and y, perform a Wilcoxon signed-rank test
of the null hypothesis PROB (x > y) == 1/2. Under the null, the test statistic z
approximately follows a standard normal distribution when n > 25.

Caution: This function assumes a normal distribution for z and thus is invalid for n
≤ 25.

With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative PROB (x >

y) != 1/2. If alt is ">", the one-sided alternative PROB (x > y) > 1/2 is considered.
Similarly for "<", the one-sided alternative PROB (x > y) < 1/2 is considered. The
default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

Chapter 26: Statistics 525

[Function File][pval, z] = z_test (x, m, v, alt)
Perform a Z-test of the null hypothesis mean (x) == m for a sample x from a normal
distribution with unknown mean and known variance v. Under the null, the test
statistic z follows a standard normal distribution.

With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative mean (x) != m .
If alt is ">", the one-sided alternative mean (x) > m is considered. Similarly for "<",
the one-sided alternative mean (x) < m is considered. The default is the two-sided
case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed along with some
information.

[Function File][pval, z] = z_test_2 (x, y, v_x, v_y, alt)
For two samples x and y from normal distributions with unknown means and known
variances v x and v y, perform a Z-test of the hypothesis of equal means. Under the
null, the test statistic z follows a standard normal distribution.

With the optional argument string alt, the alternative of interest can be selected.
If alt is "!=" or "<>", the null is tested against the two-sided alternative mean (x)

!= mean (y). If alt is ">", the one-sided alternative mean (x) > mean (y) is used.
Similarly for "<", the one-sided alternative mean (x) < mean (y) is used. The default
is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed along with some
information.

26.7 Random Number Generation

Octave can generate random numbers from a large number of distributions. The random
number generators are based on the random number generators described in Section 16.3
[Special Utility Matrices], page 343.

The following table summarizes the available random number generators (in alphabetical
order).

526 GNU Octave

Distribution Function

Beta Distribution betarnd

Binomial Distribution binornd

Cauchy Distribution cauchy rnd

Chi-Square Distribution chi2rnd

Univariate Discrete Distribution discrete rnd

Empirical Distribution empirical rnd

Exponential Distribution exprnd

F Distribution frnd

Gamma Distribution gamrnd

Geometric Distribution geornd

Hypergeometric Distribution hygernd

Laplace Distribution laplace rnd

Logistic Distribution logistic rnd

Log-Normal Distribution lognrnd

Pascal Distribution nbinrnd

Univariate Normal Distribution normrnd

Poisson Distribution poissrnd

Standard Normal Distribution stdnormal rnd

t (Student) Distribution trnd

Univariate Discrete Distribution unidrnd

Uniform Distribution unifrnd

Weibull Distribution wblrnd

Wiener Process wienrnd

[Function File]betarnd (a, b)
[Function File]betarnd (a, b, r)
[Function File]betarnd (a, b, r, c, . . .)
[Function File]betarnd (a, b, [sz])

Return a matrix of random samples from the Beta distribution with parameters a
and b.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the common size of a and b.

[Function File]binornd (n, p)
[Function File]binornd (n, p, r)
[Function File]binornd (n, p, r, c, . . .)
[Function File]binornd (n, p, [sz])

Return a matrix of random samples from the binomial distribution with parameters
n and p, where n is the number of trials and p is the probability of success.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

Chapter 26: Statistics 527

If no size arguments are given then the result matrix is the common size of n and p.

[Function File]cauchy_rnd (location, scale)
[Function File]cauchy_rnd (location, scale, r)
[Function File]cauchy_rnd (location, scale, r, c, . . .)
[Function File]cauchy_rnd (location, scale, [sz])

Return a matrix of random samples from the Cauchy distribution with parameters
location and scale.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the common size of location
and scale.

[Function File]chi2rnd (n)
[Function File]chi2rnd (n, r)
[Function File]chi2rnd (n, r, c, . . .)
[Function File]chi2rnd (n, [sz])

Return a matrix of random samples from the chi-square distribution with n degrees
of freedom.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the size of n.

[Function File]discrete_rnd (v, p)
[Function File]discrete_rnd (v, p, r)
[Function File]discrete_rnd (v, p, r, c, . . .)
[Function File]discrete_rnd (v, p, [sz])

Return a matrix of random samples from the univariate distribution which assumes
the values in v with probabilities p.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the common size of v and p.

[Function File]empirical_rnd (data)
[Function File]empirical_rnd (data, r)
[Function File]empirical_rnd (data, r, c, . . .)
[Function File]empirical_rnd (data, [sz])

Return a matrix of random samples from the empirical distribution obtained from
the univariate sample data.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are

528 GNU Octave

taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is a random ordering of the
sample data.

[Function File]exprnd (lambda)
[Function File]exprnd (lambda, r)
[Function File]exprnd (lambda, r, c, . . .)
[Function File]exprnd (lambda, [sz])

Return a matrix of random samples from the exponential distribution with mean
lambda.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the size of lambda.

[Function File]frnd (m, n)
[Function File]frnd (m, n, r)
[Function File]frnd (m, n, r, c, . . .)
[Function File]frnd (m, n, [sz])

Return a matrix of random samples from the F distribution with m and n degrees of
freedom.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the common size of m and n.

[Function File]gamrnd (a, b)
[Function File]gamrnd (a, b, r)
[Function File]gamrnd (a, b, r, c, . . .)
[Function File]gamrnd (a, b, [sz])

Return a matrix of random samples from the Gamma distribution with shape param-
eter a and scale b.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the common size of a and b.

[Function File]geornd (p)
[Function File]geornd (p, r)
[Function File]geornd (p, r, c, . . .)
[Function File]geornd (p, [sz])

Return a matrix of random samples from the geometric distribution with parameter
p.

Chapter 26: Statistics 529

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the size of p.

[Function File]hygernd (t, m, n)
[Function File]hygernd (t, m, n, r)
[Function File]hygernd (t, m, n, r, c, . . .)
[Function File]hygernd (t, m, n, [sz])

Return a matrix of random samples from the hypergeometric distribution with pa-
rameters t, m, and n.

The parameters t, m, and n must be positive integers with m and n not greater than
t.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the common size of t, m, and
n.

[Function File]laplace_rnd (r)
[Function File]laplace_rnd (r, c, . . .)
[Function File]laplace_rnd ([sz])

Return a matrix of random samples from the Laplace distribution.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

[Function File]logistic_rnd (r)
[Function File]logistic_rnd (r, c, . . .)
[Function File]logistic_rnd ([sz])

Return a matrix of random samples from the logistic distribution.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

[Function File]lognrnd (mu, sigma)
[Function File]lognrnd (mu, sigma, r)
[Function File]lognrnd (mu, sigma, r, c, . . .)
[Function File]lognrnd (mu, sigma, [sz])

Return a matrix of random samples from the lognormal distribution with parameters
mu and sigma.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are

530 GNU Octave

taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the common size of mu and
sigma.

[Function File]nbinrnd (n, p)
[Function File]nbinrnd (n, p, r)
[Function File]nbinrnd (n, p, r, c, . . .)
[Function File]nbinrnd (n, p, [sz])

Return a matrix of random samples from the negative binomial distribution with
parameters n and p.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the common size of n and p.

[Function File]normrnd (mu, sigma)
[Function File]normrnd (mu, sigma, r)
[Function File]normrnd (mu, sigma, r, c, . . .)
[Function File]normrnd (mu, sigma, [sz])

Return a matrix of random samples from the normal distribution with parameters
mean mu and standard deviation sigma.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the common size of mu and
sigma.

[Function File]poissrnd (lambda)
[Function File]poissrnd (lambda, r)
[Function File]poissrnd (lambda, r, c, . . .)
[Function File]poissrnd (lambda, [sz])

Return a matrix of random samples from the Poisson distribution with parameter
lambda.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the size of lambda.

[Function File]stdnormal_rnd (r)
[Function File]stdnormal_rnd (r, c, . . .)
[Function File]stdnormal_rnd ([sz])

Return a matrix of random samples from the standard normal distribution (mean =
0, standard deviation = 1).

Chapter 26: Statistics 531

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

[Function File]trnd (n)
[Function File]trnd (n, r)
[Function File]trnd (n, r, c, . . .)
[Function File]trnd (n, [sz])

Return a matrix of random samples from the t (Student) distribution with n degrees
of freedom.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the size of n.

[Function File]unidrnd (n)
[Function File]unidrnd (n, r)
[Function File]unidrnd (n, r, c, . . .)
[Function File]unidrnd (n, [sz])

Return a matrix of random samples from the discrete uniform distribution which
assumes the integer values 1–n with equal probability. n may be a scalar or a multi-
dimensional array.

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the size of n.

[Function File]unifrnd (a, b)
[Function File]unifrnd (a, b, r)
[Function File]unifrnd (a, b, r, c, . . .)
[Function File]unifrnd (a, b, [sz])

Return a matrix of random samples from the uniform distribution on [a, b].

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the common size of a and b.

[Function File]wblrnd (scale, shape)
[Function File]wblrnd (scale, shape, r)
[Function File]wblrnd (scale, shape, r, c, . . .)
[Function File]wblrnd (scale, shape, [sz])

Return a matrix of random samples from the Weibull distribution with parameters
scale and shape.

532 GNU Octave

When called with a single size argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify additional
matrix dimensions. The size may also be specified with a vector of dimensions sz.

If no size arguments are given then the result matrix is the common size of scale and
shape.

[Function File]wienrnd (t, d, n)
Return a simulated realization of the d-dimensional Wiener Process on the interval
[0, t]. If d is omitted, d = 1 is used. The first column of the return matrix contains
time, the remaining columns contain the Wiener process.

The optional parameter n gives the number of summands used for simulating the
process over an interval of length 1. If n is omitted, n = 1000 is used.

Chapter 27: Sets 533

27 Sets

Octave has a limited number of functions for managing sets of data, where a set is defined
as a collection of unique elements. In Octave a set is represented as a vector of numbers.

[Function File]unique (x)
[Function File]unique (x, "rows")
[Function File]unique (. . . , "first")
[Function File]unique (. . . , "last")
[Function File][y, i, j] = unique (. . .)

Return the unique elements of x, sorted in ascending order. If the input x is a vector
then the output is also a vector with the same orientation (row or column) as the
input. For a matrix input the output is always a column vector. x may also be a cell
array of strings.

If the optional argument "rows" is supplied, return the unique rows of x, sorted in
ascending order.

If requested, return index vectors i and j such that x(i)==y and y(j)==x.

Additionally, if i is a requested output then one of "first" or "last" may be given
as an input. If "last" is specified, return the highest possible indices in i, otherwise,
if "first" is specified, return the lowest. The default is "last".

See also: [union], page 534, [intersect], page 534, [setdiff], page 534, [setxor], page 535,
[ismember], page 533.

27.1 Set Operations

Octave supports the basic set operations. That is, Octave can compute the union, intersec-
tion, and difference of two sets. Octave also supports the Exclusive Or set operation, and
membership determination. The functions for set operations all work in pretty much the
same way. As an example, assume that x and y contains two sets, then

union(x, y)

computes the union of the two sets.

[Function File]tf = ismember (A, s)
[Function File][tf, S_idx] = ismember (A, s)
[Function File][tf, S_idx] = ismember (A, s, "rows")

Return a logical matrix tf with the same shape as A which is true (1) if A(i,j) is in
s and false (0) if it is not. If a second output argument is requested, the index into s
of each of the matching elements is also returned.

a = [3, 10, 1];

s = [0:9];

[tf, s_idx] = ismember (a, s)

⇒ tf = [1, 0, 1]

⇒ s_idx = [4, 0, 2]

The inputs, A and s, may also be cell arrays.

534 GNU Octave

a = {’abc’};

s = {’abc’, ’def’};

[tf, s_idx] = ismember (a, s)

⇒ tf = [1, 0]

⇒ s_idx = [1, 0]

With the optional third argument "rows", and matrices A and s with the same
number of columns, compare rows in A with the rows in s.

a = [1:3; 5:7; 4:6];

s = [0:2; 1:3; 2:4; 3:5; 4:6];

[tf, s_idx] = ismember(a, s, "rows")

⇒ tf = logical ([1; 0; 1])

⇒ s_idx = [2; 0; 5];

See also: [unique], page 533, [union], page 534, [intersect], page 534, [setxor], page 535,
[setdiff], page 534.

[Function File]union (a, b)
[Function File]union (a, b, "rows")

Return the set of elements that are in either of the sets a and b. a, b may be cell
arrays of string(s). For example:

union ([1, 2, 4], [2, 3, 5])

⇒ [1, 2, 3, 4, 5]

If the optional third input argument is the string "rows" each row of the matrices a
and b will be considered an element of sets. For example:

union ([1, 2; 2, 3], [1, 2; 3, 4], "rows")

⇒ 1 2

2 3

3 4

[Function File][c, ia, ib] = union (a, b)
Return index vectors ia and ib such that a(ia) and b(ib) are disjoint sets whose
union is c.

See also: [intersect], page 534, [setdiff], page 534, [unique], page 533.

[Function File]intersect (a, b)
[Function File][c, ia, ib] = intersect (a, b)

Return the elements in both a and b, sorted in ascending order. If a and b are both
column vectors return a column vector, otherwise return a row vector. a, b may be
cell arrays of string(s).

Return index vectors ia and ib such that a(ia)==c and b(ib)==c.

See also: [unique], page 533, [union], page 534, [setxor], page 535, [setdiff], page 534,
[ismember], page 533.

[Function File]setdiff (a, b)
[Function File]setdiff (a, b, "rows")

Chapter 27: Sets 535

[Function File][c, i] = setdiff (a, b)
Return the elements in a that are not in b, sorted in ascending order. If a and b are
both column vectors return a column vector, otherwise return a row vector. a, b may
be cell arrays of string(s).

Given the optional third argument ‘"rows"’, return the rows in a that are not in b,
sorted in ascending order by rows.

If requested, return i such that c = a(i).

See also: [unique], page 533, [union], page 534, [intersect], page 534, [setxor], page 535,
[ismember], page 533.

[Function File]setxor (a, b)
[Function File]setxor (a, b, ’rows’)
[Function File][c, ia, ib] = setxor (a, b)

Return the elements exclusive to a or b, sorted in ascending order. If a and b are
both column vectors return a column vector, otherwise return a row vector. a, b may
be cell arrays of string(s).

With three output arguments, return index vectors ia and ib such that a(ia) and
b(ib) are disjoint sets whose union is c.

See also: [unique], page 533, [union], page 534, [intersect], page 534, [setdiff], page 534,
[ismember], page 533.

[Function File]powerset (a)
[Function File]powerset (a, "rows")

Return a cell array containing all subsets of the set a.

See also: [unique], page 533, [union], page 534, [setxor], page 535, [setdiff], page 534,
[ismember], page 533.

Chapter 28: Polynomial Manipulations 537

28 Polynomial Manipulations

In Octave, a polynomial is represented by its coefficients (arranged in descending order).
For example, a vector c of length N +1 corresponds to the following polynomial of order N

p(x) = c1x
N + . . .+ cNx+ cN+1.

28.1 Evaluating Polynomials

The value of a polynomial represented by the vector c can be evaluated at the point x very
easily, as the following example shows:

N = length(c)-1;

val = dot(x.^(N:-1:0), c);

While the above example shows how easy it is to compute the value of a polynomial, it isn’t
the most stable algorithm. With larger polynomials you should use more elegant algorithms,
such as Horner’s Method, which is exactly what the Octave function polyval does.

In the case where x is a square matrix, the polynomial given by c is still well-defined.
As when x is a scalar the obvious implementation is easily expressed in Octave, but also in
this case more elegant algorithms perform better. The polyvalm function provides such an
algorithm.

[Function File]y = polyval (p, x)
[Function File]y = polyval (p, x, [], mu)

Evaluate the polynomial p at the specified values of x. When mu is present, evaluate
the polynomial for (x-mu(1))/mu(2). If x is a vector or matrix, the polynomial is
evaluated for each of the elements of x.

[Function File][y, dy] = polyval (p, x, s)
[Function File][y, dy] = polyval (p, x, s, mu)

In addition to evaluating the polynomial, the second output represents the prediction
interval, y +/- dy, which contains at least 50% of the future predictions. To calculate
the prediction interval, the structured variable s, originating from polyfit, must be
supplied.

See also: [polyvalm], page 537, [polyaffine], page 542, [polyfit], page 542, [roots],
page 538, [poly], page 545.

[Function File]polyvalm (c, x)
Evaluate a polynomial in the matrix sense.

polyvalm (c, x) will evaluate the polynomial in the matrix sense, i.e., matrix mul-
tiplication is used instead of element by element multiplication as used in polyval.

The argument x must be a square matrix.

See also: [polyval], page 537, [roots], page 538, [poly], page 545.

538 GNU Octave

28.2 Finding Roots

Octave can find the roots of a given polynomial. This is done by computing the companion
matrix of the polynomial (see the compan function for a definition), and then finding its
eigenvalues.

[Function File]roots (v)
For a vector v with N components, return the roots of the polynomial

v1z
N−1 + · · ·+ vN−1z + vN .

As an example, the following code finds the roots of the quadratic polynomial

p(x) = x2 − 5.

c = [1, 0, -5];

roots (c)

⇒ 2.2361

⇒ -2.2361

Note that the true result is ±
√
5 which is roughly ±2.2361.

See also: [poly], page 545, [compan], page 538, [fzero], page 413.

[Function File]compan (c)
Compute the companion matrix corresponding to polynomial coefficient vector c.

The companion matrix is

A =

−c2/c1 −c3/c1 · · · −cN/c1 −cN+1/c1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

The eigenvalues of the companion matrix are equal to the roots of the polynomial.

See also: [roots], page 538, [poly], page 545, [eig], page 378.

[Function File][multp, idxp] = mpoles (p)
[Function File][multp, idxp] = mpoles (p, tol)
[Function File][multp, idxp] = mpoles (p, tol, reorder)

Identify unique poles in p and their associated multiplicity. The output is ordered
from largest pole to smallest pole.

If the relative difference of two poles is less than tol then they are considered to be
multiples. The default value for tol is 0.001.

If the optional parameter reorder is zero, poles are not sorted.

The output multp is a vector specifying the multiplicity of the poles. multp(n) refers
to the multiplicity of the Nth pole p(idxp(n)).

For example:

Chapter 28: Polynomial Manipulations 539

p = [2 3 1 1 2];

[m, n] = mpoles (p)

⇒ m = [1; 1; 2; 1; 2]

⇒ n = [2; 5; 1; 4; 3]

⇒ p(n) = [3, 2, 2, 1, 1]

See also: [residue], page 540, [poly], page 545, [roots], page 538, [conv], page 539,
[deconv], page 539.

28.3 Products of Polynomials

[Function File]conv (a, b)
[Function File]conv (a, b, shape)

Convolve two vectors a and b.

The output convolution is a vector with length equal to length (a) + length (b)

- 1. When a and b are the coefficient vectors of two polynomials, the convolution
represents the coefficient vector of the product polynomial.

The optional shape argument may be

shape = "full"
Return the full convolution. (default)

shape = "same"
Return the central part of the convolution with the same size as a.

See also: [deconv], page 539, [conv2], page 540, [convn], page 539, [fftconv], page 572.

[Loadable Function]C = convn (A, B)
[Loadable Function]C = convn (A, B, shape)

Return the n-D convolution of A and B. The size of the result is determined by the
optional shape argument which takes the following values

shape = "full"
Return the full convolution. (default)

shape = "same"
Return central part of the convolution with the same size as A. The
central part of the convolution begins at the indices floor ([size(B)/2]

+ 1).

shape = "valid"
Return only the parts which do not include zero-padded edges. The size
of the result is max (size (A) - size (B) + 1, 0).

See also: [conv2], page 540, [conv], page 539.

[Function File]deconv (y, a)
Deconvolve two vectors.

[b, r] = deconv (y, a) solves for b and r such that y = conv (a, b) + r.

If y and a are polynomial coefficient vectors, b will contain the coefficients of the
polynomial quotient and r will be a remainder polynomial of lowest order.

See also: [conv], page 539, [residue], page 540.

540 GNU Octave

[Loadable Function]conv2 (A, B)
[Loadable Function]conv2 (v1, v2, m)
[Loadable Function]conv2 (. . . , shape)

Return the 2-D convolution of A and B. The size of the result is determined by the
optional shape argument which takes the following values

shape = "full"
Return the full convolution. (default)

shape = "same"
Return the central part of the convolution with the same size as A. The
central part of the convolution begins at the indices floor ([size(B)/2]

+ 1).

shape = "valid"
Return only the parts which do not include zero-padded edges. The size
of the result is max (size (A) - size (B) + 1, 0).

When the third argument is a matrix, return the convolution of the matrix m by the
vector v1 in the column direction and by the vector v2 in the row direction.

See also: [conv], page 539, [convn], page 539.

[Function File]q = polygcd (b, a)
[Function File]q = polygcd (b, a, tol)

Find the greatest common divisor of two polynomials. This is equivalent to the poly-
nomial found by multiplying together all the common roots. Together with deconv,
you can reduce a ratio of two polynomials. The tolerance tol defaults to sqrt(eps).

Caution: This is a numerically unstable algorithm and should not be used on large
polynomials.

Example code:

polygcd (poly (1:8), poly (3:12)) - poly (3:8)

⇒ [0, 0, 0, 0, 0, 0, 0]

deconv (poly (1:8), polygcd (poly (1:8), poly (3:12))) - poly(1:2)

⇒ [0, 0, 0]

See also: [poly], page 545, [roots], page 538, [conv], page 539, [deconv], page 539,
[residue], page 540.

[Function File][r, p, k, e] = residue (b, a)
[Function File][b, a] = residue (r, p, k)
[Function File][b, a] = residue (r, p, k, e)

The first calling form computes the partial fraction expansion for the quotient of the
polynomials, b and a.

B(s)

A(s)
=

M∑
m=1

rm
(s− pm)em

+
N∑
i=1

kis
N−i.

where M is the number of poles (the length of the r, p, and e), the k vector is a
polynomial of order N − 1 representing the direct contribution, and the e vector
specifies the multiplicity of the m-th residue’s pole.

For example,

Chapter 28: Polynomial Manipulations 541

b = [1, 1, 1];

a = [1, -5, 8, -4];

[r, p, k, e] = residue (b, a)

⇒ r = [-2; 7; 3]

⇒ p = [2; 2; 1]

⇒ k = [](0x0)

⇒ e = [1; 2; 1]

which represents the following partial fraction expansion

s2 + s+ 1

s3 − 5s2 + 8s− 4
=
−2
s− 2

+
7

(s− 2)2
+

3

s− 1

The second calling form performs the inverse operation and computes the reconsti-
tuted quotient of polynomials, b(s)/a(s), from the partial fraction expansion; repre-
sented by the residues, poles, and a direct polynomial specified by r, p and k, and the
pole multiplicity e.

If the multiplicity, e, is not explicitly specified the multiplicity is determined by the
function mpoles.

For example:

r = [-2; 7; 3];

p = [2; 2; 1];

k = [1, 0];

[b, a] = residue (r, p, k)

⇒ b = [1, -5, 9, -3, 1]

⇒ a = [1, -5, 8, -4]

where mpoles is used to determine e = [1; 2; 1]

Alternatively the multiplicity may be defined explicitly, for example,

r = [7; 3; -2];

p = [2; 1; 2];

k = [1, 0];

e = [2; 1; 1];

[b, a] = residue (r, p, k, e)

⇒ b = [1, -5, 9, -3, 1]

⇒ a = [1, -5, 8, -4]

which represents the following partial fraction expansion

−2
s− 2

+
7

(s− 2)2
+

3

s− 1
+ s =

s4 − 5s3 + 9s2 − 3s+ 1

s3 − 5s2 + 8s− 4

See also: [mpoles], page 538, [poly], page 545, [roots], page 538, [conv], page 539,
[deconv], page 539.

542 GNU Octave

28.4 Derivatives / Integrals / Transforms

Octave comes with functions for computing the derivative and the integral of a polynomial.
The functions polyder and polyint both return new polynomials describing the result. As
an example we’ll compute the definite integral of p(x) = x2 + 1 from 0 to 3.

c = [1, 0, 1];

integral = polyint(c);

area = polyval(integral, 3) - polyval(integral, 0)

⇒ 12

[Function File]polyder (p)
[Function File][k] = polyder (a, b)
[Function File][q, d] = polyder (b, a)

Return the coefficients of the derivative of the polynomial whose coefficients are given
by the vector p. If a pair of polynomials is given, return the derivative of the product
a∗b. If two inputs and two outputs are given, return the derivative of the polynomial
quotient b/a. The quotient numerator is in q and the denominator in d.

See also: [polyint], page 542, [polyval], page 537, [polyreduce], page 545.

[Function File]polyint (p)
[Function File]polyint (p, k)

Return the coefficients of the integral of the polynomial whose coefficients are repre-
sented by the vector p. The variable k is the constant of integration, which by default
is set to zero.

See also: [polyder], page 542, [polyval], page 537.

[Function File]polyaffine (f, mu)
Return the coefficients of the polynomial vector f after an affine transformation. If f
is the vector representing the polynomial f(x), then g = polyaffine (f, mu) is the
vector representing:

g(x) = f((x - mu(1)) / mu(2))

See also: [polyval], page 537, [polyfit], page 542.

28.5 Polynomial Interpolation

Octave comes with good support for various kinds of interpolation, most of which are
described in Chapter 29 [Interpolation], page 547. One simple alternative to the functions
described in the aforementioned chapter, is to fit a single polynomial to some given data
points. To avoid a highly fluctuating polynomial, one most often wants to fit a low-order
polynomial to data. This usually means that it is necessary to fit the polynomial in a
least-squares sense, which just is what the polyfit function does.

[Function File]p = polyfit (x, y, n)
[Function File][p, s] = polyfit (x, y, n)
[Function File][p, s, mu] = polyfit (x, y, n)

Return the coefficients of a polynomial p(x) of degree n that minimizes the least-
squares-error of the fit to the points [x, y].

Chapter 28: Polynomial Manipulations 543

The polynomial coefficients are returned in a row vector.

The optional output s is a structure containing the following fields:

‘R’ Triangular factor R from the QR decomposition.

‘X’ The Vandermonde matrix used to compute the polynomial coefficients.

‘df’ The degrees of freedom.

‘normr’ The norm of the residuals.

‘yf’ The values of the polynomial for each value of x.

The second output may be used by polyval to calculate the statistical error limits
of the predicted values.

When the third output, mu, is present the coefficients, p, are associated with a poly-
nomial in xhat = (x-mu(1))/mu(2). Where mu(1) = mean (x), and mu(2) = std (x).
This linear transformation of x improves the numerical stability of the fit.

See also: [polyval], page 537, [polyaffine], page 542, [roots], page 538, [vander],
page 352, [zscore], page 505.

In situations where a single polynomial isn’t good enough, a solution is to use several
polynomials pieced together. The function mkpp creates a piecewise polynomial, ppval
evaluates the function created by mkpp, and unmkpp returns detailed information about the
function.

The following example shows how to combine two linear functions and a quadratic into
one function. Each of these functions is expressed on adjoined intervals.

x = [-2, -1, 1, 2];

p = [0, 1, 0;

1, -2, 1;

0, -1, 1];

pp = mkpp(x, p);

xi = linspace(-2, 2, 50);

yi = ppval(pp, xi);

plot(xi, yi);

[Function File]pp = mkpp (breaks, coefs)
[Function File]pp = mkpp (breaks, coefs, d)

Construct a piecewise polynomial (pp) structure from sample points breaks and co-
efficients coefs. breaks must be a vector of strictly increasing values. The number
of intervals is given by ni = length (breaks) - 1. When m is the polynomial order
coefs must be of size: ni x m + 1.

The i-th row of coefs, coefs (i,:), contains the coefficients for the polynomial over
the i-th interval, ordered from highest (m) to lowest (0).

coefs may also be a multi-dimensional array, specifying a vector-valued or array-valued
polynomial. In that case the polynomial order is defined by the length of the last
dimension of coefs. The size of first dimension(s) are given by the scalar or vector d.
If d is not given it is set to 1. In any case coefs is reshaped to a 2-D matrix of size
[ni*prod(d m)]

544 GNU Octave

See also: [unmkpp], page 544, [ppval], page 544, [spline], page 551, [pchip], page 576,
[ppder], page 544, [ppint], page 544, [ppjumps], page 544.

[Function File][x, p, n, k, d] = unmkpp (pp)
Extract the components of a piecewise polynomial structure pp. The components are:

x Sample points.

p Polynomial coefficients for points in sample interval. p (i, :) contains
the coefficients for the polynomial over interval i ordered from highest
to lowest. If d > 1, p (r, i, :) contains the coefficients for the r-th
polynomial defined on interval i.

n Number of polynomial pieces.

k Order of the polynomial plus 1.

d Number of polynomials defined for each interval.

See also: [mkpp], page 543, [ppval], page 544, [spline], page 551, [pchip], page 576.

[Function File]yi = ppval (pp, xi)
Evaluate the piecewise polynomial structure pp at the points xi. If pp describes a
scalar polynomial function, the result is an array of the same shape as xi. Other-
wise, the size of the result is [pp.dim, length(xi)] if xi is a vector, or [pp.dim,

size(xi)] if it is a multi-dimensional array.

See also: [mkpp], page 543, [unmkpp], page 544, [spline], page 551, [pchip], page 576.

[Function File]ppd = ppder (pp)
[Function File]ppd = ppder (pp, m)

Compute the piecewise m-th derivative of a piecewise polynomial struct pp. If m is
omitted the first derivative is calculated.

See also: [mkpp], page 543, [ppval], page 544, [ppint], page 544.

[Function File]ppi = ppint (pp)
[Function File]ppi = ppint (pp, c)

Compute the integral of the piecewise polynomial struct pp. c, if given, is the constant
of integration.

See also: [mkpp], page 543, [ppval], page 544, [ppder], page 544.

[Function File]jumps = ppjumps (pp)
Evaluate the boundary jumps of a piecewise polynomial. If there are n intervals, and
the dimensionality of pp is d, the resulting array has dimensions [d, n-1].

See also: [mkpp], page 543.

Chapter 28: Polynomial Manipulations 545

28.6 Miscellaneous Functions

[Function File]poly (A)
[Function File]poly (x)

If A is a square N -by-N matrix, poly (A) is the row vector of the coefficients of det
(z * eye (N) - A), the characteristic polynomial of A. For example, the following
code finds the eigenvalues of A which are the roots of poly (A).

roots (poly (eye (3)))

⇒ 1.00001 + 0.00001i

1.00001 - 0.00001i

0.99999 + 0.00000i

In fact, all three eigenvalues are exactly 1 which emphasizes that for numerical per-
formance the eig function should be used to compute eigenvalues.

If x is a vector, poly (x) is a vector of the coefficients of the polynomial whose roots
are the elements of x. That is, if c is a polynomial, then the elements of d = roots

(poly (c)) are contained in c. The vectors c and d are not identical, however, due
to sorting and numerical errors.

See also: [roots], page 538, [eig], page 378.

[Function File]polyout (c)
[Function File]polyout (c, x)
[Function File]str = polyout (. . .)

Write formatted polynomial

c(x) = c1x
n + . . .+ cnx+ cn+1

and return it as a string or write it to the screen (if nargout is zero). x defaults to
the string "s".

See also: [polyreduce], page 545.

[Function File]polyreduce (c)
Reduce a polynomial coefficient vector to a minimum number of terms by stripping
off any leading zeros.

See also: [polyout], page 545.

Chapter 29: Interpolation 547

29 Interpolation

29.1 One-dimensional Interpolation

Octave supports several methods for one-dimensional interpolation, most of which are de-
scribed in this section. Section 28.5 [Polynomial Interpolation], page 542 and Section 30.4
[Interpolation on Scattered Data], page 567 describe further methods.

[Function File]yi = interp1 (x, y, xi)
[Function File]yi = interp1 (y, xi)
[Function File]yi = interp1 (. . . , method)
[Function File]yi = interp1 (. . . , extrap)
[Function File]pp = interp1 (. . . , ’pp’)

One-dimensional interpolation. Interpolate y, defined at the points x, at the points
xi. The sample points x must be monotonic. If not specified, x is taken to be the
indices of y. If y is an array, treat the columns of y separately.

Method is one of:

’nearest’ Return the nearest neighbor.

’linear’ Linear interpolation from nearest neighbors

’pchip’ Piecewise cubic Hermite interpolating polynomial

’cubic’ Cubic interpolation (same as pchip)

’spline’ Cubic spline interpolation—smooth first and second derivatives through-
out the curve

Appending ’*’ to the start of the above method forces interp1 to assume that x is
uniformly spaced, and only x (1) and x (2) are referenced. This is usually faster,
and is never slower. The default method is ’linear’.

If extrap is the string ’extrap’, then extrapolate values beyond the endpoints. If
extrap is a number, replace values beyond the endpoints with that number. If extrap
is missing, assume NA.

If the string argument ’pp’ is specified, then xi should not be supplied and interp1

returns the piecewise polynomial that can later be used with ppval to evaluate the
interpolation. There is an equivalence, such that ppval (interp1 (x, y, method,

’pp’), xi) == interp1 (x, y, xi, method, ’extrap’).

Duplicate points in x specify a discontinuous interpolant. There should be at most
2 consecutive points with the same value. The discontinuous interpolant is right-
continuous if x is increasing, left-continuous if it is decreasing. Discontinuities are
(currently) only allowed for "nearest" and "linear" methods; in all other cases, x
must be strictly monotonic.

An example of the use of interp1 is

548 GNU Octave

xf = [0:0.05:10];

yf = sin (2*pi*xf/5);

xp = [0:10];

yp = sin (2*pi*xp/5);

lin = interp1 (xp, yp, xf);

spl = interp1 (xp, yp, xf, "spline");

cub = interp1 (xp, yp, xf, "cubic");

near = interp1 (xp, yp, xf, "nearest");

plot (xf, yf, "r", xf, lin, "g", xf, spl, "b",

xf, cub, "c", xf, near, "m", xp, yp, "r*");

legend ("original", "linear", "spline", "cubic", "nearest");

See also: [interpft], page 550.

There are some important differences between the various interpolation methods. The
’spline’ method enforces that both the first and second derivatives of the interpolated values
have a continuous derivative, whereas the other methods do not. This means that the results
of the ’spline’ method are generally smoother. If the function to be interpolated is in fact
smooth, then ’spline’ will give excellent results. However, if the function to be evaluated is
in some manner discontinuous, then ’pchip’ interpolation might give better results.

This can be demonstrated by the code

t = -2:2;

dt = 1;

ti =-2:0.025:2;

dti = 0.025;

y = sign(t);

ys = interp1(t,y,ti,’spline’);

yp = interp1(t,y,ti,’pchip’);

ddys = diff(diff(ys)./dti)./dti;

ddyp = diff(diff(yp)./dti)./dti;

figure(1);

plot (ti, ys,’r-’, ti, yp,’g-’);

legend(’spline’,’pchip’,4);

figure(2);

plot (ti, ddys,’r+’, ti, ddyp,’g*’);

legend(’spline’,’pchip’);

The result of which can be seen in Figure 29.1 and Figure 29.2.

Chapter 29: Interpolation 549

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

spline
pchip

Figure 29.1: Comparison of ’pchip’ and ’spline’ interpolation methods for a step function

-4

-3

-2

-1

0

1

2

3

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

spline
pchip

Figure 29.2: Comparison of the second derivative of the ’pchip’ and ’spline’ interpolation
methods for a step function

A simplified version of interp1 that performs only linear interpolation is available in
interp1q. This argument is slightly faster than interp1 as to performs little error checking.

[Function File]yi = interp1q (x, y, xi)
One-dimensional linear interpolation without error checking. Interpolates y, defined
at the points x, at the points xi. The sample points x must be a strictly monotonically
increasing column vector. If y is an array, treat the columns of y separately. If y is
a vector, it must be a column vector of the same length as x.

Values of xi beyond the endpoints of the interpolation result in NA being returned.

550 GNU Octave

Note that the error checking is only a significant portion of the execution time of this
interp1 if the size of the input arguments is relatively small. Therefore, the benefit
of using interp1q is relatively small.

See also: [interp1], page 547.

Fourier interpolation, is a resampling technique where a signal is converted to the fre-
quency domain, padded with zeros and then reconverted to the time domain.

[Function File]interpft (x, n)
[Function File]interpft (x, n, dim)

Fourier interpolation. If x is a vector, then x is resampled with n points. The data
in x is assumed to be equispaced. If x is an array, then operate along each column of
the array separately. If dim is specified, then interpolate along the dimension dim.

interpft assumes that the interpolated function is periodic, and so assumptions are
made about the endpoints of the interpolation.

See also: [interp1], page 547.

There are two significant limitations on Fourier interpolation. Firstly, the function signal
is assumed to be periodic, and so non-periodic signals will be poorly represented at the edges.
Secondly, both the signal and its interpolation are required to be sampled at equispaced
points. An example of the use of interpft is

t = 0 : 0.3 : pi; dt = t(2)-t(1);

n = length (t); k = 100;

ti = t(1) + [0 : k-1]*dt*n/k;

y = sin (4*t + 0.3) .* cos (3*t - 0.1);

yp = sin (4*ti + 0.3) .* cos (3*ti - 0.1);

plot (ti, yp, ’g’, ti, interp1(t, y, ti, ’spline’), ’b’, ...

ti, interpft (y, k), ’c’, t, y, ’r+’);

legend (’sin(4t+0.3)cos(3t-0.1’,’spline’,’interpft’,’data’);

which demonstrates the poor behavior of Fourier interpolation for non-periodic functions,
as can be seen in Figure 29.3.

Chapter 29: Interpolation 551

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5

sin(4t+0.3)cos(3t-0.1)
spline

interpft
data

Figure 29.3: Comparison of interp1 and interpft for non-periodic data

In additional the support function spline and lookup that underlie the interp1 function
can be called directly. Section 16.1 [Finding Elements and Checking Conditions], page 331

[Function File]pp = spline (x, y)
[Function File]yi = spline (x, y, xi)

Return the cubic spline interpolant of points x and y.

When called with two arguments, return the piecewise polynomial pp that may be
used with ppval to evaluate the polynomial at specific points. When called with a
third input argument, spline evaluates the spline at the points xi. The third calling
form spline (x, y, xi) is equivalent to ppval (spline (x, y), xi).

The variable x must be a vector of length n. y can be either a vector or array. If y is
a vector it must have a length of either n or n + 2. If the length of y is n, then the
"not-a-knot" end condition is used. If the length of y is n + 2, then the first and last
values of the vector y are the values of the first derivative of the cubic spline at the
endpoints.

If y is an array, then the size of y must have the form

[s1, s2, · · · , sk, n]

or
[s1, s2, · · · , sk, n+ 2].

The array is reshaped internally to a matrix where the leading dimension is given by

s1s2 · · · sk

and each row of this matrix is then treated separately. Note that this is exactly
opposite to interp1 but is done for matlab compatibility.

See also: [pchip], page 576, [ppval], page 544, [mkpp], page 543, [unmkpp], page 544.

552 GNU Octave

29.2 Multi-dimensional Interpolation

There are three multi-dimensional interpolation functions in Octave, with similar capabil-
ities. Methods using Delaunay tessellation are described in Section 30.4 [Interpolation on
Scattered Data], page 567.

[Function File]zi = interp2 (x, y, z, xi, yi)
[Function File]zi = interp2 (Z, xi, yi)
[Function File]zi = interp2 (Z, n)
[Function File]zi = interp2 (. . . , method)
[Function File]zi = interp2 (. . . , method, extrapval)

Two-dimensional interpolation. x, y and z describe a surface function. If x and y are
vectors their length must correspondent to the size of z. x and y must be monotonic.
If they are matrices they must have the meshgrid format.

interp2 (x, y, Z, xi, yi, ...)

Returns a matrix corresponding to the points described by the matrices
xi, yi.

If the last argument is a string, the interpolation method can be specified.
The method can be ’linear’, ’nearest’ or ’cubic’. If it is omitted ’linear’
interpolation is assumed.

interp2 (z, xi, yi)

Assumes x = 1:rows (z) and y = 1:columns (z)

interp2 (z, n)

Interleaves the matrix z n-times. If n is omitted a value of n = 1 is
assumed.

The variable method defines the method to use for the interpolation. It can take one
of the following values

’nearest’ Return the nearest neighbor.

’linear’ Linear interpolation from nearest neighbors.

’pchip’ Piecewise cubic Hermite interpolating polynomial.

’cubic’ Cubic interpolation from four nearest neighbors.

’spline’ Cubic spline interpolation—smooth first and second derivatives through-
out the curve.

If a scalar value extrapval is defined as the final value, then values outside the mesh as
set to this value. Note that in this case method must be defined as well. If extrapval
is not defined then NA is assumed.

See also: [interp1], page 547.

[Function File]vi = interp3 (x, y, z, v, xi, yi, zi)
[Function File]vi = interp3 (v, xi, yi, zi)
[Function File]vi = interp3 (v, m)
[Function File]vi = interp3 (v)
[Function File]vi = interp3 (. . . , method)

Chapter 29: Interpolation 553

[Function File]vi = interp3 (. . . , method, extrapval)
Perform 3-dimensional interpolation. Each element of the 3-dimensional array v rep-
resents a value at a location given by the parameters x, y, and z. The parameters
x, x, and z are either 3-dimensional arrays of the same size as the array v in the
’meshgrid’ format or vectors. The parameters xi, etc. respect a similar format to x,
etc., and they represent the points at which the array vi is interpolated.

If x, y, z are omitted, they are assumed to be x = 1 : size (v, 2), y = 1 : size (v,

1) and z = 1 : size (v, 3). If m is specified, then the interpolation adds a point half
way between each of the interpolation points. This process is performed m times. If
only v is specified, then m is assumed to be 1.

Method is one of:

’nearest’ Return the nearest neighbor.

’linear’ Linear interpolation from nearest neighbors.

’cubic’ Cubic interpolation from four nearest neighbors (not implemented yet).

’spline’ Cubic spline interpolation—smooth first and second derivatives through-
out the curve.

The default method is ’linear’.

If extrap is the string ’extrap’, then extrapolate values beyond the endpoints. If
extrap is a number, replace values beyond the endpoints with that number. If extrap
is missing, assume NA.

See also: [interp1], page 547, [interp2], page 552, [spline], page 551, [meshgrid],
page 269.

[Function File]vi = interpn (x1, x2, . . . , v, y1, y2, . . .)
[Function File]vi = interpn (v, y1, y2, . . .)
[Function File]vi = interpn (v, m)
[Function File]vi = interpn (v)
[Function File]vi = interpn (. . . , method)
[Function File]vi = interpn (. . . , method, extrapval)

Perform n-dimensional interpolation, where n is at least two. Each element of the
n-dimensional array v represents a value at a location given by the parameters x1,
x2, . . . , xn. The parameters x1, x2, . . . , xn are either n-dimensional arrays of the
same size as the array v in the ’ndgrid’ format or vectors. The parameters y1, etc.
respect a similar format to x1, etc., and they represent the points at which the array
vi is interpolated.

If x1, . . . , xn are omitted, they are assumed to be x1 = 1 : size (v, 1), etc. If
m is specified, then the interpolation adds a point half way between each of the
interpolation points. This process is performed m times. If only v is specified, then
m is assumed to be 1.

Method is one of:

’nearest’ Return the nearest neighbor.

’linear’ Linear interpolation from nearest neighbors.

554 GNU Octave

’cubic’ Cubic interpolation from four nearest neighbors (not implemented yet).

’spline’ Cubic spline interpolation—smooth first and second derivatives through-
out the curve.

The default method is ’linear’.

If extrapval is the scalar value, use it to replace the values beyond the endpoints with
that number. If extrapval is missing, assume NA.

See also: [interp1], page 547, [interp2], page 552, [spline], page 551, [ndgrid], page 269.

A significant difference between interpn and the other two multi-dimensional interpola-
tion functions is the fashion in which the dimensions are treated. For interp2 and interp3,
the ’y’ axis is considered to be the columns of the matrix, whereas the ’x’ axis corresponds to
the rows of the array. As Octave indexes arrays in column major order, the first dimension
of any array is the columns, and so interpn effectively reverses the ’x’ and ’y’ dimensions.
Consider the example,

x = y = z = -1:1;

f = @(x,y,z) x.^2 - y - z.^2;

[xx, yy, zz] = meshgrid (x, y, z);

v = f (xx,yy,zz);

xi = yi = zi = -1:0.1:1;

[xxi, yyi, zzi] = meshgrid (xi, yi, zi);

vi = interp3(x, y, z, v, xxi, yyi, zzi, ’spline’);

[xxi, yyi, zzi] = ndgrid (xi, yi, zi);

vi2 = interpn(x, y, z, v, xxi, yyi, zzi, ’spline’);

mesh (zi, yi, squeeze (vi2(1,:,:)));

where vi and vi2 are identical. The reversal of the dimensions is treated in the meshgrid

and ndgrid functions respectively. The result of this code can be seen in Figure 29.4.

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

10

0.5

1

1.5

2

Figure 29.4: Demonstration of the use of interpn

In additional the support function bicubic that underlies the cubic interpolation of
interp2 function can be called directly.

Chapter 29: Interpolation 555

[Function File]zi = bicubic (x, y, z, xi, yi, extrapval)
Return a matrix zi corresponding to the bicubic interpolations at xi and yi of the
data supplied as x, y and z. Points outside the grid are set to extrapval.

See http://wiki.woodpecker.org.cn/moin/Octave/Bicubic for further informa-
tion.

See also: [interp2], page 552.

http://wiki.woodpecker.org.cn/moin/Octave/Bicubic

Chapter 30: Geometry 557

30 Geometry

Much of the geometry code in Octave is based on the Qhull library1. Some of the docu-
mentation for Qhull, particularly for the options that can be passed to delaunay, voronoi
and convhull, etc., is relevant to Octave users.

30.1 Delaunay Triangulation

The Delaunay triangulation is constructed from a set of circum-circles. These circum-circles
are chosen so that there are at least three of the points in the set to triangulation on the
circumference of the circum-circle. None of the points in the set of points falls within any
of the circum-circles.

In general there are only three points on the circumference of any circum-circle. However,
in some cases, and in particular for the case of a regular grid, 4 or more points can be on a
single circum-circle. In this case the Delaunay triangulation is not unique.

[Function File]delaunay (x, y)
[Function File]tri = delaunay (x, y)
[Function File]tri = delaunay (x, y, options)

Compute the Delaunay triangulation for a 2-D set of points. The return value tri is a
set of triangles which satisfies the Delaunay circum-circle criterion, i.e., only a single
data point from [x, y] is within the circum-circle of the defining triangle.

The set of triangles tri is a matrix of size [n, 3]. Each row defines a triangle and
the three columns are the three vertices of the triangle. The value of tri(i,j) is an
index into x and y for the location of the j-th vertex of the i-th triangle.

An optional third argument, which must be a string or cell array of strings, contains
options passed to the underlying qhull command. See the documentation for the
Qhull library for details http://www.qhull.org/html/qh-quick.htm#options. The
default options are {"Qt", "Qbb", "Qc", "Qz"}.

If options is not present or [] then the default arguments are used. Otherwise,
options replaces the default argument list. To append user options to the defaults it
is necessary to repeat the default arguments in options. Use a null string to pass no
arguments.

If no output argument is specified the resulting Delaunay triangulation is plotted
along with the original set of points.

x = rand (1, 10);

y = rand (1, 10);

T = delaunay (x, y);

VX = [x(T(:,1)); x(T(:,2)); x(T(:,3)); x(T(:,1))];

VY = [y(T(:,1)); y(T(:,2)); y(T(:,3)); y(T(:,1))];

axis ([0,1,0,1]);

plot (VX, VY, "b", x, y, "r*");

See also: [delaunay3], page 558, [delaunayn], page 558, [convhull], page 566, [voronoi],
page 562.

1 Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T., The Quickhull Algorithm for Convex Hulls, ACM
Trans. on Mathematical Software, 22(4):469–483, Dec 1996, http://www.qhull.org

http://www.qhull.org/html/qh-quick.htm#options
http://www.qhull.org

558 GNU Octave

The 3- and N-dimensional extension of the Delaunay triangulation are given by
delaunay3 and delaunayn respectively. delaunay3 returns a set of tetrahedra that satisfy
the Delaunay circum-circle criteria. Similarly, delaunayn returns the N-dimensional
simplex satisfying the Delaunay circum-circle criteria. The N-dimensional extension of a
triangulation is called a tessellation.

[Function File]tetr = delaunay3 (x, y, z)
[Function File]tetr = delaunay3 (x, y, z, options)

Compute the Delaunay triangulation for a 3-D set of points. The return value tetr is
a set of tetrahedrons which satisfies the Delaunay circum-circle criterion, i.e., only a
single data point from [x, y, z] is within the circum-circle of the defining tetrahedron.

The set of tetrahedrons tetr is a matrix of size [n, 4]. Each row defines a tetrahedron
and the four columns are the four vertices of the tetrahedron. The value of tetr(i,j)
is an index into x, y, z for the location of the j-th vertex of the i-th tetrahedron.

An optional fourth argument, which must be a string or cell array of strings, contains
options passed to the underlying qhull command. See the documentation for the
Qhull library for details http://www.qhull.org/html/qh-quick.htm#options. The
default options are {"Qt", "Qbb", "Qc", "Qz"}.

If options is not present or [] then the default arguments are used. Otherwise,
options replaces the default argument list. To append user options to the defaults it
is necessary to repeat the default arguments in options. Use a null string to pass no
arguments.

See also: [delaunay], page 557, [delaunayn], page 558, [convhull], page 566, [voronoi],
page 562.

[Function File]T = delaunayn (pts)
[Function File]T = delaunayn (pts, options)

Compute the Delaunay triangulation for an N-dimensional set of points. The Delau-
nay triangulation is a tessellation of the convex hull of a set of points such that no
N-sphere defined by the N-triangles contains any other points from the set.

The input matrix pts of size [n, dim] contains n points in a space of dimension dim.
The return matrix T has size [m, dim+1]. Each row of T contains a set of indices
back into the original set of points pts which describes a simplex of dimension dim.
For example, a 2-D simplex is a triangle and 3-D simplex is a tetrahedron.

An optional second argument, which must be a string or cell array of strings, contains
options passed to the underlying qhull command. See the documentation for the
Qhull library for details http://www.qhull.org/html/qh-quick.htm#options. The
default options depend on the dimension of the input:

• 2-D and 3-D: options = {"Qt", "Qbb", "Qc", "Qz"}

• 4-D and higher: options = {"Qt", "Qbb", "Qc", "Qx"}

If options is not present or [] then the default arguments are used. Otherwise,
options replaces the default argument list. To append user options to the defaults it
is necessary to repeat the default arguments in options. Use a null string to pass no
arguments.

See also: [delaunay], page 557, [delaunay3], page 558, [convhulln], page 566,
[voronoin], page 563.

http://www.qhull.org/html/qh-quick.htm#options
http://www.qhull.org/html/qh-quick.htm#options

Chapter 30: Geometry 559

An example of a Delaunay triangulation of a set of points is

rand ("state", 2);

x = rand (10, 1);

y = rand (10, 1);

T = delaunay (x, y);

X = [x(T(:,1)); x(T(:,2)); x(T(:,3)); x(T(:,1))];

Y = [y(T(:,1)); y(T(:,2)); y(T(:,3)); y(T(:,1))];

axis ([0, 1, 0, 1]);

plot(X, Y, "b", x, y, "r*");

The result of which can be seen in Figure 30.1.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 30.1: Delaunay triangulation of a random set of points

30.1.1 Plotting the Triangulation

Octave has the functions triplot, trimesh, and trisurf to plot the Delaunay triangulation
of a 2-dimensional set of points.

[Function File]triplot (tri, x, y)
[Function File]triplot (tri, x, y, linespec)
[Function File]h = triplot (. . .)

Plot a triangular mesh in 2D. The variable tri is the triangular meshing of the points
(x, y) which is returned from delaunay. If given, linespec determines the properties
to use for the lines.

The optional return value h is a graphics handle to the created plot.

See also: [plot], page 238, [trimesh], page 559, [trisurf], page 560, [delaunay], page 557.

[Function File]trimesh (tri, x, y, z)
[Function File]h = trimesh (. . .)

Plot a triangular mesh in 3D. The variable tri is the triangular meshing of the points
(x, y) which is returned from delaunay. The variable z is value at the point (x,

y).

560 GNU Octave

The optional return value h is a graphics handle to the created plot.

See also: [triplot], page 559, [trisurf], page 560, [delaunay3], page 558.

[Function File]trisurf (tri, x, y, z)
[Function File]h = trisurf (. . .)

Plot a triangular surface in 3D. The variable tri is the triangular meshing of the
points (x, y) which is returned from delaunay. The variable z is value at the point
(x, y).

The optional return value h is a graphics handle to the created plot.

See also: [triplot], page 559, [trimesh], page 559, [delaunay3], page 558.

The difference between triplot, and trimesh or triplot, is that the former only plots
the 2-dimensional triangulation itself, whereas the second two plot the value of a function
f (x, y). An example of the use of the triplot function is

rand ("state", 2)

x = rand (20, 1);

y = rand (20, 1);

tri = delaunay (x, y);

triplot (tri, x, y);

which plots the Delaunay triangulation of a set of random points in 2-dimensions. The
output of the above can be seen in Figure 30.2.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 30.2: Delaunay triangulation of a random set of points

30.1.2 Identifying Points in Triangulation

It is often necessary to identify whether a particular point in the N-dimensional space
is within the Delaunay tessellation of a set of points in this N-dimensional space, and if
so which N-simplex contains the point and which point in the tessellation is closest to the
desired point. The functions tsearch and dsearch perform this function in a triangulation,
and tsearchn and dsearchn in an N-dimensional tessellation.

Chapter 30: Geometry 561

To identify whether a particular point represented by a vector p falls within one of the
simplices of an N-simplex, we can write the Cartesian coordinates of the point in a para-
metric form with respect to the N-simplex. This parametric form is called the Barycentric
Coordinates of the point. If the points defining the N-simplex are given by N + 1 vectors
t(i,:), then the Barycentric coordinates defining the point p are given by

p = sum (beta(1:N+1) * t(1:N+1),:)

where there are N + 1 values beta(i) that together as a vector represent the Barycentric
coordinates of the point p. To ensure a unique solution for the values of beta(i) an
additional criteria of

sum (beta(1:N+1)) == 1

is imposed, and we can therefore write the above as

p - t(end, :) = beta(1:end-1) * (t(1:end-1, :)

- ones(N, 1) * t(end, :)

Solving for beta we can then write

beta(1:end-1) = (p - t(end, :)) / (t(1:end-1, :)

- ones(N, 1) * t(end, :))

beta(end) = sum(beta(1:end-1))

which gives the formula for the conversion of the Cartesian coordinates of the point p to
the Barycentric coordinates beta. An important property of the Barycentric coordinates is
that for all points in the N-simplex

0 <= beta(i) <= 1

Therefore, the test in tsearch and tsearchn essentially only needs to express each point in
terms of the Barycentric coordinates of each of the simplices of the N-simplex and test the
values of beta. This is exactly the implementation used in tsearchn. tsearch is optimized
for 2-dimensions and the Barycentric coordinates are not explicitly formed.

[Loadable Function]idx = tsearch (x, y, t, xi, yi)
Search for the enclosing Delaunay convex hull. For t = delaunay (x, y), finds the
index in t containing the points (xi, yi). For points outside the convex hull, idx is
NaN.

See also: [delaunay], page 557, [delaunayn], page 558.

[Function File][idx, p] = tsearchn (x, t, xi)
Search for the enclosing Delaunay convex hull. For t = delaunayn (x), finds the
index in t containing the points xi. For points outside the convex hull, idx is NaN.
If requested tsearchn also returns the Barycentric coordinates p of the enclosing
triangles.

See also: [delaunay], page 557, [delaunayn], page 558.

An example of the use of tsearch can be seen with the simple triangulation

x = [-1; -1; 1; 1];

y = [-1; 1; -1; 1];

tri = [1, 2, 3; 2, 3, 1];

consisting of two triangles defined by tri. We can then identify which triangle a point falls
in like

562 GNU Octave

tsearch (x, y, tri, -0.5, -0.5)

⇒ 1

tsearch (x, y, tri, 0.5, 0.5)

⇒ 2

and we can confirm that a point doesn’t lie within one of the triangles like

tsearch (x, y, tri, 2, 2)

⇒ NaN

The dsearch and dsearchn find the closest point in a tessellation to the desired point.
The desired point does not necessarily have to be in the tessellation, and even if it the
returned point of the tessellation does not have to be one of the vertexes of the N-simplex
within which the desired point is found.

[Function File]idx = dsearch (x, y, tri, xi, yi)
[Function File]idx = dsearch (x, y, tri, xi, yi, s)

Return the index idx or the closest point in x, y to the elements [xi(:), yi(:)].
The variable s is accepted for compatibility but is ignored.

See also: [dsearchn], page 562, [tsearch], page 561.

[Function File]idx = dsearchn (x, tri, xi)
[Function File]idx = dsearchn (x, tri, xi, outval)
[Function File]idx = dsearchn (x, xi)
[Function File][idx, d] = dsearchn (. . .)

Return the index idx or the closest point in x to the elements xi. If outval is supplied,
then the values of xi that are not contained within one of the simplices tri are set to
outval. Generally, tri is returned from delaunayn (x).

See also: [dsearch], page 562, [tsearch], page 561.

An example of the use of dsearch, using the above values of x, y and tri is

dsearch (x, y, tri, -2, -2)

⇒ 1

If you wish the points that are outside the tessellation to be flagged, then dsearchn can
be used as

dsearchn ([x, y], tri, [-2, -2], NaN)

⇒ NaN

dsearchn ([x, y], tri, [-0.5, -0.5], NaN)

⇒ 1

where the point outside the tessellation are then flagged with NaN.

30.2 Voronoi Diagrams

A Voronoi diagram or Voronoi tessellation of a set of points s in an N-dimensional space,
is the tessellation of the N-dimensional space such that all points in v(p), a partitions of
the tessellation where p is a member of s, are closer to p than any other point in s. The
Voronoi diagram is related to the Delaunay triangulation of a set of points, in that the
vertexes of the Voronoi tessellation are the centers of the circum-circles of the simplices of
the Delaunay tessellation.

Chapter 30: Geometry 563

[Function File]voronoi (x, y)
[Function File]voronoi (x, y, options)
[Function File]voronoi (. . . , "linespec")
[Function File]voronoi (hax, . . .)
[Function File]h = voronoi (. . .)
[Function File][vx, vy] = voronoi (. . .)

Plot the Voronoi diagram of points (x, y). The Voronoi facets with points at infinity
are not drawn.

If "linespec" is given it is used to set the color and line style of the plot. If an axis
graphics handle hax is supplied then the Voronoi diagram is drawn on the specified
axis rather than in a new figure.

The options argument, which must be a string or cell array of strings, contains options
passed to the underlying qhull command. See the documentation for the Qhull library
for details http://www.qhull.org/html/qh-quick.htm#options.

If a single output argument is requested then the Voronoi diagram will be plotted
and a graphics handle h to the plot is returned. [vx, vy] = voronoi(. . .) returns the
Voronoi vertices instead of plotting the diagram.

x = rand (10, 1);

y = rand (size (x));

h = convhull (x, y);

[vx, vy] = voronoi (x, y);

plot (vx, vy, "-b", x, y, "o", x(h), y(h), "-g");

legend ("", "points", "hull");

See also: [voronoin], page 563, [delaunay], page 557, [convhull], page 566.

[Function File][C, F] = voronoin (pts)
[Function File][C, F] = voronoin (pts, options)

Compute N-dimensional Voronoi facets. The input matrix pts of size [n, dim] contains
n points in a space of dimension dim. C contains the points of the Voronoi facets.
The list F contains, for each facet, the indices of the Voronoi points.

An optional second argument, which must be a string or cell array of strings, contains
options passed to the underlying qhull command. See the documentation for the Qhull
library for details http://www.qhull.org/html/qh-quick.htm#options.

See also: [voronoi], page 562, [convhulln], page 566, [delaunayn], page 558.

An example of the use of voronoi is

rand("state",9);

x = rand(10,1);

y = rand(10,1);

tri = delaunay (x, y);

[vx, vy] = voronoi (x, y, tri);

triplot (tri, x, y, "b");

hold on;

plot (vx, vy, "r");

http://www.qhull.org/html/qh-quick.htm#options
http://www.qhull.org/html/qh-quick.htm#options

564 GNU Octave

The result of which can be seen in Figure 30.3. Note that the circum-circle of one of the
triangles has been added to this figure, to make the relationship between the Delaunay
tessellation and the Voronoi diagram clearer.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Delaunay Triangulation
Voronoi Diagram

Figure 30.3: Delaunay triangulation and Voronoi diagram of a random set of points

Additional information about the size of the facets of a Voronoi diagram, and which
points of a set of points is in a polygon can be had with the polyarea and inpolygon

functions respectively.

[Function File]polyarea (x, y)
[Function File]polyarea (x, y, dim)

Determine area of a polygon by triangle method. The variables x and y define the
vertex pairs, and must therefore have the same shape. They can be either vectors or
arrays. If they are arrays then the columns of x and y are treated separately and an
area returned for each.

If the optional dim argument is given, then polyarea works along this dimension of
the arrays x and y.

An example of the use of polyarea might be

rand ("state", 2);

x = rand (10, 1);

y = rand (10, 1);

[c, f] = voronoin ([x, y]);

af = zeros (size(f));

for i = 1 : length (f)

af(i) = polyarea (c (f {i, :}, 1), c (f {i, :}, 2));

endfor

Facets of the Voronoi diagram with a vertex at infinity have infinity area. A simplified
version of polyarea for rectangles is available with rectint

Chapter 30: Geometry 565

[Function File]area = rectint (a, b)
Compute the area of intersection of rectangles in a and rectangles in b. Rectangles
are defined as [x y width height] where x and y are the minimum values of the two
orthogonal dimensions.

If a or b are matrices, then the output, area, is a matrix where the i-th row corresponds
to the i-th row of a and the j-th column corresponds to the j-th row of b.

See also: [polyarea], page 564.

[Function File][in, on] = inpolygon (x, y, xv, yv)
For a polygon defined by vertex points (xv, yv), determine if the points (x, y) are
inside or outside the polygon. The variables x, y, must have the same dimension.
The optional output on gives the points that are on the polygon.

An example of the use of inpolygon might be

randn ("state", 2);

x = randn (100, 1);

y = randn (100, 1);

vx = cos (pi * [-1 : 0.1: 1]);

vy = sin (pi * [-1 : 0.1 : 1]);

in = inpolygon (x, y, vx, vy);

plot(vx, vy, x(in), y(in), "r+", x(!in), y(!in), "bo");

axis ([-2, 2, -2, 2]);

The result of which can be seen in Figure 30.4.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 30.4: Demonstration of the inpolygon function to determine the points inside a
polygon

566 GNU Octave

30.3 Convex Hull

The convex hull of a set of points is the minimum convex envelope containing all of the
points. Octave has the functions convhull and convhulln to calculate the convex hull of
2-dimensional and N-dimensional sets of points.

[Function File]H = convhull (x, y)
[Function File]H = convhull (x, y, options)

Compute the convex hull of the set of points defined by the vectors x and y. The
hull H is an index vector into the set of points and specifies which points form the
enclosing hull.

An optional third argument, which must be a string or cell array of strings, contains
options passed to the underlying qhull command. See the documentation for the
Qhull library for details http://www.qhull.org/html/qh-quick.htm#options. The
default option is {"Qt"}.

If options is not present or [] then the default arguments are used. Otherwise,
options replaces the default argument list. To append user options to the defaults it
is necessary to repeat the default arguments in options. Use a null string to pass no
arguments.

See also: [convhulln], page 566, [delaunay], page 557, [voronoi], page 562.

[Loadable Function]h = convhulln (pts)
[Loadable Function]h = convhulln (pts, options)
[Loadable Function][h, v] = convhulln (. . .)

Compute the convex hull of the set of points pts which is a matrix of size [n, dim]
containing n points in a space of dimension dim. The hull h is an index vector into
the set of points and specifies which points form the enclosing hull.

An optional second argument, which must be a string or cell array of strings, contains
options passed to the underlying qhull command. See the documentation for the
Qhull library for details http://www.qhull.org/html/qh-quick.htm#options. The
default options depend on the dimension of the input:

• 2D, 3D, 4D: options = {"Qt"}

• 5D and higher: options = {"Qt", "Qx"}

If options is not present or [] then the default arguments are used. Otherwise,
options replaces the default argument list. To append user options to the defaults it
is necessary to repeat the default arguments in options. Use a null string to pass no
arguments.

If the second output v is requested the volume of the enclosing convex hull is calcu-
lated.

See also: [convhull], page 566, [delaunayn], page 558, [voronoin], page 563.

An example of the use of convhull is

x = -3:0.05:3;

y = abs (sin (x));

k = convhull (x, y);

plot (x(k), y(k), "r-", x, y, "b+");

axis ([-3.05, 3.05, -0.05, 1.05]);

http://www.qhull.org/html/qh-quick.htm#options
http://www.qhull.org/html/qh-quick.htm#options

Chapter 30: Geometry 567

The output of the above can be seen in Figure 30.5.

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

Figure 30.5: The convex hull of a simple set of points

30.4 Interpolation on Scattered Data

An important use of the Delaunay tessellation is that it can be used to interpolate from
scattered data to an arbitrary set of points. To do this the N-simplex of the known set
of points is calculated with delaunay, delaunay3 or delaunayn. Then the simplices in to
which the desired points are found are identified. Finally the vertices of the simplices are
used to interpolate to the desired points. The functions that perform this interpolation are
griddata, griddata3 and griddatan.

[Function File]zi = griddata (x, y, z, xi, yi, method)
[Function File][xi, yi, zi] = griddata (x, y, z, xi, yi, method)

Generate a regular mesh from irregular data using interpolation. The function is
defined by z = f (x, y). Inputs x, y, z are vectors of the same length or x, y are
vectors and z is matrix.

The interpolation points are all (xi, yi). If xi, yi are vectors then they are made
into a 2-D mesh.

The interpolation method can be "nearest", "cubic" or "linear". If method is
omitted it defaults to "linear".

See also: [delaunay], page 557.

[Function File]vi = griddata3 (x, y, z, v, xi, yi, zi, method, options)
Generate a regular mesh from irregular data using interpolation. The function is
defined by v = f (x, y, z). The interpolation points are specified by xi, yi, zi.

The interpolation method can be "nearest" or "linear". If method is omitted it
defaults to "linear".

See also: [griddata], page 567, [griddatan], page 568, [delaunayn], page 558.

568 GNU Octave

[Function File]yi = griddatan (x, y, xi, method, options)
Generate a regular mesh from irregular data using interpolation. The function is
defined by y = f (x). The interpolation points are all xi.

The interpolation method can be "nearest" or "linear". If method is omitted it
defaults to "linear".

See also: [griddata], page 567, [delaunayn], page 558.

An example of the use of the griddata function is

rand("state",1);

x=2*rand(1000,1)-1;

y=2*rand(size(x))-1;

z=sin(2*(x.^2+y.^2));

[xx,yy]=meshgrid(linspace(-1,1,32));

griddata(x,y,z,xx,yy);

that interpolates from a random scattering of points, to a uniform grid. The output of the
above can be seen in Figure 30.6.

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 30.6: Interpolation from a scattered data to a regular grid

Chapter 31: Signal Processing 569

31 Signal Processing

This chapter describes the signal processing and fast Fourier transform functions available
in Octave. Fast Fourier transforms are computed with the fftw or fftpack libraries
depending on how Octave is built.

[Function File]detrend (x, p)
If x is a vector, detrend (x, p) removes the best fit of a polynomial of order p from
the data x.

If x is a matrix, detrend (x, p) does the same for each column in x.

The second argument is optional. If it is not specified, a value of 1 is assumed. This
corresponds to removing a linear trend.

The order of the polynomial can also be given as a string, in which case p must be
either "constant" (corresponds to p=0) or "linear" (corresponds to p=1).

See also: [polyfit], page 542.

[Loadable Function]fft (x)
[Loadable Function]fft (x, n)
[Loadable Function]fft (x, n, dim)

Compute the discrete Fourier transform of A using a Fast Fourier Transform (FFT)
algorithm.

The FFT is calculated along the first non-singleton dimension of the array. Thus if x
is a matrix, fft (x) computes the FFT for each column of x.

If called with two arguments, n is expected to be an integer specifying the number of
elements of x to use, or an empty matrix to specify that its value should be ignored.
If n is larger than the dimension along which the FFT is calculated, then x is resized
and padded with zeros. Otherwise, if n is smaller than the dimension along which the
FFT is calculated, then x is truncated.

If called with three arguments, dim is an integer specifying the dimension of the
matrix along which the FFT is performed

See also: [ifft], page 570, [fft2], page 571, [fftn], page 571, [fftw], page 569.

Octave uses the fftw libraries to perform FFT computations. When Octave starts up
and initializes the fftw libraries, they read a system wide file (on a Unix system, it is
typically ‘/etc/fftw/wisdom’) that contains information useful to speed up FFT compu-
tations. This information is called the wisdom. The system-wide file allows wisdom to be
shared between all applications using the fftw libraries.

Use the fftw function to generate and save wisdom. Using the utilities provided to-
gether with the fftw libraries (fftw-wisdom on Unix systems), you can even add wisdom
generated by Octave to the system-wide wisdom file.

[Loadable Function]method = fftw (’planner’)
[Loadable Function]fftw (’planner’, method)
[Loadable Function]wisdom = fftw (’dwisdom’)
[Loadable Function]fftw (’dwisdom’, wisdom)

Manage fftw wisdom data. Wisdom data can be used to significantly accelerate
the calculation of the FFTs, but implies an initial cost in its calculation. When

570 GNU Octave

the fftw libraries are initialized, they read a system wide wisdom file (typically in
‘/etc/fftw/wisdom’), allowing wisdom to be shared between applications other than
Octave. Alternatively, the fftw function can be used to import wisdom. For example,

wisdom = fftw (’dwisdom’)

will save the existing wisdom used by Octave to the string wisdom. This string can
then be saved to a file and restored using the save and load commands respectively.
This existing wisdom can be reimported as follows

fftw (’dwisdom’, wisdom)

If wisdom is an empty matrix, then the wisdom used is cleared.

During the calculation of Fourier transforms further wisdom is generated. The fashion
in which this wisdom is generated is also controlled by the fftw function. There are
five different manners in which the wisdom can be treated:

’estimate’ Specifies that no run-time measurement of the optimal means of calcu-
lating a particular is performed, and a simple heuristic is used to pick a
(probably sub-optimal) plan. The advantage of this method is that there
is little or no overhead in the generation of the plan, which is appropriate
for a Fourier transform that will be calculated once.

’measure’ In this case a range of algorithms to perform the transform is considered
and the best is selected based on their execution time.

’patient’ Similar to ’measure’, but a wider range of algorithms is considered.

’exhaustive’
Like ’measure’, but all possible algorithms that may be used to treat the
transform are considered.

’hybrid’ As run-time measurement of the algorithm can be expensive, this is a
compromise where ’measure’ is used for transforms up to the size of 8192
and beyond that the ’estimate’ method is used.

The default method is ’estimate’. The current method can be queried with

method = fftw (’planner’)

or set by using

fftw (’planner’, method)

Note that calculated wisdom will be lost when restarting Octave. However, the wis-
dom data can be reloaded if it is saved to a file as described above. Saved wisdom
files should not be used on different platforms since they will not be efficient and the
point of calculating the wisdom is lost.

See also: [fft], page 569, [ifft], page 570, [fft2], page 571, [ifft2], page 571, [fftn],
page 571, [ifftn], page 572.

[Loadable Function]ifft (x)
[Loadable Function]ifft (x, n)
[Loadable Function]ifft (x, n, dim)

Compute the inverse discrete Fourier transform of A using a Fast Fourier Transform
(FFT) algorithm.

Chapter 31: Signal Processing 571

The inverse FFT is calculated along the first non-singleton dimension of the array.
Thus if x is a matrix, fft (x) computes the inverse FFT for each column of x.

If called with two arguments, n is expected to be an integer specifying the number of
elements of x to use, or an empty matrix to specify that its value should be ignored.
If n is larger than the dimension along which the inverse FFT is calculated, then x is
resized and padded with zeros. Otherwise, if n is smaller than the dimension along
which the inverse FFT is calculated, then x is truncated.

If called with three arguments, dim is an integer specifying the dimension of the
matrix along which the inverse FFT is performed

See also: [fft], page 569, [ifft2], page 571, [ifftn], page 572, [fftw], page 569.

[Loadable Function]fft2 (A)
[Loadable Function]fft2 (A, m, n)

Compute the two-dimensional discrete Fourier transform of A using a Fast Fourier
Transform (FFT) algorithm.

The optional argumentsm and nmay be used specify the number of rows and columns
of A to use. If either of these is larger than the size of A, A is resized and padded
with zeros.

If A is a multi-dimensional matrix, each two-dimensional sub-matrix of A is treated
separately.

See also: ifft2, fft, fftn, fftw.

[Loadable Function]ifft2 (A)
[Loadable Function]ifft2 (A, m, n)

Compute the inverse two-dimensional discrete Fourier transform of A using a Fast
Fourier Transform (FFT) algorithm.

The optional argumentsm and nmay be used specify the number of rows and columns
of A to use. If either of these is larger than the size of A, A is resized and padded
with zeros.

If A is a multi-dimensional matrix, each two-dimensional sub-matrix of A is treated
separately

See also: fft2, ifft, ifftn, fftw.

[Loadable Function]fftn (A)
[Loadable Function]fftn (A, size)

Compute the N-dimensional discrete Fourier transform of A using a Fast Fourier
Transform (FFT) algorithm.

The optional vector argument size may be used specify the dimensions of the array
to be used. If an element of size is smaller than the corresponding dimension of A,
then the dimension of A is truncated prior to performing the FFT. Otherwise, if
an element of size is larger than the corresponding dimension then A is resized and
padded with zeros.

See also: [ifftn], page 572, [fft], page 569, [fft2], page 571, [fftw], page 569.

572 GNU Octave

[Loadable Function]ifftn (A)
[Loadable Function]ifftn (A, size)

Compute the inverse N-dimensional discrete Fourier transform of A using a Fast
Fourier Transform (FFT) algorithm.

The optional vector argument size may be used specify the dimensions of the array to
be used. If an element of size is smaller than the corresponding dimension of A, then
the dimension of A is truncated prior to performing the inverse FFT. Otherwise, if
an element of size is larger than the corresponding dimension then A is resized and
padded with zeros.

See also: [fftn], page 571, [ifft], page 570, [ifft2], page 571, [fftw], page 569.

[Function File]fftconv (x, y)
[Function File]fftconv (x, y, n)

Convolve two vectors using the FFT for computation.

c = fftconv (x, y) returns a vector of length equal to length (x) + length (y) -

1. If x and y are the coefficient vectors of two polynomials, the returned value is the
coefficient vector of the product polynomial.

The computation uses the FFT by calling the function fftfilt. If the optional
argument n is specified, an N-point FFT is used.

See also: [deconv], page 539, [conv], page 539, [conv2], page 540.

[Function File]fftfilt (b, x, n)
With two arguments, fftfilt filters x with the FIR filter b using the FFT.

Given the optional third argument, n, fftfilt uses the overlap-add method to filter
x with b using an N-point FFT.

If x is a matrix, filter each column of the matrix.

See also: [filter], page 572, [filter2], page 573.

[Loadable Function]y = filter (b, a, x)
[Loadable Function][y, sf] = filter (b, a, x, si)
[Loadable Function][y, sf] = filter (b, a, x, [], dim)
[Loadable Function][y, sf] = filter (b, a, x, si, dim)

Return the solution to the following linear, time-invariant difference equation:

N∑
k=0

ak+1yn−k =
M∑
k=0

bk+1xn−k, 1 ≤ n ≤ P

where a ∈ <N−1, b ∈ <M−1, and x ∈ <P . over the first non-singleton dimension of x
or over dim if supplied. An equivalent form of this equation is:

yn = −
N∑
k=1

ck+1yn−k +
M∑
k=0

dk+1xn−k, 1 ≤ n ≤ P

where c = a/a1 and d = b/a1.

Chapter 31: Signal Processing 573

If the fourth argument si is provided, it is taken as the initial state of the system and
the final state is returned as sf. The state vector is a column vector whose length is
equal to the length of the longest coefficient vector minus one. If si is not supplied,
the initial state vector is set to all zeros.

In terms of the Z Transform, y is the result of passing the discrete- time signal x
through a system characterized by the following rational system function:

H(z) =

M∑
k=0

dk+1z
−k

1 +
N∑
k+1

ck+1z
−k

See also: [filter2], page 573, [fftfilt], page 572, [freqz], page 573.

[Function File]y = filter2 (b, x)
[Function File]y = filter2 (b, x, shape)

Apply the 2-D FIR filter b to x. If the argument shape is specified, return an array
of the desired shape. Possible values are:

’full’ pad x with zeros on all sides before filtering.

’same’ unpadded x (default)

’valid’ trim x after filtering so edge effects are no included.

Note this is just a variation on convolution, with the parameters reversed and b
rotated 180 degrees.

See also: [conv2], page 540.

[Function File][h, w] = freqz (b, a, n, "whole")
Return the complex frequency response h of the rational IIR filter whose numerator
and denominator coefficients are b and a, respectively. The response is evaluated at
n angular frequencies between 0 and 2π.

The output value w is a vector of the frequencies.

If the fourth argument is omitted, the response is evaluated at frequencies between 0
and π.

If n is omitted, a value of 512 is assumed.

If a is omitted, the denominator is assumed to be 1 (this corresponds to a simple FIR
filter).

For fastest computation, n should factor into a small number of small primes.

[Function File]h = freqz (b, a, w)
Evaluate the response at the specific frequencies in the vector w. The values for w
are measured in radians.

[Function File][...] = freqz (. . . , Fs)
Return frequencies in Hz instead of radians assuming a sampling rate Fs. If you
are evaluating the response at specific frequencies w, those frequencies should be
requested in Hz rather than radians.

[Function File]freqz (. . .)
Plot the pass band, stop band and phase response of h rather than returning them.

574 GNU Octave

[Function File]freqz_plot (w, h)
Plot the pass band, stop band and phase response of h.

[Function File]sinc (x)
Return sin(πx)/(πx).

[Function File]b = unwrap (x)
[Function File]b = unwrap (x, tol)
[Function File]b = unwrap (x, tol, dim)

Unwrap radian phases by adding multiples of 2*pi as appropriate to remove jumps
greater than tol. tol defaults to pi.

Unwrap will work along the dimension dim. If dim is unspecified it defaults to the
first non-singleton dimension.

[Function File][a, b] = arch_fit (y, x, p, iter, gamma, a0, b0)
Fit an ARCH regression model to the time series y using the scoring algorithm in
Engle’s original ARCH paper. The model is

y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t),

h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(p+1) * e(t-p)^2

in which e(t) is N(0, h(t)), given a time-series vector y up to time t− 1 and a matrix
of (ordinary) regressors x up to t. The order of the regression of the residual variance
is specified by p.

If invoked as arch_fit (y, k, p) with a positive integer k, fit an ARCH(k, p) process,
i.e., do the above with the t-th row of x given by

[1, y(t-1), ..., y(t-k)]

Optionally, one can specify the number of iterations iter, the updating factor gamma,
and initial values a0 and b0 for the scoring algorithm.

[Function File]arch_rnd (a, b, t)
Simulate an ARCH sequence of length t with AR coefficients b and CH coefficients
a. I.e., the result y(t) follows the model

y(t) = b(1) + b(2) * y(t-1) + ... + b(lb) * y(t-lb+1) + e(t),

where e(t), given y up to time t− 1, is N(0, h(t)), with
h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(la) * e(t-la+1)^2

[Function File][pval, lm] = arch_test (y, x, p)
For a linear regression model

y = x * b + e

perform a Lagrange Multiplier (LM) test of the null hypothesis of no conditional
heteroscedascity against the alternative of CH(p).

I.e., the model is

y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t),

given y up to t− 1 and x up to t, e(t) is N(0, h(t)) with

h(t) = v + a(1) * e(t-1)^2 + ... + a(p) * e(t-p)^2,

and the null is a(1) == . . . == a(p) == 0.

If the second argument is a scalar integer, k, perform the same test in a linear au-
toregression model of order k, i.e., with

Chapter 31: Signal Processing 575

[1, y(t-1), ..., y(t-k)]

as the t-th row of x.

Under the null, LM approximately has a chisquare distribution with p degrees of
freedom and pval is the p-value (1 minus the CDF of this distribution at LM) of the
test.

If no output argument is given, the p-value is displayed.

[Function File]arma_rnd (a, b, v, t, n)
Return a simulation of the ARMA model

x(n) = a(1) * x(n-1) + ... + a(k) * x(n-k)

+ e(n) + b(1) * e(n-1) + ... + b(l) * e(n-l)

in which k is the length of vector a, l is the length of vector b and e is Gaussian white
noise with variance v. The function returns a vector of length t.

The optional parameter n gives the number of dummy x(i) used for initialization, i.e.,
a sequence of length t+n is generated and x(n+1:t+n) is returned. If n is omitted, n
= 100 is used.

[Function File]autoreg_matrix (y, k)
Given a time series (vector) y, return a matrix with ones in the first column and
the first k lagged values of y in the other columns. I.e., for t > k, [1, y(t-1), ...,

y(t-k)] is the t-th row of the result. The resulting matrix may be used as a regressor
matrix in autoregressions.

[Function File]bartlett (m)
Return the filter coefficients of a Bartlett (triangular) window of length m.

For a definition of the Bartlett window, see e.g., A. V. Oppenheim & R. W. Schafer,
Discrete-Time Signal Processing.

[Function File]blackman (m)
Return the filter coefficients of a Blackman window of length m.

For a definition of the Blackman window, see e.g., A. V. Oppenheim & R. W. Schafer,
Discrete-Time Signal Processing.

[Function File][d, dd] = diffpara (x, a, b)
Return the estimator d for the differencing parameter of an integrated time series.

The frequencies from [2 ∗ pi ∗ a/t, 2 ∗ pi ∗ b/T] are used for the estimation. If b is
omitted, the interval [2 ∗ pi/T, 2 ∗ pi ∗ a/T] is used. If both b and a are omitted then
a = 0.5 ∗ sqrt(T) and b = 1.5 ∗ sqrt(T) is used, where T is the sample size. If x is a
matrix, the differencing parameter of each column is estimated.

The estimators for all frequencies in the intervals described above is returned in dd.
The value of d is simply the mean of dd.

Reference: P.J. Brockwell & R.A. Davis. Time Series: Theory and Methods. Springer
1987.

576 GNU Octave

[Function File]durbinlevinson (c, oldphi, oldv)
Perform one step of the Durbin-Levinson algorithm.

The vector c specifies the autocovariances [gamma_0, ..., gamma_t] from lag 0 to t,
oldphi specifies the coefficients based on c(t-1) and oldv specifies the corresponding
error.

If oldphi and oldv are omitted, all steps from 1 to t of the algorithm are performed.

[Function File]fftshift (x)
[Function File]fftshift (x, dim)

Perform a shift of the vector x, for use with the fft and ifft functions, in order the
move the frequency 0 to the center of the vector or matrix.

If x is a vector of N elements corresponding to N time samples spaced by dt, then
fftshift (fft (x)) corresponds to frequencies

f = [-(ceil((N-1)/2):-1:1)*df 0 (1:floor((N-1)/2))*df]

where df = 1 / dt.

If x is a matrix, the same holds for rows and columns. If x is an array, then the same
holds along each dimension.

The optional dim argument can be used to limit the dimension along which the
permutation occurs.

[Function File]ifftshift (x)
[Function File]ifftshift (x, dim)

Undo the action of the fftshift function. For even length x, fftshift is its own
inverse, but odd lengths differ slightly.

[Function File]fractdiff (x, d)
Compute the fractional differences (1−L)dx where L denotes the lag-operator and d
is greater than -1.

[Function File]hamming (m)
Return the filter coefficients of a Hamming window of length m.

For a definition of the Hamming window, see e.g., A. V. Oppenheim & R. W. Schafer,
Discrete-Time Signal Processing.

[Function File]hanning (m)
Return the filter coefficients of a Hanning window of length m.

For a definition of this window type, see e.g., A. V. Oppenheim & R. W. Schafer,
Discrete-Time Signal Processing.

[Function File]hurst (x)
Estimate the Hurst parameter of sample x via the rescaled range statistic. If x is a
matrix, the parameter is estimated for every single column.

[Function File]pp = pchip (x, y)
[Function File]yi = pchip (x, y, xi)

Return the Piecewise Cubic Hermite Interpolating Polynomial (pchip) of points x and
y.

Chapter 31: Signal Processing 577

If called with two arguments, return the piecewise polynomial pp that may be used
with ppval to evaluate the polynomial at specific points. When called with a third
input argument, pchip evaluates the pchip polynomial at the points xi. The third
calling form is equivalent to ppval (pchip (x, y), xi).

The variable x must be a strictly monotonic vector (either increasing or decreasing)
of length n. y can be either a vector or array. If y is a vector then it must be the
same length n as x. If y is an array then the size of y must have the form

[s1, s2, · · · , sk, n]

The array is reshaped internally to a matrix where the leading dimension is given by

s1s2 · · · sk

and each row of this matrix is then treated separately. Note that this is exactly
opposite to interp1 but is done for matlab compatibility.

See also: [spline], page 551, [ppval], page 544, [mkpp], page 543, [unmkpp], page 544.

[Function File][Pxx, w] = periodogram (x)
For a data matrix x from a sample of size n, return the periodogram. The angular
frequency is returned in w.

[Pxx,w] = periodogram (x).

[Pxx,w] = periodogram (x,win).

[Pxx,w] = periodogram (x,win,nfft).

[Pxx,f] = periodogram (x,win,nfft,Fs).

[Pxx,f] = periodogram (x,win,nfft,Fs,"range").

• x: data; if real-valued a one-sided spectrum is estimated, if complex-valued or
range indicates "twosided", the full spectrum is estimated.

• win: weight data with window, x.*win is used for further computation, if window
is empty, a rectangular window is used.

• nfft: number of frequency bins, default max(256, 2.^ceil(log2(length(x)))).

• Fs: sampling rate, default 1.

• range: "onesided" computes spectrum from [0..nfft/2+1]. "twosided" computes
spectrum from [0..nfft-1]. These strings can appear at any position in the list
input arguments after window.

• Pxx: one-, or two-sided power spectrum.

• w: angular frequency [0..2*pi) (two-sided) or [0..pi] one-sided.

• f: frequency [0..Fs) (two-sided) or [0..Fs/2] one-sided.

[Function File]rectangle_lw (n, b)
Rectangular lag window. Subfunction used for spectral density estimation.

[Function File]rectangle_sw (n, b)
Rectangular spectral window. Subfunction used for spectral density estimation.

578 GNU Octave

[Function File]sinetone (freq, rate, sec, ampl)
Return a sinetone of frequency freq with length of sec seconds at sampling rate rate
and with amplitude ampl. The arguments freq and ampl may be vectors of common
size.

Defaults are rate = 8000, sec = 1 and ampl = 64.

[Function File]sinewave (m, n, d)
Return an m-element vector with i-th element given by sin (2 * pi * (i+d-1) / n).

The default value for d is 0 and the default value for n is m.

[Function File]spectral_adf (c, win, b)
Return the spectral density estimator given a vector of autocovariances c, window
name win, and bandwidth, b.

The window name, e.g., "triangle" or "rectangle" is used to search for a function
called win_sw.

If win is omitted, the triangle window is used. If b is omitted, 1 / sqrt (length

(x)) is used.

[Function File]spectral_xdf (x, win, b)
Return the spectral density estimator given a data vector x, window name win, and
bandwidth, b.

The window name, e.g., "triangle" or "rectangle" is used to search for a function
called win_sw.

If win is omitted, the triangle window is used. If b is omitted, 1 / sqrt (length

(x)) is used.

[Function File]spencer (x)
Return Spencer’s 15 point moving average of each column of x.

[Function File][y, c] = stft (x, win_size, inc, num_coef, win_type)
Compute the short-time Fourier transform of the vector x with num coef coefficients
by applying a window of win size data points and an increment of inc points.

Before computing the Fourier transform, one of the following windows is applied:

hanning win type = 1

hamming win type = 2

rectangle win type = 3

The window names can be passed as strings or by the win type number.

If not all arguments are specified, the following defaults are used: win size = 80, inc
= 24, num coef = 64, and win type = 1.

y = stft (x, ...) returns the absolute values of the Fourier coefficients according
to the num coef positive frequencies.

[y, c] = stft (x, ...) returns the entire STFT-matrix y and a 3-element vector
c containing the window size, increment, and window type, which is needed by the
synthesis function.

Chapter 31: Signal Processing 579

[Function File]synthesis (y, c)
Compute a signal from its short-time Fourier transform y and a 3-element vector c
specifying window size, increment, and window type.

The values y and c can be derived by

[y, c] = stft (x , ...)

[Function File]triangle_lw (n, b)
Triangular lag window. Subfunction used for spectral density estimation.

[Function File]triangle_sw (n, b)
Triangular spectral window. Subfunction used for spectral density estimation.

[Function File][a, v] = yulewalker (c)
Fit an AR (p)-model with Yule-Walker estimates given a vector c of autocovariances
[gamma_0, ..., gamma_p].

Returns the AR coefficients, a, and the variance of white noise, v.

Chapter 32: Image Processing 581

32 Image Processing

Since an image basically is a matrix Octave is a very powerful environment for processing
and analyzing images. To illustrate how easy it is to do image processing in Octave, the
following example will load an image, smooth it by a 5-by-5 averaging filter, and compute
the gradient of the smoothed image.

I = imread ("myimage.jpg");

S = conv2 (I, ones (5, 5) / 25, "same");

[Dx, Dy] = gradient (S);

In this example S contains the smoothed image, and Dx and Dy contains the partial spatial
derivatives of the image.

32.1 Loading and Saving Images

The first step in most image processing tasks is to load an image into Octave. This is done
using the imread function, which uses the GraphicsMagick library for reading. This means
a vast number of image formats is supported. The imwrite function is the corresponding
function for writing images to the disk.

In summary, most image processing code will follow the structure of this code

I = imread ("my_input_image.img");

J = process_my_image (I);

imwrite ("my_output_image.img", J);

[Function File][img, map, alpha] = imread (filename)
Read images from various file formats.

The size and numeric class of the output depends on the format of the image. A color
image is returned as an MxNx3 matrix. Gray-level and black-and-white images are of
size MxN. The color depth of the image determines the numeric class of the output:
"uint8" or "uint16" for gray and color, and "logical" for black and white.

See also: [imwrite], page 581, [imfinfo], page 582.

[Function File]imwrite (img, filename)
[Function File]imwrite (img, filename, fmt)
[Function File]imwrite (img, filename, fmt, p1, v1, . . .)
[Function File]imwrite (img, map, filename, . . .)

Write images in various file formats.

If fmt is not supplied, the file extension of filename is used to determine the format.

The parameter-value pairs (p1, v1, . . .) are optional. Currently the following options
are supported for JPEG images:

‘Quality’ Set the quality of the compression. The value should be an integer be-
tween 0 and 100, with larger values indicating higher visual quality and
lower compression.

Supported Formats

Extension Format

582 GNU Octave

bmp Windows Bitmap
gif Graphics Interchange Format
jpg and jpeg Joint Photographic Experts Group
pbm Portable Bitmap
pcx
pgm Portable Graymap
png Portable Network Graphics
pnm Portable Anymap
ppm Portable Pixmap
ras Sun Raster
tif and tiff Tagged Image File Format
xwd X11 Dump

Unsupported Formats

Extension Format
hdf Hierarchical Data Format V4
jp2 and jpx Joint Photographic Experts Group 2000

See also: [imread], page 581, [imfinfo], page 582.

[Built-in Function]val = IMAGE_PATH ()
[Built-in Function]old_val = IMAGE_PATH (new_val)
[Built-in Function]IMAGE_PATH (new_val, "local")

Query or set the internal variable that specifies a colon separated list of directories in
which to search for image files.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

It is possible to get information about an image file on disk, without actually reading it
into Octave. This is done using the imfinfo function which provides read access to many
of the parameters stored in the header of the image file.

[Function File]info = imfinfo (filename)
[Function File]info = imfinfo (url)

Read image information from a file.

imfinfo returns a structure containing information about the image stored in the file
filename. The output structure contains the following fields.

‘Filename’
The full name of the image file.

‘FileSize’
Number of bytes of the image on disk

‘FileModDate’
Date of last modification to the file.

‘Height’ Image height in pixels.

‘Width’ Image Width in pixels.

Chapter 32: Image Processing 583

‘BitDepth’
Number of bits per channel per pixel.

‘Format’ Image format (e.g., "jpeg").

‘LongFormat’
Long form image format description.

‘XResolution’
X resolution of the image.

‘YResolution’
Y resolution of the image.

‘TotalColors’
Number of unique colors in the image.

‘TileName’
Tile name.

‘AnimationDelay’
Time in 1/100ths of a second (0 to 65535) which must expire before
displaying the next image in an animated sequence.

‘AnimationIterations’
Number of iterations to loop an animation (e.g., Netscape loop extension)
for.

‘ByteOrder’
Endian option for formats that support it. Is either "little-endian",
"big-endian", or "undefined".

‘Gamma’ Gamma level of the image. The same color image displayed on two dif-
ferent workstations may look different due to differences in the display
monitor.

‘Matte’ true if the image has transparency.

‘ModulusDepth’
Image modulus depth (minimum number of bits required to support
red/green/blue components without loss of accuracy).

‘Quality’ JPEG/MIFF/PNG compression level.

‘QuantizeColors’
Preferred number of colors in the image.

‘ResolutionUnits’
Units of image resolution. Is either "pixels per inch", "pixels per

centimeter", or "undefined".

‘ColorType’
Image type. Is either "grayscale", "indexed", "truecolor", or
"undefined".

‘View’ FlashPix viewing parameters.

See also: [imread], page 581, [imwrite], page 581.

584 GNU Octave

32.2 Displaying Images

A natural part of image processing is visualization of an image. The most basic function
for this is the imshow function that shows the image given in the first input argument.

[Function File]imshow (im)
[Function File]imshow (im, limits)
[Function File]imshow (im, map)
[Function File]imshow (rgb, . . .)
[Function File]imshow (filename)
[Function File]imshow (. . . , string_param1, value1, . . .)
[Function File]h = imshow (. . .)

Display the image im, where im can be a 2-dimensional (gray-scale image) or a 3-
dimensional (RGB image) matrix.

If limits is a 2-element vector [low, high], the image is shown using a display range
between low and high. If an empty matrix is passed for limits, the display range is
computed as the range between the minimal and the maximal value in the image.

If map is a valid color map, the image will be shown as an indexed image using the
supplied color map.

If a file name is given instead of an image, the file will be read and shown.

If given, the parameter string param1 has value value1. string param1 can be any
of the following:

"displayrange"
value1 is the display range as described above.

The optional return value h is a graphics handle to the image.

See also: [image], page 584, [imagesc], page 585, [colormap], page 586, [gray2ind],
page 585, [rgb2ind], page 585.

[Function File]image (img)
[Function File]image (x, y, img)
[Function File]h = image (. . .)

Display a matrix as a color image. The elements of img are indices into the current
colormap, and the colormap will be scaled so that the extremes of img are mapped
to the extremes of the colormap.

The axis values corresponding to the matrix elements are specified in x and y. If
you’re not using gnuplot 4.2 or later, these variables are ignored.

Implementation Note: The origin (0, 0) for images is located in the upper left. For
ordinary plots, the origin is located in the lower left. Octave handles this inversion by
plotting the data normally, and then reversing the direction of the y-axis by setting
the ydir property to "reverse". This has implications whenever an image and an
ordinary plot need to be overlaid. The recommended solution is to display the image
and then plot the reversed ydata using, for example, flipud (ydata,1).

The optional return value h is a graphics handle to the image.

See also: [imshow], page 584, [imagesc], page 585, [colormap], page 586.

Chapter 32: Image Processing 585

[Function File]imagesc (A)
[Function File]imagesc (x, y, A)
[Function File]imagesc (. . . , limits)
[Function File]imagesc (h, . . .)
[Function File]h = imagesc (. . .)

Display a scaled version of the matrix A as a color image. The colormap is scaled
so that the entries of the matrix occupy the entire colormap. If limits = [lo, hi] are
given, then that range is set to the ’clim’ of the current axes.

The axis values corresponding to the matrix elements are specified in x and y, either
as pairs giving the minimum and maximum values for the respective axes, or as values
for each row and column of the matrix A.

The optional return value h is a graphics handle to the image.

See also: [image], page 584, [imshow], page 584, [caxis], page 257.

32.3 Representing Images

In general Octave supports four different kinds of images, gray-scale images, RGB images,
binary images, and indexed images. A gray-scale image is represented with an M-by-N
matrix in which each element corresponds to the intensity of a pixel. An RGB image is
represented with an M-by-N-by-3 array where each 3-vector corresponds to the red, green,
and blue intensities of each pixel.

The actual meaning of the value of a pixel in a gray-scale or RGB image depends on the
class of the matrix. If the matrix is of class double pixel intensities are between 0 and 1, if
it is of class uint8 intensities are between 0 and 255, and if it is of class uint16 intensities
are between 0 and 65535.

A binary image is an M-by-N matrix of class logical. A pixel in a binary image is black
if it is false and white if it is true.

An indexed image consists of an M-by-N matrix of integers and a C-by-3 color map.
Each integer corresponds to an index in the color map, and each row in the color map
corresponds to an RGB color. The color map must be of class double with values between
0 and 1.

[Function File][img, map] = gray2ind (I, n)
Convert a gray scale intensity image to an Octave indexed image. The indexed image
will consist of n different intensity values. If not given n will default to 64.

[Function File]ind2gray (x, map)
Convert an Octave indexed image to a gray scale intensity image. If map is omitted,
the current colormap is used to determine the intensities.

See also: [gray2ind], page 585, [rgb2ntsc], page 590, [image], page 584, [colormap],
page 586.

[Function File][x, map] = rgb2ind (rgb)
[Function File][x, map] = rgb2ind (R, G, B)

Convert an RGB image to an Octave indexed image.

See also: [ind2rgb], page 586, [rgb2ntsc], page 590.

586 GNU Octave

[Function File]rgb = ind2rgb (x, map)
[Function File][R, R, R] = ind2rgb (x, map)

Convert an indexed image to red, green, and blue color components. If the colormap
doesn’t contain enough colors, pad it with the last color in the map. Ifmap is omitted,
the current colormap is used for the conversion.

See also: [rgb2ind], page 585, [image], page 584, [imshow], page 584, [ind2gray],
page 585, [gray2ind], page 585.

[Function File]colormap (map)
[Function File]colormap ("default")

Set the current colormap.

colormap (map) sets the current colormap to map. The color map should be an
n row by 3 column matrix. The columns contain red, green, and blue intensities
respectively. All entries should be between 0 and 1 inclusive. The new colormap is
returned.

colormap ("default") restores the default colormap (the jet map with 64 entries).
The default colormap is returned.

With no arguments, colormap returns the current color map.

See also: [jet], page 587.

[Function File]map = autumn ()
[Function File]map = autumn (n)

Create color colormap. This colormap ranges from red through orange to yellow. The
argument n must be a scalar. If unspecified, the length of the current colormap, or
64, is used.

See also: [colormap], page 586.

[Function File]map = bone ()
[Function File]map = bone (n)

Create color colormap. This colormap varies from black to white with gray-blue
shades. The argument n must be a scalar. If unspecified, the length of the current
colormap, or 64, is used.

See also: [colormap], page 586.

[Function File]map = cool ()
[Function File]map = cool (n)

Create color colormap. The colormap varies from cyan to magenta. The argument n
must be a scalar. If unspecified, the length of the current colormap, or 64, is used.

See also: [colormap], page 586.

[Function File]map = copper ()
[Function File]map = copper (n)

Create color colormap. This colormap varies from black to a light copper tone. The
argument n must be a scalar. If unspecified, the length of the current colormap, or
64, is used.

See also: [colormap], page 586.

Chapter 32: Image Processing 587

[Function File]map = flag ()
[Function File]map = flag (n)

Create color colormap. This colormap cycles through red, white, blue and black with
each index change. The argument n must be a scalar. If unspecified, the length of
the current colormap, or 64, is used.

See also: [colormap], page 586.

[Function File]map = gray ()
[Function File]map = gray (n)

Create gray colormap. This colormap varies from black to white with shades of gray.
The argument n must be a scalar. If unspecified, the length of the current colormap,
or 64, is used.

[Function File]map = hot ()
[Function File]map = hot (n)

Create color colormap. This colormap ranges from black through dark red, red,
orange, yellow, to white. The argument n must be a scalar. If unspecified, the length
of the current colormap, or 64, is used.

See also: [colormap], page 586.

[Function File]hsv (n)
Create color colormap. This colormap begins with red, changes through yellow, green,
cyan, blue, and magenta, before returning to red. It is useful for displaying peri-
odic functions. It is obtained by linearly varying the hue through all possible values
while keeping constant maximum saturation and value and is equivalent to hsv2rgb

([linspace(0,1,N)’, ones(N,2)]).

The argument n must be a scalar. If unspecified, the length of the current colormap,
or 64, is used.

See also: [colormap], page 586.

[Function File]map = jet ()
[Function File]map = jet (n)

Create color colormap. This colormap ranges from dark blue through blue, cyan,
green, yellow, red, to dark red. The argument n must be a scalar. If unspecified, the
length of the current colormap, or 64, is used.

See also: [colormap], page 586.

[Function File]map = ocean ()
[Function File]map = ocean (n)

Create color colormap. This colormap varies from black to white with shades of blue.
The argument n must be a scalar. If unspecified, the length of the current colormap,
or 64, is used.

[Function File]map = pink ()
[Function File]map = pink (n)

Create color colormap. This colormap varies from black to white with shades of gray-
pink. It gives a sepia tone when used on grayscale images. The argument n must be
a scalar. If unspecified, the length of the current colormap, or 64, is used.

588 GNU Octave

See also: [colormap], page 586.

[Function File]map = prism ()
[Function File]map = prism (n)

Create color colormap. This colormap cycles through red, orange, yellow, green, blue
and violet with each index change. The argument n must be a scalar. If unspecified,
the length of the current colormap, or 64, is used.

See also: [colormap], page 586.

[Function File]map = rainbow ()
[Function File]map = rainbow (n)

Create color colormap. This colormap ranges from red through orange, yellow, green,
blue, to violet. The argument n must be a scalar. If unspecified, the length of the
current colormap, or 64, is used.

See also: [colormap], page 586.

[Function File]map = spring ()
[Function File]map = spring (n)

Create color colormap. This colormap varies from magenta to yellow. The argument
n must be a scalar. If unspecified, the length of the current colormap, or 64, is used.

See also: [colormap], page 586.

[Function File]map = summer ()
[Function File]map = summer (n)

Create color colormap. This colormap varies from green to yellow. The argument n
must be a scalar. If unspecified, the length of the current colormap, or 64, is used.

See also: [colormap], page 586.

[Function File]map = white ()
[Function File]map = white (n)

Create color colormap. This colormap is completely white. The argument n should
be a scalar. If it is omitted, the length of the current colormap or 64 is assumed.

See also: [colormap], page 586.

[Function File]map = winter ()
[Function File]map = winter (n)

Create color colormap. This colormap varies from blue to green. The argument n
must be a scalar. If unspecified, the length of the current colormap, or 64, is used.

See also: [colormap], page 586.

[Function File]contrast (x, n)
Return a gray colormap that maximizes the contrast in an image. The returned
colormap will have n rows. If n is not defined then the size of the current colormap
is used instead.

See also: [colormap], page 586.

Chapter 32: Image Processing 589

An additional colormap is gmap40. This code map contains only colors with integer
values of the red, green and blue components. This is a workaround for a limitation of
gnuplot 4.0, that does not allow the color of line or patch objects to be set, and so gmap40

is useful for gnuplot 4.0 users, and in particular in conjunction with the bar, barh or contour
functions.

[Function File]map = gmap40 ()
[Function File]map = gmap40 (n)

Create color colormap. The colormap consists of red, green, blue, yellow, magenta
and cyan. This colormap is specifically designed for users of gnuplot 4.0 where these
6 colors are the allowable ones for patch objects. The argument n must be a scalar.
If unspecified, a length of 6 is assumed. Larger values of n result in a repetition of
the above colors.

See also: [colormap], page 586.

The following three functions modify the existing colormap rather than replace it.

[Function File]map_out = brighten (map, beta)
[Function File]map_out = brighten (h, beta)
[Function File]map_out = brighten (beta)

Darken or brighten the given colormap. If the map argument is omitted, the function
is applied to the current colormap. The first argument can also be a valid graphics
handle h, in which case brighten is applied to the colormap associated with this
handle.

Should the resulting colormap map out not be assigned, it will be written to the
current colormap.

The argument beta should be a scalar between -1 and 1, where a negative value
darkens and a positive value brightens the colormap.

See also: [colormap], page 586.

[Function File]spinmap (t, inc)
Cycle the colormap for t seconds with an increment of inc. Both parameters are
optional. The default cycle time is 5 seconds and the default increment is 2.

A higher value of inc causes a faster cycle through the colormap.

See also: [gca], page 295, [colorbar], page 279.

[Function File]whitebg ()
[Function File]whitebg (color)
[Function File]whitebg ("none")
[Function File]whitebg (fig)
[Function File]whitebg (fig, color)
[Function File]whitebg (fig, "none")

Invert the colors in the current color scheme. The root properties are also inverted
such that all subsequent plot use the new color scheme.

If defined, fig is the handle to the figure to be inverted. In this case only the specified
figure has its color properties changed.

590 GNU Octave

If the optional argument color is present then the background color is set to color
rather than inverted. color may be a string representing one of the eight known colors
or an RGB triplet. The special string argument "none" restores the plot to the default
colors.

See also: [reset], page 314.

32.4 Plotting on top of Images

If gnuplot is being used to display images it is possible to plot on top of images. Since an
image is a matrix it is indexed by row and column values. The plotting system is, however,
based on the traditional (x, y) system. To minimize the difference between the two systems
Octave places the origin of the coordinate system in the point corresponding to the pixel
at (1, 1). So, to plot points given by row and column values on top of an image, one should
simply call plot with the column values as the first argument and the row values as the
second. As an example the following code generates an image with random intensities
between 0 and 1, and shows the image with red circles over pixels with an intensity above
0.99.

I = rand (100, 100);

[row, col] = find (I > 0.99);

hold ("on");

imshow (I);

plot (col, row, "ro");

hold ("off");

32.5 Color Conversion

Octave supports conversion from the RGB color system to NTSC and HSV and vice versa.

[Function File]hsv_map = rgb2hsv (rgb)
Transform a colormap or image from the RGB space to the HSV space.

A color in the RGB space consists of the red, green and blue intensities.

In the HSV space each color is represented by their hue, saturation and value (bright-
ness). Value gives the amount of light in the color. Hue describes the dominant
wavelength. Saturation is the amount of hue mixed into the color.

See also: [hsv2rgb], page 590.

[Function File]rgb_map = hsv2rgb (hsv_map)
Transform a colormap or image from the HSV space to the RGB space.

See also: [rgb2hsv], page 590.

[Function File]rgb2ntsc (rgb)
Transform a colormap or image from RGB to NTSC.

See also: [ntsc2rgb], page 590.

[Function File]ntsc2rgb (yiq)
Transform a colormap or image from NTSC to RGB.

See also: [rgb2ntsc], page 590.

Chapter 33: Audio Processing 591

33 Audio Processing

Octave provides a few functions for dealing with audio data. An audio ‘sample’ is a single
output value from an A/D converter, i.e., a small integer number (usually 8 or 16 bits), and
audio data is just a series of such samples. It can be characterized by three parameters: the
sampling rate (measured in samples per second or Hz, e.g., 8000 or 44100), the number of
bits per sample (e.g., 8 or 16), and the number of channels (1 for mono, 2 for stereo, etc.).

There are many different formats for representing such data. Currently, only the two
most popular, linear encoding and mu-law encoding, are supported by Octave. There is an
excellent FAQ on audio formats by Guido van Rossum guido@cwi.nl which can be found at
any FAQ ftp site, in particular in the directory ‘/pub/usenet/news.answers/audio-fmts’
of the archive site rtfm.mit.edu.

Octave simply treats audio data as vectors of samples (non-mono data are not supported
yet). It is assumed that audio files using linear encoding have one of the extensions ‘lin’
or ‘raw’, and that files holding data in mu-law encoding end in ‘au’, ‘mu’, or ‘snd’.

[Function File]lin2mu (x, n)
Convert audio data from linear to mu-law. Mu-law values use 8-bit unsigned integers.
Linear values use n-bit signed integers or floating point values in the range -1 ≤ x ≤
1 if n is 0.

If n is not specified it defaults to 0, 8, or 16 depending on the range of values in x.

See also: [mu2lin], page 591, [loadaudio], page 591, [saveaudio], page 591.

[Function File]mu2lin (x, n)
Convert audio data from mu-law to linear. Mu-law values are 8-bit unsigned integers.
Linear values use n-bit signed integers or floating point values in the range -1≤y≤1
if n is 0.

If n is not specified it defaults to 0.

See also: [lin2mu], page 591, [loadaudio], page 591, [saveaudio], page 591.

[Function File]loadaudio (name, ext, bps)
Load audio data from the file ‘name.ext ’ into the vector x.

The extension ext determines how the data in the audio file is interpreted; the exten-
sions ‘lin’ (default) and ‘raw’ correspond to linear, the extensions ‘au’, ‘mu’, or ‘snd’
to mu-law encoding.

The argument bps can be either 8 (default) or 16, and specifies the number of bits
per sample used in the audio file.

See also: [lin2mu], page 591, [mu2lin], page 591, [saveaudio], page 591, [playaudio],
page 592, [setaudio], page 592, [record], page 592.

[Function File]saveaudio (name, x, ext, bps)
Save a vector x of audio data to the file ‘name.ext ’. The optional parameters ext
and bps determine the encoding and the number of bits per sample used in the audio
file (see loadaudio); defaults are ‘lin’ and 8, respectively.

See also: [lin2mu], page 591, [mu2lin], page 591, [loadaudio], page 591, [playaudio],
page 592, [setaudio], page 592, [record], page 592.

mailto:guido@cwi.nl

592 GNU Octave

The following functions for audio I/O require special A/D hardware and operating system
support. It is assumed that audio data in linear encoding can be played and recorded by
reading from and writing to ‘/dev/dsp’, and that similarly ‘/dev/audio’ is used for mu-law
encoding. These file names are system-dependent. Improvements so that these functions
will work without modification on a wide variety of hardware are welcome.

[Function File]playaudio (name, ext)
[Function File]playaudio (x)

Play the audio file ‘name.ext ’ or the audio data stored in the vector x.

See also: [lin2mu], page 591, [mu2lin], page 591, [loadaudio], page 591, [saveaudio],
page 591, [setaudio], page 592, [record], page 592.

[Function File]record (sec, sampling_rate)
Record sec seconds of audio input into the vector x. The default value for sam-
pling rate is 8000 samples per second, or 8kHz. The program waits until the user
types RET and then immediately starts to record.

See also: [lin2mu], page 591, [mu2lin], page 591, [loadaudio], page 591, [saveaudio],
page 591, [playaudio], page 592, [setaudio], page 592.

[Function File]setaudio ()
[Function File]setaudio (w_type)
[Function File]setaudio (w_type, value)

Execute the shell command ‘mixer’, possibly with optional arguments w type and
value.

[Function File]y = wavread (filename)
Load the RIFF/WAVE sound file filename, and return the samples in vector y. If the
file contains multichannel data, then y is a matrix with the channels represented as
columns.

[Function File][y, Fs, bps] = wavread (filename)
Additionally return the sample rate (fs) in Hz and the number of bits per sample
(bps).

[Function File][...] = wavread (filename, n)
Read only the first n samples from each channel.

[Function File][...] = wavread (filename, n1 n2)
Read only samples n1 through n2 from each channel.

[Function File][samples, channels] = wavread (filename, "size")
Return the number of samples (n) and channels (ch) instead of the audio data.

See also: [wavwrite], page 592.

[Function File]wavwrite (y, filename)
[Function File]wavwrite (y, Fs, filename)
[Function File]wavwrite (y, Fs, bps, filename)

Write y to the canonical RIFF/WAVE sound file filename with sample rate Fs and
bits per sample bps. The default sample rate is 8000 Hz with 16-bits per sample.
Each column of the data represents a separate channel.

See also: [wavread], page 592.

Chapter 34: Object Oriented Programming 593

34 Object Oriented Programming

Octave includes the capability to include user classes, including the features of operator and
function overloading. Equally a user class can be used to encapsulate certain properties of
the class so that they cannot be altered accidentally and can be set up to address the issue
of class precedence in mixed class operations.

This chapter discussions the means of constructing a user class with the example of a
polynomial class, how to query and set the properties of this class, together with the means
to overload operators and functions.

34.1 Creating a Class

We use in the following text a polynomial class to demonstrate the use of object oriented
programming within Octave. This class was chosen as it is simple, and so doesn’t distract
unnecessarily from the discussion of the programming features of Octave. However, even still
a small understand of the polynomial class itself is necessary to fully grasp the techniques
described.

The polynomial class is used to represent polynomials of the form

a0 + a1x+ a2x
2 + . . . anx

n

where a0, a1, etc. are elements of <. Thus the polynomial can be represented by a vector

a = [a0, a1, a2, ..., an];

We therefore now have sufficient information about the requirements of the class con-
structor for our polynomial class to write it. All object oriented classes in Octave, must be
contained with a directory taking the name of the class, prepended with the @ symbol. For
example, with our polynomial class, we would place the methods defining the class in the
@polynomial directory.

The constructor of the class, must have the name of the class itself and so in our example
the constructor with have the name ‘@polynomial/polynomial.m’. Also ideally when the
constructor is called with no arguments to should return a value object. So for example our
polynomial might look like

594 GNU Octave

-*- texinfo -*-

@deftypefn {Function File} {} polynomial ()

@deftypefnx {Function File} {} polynomial (@var{a})

Create a polynomial object representing the polynomial

##

@example

a0 + a1 * x + a2 * x^2 + @dots{} + an * x^n

@end example

##

@noindent

from a vector of coefficients [a0 a1 a2 @dots{} an].

@end deftypefn

function p = polynomial (a)

if (nargin == 0)

p.poly = [0];

p = class (p, "polynomial");

elseif (nargin == 1)

if (strcmp (class (a), "polynomial"))

p = a;

elseif (isvector (a) && isreal (a))

p.poly = a(:).’;

p = class (p, "polynomial");

else

error ("polynomial: expecting real vector");

endif

else

print_usage ();

endif

endfunction

Note that the return value of the constructor must be the output of the class function
called with the first argument being a structure and the second argument being the class
name. An example of the call to this constructor function is then

p = polynomial ([1, 0, 1]);

Note that methods of a class can be documented. The help for the constructor itself
can be obtained with the constructor name, that is for the polynomial constructor help

polynomial will return the help string. Also the help can be obtained by restricting the
search for the help to a particular class, for example help @polynomial/polynomial. This
second method is the only means of getting help for the overloaded methods and functions
of the class.

The same is true for other Octave functions that take a function name as an argument.
For example type @polynomial/display will print the code of the display method of the
polynomial class to the screen, and dbstop @polynomial/display will set a breakpoint at
the first executable line of the display method of the polynomial class.

Chapter 34: Object Oriented Programming 595

To check where a variable is a user class, the isobject and isa functions can be used.
For example:

p = polynomial ([1, 0, 1]);

isobject (p)

⇒ 1

isa (p, "polynomial")

⇒ 1

[Built-in Function]isobject (x)
Return true if x is a class object.

See also: [class], page 37, [typeinfo], page 37, [isa], page 37, [ismethod], page 595.

The available methods of a class can be displayed with the methods function.

[Built-in Function]methods (x)
[Built-in Function]methods ("classname")

Return a cell array containing the names of the methods for the object x or the named
class.

To inquire whether a particular method is available to a user class, the ismethod function
can be used.

[Built-in Function]ismethod (x, method)
Return true if x is a class object and the string method is a method of this class.

See also: [isobject], page 595.

For example:

p = polynomial ([1, 0, 1]);

ismethod (p, "roots")

⇒ 1

34.2 Manipulating Classes

There are a number of basic classes methods that can be defined to allow the contents of the
classes to be queried and set. The most basic of these is the display method. The display
method is used by Octave when displaying a class on the screen, due to an expression that
is not terminated with a semicolon. If this method is not defined, then Octave will printed
nothing when displaying the contents of a class.

[Function File]display (a)
Display the contents of an object. If a is an object of the class "myclass", then
display is called in a case like

myclass (...)

where Octave is required to display the contents of a variable of the type "myclass".

See also: [class], page 37, [subsref], page 599, [subsasgn], page 600.

596 GNU Octave

An example of a display method for the polynomial class might be

function display (p)

a = p.poly;

first = true;

fprintf("%s =", inputname(1));

for i = 1 : length (a);

if (a(i) != 0)

if (first)

first = false;

elseif (a(i) > 0)

fprintf (" +");

endif

if (a(i) < 0)

fprintf (" -");

endif

if (i == 1)

fprintf (" %g", abs (a(i)));

elseif (abs(a(i)) != 1)

fprintf (" %g *", abs (a(i)));

endif

if (i > 1)

fprintf (" X");

endif

if (i > 2)

fprintf (" ^ %d", i - 1);

endif

endif

endfor

if (first)

fprintf(" 0");

endif

fprintf("\n");

endfunction

Note that in the display method, it makes sense to start the method with the line
fprintf("%s =", inputname(1)) to be consistent with the rest of Octave and print the
variable name to be displayed when displaying the class.

To be consistent with the Octave graphic handle classes, a class should also define the
get and set methods. The get method should accept one or two arguments, and given one
argument of the appropriate class it should return a structure with all of the properties of
the class. For example:

Chapter 34: Object Oriented Programming 597

function s = get (p, f)

if (nargin == 1)

s.poly = p.poly;

elseif (nargin == 2)

if (ischar (f))

switch (f)

case "poly"

s = p.poly;

otherwise

error ("get: invalid property %s", f);

endswitch

else

error ("get: expecting the property to be a string");

endif

else

print_usage ();

endif

endfunction

Similarly, the set method should taken as its first argument an object to modify, and then
take property/value pairs to be modified.

function s = set (p, varargin)

s = p;

if (length (varargin) < 2 || rem (length (varargin), 2) != 0)

error ("set: expecting property/value pairs");

endif

while (length (varargin) > 1)

prop = varargin{1};

val = varargin{2};

varargin(1:2) = [];

if (ischar (prop) && strcmp (prop, "poly"))

if (isvector (val) && isreal (val))

s.poly = val(:).’;

else

error ("set: expecting the value to be a real vector");

endif

else

error ("set: invalid property of polynomial class");

endif

endwhile

endfunction

Note that as Octave does not implement pass by reference, than the modified object is the
return value of the set method and it must be called like

p = set (p, "a", [1, 0, 0, 0, 1]);

598 GNU Octave

Also the set method makes use of the subsasgn method of the class, and this method must
be defined. The subsasgn method is discussed in the next section.

Finally, user classes can be considered as a special type of a structure, and so they can
be saved to a file in the same manner as a structure. For example:

p = polynomial ([1, 0, 1]);

save userclass.mat p

clear p

load userclass.mat

All of the file formats supported by save and load are supported. In certain circumstances,
a user class might either contain a field that it makes no sense to save or a field that needs
to be initialized before it is saved. This can be done with the saveobj method of the class

[Function File]b = saveobj (a)
Method of a class to manipulate an object prior to saving it to a file. The function
saveobj is called when the object a is saved using the save function. An example of
the use of saveobj might be to remove fields of the object that don’t make sense to
be saved or it might be used to ensure that certain fields of the object are initialized
before the object is saved. For example:

function b = saveobj (a)

b = a;

if (isempty (b.field))

b.field = initfield (b);

endif

endfunction

See also: [loadobj], page 598, [class], page 37.

saveobj is called just prior to saving the class to a file. Likely, the loadobj method is
called just after a class is loaded from a file, and can be used to ensure that any removed
fields are reinserted into the user object.

[Function File]b = loadobj (a)
Method of a class to manipulate an object after loading it from a file. The function
loadobj is called when the object a is loaded using the load function. An example
of the use of saveobj might be to add fields to an object that don’t make sense to be
saved. For example:

function b = loadobj (a)

b = a;

b.addmissingfield = addfield (b);

endfunction

See also: [saveobj], page 598, [class], page 37.

34.3 Indexing Objects

Chapter 34: Object Oriented Programming 599

34.3.1 Defining Indexing And Indexed Assignment

Objects can be indexed with parentheses, either like a (idx) or like a {idx}, or even like a
(idx).field . However, it is up to the user to decide what this indexing actually means. In
the case of our polynomial class p (n) might mean either the coefficient of the n-th power
of the polynomial, or it might be the evaluation of the polynomial at n. The meaning of
this subscripted referencing is determined by the subsref method.

[Built-in Function]subsref (val, idx)
Perform the subscripted element selection operation according to the subscript spec-
ified by idx.

The subscript idx is expected to be a structure array with fields ‘type’ and ‘subs’.
Valid values for ‘type’ are ‘"()"’, ‘"{}"’, and ‘"."’. The ‘subs’ field may be either
‘":"’ or a cell array of index values.

The following example shows how to extract the two first columns of a matrix

val = magic(3)

⇒ val = [8 1 6

3 5 7

4 9 2]

idx.type = "()";

idx.subs = {":", 1:2};

subsref(val, idx)

⇒ [8 1

3 5

4 9]

Note that this is the same as writing val(:,1:2).

If idx is an empty structure array with fields ‘type’ and ‘subs’, return val.

See also: [subsasgn], page 600, [substruct], page 100.

For example we might decide that indexing with "()" evaluates the polynomial and
indexing with "{}" returns the n-th coefficient (of n-th power). In this case the subsref

method of our polynomial class might look like

600 GNU Octave

function b = subsref (a, s)

if (isempty (s))

error ("polynomial: missing index");

endif

switch (s(1).type)

case "()"

ind = s(1).subs;

if (numel (ind) != 1)

error ("polynomial: need exactly one index");

else

b = polyval (fliplr (a.poly), ind{1});

endif

case "{}"

ind = s(1).subs;

if (numel (ind) != 1)

error ("polynomial: need exactly one index");

else

if (isnumeric (ind{1}))

b = a.poly(ind{1}+1);

else

b = a.poly(ind{1});

endif

endif

case "."

fld = s.subs;

if (strcmp (fld, "poly"))

b = a.poly;

else

error ("@polynomial/subsref: invalid property \"%s\"", fld);

endif

otherwise

error ("invalid subscript type");

endswitch

if (numel (s) > 1)

b = subsref (b, s(2:end));

endif

endfunction

The equivalent functionality for subscripted assignments uses the subsasgn method.

[Built-in Function]subsasgn (val, idx, rhs)
Perform the subscripted assignment operation according to the subscript specified by
idx.

The subscript idx is expected to be a structure array with fields ‘type’ and ‘subs’.
Valid values for ‘type’ are ‘"()"’, ‘"{}"’, and ‘"."’. The ‘subs’ field may be either
‘":"’ or a cell array of index values.

Chapter 34: Object Oriented Programming 601

The following example shows how to set the two first columns of a 3-by-3 matrix to
zero.

val = magic(3);

idx.type = "()";

idx.subs = {":", 1:2};

subsasgn (val, idx, 0)

⇒ [0 0 6

0 0 7

0 0 2]

Note that this is the same as writing val(:,1:2) = 0.

If idx is an empty structure array with fields ‘type’ and ‘subs’, return rhs.

See also: [subsref], page 599, [substruct], page 100.

[Built-in Function]val = optimize_subsasgn_calls ()
[Built-in Function]old_val = optimize_subsasgn_calls (new_val)
[Built-in Function]optimize_subsasgn_calls (new_val, "local")

Query or set the internal flag for subsasgn method call optimizations. If true, Octave
will attempt to eliminate the redundant copying when calling subsasgn method of a
user-defined class.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

Note that the subsref and subsasgn methods always receive the whole index chain,
while they usually handle only the first element. It is the responsibility of these methods
to handle the rest of the chain (if needed), usually by forwarding it again to subsref or
subsasgn.

If you wish to use the end keyword in subscripted expressions of an object, then the
user needs to define the end method for the class. For example, the end method for our
polynomial class might look like

function r = end (obj, index_pos, num_indices)

if (num_indices != 1)

error ("polynomial object may only have one index")

endif

r = length (obj.poly) - 1;

endfunction

which is a fairly generic end method that has a behavior similar to the end keyword for
Octave Array classes. It can then be used as follows:

p = polynomial([1,2,3,4]);

p(end-1)

⇒ 3

602 GNU Octave

Objects can also be used as the index in a subscripted expression themselves and this is
controlled with the subsindex function.

[Function File]idx = subsindex (a)
Convert an object to an index vector. When a is a class object defined with a class
constructor, then subsindex is the overloading method that allows the conversion of
this class object to a valid indexing vector. It is important to note that subsindex
must return a zero-based real integer vector of the class "double". For example, if
the class constructor

function b = myclass (a)

b = class (struct ("a", a), "myclass");

endfunction

then the subsindex function

function idx = subsindex (a)

idx = double (a.a) - 1.0;

endfunction

can then be used as follows

a = myclass (1:4);

b = 1:10;

b(a)

⇒ 1 2 3 4

See also: [class], page 37, [subsref], page 599, [subsasgn], page 600.

Finally, objects can equally be used like ranges, using the colon method

[Function File]r = colon (a, b)
[Function File]r = colon (a, b, c)

Method of a class to construct a range with the : operator. For example:

a = myclass (...);

b = myclass (...);

c = a : b

See also: [class], page 37, [subsref], page 599, [subsasgn], page 600.

34.3.2 Indexed Assignment Optimization

Octave’s ubiquitous lazily-copied pass-by-value semantics implies a problem for performance
of user-defined subsasgn methods. Imagine a call to subsasgn:

ss = substruct ("()",{1});

x = subsasgn (x, ss, 1);

and the corresponding method looking like this:

function x = subsasgn (x, ss, val)

...

x.myfield(ss.subs{1}) = val;

endfunction

The problem is that on entry to the subsasgn method, x is still referenced from the caller’s
scope, which means that the method will first need to unshare (copy) x and x.myfield

Chapter 34: Object Oriented Programming 603

before performing the assignment. Upon completing the call, unless an error occurs, the
result is immediately assigned to x in the caller’s scope, so that the previous value of
x.myfield is forgotten. Hence, the Octave language implies a copy of N elements (N being
the size of x.myfield), where modifying just a single element would actually suffice, i.e.,
degrades a constant-time operation to linear-time one. This may be a real problem for user
classes that intrinsically store large arrays.

To partially solve the problem, Octave uses a special optimization for user-defined sub-
sasgn methods coded as m-files. When the method gets called as a result of the built-in
assignment syntax (not direct subsasgn call as shown above), i.e.

x(1) = 1;

AND if the subsasgn method is declared with identical input and output argument,
like in the example above, then Octave will ignore the copy of x inside the caller’s scope;
therefore, any changes made to x during the method execution will directly affect the caller’s
copy as well. This allows, for instance, defining a polynomial class where modifying a single
element takes constant time.

It is important to understand the implications that this optimization brings. Since no
extra copy of x in the caller’s scope will exist, it is solely the callee’s responsibility to
not leave x in an invalid state if an error occurs throughout the execution. Also, if the
method partially changes x and then errors out, the changes will affect x in the caller’s
scope. Deleting or completely replacing x inside subsasgn will not do anything, however,
only indexed assignments matter.

Since this optimization may change the way code works (especially if badly written), a
built-in variable optimize_subsasgn_calls is provided to control it. It is on by default.
Another option to avoid the effect is to declare subsasgn methods with different output and
input arguments, like this:

function y = subsasgn (x, ss, val)

...

endfunction

34.4 Overloading Objects

34.4.1 Function Overloading

Any Octave function can be overloaded, and allows an object specific version of this function
to be called as needed. A pertinent example for our polynomial class might be to overload
the polyval function like

function [y, dy] = polyval (p, varargin)

if (nargout == 2)

[y, dy] = polyval (fliplr(p.poly), varargin{:});

else

y = polyval (fliplr(p.poly), varargin{:});

endif

endfunction

This function just hands off the work to the normal Octave polyval function. Another
interesting example for an overloaded function for our polynomial class is the plot function.

604 GNU Octave

function h = plot(p, varargin)

n = 128;

rmax = max (abs (roots (p.poly)));

x = [0 : (n - 1)] / (n - 1) * 2.2 * rmax - 1.1 * rmax;

if (nargout > 0)

h = plot(x, p(x), varargin{:});

else

plot(x, p(x), varargin{:});

endif

endfunction

which allows polynomials to be plotted in the domain near the region of the roots of the
polynomial.

Functions that are of particular interest to be overloaded are the class conversion func-
tions such as double. Overloading these functions allows the cast function to work with
the user class and can aid in the use of methods of other classes with the user class. An
example double function for our polynomial class might look like.

function b = double (a)

b = a.poly;

endfunction

Chapter 34: Object Oriented Programming 605

34.4.2 Operator Overloading
Operation Method Description

a+ b plus (a, b) Binary addition operator

a− b minus (a, b) Binary subtraction operator

+a uplus (a) Unary addition operator

−a uminus (a) Unary subtraction operator

a. ∗ b times (a, b) Element-wise multiplication operator

a ∗ b mtimes (a, b) Matrix multiplication operator

a./b rdivide (a, b) Element-wise right division operator

a/b mrdivide (a, b) Matrix right division operator

a.\b ldivide (a, b) Element-wise left division operator

a\b mldivide (a, b) Matrix left division operator

a.^b power (a, b) Element-wise power operator

a^b mpower (a, b) Matrix power operator

a < b lt (a, b) Less than operator

a <= b le (a, b) Less than or equal to operator

a > b gt (a, b) Greater than operator

a >= b ge (a, b) Greater than or equal to operator

a == b eq (a, b) Equal to operator

a! = b ne (a, b) Not equal to operator

a&b and (a, b) Logical and operator

a|b or (a, b) Logical or operator

!b not (a) Logical not operator

a′ ctranspose (a) Complex conjugate transpose operator

a.′ transpose (a) Transpose operator

a : b colon (a, b) Two element range operator

a : b : c colon (a, b, c) Three element range operator

[a, b] horzcat (a, b) Horizontal concatenation operator

[a; b] vertcat (a, b) Vertical concatenation operator

a(s1, . . . , sn) subsref (a, s) Subscripted reference

a(s1, . . . , sn) = b subsasgn (a, s, b) Subscripted assignment

b(a) subsindex (a) Convert to zero-based index

display display (a) Commandline display function

Table 34.1: Available overloaded operators and their corresponding class method

An example mtimes method for our polynomial class might look like

function y = mtimes (a, b)

y = polynomial (conv (double(a),double(b)));

endfunction

606 GNU Octave

34.4.3 Precedence of Objects

Many functions and operators take two or more arguments and so the case can easily arise
that these functions are called with objects of different classes. It is therefore necessary to
determine the precedence of which method of which class to call when there are mixed ob-
jects given to a function or operator. To do this the superiorto and inferiorto functions
can be used

[Built-in Function]superiorto (class_name, . . .)
When called from a class constructor, mark the object currently constructed as having
a higher precedence than class name. More that one such class can be specified in a
single call. This function may only be called from a class constructor.

[Built-in Function]inferiorto (class_name, . . .)
When called from a class constructor, mark the object currently constructed as having
a lower precedence than class name. More that one such class can be specified in a
single call. This function may only be called from a class constructor.

For example with our polynomial class consider the case

2 * polynomial ([1, 0, 1]);

That mixes an object of the class "double" with an object of the class "polynomial". In
this case we like to ensure that the return type of the above is of the type "polynomial" and
so we use the superiorto function in the class constructor. In particular our polynomial
class constructor would be modified to be

Chapter 34: Object Oriented Programming 607

-*- texinfo -*-

@deftypefn {Function File} {} polynomial ()

@deftypefnx {Function File} {} polynomial (@var{a})

Create a polynomial object representing the polynomial

##

@example

a0 + a1 * x + a2 * x^2 + @dots{} + an * x^n

@end example

##

@noindent

from a vector of coefficients [a0 a1 a2 @dots{} an].

@end deftypefn

function p = polynomial (a)

if (nargin == 0)

p.poly = [0];

p = class (p, "polynomial");

elseif (nargin == 1)

if (strcmp (class (a), "polynomial"))

p = a;

elseif (isvector (a) && isreal (a))

p.poly = a(:).’;

p = class (p, "polynomial");

else

error ("polynomial: expecting real vector");

endif

else

print_usage ();

endif

superiorto ("double");

endfunction

Note that user classes always have higher precedence than built-in Octave types. So in
fact marking our polynomial class higher than the "double" class is in fact not necessary.

34.5 Inheritance and Aggregation

Using classes to build new classes is supported by octave through the use of both inheritance
and aggregation.

Class inheritance is provided by octave using the class function in the class constructor.
As in the case of the polynomial class, the octave programmer will create a struct that
contains the data fields required by the class, and then call the class function to indicate
that an object is to be created from the struct. Creating a child of an existing object is done
by creating an object of the parent class and providing that object as the third argument
of the class function.

608 GNU Octave

This is easily demonstrated by example. Suppose the programmer needs an FIR filter,
i.e., a filter with a numerator polynomial but a unity denominator polynomial. In traditional
octave programming, this would be performed as follows.

octave:1> x = [some data vector];

octave:2> n = [some coefficient vector];

octave:3> y = filter (n, 1, x);

The equivalent class could be implemented in a class directory @FIRfilter that is on the
octave path. The constructor is a file FIRfilter.m in the class directory.

-*- texinfo -*-

@deftypefn {Function File} {} FIRfilter ()

@deftypefnx {Function File} {} FIRfilter (@var{p})

Create a FIR filter with polynomial @var{p} as coefficient vector.

@end deftypefn

function f = FIRfilter (p)

f.polynomial = [];

if (nargin == 0)

p = @polynomial ([1]);

elseif (nargin == 1)

if (!isa (p, "polynomial"))

error ("FIRfilter: expecting polynomial as input argument");

endif

else

print_usage ();

endif

f = class (f, "FIRfilter", p);

endfunction

As before, the leading comments provide command-line documentation for the class
constructor. This constructor is very similar to the polynomial class constructor, except
that we pass a polynomial object as the third argument to the class function, telling octave
that the FIRfilter class will be derived from the polynomial class. Our FIR filter does
not have any data fields, but we must provide a struct to the class function. The class

function will add an element named polynomial to the object struct, so we simply add a
dummy element named polynomial as the first line of the constructor. This dummy element
will be overwritten by the class function.

Note further that all our examples provide for the case in which no arguments are
supplied. This is important since octave will call the constructor with no arguments when
loading objects from save files to determine the inheritance structure.

A class may be a child of more than one class (see the documentation for the class

function), and inheritance may be nested. There is no limitation to the number of parents
or the level of nesting other than memory or other physical issues.

As before, we need a display method. A simple example might be

Chapter 34: Object Oriented Programming 609

function display (f)

display(f.polynomial);

endfunction

Note that we have used the polynomial field of the struct to display the filter coefficients.

Once we have the class constructor and display method, we may create an object by
calling the class constructor. We may also check the class type and examine the underlying
structure.

octave:1> f=FIRfilter(polynomial([1 1 1]/3))

f.polynomial = 0.333333 + 0.333333 * X + 0.333333 * X ^ 2

octave:2> class(f)

ans = FIRfilter

octave:3> isa(f,"FIRfilter")

ans = 1

octave:4> isa(f,"polynomial")

ans = 1

octave:5> struct(f)

ans =

{

polynomial = 0.333333 + 0.333333 * X + 0.333333 * X ^ 2

}

We only need to define a method to actually process data with our filter and our class is
usable. It is also useful to provide a means of changing the data stored in the class. Since
the fields in the underlying struct are private by default, we could provide a mechanism to
access the fields. The subsref method may be used for both.

function out = subsref (f, x)

switch x.type

case "()"

n = f.polynomial;

out = filter(n.poly, 1, x.subs{1});

case "."

fld = x.subs;

if (strcmp (fld, "polynomial"))

out = f.polynomial;

else

error ("@FIRfilter/subsref: invalid property \"%s\"", fld);

endif

otherwise

error ("@FIRfilter/subsref: invalid subscript type for FIR filter");

endswitch

endfunction

The "()" case allows us to filter data using the polynomial provided to the constructor.

610 GNU Octave

octave:2> f=FIRfilter(polynomial([1 1 1]/3));

octave:3> x=ones(5,1);

octave:4> y=f(x)

y =

0.33333

0.66667

1.00000

1.00000

1.00000

The "." case allows us to view the contents of the polynomial field.

octave:1> f=FIRfilter(polynomial([1 1 1]/3));

octave:2> f.polynomial

ans = 0.333333 + 0.333333 * X + 0.333333 * X ^ 2

In order to change the contents of the object, we need to define a subsasgn method.
For example, we may make the polynomial field publicly writable.

function out = subsasgn (f, index, val)

switch (index.type)

case "."

fld = index.subs;

if (strcmp (fld, "polynomial"))

out = f;

out.polynomial = val;

else

error ("@FIRfilter/subsref: invalid property \"%s\"", fld);

endif

otherwise

error ("FIRfilter/subsagn: Invalid index type")

endswitch

endfunction

So that

octave:6> f=FIRfilter();

octave:7> f.polynomial = polynomial([1 2 3]);

f.polynomial = 1 + 2 * X + 3 * X ^ 2

Defining the FIRfilter class as a child of the polynomial class implies that and FIRfilter
object may be used any place that a polynomial may be used. This is not a normal use
of a filter, so that aggregation may be a more sensible design approach. In this case, the
polynomial is simply a field in the class structure. A class constructor for this case might
be

Chapter 34: Object Oriented Programming 611

-*- texinfo -*-

@deftypefn {Function File} {} FIRfilter ()

@deftypefnx {Function File} {} FIRfilter (@var{p})

Create a FIR filter with polynomial @var{p} as coefficient vector.

@end deftypefn

function f = FIRfilter (p)

if (nargin == 0)

f.polynomial = @polynomial ([1]);

elseif (nargin == 1)

if (isa (p, "polynomial"))

f.polynomial = p;

else

error ("FIRfilter: expecting polynomial as input argument");

endif

else

print_usage ();

endif

f = class (f, "FIRfilter");

endfunction

For our example, the remaining class methods remain unchanged.

Chapter 35: GUI Development 613

35 GUI Development

Octave is principally a batch or command-line language. However, it does offer some limited
features for constructing graphical interfaces for interacting with users.

The GUI elements available are I/O dialogs and a progress bar. For example, rather
than hardcoding a filename for output results a script can open a dialog box and allow the
user to choose a file. Similarly, if a calculation is expected to take a long time a script can
display a progress bar.

Several utility functions make it possible to store private data for use with a GUI which
will not pollute the user’s variable space.

Finally, a program written in Octave might want to have long term storage of preferences
or state variables. This can be done with user-defined preferences.

35.1 I/O Dialogs

Simple dialog menus are available for choosing directories or files. They return a string
variable which can then be used with any command requiring a file name.

[Function File]dirname = uigetdir ()
[Function File]dirname = uigetdir (init_path)
[Function File]dirname = uigetdir (init_path, dialog_name)

Open a GUI dialog for selecting a directory. If init path is not given the current
working directory is used. dialog name may be used to customize the dialog title.

See also: [uigetfile], page 613.

[Function File][fname, fpath, fltidx] = uigetfile ()
[Function File][...] = uigetfile (flt)
[Function File][...] = uigetfile (flt, dialog_name)
[Function File][...] = uigetfile (flt, dialog_name, default_file)
[Function File][...] = uigetfile (. . . , "Position", [px py])
[Function File][...] = uigetfile (. . . , "MultiSelect", mode)

Open a GUI dialog for selecting a file. It returns the filename fname, the path to this
file fpath, and the filter index fltidx. flt contains a (list of) file filter string(s) in one
of the following formats:

"/path/to/filename.ext"
If a filename is given then the file extension is extracted and used as
filter. In addition, the path is selected as current path and the filename
is selected as default file. Example: uigetfile ("myfun.m")

A single file extension "*.ext"
Example: uigetfile ("*.ext")

A 2-column cell array
containing a file extension in the first column and a brief description
in the second column. Example: uigetfile ({"*.ext", "My

Description";"*.xyz", "XYZ-Format"})

614 GNU Octave

The filter string can also contain a semicolon separated list of filter ex-
tensions. Example: uigetfile ({"*.gif;*.png;*.jpg", "Supported

Picture Formats"})

dialog name can be used to customize the dialog title. If default file is given then it
will be selected in the GUI dialog. If, in addition, a path is given it is also used as
current path.

The screen position of the GUI dialog can be set using the "Position" key and a
2-element vector containing the pixel coordinates. Two or more files can be selected
when setting the "MultiSelect" key to "on". In that case fname is a cell array
containing the files.

[Function File][fname, fpath, fltidx] = uiputfile ()
[Function File][fname, fpath, fltidx] = uiputfile (flt)
[Function File][fname, fpath, fltidx] = uiputfile (flt, dialog_name)
[Function File][fname, fpath, fltidx] = uiputfile (flt, dialog_name,

default_file)
Open a GUI dialog for selecting a file. flt contains a (list of) file filter string(s) in one
of the following formats:

"/path/to/filename.ext"

If a filename is given the file extension is extracted and used as filter. In
addition the path is selected as current path and the filename is selected
as default file. Example: uiputfile("myfun.m");

"*.ext" A single file extension. Example: uiputfile("*.ext");

{"*.ext","My Description"}

A 2-column cell array containing the file extension in the 1st column and
a brief description in the 2nd column. Example: uiputfile({"*.ext","My
Description";"*.xyz","XYZ-Format"});

The filter string can also contain a semicolon separated list of filter extensions. Ex-
ample: uiputfile({"*.gif;*.png;*.jpg", "Supported Picture Formats"});

dialog name can be used to customize the dialog title. If default file is given it is
preselected in the GUI dialog. If, in addition, a path is given it is also used as current
path.

35.2 Progress Bar

[Function File]h = waitbar (frac)
[Function File]h = waitbar (frac, msg)
[Function File]h = waitbar (. . . , "FigureProperty", "Value", . . .)
[Function File]waitbar (frac)
[Function File]waitbar (frac, hwbar)
[Function File]waitbar (frac, hwbar, msg)

Return a handle h to a new waitbar object. The waitbar is filled to fraction frac which
must be in the range [0, 1]. The optional message msg is centered and displayed
above the waitbar. The appearance of the waitbar figure window can be configured
by passing property/value pairs to the function.

Chapter 35: GUI Development 615

When called with a single input the current waitbar, if it exists, is updated to the
new value frac. If there are multiple outstanding waitbars they can be updated
individually by passing the handle hwbar of the specific waitbar to modify.

35.3 GUI Utility Functions

These functions do not implement a GUI element but are useful when developing programs
that do. Warning: The functions uiwait, uiresume, and waitfor are only available for
the FLTK tooolkit.

[Function File]data = guidata (handle)
[Function File]guidata (handle, data)

[Function File]hdata = guihandles (handle)
[Function File]hdata = guihandles

[Function File]uiwait
[Function File]uiwait (h)
[Function File]uiwait (h, timeout)

Suspend program execution until the figure with handle h is deleted or uiresume is
called. When no figure handle is specified, this function uses the current figure.

If the figure handle is invalid or there is no current figure, this functions returns
immediately.

When specified, timeout defines the number of seconds to wait for the figure deletion
or the uiresume call. The timeout value must be at least 1. If a smaller value is
specified, a warning is issued and a timeout value of 1 is used instead. If a non-
integer value is specified, it is truncated towards 0. If timeout is not specified, the
program execution is suspended indefinitely.

See also: [uiresume], page 615, [waitfor], page 615.

[Function File]uiresume (h)
Resume program execution suspended with uiwait. The handle h must be the same
as the on specified in uiwait. If the handle is invalid or there is no uiwait call
pending for the figure with handle h, this function does nothing.

See also: [uiwait], page 615.

[Built-in Function]waitfor (h)
[Built-in Function]waitfor (h, prop)
[Built-in Function]waitfor (h, prop, value)
[Built-in Function]waitfor (. . . , "timeout", timeout)

Suspend the execution of the current program until a condition is satisfied on the
graphics handle h. While the program is suspended graphics events are still being
processed normally, allowing callbacks to modify the state of graphics objects. This
function is reentrant and can be called from a callback, while another waitfor call is
pending at top-level.

In the first form, program execution is suspended until the graphics object h is de-
stroyed. If the graphics handle is invalid, the function returns immediately.

616 GNU Octave

In the second form, execution is suspended until the graphics object is destroyed or
the property named prop is modified. If the graphics handle is invalid or the property
does not exist, the function returns immediately.

In the third form, execution is suspended until the graphics object is destroyed or
the property named prop is set to value. The function isequal is used to compare
property values. If the graphics handle is invalid, the property does not exist or the
property is already set to value, the function returns immediately.

An optional timeout can be specified using the property timeout. This timeout value
is the number of seconds to wait for the condition to be true. timeout must be at
least 1. If a smaller value is specified, a warning is issued and a value of 1 is used
instead. If the timeout value is not an integer, it is truncated towards 0.

To define a condition on a property named timeout, use the string \timeout instead.

In all cases, typing CTRL-C stops program execution immediately.

See also: [isequal], page 133.

35.4 User-Defined Preferences

[Function File]addpref (group, pref, val)
Add a preference pref and associated value val to the named preference group group.

The named preference group must be a character string.

The preference pref may be a character string or a cell array of character strings.
The corresponding value val may be any value, or, if pref is a cell array of strings,
val must be a cell array of values with the same size as pref.

See also: [setpref], page 617, [getpref], page 616, [ispref], page 616, [rmpref], page 617.

[Function File]getpref (group, pref, default)
Return the preference value corresponding to the named preference pref in the pref-
erence group group.

The named preference group must be a character string.

If pref does not exist in group and default is specified, return default.

The preference pref may be a character string or a cell array of character strings.
The corresponding default value default may be any value, or, if pref is a cell array
of strings, default must be a cell array of values with the same size as pref.

If neither pref nor default are specified, return a structure of preferences for the
preference group group.

If no arguments are specified, return a structure containing all groups of preferences
and their values.

See also: [addpref], page 616, [setpref], page 617, [ispref], page 616, [rmpref], page 617.

[Function File]ispref (group, pref)
Return true if the named preference pref exists in the preference group group.

The named preference group must be a character string.

The preference pref may be a character string or a cell array of character strings.

Chapter 35: GUI Development 617

If pref is not specified, return true if the preference group group exists.

See also: [getpref], page 616, [addpref], page 616, [setpref], page 617, [rmpref],
page 617.

[Function File]rmpref (group, pref)
Remove the named preference pref from the preference group group.

The named preference group must be a character string.

The preference pref may be a character string or a cell array of character strings.

If pref is not specified, remove the preference group group.

It is an error to remove a nonexistent preference or group.

See also: [addpref], page 616, [ispref], page 616, [setpref], page 617, [getpref],
page 616.

[Function File]setpref (group, pref, val)
Set a preference pref to the given val in the named preference group group.

The named preference group must be a character string.

The preference pref may be a character string or a cell array of character strings.
The corresponding value val may be any value, or, if pref is a cell array of strings,
val must be a cell array of values with the same size as pref.

If the named preference or group does not exist, it is added.

See also: [addpref], page 616, [getpref], page 616, [ispref], page 616, [rmpref],
page 617.

Chapter 36: System Utilities 619

36 System Utilities

This chapter describes the functions that are available to allow you to get information about
what is happening outside of Octave, while it is still running, and use this information in
your program. For example, you can get information about environment variables, the
current time, and even start other programs from the Octave prompt.

36.1 Timing Utilities

Octave’s core set of functions for manipulating time values are patterned after the cor-
responding functions from the standard C library. Several of these functions use a data
structure for time that includes the following elements:

usec Microseconds after the second (0-999999).

sec Seconds after the minute (0-61). This number can be 61 to account for leap
seconds.

min Minutes after the hour (0-59).

hour Hours since midnight (0-23).

mday Day of the month (1-31).

mon Months since January (0-11).

year Years since 1900.

wday Days since Sunday (0-6).

yday Days since January 1 (0-365).

isdst Daylight Savings Time flag.

zone Time zone.

In the descriptions of the following functions, this structure is referred to as a tm struct.

[Loadable Function]seconds = time ()
Return the current time as the number of seconds since the epoch. The epoch is
referenced to 00:00:00 CUT (Coordinated Universal Time) 1 Jan 1970. For example,
on Monday February 17, 1997 at 07:15:06 CUT, the value returned by time was
856163706.

See also: [strftime], page 621, [strptime], page 623, [localtime], page 620, [gmtime],
page 620, [mktime], page 621, [now], page 619, [date], page 623, [clock], page 623,
[datenum], page 625, [datestr], page 626, [datevec], page 627, [calendar], page 628,
[weekday], page 628.

[Function File]t = now ()
Return the current local date/time as a serial day number (see datenum).

The integral part, floor (now) corresponds to the number of days between today
and Jan 1, 0000.

The fractional part, rem (now, 1) corresponds to the current time.

See also: [clock], page 623, [date], page 623, [datenum], page 625.

620 GNU Octave

[Function File]ctime (t)
Convert a value returned from time (or any other non-negative integer), to the local
time and return a string of the same form as asctime. The function ctime (time)

is equivalent to asctime (localtime (time)). For example:

ctime (time ())

⇒ "Mon Feb 17 01:15:06 1997"

See also: [asctime], page 621, [time], page 619, [localtime], page 620.

[Loadable Function]tm_struct = gmtime (t)
Given a value returned from time, or any non-negative integer, return a time structure
corresponding to CUT (Coordinated Universal Time). For example:

gmtime (time ())

⇒ {

usec = 0

sec = 6

min = 15

hour = 7

mday = 17

mon = 1

year = 97

wday = 1

yday = 47

isdst = 0

zone = CST

}

See also: [strftime], page 621, [strptime], page 623, [localtime], page 620, [mktime],
page 621, [time], page 619, [now], page 619, [date], page 623, [clock], page 623,
[datenum], page 625, [datestr], page 626, [datevec], page 627, [calendar], page 628,
[weekday], page 628.

[Loadable Function]tm_struct = localtime (t)
Given a value returned from time, or any non-negative integer, return a time structure
corresponding to the local time zone.

localtime (time ())

⇒ {

usec = 0

sec = 6

min = 15

hour = 1

mday = 17

mon = 1

year = 97

wday = 1

yday = 47

isdst = 0

zone = CST

}

Chapter 36: System Utilities 621

See also: [strftime], page 621, [strptime], page 623, [gmtime], page 620, [mktime],
page 621, [time], page 619, [now], page 619, [date], page 623, [clock], page 623,
[datenum], page 625, [datestr], page 626, [datevec], page 627, [calendar], page 628,
[weekday], page 628.

[Loadable Function]seconds = mktime (tm_struct)
Convert a time structure corresponding to the local time to the number of seconds
since the epoch. For example:

mktime (localtime (time ()))

⇒ 856163706

See also: [strftime], page 621, [strptime], page 623, [localtime], page 620, [gmtime],
page 620, [time], page 619, [now], page 619, [date], page 623, [clock], page 623,
[datenum], page 625, [datestr], page 626, [datevec], page 627, [calendar], page 628,
[weekday], page 628.

[Function File]asctime (tm_struct)
Convert a time structure to a string using the following format: "ddd mmm mm
HH:MM:SS yyyy". For example:

asctime (localtime (time ()))

⇒ "Mon Feb 17 01:15:06 1997"

This is equivalent to ctime (time ()).

See also: [ctime], page 620, [localtime], page 620, [time], page 619.

[Loadable Function]strftime (fmt, tm_struct)
Format the time structure tm struct in a flexible way using the format string fmt that
contains ‘%’ substitutions similar to those in printf. Except where noted, substituted
fields have a fixed size; numeric fields are padded if necessary. Padding is with zeros by
default; for fields that display a single number, padding can be changed or inhibited by
following the ‘%’ with one of the modifiers described below. Unknown field specifiers
are copied as normal characters. All other characters are copied to the output without
change. For example:

strftime ("%r (%Z) %A %e %B %Y", localtime (time ()))

⇒ "01:15:06 AM (CST) Monday 17 February 1997"

Octave’s strftime function supports a superset of the ANSI C field specifiers.

Literal character fields:

%% % character.

%n Newline character.

%t Tab character.

Numeric modifiers (a nonstandard extension):

- (dash) Do not pad the field.

_ (underscore)

Pad the field with spaces.

Time fields:

622 GNU Octave

%H Hour (00-23).

%I Hour (01-12).

%k Hour (0-23).

%l Hour (1-12).

%M Minute (00-59).

%p Locale’s AM or PM.

%r Time, 12-hour (hh:mm:ss [AP]M).

%R Time, 24-hour (hh:mm).

%s Time in seconds since 00:00:00, Jan 1, 1970 (a nonstandard extension).

%S Second (00-61).

%T Time, 24-hour (hh:mm:ss).

%X Locale’s time representation (%H:%M:%S).

%Z Time zone (EDT), or nothing if no time zone is determinable.

Date fields:

%a Locale’s abbreviated weekday name (Sun-Sat).

%A Locale’s full weekday name, variable length (Sunday-Saturday).

%b Locale’s abbreviated month name (Jan-Dec).

%B Locale’s full month name, variable length (January-December).

%c Locale’s date and time (Sat Nov 04 12:02:33 EST 1989).

%C Century (00-99).

%d Day of month (01-31).

%e Day of month (1-31).

%D Date (mm/dd/yy).

%h Same as %b.

%j Day of year (001-366).

%m Month (01-12).

%U Week number of year with Sunday as first day of week (00-53).

%w Day of week (0-6).

%W Week number of year with Monday as first day of week (00-53).

%x Locale’s date representation (mm/dd/yy).

%y Last two digits of year (00-99).

%Y Year (1970-).

See also: [strptime], page 623, [localtime], page 620, [gmtime], page 620, [mktime],
page 621, [time], page 619, [now], page 619, [date], page 623, [clock], page 623,
[datenum], page 625, [datestr], page 626, [datevec], page 627, [calendar], page 628,
[weekday], page 628.

Chapter 36: System Utilities 623

[Loadable Function][tm_struct, nchars] = strptime (str, fmt)
Convert the string str to the time structure tm struct under the control of the format
string fmt.

If fmt fails to match, nchars is 0; otherwise, it is set to the position of last matched
character plus 1. Always check for this unless you’re absolutely sure the date string
will be parsed correctly.

See also: [strftime], page 621, [localtime], page 620, [gmtime], page 620, [mktime],
page 621, [time], page 619, [now], page 619, [date], page 623, [clock], page 623,
[datenum], page 625, [datestr], page 626, [datevec], page 627, [calendar], page 628,
[weekday], page 628.

Most of the remaining functions described in this section are not patterned after the
standard C library. Some are available for compatibility with matlab and others are
provided because they are useful.

[Function File]clock ()
Return the current local date and time as a date vector. The date vector contains the
following fields: current year, month (1-12), day (1-31), hour (0-23), minute (0-59),
and second (0-61). The seconds field has a fractional part after the decimal point for
extended accuracy.

For example:

fix (clock ())

⇒ [1993, 8, 20, 4, 56, 1]

The function clock is more accurate on systems that have the gettimeofday function.

See also: [now], page 619, [date], page 623, [datevec], page 627.

[Function File]date ()
Return the current date as a character string in the form DD-MMM-YYYY.

For example:

date ()

⇒ "20-Aug-1993"

See also: [now], page 619, [clock], page 623, [datestr], page 626, [localtime], page 620.

[Function File]etime (t2, t1)
Return the difference in seconds between two time values returned from clock (t2 −
t1). For example:

t0 = clock ();

many computations later...

elapsed_time = etime (clock (), t0);

will set the variable elapsed_time to the number of seconds since the variable t0

was set.

See also: [tic], page 624, [toc], page 624, [clock], page 623, [cputime], page 624,
[addtodate], page 628.

624 GNU Octave

[Built-in Function][total, user, system] = cputime ();
Return the CPU time used by your Octave session. The first output is the total time
spent executing your process and is equal to the sum of second and third outputs,
which are the number of CPU seconds spent executing in user mode and the number
of CPU seconds spent executing in system mode, respectively. If your system does
not have a way to report CPU time usage, cputime returns 0 for each of its output
values. Note that because Octave used some CPU time to start, it is reasonable to
check to see if cputime works by checking to see if the total CPU time used is nonzero.

[Function File]is_leap_year ()
[Function File]is_leap_year (year)

Return true if year is a leap year and false otherwise. If no year is specified, is_
leap_year uses the current year. For example:

is_leap_year (2000)

⇒ 1

See also: [weekday], page 628, [eomday], page 629, [calendar], page 628.

[Built-in Function]tic ()
[Built-in Function]toc ()

Set or check a wall-clock timer. Calling tic without an output argument sets the
timer. Subsequent calls to toc return the number of seconds since the timer was set.
For example,

tic ();

many computations later...

elapsed_time = toc ();

will set the variable elapsed_time to the number of seconds since the most recent
call to the function tic.

If called with one output argument then this function returns a scalar of type uint64
and the wall-clock timer is not started.

t = tic; sleep (5); (double (tic ()) - double (t)) * 1e-6

⇒ 5

Nested timing with tic and toc is not supported. Therefore toc will always return
the elapsed time from the most recent call to tic.

If you are more interested in the CPU time that your process used, you should use
the cputime function instead. The tic and toc functions report the actual wall clock
time that elapsed between the calls. This may include time spent processing other
jobs or doing nothing at all. For example:

tic (); sleep (5); toc ()

⇒ 5

t = cputime (); sleep (5); cputime () - t

⇒ 0

(This example also illustrates that the CPU timer may have a fairly coarse resolution.)

[Built-in Function]pause (seconds)
Suspend the execution of the program. If invoked without any arguments, Octave
waits until you type a character. With a numeric argument, it pauses for the given

Chapter 36: System Utilities 625

number of seconds. For example, the following statement prints a message and then
waits 5 seconds before clearing the screen.

fprintf (stderr, "wait please...\n");

pause (5);

clc;

[Built-in Function]sleep (seconds)
Suspend the execution of the program for the given number of seconds.

[Built-in Function]usleep (microseconds)
Suspend the execution of the program for the given number of microseconds. On
systems where it is not possible to sleep for periods of time less than one second,
usleep will pause the execution for round (microseconds / 1e6) seconds.

[Function File]days = datenum (datevec)
[Function File]days = datenum (year, month, day)
[Function File]days = datenum (year, month, day, hour)
[Function File]days = datenum (year, month, day, hour, minute)
[Function File]days = datenum (year, month, day, hour, minute, second)
[Function File]days = datenum ("datestr")
[Function File]days = datenum ("datestr", p)
[Function File][days, secs] = datenum (. . .)

Return the date/time input as a serial day number, with Jan 1, 0000 defined as day
1.

The integer part, floor (days) counts the number of complete days in the date
input.

The fractional part, rem (days, 1) corresponds to the time on the given day.

The input may be a date vector (see datevec), datestr (see datestr), or directly
specified as input.

When processing input datestrings, p is the year at the start of the century to which
two-digit years will be referenced. If not specified, it defaults to the current year
minus 50.

The optional output secs holds the time on the specified day with greater precision
than days.

Notes:

• Years can be negative and/or fractional.

• Months below 1 are considered to be January.

• Days of the month start at 1.

• Days beyond the end of the month go into subsequent months.

• Days before the beginning of the month go to the previous month.

• Days can be fractional.

Caution: this function does not attempt to handle Julian calendars so dates before
Octave 15, 1582 are wrong by as much as eleven days. Also, be aware that only
Roman Catholic countries adopted the calendar in 1582. It took until 1924 for it to

626 GNU Octave

be adopted everywhere. See the Wikipedia entry on the Gregorian calendar for more
details.

Warning: leap seconds are ignored. A table of leap seconds is available on the
Wikipedia entry for leap seconds.

See also: [datestr], page 626, [datevec], page 627, [now], page 619, [clock], page 623,
[date], page 623.

[Function File]str = datestr (date)
[Function File]str = datestr (date, f)
[Function File]str = datestr (date, f, p)

Format the given date/time according to the format f and return the result in str.
date is a serial date number (see datenum) or a date vector (see datevec). The value
of date may also be a string or cell array of strings.

f can be an integer which corresponds to one of the codes in the table below, or a
date format string.

p is the year at the start of the century in which two-digit years are to be interpreted
in. If not specified, it defaults to the current year minus 50.

For example, the date 730736.65149 (2000-09-07 15:38:09.0934) would be formatted
as follows:

Code Format Example
0 dd-mmm-yyyy HH:MM:SS 07-Sep-2000 15:38:09
1 dd-mmm-yyyy 07-Sep-2000
2 mm/dd/yy 09/07/00
3 mmm Sep
4 m S
5 mm 09
6 mm/dd 09/07
7 dd 07
8 ddd Thu
9 d T
10 yyyy 2000
11 yy 00
12 mmmyy Sep00
13 HH:MM:SS 15:38:09
14 HH:MM:SS PM 03:38:09 PM
15 HH:MM 15:38
16 HH:MM PM 03:38 PM
17 QQ-YY Q3-00
18 QQ Q3
19 dd/mm 13/03
20 dd/mm/yy 13/03/95
21 mmm.dd.yyyy HH:MM:SS Mar.03.1962 13:53:06
22 mmm.dd.yyyy Mar.03.1962
23 mm/dd/yyyy 03/13/1962
24 dd/mm/yyyy 12/03/1962

Chapter 36: System Utilities 627

25 yy/mm/dd 95/03/13
26 yyyy/mm/dd 1995/03/13
27 QQ-YYYY Q4-2132
28 mmmyyyy Mar2047
29 yyyymmdd 20470313
30 yyyymmddTHHMMSS 20470313T132603
31 yyyy-mm-dd HH:MM:SS 1047-03-13 13:26:03

If f is a format string, the following symbols are recognized:

Symbol Meaning Example
yyyy Full year 2005
yy Two-digit year 2005
mmmm Full month name December
mmm Abbreviated month name Dec
mm Numeric month number (padded with zeros) 01, 08, 12
m First letter of month name (capitalized) D
dddd Full weekday name Sunday
ddd Abbreviated weekday name Sun
dd Numeric day of month (padded with zeros) 11
d First letter of weekday name (capitalized) S
HH Hour of day, padded with zeros if PM is set 09:00

and not padded with zeros otherwise 9:00 AM
MM Minute of hour (padded with zeros) 10:05
SS Second of minute (padded with zeros) 10:05:03
FFF Milliseconds of second (padded with zeros) 10:05:03.012
AM Use 12-hour time format 11:30 AM
PM Use 12-hour time format 11:30 PM

If f is not specified or is -1, then use 0, 1 or 16, depending on whether the date
portion or the time portion of date is empty.

If p is nor specified, it defaults to the current year minus 50.

If a matrix or cell array of dates is given, a column vector of date strings is returned.

See also: [datenum], page 625, [datevec], page 627, [date], page 623, [now], page 619,
[clock], page 623.

[Function File]v = datevec (date)
[Function File]v = datevec (date, f)
[Function File]v = datevec (date, p)
[Function File]v = datevec (date, f, p)
[Function File][y, m, d, h, mi, s] = datevec (. . .)

Convert a serial date number (see datenum) or date string (see datestr) into a date
vector.

A date vector is a row vector with six members, representing the year, month, day,
hour, minute, and seconds respectively.

f is the format string used to interpret date strings (see datestr).

628 GNU Octave

p is the year at the start of the century to which two-digit years will be referenced.
If not specified, it defaults to the current year minus 50.

See also: [datenum], page 625, [datestr], page 626, [clock], page 623, [now], page 619,
[date], page 623.

[Function File]d = addtodate (d, q, f)
Add q amount of time (with units f) to the serial datenum, d.

f must be one of "year", "month", "day", "hour", "minute", "second", or "millisec-
ond".

See also: [datenum], page 625, [datevec], page 627, [etime], page 623.

[Function File]c = calendar ()
[Function File]c = calendar (d)
[Function File]c = calendar (y, m)
[Function File]calendar (. . .)

Return the current monthly calendar in a 6x7 matrix.

If d is specified, return the calendar for the month containing the date d, which must
be a serial date number or a date string.

If y and m are specified, return the calendar for year y and month m.

If no output arguments are specified, print the calendar on the screen instead of
returning a matrix.

See also: [datenum], page 625, [datestr], page 626.

[Function File][n, s] = weekday (d)
[Function File][n, s] = weekday (d, format)

Return the day of the week as a number in n and as a string in s. The days of the
week are numbered 1–7 with the first day being Sunday.

d is a serial date number or a date string.

If the string format is not present or is equal to "short" then s will contain the
abbreviated name of the weekday. If format is "long" then s will contain the full
name.

Table of return values based on format:

n "short" "long"
1 Sun Sunday
2 Mon Monday
3 Tue Tuesday
4 Wed Wednesday
5 Thu Thursday
6 Fri Friday
7 Sat Saturday

See also: [eomday], page 629, [is leap year], page 624, [calendar], page 628, [datenum],
page 625, [datevec], page 627.

Chapter 36: System Utilities 629

[Function File]e = eomday (y, m)
Return the last day of the month m for the year y.

See also: [weekday], page 628, [datenum], page 625, [datevec], page 627, [is leap year],
page 624, [calendar], page 628.

[Function File]datetick ()
[Function File]datetick (form)
[Function File]datetick (axis, form)
[Function File]datetick (. . . , "keeplimits")
[Function File]datetick (. . . , "keepticks")
[Function File]datetick (. . . ax, . . .)

Add date formatted tick labels to an axis. The axis the apply the ticks to is determined
by axis that can take the values "x", "y" or "z". The default value is "x". The
formatting of the labels is determined by the variable form, that can either be a
string in the format needed by dateform, or a positive integer that can be accepted
by datestr.

See also: [datenum], page 625, [datestr], page 626.

36.2 Filesystem Utilities

Octave includes many utility functions for copying, moving, renaming, and deleting files;
for creating, reading, and deleting directories; for retrieving status information on files; and
for manipulating file and path names.

[Function File][status, msg, msgid] = movefile (f1, f2)
[Function File][status, msg, msgid] = movefile (f1, f2, ’f’)

Move the file f1 to the new name f2. The name f1 may contain globbing patterns. If
f1 expands to multiple file names, f2 must be a directory. If the force flag ’f’ is given
then any existing files will be overwritten without prompting.

If successful, status is 1, with msg and msgid empty character strings. Otherwise,
status is 0, msg contains a system-dependent error message, and msgid contains a
unique message identifier.

See also: [rename], page 629, [copyfile], page 629.

[Built-in Function][err, msg] = rename (old, new)
Change the name of file old to new.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

See also: [ls], page 648, [dir], page 648.

[Function File][status, msg, msgid] = copyfile (f1, f2)
[Function File][status, msg, msgid] = copyfile (f1, f2, ’f’)

Copy the file f1 to the new name f2. The name f1 may contain globbing patterns. If
f1 expands to multiple file names, f2 must be a directory. If the force flag ’f’ is given
then existing destination files will be overwritten without prompting.

630 GNU Octave

If successful, status is 1, with msg and msgid empty character strings. Otherwise,
status is 0, msg contains a system-dependent error message, and msgid contains a
unique message identifier.

See also: [movefile], page 629.

[Built-in Function][err, msg] = unlink (file)
Delete the file named file.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

[Built-in Function][err, msg] = link (old, new)
Create a new link (also known as a hard link) to an existing file.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

See also: [symlink], page 630.

[Built-in Function][err, msg] = symlink (old, new)
Create a symbolic link new which contains the string old.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

See also: [link], page 630, [readlink], page 630.

[Built-in Function][result, err, msg] = readlink (symlink)
Read the value of the symbolic link symlink.

If successful, result contains the contents of the symbolic link symlink, err is 0 andmsg
is an empty string. Otherwise, err is nonzero and msg contains a system-dependent
error message.

See also: [link], page 630, [symlink], page 630.

[Built-in Function][status, msg, msgid] = mkdir (dir)
[Built-in Function][status, msg, msgid] = mkdir (parent, dir)

Create a directory named dir in the directory parent.

If successful, status is 1, with msg and msgid empty character strings. Otherwise,
status is 0, msg contains a system-dependent error message, and msgid contains a
unique message identifier.

See also: [rmdir], page 630.

[Built-in Function][status, msg, msgid] = rmdir (dir)
[Built-in Function][status, msg, msgid] = rmdir (dir, "s")

Remove the directory named dir.

If successful, status is 1, with msg and msgid empty character strings. Otherwise,
status is 0, msg contains a system-dependent error message, and msgid contains a
unique message identifier.

If the optional second parameter is supplied with value "s", recursively remove all
subdirectories as well.

See also: [mkdir], page 630, [confirm recursive rmdir], page 631.

Chapter 36: System Utilities 631

[Built-in Function]val = confirm_recursive_rmdir ()
[Built-in Function]old_val = confirm_recursive_rmdir (new_val)
[Built-in Function]confirm_recursive_rmdir (new_val, "local")

Query or set the internal variable that controls whether Octave will ask for confirma-
tion before recursively removing a directory tree.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

[Built-in Function][err, msg] = mkfifo (name, mode)
Create a fifo special file named name with file mode mode

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

[Built-in Function]umask (mask)
Set the permission mask for file creation. The parameter mask is an integer, inter-
preted as an octal number. If successful, returns the previous value of the mask (as an
integer to be interpreted as an octal number); otherwise an error message is printed.

[Built-in Function][info, err, msg] = stat (file)
[Built-in Function][info, err, msg] = stat (fid)
[Built-in Function][info, err, msg] = lstat (file)
[Built-in Function][info, err, msg] = lstat (fid)

Return a structure info containing the following information about file or file identifier
fid.

dev ID of device containing a directory entry for this file.

ino File number of the file.

mode File mode, as an integer. Use the functions S_ISREG, S_ISDIR, S_ISCHR,
S_ISBLK, S_ISFIFO, S_ISLNK, or S_ISSOCK to extract information from
this value.

modestr File mode, as a string of ten letters or dashes as would be returned by ls

-l.

nlink Number of links.

uid User ID of file’s owner.

gid Group ID of file’s group.

rdev ID of device for block or character special files.

size Size in bytes.

atime Time of last access in the same form as time values returned from time.
See Section 36.1 [Timing Utilities], page 619.

mtime Time of last modification in the same form as time values returned from
time. See Section 36.1 [Timing Utilities], page 619.

ctime Time of last file status change in the same form as time values returned
from time. See Section 36.1 [Timing Utilities], page 619.

632 GNU Octave

blksize Size of blocks in the file.

blocks Number of blocks allocated for file.

If the call is successful err is 0 and msg is an empty string. If the file does not exist,
or some other error occurs, s is an empty matrix, err is −1, and msg contains the
corresponding system error message.

If file is a symbolic link, stat will return information about the actual file that is
referenced by the link. Use lstat if you want information about the symbolic link
itself.

For example:

[s, err, msg] = stat ("/vmlinuz")

⇒ s =

{

atime = 855399756

rdev = 0

ctime = 847219094

uid = 0

size = 389218

blksize = 4096

mtime = 847219094

gid = 6

nlink = 1

blocks = 768

mode = -rw-r--r--

modestr = -rw-r--r--

ino = 9316

dev = 2049

}

⇒ err = 0

⇒ msg =

[Built-in Function]S_ISBLK (mode)
Return true if mode corresponds to a block device. The value of mode is assumed to
be returned from a call to stat.

See also: [stat], page 631, [lstat], page 631.

[Built-in Function]S_ISCHR (mode)
Return true if mode corresponds to a character device. The value of mode is assumed
to be returned from a call to stat.

See also: [stat], page 631, [lstat], page 631.

[Built-in Function]S_ISDIR (mode)
Return true if mode corresponds to a directory. The value of mode is assumed to be
returned from a call to stat.

See also: [stat], page 631, [lstat], page 631.

Chapter 36: System Utilities 633

[Built-in Function]S_ISFIFO (mode)
Return true if mode corresponds to a fifo. The value of mode is assumed to be
returned from a call to stat.

See also: [stat], page 631, [lstat], page 631.

[Built-in Function]S_ISLNK (mode)
Return true if mode corresponds to a symbolic link. The value of mode is assumed
to be returned from a call to stat.

See also: [stat], page 631, [lstat], page 631.

[Built-in Function]S_ISREG (mode)
Return true if mode corresponds to a regular file. The value of mode is assumed to
be returned from a call to stat.

See also: [stat], page 631, [lstat], page 631.

[Built-in Function]S_ISSOCK (mode)
Return true if mode corresponds to a socket. The value of mode is assumed to be
returned from a call to stat.

See also: [stat], page 631, [lstat], page 631.

[Function File][status, result, msgid] = fileattrib (file)
Return information about file.

If successful, status is 1, with result containing a structure with the following fields:

Name Full name of file.

archive True if file is an archive (Windows).

system True if file is a system file (Windows).

hidden True if file is a hidden file (Windows).

directory

True if file is a directory.

UserRead

GroupRead

OtherRead

True if the user (group; other users) has read permission for file.

UserWrite

GroupWrite

OtherWrite

True if the user (group; other users) has write permission for file.

UserExecute

GroupExecute

OtherExecute

True if the user (group; other users) has execute permission for file.

634 GNU Octave

If an attribute does not apply (i.e., archive on a Unix system) then the field is set to
NaN.

With no input arguments, return information about the current directory.

If file contains globbing characters, return information about all the matching files.

See also: [glob], page 634.

[Function File]isdir (f)
Return true if f is a directory.

See also: [is absolute filename], page 636, [is rooted relative filename], page 636.

[Built-in Function][files, err, msg] = readdir (dir)
Return names of the files in the directory dir as a cell array of strings. If an error
occurs, return an empty cell array in files.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

See also: [ls], page 648, [dir], page 648, [glob], page 634.

[Built-in Function]glob (pattern)
Given an array of pattern strings (as a char array or a cell array) in pattern, return a
cell array of file names that match any of them, or an empty cell array if no patterns
match. The pattern strings are interpreted as filename globbing patterns (as they are
used by Unix shells). Within a pattern

* matches any string, including the null string,
? matches any single character, and

[...] matches any of the enclosed characters.

Tilde expansion is performed on each of the patterns before looking for matching file
names. For example:

ls

⇒
file1 file2 file3 myfile1 myfile1b

glob ("*file1")

⇒
{

[1,1] = file1

[2,1] = myfile1

}

glob ("myfile?")

⇒
{

[1,1] = myfile1

}

glob ("file[12]")

⇒
{

Chapter 36: System Utilities 635

[1,1] = file1

[2,1] = file2

}

See also: [ls], page 648, [dir], page 648, [readdir], page 634.

[Built-in Function]fnmatch (pattern, string)
Return 1 or zero for each element of string that matches any of the elements of the
string array pattern, using the rules of filename pattern matching. For example:

fnmatch ("a*b", {"ab"; "axyzb"; "xyzab"})

⇒ [1; 1; 0]

[Built-in Function]file_in_path (path, file)
[Built-in Function]file_in_path (path, file, "all")

Return the absolute name of file if it can be found in path. The value of path should
be a colon-separated list of directories in the format described for path. If no file is
found, return an empty character string. For example:

file_in_path (EXEC_PATH, "sh")

⇒ "/bin/sh"

If the second argument is a cell array of strings, search each directory of the path for
element of the cell array and return the first that matches.

If the third optional argument "all" is supplied, return a cell array containing the
list of all files that have the same name in the path. If no files are found, return an
empty cell array.

See also: [file in loadpath], page 171.

[Built-in Function]filesep ()
[Built-in Function]filesep (’all’)

Return the system-dependent character used to separate directory names.

If ’all’ is given, the function returns all valid file separators in the form of a string.
The list of file separators is system-dependent. It is ‘/’ (forward slash) under UNIX
or Mac OS X, ‘/’ and ‘\’ (forward and backward slashes) under Windows.

See also: [pathsep], page 171.

[Built-in Function]val = filemarker ()
[Built-in Function]filemarker (new_val)
[Built-in Function]filemarker (new_val, "local")

Query or set the character used to separate filename from the the subfunction names
contained within the file. This can be used in a generic manner to interact with
subfunctions. For example,

help (["myfunc", filemarker, "mysubfunc"])

returns the help string associated with the sub-function mysubfunc of the function
myfunc. Another use of filemarker is when debugging it allows easier placement of
breakpoints within sub-functions. For example,

dbstop (["myfunc", filemarker, "mysubfunc"])

will set a breakpoint at the first line of the subfunction mysubfunc.

636 GNU Octave

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

[Function File][dir, name, ext, ver] = fileparts (filename)
Return the directory, name, extension, and version components of filename.

See also: [fullfile], page 636.

[Function File]filename = fullfile (dir1, dir2, . . . , file)
Return a complete filename constructed from the given components.

See also: [fileparts], page 636.

[Built-in Function]tilde_expand (string)
Perform tilde expansion on string. If string begins with a tilde character, (‘~’), all
of the characters preceding the first slash (or all characters, if there is no slash) are
treated as a possible user name, and the tilde and the following characters up to the
slash are replaced by the home directory of the named user. If the tilde is followed
immediately by a slash, the tilde is replaced by the home directory of the user running
Octave. For example:

tilde_expand ("~joeuser/bin")

⇒ "/home/joeuser/bin"

tilde_expand ("~/bin")

⇒ "/home/jwe/bin"

[Built-in Function][cname, status, msg] canonicalize_file_name (name)
Return the canonical name of file name.

[Built-in Function]make_absolute_filename (file)
Return the full name of file, relative to the current directory.

See also: [is absolute filename], page 636, [is rooted relative filename], page 636,
[isdir], page 634.

[Built-in Function]is_absolute_filename (file)
Return true if file is an absolute filename.

See also: [is rooted relative filename], page 636, [make absolute filename], page 636,
[isdir], page 634.

[Built-in Function]is_rooted_relative_filename (file)
Return true if file is a rooted-relative filename.

See also: [is absolute filename], page 636, [make absolute filename], page 636, [isdir],
page 634.

[Built-in Function]P_tmpdir ()
Return the default name of the directory for temporary files on this system. The
name of this directory is system dependent.

[Function File]dir = tempdir ()
Return the name of the system’s directory for temporary files.

Chapter 36: System Utilities 637

[Function File]tempname ()
[Function File]tempname (dir)
[Function File]tempname (dir, prefix)

This function is an alias for tmpnam.

See also: [tmpnam], page 233.

[Function File]current_state recycle ()
[Function File]old_state recycle (new_state)

Query or set the preference for recycling deleted files.

Recycling files instead of permanently deleting them is currently not implemented
in Octave. To help avoid accidental data loss it is an error to attempt enable file
recycling.

See also: [delete], page 284.

36.3 File Archiving Utilities

[Function File]bunzip2 (bzfile)
[Function File]bunzip2 (bzfile, dir)

Unpack the bzip2 archive bzfile to the directory dir. If dir is not specified, it defaults
to the current directory.

See also: [bzip2], page 638, [unpack], page 638, [gunzip], page 637, [unzip], page 638,
[untar], page 638.

[Function File]entries = gzip (files)
[Function File]entries = gzip (files, outdir)

Compress the list of files and/or directories specified in files. Each file is compressed
separately and a new file with a ’.gz’ extension is created. The original files are not
modified. Existing compressed files are silently overwritten. If outdir is defined the
compressed files are placed in this directory.

See also: [gunzip], page 637, [bzip2], page 638, [zip], page 638, [tar], page 637.

[Function File]gunzip (gzfile, dir)
Unpack the gzip archive gzfile to the directory dir. If dir is not specified, it defaults
to the current directory. If gzfile is a directory, all gzfiles in the directory will be
recursively gunzipped.

See also: [gzip], page 637, [unpack], page 638, [bunzip2], page 637, [unzip], page 638,
[untar], page 638.

[Function File]entries = tar (tarfile, files)
[Function File]entries = tar (tarfile, files, root)

Pack files files into the TAR archive tarfile. The list of files must be a string or a cell
array of strings.

The optional argument root changes the relative path of files from the current direc-
tory.

If an output argument is requested the entries in the archive are returned in a cell
array.

See also: [untar], page 638, [bzip2], page 638, [gzip], page 637, [zip], page 638.

638 GNU Octave

[Function File]untar (tarfile)
[Function File]untar (tarfile, dir)

Unpack the TAR archive tarfile to the directory dir. If dir is not specified, it defaults
to the current directory.

See also: [tar], page 637, [unpack], page 638, [bunzip2], page 637, [gunzip], page 637,
[unzip], page 638.

[Function File]entries = zip (zipfile, files)
[Function File]entries = zip (zipfile, files, rootdir)

Compress the list of files and/or directories specified in files into the archive zipfile in
the same directory. If rootdir is defined the files are located relative to rootdir rather
than the current directory.

See also: [unzip], page 638, [bzip2], page 638, [gzip], page 637, [tar], page 637.

[Function File]unzip (zipfile)
[Function File]unzip (zipfile, dir)

Unpack the ZIP archive zipfile to the directory dir. If dir is not specified, it defaults
to the current directory.

See also: [zip], page 638, [unpack], page 638, [bunzip2], page 637, [gunzip], page 637,
[untar], page 638.

[Function File]files = unpack (file)
[Function File]files = unpack (file, dir)
[Function File]files = unpack (file, dir, filetype)

Unpack the archive file based on its extension to the directory dir. If file is a list of
strings, then each file is unpacked individually. If dir is not specified, it defaults to
the current directory. If a directory is in the file list, then the filetype must also be
specified.

The optional return value is a list of files unpacked.

See also: [bzip2], page 638, [gzip], page 637, [zip], page 638, [tar], page 637.

[Function File]entries = bzip2 (files)
[Function File]entries = bzip2 (files, outdir)

Compress the list of files specified in files. Each file is compressed separately and a
new file with a ’.bz2’ extension is created. The original files are not modified. Existing
compressed files are silently overwritten. If outdir is defined the compressed files are
placed in this directory.

See also: [bunzip2], page 637, [gzip], page 637, [zip], page 638, [tar], page 637.

36.4 Networking Utilities

[Built-in Function]gethostname ()
Return the hostname of the system where Octave is running.

Chapter 36: System Utilities 639

36.4.1 FTP Objects

[Function File]f = ftp (host)
[Function File]f = ftp (host, username, password)

Connect to the FTP server host with username and password. If username and
password are not specified, user "anonymous" with no password is used. The returned
FTP object f represents the established FTP connection.

[Function File]mget (f, file)
[Function File]mget (f, dir)
[Function File]mget (. . . , target)

Download a remote file file or directory dir to the local directory on the FTP con-
nection f. f is an FTP object returned by the ftp function.

The arguments file and dir can include wildcards and any files or directories on the
remote server that match will be downloaded.

If a third argument target is given, then a single file or directory will be downloaded
with the name target to the local directory.

[Function File]mput (f, file)
Upload the local file file into the current remote directory on the FTP connection f.
f is an FTP object returned by the ftp function.

The argument file is passed by the glob function and any files that match the wildcards
in file will be uploaded.

[Function File]ascii (f)
Put the FTP connection f into ascii mode. f is an FTP object returned by the ftp

function.

[Function File]binary (f)
Put the FTP connection f into binary mode. f is an FTP object returned by the ftp
function.

36.4.2 URL Manipulation

[Loadable Function]s = urlread (url)
[Loadable Function][s, success] = urlread (url)
[Loadable Function][s, success, message] = urlread (url)
[Loadable Function][...] = urlread (url, method, param)

Download a remote file specified by its url and return its content in string s. For
example:

s = urlread ("ftp://ftp.octave.org/pub/octave/README");

The variable success is 1 if the download was successful, otherwise it is 0 in which
case message contains an error message. If no output argument is specified and an
error occurs, then the error is signaled through Octave’s error handling mechanism.

This function uses libcurl. Curl supports, among others, the HTTP, FTP and FILE
protocols. Username and password may be specified in the URL. For example:

640 GNU Octave

s = urlread ("http://user:password@example.com/file.txt");

GET and POST requests can be specified by method and param. The parameter
method is either ‘get’ or ‘post’ and param is a cell array of parameter and value
pairs. For example:

s = urlread ("http://www.google.com/search", "get",

{"query", "octave"});

See also: [urlwrite], page 640.

[Loadable Function]urlwrite (url, localfile)
[Loadable Function]f = urlwrite (url, localfile)
[Loadable Function][f, success] = urlwrite (url, localfile)
[Loadable Function][f, success, message] = urlwrite (url, localfile)

Download a remote file specified by its url and save it as localfile. For example:

urlwrite ("ftp://ftp.octave.org/pub/octave/README",

"README.txt");

The full path of the downloaded file is returned in f. The variable success is 1 if the
download was successful, otherwise it is 0 in which case message contains an error
message. If no output argument is specified and an error occurs, then the error is
signaled through Octave’s error handling mechanism.

This function uses libcurl. Curl supports, among others, the HTTP, FTP and FILE
protocols. Username and password may be specified in the URL, for example:

urlwrite ("http://username:password@example.com/file.txt",

"file.txt");

GET and POST requests can be specified by method and param. The parameter
method is either ‘get’ or ‘post’ and param is a cell array of parameter and value
pairs. For example:

urlwrite ("http://www.google.com/search", "search.html",

"get", {"query", "octave"});

See also: [urlread], page 639.

36.5 Controlling Subprocesses

Octave includes some high-level commands like system and popen for starting subprocesses.
If you want to run another program to perform some task and then look at its output, you
will probably want to use these functions.

Octave also provides several very low-level Unix-like functions which can also be used
for starting subprocesses, but you should probably only use them if you can’t find any way
to do what you need with the higher-level functions.

[Built-in Function]system ("string")
[Built-in Function]system ("string", return_output)
[Built-in Function]system ("string", return_output, type)
[Built-in Function][status, output] = system (. . .)

Execute a shell command specified by string. If the optional argument type is "async",
the process is started in the background and the process ID of the child process is

Chapter 36: System Utilities 641

returned immediately. Otherwise, the child process is started and Octave waits until
it exits. If the type argument is omitted, it defaults to the value "sync".

If system is called with one or more output arguments, or if the optional argument
return output is true and the subprocess is started synchronously, then the output
from the command is returned as a variable. Otherwise, if the subprocess is executed
synchronously, its output is sent to the standard output. To send the output of a
command executed with system through the pager, use a command like

[output, text] = system ("cmd");

disp (text);

or

printf ("%s\n", nthargout (2, "system", "cmd"));

The system function can return two values. The first is the exit status of the command
and the second is any output from the command that was written to the standard
output stream. For example,

[status, output] = system ("echo foo; exit 2");

will set the variable output to the string ‘foo’, and the variable status to the integer
‘2’.

For commands run asynchronously, status is the process id of the command shell that
is started to run the command.

See also: [unix], page 641, [dos], page 641.

[Function File]unix ("command")
[Function File]status = unix ("command")
[Function File][status, text] = unix ("command")
[Function File][...] = unix ("command", "-echo")

Execute a system command if running under a Unix-like operating system, otherwise
do nothing. Return the exit status of the program in status and any output from the
command in text. When called with no output argument, or the "-echo" argument
is given, then text is also sent to standard output.

See also: [dos], page 641, [system], page 640, [isunix], page 651, [ispc], page 651.

[Function File]dos ("command")
[Function File]status = dos ("command")
[Function File][status, text] = dos ("command")
[Function File][...] = dos ("command", "-echo")

Execute a system command if running under a Windows-like operating system, oth-
erwise do nothing. Return the exit status of the program in status and any output
from the command in text. When called with no output argument, or the "-echo"
argument is given, then text is also sent to standard output.

See also: [unix], page 641, [system], page 640, [isunix], page 651, [ispc], page 651.

[Function File][output, status] = perl (scriptfile)
[Function File][output, status] = perl (scriptfile, argument1,

argument2, . . .)
Invoke Perl script scriptfile with possibly a list of command line arguments. Returns
output in output and status in status.

642 GNU Octave

See also: [system], page 640.

[Function File][output, status] = python (scriptfile)
[Function File][output, status] = python (scriptfile, argument1,

argument2, . . .)
Invoke python script scriptfile with possibly a list of command line arguments. Re-
turns output in output and status in status.

See also: [system], page 640.

[Built-in Function]fid = popen (command, mode)
Start a process and create a pipe. The name of the command to run is given by
command. The file identifier corresponding to the input or output stream of the
process is returned in fid. The argument mode may be

"r" The pipe will be connected to the standard output of the process, and
open for reading.

"w" The pipe will be connected to the standard input of the process, and open
for writing.

For example:

fid = popen ("ls -ltr / | tail -3", "r");

while (ischar (s = fgets (fid)))

fputs (stdout, s);

endwhile

a drwxr-xr-x 33 root root 3072 Feb 15 13:28 etc

a drwxr-xr-x 3 root root 1024 Feb 15 13:28 lib

a drwxrwxrwt 15 root root 2048 Feb 17 14:53 tmp

[Built-in Function]pclose (fid)
Close a file identifier that was opened by popen. You may also use fclose for the
same purpose.

[Built-in Function][in, out, pid] = popen2 (command, args)
Start a subprocess with two-way communication. The name of the process is given
by command, and args is an array of strings containing options for the command.
The file identifiers for the input and output streams of the subprocess are returned
in in and out. If execution of the command is successful, pid contains the process ID
of the subprocess. Otherwise, pid is −1.
For example:

[in, out, pid] = popen2 ("sort", "-r");

fputs (in, "these\nare\nsome\nstrings\n");

fclose (in);

EAGAIN = errno ("EAGAIN");

done = false;

do

s = fgets (out);

if (ischar (s))

fputs (stdout, s);

Chapter 36: System Utilities 643

elseif (errno () == EAGAIN)

sleep (0.1);

fclear (out);

else

done = true;

endif

until (done)

fclose (out);

waitpid (pid);

a these

a strings

a some

a are

Note that popen2, unlike popen, will not "reap" the child process. If you don’t use
waitpid to check the child’s exit status, it will linger until Octave exits.

[Built-in Function]val = EXEC_PATH ()
[Built-in Function]old_val = EXEC_PATH (new_val)
[Built-in Function]EXEC_PATH (new_val, "local")

Query or set the internal variable that specifies a colon separated list of directories
to append to the shell PATH when executing external programs. The initial value
of is taken from the environment variable OCTAVE_EXEC_PATH, but that value can be
overridden by the command line argument ‘--exec-path PATH’.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

In most cases, the following functions simply decode their arguments and make the
corresponding Unix system calls. For a complete example of how they can be used, look at
the definition of the function popen2.

[Built-in Function][pid, msg] = fork ()
Create a copy of the current process.

Fork can return one of the following values:

> 0 You are in the parent process. The value returned from fork is the
process id of the child process. You should probably arrange to wait for
any child processes to exit.

0 You are in the child process. You can call exec to start another process.
If that fails, you should probably call exit.

< 0 The call to fork failed for some reason. You must take evasive action. A
system dependent error message will be waiting in msg.

[Built-in Function][err, msg] = exec (file, args)
Replace current process with a new process. Calling exec without first calling fork

will terminate your current Octave process and replace it with the program named
by file. For example,

644 GNU Octave

exec ("ls" "-l")

will run ls and return you to your shell prompt.

If successful, exec does not return. If exec does return, err will be nonzero, and msg
will contain a system-dependent error message.

[Built-in Function][read_fd, write_fd, err, msg] = pipe ()
Create a pipe and return the reading and writing ends of the pipe into read fd and
write fd respectively.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

[Built-in Function][fid, msg] = dup2 (old, new)
Duplicate a file descriptor.

If successful, fid is greater than zero and contains the new file ID. Otherwise, fid is
negative and msg contains a system-dependent error message.

[Built-in Function][pid, status, msg] = waitpid (pid, options)
Wait for process pid to terminate. The pid argument can be:

−1 Wait for any child process.

0 Wait for any child process whose process group ID is equal to that of the
Octave interpreter process.

> 0 Wait for termination of the child process with ID pid.

The options argument can be a bitwise OR of zero or more of the following constants:

0 Wait until signal is received or a child process exits (this is the default if
the options argument is missing).

WNOHANG Do not hang if status is not immediately available.

WUNTRACED

Report the status of any child processes that are stopped, and whose
status has not yet been reported since they stopped.

WCONTINUE

Return if a stopped child has been resumed by delivery of SIGCONT. This
value may not be meaningful on all systems.

If the returned value of pid is greater than 0, it is the process ID of the child process
that exited. If an error occurs, pid will be less than zero and msg will contain a
system-dependent error message. The value of status contains additional system-
dependent information about the subprocess that exited.

See also: [WCONTINUE], page 645, [WCOREDUMP], page 645, [WEXITSTATUS],
page 645, [WIFCONTINUED], page 645, [WIFSIGNALED], page 645,
[WIFSTOPPED], page 645, [WNOHANG], page 646, [WSTOPSIG], page 646,
[WTERMSIG], page 646, [WUNTRACED], page 646.

Chapter 36: System Utilities 645

[Built-in Function]WCONTINUE ()
Return the numerical value of the option argument that may be passed to waitpid

to indicate that it should also return if a stopped child has been resumed by delivery
of a SIGCONT signal.

See also: [waitpid], page 644, [WNOHANG], page 646, [WUNTRACED], page 646.

[Built-in Function]WCOREDUMP (status)
Given status from a call to waitpid, return true if the child produced a core dump.
This function should only be employed if WIFSIGNALED returned true. The macro
used to implement this function is not specified in POSIX.1-2001 and is not available
on some Unix implementations (e.g., AIX, SunOS).

See also: [waitpid], page 644, [WIFEXITED], page 645, [WEXITSTATUS], page 645,
[WIFSIGNALED], page 645, [WTERMSIG], page 646, [WIFSTOPPED], page 645,
[WSTOPSIG], page 646, [WIFCONTINUED], page 645.

[Built-in Function]WEXITSTATUS (status)
Given status from a call to waitpid, return the exit status of the child. This function
should only be employed if WIFEXITED returned true.

See also: [waitpid], page 644, [WIFEXITED], page 645, [WIFSIGNALED], page 645,
[WTERMSIG], page 646, [WCOREDUMP], page 645, [WIFSTOPPED], page 645,
[WSTOPSIG], page 646, [WIFCONTINUED], page 645.

[Built-in Function]WIFCONTINUED (status)
Given status from a call to waitpid, return true if the child process was resumed by
delivery of SIGCONT.

See also: [waitpid], page 644, [WIFEXITED], page 645, [WEXITSTATUS], page 645,
[WIFSIGNALED], page 645, [WTERMSIG], page 646, [WCOREDUMP], page 645,
[WIFSTOPPED], page 645, [WSTOPSIG], page 646.

[Built-in Function]WIFSIGNALED (status)
Given status from a call to waitpid, return true if the child process was terminated
by a signal.

See also: [waitpid], page 644, [WIFEXITED], page 645, [WEXITSTATUS], page 645,
[WTERMSIG], page 646, [WCOREDUMP], page 645, [WIFSTOPPED], page 645,
[WSTOPSIG], page 646, [WIFCONTINUED], page 645.

[Built-in Function]WIFSTOPPED (status)
Given status from a call to waitpid, return true if the child process was stopped by
delivery of a signal; this is only possible if the call was done using WUNTRACED or when
the child is being traced (see ptrace(2)).

See also: [waitpid], page 644, [WIFEXITED], page 645, [WEXITSTATUS], page 645,
[WIFSIGNALED], page 645, [WTERMSIG], page 646, [WCOREDUMP], page 645,
[WSTOPSIG], page 646, [WIFCONTINUED], page 645.

[Built-in Function]WIFEXITED (status)
Given status from a call to waitpid, return true if the child terminated normally.

646 GNU Octave

See also: [waitpid], page 644, [WEXITSTATUS], page 645, [WIFSIGNALED],
page 645, [WTERMSIG], page 646, [WCOREDUMP], page 645, [WIFSTOPPED],
page 645, [WSTOPSIG], page 646, [WIFCONTINUED], page 645.

[Built-in Function]WNOHANG ()
Return the numerical value of the option argument that may be passed to waitpid to
indicate that it should return its status immediately instead of waiting for a process
to exit.

See also: [waitpid], page 644, [WUNTRACED], page 646, [WCONTINUE], page 645.

[Built-in Function]WSTOPSIG (status)
Given status from a call to waitpid, return the number of the signal which caused
the child to stop. This function should only be employed if WIFSTOPPED returned
true.

See also: [waitpid], page 644, [WIFEXITED], page 645, [WEXITSTATUS], page 645,
[WIFSIGNALED], page 645, [WTERMSIG], page 646, [WCOREDUMP], page 645,
[WIFSTOPPED], page 645, [WIFCONTINUED], page 645.

[Built-in Function]WTERMSIG (status)
Given status from a call to waitpid, return the number of the signal that caused the
child process to terminate. This function should only be employed if WIFSIGNALED
returned true.

See also: [waitpid], page 644, [WIFEXITED], page 645, [WEXITSTATUS], page 645,
[WIFSIGNALED], page 645, [WCOREDUMP], page 645, [WIFSTOPPED], page 645,
[WSTOPSIG], page 646, [WIFCONTINUED], page 645.

[Built-in Function]WUNTRACED ()
Return the numerical value of the option argument that may be passed to waitpid

to indicate that it should also return if the child process has stopped but is not traced
via the ptrace system call

See also: [waitpid], page 644, [WNOHANG], page 646, [WCONTINUE], page 645.

[Built-in Function][err, msg] = fcntl (fid, request, arg)
Change the properties of the open file fid. The following values may be passed as
request:

F_DUPFD Return a duplicate file descriptor.

F_GETFD Return the file descriptor flags for fid.

F_SETFD Set the file descriptor flags for fid.

F_GETFL Return the file status flags for fid. The following codes may be returned
(some of the flags may be undefined on some systems).

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_APPEND Append on each write.

Chapter 36: System Utilities 647

O_CREAT Create the file if it does not exist.

O_NONBLOCK

Non-blocking mode.

O_SYNC Wait for writes to complete.

O_ASYNC Asynchronous I/O.

F_SETFL Set the file status flags for fid to the value specified by arg. The only
flags that can be changed are O_APPEND and O_NONBLOCK.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

[Built-in Function][err, msg] = kill (pid, sig)
Send signal sig to process pid.

If pid is positive, then signal sig is sent to pid.

If pid is 0, then signal sig is sent to every process in the process group of the current
process.

If pid is -1, then signal sig is sent to every process except process 1.

If pid is less than -1, then signal sig is sent to every process in the process group -pid.

If sig is 0, then no signal is sent, but error checking is still performed.

Return 0 if successful, otherwise return -1.

[Built-in Function]SIG ()
Return a structure containing Unix signal names and their defined values.

36.6 Process, Group, and User IDs

[Built-in Function]pgid = getpgrp ()
Return the process group id of the current process.

[Built-in Function]pid = getpid ()
Return the process id of the current process.

[Built-in Function]pid = getppid ()
Return the process id of the parent process.

[Built-in Function]euid = geteuid ()
Return the effective user id of the current process.

[Built-in Function]uid = getuid ()
Return the real user id of the current process.

[Built-in Function]egid = getegid ()
Return the effective group id of the current process.

[Built-in Function]gid = getgid ()
Return the real group id of the current process.

648 GNU Octave

36.7 Environment Variables

[Built-in Function]getenv (var)
Return the value of the environment variable var. For example,

getenv ("PATH")

returns a string containing the value of your path.

[Built-in Function]putenv (var, value)
[Built-in Function]setenv (var, value)

Set the value of the environment variable var to value.

36.8 Current Working Directory

[Command]cd dir
[Command]chdir dir

Change the current working directory to dir. If dir is omitted, the current directory
is changed to the user’s home directory. For example,

cd ~/octave

changes the current working directory to ‘~/octave’. If the directory does not exist,
an error message is printed and the working directory is not changed.

See also: [mkdir], page 630, [rmdir], page 630, [dir], page 648.

[Command]ls options
List directory contents. For example:

ls -l

a total 12

a -rw-r--r-- 1 jwe users 4488 Aug 19 04:02 foo.m

a -rw-r--r-- 1 jwe users 1315 Aug 17 23:14 bar.m

The dir and ls commands are implemented by calling your system’s directory listing
command, so the available options may vary from system to system.

See also: [dir], page 648, [stat], page 631, [readdir], page 634, [glob], page 634, [filesep],
page 635, [ls command], page 648.

[Function File]val = ls_command ()
[Function File]old_val = ls_command (new_val)

Query or set the shell command used by Octave’s ls command.

See also: [ls], page 648.

[Function File]dir (directory)
[Function File][list] = dir (directory)

Display file listing for directory directory. If a return value is requested, return a
structure array with the fields

name

bytes

date

isdir

statinfo

Chapter 36: System Utilities 649

where statinfo is the structure returned from stat.

If directory is not a directory, return information about the named filename. directory
may be a list of directories specified either by name or with wildcard characters (like
* and ?) which will be expanded with glob.

Note that for symbolic links, dir returns information about the file that the symbolic
link points to instead of the link itself. However, if the link points to a nonexistent
file, dir returns information about the link.

See also: [ls], page 648, [stat], page 631, [lstat], page 631, [readdir], page 634, [glob],
page 634, [filesep], page 635.

[Built-in Function]pwd ()
Return the current working directory.

See also: [dir], page 648, [ls], page 648.

36.9 Password Database Functions

Octave’s password database functions return information in a structure with the following
fields.

name The user name.

passwd The encrypted password, if available.

uid The numeric user id.

gid The numeric group id.

gecos The GECOS field.

dir The home directory.

shell The initial shell.

In the descriptions of the following functions, this data structure is referred to as a
pw struct.

[Loadable Function]pw_struct = getpwent ()
Return a structure containing an entry from the password database, opening it if
necessary. Once the end of the data has been reached, getpwent returns 0.

[Loadable Function]pw_struct = getpwuid (uid).
Return a structure containing the first entry from the password database with the
user ID uid. If the user ID does not exist in the database, getpwuid returns 0.

[Loadable Function]pw_struct = getpwnam (name)
Return a structure containing the first entry from the password database with the
user name name. If the user name does not exist in the database, getpwname returns
0.

[Loadable Function]setpwent ()
Return the internal pointer to the beginning of the password database.

[Loadable Function]endpwent ()
Close the password database.

650 GNU Octave

36.10 Group Database Functions

Octave’s group database functions return information in a structure with the following
fields.

name The user name.

passwd The encrypted password, if available.

gid The numeric group id.

mem The members of the group.

In the descriptions of the following functions, this data structure is referred to as a
grp struct.

[Loadable Function]grp_struct = getgrent ()
Return an entry from the group database, opening it if necessary. Once the end of
data has been reached, getgrent returns 0.

[Loadable Function]grp_struct = getgrgid (gid).
Return the first entry from the group database with the group ID gid. If the group
ID does not exist in the database, getgrgid returns 0.

[Loadable Function]grp_struct = getgrnam (name)
Return the first entry from the group database with the group name name. If the
group name does not exist in the database, getgrnam returns 0.

[Loadable Function]setgrent ()
Return the internal pointer to the beginning of the group database.

[Loadable Function]endgrent ()
Close the group database.

36.11 System Information

[Function File][c, maxsize, endian] = computer ()
[Function File]arch = computer ("arch")

Print or return a string of the form cpu-vendor-os that identifies the kind of computer
Octave is running on. If invoked with an output argument, the value is returned
instead of printed. For example:

computer ()

a i586-pc-linux-gnu

x = computer ()

⇒ x = "i586-pc-linux-gnu"

If two output arguments are requested, also return the maximum number of elements
for an array.

If three output arguments are requested, also return the byte order of the current
system as a character ("B" for big-endian or "L" for little-endian).

If the argument "arch" is specified, return a string indicating the architecture of the
computer on which Octave is running.

Chapter 36: System Utilities 651

[Built-in Function][uts, err, msg] = uname ()
Return system information in the structure. For example:

uname ()

⇒ {

sysname = x86_64

nodename = segfault

release = 2.6.15-1-amd64-k8-smp

version = Linux

machine = #2 SMP Thu Feb 23 04:57:49 UTC 2006

}

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

[Loadable Function]nproc ()
[Loadable Function]nproc (query)

Return the current number of available processors.

If called with the optional argument query, modify how processors are counted as
follows:

all total number of processors.

current processors available to the current process.

overridable

likewise, but overridable through the OMP_NUM_THREADS environment vari-
able.

[Function File]ispc ()
Return true if Octave is running on a Windows system and false otherwise.

See also: [isunix], page 651, [ismac], page 651.

[Function File]isunix ()
Return true if Octave is running on a Unix-like system and false otherwise.

See also: [ismac], page 651, [ispc], page 651.

[Function File]ismac ()
Return true if Octave is running on a Mac OS X system and false otherwise.

See also: [isunix], page 651, [ispc], page 651.

[Built-in Function]isieee ()
Return true if your computer claims to conform to the IEEE standard for floating
point calculations. No actual tests are performed.

[Function File]isdeployed ()
Return true if the current program has been compiled and is running separately from
the Octave interpreter and false if it is running in the Octave interpreter. Currently,
this function always returns false in Octave.

[Built-in Function]OCTAVE_HOME ()
Return the name of the top-level Octave installation directory.

652 GNU Octave

[Function File]matlabroot ()
Return the name of the top-level Octave installation directory.

This is an alias for the function OCTAVE_HOME provided for compatibility.

See also: [OCTAVE HOME], page 651.

[Built-in Function]OCTAVE_VERSION ()
Return the version number of Octave, as a string.

[Function File]version ()
Return the version number of Octave, as a string.

This is an alias for the function OCTAVE_VERSION provided for compatibility

See also: [OCTAVE VERSION], page 652..

[Function File]ver ()
Display a header containing the current Octave version number, license string and
operating system, followed by the installed package names, versions, and installation
directories.

[Function File]v = ver ()
Return a vector of structures, respecting Octave and each installed package. The
structure includes the following fields.

Name Package name.

Version Version of the package.

Revision Revision of the package.

Date Date respecting the version/revision.

[Function File]v = ver ("Octave")
Return version information for Octave only.

[Function File]v = ver (package)
Return version information for package.

See also: [version], page 652, [octave config info], page 653.

[Function File]compare_versions (v1, v2, operator)
Compare two version strings using the given operator.

This function assumes that versions v1 and v2 are arbitrarily long strings made of
numeric and period characters possibly followed by an arbitrary string (e.g., "1.2.3",
"0.3", "0.1.2+", or "1.2.3.4-test1").

The version is first split into numeric and character portions and then the parts are
padded to be the same length (i.e., "1.1" would be padded to be "1.1.0" when being
compared with "1.1.1", and separately, the character parts of the strings are padded
with nulls).

The operator can be any logical operator from the set

• "==" equal

• "<" less than

• "<=" less than or equal to

Chapter 36: System Utilities 653

• ">" greater than

• ">=" greater than or equal to

• "!=" not equal

• "~=" not equal

Note that version "1.1-test2" will compare as greater than "1.1-test10". Also, since
the numeric part is compared first, "a" compares less than "1a" because the sec-
ond string starts with a numeric part even though double("a") is greater than
double("1").

[Function File]license
Display the license of Octave.

[Function File]license ("inuse")
Display a list of packages currently being used.

[Function File]retval = license ("inuse")
Return a structure containing the fields feature and user.

[Function File]retval = license ("test", feature)
Return 1 if a license exists for the product identified by the string feature and 0
otherwise. The argument feature is case insensitive and only the first 27 characters
are checked.

[Function File]license ("test", feature, toggle)
Enable or disable license testing for feature, depending on toggle, which may be one
of:

"enable" Future tests for the specified license of feature are conducted as usual.

"disable" Future tests for the specified license of feature return 0.

[Function File]retval = license ("checkout", feature)
Check out a license for feature, returning 1 on success and 0 on failure.

This function is provided for compatibility with matlab.

See also: [ver], page 652, [version], page 652.

[Built-in Function]octave_config_info ()
[Built-in Function]octave_config_info (option)

Return a structure containing configuration and installation information for Octave.

If option is a string, return the configuration information for the specified option.

[Function File]usejava (feature)
Return true if the specific Sun Java element feature is available.

Possible features are:

"awt" Abstract Window Toolkit for GUIs.

"desktop" Interactive desktop is running.

"jvm" Java Virtual Machine.

"swing" Swing components for lightweight GUIs.

654 GNU Octave

This function is provided for compatibility with matlab scripts which may alter their
behavior based on the availability of Java. Octave does not implement an interface
to Java and this function always returns false.

[Loadable Function]getrusage ()
Return a structure containing a number of statistics about the current Octave process.
Not all fields are available on all systems. If it is not possible to get CPU time
statistics, the CPU time slots are set to zero. Other missing data are replaced by
NaN. The list of possible fields is:

idrss Unshared data size.

inblock Number of block input operations.

isrss Unshared stack size.

ixrss Shared memory size.

majflt Number of major page faults.

maxrss Maximum data size.

minflt Number of minor page faults.

msgrcv Number of messages received.

msgsnd Number of messages sent.

nivcsw Number of involuntary context switches.

nsignals Number of signals received.

nswap Number of swaps.

nvcsw Number of voluntary context switches.

oublock Number of block output operations.

stime A structure containing the system CPU time used. The structure has the
elements sec (seconds) usec (microseconds).

utime A structure containing the user CPU time used. The structure has the
elements sec (seconds) usec (microseconds).

36.12 Hashing Functions

It is often necessary to find if two strings or files are identical. This might be done by
comparing them character by character and looking for differences. However, this can be
slow, and so comparing a hash of the string or file can be a rapid way of finding if the files
differ.

Another use of the hashing function is to check for file integrity. The user can check the
hash of the file against a known value and find if the file they have is the same as the one
that the original hash was produced with.

Octave supplies the md5sum function to perform MD5 hashes on strings and files. An
example of the use of md5sum function might be

Chapter 36: System Utilities 655

if exist (file, "file")

hash = md5sum (file);

else

Treat the variable "file" as a string

hash = md5sum (file, true);

endif

[Loadable Function]md5sum (file)
[Loadable Function]md5sum (str, opt)

Calculate the MD5 sum of the file file. If the second parameter opt exists and is true,
then calculate the MD5 sum of the string str.

Chapter 37: Packages 657

37 Packages

Since Octave is Free Software users are encouraged to share their programs amongst each
other. To aid this sharing Octave supports the installation of extra packages. The ‘Octave-
Forge’ project is a community-maintained set of packages that can be downloaded and
installed in Octave. At the time of writing the ‘Octave-Forge’ project can be found on-line
at http://octave.sourceforge.net, but since the Internet is an ever-changing place this
may not be true at the time of reading. Therefore it is recommended to see the Octave
website for an updated reference.

37.1 Installing and Removing Packages

Assuming a package is available in the file ‘image-1.0.0.tar.gz’ it can be installed from
the Octave prompt with the command

pkg install image-1.0.0.tar.gz

If the package is installed successfully nothing will be printed on the prompt, but if an error
occurred during installation it will be reported. It is possible to install several packages
at once by writing several package files after the pkg install command. If a different
version of the package is already installed it will be removed prior to installing the new
package. This makes it easy to upgrade and downgrade the version of a package, but makes
it impossible to have several versions of the same package installed at once.

To see which packages are installed type

pkg list

a Package Name | Version | Installation directory

a --------------+---------+-----------------------

a image *| 1.0.0 | /home/jwe/octave/image-1.0.0

In this case only version 1.0.0 of the image package is installed. The ’*’ character next to
the package name shows that the image package is loaded and ready for use.

It is possible to remove a package from the system using the pkg uninstall command
like this

pkg uninstall image

If the package is removed successfully nothing will be printed in the prompt, but if an error
occurred it will be reported. It should be noted that the package file used for installation is
not needed for removal, and that only the package name as reported by pkg list should be
used when removing a package. It is possible to remove several packages at once by writing
several package names after the pkg uninstall command.

To minimize the amount of code duplication between packages it is possible that one
package depends on another one. If a package depends on another, it will check if that
package is installed during installation. If it is not, an error will be reported and the
package will not be installed. This behavior can be disabled by passing the ‘-nodeps’ flag
to the pkg install command

pkg install -nodeps my_package_with_dependencies.tar.gz

Since the installed package expects its dependencies to be installed it may not function
correctly. Because of this it is not recommended to disable dependency checking.

http://octave.sourceforge.net

658 GNU Octave

[Command]pkg command pkg_name
[Command]pkg command option pkg_name

Manage packages (groups of add-on functions) for Octave. Different actions are avail-
able depending on the value of command.

Available commands:

‘install’ Install named packages. For example,

pkg install image-1.0.0.tar.gz

installs the package found in the file ‘image-1.0.0.tar.gz’.

The option variable can contain options that affect the manner in which
a package is installed. These options can be one or more of

-nodeps The package manager will disable dependency checking.
With this option it is possible to install a package even when
it depends on another package which is not installed on the
system. Use this option with care.

-noauto The package manager will not automatically load the in-
stalled package when starting Octave. This overrides any
setting within the package.

-auto The package manager will automatically load the installed
package when starting Octave. This overrides any setting
within the package.

-local A local installation (package available only to current user)
is forced, even if the user has system privileges.

-global A global installation (package available to all users) is forced,
even if the user doesn’t normally have system privileges.

-forge Install a package directly from the Octave-Forge repository.
This requires an internet connection and the cURL library.

-verbose The package manager will print the output of all commands
as they are performed.

‘update’ Check installed Octave-Forge packages against repository and update any
outdated items. This requires an internet connection and the cURL li-
brary. Usage:

pkg update

‘uninstall’
Uninstall named packages. For example,

pkg uninstall image

removes the image package from the system. If another installed package
depends on the image package an error will be issued. The package can
be uninstalled anyway by using the ‘-nodeps’ option.

‘load’ Add named packages to the path. After loading a package it is possible
to use the functions provided by the package. For example,

Chapter 37: Packages 659

pkg load image

adds the image package to the path. It is possible to load all installed
packages at once with the keyword ‘all’. Usage:

pkg load all

‘unload’ Remove named packages from the path. After unloading a package it is
no longer possible to use the functions provided by the package. It is
possible to unload all installed packages at once with the keyword ‘all’.
Usage:

pkg unload all

‘list’ Show the list of currently installed packages. For example,

installed_packages = pkg ("list")

returns a cell array containing a structure for each installed package.

If two output arguments are requested pkg splits the list of installed
packages into those which were installed by the current user, and those
which were installed by the system administrator.

[user_packages, system_packages] = pkg ("list")

The option ’-forge’ lists packages available at the Octave-Forge repository.
This requires an internet connection and the cURL library. For example:

oct_forge_pkgs = pkg ("list", "-forge")

‘describe’
Show a short description of the named installed packages, with the option
’-verbose’ also list functions provided by the package. For example,

pkg describe -verbose all

will describe all installed packages and the functions they provide. If one
output is requested a cell of structure containing the description and list
of functions of each package is returned as output rather than printed on
screen:

desc = pkg ("describe", "secs1d", "image")

If any of the requested packages is not installed, pkg returns an error,
unless a second output is requested:

[desc, flag] = pkg ("describe", "secs1d", "image")

flag will take one of the values "Not installed", "Loaded" or "Not loaded"
for each of the named packages.

‘prefix’ Set the installation prefix directory. For example,

pkg prefix ~/my_octave_packages

sets the installation prefix to ‘~/my_octave_packages’. Packages will be
installed in this directory.

It is possible to get the current installation prefix by requesting an output
argument. For example:

pfx = pkg ("prefix")

The location in which to install the architecture dependent files can be
independently specified with an addition argument. For example:

660 GNU Octave

pkg prefix ~/my_octave_packages ~/my_arch_dep_pkgs

‘local_list’
Set the file in which to look for information on locally installed packages.
Locally installed packages are those that are available only to the current
user. For example:

pkg local_list ~/.octave_packages

It is possible to get the current value of local list with the following

pkg local_list

‘global_list’
Set the file in which to look for information on globally installed packages.
Globally installed packages are those that are available to all users. For
example:

pkg global_list /usr/share/octave/octave_packages

It is possible to get the current value of global list with the following

pkg global_list

‘build’ Build a binary form of a package or packages. The binary file produced
will itself be an Octave package that can be installed normally with pkg.
The form of the command to build a binary package is

pkg build builddir image-1.0.0.tar.gz ...

where builddir is the name of a directory where the temporary installa-
tion will be produced and the binary packages will be found. The options
‘-verbose’ and ‘-nodeps’ are respected, while all other options are ig-
nored.

‘rebuild’ Rebuild the package database from the installed directories. This can be
used in cases where the package database has been corrupted. It can also
take the ‘-auto’ and ‘-noauto’ options to allow the autoloading state of
a package to be changed. For example,

pkg rebuild -noauto image

will remove the autoloading status of the image package.

37.2 Using Packages

By default installed packages are available from the Octave prompt, but it is possible to
control this using the pkg load and pkg unload commands. The functions from a package
can be removed from the Octave path by typing

pkg unload package_name

where package_name is the name of the package to be removed from the path.

In much the same way a package can be added to the Octave path by typing

pkg load package_name

Chapter 37: Packages 661

37.3 Administrating Packages

On UNIX-like systems it is possible to make both per-user and system-wide installations of
a package. If the user performing the installation is root the packages will be installed in
a system-wide directory that defaults to ‘OCTAVE_HOME/share/octave/packages/’. If the
user is not root the default installation directory is ‘~/octave/’. Packages will be installed
in a subdirectory of the installation directory that will be named after the package. It is
possible to change the installation directory by using the pkg prefix command

pkg prefix new_installation_directory

The current installation directory can be retrieved by typing

current_installation_directory = pkg prefix

To function properly the package manager needs to keep some information about
the installed packages. For per-user packages this information is by default stored
in the file ‘~/.octave_packages’ and for system-wide installations it is stored in
‘OCTAVE_HOME/share/octave/octave_packages’. The path to the per-user file can be
changed with the pkg local_list command

pkg local_list /path/to/new_file

For system-wide installations this can be changed in the same way using the pkg global_

list command. If these commands are called without a new path, the current path will be
returned.

37.4 Creating Packages

Internally a package is simply a gzipped tar file that contains a top level directory of any
given name. This directory will in the following be referred to as package and may contain
the following files:

package/COPYING

This is a required file containing the license of the package. No restrictions is
made on the license in general. If however the package contains dynamically
linked functions the license must be compatible with the GNU General Public
License.

package/DESCRIPTION

This is a required file containing information about the package. See
Section 37.4.1 [The DESCRIPTION File], page 663, for details on this file.

package/ChangeLog

This is an optional file describing all the changes made to the package source
files.

package/INDEX

This is an optional file describing the functions provided by the package. If
this file is not given then one with be created automatically from the functions
in the package and the Categories keyword in the ‘DESCRIPTION’ file. See
Section 37.4.2 [The INDEX File], page 664, for details on this file.

package/NEWS

This is an optional file describing all user-visible changes worth mentioning. As
this file increases on size, old entries can be moved into ‘package/ONEWS’.

662 GNU Octave

package/ONEWS

This is an optional file describing old entries from the ‘NEWS’ file.

package/PKG_ADD

An optional file that includes commands that are run when the package is
added to the users path. Note that PKG_ADD directives in the source code of the
package will also be added to this file by the Octave package manager. Note
that symbolic links are to be avoided in packages, as symbolic links do not exist
on some file systems, and so a typical use for this file is the replacement of the
symbolic link

ln -s foo.oct bar.oct

with an autoload directive like

autoload (’bar’, which (’foo’));

See Section 37.4.3 [PKG ADD and PKG DEL Directives], page 665, for details
on PKG_ADD directives.

package/PKG_DEL

An optional file that includes commands that are run when the package is
removed from the users path. Note that PKG_DEL directives in the source code
of the package will also be added to this file by the Octave package manager.
See Section 37.4.3 [PKG ADD and PKG DEL Directives], page 665, for details
on PKG_DEL directives.

package/pre_install.m

This is an optional script that is run prior to the installation of a package.

package/post_install.m

This is an optional script that is run after the installation of a package.

package/on_uninstall.m

This is an optional script that is run prior to the removal of a package.

Besides the above mentioned files, a package can also contain on or more of the following
directories:

package/inst

An optional directory containing any files that are directly installed by the
package. Typically this will include any m-files.

package/src

An optional directory containing code that must be built prior to the packages
installation. The Octave package manager will execute ‘./configure’ in this
directory if this script exists, and will then call make if a file ‘Makefile’ exists
in this directory. make install will however not be called. The environment
variables MKOCTFILE, OCTAVE_CONFIG, and OCTAVE will be set to the full paths
of the programs mkoctfile, octave-config, and octave, respectively, of the
correct version when configure and make are called. If a file called FILES

exists all files listed there will be copied to the inst directory, so they also will
be installed. If the FILES file doesn’t exist, ‘src/*.m’ and ‘src/*.oct’ will be
copied to the inst directory.

Chapter 37: Packages 663

package/doc

An optional directory containing documentation for the package. The files in
this directory will be directly installed in a sub-directory of the installed package
for future reference.

package/bin

An optional directory containing files that will be added to the Octave
EXEC_PATH when the package is loaded. This might contain external scripts,
etc., called by functions within the package.

37.4.1 The DESCRIPTION File

The ‘DESCRIPTION’ file contains various information about the package, such as its name,
author, and version. This file has a very simple format

• Lines starting with ‘#’ are comments.

• Lines starting with a blank character are continuations from the previous line.

• Everything else is of the form NameOfOption: ValueOfOption.

The following is a simple example of a ‘DESCRIPTION’ file

Name: The name of my package

Version: 1.0.0

Date: 2007-18-04

Author: The name (and possibly email) of the package author.

Maintainer: The name (and possibly email) of the current

package maintainer.

Title: The title of the package

Description: A short description of the package. If this

description gets too long for one line it can continue

on the next by adding a space to the beginning of the

following lines.

License: GPL version 3 or later

The package manager currently recognizes the following keywords

Name Name of the package.

Version Version of the package. A package version must be 3 numbers separated by a
dot.

Date Date of last update.

Author Original author of the package.

Maintainer

Maintainer of the package.

Title A one line description of the package.

Description

A one paragraph description of the package.

Categories

Optional keyword describing the package (if no ‘INDEX’ file is given this is
mandatory).

664 GNU Octave

Problems Optional list of known problems.

Url Optional list of homepages related to the package.

Autoload Optional field that sets the default loading behavior for the package. If set to
yes, true or on, then Octave will automatically load the package when starting.
Otherwise the package must be manually loaded with the pkg load command.
This default behavior can be overridden when the package is installed.

Depends A list of other Octave packages that this package depends on. This can include
dependencies on particular versions, with a format

Depends: package (>= 1.0.0)

Possible operators are <, <=, ==, >= or >. If the part of the dependency in ()

is missing, any version of the package is acceptable. Multiple dependencies can
be defined either as a comma separated list or on separate Depends lines.

License An optional short description of the used license (e.g., GPL version 3 or newer).
This is optional since the file ‘COPYING’ is mandatory.

SystemRequirements

These are the external install dependencies of the package and are not checked
by the package manager. This is here as a hint to the distribution packager.
They follow the same conventions as the Depends keyword.

BuildRequires

These are the external build dependencies of the package and are not checked by
the package manager. This is here as a hint to the distribution packager. They
follow the same conventions as the Depends keyword. Note that in general,
packaging systems such as rpm or deb and autoprobe the install dependencies
from the build dependencies, and therefore the often a BuildRequires depen-
dency removes the need for a SystemRequirements dependency.

The developer is free to add additional arguments to the ‘DESCRIPTION’ file for their own
purposes. One further detail to aid the packager is that the SystemRequirements and
BuildRequires keywords can have a distribution dependent section, and the automatic
build process will use these. An example of the format of this is

BuildRequires: libtermcap-devel [Mandriva] libtermcap2-devel

where the first package name will be used as a default and if the RPMs are built on a
Mandriva distribution, then the second package name will be used instead.

37.4.2 The INDEX File

The optional ‘INDEX’ file provides a categorical view of the functions in the package. This
file has a very simple format

• Lines beginning with ‘#’ are comments.

• The first non-comment line should look like this

toolbox >> Toolbox name

• Lines beginning with an alphabetical character indicates a new category of functions.

• Lines starting with a white space character indicate that the function names on the
line belong to the last mentioned category.

Chapter 37: Packages 665

The format can be summarized with the following example.

A comment

toolbox >> Toolbox name

Category Name 1

function1 function2 function3

function4

Category Name 2

function2 function5

If you wish to refer to a function that users might expect to find in your package but is
not there, providing a work around or pointing out that the function is available elsewhere,
you can use:

fn = workaround description

This workaround description will not appear when listing functions in the package with
pkg describe but they will be published in the HTML documentation online. Workaround
descriptions can use any HTML markup, but keep in mind that it will be enclosed in a
bold-italic environment. For the special case of:

fn = use <code>alternate expression</code>

the bold-italic is automatically suppressed. You will need to use <code> even in references:

fn = use <code>fn</code>

Sometimes functions are only partially compatible, in which case you can list the non-
compatible cases separately. To refer to another function in the package, use <f>fn</f>.
For example:

eig (a, b) = use <f>qz</f>

Since sites may have many missing functions, you can define a macro rather than typing
the same link over and again.

$id = expansion

defines the macro id. You can use $id anywhere in the description and it will be expanded.
For example:

$TSA = see SPC Tools

arcov = $TSA <code>armcv</code>

id is any string of letters, numbers and _.

37.4.3 PKG ADD and PKG DEL Directives

If the package contains files called PKG_ADD or PKG_DEL the commands in these files will be
executed when the package is added or removed from the users path. In some situations
such files are a bit cumbersome to maintain, so the package manager supports automatic
creation of such files. If a source file in the package contains a PKG_ADD or PKG_DEL directive
they will be added to either the PKG_ADD or PKG_DEL files.

In m-files a PKG_ADD directive looks like this

PKG_ADD: some_octave_command

Such lines should be added before the function keyword. In C++ files a PKG_ADD directive
looks like this

666 GNU Octave

// PKG_ADD: some_octave_command

In both cases some_octave_command should be replaced by the command that should be
placed in the PKG_ADD file. PKG_DEL directives work in the same way, except the PKG_ADD

keyword is replaced with PKG_DEL and the commands get added to the PKG_DEL file.

Appendix A: Dynamically Linked Functions 667

Appendix A Dynamically Linked Functions

Octave has the possibility of including compiled code as dynamically linked extensions and
then using these extensions as if they were part of Octave itself. Octave can call C++ code
through its native oct-file interface or C code through its mex interface. It can also indirectly
call functions written in any other language through a simple wrapper. The reasons to write
code in a compiled language might be either to link to an existing piece of code and allow
it to be used within Octave, or to allow improved performance for key pieces of code.

Before going further, you should first determine if you really need to use dynamically
linked functions at all. Before proceeding with writing any dynamically linked function to
improve performance you should address ask yourself

• Can I get the same functionality using the Octave scripting language only?

• Is it thoroughly optimized Octave code? Vectorization of Octave code, doesn’t just
make it concise, it generally significantly improves its performance. Above all, if loops
must be used, make sure that the allocation of space for variables takes place outside
the loops using an assignment to a matrix of the right size, or zeros.

• Does it make as much use as possible of existing built-in library routines? These are
highly optimized and many do not carry the overhead of being interpreted.

• Does writing a dynamically linked function represent useful investment of your time,
relative to staying in Octave?

Also, as oct- and mex-files are dynamically linked to Octave, they introduce the possibil-
ity of Octave crashing due to errors in the user code. For example a segmentation violation
in the user’s code will cause Octave to abort.

A.1 Oct-Files

A.1.1 Getting Started with Oct-Files

The basic command to build oct-files is mkoctfile and it can be call from within octave or
from the command line.

[Command]mkoctfile [-options] file . . .
[Function File][output, status = mkoctfile (. . .)

The mkoctfile function compiles source code written in C, C++, or Fortran. De-
pending on the options used with mkoctfile, the compiled code can be called within
Octave or can be used as a stand-alone application.

mkoctfile can be called from the shell prompt or from the Octave prompt. Calling
it from the Octave prompt simply delegates the call to the shell prompt. The output
is stored in the output variable and the exit status in the status variable.

mkoctfile accepts the following options, all of which are optional except for the file
name of the code you wish to compile:

‘-I DIR’ Add the include directory DIR to compile commands.

‘-D DEF’ Add the definition DEF to the compiler call.

‘-l LIB’ Add the library LIB to the link command.

668 GNU Octave

‘-L DIR’ Add the library directory DIR to the link command.

‘-M’
‘--depend’

Generate dependency files (.d) for C and C++ source files.

‘-R DIR’ Add the run-time path to the link command.

‘-Wl,...’ Pass flags though the linker like "-Wl,-rpath=. . .". The quotes are
needed since commas are interpreted as command separators.

‘-W...’ Pass flags though the compiler like "-Wa,OPTION".

‘-c’ Compile but do not link.

‘-g’ Enable debugging options for compilers.

‘-o FILE’
‘--output FILE’

Output file name. Default extension is .oct (or .mex if ‘--mex’ is specified)
unless linking a stand-alone executable.

‘-p VAR’
‘--print VAR’

Print the configuration variable VAR. Recognized variables are:

ALL_CFLAGS FFTW3F_LIBS

ALL_CXXFLAGS FLIBS

ALL_FFLAGS FPICFLAG

ALL_LDFLAGS INCFLAGS

BLAS_LIBS LAPACK_LIBS

CC LDFLAGS

CFLAGS LD_CXX

CPICFLAG LD_STATIC_FLAG

CPPFLAGS LFLAGS

CXX LIBCRUFT

CXXFLAGS LIBOCTAVE

CXXPICFLAG LIBOCTINTERP

DEPEND_EXTRA_SED_PATTERN LIBS

DEPEND_FLAGS OCTAVE_LIBS

DL_LD OCTAVE_LINK_DEPS

DL_LDFLAGS OCT_LINK_DEPS

EXEEXT RDYNAMIC_FLAG

F77 READLINE_LIBS

F77_INTEGER_8_FLAG SED

FFLAGS XTRA_CFLAGS

FFTW3_LDFLAGS XTRA_CXXFLAGS

FFTW3_LIBS

FFTW3F_LDFLAGS

‘--link-stand-alone’
Link a stand-alone executable file.

Appendix A: Dynamically Linked Functions 669

‘--mex’ Assume we are creating a MEX file. Set the default output extension to
".mex".

‘-s’
‘--strip’ Strip the output file.

‘-v’
‘--verbose’

Echo commands as they are executed.

‘file’ The file to compile or link. Recognized file types are

.c C source

.cc C++ source

.C C++ source

.cpp C++ source

.f Fortran source (fixed form)

.F Fortran source (fixed form)

.f90 Fortran source (free form)

.F90 Fortran source (free form)

.o object file

.a library file

Consider the short C++ example:

#include <octave/oct.h>

DEFUN_DLD (helloworld, args, nargout,

"Hello World Help String")

{

int nargin = args.length ();

octave_stdout << "Hello World has " << nargin

<< " input arguments and "

<< nargout << " output arguments.\n";

return octave_value_list ();

}

This example although short introduces the basics of writing a C++ function that can
be dynamically linked to Octave. The easiest way to make available most of the definitions
that might be necessary for a C++ oct-file in Octave is to use the #include <octave/oct.h>

header. Note that ‘octave/oct.h’ is a C++ header and cannot be directly #include’ed in
a C source file, nor any other language. What follows is mostly C++, with a discussion of
other languages in section Section A.1.9 [Calling External Code from Oct-Files], page 684.

The macro that defines the entry point into the dynamically loaded function is
DEFUN_DLD. This macro takes four arguments, these being

1. The function name as it will be seen in Octave,

2. The list of arguments to the function of type octave_value_list,

3. The number of output arguments, which can and often is omitted if not used, and

4. The string that will be seen as the help text of the function.

670 GNU Octave

The return type of functions defined with DEFUN_DLD is always octave_value_list.

There are a couple of important considerations in the choice of function name. Firstly,
it must be a valid Octave function name and so must be a sequence of letters, digits and
underscores, not starting with a digit. Secondly, as Octave uses the function name to define
the filename it attempts to find the function in, the function name in the DEFUN_DLD macro
must match the filename of the oct-file. Therefore, the above function should be in a file
‘helloworld.cc’, and it should be compiled to an oct-file using the command

mkoctfile helloworld.cc

This will create a file called ‘helloworld.oct’, that is the compiled version of the func-
tion. It should be noted that it is perfectly acceptable to have more than one DEFUN_DLD

function in a source file. However, there must either be a symbolic link to the oct-file for
each of the functions defined in the source code with the DEFUN_DLD macro or the autoload
(Section 11.8 [Function Files], page 167) function should be used.

The rest of this function then shows how to find the number of input arguments, how to
print through the octave pager, and return from the function. After compiling this function
as above, an example of its use is

helloworld (1, 2, 3)

a Hello World has 3 input arguments and 0 output arguments.

A.1.2 Matrices and Arrays in Oct-Files

Octave supports a number of different array and matrix classes, the majority of which are
based on the Array class. The exception is the sparse matrix types discussed separately
below. There are three basic matrix types

Matrix A double precision matrix class defined in dMatrix.h,

ComplexMatrix

A complex matrix class defined in CMatrix.h, and

BoolMatrix

A boolean matrix class defined in boolMatrix.h.

These are the basic two-dimensional matrix types of octave. In additional there are a
number of multi-dimensional array types, these being

NDArray A double precision array class defined in ‘dNDArray.h’

ComplexNDarray

A complex array class defined in ‘CNDArray.h’

boolNDArray

A boolean array class defined in ‘boolNDArray.h’

int8NDArray

int16NDArray

int32NDArray

int64NDArray

8, 16, 32 and 64-bit signed array classes defined in ‘int8NDArray.h’,
‘int16NDArray.h’, etc.

Appendix A: Dynamically Linked Functions 671

uint8NDArray

uint16NDArray

uint32NDArray

uint64NDArray

8, 16, 32 and 64-bit unsigned array classes defined in ‘uint8NDArray.h’,
‘uint16NDArray.h’, etc.

There are several basic means of constructing matrices of multi-dimensional arrays. Con-
sidering the Matrix type as an example

• We can create an empty matrix or array with the empty constructor. For example

Matrix a;

This can be used on all matrix and array types

• Define the dimensions of the matrix or array with a dim vector. For example

dim_vector dv (2);

dv(0) = 2; dv(1) = 2;

Matrix a (dv);

This can be used on all matrix and array types

• Define the number of rows and columns in the matrix. For example:

Matrix a (2, 2)

However, this constructor can only be used with the matrix types.

These types all share a number of basic methods and operators, a selection of which
include

[Method]T& operator () (octave idx type)
[Method]T& elem (octave idx type)

The () operator or elem method allow the values of the matrix or array to be read or
set. These can take a single argument, which is of type octave_idx_type, that is the
index into the matrix or array. Additionally, the matrix type allows two argument
versions of the () operator and elem method, giving the row and column index of the
value to obtain or set.

Note that these functions do significant error checking and so in some circumstances the
user might prefer to access the data of the array or matrix directly through the fortran vec
method discussed below.

[Method]octave_idx_type nelem (void) const
The total number of elements in the matrix or array.

[Method]size_t byte_size (void) const
The number of bytes used to store the matrix or array.

[Method]dim_vector dims (void) const
The dimensions of the matrix or array in value of type dim vector.

[Method]void resize (const dim vector&)
A method taking either an argument of type dim_vector, or in the case of a matrix
two arguments of type octave_idx_type defining the number of rows and columns
in the matrix.

672 GNU Octave

[Method]T* fortran_vec (void)
This method returns a pointer to the underlying data of the matrix or a array so that
it can be manipulated directly, either within Octave or by an external library.

Operators such an +, -, or * can be used on the majority of the above types. In addition
there are a number of methods that are of interest only for matrices such as transpose,
hermitian, solve, etc.

The typical way to extract a matrix or array from the input arguments of DEFUN_DLD
function is as follows

#include <octave/oct.h>

DEFUN_DLD (addtwomatrices, args, , "Add A to B")

{

int nargin = args.length ();

if (nargin != 2)

print_usage ();

else

{

NDArray A = args(0).array_value ();

NDArray B = args(1).array_value ();

if (! error_state)

return octave_value (A + B);

}

return octave_value_list ();

}

To avoid segmentation faults causing Octave to abort, this function explicitly checks
that there are sufficient arguments available before accessing these arguments. It then
obtains two multi-dimensional arrays of type NDArray and adds these together. Note that
the array value method is called without using the is_matrix_type type, and instead the
error state is checked before returning A + B. The reason to prefer this is that the arguments
might be a type that is not an NDArray, but it would make sense to convert it to one. The
array_value method allows this conversion to be performed transparently if possible, and
sets error_state if it is not.

A + B, operating on two NDArray’s returns an NDArray, which is cast to an octave_value

on the return from the function. An example of the use of this demonstration function is

addtwomatrices (ones (2, 2), ones (2, 2))

⇒ 2 2

2 2

A list of the basic Matrix and Array types, the methods to extract these from an
octave_value and the associated header is listed below.

RowVector row_vector_value ‘dRowVector.h’
ComplexRowVector complex_row_vector_value ‘CRowVector.h’
ColumnVector column_vector_value ‘dColVector.h’
ComplexColumnVector complex_column_vector_value ‘CColVector.h’
Matrix matrix_value ‘dMatrix.h’

Appendix A: Dynamically Linked Functions 673

ComplexMatrix complex_matrix_value ‘CMatrix.h’
boolMatrix bool_matrix_value ‘boolMatrix.h’
charMatrix char_matrix_value ‘chMatrix.h’
NDArray array_value ‘dNDArray.h’
ComplexNDArray complex_array_value ‘CNDArray.h’
boolNDArray bool_array_value ‘boolNDArray.h’
charNDArray char_array_value ‘charNDArray.h’
int8NDArray int8_array_value ‘int8NDArray.h’
int16NDArray int16_array_value ‘int16NDArray.h’
int32NDArray int32_array_value ‘int32NDArray.h’
int64NDArray int64_array_value ‘int64NDArray.h’
uint8NDArray uint8_array_value ‘uint8NDArray.h’
uint16NDArray uint16_array_value ‘uint16NDArray.h’
uint32NDArray uint32_array_value ‘uint32NDArray.h’
uint64NDArray uint64_array_value ‘uint64NDArray.h’

A.1.3 Character Strings in Oct-Files

In Octave a character string is just a special Array class. Consider the example:

#include <octave/oct.h>

DEFUN_DLD (stringdemo, args, , "String Demo")

{

int nargin = args.length();

octave_value_list retval;

if (nargin != 1)

print_usage ();

else

{

charMatrix ch = args(0).char_matrix_value ();

if (! error_state)

{

if (args(0).is_sq_string ())

retval(1) = octave_value (ch, true);

else

retval(1) = octave_value (ch, true, ’\’’);

octave_idx_type nr = ch.rows();

for (octave_idx_type i = 0; i < nr / 2; i++)

{

std::string tmp = ch.row_as_string (i);

ch.insert (ch.row_as_string(nr-i-1).c_str(),

i, 0);

ch.insert (tmp.c_str(), nr-i-1, 0);

}

674 GNU Octave

retval(0) = octave_value (ch, true);

}

}

return retval;

}

An example of the use of this function is

s0 = ["First String"; "Second String"];

[s1,s2] = stringdemo (s0)

⇒ s1 = Second String

First String

⇒ s2 = First String

Second String

typeinfo (s2)

⇒ sq_string

typeinfo (s1)

⇒ string

One additional complication of strings in Octave is the difference between single quoted
and double quoted strings. To find out if an octave_value contains a single or double
quoted string an example is

if (args(0).is_sq_string ())

octave_stdout <<

"First argument is a singularly quoted string\n";

else if (args(0).is_dq_string ())

octave_stdout <<

"First argument is a doubly quoted string\n";

Note however, that both types of strings are represented by the charNDArray type, and
so when assigning to an octave_value, the type of string should be specified. For example:

octave_value_list retval;

charNDArray c;

...

// Create single quoted string

retval(1) = octave_value (ch, true, ’\’’);

// Create a double quoted string

retval(0) = octave_value (ch, true);

A.1.4 Cell Arrays in Oct-Files

Octave’s cell type is equally accessible within oct-files. A cell array is just an array of
octave_values, and so each element of the cell array can then be treated just like any
other octave_value. A simple example is

Appendix A: Dynamically Linked Functions 675

#include <octave/oct.h>

#include <octave/Cell.h>

DEFUN_DLD (celldemo, args, , "Cell Demo")

{

octave_value_list retval;

int nargin = args.length ();

if (nargin != 1)

print_usage ();

else

{

Cell c = args (0).cell_value ();

if (! error_state)

for (octave_idx_type i = 0; i < c.nelem (); i++)

retval(i) = c.elem (i);

}

return retval;

}

Note that cell arrays are used less often in standard oct-files and so the ‘Cell.h’ header
file must be explicitly included. The rest of this example extracts the octave_values one
by one from the cell array and returns be as individual return arguments. For example
consider

[b1, b2, b3] = celldemo ({1, [1, 2], "test"})

⇒
b1 = 1

b2 =

1 2

b3 = test

A.1.5 Structures in Oct-Files

A structure in Octave is map between a number of fields represented and their values. The
Standard Template Library map class is used, with the pair consisting of a std::string

and an octave Cell variable.

A simple example demonstrating the use of structures within oct-files is

#include <octave/oct.h>

#include <octave/ov-struct.h>

DEFUN_DLD (structdemo, args, , "Struct demo.")

{

int nargin = args.length ();

octave_value retval;

676 GNU Octave

if (args.length () == 2)

{

octave_scalar_map arg0 = args(0).scalar_map_value ();

if (! error_state)

{

std::string arg1 = args(1).string_value ();

if (! error_state)

{

octave_value tmp = arg0.contents (arg1);

if (tmp.is_defined ())

{

octave_scalar_map st;

st.assign ("selected", tmp);

retval = octave_value (st);

}

else

error ("sruct does not contain field named ’%s’\n",

arg1.c_str ());

}

else

error ("expecting character string as second argument");

}

else

error ("expecting struct as first argument");

}

else

print_usage ();

return retval;

}

An example of its use is

x.a = 1; x.b = "test"; x.c = [1, 2];

structdemo (x, "b")

⇒ selected = test

The commented code above demonstrates how to iterate over all of the fields of the
structure, where as the following code demonstrates finding a particular field in a more
concise manner.

Appendix A: Dynamically Linked Functions 677

As can be seen the contentsmethod of the Octave_map class returns a Cell which allows
structure arrays to be represented. Therefore, to obtain the underlying octave_value we
write

octave_value tmp = arg0.contents (p1) (0);

where the trailing (0) is the () operator on the Cell object. We can equally iterate of the
elements of the Cell array to address the elements of the structure array.

A.1.6 Sparse Matrices in Oct-Files

There are three classes of sparse objects that are of interest to the user.

SparseMatrix

A double precision sparse matrix class

SparseComplexMatrix

A complex sparse matrix class

SparseBoolMatrix

A boolean sparse matrix class

All of these classes inherit from the Sparse<T> template class, and so all have similar
capabilities and usage. The Sparse<T> class was based on Octave Array<T> class, and so
users familiar with Octave’s Array classes will be comfortable with the use of the sparse
classes.

The sparse classes will not be entirely described in this section, due to their similarity
with the existing Array classes. However, there are a few differences due the different nature
of sparse objects, and these will be described. Firstly, although it is fundamentally possible
to have N-dimensional sparse objects, the Octave sparse classes do not allow them at this
time. So all operations of the sparse classes must be 2-dimensional. This means that in fact
SparseMatrix is similar to Octave’s Matrix class rather than its NDArray class.

A.1.6.1 The Differences between the Array and Sparse Classes

The number of elements in a sparse matrix is considered to be the number of non-zero
elements rather than the product of the dimensions. Therefore

SparseMatrix sm;

...

int nel = sm.nelem ();

returns the number of non-zero elements. If the user really requires the number of elements
in the matrix, including the non-zero elements, they should use numel rather than nelem.
Note that for very large matrices, where the product of the two dimensions is larger than
the representation of an unsigned int, then numel can overflow. An example is speye(1e6)
which will create a matrix with a million rows and columns, but only a million non-zero
elements. Therefore the number of rows by the number of columns in this case is more than
two hundred times the maximum value that can be represented by an unsigned int. The
use of numel should therefore be avoided useless it is known it won’t overflow.

Extreme care must be take with the elem method and the "()" operator, which perform
basically the same function. The reason is that if a sparse object is non-const, then Octave
will assume that a request for a zero element in a sparse matrix is in fact a request to create
this element so it can be filled. Therefore a piece of code like

678 GNU Octave

SparseMatrix sm;

...

for (int j = 0; j < nc; j++)

for (int i = 0; i < nr; i++)

std::cerr << " (" << i << "," << j << "): " << sm(i,j)

<< std::endl;

is a great way of turning the sparse matrix into a dense one, and a very slow way at that
since it reallocates the sparse object at each zero element in the matrix.

An easy way of preventing the above from happening is to create a temporary constant
version of the sparse matrix. Note that only the container for the sparse matrix will be
copied, while the actual representation of the data will be shared between the two versions
of the sparse matrix. So this is not a costly operation. For example, the above would
become

SparseMatrix sm;

...

const SparseMatrix tmp (sm);

for (int j = 0; j < nc; j++)

for (int i = 0; i < nr; i++)

std::cerr << " (" << i << "," << j << "): " << tmp(i,j)

<< std::endl;

Finally, as the sparse types aren’t just represented as a contiguous block of memory,
the fortran_vec method of the Array<T> is not available. It is however replaced by three
separate methods ridx, cidx and data, that access the raw compressed column format
that the Octave sparse matrices are stored in. Additionally, these methods can be used in
a manner similar to elem, to allow the matrix to be accessed or filled. However, in that
case it is up to the user to respect the sparse matrix compressed column format discussed
previous.

A.1.6.2 Creating Sparse Matrices in Oct-Files

You have several alternatives for creating a sparse matrix. You can first create the data as
three vectors representing the row and column indexes and the data, and from those create
the matrix. Or alternatively, you can create a sparse matrix with the appropriate amount of
space and then fill in the values. Both techniques have their advantages and disadvantages.

Here is an example of how to create a small sparse matrix with the first technique

int nz = 4, nr = 3, nc = 4;

ColumnVector ridx (nz);

ColumnVector cidx (nz);

ColumnVector data (nz);

ridx(0) = 0; ridx(1) = 0; ridx(2) = 1; ridx(3) = 2;

cidx(0) = 0; cidx(1) = 1; cidx(2) = 3; cidx(3) = 3;

data(0) = 1; data(1) = 2; data(2) = 3; data(3) = 4;

SparseMatrix sm (data, ridx, cidx, nr, nc);

Appendix A: Dynamically Linked Functions 679

which creates the matrix given in section Section 22.1.1 [Storage of Sparse Matrices],
page 425. Note that the compressed matrix format is not used at the time of the cre-
ation of the matrix itself, however it is used internally.

As previously mentioned, the values of the sparse matrix are stored in increasing column-
major ordering. Although the data passed by the user does not need to respect this require-
ment, the pre-sorting the data significantly speeds up the creation of the sparse matrix.

The disadvantage of this technique of creating a sparse matrix is that there is a brief time
where two copies of the data exists. Therefore for extremely memory constrained problems
this might not be the right technique to create the sparse matrix.

The alternative is to first create the sparse matrix with the desired number of non-zero
elements and then later fill those elements in. The easiest way to do this is

int nz = 4, nr = 3, nc = 4;

SparseMatrix sm (nr, nc, nz);

sm(0,0) = 1; sm(0,1) = 2; sm(1,3) = 3; sm(2,3) = 4;

That creates the same matrix as previously. Again, although it is not strictly necessary,
it is significantly faster if the sparse matrix is created in this manner that the elements are
added in column-major ordering. The reason for this is that if the elements are inserted
at the end of the current list of known elements then no element in the matrix needs to
be moved to allow the new element to be inserted. Only the column indexes need to be
updated.

There are a few further points to note about this technique of creating a sparse matrix.
Firstly, it is possible to create a sparse matrix with fewer elements than are actually inserted
in the matrix. Therefore

int nz = 4, nr = 3, nc = 4;

SparseMatrix sm (nr, nc, 0);

sm(0,0) = 1; sm(0,1) = 2; sm(1,3) = 3; sm(2,3) = 4;

is perfectly valid. However it is a very bad idea. The reason is that as each new element is
added to the sparse matrix the space allocated to it is increased by reallocating the memory.
This is an expensive operation, that will significantly slow this means of creating a sparse
matrix. Furthermore, it is possible to create a sparse matrix with too much storage, so
having nz above equaling 6 is also valid. The disadvantage is that the matrix occupies more
memory than strictly needed.

It is not always easy to know the number of non-zero elements prior to filling a matrix.
For this reason the additional storage for the sparse matrix can be removed after its creation
with the maybe compress function. Furthermore, the maybe compress can deallocate the
unused storage, but it can equally remove zero elements from the matrix. The removal of
zero elements from the matrix is controlled by setting the argument of the maybe compress
function to be ‘true’. However, the cost of removing the zeros is high because it implies
resorting the elements. Therefore, if possible it is better is the user doesn’t add the zeros
in the first place. An example of the use of maybe compress is

680 GNU Octave

int nz = 6, nr = 3, nc = 4;

SparseMatrix sm1 (nr, nc, nz);

sm1(0,0) = 1; sm1(0,1) = 2; sm1(1,3) = 3; sm1(2,3) = 4;

sm1.maybe_compress (); // No zero elements were added

SparseMatrix sm2 (nr, nc, nz);

sm2(0,0) = 1; sm2(0,1) = 2; sm(0,2) = 0; sm(1,2) = 0;

sm1(1,3) = 3; sm1(2,3) = 4;

sm2.maybe_compress (true); // Zero elements were added

The use of the maybe compress function should be avoided if possible, as it will slow
the creation of the matrices.

A third means of creating a sparse matrix is to work directly with the data in compressed
row format. An example of this technique might be

octave_value arg;

...

int nz = 6, nr = 3, nc = 4; // Assume we know the max no nz

SparseMatrix sm (nr, nc, nz);

Matrix m = arg.matrix_value ();

int ii = 0;

sm.cidx (0) = 0;

for (int j = 1; j < nc; j++)

{

for (int i = 0; i < nr; i++)

{

double tmp = foo (m(i,j));

if (tmp != 0.)

{

sm.data(ii) = tmp;

sm.ridx(ii) = i;

ii++;

}

}

sm.cidx(j+1) = ii;

}

sm.maybe_compress (); // If don’t know a-priori

// the final no of nz.

which is probably the most efficient means of creating the sparse matrix.

Finally, it might sometimes arise that the amount of storage initially created is insuffi-
cient to completely store the sparse matrix. Therefore, the method change_capacity exists
to reallocate the sparse memory. The above example would then be modified as

octave_value arg;

...

int nz = 6, nr = 3, nc = 4; // Assume we know the max no nz

Appendix A: Dynamically Linked Functions 681

SparseMatrix sm (nr, nc, nz);

Matrix m = arg.matrix_value ();

int ii = 0;

sm.cidx (0) = 0;

for (int j = 1; j < nc; j++)

{

for (int i = 0; i < nr; i++)

{

double tmp = foo (m(i,j));

if (tmp != 0.)

{

if (ii == nz)

{

nz += 2; // Add 2 more elements

sm.change_capacity (nz);

}

sm.data(ii) = tmp;

sm.ridx(ii) = i;

ii++;

}

}

sm.cidx(j+1) = ii;

}

sm.maybe_mutate (); // If don’t know a-priori

// the final no of nz.

Note that both increasing and decreasing the number of non-zero elements in a sparse
matrix is expensive, as it involves memory reallocation. Also as parts of the matrix, though
not its entirety, exist as the old and new copy at the same time, additional memory is
needed. Therefore if possible this should be avoided.

A.1.6.3 Using Sparse Matrices in Oct-Files

Most of the same operators and functions on sparse matrices that are available from the
Octave are equally available with oct-files. The basic means of extracting a sparse matrix
from an octave_value and returning them as an octave_value, can be seen in the following
example.

octave_value_list retval;

SparseMatrix sm = args(0).sparse_matrix_value ();

SparseComplexMatrix scm =

args(1).sparse_complex_matrix_value ();

SparseBoolMatrix sbm = args(2).sparse_bool_matrix_value ();

...

retval(2) = sbm;

retval(1) = scm;

retval(0) = sm;

682 GNU Octave

The conversion to an octave-value is handled by the sparse octave_value constructors,
and so no special care is needed.

A.1.7 Accessing Global Variables in Oct-Files

Global variables allow variables in the global scope to be accessed. Global variables can
easily be accessed with oct-files using the support functions get_global_value and set_

global_value. get_global_value takes two arguments, the first is a string representing
the variable name to obtain. The second argument is a boolean argument specifying what
to do in the case that no global variable of the desired name is found. An example of the
use of these two functions is

#include <octave/oct.h>

DEFUN_DLD (globaldemo, args, , "Global demo.")

{

int nargin = args.length ();

octave_value retval;

if (nargin != 1)

print_usage ();

else

{

std::string s = args(0).string_value ();

if (! error_state)

{

octave_value tmp = get_global_value (s, true);

if (tmp.is_defined ())

retval = tmp;

else

retval = "Global variable not found";

set_global_value ("a", 42.0);

}

}

return retval;

}

An example of its use is

global a b

b = 10;

globaldemo ("b")

⇒ 10

globaldemo ("c")

⇒ "Global variable not found"

num2str (a)

⇒ 42

Appendix A: Dynamically Linked Functions 683

A.1.8 Calling Octave Functions from Oct-Files

There is often a need to be able to call another octave function from within an oct-file, and
there are many examples of such within octave itself. For example the quad function is an
oct-file that calculates the definite integral by quadrature over a user supplied function.

There are also many ways in which a function might be passed. It might be passed as
one of

1. Function Handle

2. Anonymous Function Handle

3. Inline Function

4. String

The example below demonstrates an example that accepts all four means of passing a
function to an oct-file.

#include <octave/oct.h>

#include <octave/parse.h>

DEFUN_DLD (funcdemo, args, nargout, "Function Demo")

{

int nargin = args.length();

octave_value_list retval;

if (nargin < 2)

print_usage ();

else

{

octave_value_list newargs;

for (octave_idx_type i = nargin - 1; i > 0; i--)

newargs (i - 1) = args(i);

if (args(0).is_function_handle ()

|| args(0).is_inline_function ())

{

octave_function *fcn = args(0).function_value ();

if (! error_state)

retval = feval (fcn, newargs, nargout);

}

else if (args(0).is_string ())

{

std::string fcn = args (0).string_value ();

if (! error_state)

retval = feval (fcn, newargs, nargout);

}

else

error ("funcdemo: expected string,",

" inline or function handle");

}

return retval;

684 GNU Octave

}

The first argument to this demonstration is the user supplied function and the following
arguments are all passed to the user function.

funcdemo (@sin,1)

⇒ 0.84147

funcdemo (@(x) sin(x), 1)

⇒ 0.84147

funcdemo (inline ("sin(x)"), 1)

⇒ 0.84147

funcdemo ("sin",1)

⇒ 0.84147

funcdemo (@atan2, 1, 1)

⇒ 0.78540

When the user function is passed as a string, the treatment of the function is different. In
some cases it is necessary to always have the user supplied function as an octave_function

object. In that case the string argument can be used to create a temporary function like

std::octave fcn_name = unique_symbol_name ("__fcn__");

std::string fname = "function y = ";

fname.append (fcn_name);

fname.append ("(x) y = ");

fcn = extract_function (args(0), "funcdemo", fcn_name,

fname, "; endfunction");

...

if (fcn_name.length ())

clear_function (fcn_name);

There are two important things to know in this case. The number of input arguments
to the user function is fixed, and in the above is a single argument, and secondly to avoid
leaving the temporary function in the Octave symbol table it should be cleared after use.

A.1.9 Calling External Code from Oct-Files

Linking external C code to Octave is relatively simple, as the C functions can easily be
called directly from C++. One possible issue is the declarations of the external C functions
might need to be explicitly defined as C functions to the compiler. If the declarations of
the external C functions are in the header foo.h, then the manner in which to ensure that
the C++ compiler treats these declarations as C code is

#ifdef __cplusplus

extern "C"

{

#endif

#include "foo.h"

#ifdef __cplusplus

} /* end extern "C" */

#endif

Appendix A: Dynamically Linked Functions 685

Calling Fortran code however can pose some difficulties. This is due to differences in the
manner in compilers treat the linking of Fortran code with C or C++ code. Octave supplies
a number of macros that allow consistent behavior across a number of compilers.

The underlying Fortran code should use the XSTOPX function to replace the Fortran STOP

function. XSTOPX uses the Octave exception handler to treat failing cases in the Fortran
code explicitly. Note that Octave supplies its own replacement blas XERBLA function, which
uses XSTOPX.

If the underlying code calls XSTOPX, then the F77_XFCN macro should be used to call
the underlying Fortran function. The Fortran exception state can then be checked with
the global variable f77_exception_encountered. If XSTOPX will not be called, then the
F77_FCN macro should be used instead to call the Fortran code.

There is no harm in using F77_XFCN in all cases, except that for Fortran code that is
short running and executes a large number of times, there is potentially an overhead in
doing so. However, if F77_FCN is used with code that calls XSTOP, Octave can generate a
segmentation fault.

An example of the inclusion of a Fortran function in an oct-file is given in the following
example, where the C++ wrapper is

#include <octave/oct.h>

#include <octave/f77-fcn.h>

extern "C"

{

F77_RET_T

F77_FUNC (fortsub, FORTSUB)

(const int&, double*, F77_CHAR_ARG_DECL

F77_CHAR_ARG_LEN_DECL);

}

DEFUN_DLD (fortdemo , args , , "Fortran Demo.")

{

octave_value_list retval;

int nargin = args.length();

if (nargin != 1)

print_usage ();

else

{

NDArray a = args(0).array_value ();

if (! error_state)

{

double *av = a.fortran_vec ();

octave_idx_type na = a.nelem ();

OCTAVE_LOCAL_BUFFER (char, ctmp, 128);

F77_XFCN (fortsub, FORTSUB, (na, av, ctmp

F77_CHAR_ARG_LEN (128)));

686 GNU Octave

retval(1) = std::string (ctmp);

retval(0) = a;

}

}

return retval;

}

and the Fortran function is

subroutine fortsub (n, a, s)

implicit none

character*(*) s

real*8 a(*)

integer*4 i, n, ioerr

do i = 1, n

if (a(i) .eq. 0d0) then

call xstopx (’fortsub: divide by zero’)

else

a(i) = 1d0 / a(i)

endif

enddo

write (unit = s, fmt = ’(a,i3,a,a)’, iostat = ioerr)

$ ’There are ’, n,

$ ’ values in the input vector’, char(0)

if (ioerr .ne. 0) then

call xstopx (’fortsub: error writing string’)

endif

return

end

This example demonstrates most of the features needed to link to an external Fortran
function, including passing arrays and strings, as well as exception handling. An example
of the behavior of this function is

[b, s] = fortdemo (1:3)

⇒
b = 1.00000 0.50000 0.33333

s = There are 3 values in the input vector

[b, s] = fortdemo(0:3)

error: fortsub:divide by zero

error: exception encountered in Fortran subroutine fortsub_

error: fortdemo: error in Fortran

A.1.10 Allocating Local Memory in Oct-Files

Allocating memory within an oct-file might seem easy as the C++ new/delete operators can
be used. However, in that case care must be taken to avoid memory leaks. The preferred

Appendix A: Dynamically Linked Functions 687

manner in which to allocate memory for use locally is to use the OCTAVE_LOCAL_BUFFER

macro. An example of its use is

OCTAVE_LOCAL_BUFFER (double, tmp, len)

that returns a pointer tmp of type double * of length len.

A.1.11 Input Parameter Checking in Oct-Files

As oct-files are compiled functions they have the possibility of causing Octave to abort
abnormally. It is therefore important that each and every function has the minimum of
parameter checking needed to ensure that Octave behaves well.

The minimum requirement, as previously discussed, is to check the number of input
arguments before using them to avoid referencing a non existent argument. However, it
some case this might not be sufficient as the underlying code imposes further constraints.
For example an external function call might be undefined if the input arguments are not
integers, or if one of the arguments is zero. Therefore, oct-files often need additional input
parameter checking.

There are several functions within Octave that might be useful for the purposes of
parameter checking. These include the methods of the octave value class like is_real_

matrix, etc., but equally include more specialized functions. Some of the more common
ones are demonstrated in the following example.

#include <octave/oct.h>

DEFUN_DLD (paramdemo, args, nargout,

"Parameter Check Demo.")

{

int nargin = args.length ();

octave_value retval;

if (nargin != 1)

print_usage();

else if (nargout != 0)

error ("paramdemo: function has no output arguments");

else

{

NDArray m = args(0).array_value();

double min_val = -10.0;

double max_val = 10.0;

octave_stdout << "Properties of input array:\n";

if (m.any_element_is_negative ())

octave_stdout << " includes negative values\n";

if (m.any_element_is_inf_or_nan())

octave_stdout << " includes Inf or NaN values\n";

if (m.any_element_not_one_or_zero())

octave_stdout <<

" includes other values than 1 and 0\n";

if (m.all_elements_are_int_or_inf_or_nan())

octave_stdout <<

688 GNU Octave

" includes only int, Inf or NaN values\n";

if (m.all_integers (min_val, max_val))

octave_stdout <<

" includes only integers in [-10,10]\n";

}

return retval;

}

An example of its use is:

paramdemo ([1, 2, NaN, Inf])

⇒ Properties of input array:

includes Inf or NaN values

includes other values than 1 and 0

includes only int, Inf or NaN values

A.1.12 Exception and Error Handling in Oct-Files

Another important feature of Octave is its ability to react to the user typing Control-C

even during calculations. This ability is based on the C++ exception handler, where memory
allocated by the C++ new/delete methods are automatically released when the exception is
treated. When writing an oct-file, to allow Octave to treat the user typing Control-C, the
OCTAVE_QUIT macro is supplied. For example:

for (octave_idx_type i = 0; i < a.nelem (); i++)

{

OCTAVE_QUIT;

b.elem(i) = 2. * a.elem(i);

}

The presence of the OCTAVE_QUIT macro in the inner loop allows Octave to treat the
user request with the Control-C. Without this macro, the user must either wait for the
function to return before the interrupt is processed, or press Control-C three times to force
Octave to exit.

The OCTAVE_QUIT macro does impose a very small speed penalty, and so for loops that
are known to be small it might not make sense to include OCTAVE_QUIT.

When creating an oct-file that uses an external libraries, the function might spend a
significant portion of its time in the external library. It is not generally possible to use the
OCTAVE_QUIT macro in this case. The alternative in this case is

BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

... some code that calls a "foreign" function ...

END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

The disadvantage of this is that if the foreign code allocates any memory internally,
then this memory might be lost during an interrupt, without being deallocated. Therefore,
ideally Octave itself should allocate any memory that is needed by the foreign code, with
either the fortran vec method or the OCTAVE_LOCAL_BUFFER macro.

The Octave unwind protect mechanism (Section 10.8 [The unwind_protect Statement],
page 154) can also be used in oct-files. In conjunction with the exception handling of Octave,

Appendix A: Dynamically Linked Functions 689

it is important to enforce that certain code is run to allow variables, etc. to be restored
even if an exception occurs. An example of the use of this mechanism is

#include <octave/oct.h>

#include <octave/unwind-prot.h>

void

err_hand (const char *fmt, ...)

{

// Do nothing!!

}

DEFUN_DLD (unwinddemo, args, nargout, "Unwind Demo")

{

int nargin = args.length();

octave_value retval;

if (nargin < 2)

print_usage ();

else

{

NDArray a = args(0).array_value ();

NDArray b = args(1).array_value ();

if (! error_state)

{

unwind_protect::begin_frame ("Funwinddemo");

unwind_protect_ptr (current_liboctave_warning_handler);

set_liboctave_warning_handler(err_hand);

retval = octave_value (quotient (a, b));

unwind_protect::run_frame ("Funwinddemo");

}

}

return retval;

}

As can be seen in the example:

unwinddemo (1, 0)

⇒ Inf

1 / 0

⇒ warning: division by zero

Inf

The division by zero (and in fact all warnings) is disabled in the unwinddemo function.

A.1.13 Documentation and Test of Oct-Files

The documentation of an oct-file is the fourth string parameter of the DEFUN_DLD macro.
This string can be formatted in the same manner as the help strings for user functions

690 GNU Octave

(Section C.4 [Documentation Tips], page 717), however there are some issue that are par-
ticular to the formatting of help strings within oct-files.

The major issue is that the help string will typically be longer than a single line of text,
and so the formatting of long help strings need to be taken into account. There are several
manners in which to treat this issue, but the most common is illustrated in the following
example,

DEFUN_DLD (do_what_i_want, args, nargout,

"-*- texinfo -*-\n\

@deftypefn {Function File} {} do_what_i_say (@var{n})\n\

A function that does what the user actually wants rather\n\

than what they requested.\n\

@end deftypefn")

{

...

}

where, as can be seen, end line of text within the help string is terminated by \n\ which
is an embedded new-line in the string together with a C++ string continuation character.
Note that the final \ must be the last character on the line.

Octave also includes the ability to embed the test and demonstration code for a function
within the code itself (Appendix B [Test and Demo Functions], page 707). This can be used
from within oct-files (or in fact any file) with certain provisos. Firstly, the test and demo
functions of Octave look for a %! as the first characters on a new-line to identify test and
demonstration code. This is equally a requirement for oct-files. Furthermore the test and
demonstration code must be included in a comment block of the compiled code to avoid it
being interpreted by the compiler. Finally, the Octave test and demonstration code must
have access to the source code of the oct-file and not just the compiled code as the tests
are stripped from the compiled code. An example in an oct-file might be

/*

%!error (sin())

%!error (sin(1,1))

%!assert (sin([1,2]),[sin(1),sin(2)])

*/

A.2 Mex-Files

Octave includes an interface to allow legacy mex-files to be compiled and used with Octave.
This interface can also be used to share code between Octave and matlab users. However,
as mex-files expose the matlab’s internal API, and the internal structure of Octave is
different, a mex-file can never have the same performance in Octave as the equivalent oct-
file. In particular to support the manner in which mex-files access the variables passed to
mex functions, there are a significant number of additional copies of memory when calling
or returning from a mex function. For this reason, new code should be written using the
oct-file interface discussed above if possible.

Appendix A: Dynamically Linked Functions 691

A.2.1 Getting Started with Mex-Files

The basic command to build a mex-file is either mkoctfile --mex or mex. The first can
either be used from within Octave or from the command line. However, to avoid issues with
matlab’s own mex command, the use of the command mex is limited to within Octave.

[Function File]mex [options] file . . .
Compile source code written in C, C++, or Fortran, to a MEX file. This is equivalent
to mkoctfile --mex [options] file.

See also: [mkoctfile], page 667.

[Function File]mexext ()
Return the filename extension used for MEX files.

See also: [mex], page 691.

One important difference with the use of mex between matlab and Octave is that the
header file "matrix.h" is implicitly included through the inclusion of "mex.h". This is to
avoid a conflict with the Octave file "Matrix.h" with operating systems and compilers that
don’t distinguish between filenames in upper and lower case

Consider the short example:

#include "mex.h"

void

mexFunction (int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[])

{

mxArray *v = mxCreateDoubleMatrix (1, 1, mxREAL);

double *data = mxGetPr (v);

*data = 1.23456789;

plhs[0] = v;

}

This simple example demonstrates the basics of writing a mex-file. The entry point
into the mex-file is defined by mexFunction. Note that the function name is not explicitly
included in the mexFunction and so there can only be a single mexFunction entry point
per-file. Also the name of the function is determined by the name of the mex-file itself.
Therefore if the above function is in the file ‘firstmexdemo.c’, it can be compiled with

mkoctfile --mex firstmexdemo.c

which creates a file ‘firstmexdemo.mex’. The function can then be run from Octave as

firstmexdemo()

⇒ 1.2346

It should be noted that the mex-file contains no help string for the functions it contains.
To document mex-files, there should exist an m-file in the same directory as the mex-file
itself. Taking the above as an example, we would therefore have a file ‘firstmexdemo.m’
that might contain the text

692 GNU Octave

%FIRSTMEXDEMO Simple test of the functionality of a mex-file.

In this case, the function that will be executed within Octave will be given by the mex-
file, while the help string will come from the m-file. This can also be useful to allow a sample
implementation of the mex-file within the Octave language itself for testing purposes.

Although we cannot have multiple entry points into a single mex-file, we can use the
mexFunctionName function to determine what name the mex-file was called with. This can
be used to alter the behavior of the mex-file based on the function name. For example if

#include "mex.h"

void

mexFunction (int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[])

{

const char *nm;

nm = mexFunctionName ();

mexPrintf ("You called function: %s\n", nm);

if (strcmp (nm, "myfunc") == 0)

mexPrintf ("This is the principal function\n", nm);

return;

}

is in file ‘myfunc.c’, and it is compiled with

mkoctfile --mex myfunc.c

ln -s myfunc.mex myfunc2.mex

Then as can be seen by

myfunc()

⇒ You called function: myfunc

This is the principal function

myfunc2()

⇒ You called function: myfunc2

the behavior of the mex-file can be altered depending on the functions name.

Allow the user should only include mex.h in their code, Octave declares additional func-
tions, typedefs, etc., available to the user to write mex-files in the headers mexproto.h and
mxarray.h.

A.2.2 Working with Matrices and Arrays in Mex-Files

The basic mex type of all variables is mxArray. All variables, such as matrices, cell arrays or
structures are all stored in this basic type, and this type serves basically the same purpose
as the octave value class in oct-files. That is it acts as a container for the more specialized
types.

The mxArray structure contains at a minimum, the variable it represents name, its
dimensions, its type and whether the variable is real or complex. It can however contain
a number of additional fields depending on the type of the mxArray. There are a number
of functions to create mxArray structures, including mxCreateCellArray, mxCreateSparse
and the generic mxCreateNumericArray.

Appendix A: Dynamically Linked Functions 693

The basic functions to access the data contained in an array is mxGetPr. As the mex
interface assumes that the real and imaginary parts of a complex array are stored separately,
there is an equivalent function mxGetPi that get the imaginary part. Both of these functions
are for use only with double precision matrices. There also exists the generic function
mxGetData and mxGetImagData that perform the same operation on all matrix types. For
example:

mxArray *m;

mwSize *dims;

UINT32_T *pr;

dims = (mwSize *) mxMalloc (2 * sizeof(mwSize));

dims[0] = 2;

dims[1] = 2;

m = mxCreateNumericArray (2, dims, mxUINT32_CLASS, mxREAL);

pr = = (UINT32_T *) mxGetData (m);

There are also the functions mxSetPr, etc., that perform the inverse, and set the data of
an Array to use the block of memory pointed to by the argument of mxSetPr.

Note the type mwSize used above, and mwIndex are defined as the native precision of
the indexing in Octave on the platform on which the mex-file is built. This allows both 32-
and 64-bit platforms to support mex-files. mwSize is used to define array dimension and
maximum number or elements, while mwIndex is used to define indexing into arrays.

An example that demonstration how to work with arbitrary real or complex double
precision arrays is given by the file ‘mypow2.c’ as given below.

#include "mex.h"

void

mexFunction (int nlhs, mxArray* plhs[], int nrhs,

const mxArray* prhs[])

{

mwIndex i;

mwSize n;

double *vri, *vro;

if (nrhs != 1 || ! mxIsNumeric (prhs[0]))

mexErrMsgTxt ("expects matrix");

n = mxGetNumberOfElements (prhs[0]);

plhs[0] = (mxArray *) mxCreateNumericArray

(mxGetNumberOfDimensions (prhs[0]),

mxGetDimensions (prhs[0]), mxGetClassID (prhs[0]),

mxIsComplex (prhs[0]));

vri = mxGetPr (prhs[0]);

vro = mxGetPr (plhs[0]);

if (mxIsComplex (prhs[0]))

{

694 GNU Octave

double *vii, *vio;

vii = mxGetPi (prhs[0]);

vio = mxGetPi (plhs[0]);

for (i = 0; i < n; i++)

{

vro [i] = vri [i] * vri [i] - vii [i] * vii [i];

vio [i] = 2 * vri [i] * vii [i];

}

}

else

{

for (i = 0; i < n; i++)

vro [i] = vri [i] * vri [i];

}

}

with an example of its use

b = randn(4,1) + 1i * randn(4,1);

all(b.^2 == mypow2(b))

⇒ 1

The example above uses the functions mxGetDimensions, mxGetNumberOfElements, and
mxGetNumberOfDimensions to work with the dimensions of multi-dimensional arrays. The
functions mxGetM, and mxGetN are also available to find the number of rows and columns in
a matrix.

A.2.3 Character Strings in Mex-Files

As mex-files do not make the distinction between single and double quoted strings within
Octave, there is perhaps less complexity in the use of strings and character matrices in
mex-files. An example of their use, that parallels the demo in ‘stringdemo.cc’, is given in
the file ‘mystring.c’, as seen below.

#include <string.h>

#include "mex.h"

void

mexFunction (int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[])

{

mwIndex i, j;

mwSize m, n;

mxChar *pi, *po;

if (nrhs != 1 || ! mxIsChar (prhs[0]) ||

mxGetNumberOfDimensions (prhs[0]) > 2)

mexErrMsgTxt ("expecting char matrix");

Appendix A: Dynamically Linked Functions 695

m = mxGetM (prhs[0]);

n = mxGetN (prhs[0]);

pi = mxGetChars (prhs[0]);

plhs[0] = mxCreateNumericMatrix (m, n, mxCHAR_CLASS,

mxREAL);

po = mxGetChars (plhs[0]);

for (j = 0; j < n; j++)

for (i = 0; i < m; i++)

po [j*m + m - 1 - i] = pi [j*m + i];

}

An example of its expected output is

mystring(["First String"; "Second String"])

⇒ s1 = Second String

First String

Other functions in the mex interface for handling character strings are mxCreateString,
mxArrayToString, and mxCreateCharMatrixFromStrings. In a mex-file, a character string
is considered to be a vector rather than a matrix. This is perhaps an arbitrary distinction
as the data in the mxArray for the matrix is consecutive in any case.

A.2.4 Cell Arrays with Mex-Files

We can perform exactly the same operations in Cell arrays in mex-files as we can in oct-files.
An example that reduplicates the functional of the ‘celldemo.cc’ oct-file in a mex-file is
given by ‘mycell.c’ as below

#include "mex.h"

void

mexFunction (int nlhs, mxArray* plhs[], int nrhs,

const mxArray* prhs[])

{

mwSize n;

mwIndex i;

if (nrhs != 1 || ! mxIsCell (prhs[0]))

mexErrMsgTxt ("expects cell");

n = mxGetNumberOfElements (prhs[0]);

n = (n > nlhs ? nlhs : n);

for (i = 0; i < n; i++)

plhs[i] = mxDuplicateArray (mxGetCell (prhs[0], i));

}

which as can be seen below has exactly the same behavior as the oct-file version.

696 GNU Octave

[b1, b2, b3] = mycell ({1, [1, 2], "test"})

⇒
b1 = 1

b2 =

1 2

b3 = test

Note in the example the use of the mxDuplicateArray function. This is needed as the
mxArray pointer returned by mxGetCell might be deallocated. The inverse function to
mxGetCell is mcSetCell and is defined as

void mxSetCell (mxArray *ptr, int idx, mxArray *val);

Finally, to create a cell array or matrix, the appropriate functions are

mxArray *mxCreateCellArray (int ndims, const int *dims);

mxArray *mxCreateCellMatrix (int m, int n);

A.2.5 Structures with Mex-Files

The basic function to create a structure in a mex-file is mxCreateStructMatrix, which
creates a structure array with a two dimensional matrix, or mxCreateStructArray.

mxArray *mxCreateStructArray (int ndims, int *dims,

int num_keys,

const char **keys);

mxArray *mxCreateStructMatrix (int rows, int cols,

int num_keys,

const char **keys);

Accessing the fields of the structure can then be performed with the mxGetField and
mxSetField or alternatively with the mxGetFieldByNumber and mxSetFieldByNumber func-
tions.

mxArray *mxGetField (const mxArray *ptr, mwIndex index,

const char *key);

mxArray *mxGetFieldByNumber (const mxArray *ptr,

mwIndex index, int key_num);

void mxSetField (mxArray *ptr, mwIndex index,

const char *key, mxArray *val);

void mxSetFieldByNumber (mxArray *ptr, mwIndex index,

int key_num, mxArray *val);

A difference between the oct-file interface to structures and the mex-file version is that
the functions to operate on structures in mex-files directly include an index over the ele-
ments of the arrays of elements per field. Whereas the oct-file structure includes a Cell
Array per field of the structure.

An example that demonstrates the use of structures in mex-file can be found in the file
‘mystruct.c’, as seen below

#include "mex.h"

Appendix A: Dynamically Linked Functions 697

void

mexFunction (int nlhs, mxArray* plhs[], int nrhs,

const mxArray* prhs[])

{

int i;

mwIndex j;

mxArray *v;

const char *keys[] = { "this", "that" };

if (nrhs != 1 || ! mxIsStruct (prhs[0]))

mexErrMsgTxt ("expects struct");

for (i = 0; i < mxGetNumberOfFields (prhs[0]); i++)

for (j = 0; j < mxGetNumberOfElements (prhs[0]); j++)

{

mexPrintf ("field %s(%d) = ",

mxGetFieldNameByNumber (prhs[0], i), j);

v = mxGetFieldByNumber (prhs[0], j, i);

mexCallMATLAB (0, 0, 1, &v, "disp");

}

v = mxCreateStructMatrix (2, 2, 2, keys);

mxSetFieldByNumber (v, 0, 0, mxCreateString ("this1"));

mxSetFieldByNumber (v, 0, 1, mxCreateString ("that1"));

mxSetFieldByNumber (v, 1, 0, mxCreateString ("this2"));

mxSetFieldByNumber (v, 1, 1, mxCreateString ("that2"));

mxSetFieldByNumber (v, 2, 0, mxCreateString ("this3"));

mxSetFieldByNumber (v, 2, 1, mxCreateString ("that3"));

mxSetFieldByNumber (v, 3, 0, mxCreateString ("this4"));

mxSetFieldByNumber (v, 3, 1, mxCreateString ("that4"));

if (nlhs)

plhs[0] = v;

}

An example of the behavior of this function within Octave is then

a(1).f1 = "f11"; a(1).f2 = "f12";

a(2).f1 = "f21"; a(2).f2 = "f22";

b = mystruct(a)

⇒ field f1(0) = f11

field f1(1) = f21

field f2(0) = f12

field f2(1) = f22

b =

{

698 GNU Octave

this =

(,

[1] = this1

[2] = this2

[3] = this3

[4] = this4

,)

that =

(,

[1] = that1

[2] = that2

[3] = that3

[4] = that4

,)

}

A.2.6 Sparse Matrices with Mex-Files

The Octave format for sparse matrices is identical to the mex format in that it is a com-
pressed column sparse format. Also in both, sparse matrices are required to be two-
dimensional. The only difference is that the real and imaginary parts of the matrix are
stored separately.

The mex-file interface, as well as using mxGetM, mxGetN, mxSetM, mxSetN, mxGetPr,
mxGetPi, mxSetPr and mxSetPi, the mex-file interface supplies the functions

mwIndex *mxGetIr (const mxArray *ptr);

mwIndex *mxGetJc (const mxArray *ptr);

mwSize mxGetNzmax (const mxArray *ptr);

void mxSetIr (mxArray *ptr, mwIndex *ir);

void mxSetJc (mxArray *ptr, mwIndex *jc);

void mxSetNzmax (mxArray *ptr, mwSize nzmax);

mxGetNzmax gets the maximum number of elements that can be stored in the sparse matrix.
This is not necessarily the number of non-zero elements in the sparse matrix. mxGetJc

returns an array with one additional value than the number of columns in the sparse matrix.
The difference between consecutive values of the array returned by mxGetJc define the
number of non-zero elements in each column of the sparse matrix. Therefore

mwSize nz, n;

mwIndex *Jc;

mxArray *m;

...

n = mxGetN (m);

Jc = mxGetJc (m);

nz = Jc[n];

Appendix A: Dynamically Linked Functions 699

returns the actual number of non-zero elements stored in the matrix in nz. As the arrays
returned by mxGetPr and mxGetPi only contain the non-zero values of the matrix, we also
need a pointer to the rows of the non-zero elements, and this is given by mxGetIr. A
complete example of the use of sparse matrices in mex-files is given by the file ‘mysparse.c’
as seen below

#include "mex.h"

void

mexFunction (int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[])

{

mwSize n, m, nz;

mxArray *v;

mwIndex i;

double *pr, *pi;

double *pr2, *pi2;

mwIndex *ir, *jc;

mwIndex *ir2, *jc2;

if (nrhs != 1 || ! mxIsSparse (prhs[0]))

mexErrMsgTxt ("expects sparse matrix");

m = mxGetM (prhs [0]);

n = mxGetN (prhs [0]);

nz = mxGetNzmax (prhs [0]);

if (mxIsComplex (prhs[0]))

{

mexPrintf ("Matrix is %d-by-%d complex",

" sparse matrix", m, n);

mexPrintf (" with %d elements\n", nz);

pr = mxGetPr (prhs[0]);

pi = mxGetPi (prhs[0]);

ir = mxGetIr (prhs[0]);

jc = mxGetJc (prhs[0]);

i = n;

while (jc[i] == jc[i-1] && i != 0) i--;

mexPrintf ("last non-zero element (%d, %d) =",

ir[nz-1]+ 1, i);

mexPrintf (" (%g, %g)\n", pr[nz-1], pi[nz-1]);

v = mxCreateSparse (m, n, nz, mxCOMPLEX);

pr2 = mxGetPr (v);

pi2 = mxGetPi (v);

700 GNU Octave

ir2 = mxGetIr (v);

jc2 = mxGetJc (v);

for (i = 0; i < nz; i++)

{

pr2[i] = 2 * pr[i];

pi2[i] = 2 * pi[i];

ir2[i] = ir[i];

}

for (i = 0; i < n + 1; i++)

jc2[i] = jc[i];

if (nlhs > 0)

plhs[0] = v;

}

else if (mxIsLogical (prhs[0]))

{

bool *pbr, *pbr2;

mexPrintf ("Matrix is %d-by-%d logical",

" sparse matrix", m, n);

mexPrintf (" with %d elements\n", nz);

pbr = mxGetLogicals (prhs[0]);

ir = mxGetIr (prhs[0]);

jc = mxGetJc (prhs[0]);

i = n;

while (jc[i] == jc[i-1] && i != 0) i--;

mexPrintf ("last non-zero element (%d, %d) = %d\n",

ir[nz-1]+ 1, i, pbr[nz-1]);

v = mxCreateSparseLogicalMatrix (m, n, nz);

pbr2 = mxGetLogicals (v);

ir2 = mxGetIr (v);

jc2 = mxGetJc (v);

for (i = 0; i < nz; i++)

{

pbr2[i] = pbr[i];

ir2[i] = ir[i];

}

for (i = 0; i < n + 1; i++)

jc2[i] = jc[i];

if (nlhs > 0)

plhs[0] = v;

}

Appendix A: Dynamically Linked Functions 701

else

{

mexPrintf ("Matrix is %d-by-%d real",

" sparse matrix", m, n);

mexPrintf (" with %d elements\n", nz);

pr = mxGetPr (prhs[0]);

ir = mxGetIr (prhs[0]);

jc = mxGetJc (prhs[0]);

i = n;

while (jc[i] == jc[i-1] && i != 0) i--;

mexPrintf ("last non-zero element (%d, %d) = %g\n",

ir[nz-1]+ 1, i, pr[nz-1]);

v = mxCreateSparse (m, n, nz, mxREAL);

pr2 = mxGetPr (v);

ir2 = mxGetIr (v);

jc2 = mxGetJc (v);

for (i = 0; i < nz; i++)

{

pr2[i] = 2 * pr[i];

ir2[i] = ir[i];

}

for (i = 0; i < n + 1; i++)

jc2[i] = jc[i];

if (nlhs > 0)

plhs[0] = v;

}

}

A.2.7 Calling Other Functions in Mex-Files

It is also possible call other Octave functions from within a mex-file using mexCallMATLAB.
An example of the use of mexCallMATLAB can be see in the example below

#include "mex.h"

void

mexFunction (int nlhs, mxArray* plhs[], int nrhs,

const mxArray* prhs[])

{

char *str;

mexPrintf ("Hello, World!\n");

702 GNU Octave

mexPrintf ("I have %d inputs and %d outputs\n", nrhs,

nlhs);

if (nrhs < 1 || ! mxIsString (prhs[0]))

mexErrMsgTxt ("function name expected");

str = mxArrayToString (prhs[0]);

mexPrintf ("I’m going to call the function %s\n", str);

mexCallMATLAB (nlhs, plhs, nrhs-1, prhs+1, str);

mxFree (str);

}

If this code is in the file ‘myfeval.c’, and is compiled to ‘myfeval.mex’, then an example
of its use is

myfeval("sin", 1)

a = myfeval("sin", 1)

⇒ Hello, World!

I have 2 inputs and 1 outputs

I’m going to call the interpreter function sin

a = 0.84147

Note that it is not possible to use function handles or inline functions within a mex-file.

A.3 Standalone Programs

The libraries Octave itself uses, can be utilized in standalone applications. These applica-
tions then have access, for example, to the array and matrix classes as well as to all the
Octave algorithms. The following C++ program, uses class Matrix from ‘liboctave.a’ or
‘liboctave.so’.

Appendix A: Dynamically Linked Functions 703

#include <iostream>

#include <octave/oct.h>

int

main (void)

{

std::cout << "Hello Octave world!\n";

int n = 2;

Matrix a_matrix = Matrix (n, n);

for (octave_idx_type i = 0; i < n; i++)

{

for (octave_idx_type j = 0; j < n; j++)

{

a_matrix (i, j) = (i + 1) * 10 + (j + 1);

}

}

std::cout << a_matrix;

return 0;

}

mkoctfile can then be used to build a standalone application with a command like

$ mkoctfile --link-stand-alone standalone.cc -o standalone

$./standalone

Hello Octave world!

11 12

21 22

$

Note that the application hello will be dynamically linked against the octave libraries
and any octave support libraries. The above allows the Octave math libraries to be used
by an application. It does not however allow the script files, oct-files or builtin functions
of Octave to be used by the application. To do that the Octave interpreter needs to be
initialized first. An example of how to do this can then be seen in the code

704 GNU Octave

#include <iostream>

#include <octave/oct.h>

#include <octave/octave.h>

#include <octave/parse.h>

int

main (void)

{

string_vector argv (2);

argv(0) = "embedded";

argv(1) = "-q";

octave_main (2, argv.c_str_vec(), 1);

octave_idx_type n = 2;

Matrix a_matrix = Matrix (1, 2);

std::cout << "GCD of [";

for (octave_idx_type i = 0; i < n; i++)

{

a_matrix (i) = 5 * (i + 1);

if (i != 0)

std::cout << ", " << 5 * (i + 2);

else

std::cout << 5 * (i + 2);

}

std::cout << "] is ";

octave_value_list in = octave_value (a_matrix);

octave_value_list out = feval ("gcd", in, 1);

if (!error_state && out.length () > 0)

{

a_matrix = out(0).matrix_value ();

if (a_matrix.numel () == 1)

std::cout << a_matrix(0) << "\n";

else

std::cout << "invalid\n";

}

else

std::cout << "invalid\n";

return 0;

}

which is compiled and run as before as a standalone application with

Appendix A: Dynamically Linked Functions 705

$ mkoctfile --link-stand-alone embedded.cc -o embedded

$./embedded

GCD of [10, 15] is 5

$

Appendix B: Test and Demo Functions 707

Appendix B Test and Demo Functions

Octave includes a number of functions to allow the integration of testing and demonstration
code in the source code of the functions themselves.

B.1 Test Functions

[Command]test name
[Command]test name quiet|normal|verbose

[Function File]test (’name ’, ’quiet|normal|verbose’, fid)
[Function File]test ([], ’explain’, fid)
[Function File]success = test (. . .)
[Function File][n, max] = test (. . .)
[Function File][code, idx] = test (’name ’, ’grabdemo’)

Perform tests from the first file in the loadpath matching name. test can be called
as a command or as a function. Called with a single argument name, the tests are
run interactively and stop after the first error is encountered.

With a second argument the tests which are performed and the amount of output is
selected.

’quiet’ Don’t report all the tests as they happen, just the errors.

’normal’ Report all tests as they happen, but don’t do tests which require user
interaction.

’verbose’ Do tests which require user interaction.

The argument fid can be used to allow batch processing. Errors can be written to
the already open file defined by fid, and hopefully when Octave crashes this file will
tell you what was happening when it did. You can use stdout if you want to see the
results as they happen. You can also give a file name rather than an fid, in which
case the contents of the file will be replaced with the log from the current test.

Called with a single output argument success, test returns true if all of the tests were
successful. Called with two output arguments n and max, the number of successful
tests and the total number of tests in the file name are returned.

If the second argument is the string ’grabdemo’, the contents of the demo blocks are
extracted but not executed. Code for all code blocks is concatenated and returned as
code with idx being a vector of positions of the ends of the demo blocks.

If the second argument is ’explain’, then name is ignored and an explanation of the
line markers used is written to the file fid.

See also: [assert], page 711, [fail], page 711, [error], page 181, [demo], page 712,
[example], page 713.

test scans the named script file looking for lines which start with the identifier ‘%!’. The
prefix is stripped off and the rest of the line is processed through the Octave interpreter. If
the code generates an error, then the test is said to fail.

Since eval() will stop at the first error it encounters, you must divide your tests up into
blocks, with anything in a separate block evaluated separately. Blocks are introduced by
the keyword test immediately following ‘%!’. For example:

708 GNU Octave

%!test error ("this test fails!");

%!test "test doesn’t fail. it doesn’t generate an error";

When a test fails, you will see something like:

***** test error ("this test fails!")

!!!!! test failed

this test fails!

Generally, to test if something works, you want to assert that it produces a correct value.
A real test might look something like

%!test

%! a = [1, 2, 3; 4, 5, 6]; B = [1; 2];

%! expect = [a ; 2*a];

%! get = kron (b, a);

%! if (any (size (expect) != size (get)))

%! error ("wrong size: expected %d,%d but got %d,%d",

%! size(expect), size(get));

%! elseif (any (any (expect != get)))

%! error ("didn’t get what was expected.");

%! endif

To make the process easier, use the assert function. For example, with assert the
previous test is reduced to:

%!test

%! a = [1, 2, 3; 4, 5, 6]; b = [1; 2];

%! assert (kron (b, a), [a; 2*a]);

assert can accept a tolerance so that you can compare results absolutely or relatively.
For example, the following all succeed:

%!test assert (1+eps, 1, 2*eps) # absolute error

%!test assert (100+100*eps, 100, -2*eps) # relative error

You can also do the comparison yourself, but still have assert generate the error:

%!test assert (isempty ([]))

%!test assert ([1, 2; 3, 4] > 0)

Because assert is so frequently used alone in a test block, there is a shorthand form:

%!assert (...)

which is equivalent to:

%!test assert (...)

Occasionally a block of tests will depend on having optional functionality in Octave.
Before testing such blocks the availability of the required functionality must be checked.
A %!testif HAVE_XXX block will only be run if Octave was compiled with functionality
‘HAVE_XXX’. For example, the sparse single value decomposition, svds(), depends on having
the arpack library. All of the tests for svds begin with

%!testif HAVE_ARPACK

Review ‘config.h’ or octave_config_info ("DEFS") to see some of the possible values to
check.

Appendix B: Test and Demo Functions 709

Sometimes during development there is a test that should work but is known to fail.
You still want to leave the test in because when the final code is ready the test should pass,
but you may not be able to fix it immediately. To avoid unnecessary bug reports for these
known failures, mark the block with xtest rather than test:

%!xtest assert (1==0)

%!xtest fail ("success=1", "error")

In this case, the test will run and any failure will be reported. However, testing is not
aborted and subsequent test blocks will be processed normally. Another use of xtest is for
statistical tests which should pass most of the time but are known to fail occasionally.

Each block is evaluated in its own function environment, which means that variables
defined in one block are not automatically shared with other blocks. If you do want to
share variables, then you must declare them as shared before you use them. For example,
the following declares the variable a, gives it an initial value (default is empty), and then
uses it in several subsequent tests.

%!shared a

%! a = [1, 2, 3; 4, 5, 6];

%!assert (kron ([1; 2], a), [a; 2*a]);

%!assert (kron ([1, 2], a), [a, 2*a]);

%!assert (kron ([1,2; 3,4], a), [a,2*a; 3*a,4*a]);

You can share several variables at the same time:

%!shared a, b

You can also share test functions:

%!function a = fn (b)

%! a = 2*b;

%!endfunction

%!assert (fn(2), 4);

Note that all previous variables and values are lost when a new shared block is declared.

Error and warning blocks are like test blocks, but they only succeed if the code generates
an error. You can check the text of the error is correct using an optional regular expression
<pattern>. For example:

%!error <passes!> error ("this test passes!");

If the code doesn’t generate an error, the test fails. For example:

%!error "this is an error because it succeeds.";

produces

***** error "this is an error because it succeeds.";

!!!!! test failed: no error

It is important to automate the tests as much as possible, however some tests require
user interaction. These can be isolated into demo blocks, which if you are in batch mode,
are only run when called with demo or the verbose option to test. The code is displayed
before it is executed. For example,

%!demo

%! t = [0:0.01:2*pi]; x = sin (t);

%! plot (t, x);

%! # you should now see a sine wave in your figure window

710 GNU Octave

produces

funcname example 1:

t = [0:0.01:2*pi]; x = sin (t);

plot (t, x);

you should now see a sine wave in your figure window

Press <enter> to continue:

Note that demo blocks cannot use any shared variables. This is so that they can be
executed by themselves, ignoring all other tests.

If you want to temporarily disable a test block, put # in place of the block type. This
creates a comment block which is echoed in the log file but not executed. For example:

%!#demo

%! t = [0:0.01:2*pi]; x = sin (t);

%! plot (t, x);

%! # you should now see a sine wave in your figure window

Block type summary:

%!test check that entire block is correct

%!testif HAVE_XXX

check block only if Octave was compiled with feature HAVE XXX.

%!xtest check block, report a test failure but do not abort testing.

%!error check for correct error message

%!warning

check for correct warning message

%!demo demo only executes in interactive mode

%!# comment: ignore everything within the block

%!shared x,y,z

declare variables for use in multiple tests

%!function

define a function for use in multiple tests

%!endfunction

close a function definition

%!assert (x, y, tol)

shorthand for %!test assert (x, y, tol)

You can also create test scripts for builtins and your own C++ functions. To do so put
a file with the bare function name (no .m extension) in a directory in the load path and it
will be discovered by the test function. Alternatively, you can embed tests directly in your
C++ code:

/*

%!test disp ("this is a test")

*/

or

Appendix B: Test and Demo Functions 711

#if 0

%!test disp ("this is a test")

#endif

However, in this case the raw source code will need to be on the load path and the user will
have to remember to type test ("funcname.cc").

[Function File]assert (cond)
[Function File]assert (cond, errmsg, . . .)
[Function File]assert (cond, msg_id, errmsg, . . .)
[Function File]assert (observed, expected)
[Function File]assert (observed, expected, tol)

Produce an error if the specified condition is not met. assert can be called in three
different ways.

assert (cond)

assert (cond, errmsg, ...)

assert (cond, msg_id, errmsg, ...)

Called with a single argument cond, assert produces an error if cond is
zero. When called with more than one argument the additional arguments
are passed to the error function.

assert (observed, expected)

Produce an error if observed is not the same as expected. Note that ob-
served and expected can be scalars, vectors, matrices, strings, cell arrays,
or structures.

assert (observed, expected, tol)

Produce an error if observed is not the same as expected but equality
comparison for numeric data uses a tolerance tol. If tol is positive then
it is an absolute tolerance which will produce an error if abs(observed
- expected) > abs(tol). If tol is negative then it is a relative tolerance
which will produce an error if abs(observed - expected) > abs(tol *

expected). If expected is zero tol will always be interpreted as an abso-
lute tolerance.

See also: [test], page 707, [fail], page 711, [error], page 181.

[Function File]fail (code)
[Function File]fail (code, pattern)
[Function File]fail (code, ’warning’, pattern)

Return true if code fails with an error message matching pattern, otherwise produce
an error. Note that code is a string and if code runs successfully, the error produced
is:

expected error but got none

If the code fails with a different error, the message produced is:

expected <pattern>

but got <text of actual error>

The angle brackets are not part of the output.

712 GNU Octave

Called with three arguments, the behavior is similar to fail(code, pattern), but
produces an error if no warning is given during code execution or if the code fails.

See also: [assert], page 711.

B.2 Demonstration Functions

[Command]demo name
[Command]demo name n

[Function File]demo (’name ’)
[Function File]demo (’name ’, n)

Run example code block n associated with the function name. If n is not specified,
all examples are run.

Examples are stored in the script file, or in a file with the same name but no extension
located on Octave’s load path. To keep examples separate from regular script code, all
lines are prefixed by %!. Each example must also be introduced by the keyword ’demo’
flush left to the prefix with no intervening spaces. The remainder of the example can
contain arbitrary Octave code. For example:

!demo

! t=0:0.01:2*pi; x = sin (t);

! plot (t,x)

! %---

! % the figure window shows one cycle of a sine wave

Note that the code is displayed before it is executed, so a simple comment at the end
suffices for labeling what is being shown. It is generally not necessary to use disp or
printf within the demo.

Demos are run in a function environment with no access to external variables. This
means that every demo must have separate initialization code. Alternatively, all
demos can be combined into a single large demo with the code

! input("Press <enter> to continue: ","s");

between the sections, but this is discouraged. Other techniques to avoid multiple
initialization blocks include using multiple plots with a new figure command between
each plot, or using subplot to put multiple plots in the same window.

Also, because demo evaluates within a function context, you cannot define new func-
tions inside a demo. If you must have function blocks, rather than just anonymous
functions or inline functions, you will have to use eval(example(’function’,n)) to
see them. Because eval only evaluates one line, or one statement if the statement
crosses multiple lines, you must wrap your demo in "if 1 <demo stuff> endif" with the
’if’ on the same line as ’demo’. For example:

!demo if 1

! function y=f(x)

! y=x;

! endfunction

! f(3)

! endif

See also: [test], page 707, [example], page 713.

Appendix B: Test and Demo Functions 713

[Command]example name
[Command]example name n

[Function File]example (’name ’)
[Function File]example (’name ’, n)
[Function File][s, idx] = example (. . .)

Display the code for example n associated with the function ’name’, but do not run
it. If n is not specified, all examples are displayed.

When called with output arguments, the examples are returned in the form of a string
s, with idx indicating the ending position of the various examples.

See demo for a complete explanation.

See also: [demo], page 712, [test], page 707.

[Function File]rundemos ()
[Function File]rundemos (directory)

Execute built-in demos for all function files in the specified directory. If no directory
is specified, operate on all directories in Octave’s search path for functions.

See also: [runtests], page 713, [path], page 171.

[Function File]runtests ()
[Function File]runtests (directory)

Execute built-in tests for all function files in the specified directory. If no directory
is specified, operate on all directories in Octave’s search path for functions.

See also: [rundemos], page 713, [path], page 171.

[Function File]speed (f, init, max_n, f2, tol)
[Function File][order, n, T_f, T_f2] = speed (. . .)

Determine the execution time of an expression (f) for various input values (n). The
n are log-spaced from 1 to max n. For each n, an initialization expression (init) is
computed to create any data needed for the test. If a second expression (f2) is given
then the execution times of the two expressions are compared. When called without
output arguments the results are printed to stdout and displayed graphically.

f The code expression to evaluate.

max_n The maximum test length to run. The default value is 100. Alternatively,
use [min_n, max_n] or specify the n exactly with [n1, n2, ..., nk].

init Initialization expression for function argument values. Use k for the test
number and n for the size of the test. This should compute values for
all variables used by f. Note that init will be evaluated first for k = 0,
so things which are constant throughout the test series can be computed
once. The default value is x = randn (n, 1).

f2 An alternative expression to evaluate, so that the speed of two expressions
can be directly compared. The default is [].

tol Tolerance used to compare the results of expression f and expression f2.
If tol is positive, the tolerance is an absolute one. If tol is negative, the
tolerance is a relative one. The default is eps. If tol is Inf, then no
comparison will be made.

714 GNU Octave

order The time complexity of the expression O(a∗np). This is a structure with
fields a and p.

n The values n for which the expression was calculated AND the execution
time was greater than zero.

T_f The nonzero execution times recorded for the expression f in seconds.

T_f2 The nonzero execution times recorded for the expression f2 in seconds. If
required, the mean time ratio is simply mean (T_f ./ T_f2).

The slope of the execution time graph shows the approximate power of the asymptotic
running time O(np). This power is plotted for the region over which it is approximated
(the latter half of the graph). The estimated power is not very accurate, but should
be sufficient to determine the general order of an algorithm. It should indicate if,
for example, the implementation is unexpectedly O(n2) rather than O(n) because it
extends a vector each time through the loop rather than pre-allocating storage. In
the current version of Octave, the following is not the expected O(n).

speed ("for i = 1:n, y{i} = x(i); endfor", "", [1000, 10000])

But it is if you preallocate the cell array y:

speed ("for i = 1:n, y{i} = x(i); endfor", ...

"x = rand (n, 1); y = cell (size (x));", [1000, 10000])

An attempt is made to approximate the cost of individual operations, but it is wildly
inaccurate. You can improve the stability somewhat by doing more work for each n.
For example:

speed ("airy(x)", "x = rand (n, 10)", [10000, 100000])

When comparing two different expressions (f, f2), the slope of the line on the speedup
ratio graph should be larger than 1 if the new expression is faster. Better algorithms
have a shallow slope. Generally, vectorizing an algorithm will not change the slope of
the execution time graph, but will shift it relative to the original. For example:

speed ("sum (x)", "", [10000, 100000], ...

"v = 0; for i = 1:length (x), v += x(i); endfor")

The following is a more complex example. If there was an original version of xcorr
using for loops and a second version using an FFT, then one could compare the run
speed for various lags as follows, or for a fixed lag with varying vector lengths as
follows:

speed ("xcorr (x, n)", "x = rand (128, 1);", 100,

"xcorr_orig (x, n)", -100*eps)

speed ("xcorr (x, 15)", "x = rand (20+n, 1);", 100,

"xcorr_orig (x, n)", -100*eps)

Assuming one of the two versions is in xcorr orig, this would compare their speed and
their output values. Note that the FFT version is not exact, so one must specify an
acceptable tolerance on the comparison 100*eps. In this case, the comparison should
be computed relatively, as abs ((x - y) ./ y) rather than absolutely as abs (x -

y).

Type example ("speed") to see some real examples or demo ("speed") to run them.

Appendix C: Tips and Standards 715

Appendix C Tips and Standards

This chapter describes no additional features of Octave. Instead it gives advice on making
effective use of the features described in the previous chapters.

C.1 Writing Clean Octave Programs

Here are some tips for avoiding common errors in writing Octave code intended for wide-
spread use:

• Since all global variables share the same name space, and all functions share another
name space, you should choose a short word to distinguish your program from other
Octave programs. Then take care to begin the names of all global variables, constants,
and functions with the chosen prefix. This helps avoid name conflicts.

If you write a function that you think ought to be added to Octave under a certain
name, such as fiddle_matrix, don’t call it by that name in your program. Call it
mylib_fiddle_matrix in your program, and send mail to maintainers@octave.org

suggesting that it be added to Octave. If and when it is, the name can be changed
easily enough.

If one prefix is insufficient, your package may use two or three alternative common
prefixes, so long as they make sense.

Separate the prefix from the rest of the symbol name with an underscore ‘_’. This will
be consistent with Octave itself and with most Octave programs.

• When you encounter an error condition, call the function error (or usage). The error
and usage functions do not return. See Section 2.5 [Errors], page 32.

• Please put a copyright notice on the file if you give copies to anyone. Use the same
lines that appear at the top of the function files distributed with Octave. If you have
not signed papers to assign the copyright to anyone else, then place your name in the
copyright notice.

C.2 Tips on Writing Comments

Here are the conventions to follow when writing comments.

‘#’ Comments that start with a single sharp-sign, ‘#’, should all be aligned to the
same column on the right of the source code. Such comments usually explain
how the code on the same line does its job. In the Emacs mode for Octave, the
M-; (indent-for-comment) command automatically inserts such a ‘#’ in the
right place, or aligns such a comment if it is already present.

‘##’ Comments that start with a double sharp-sign, ‘##’, should be aligned to the
same level of indentation as the code. Such comments usually describe the
purpose of the following lines or the state of the program at that point.

The indentation commands of the Octave mode in Emacs, such as M-; (indent-for-
comment) and TAB (octave-indent-line) automatically indent comments according to
these conventions, depending on the number of semicolons. See Section “Manipulating
Comments” in The GNU Emacs Manual.

mailto:maintainers@octave.org

716 GNU Octave

C.3 Conventional Headers for Octave Functions

Octave has conventions for using special comments in function files to give information such
as who wrote them. This section explains these conventions.

The top of the file should contain a copyright notice, followed by a block of comments
that can be used as the help text for the function. Here is an example:

Copyright (C) 1996, 1997, 2007 John W. Eaton

##

This file is part of Octave.

##

Octave is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public

License as published by the Free Software Foundation;

either version 3 of the License, or (at your option) any

later version.

##

Octave is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied

warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more

details.

##

You should have received a copy of the GNU General Public

License along with Octave; see the file COPYING. If not,

see <http://www.gnu.org/licenses/>.

usage: [IN, OUT, PID] = popen2 (COMMAND, ARGS)

##

Start a subprocess with two-way communication. COMMAND

specifies the name of the command to start. ARGS is an

array of strings containing options for COMMAND. IN and

OUT are the file ids of the input and streams for the

subprocess, and PID is the process id of the subprocess,

or -1 if COMMAND could not be executed.

##

Example:

##

[in, out, pid] = popen2 ("sort", "-nr");

fputs (in, "these\nare\nsome\nstrings\n");

fclose (in);

while (ischar (s = fgets (out)))

fputs (stdout, s);

endwhile

fclose (out);

Octave uses the first block of comments in a function file that do not appear to be a
copyright notice as the help text for the file. For Octave to recognize the first comment

Appendix C: Tips and Standards 717

block as a copyright notice, it must start with the word ‘Copyright’ after stripping the
leading comment characters.

After the copyright notice and help text come several header comment lines, each be-
ginning with ‘## header-name:’. For example,

Author: jwe

Keywords: subprocesses input-output

Maintainer: jwe

Here is a table of the conventional possibilities for header-name:

‘Author’ This line states the name and net address of at least the principal author of the
library.

Author: John W. Eaton <jwe@octave.org>

‘Maintainer’
This line should contain a single name/address as in the Author line, or an
address only, or the string ‘jwe’. If there is no maintainer line, the person(s)
in the Author field are presumed to be the maintainers. The example above is
mildly bogus because the maintainer line is redundant.

The idea behind the ‘Author’ and ‘Maintainer’ lines is to make possible a
function to “send mail to the maintainer” without having to mine the name
out by hand.

Be sure to surround the network address with ‘<...>’ if you include the person’s
full name as well as the network address.

‘Created’ This optional line gives the original creation date of the file. For historical
interest only.

‘Version’ If you wish to record version numbers for the individual Octave program, put
them in this line.

‘Adapted-By’
In this header line, place the name of the person who adapted the library for
installation (to make it fit the style conventions, for example).

‘Keywords’
This line lists keywords. Eventually, it will be used by an apropos command
to allow people will find your package when they’re looking for things by topic
area. To separate the keywords, you can use spaces, commas, or both.

Just about every Octave function ought to have the ‘Author’ and ‘Keywords’ header
comment lines. Use the others if they are appropriate. You can also put in header lines
with other header names—they have no standard meanings, so they can’t do any harm.

C.4 Tips for Documentation Strings

As noted above, documentation is typically in a commented header block on an Octave
function following the copyright statement. The help string shown above is an unformat-
ted string and will be displayed as is by Octave. Here are some tips for the writing of
documentation strings.

718 GNU Octave

• Every command, function, or variable intended for users to know about should have a
documentation string.

• An internal variable or subroutine of an Octave program might as well have a docu-
mentation string.

• The first line of the documentation string should consist of one or two complete sen-
tences that stand on their own as a summary.

The documentation string can have additional lines that expand on the details of how
to use the function or variable. The additional lines should also be made up of complete
sentences.

• For consistency, phrase the verb in the first sentence of a documentation string as
an infinitive with “to” omitted. For instance, use “Return the frob of A and B.” in
preference to “Returns the frob of A and B.” Usually it looks good to do likewise for
the rest of the first paragraph. Subsequent paragraphs usually look better if they have
proper subjects.

• Write documentation strings in the active voice, not the passive, and in the present
tense, not the future. For instance, use “Return a list containing A and B.” instead of
“A list containing A and B will be returned.”

• Avoid using the word “cause” (or its equivalents) unnecessarily. Instead of, “Cause
Octave to display text in boldface,” just write “Display text in boldface.”

• Use two spaces between the period marking the end of a sentence and the word which
opens the next sentence. This convention has no effect for typeset formats like TEX,
but improves the readability of the documentation in fixed-width environments such
as the Info reader.

• Do not start or end a documentation string with whitespace.

• Format the documentation string so that it fits within an 80-column screen. It is a
good idea for most lines to be no wider than 60 characters.

However, rather than simply filling the entire documentation string, you can make it
much more readable by choosing line breaks with care. Use blank lines between topics
if the documentation string is long.

• Do not indent subsequent lines of a documentation string so that the text is lined up
in the source code with the text of the first line. This looks nice in the source code,
but looks bizarre when users view the documentation. Remember that the indentation
before the starting double-quote is not part of the string!

• When choosing variable names try to adhere to the following guidelines.

vectors : x,y,z,t,w

matrices : A,B,M

strings : str,s

filenames : fname

cells,cellstrs : c,cstr

• The documentation string for a variable that is a yes-or-no flag should start with words
such as “Nonzero means. . . ”, to make it clear that all nonzero values are equivalent
and indicate explicitly what zero and nonzero mean.

Appendix C: Tips and Standards 719

• When a function’s documentation string mentions the value of an argument of the
function, use the argument name in capital letters as if it were a name for that value.
Thus, the documentation string of the operator / refers to its second argument as
‘DIVISOR’, because the actual argument name is divisor.

Also use all caps for meta-syntactic variables, such as when you show the decomposition
of a list or vector into subunits, some of which may vary.

Octave also allows extensive formatting of the help string of functions using Texinfo. The
effect on the online documentation is relatively small, but makes the help string of functions
conform to the help of Octave’s own functions. However, the effect on the appearance of
printed or online documentation will be greatly improved.

The fundamental building block of Texinfo documentation strings is the Texinfo-macro
@deftypefn, which takes three arguments: The class the function is in, its output argu-
ments, and the function’s signature. Typical classes for functions include Function File

for standard Octave functions, and Loadable Function for dynamically linked functions.
A skeletal Texinfo documentation string therefore looks like this

-*- texinfo -*-

@deftypefn{Function File} {@var{ret} =} fn (...)

@cindex index term

Help text in Texinfo format. Code samples should be marked

like @code{sample of code} and variables should be marked

as @var{variable}.

@seealso{fn2}

@end deftypefn

This help string must be commented in user functions, or in the help string of the
DEFUN_DLD macro for dynamically loadable functions. The important aspects of the docu-
mentation string are

-*- texinfo -*-
This string signals Octave that the following text is in Texinfo format, and
should be the first part of any help string in Texinfo format.

@deftypefn{class} . . . @end deftypefn
The entire help string should be enclosed within the block defined by deftypefn.

@cindex index term
This generates an index entry, and can be useful when the function is included
as part of a larger piece of documentation. It is ignored within Octave’s help
viewer. Only one index term may appear per line but multiple @cindex lines
are valid if the function should be filed under different terms.

@var{variable}
All variables should be marked with this macro. The markup of variables is
then changed appropriately for display.

@code{sample of code}
All samples of code should be marked with this macro for the same reasons as
the @var macro.

720 GNU Octave

@seealso{function2}
This is a comma separated list of function names that allows cross referencing
from one function documentation string to another.

Texinfo format has been designed to generate output for online viewing with text termi-
nals as well as generating high-quality printed output. To these ends, Texinfo has commands
which control the diversion of parts of the document into a particular output processor.
Three formats are of importance: info, HTML and TEX. These are selected with

@ifinfo

Text area for info only

@end ifinfo

@ifhtml

Text area for HTML only

@end ifhtml

@tex

Text area for TeX only

@end tex

Note that often TEX output can be used in HTML documents and so often the @ifhtml
blocks are unnecessary. If no specific output processor is chosen, by default, the text goes
into all output processors. It is usual to have the above blocks in pairs to allow the same
information to be conveyed in all output formats, but with a different markup. Currently,
most Octave documentation only makes a distinction between TEX and all other formats.
Therefore, the following construct is seen repeatedly.

@tex

text for TeX only

@end tex

@ifnottex

text for info, HTML, plaintext

@end ifnottex

Another important feature of Texinfo that is often used in Octave help strings is the
@example environment. An example of its use is

@example

@group

@code{2 * 2}

@result{} 4

@end group

@end example

which produces

2 * 2

⇒ 4

The @group block prevents the example from being split across a page boundary, while
the @result{} macro produces a right arrow signifying the result of a command. If your
example is larger than 20 lines it is better NOT to use grouping so that a reasonable page
boundary can be calculated.

Appendix C: Tips and Standards 721

In many cases a function has multiple ways in which it can be called, and the
@deftypefnx macro can be used to give alternatives. For example

-*- texinfo -*-

@deftypefn {Function File} {@var{a} =} fn (@var{x}, ...)

@deftypefnx{Function File} {@var{a} =} fn (@var{y}, ...)

Help text in Texinfo format.

@end deftypefn

Many complete examples of Texinfo documentation can be taken from the help strings for
the Octave functions themselves. A relatively complete example of which is the nchoosek

function. The Texinfo documentation string for nchoosek is

-*- texinfo -*-

@deftypefn {Function File} {@var{c} =} nchoosek (@var{n}, @var{k})

@deftypefnx {Function File} {@var{c} =} nchoosek (@var{set}, @var{k})

Compute the binomial coefficient or all combinations of a set of items.

If @var{n} is a scalar then calculate the binomial coefficient

of @var{n} and @var{k} which is defined as

@tex

$$

{n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!}

= {n! \over k! (n-k)!}

$$

@end tex

@ifnottex

@example

@group

/ \

| n | n (n-1) (n-2) @dots{} (n-k+1) n!

| | = ------------------------- = ---------

| k | k! k! (n-k)!

\ /

@end group

@end example

@end ifnottex

@noindent

This is the number of combinations of @var{n} items taken in groups of

size @var{k}.

If the first argument is a vector, @var{set}, then generate all

combinations of the elements of @var{set}, taken @var{k} at a time, with

one row per combination. The result @var{c} has @var{k} columns and

@w{@code{nchoosek (length (@var{set}), @var{k})}} rows.

722 GNU Octave

For example:

How many ways can three items be grouped into pairs?

@example

@group

nchoosek (3, 2)

@result{} 3

@end group

@end example

What are the possible pairs?

@example

@group

nchoosek (1:3, 2)

@result{} 1 2

1 3

2 3

@end group

@end example

@code{nchoosek} works only for non-negative, integer arguments. Use

@code{bincoeff} for non-integer and negative scalar arguments, or for

computing many binomial coefficients at once with vector inputs

for @var{n} or @var{k}.

@seealso{bincoeff, perms}

@end deftypefn

which demonstrates most of the concepts discussed above. This documentation string ren-
ders as

-- Function File: C = nchoosek (N, K)

-- Function File: C = nchoosek (SET, K)

Compute the binomial coefficient or all combinations of a set of

items.

If N is a scalar then calculate the binomial coefficient of N and

K which is defined as

/ \

| n | n (n-1) (n-2) ... (n-k+1) n!

| | = ------------------------- = ---------

| k | k! k! (n-k)!

\ /

This is the number of combinations of N items taken in groups of

Appendix C: Tips and Standards 723

size K.

If the first argument is a vector, SET, then generate all

combinations of the elements of SET, taken K at a time, with one

row per combination. The result C has K columns and

‘nchoosek (length (SET), K)’ rows.

For example:

How many ways can three items be grouped into pairs?

nchoosek (3, 2)

=> 3

What are the possible pairs?

nchoosek (1:3, 2)

=> 1 2

1 3

2 3

‘nchoosek’ works only for non-negative, integer arguments. Use

‘bincoeff’ for non-integer and negative scalar arguments, or for

computing many binomial coefficients at once with vector inputs

for N or K.

See also: bincoeff, perms

using info, whereas in a printed documentation using TEX it will appear as

[Function File]c = nchoosek (n, k)
[Function File]c = nchoosek (set, k)

Compute the binomial coefficient or all combinations of a set of items.

If n is a scalar then calculate the binomial coefficient of n and k which is defined as(
n

k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

k!
=

n!

k!(n− k)!

This is the number of combinations of n items taken in groups of size k.

If the first argument is a vector, set, then generate all combinations of the elements
of set, taken k at a time, with one row per combination. The result c has k columns
and nchoosek (length (set), k) rows.

For example:

How many ways can three items be grouped into pairs?

nchoosek (3, 2)

⇒ 3

What are the possible pairs?

724 GNU Octave

nchoosek (1:3, 2)

⇒ 1 2

1 3

2 3

nchoosek works only for non-negative, integer arguments. Use bincoeff for non-
integer and negative scalar arguments, or for computing many binomial coefficients
at once with vector inputs for n or k.

See also: bincoeff, perms.

Appendix D: Contributing Guidelines 725

Appendix D Contributing Guidelines

This chapter is dedicated to those who wish to contribute code to Octave.

D.1 How to Contribute

The mailing list for Octave development discussion and sending contributions is
maintainers@octave.org. This concerns the development of Octave core, i.e., code that
goes to Octave directly. You may consider developing and publishing a package instead; a
great place for this is the allied Octave-Forge project (http://octave.sf.net). Note that
the Octave project is inherently more conservative and follows narrower rules.

D.2 Building the Development Sources

In addition to all the tools (both optional and required) that are listed in Section G.1 [Build
Dependencies], page 739 you will need:

Mercurial Distributed version control system (http://mercurial.selenic.com). Oc-
tave’s sources are stored in a Mercurial archive.

Git Distributed version control system (http://git-scm.com). The gnulib sources
that Octave depends on are stored in a Git archive.

Once you have the required tools installed, you can build Octave by doing

• Check out a copy of the Octave sources:

hg clone http://hg.savannah.gnu.org/hgweb/octave

• Change to the top-level directory of the newly checked out sources:

cd octave

• Generate the necessary configuration files:

./autogen.sh

• Create a build directory and change to it:

mkdir build

cd build

By using a separate build directory, you will keep the source directory clean and it
will be easy to completely remove all files generated by the build. You can also have
parallel build trees for different purposes that all share the same sources. For example,
one build tree may be configured to disable compiler optimization in order to allow for
easier debugging while another may be configured to test building with other specialized
compiler flags.

• Run Octave’s configure script from the build directory:

../configure

• Run make in the build directory:

make

Once the build is finished, you will see a message like the following:

mailto:maintainers@octave.org
http://octave.sf.net
http://mercurial.selenic.com
http://git-scm.com

726 GNU Octave

Octave successfully built. Now choose from the following:

./run-octave - to run in place to test before installing

make check - to run the tests

make install - to install (PREFIX=...)

D.3 Basics of Generating a Changeset

The preferable form of contribution is creating a Mercurial changeset and sending it via
e-mail to the octave-maintainers mailing list. Mercurial is the source code management
system currently used to develop Octave. Other forms of contributions (e.g., simple diff
patches) are also acceptable, but they slow down the review process. If you want to make
more contributions, you should really get familiar with Mercurial. A good place to start
is http://www.selenic.com/mercurial/wiki/index.cgi/Tutorial. There you will also
find help how to install Mercurial.

A simple contribution sequence could look like this:

hg clone http://www.octave.org/hg/octave

make a local copy of the octave

source repository

cd octave

change some sources...

hg commit -m "make Octave the coolest software ever"

commit the changeset into your

local repository

hg export -o ../cool.diff tip

export the changeset to a diff

file

send ../cool.diff via email

You may want to get familiar with Mercurial queues to manage your changesets. Here
is a slightly more complex example using Mercurial queues, where work on two unrelated
changesets is done in parallel and one of the changesets is updated after discussion on the
maintainers mailing list:

hg qnew nasty_bug # create a new patch

change sources...

hg qref # save the changes into the patch

change even more...

hg qref -m "solution to nasty bug!"

save again with commit message

hg export -o ../nasty.diff tip

export the patch

send ../nasty.diff via email

hg qpop # undo the application of the patch

and remove the changes from the

source tree

hg qnew doc_improvements # create an unrelated patch

change doc sources...

http://www.selenic.com/mercurial/wiki/index.cgi/Tutorial

Appendix D: Contributing Guidelines 727

hg qref -m "could not find myfav.m in the doc"

save the changes into the patch

hg export -o ../doc.diff tip

export the second patch

send ../doc.diff tip via email

hg qpop

discussion in the maintainers mailing list ...

hg qpush nasty_bug # apply the patch again

change sources yet again ...

hg qref

hg export -o ../nasty2.diff tip

send ../nasty2.diff via email

D.4 General Guidelines

All Octave’s sources are distributed under the General Public License (GPL).
Currently, Octave uses GPL version 3. For details about this license, see
http://www.gnu.org/licenses/gpl.html. Therefore, whenever you create a new source
file, it should have the following comment header (use appropriate year, name and
comment marks):

Copyright (C) 1996-2012 John W. Eaton <jwe@octave.org>

##

This file is part of Octave.

##

Octave is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public

License as published by the Free Software Foundation;

either version 3 of the License, or (at your option) any

later version.

##

Octave is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied

warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more

details.

##

You should have received a copy of the GNU General Public

License along with Octave; see the file COPYING. If not,

see <http://www.gnu.org/licenses/>.

Always include commit messages in changesets. After making your source changes,
record and briefly describe the changes in your commit message. You should have previously
configured your ‘.hgrc’ (or ‘Mercurial.ini’ on Windows) with your name and email, which
will get automatically added to your commit message. Your commit message should have a
brief one-line explanation of what the commit does. If you are patching a bug, this one-line
explanation should mention the bug number at the end. If your change is small and only
touches one file, this is typically sufficient. If you are modifying several files or several parts

http://www.gnu.org/licenses/gpl.html

728 GNU Octave

of one file, you should enumerate your changes roughly following the GNU coding standards
on changelogs, like the following example:

look for methods before constructors

* symtab.cc (symbol_table::fcn_info::fcn_info_rep::find):

Look for class methods before constructors, contrary to matlab
documentation.

* test/ctor-vs-method: New directory of test classes.

* test/test_ctor_vs_method.m: New file.

* test/Makefile.am: Include ctor-vs-method/module.mk.

(FCN_FILES): Include test_ctor_vs_method.m in the list.

In this example, the names of files is mentioned, and in parentheses the name of the function
in that file that was modified. There is no need to mention the function for m-files that only
contain one function. The commit message should describe what is changed, not why. Any
explanation of why a change is needed should appear as comments in the code, particularly
if there is something that might not be obvious to someone reading it later.

When submitting code which addresses a known bug on the Octave bug tracker
(http://bugs.octave.org), please add ’(bug #XXXXX)’ to the first line of the commit
messages. For example:

Fix bug for complex input for gradient (bug #34292).

The preferred comment mark for places that may need further attention is FIXME.

D.5 Octave Sources (m-files)

Don’t use tabs. Tabs cause trouble. If you are used to them, set up your editor so that
it converts tabs to spaces. Indent the bodies of the statement blocks. Recommended
indent is 2 spaces. When calling functions, put spaces after commas and before the calling
parentheses, like this:

x = max (sin (y+3), 2);

An exception are matrix and vector constructors:

[sin(x), cos(x)]

Here, putting spaces after sin, cos would result in a parse error. In indexing expression, do
not put a space after the identifier (this differentiates indexing and function calls nicely).
The space after comma is not necessary if index expressions are simple, i.e., you may write

A(:,i,j)

but

A([1:i-1;i+1:n], XI(:,2:n-1))

Use lowercase names if possible. Uppercase is acceptable for variable names consisting
of 1-2 letters. Do not use mixed case names. Function names must be lowercase. Function
names are global, so choose them wisely.

Always use a specific end-of-block statement (like endif, endswitch) rather than generic
end.

Enclose the if, while, until and switch conditions in parentheses, like in C:

http://bugs.octave.org

Appendix D: Contributing Guidelines 729

if (isvector (a))

s = sum(a);

endif

Do not do this, however, with the iteration counter portion of a for statement. Write:

for i = 1:n

b(i) = sum (a(:,i));

endfor

D.6 C++ Sources

Don’t use tabs. Tabs cause trouble. If you are used to them, set up your editor so that it
converts tabs to spaces. Format function headers like this:

static bool

matches_patterns (const string_vector& patterns, int pat_idx,

int num_pat, const std::string& name)

The function name should start in column 1, and multi-line argument lists should be aligned
on the first char after the open parenthesis. You should put a space after the left open
parenthesis and after commas, for both function definitions and function calls.

Recommended indent is 2 spaces. When indenting, indent the statement after control
structures (like if, while, etc.). If there is a compound statement, indent both the curly
braces and the body of the statement (so that the body gets indented by two indents).
Example:

if (have_args)

{

idx.push_back (first_args);

have_args = false;

}

else

idx.push_back (make_value_list (*p_args, *p_arg_nm, &tmp));

If you have nested if statements, use extra braces for extra clarification.

Split long expressions in such a way that a continuation line starts with an operator
rather than identifier. If the split occurs inside braces, continuation should be aligned with
the first char after the innermost braces enclosing the split. Example:

SVD::type type = ((nargout == 0 || nargout == 1)

? SVD::sigma_only

: (nargin == 2) ? SVD::economy : SVD::std);

Consider putting extra braces around a multiline expression to make it more readable, even
if they are not necessary. Also, do not hesitate to put extra braces anywhere if it improves
clarity.

Declare variables just before they’re needed. Use local variables of blocks—it helps
optimization. Don’t write multi-line variable declaration with a single type specification
and multiple variables. If the variables don’t fit on single line, repeat the type specification.
Example:

730 GNU Octave

octave_value retval;

octave_idx_type nr = b.rows ();

octave_idx_type nc = b.cols ();

double d1, d2;

Use lowercase names if possible. Uppercase is acceptable for variable names consisting
of 1-2 letters. Do not use mixed case names.

Use Octave’s types and classes if possible. Otherwise, use the C++ standard library.
Use of STL containers and algorithms is encouraged. Use templates wisely to reduce code
duplication. Avoid comma expressions, labels and gotos, and explicit typecasts. If you need
to typecast, use the modern C++ casting operators. In functions, minimize the number of
return statements—use nested if statements if possible.

D.7 Other Sources

Apart from C++ and Octave language (m-files), Octave’s sources include files written in C,
Fortran, M4, Perl, Unix shell, AWK, Texinfo and TEX. There are not many rules to follow
when using these other languages; some of them are summarized below. In any case, the
golden rule is: if you modify a source file, try to follow any conventions you can detect in
the file or other similar files.

For C you should obviously follow all C++ rules that can apply.

If you modify a Fortran file, you should stay within Fortran 77 with common extensions
like END DO. Currently, we want all sources to be compilable with the f2c and g77 compilers,
without special flags if possible. This usually means that non-legacy compilers also accept
the sources.

The M4 macro language is mainly used for Autoconf configuration files. You should
follow normal M4 rules when contributing to these files. Some M4 files come from external
source, namely the Autoconf archive http://autoconf-archive.cryp.to.

If you give a code example in the documentation written in Texinfo with the @example

environment, you should be aware that the text within such an environment will not be
wrapped. It is recommended that you keep the lines short enough to fit on pages in the
generated pdf or ps documents. Here is a ruler (in an @example environment) for finding
the appropriate line width:

1 2 3 4 5 6

123456789012345678901234567890123456789012345678901234567890

http://autoconf-archive.cryp.to

Appendix E: Obsolete Functions 731

Appendix E Obsolete Functions

After being marked as deprecated for two major releases, the following functions have
been removed from Octave. The third column of the table shows the version of Octave in
which the function was removed. Prior to removal, each function in the list was marked
as deprecated for at least two major releases. All deprecated functions issue warnings
explaining that they will be removed in a future version of Octave, and which function
should be used instead.

Replacement functions do not always accept precisely the same arguments as the obsolete
function, but should provide equivalent functionality.

Obsolete Function Replacement Version
beta_cdf betacdf 3.4.0
beta_inv betainv 3.4.0
beta_pdf betapdf 3.4.0
beta_rnd betarnd 3.4.0
binomial_cdf binocdf 3.4.0
binomial_inv binoinv 3.4.0
binomial_pdf binopdf 3.4.0
binomial_rnd binornd 3.4.0
chisquare_cdf chi2cdf 3.4.0
chisquare_inv chi2inv 3.4.0
chisquare_pdf chi2pdf 3.4.0
chisquare_rnd chi2rnd 3.4.0
clearplot clf 3.4.0
com2str num2str 3.4.0
exponential_cdf expcdf 3.4.0
exponential_inv expinv 3.4.0
exponential_pdf exppdf 3.4.0
exponential_rnd exprnd 3.4.0
f_cdf fcdf 3.4.0
f_inv finv 3.4.0
f_pdf fpdf 3.4.0
f_rnd frnd 3.4.0
gamma_cdf gamcdf 3.4.0
gamma_inv gaminv 3.4.0
gamma_pdf gampdf 3.4.0
gamma_rnd gamrnd 3.4.0
geometric_cdf geocdf 3.4.0
geometric_inv geoinv 3.4.0
geometric_pdf geopdf 3.4.0
geometric_rnd geornd 3.4.0
hypergeometric_cdf hygecdf 3.4.0
hypergeometric_inv hygeinv 3.4.0
hypergeometric_pdf hygepdf 3.4.0
hypergeometric_rnd hygernd 3.4.0

732 GNU Octave

intersection intersect 3.4.0
is_bool isbool 3.4.0
is_complex iscomplex 3.4.0
is_list islist 3.4.0
is_matrix ismatrix 3.4.0
is_scalar isscalar 3.4.0
is_square issquare 3.4.0
is_stream isstream 3.4.0
is_struct isstruct 3.4.0
is_symmetric issymmetric 3.4.0
is_vector isvector 3.4.0
lognormal_cdf logncdf 3.4.0
lognormal_inv logninv 3.4.0
lognormal_pdf lognpdf 3.4.0
lognormal_rnd lognrnd 3.4.0
meshdom meshgrid 3.4.0
normal_cdf normcdf 3.4.0
normal_inv norminv 3.4.0
normal_pdf normpdf 3.4.0
normal_rnd normrnd 3.4.0
pascal_cdf nbincdf 3.4.0
pascal_inv nbininv 3.4.0
pascal_pdf nbinpdf 3.4.0
pascal_rnd nbinrnd 3.4.0
poisson_cdf poisscdf 3.4.0
poisson_inv poissinv 3.4.0
poisson_pdf poisspdf 3.4.0
poisson_rnd poissrnd 3.4.0
polyinteg polyint 3.4.0
struct_contains isfield 3.4.0
struct_elements fieldnames 3.4.0
t_cdf tcdf 3.4.0
t_inv tinv 3.4.0
t_pdf tpdf 3.4.0
t_rnd trnd 3.4.0
uniform_cdf unifcdf 3.4.0
uniform_inv unifinv 3.4.0
uniform_pdf unifpdf 3.4.0
uniform_rnd unifrnd 3.4.0
weibull_cdf wblcdf 3.4.0
weibull_inv wblinv 3.4.0
weibull_pdf wblpdf 3.4.0
weibull_rnd wblrnd 3.4.0
wiener_rnd wienrnd 3.4.0
create_set unique 3.6.0
dmult diag (A) * B 3.6.0
iscommand None 3.6.0

Appendix E: Obsolete Functions 733

israwcommand None 3.6.0
lchol chol (..., "lower") 3.6.0
loadimage load or imread 3.6.0
mark_as_command None 3.6.0
mark_as_rawcommand None 3.6.0
spatan2 atan2 3.6.0
spchol chol 3.6.0
spchol2inv chol2inv 3.6.0
spcholinv cholinv 3.6.0
spcumprod cumprod 3.6.0
spcumsum cumsum 3.6.0
spdet det 3.6.0
spdiag sparse (diag (...)) 3.6.0
spfind find 3.6.0
sphcat horzcat 3.6.0
spinv inv 3.6.0
spkron kron 3.6.0
splchol chol (..., "lower") 3.6.0
split char (strsplit (s,

t))

3.6.0

splu lu 3.6.0
spmax max 3.6.0
spmin min 3.6.0
spprod prod 3.6.0
spqr qr 3.6.0
spsum sum 3.6.0
spsumsq sumsq 3.6.0
spvcat vertcat 3.6.0
str2mat char 3.6.0
unmark_command None 3.6.0
unmark_rawcommand None 3.6.0

Appendix F: Known Causes of Trouble 735

Appendix F Known Causes of Trouble

This section describes known problems that affect users of Octave. Most of these are not
Octave bugs per se—if they were, we would fix them. But the result for a user may be like
the result of a bug.

Some of these problems are due to bugs in other software, some are missing features that
are too much work to add, and some are places where people’s opinions differ as to what is
best.

F.1 Actual Bugs We Haven’t Fixed Yet

• Output that comes directly from Fortran functions is not sent through the pager and
may appear out of sequence with other output that is sent through the pager. One way
to avoid this is to force pending output to be flushed before calling a function that will
produce output from within Fortran functions. To do this, use the command

fflush (stdout)

Another possible workaround is to use the command

page_screen_output (false);

to turn the pager off.

A list of ideas for future enhancements is distributed with Octave. See the file ‘PROJECTS’
in the top level directory in the source distribution.

F.2 Reporting Bugs

Your bug reports play an essential role in making Octave reliable.

When you encounter a problem, the first thing to do is to see if it is already known. See
Appendix F [Trouble], page 735. If it isn’t known, then you should report the problem.

Reporting a bug may help you by bringing a solution to your problem, or it may not.
In any case, the principal function of a bug report is to help the entire community by
making the next version of Octave work better. Bug reports are your contribution to the
maintenance of Octave.

In order for a bug report to serve its purpose, you must include the information that
makes it possible to fix the bug.

F.2.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

• If Octave gets a fatal signal, for any input whatever, that is a bug. Reliable interpreters
never crash.

• If Octave produces incorrect results, for any input whatever, that is a bug.

• Some output may appear to be incorrect when it is in fact due to a program whose
behavior is undefined, which happened by chance to give the desired results on another
system. For example, the range operator may produce different results because of
differences in the way floating point arithmetic is handled on various systems.

• If Octave produces an error message for valid input, that is a bug.

736 GNU Octave

• If Octave does not produce an error message for invalid input, that is a bug. However,
you should note that your idea of “invalid input” might be my idea of “an extension”
or “support for traditional practice”.

• If you are an experienced user of programs like Octave, your suggestions for improve-
ment are welcome in any case.

F.2.2 Where to Report Bugs

To report a bug in Octave, submit a bug report to the Octave bug tracker
http://bugs.octave.org.

Do not send bug reports to ‘help-octave’. Most users of Octave do not want to receive
bug reports.

F.2.3 How to Report Bugs

Submit bug reports for Octave to the Octave bug tracker http://bugs.octave.org.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you
are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and
they conclude that some details don’t matter. Thus, you might assume that the name of
the variable you use in an example does not matter. Well, probably it doesn’t, but one
cannot be sure. Perhaps the bug is a stray memory reference which happens to fetch from
the location where that name is stored in memory; perhaps, if the name were different, the
contents of that location would fool the interpreter into doing the right thing despite the
bug. Play it safe and give a specific, complete example.

Keep in mind that the purpose of a bug report is to enable someone to fix the bug if it
is not known. Always write your bug reports on the assumption that the bug is not known.

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” This cannot
help us fix a bug. It is better to send a complete bug report to begin with.

Try to make your bug report self-contained. If we have to ask you for more information, it
is best if you include all the previous information in your response, as well as the information
that was missing.

To enable someone to investigate the bug, you should include all these things:

• The version of Octave. You can get this by noting the version number that is printed
when Octave starts, or running it with the ‘-v’ option.

• A complete input file that will reproduce the bug.

A single statement may not be enough of an example—the bug might depend on other
details that are missing from the single statement where the error finally occurs.

• The command arguments you gave Octave to execute that example and observe the
bug. To guarantee you won’t omit something important, list all the options.

If we were to try to guess the arguments, we would probably guess wrong and then we
would not encounter the bug.

• The type of machine you are using, and the operating system name and version number.

• The command-line arguments you gave to the configure command when you installed
the interpreter.

http://bugs.octave.org
http://bugs.octave.org

Appendix F: Known Causes of Trouble 737

• A complete list of any modifications you have made to the interpreter source.

Be precise about these changes—show a context diff for them.

• Details of any other deviations from the standard procedure for installing Octave.

• A description of what behavior you observe that you believe is incorrect. For example,
"The interpreter gets a fatal signal," or, "The output produced at line 208 is incorrect."

Of course, if the bug is that the interpreter gets a fatal signal, then one can’t miss it.
But if the bug is incorrect output, we might not notice unless it is glaringly wrong.

Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as, your copy of the interpreter is out
of sync, or you have encountered a bug in the C library on your system. Your copy
might crash and the copy here would not. If you said to expect a crash, then when the
interpreter here fails to crash, we would know that the bug was not happening. If you
don’t say to expect a crash, then we would not know whether the bug was happening.
We would not be able to draw any conclusion from our observations.

Often the observed symptom is incorrect output when your program is run. Unfortu-
nately, this is not enough information unless the program is short and simple. It is very
helpful if you can include an explanation of the expected output, and why the actual
output is incorrect.

• If you wish to suggest changes to the Octave source, send them as context diffs. If you
even discuss something in the Octave source, refer to it by context, not by line number,
because the line numbers in the development sources probably won’t match those in
your sources.

Here are some things that are not necessary:

• A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it. Such
information is usually not necessary to enable us to fix bugs in Octave, but if you can
find a simpler example to report instead of the original one, that is a convenience.
Errors in the output will be easier to spot, running under the debugger will take less
time, etc. Most Octave bugs involve just one function, so the most straightforward way
to simplify an example is to delete all the function definitions except the one in which
the bug occurs.

However, simplification is not vital; if you don’t want to do this, report the bug anyway
and send the entire test case you used.

• A patch for the bug. Patches can be helpful, but if you find a bug, you should report
it, even if you cannot send a fix for the problem.

F.2.4 Sending Patches for Octave

If you would like to write bug fixes or improvements for Octave, that is very helpful. When
you send your changes, please follow these guidelines to avoid causing extra work for us in
studying the patches.

If you don’t follow these guidelines, your information might still be useful, but using it
will take extra work. Maintaining Octave is a lot of work in the best of circumstances, and
we can’t keep up unless you do your best to help.

738 GNU Octave

• Send an explanation with your changes of what problem they fix or what improvement
they bring about. For a bug fix, just include a copy of the bug report, and explain why
the change fixes the bug.

• Always include a proper bug report for the problem you think you have fixed. We need
to convince ourselves that the change is right before installing it. Even if it is right, we
might have trouble judging it if we don’t have a way to reproduce the problem.

• Include all the comments that are appropriate to help people reading the source in the
future understand why this change was needed.

• Don’t mix together changes made for different reasons. Send them individually.

If you make two changes for separate reasons, then we might not want to install them
both. We might want to install just one.

• Use ‘diff -c’ to make your diffs. Diffs without context are hard for us to install
reliably. More than that, they make it hard for us to study the diffs to decide whether
we want to install them. Unified diff format is better than contextless diffs, but not as
easy to read as ‘-c’ format.

If you have GNU diff, use ‘diff -cp’, which shows the name of the function that each
change occurs in.

• Write the change log entries for your changes.

Read the ‘ChangeLog’ file to see what sorts of information to put in, and to learn the
style that we use. The purpose of the change log is to show people where to find what
was changed. So you need to be specific about what functions you changed; in large
functions, it’s often helpful to indicate where within the function the change was made.

On the other hand, once you have shown people where to find the change, you need
not explain its purpose. Thus, if you add a new function, all you need to say about it
is that it is new. If you feel that the purpose needs explaining, it probably does—but
the explanation will be much more useful if you put it in comments in the code.

If you would like your name to appear in the header line for who made the change,
send us the header line.

F.3 How To Get Help with Octave

The mailing list help@octave.org exists for the discussion of matters related to using
and installing Octave. If would like to join the discussion, please send a short note to
help-request@octave.org.

Please do not send requests to be added or removed from the mailing list, or other
administrative trivia to the list itself.

If you think you have found a bug in Octave or in the installation procedure,
however, you should submit a complete bug report to the Octave bug tracker
at http://bugs.octave.org. But before you submit a bug report, please read
http://www.octave.org/bugs.html to learn how to submit a useful bug report.

mailto:help@octave.org
mailto:help-request@octave.org
http://bugs.octave.org
http://www.octave.org/bugs.html

Appendix G: Installing Octave 739

Appendix G Installing Octave

The procedure for installing Octave from source on a Unix-like system is described below.
Building on other platforms will follow similar steps. Note that this description applies
to Octave releases. Building the development sources from the Mercurial archive requires
additional steps as described in Section D.2 [Building the Development Sources], page 725.

G.1 Build Dependencies

Octave is a fairly large program with many build dependencies. You may be able to find
pre-packaged versions of the dependencies distributed as part of your system, or you may
have to build some or all of them yourself.

G.1.1 Tips for Specific Systems

The names of pre-compiled packages vary by system and do not always match exactly the
names listed above.

You will usually need the development version of an external dependency so that you get
the libraries and header files for building software, not just for running already compiled
programs. These packages typically have names that end with the suffix -dev or -devel.

On systems with apt-get (Debian, Ubuntu, etc.), you may be able to install most of
the tools and external packages using a command similar to

apt-get build-dep octave

The specific package name may be octave3.2 or octave3.4. The set of required tools and
external dependencies does not change frequently, so it is not important that the version
match exactly, but you should use the most recent one available.

On systems with yum (Fedora, Red Hat, etc.), you may be able to install most of the
tools and external packages using a command similar to

yum-builddep octave

The yum-builddep utility is part of the yum-utils package.

For either type of system, the package name may include a version number. The set of
required tools and external dependencies does not change frequently, so it is not important
that the version exactly match the version you are installing, but you should use the most
recent one available.

G.1.2 Build Tools

The following tools are required:

C++, C, and Fortran compilers
The Octave sources are primarily written in C++, but some portions are
also written in C and Fortran. The Octave sources are intended to be
portable. Recent versions of the GNU compiler collection (GCC) should work
(http://gcc.gnu.org). If you use GCC, you should avoid mixing versions.
For example, be sure that you are not using the obsolete g77 Fortran compiler
with modern versions of gcc and g++.

http://gcc.gnu.org

740 GNU Octave

GNU Make
Tool for building software (http://www.gnu.org/software/make). Octave’s
build system requires GNU Make. Other versions of Make will not work. For-
tunately, GNU Make is highly portable and easy to install.

AWK, sed, and other Unix utilities
Basic Unix system utilities are required for building Octave. All will be available
with any modern Unix system and also on Windows with either Cygwin or
MinGW and MSYS.

Additionally, the following tools may be needed:

Bison Parser generator (http://www.gnu.org/software/bison). You will need Bi-
son if you modify the oct-parse.yy source file or if you delete the files that
are generated from it.

Flex Lexer analyzer (http://www.gnu.org/software/flex). You will need Flex if
you modify the lex.ll source file or if you delete the files that are generated
from it.

Autoconf Package for software configuration (http://www.gnu.org/software/autoconf).
Autoconf is required if you modify Octave’s configure.ac file or other files
that it requires.

Automake Package for Makefile generation (http://www.gnu.org/software/automake).
Automake is required if you modify Octave’s Makefile.am files or other files
that they depend on.

Libtool Package for building software libraries (http://www.gnu.org/software/libtool).
Libtool is required by Automake.

G.1.3 External Packages

The following external packages are required:

BLAS Basic Linear Algebra Subroutine library (http://www.netlib.org/blas). Ac-
celerated BLAS libraries such as ATLAS (http://math-atlas.sourceforge.net)
are recommeded for better performance.

LAPACK Linear Algebra Package (http://www.netlib.org/lapack).

PCRE The Perl Compatible Regular Expression library (http://www.pcre.org).

The following external package is optional but strongly recommended:

GNU Readline
Command-line editing library (www.gnu.org/s/readline).

If you wish to build Octave without GNU readline installed, you must use the --

disable-readline option when running the configure script.

The following external software packages are optional but recommended:

ARPACK Library for the solution of large-scale eigenvalue problems
(http://forge.scilab.org/index.php/p/arpack-ng). ARPACK is
required to provide the functions eigs and svds.

http://www.gnu.org/software/make
http://www.gnu.org/software/bison
http://www.gnu.org/software/flex
http://www.gnu.org/software/autoconf
http://www.gnu.org/software/automake
http://www.gnu.org/software/libtool
http://www.netlib.org/blas
http://math-atlas.sourceforge.net
http://www.netlib.org/lapack
www.gnu.org/s/readline
http://forge.scilab.org/index.php/p/arpack-ng

Appendix G: Installing Octave 741

cURL Library for transferring data with URL syntax (http://curl.haxx.se). cURL
is required to provide the urlread and urlwrite functions and the ftp class.

FFTW3 Library for computing discrete Fourier transforms (http://www.fftw.org).
FFTW3 is used to provide better performance for functions that compute dis-
crete Fourier transforms (fft, ifft, fft2, etc.)

FLTK Portable GUI toolkit (http://www.fltk.org). FLTK is currently used to pro-
vide windows for Octave’s OpenGL-based graphics functions.

fontconfig Library for configuring and customizing font access (http://www.freedesktop.org/wiki/Software/fontconfig).
Fontconfig is used to manage fonts for Octave’s OpenGL-based graphics
functions.

FreeType Portable font engine (http://www.freetype.org). FreeType is used to per-
form font rendering for Octave’s OpenGL-based graphics functions.

GLPK GNU Linear Programming Kit (http://www.gnu.org/software/glpk).
GPLK is required for the function glpk.

gnuplot Interactive graphics program (http://www.gnuplot.info). gnuplot is cur-
rently the default graphics renderer for Octave.

GraphicsMagick++
Image processing library (http://www.graphicsmagick.org). GraphicsMag-
ick++ is used to provide the imread and imwrite functions.

HDF5 Library for manipulating portable data files (http://www.hdfgroup.org/HDF5).
HDF5 is required for Octave’s load and save commands to read and write
HDF data files.

OpenGL API for portable 2D and 3D graphics (http://www.opengl.org). An OpenGL
implementation is required to provide Octave’s OpenGL-based graphics
functions. Octave’s OpenGL-based graphics functions usually outperform the
gnuplot-based graphics functions because plot data can be rendered directly
instead of sending data and commands to gnuplot for interpretation and
rendering.

Qhull Computational geometry library (http://www.qhull.org). Qhull is required
to provide the functions convhull, convhulln, delaunay, delaunay3,
delaunayn, voronoi, and voronoin.

QRUPDATE
QR factorization updating library (http://sourceforge.net/projects/qrupdate).
QRUPDATE is used to provide improved performance for the functions
qrdelete, qrinsert, qrshift, and qrupdate.

SuiteSparse
Sparse matrix factorization library (http://www.cise.ufl.edu/research/sparse/SuiteSparse).
SuiteSparse is required to provide sparse matrix factorizations and solution of
linear equations for sparse systems.

zlib Data compression library (http://zlib.net). The zlib library is required for
Octave’s load and save commands to handle compressed data, including Mat-
lab v5 MAT files.

http://curl.haxx.se
http://www.fftw.org
http://www.fltk.org
http://www.freedesktop.org/wiki/Software/fontconfig
http://www.freetype.org
http://www.gnu.org/software/glpk
http://www.gnuplot.info
http://www.graphicsmagick.org
http://www.hdfgroup.org/HDF5
http://www.opengl.org
http://www.qhull.org
http://sourceforge.net/projects/qrupdate
http://www.cise.ufl.edu/research/sparse/SuiteSparse
http://zlib.net

742 GNU Octave

G.2 Running Configure and Make

• Run the shell script ‘configure’. This will determine the features your system has
(or doesn’t have) and create a file named ‘Makefile’ from each of the files named
‘Makefile.in’.

Here is a summary of the configure options that are most frequently used when building
Octave:

--help Print a summary of the options recognized by the configure script.

--prefix=prefix

Install Octave in subdirectories below prefix. The default value of prefix is
‘/usr/local’.

--srcdir=dir

Look for Octave sources in the directory dir.

--enable-64

This is an experimental option to enable Octave to use 64-bit integers
for array dimensions and indexing on 64-bit platforms. You probably
don’t want to use this option unless you know what you are doing. See
Section G.3 [Compiling Octave with 64-bit Indexing], page 746, for more
details about building Octave with this option.

--enable-bounds-check

Enable bounds checking for indexing operators in the internal array classes.
This option is primarily used for debugging Octave. Building Octave with
this option has a negative impact on performance and is not recommended
for general use.

--disable-docs

Disable building all forms of the documentation (Info, PDF, HTML). The
default is to build documentation, but your system will need functioning
Texinfo and TEX installs for this to succeed.

--enable-float-truncate

This option allows for truncation of intermediate floating point results in
calculations. It is only necessary for certain platforms.

--enable-readline

Use the readline library to provide for editing of the command line in
terminal environments. This option is on by default.

--enable-shared

Create shared libraries (this is the default). If you are planning to use
the dynamic loading features, you will probably want to use this option.
It will make your ‘.oct’ files much smaller and on some systems it may
be necessary to build shared libraries in order to use dynamically linked
functions.

You may also want to build a shared version of libstdc++, if your system
doesn’t already have one.

Appendix G: Installing Octave 743

--enable-dl

Use dlopen and friends to make Octave capable of dynamically linking
externally compiled functions (this is the default if ‘--enable-shared’ is
specified). This option only works on systems that actually have these
functions. If you plan on using this feature, you should probably also use
‘--enable-shared’ to reduce the size of your ‘.oct’ files.

--with-blas=<lib>

By default, configure looks for the best blas matrix libraries on your sys-
tem, including optimized implementations such as the free ATLAS 3.0, as
well as vendor-tuned libraries. (The use of an optimized blas will gener-
ally result in several-times faster matrix operations.) Use this option to
specify a particular blas library that Octave should use.

--with-lapack=<lib>

By default, configure looks for the best lapack matrix libraries on your
system, including optimized implementations such as the free ATLAS 3.0,
as well as vendor-tuned libraries. (The use of an optimized lapack will
generally result in several-times faster matrix operations.) Use this option
to specify a particular lapack library that Octave should use.

--with-magick=<lib>

Select the library to use for image I/O. The two possible values are "Graph-
icsMagick" (default) or "ImageMagick".

--with-sepchar=<char>

Use <char> as the path separation character. This option can help when
running Octave on non-Unix systems.

--without-amd

Don’t use amd, disable some sparse matrix functionality.

--without-camd

Don’t use camd, disable some sparse matrix functionality.

--without-colamd

Don’t use colamd, disable some sparse matrix functionality.

--without-ccolamd

Don’t use ccolamd, disable some sparse matrix functionality.

--without-cholmod

Don’t use cholmod, disable some sparse matrix functionality.

--without-curl

Don’t use the cURL library, disable the ftp objects, urlread and urlwrite

functions.

--without-cxsparse

Don’t use cxsparse, disable some sparse matrix functionality.

--without-fftw3

Use the included fftpack library for computing Fast Fourier Transforms
instead of the fftw3 library.

744 GNU Octave

--without-fftw3f

Use the included fftpack library for computing Fast Fourier Transforms
instead of the fftw3 library when operating on single precision (float)
values.

--without-glpk

Don’t use the glpk library for linear programming.

--without-hdf5

Don’t use the hdf5 library, disable reading and writing of hdf5 files.

--without-opengl

Don’t use OpenGL, disable native graphics toolkit for plotting. You will
need gnuplot installed in order to make plots.

--without-qhull

Don’t use Qhull, disable delaunay, convhull, and related functions.

--without-qrupdate

Don’t use qrupdate, disable QR and Cholesky update functions.

--without-umfpack

Don’t use umfpack, disable some sparse matrix functionality.

--without-zlib

Don’t use the zlib library, disable data file compression and support for
recent MAT file formats.

--without-framework-carbon

Don’t use framework Carbon headers, libraries, or specific source code even
if the configure test succeeds (the default is to use Carbon framework if
available). This is a platform specific configure option for Mac systems.

--without-framework-opengl

Don’t use framework OpenGL headers, libraries, or specific source code
even if the configure test succeeds. If this option is given then OpenGL
headers and libraries in standard system locations are tested (the default
value is ‘--with-framework-opengl’). This is a platform specific configure
option for Mac systems.

See the file ‘INSTALL’ for more general information about the command line options
used by configure. That file also contains instructions for compiling in a directory other
than the one where the source is located.

• Run make.

You will need a recent version of GNU Make as Octave relies on certain features not
generally available in all versions of make. Modifying Octave’s makefiles to work with
other make programs is probably not worth your time; instead, we simply recommend
installing GNU Make.

There are currently two options for plotting in Octave: (1) the external program gnu-
plot, or (2) the internal graphics engine using OpenGL and FLTK. Gnuplot is a
command-driven interactive function plotting program. Gnuplot is copyrighted, but

Appendix G: Installing Octave 745

freely distributable. As of Octave release 3.4, gnuplot is the default option for plot-
ting. But, the internal graphics engine is nearly 100% compatible, certainly for most
ordinary plots, and users are encouraged to test it. It is anticipated that the internal
engine will become the default option at the next major release of Octave.

To compile Octave, you will need a recent version of g++ or other ANSI C++ compiler.
In addition, you will need a Fortran 77 compiler or f2c. If you use f2c, you will need
a script like fort77 that works like a normal Fortran compiler by combining f2c with
your C compiler in a single script.

If you plan to modify the parser you will also need GNU bison and flex. If you modify
the documentation, you will need GNU Texinfo.

GNU Make, gcc (and libstdc++), gnuplot, bison, flex, and Texinfo are all available
from many anonymous ftp archives. The primary site is ftp.gnu.org, but it is often
very busy. A list of sites that mirror the software on ftp.gnu.org is available by
anonymous ftp from ftp://ftp.gnu.org/pub/gnu/GNUinfo/FTP.

Octave requires approximately 1.4 GB of disk storage to unpack and compile from
source (significantly less, 400 MB, if you don’t compile with debugging symbols). To
compile without debugging symbols try the command

make CFLAGS=-O CXXFLAGS=-O LDFLAGS=

instead of just make.

• If you encounter errors while compiling Octave, first check the list of known prob-
lems below to see if there is a workaround or solution for your problem. If not, see
Appendix F [Trouble], page 735, for information about how to report bugs.

• Once you have successfully compiled Octave, run make install.

This will install a copy of Octave, its libraries, and its documentation in the destination
directory. As distributed, Octave is installed in the following directories. In the table
below, prefix defaults to ‘/usr/local’, version stands for the current version number
of the interpreter, and arch is the type of computer on which Octave is installed (for
example, ‘i586-unknown-gnu’).

‘prefix/bin’
Octave and other binaries that people will want to run directly.

‘prefix/lib/octave-version ’
Libraries like libcruft.a and liboctave.a.

‘prefix/octave-version/include/octave’
Include files distributed with Octave.

‘prefix/share’
Architecture-independent data files.

‘prefix/share/man/man1’
Unix-style man pages describing Octave.

‘prefix/share/info’
Info files describing Octave.

‘prefix/share/octave/version/m’
Function files distributed with Octave. This includes the Octave version,
so that multiple versions of Octave may be installed at the same time.

ftp.gnu.org
ftp.gnu.org
ftp://ftp.gnu.org/pub/gnu/GNUinfo/FTP

746 GNU Octave

‘prefix/libexec/octave/version/exec/arch ’
Executables to be run by Octave rather than the user.

‘prefix/lib/octave/version/oct/arch ’
Object files that will be dynamically loaded.

‘prefix/share/octave/version/imagelib’
Image files that are distributed with Octave.

G.3 Compiling Octave with 64-bit Indexing

Note: the following only applies to systems that have 64-bit pointers. Configuring Octave
with ‘--enable-64’ cannot magically make a 32-bit system have a 64-bit address space.

On 64-bit systems, Octave is limited to (approximately) the following array sizes when
using the default 32-bit indexing mode:

double: 16GB

single: 8GB

uint64, int64: 16GB

uint32, int32: 8GB

uint16, int16: 4GB

uint8, int8: 2GB

In each case, the limit is really (approximately) 231 elements because of the default type
of the value used for indexing arrays (signed 32-bit integer, corresponding to the size of a
Fortran INTEGER value).

Trying to create larger arrays will produce the following error:

octave:1> a = zeros (1024*1024*1024*3, 1, ’int8’);

error: memory exhausted or requested size too large

for range of Octave’s index type --

trying to return to prompt

You will obtain this error even if your system has enough memory to create this array (4
GB in the above case).

To use arrays larger than 2 GB, Octave has to be configured with the option
‘--enable-64’. This option is experimental and you are encouraged to submit bug reports
if you find a problem. With this option, Octave will use 64-bit integers internally for array
dimensions and indexing. However, all numerical libraries used by Octave will also need
to use 64-bit integers for array dimensions and indexing. In most cases, this means they
will need to be compiled from source since most (all?) distributions which package these
libraries compile them with the default Fortran integer size, which is normally 32-bits
wide.

The following instructions were tested with the development version of Octave and GCC
4.3.4 on an x86 64 Debian system.

The versions listed below are the versions used for testing. If newer versions of these
packages are available, you should try to use them, although there may be some differences.

All libraries and header files will be installed in subdirectories of $prefix64 (you must
choose the location of this directory).

Appendix G: Installing Octave 747

• blas and lapack (http://www.netlib.org/lapack)

Reference versions for both libraries are included in the reference lapack 3.2.1 distri-
bution from netlib.org.

− Copy the file ‘make.inc.example’ and name it ‘make.inc’. The options
‘-fdefault-integer-8’ and ‘-fPIC’ (on 64-bit CPU) have to be added to the
variable OPTS and NOOPT.

− Once you have compiled this library make sure that you use it for compiling Suite
Sparse and Octave. In the following we assume that you installed the lapack
library as $prefix64/lib/liblapack.a.

• QRUPDATE (http://sourceforge.net/projects/qrupdate)

In the ‘Makeconf’ file:

− Add ‘-fdefault-integer-8’ to FFLAGS.

− Adjust the blas and lapack variables as needed if your 64-bit aware blas and
lapack libraries are in a non-standard location.

− Set PREFIX to the top-level directory of your install tree.

− Run make solib to make a shared library.

− Run make install to install the library.

• SuiteSparse (http://www.cise.ufl.edu/research/sparse/SuiteSparse)

− In ‘UFconfig/UFconfig.mk’ use the following options for CFLAGS and F77FLAGS:

CC = gcc

CFLAGS = -fPIC -O -DLP64 -DLONGBLAS=’long int’ -DLONG=’long int’

F77 = gfortran

F77FLAGS = -fPIC -O -fdefault-integer-8

BLAS = -L$BLAS/lib -lblas -lgfortran"

LAPACK = -L$LAPACK/lib -llapack"

− Disable the GPL-incompatible METIS library:

CHOLMOD_CONFIG = -DNPARTITION

SPQR_CONFIG = -DNPARTITION

METIS_PATH =

METIS =

− Disable the DI versions of the CHOLMOD library files by setting

OBJ = $(DL)

in ‘CHOLMOD/Lib/Makefile’.

− Disable the DI versions of the CHOLMOD tests by commenting out or deleting the
following lines in ‘CHOLMOD/Demo/Makefile’:

./cholmod_demo < Matrix/bcsstk01.tri

./cholmod_demo < Matrix/lp_afiro.tri

./cholmod_demo < Matrix/can___24.mtx

./cholmod_demo < Matrix/c.tri

./cholmod_simple < Matrix/c.tri

./cholmod_simple < Matrix/can___24.mtx

./cholmod_simple < Matrix/bcsstk01.tri

http://www.netlib.org/lapack
netlib.org
http://sourceforge.net/projects/qrupdate
http://www.cise.ufl.edu/research/sparse/SuiteSparse

748 GNU Octave

− Run make to build the libraries.

− The SuiteSparse ‘Makefile’ does not have an install target so you must install the
files by hand:

mkdir $prefix64/include/suitesparse

cp UFconfig/UFconfig.h $prefix64/include/suitesparse

for d in AMD BTF CAMD CCOLAMD \

CHOLMOD COLAMD CXSparse UMFPACK; do

cp $d/Lib/lib*a $prefix64/lib

cp $d/Include/*h $prefix64/include/suitesparse

done

− You can generate shared versions of these libraries by doing the following in the
‘$prefix64/lib’ directory:

top=$(pwd)

for f in *.a; do

mkdir tmp

cd tmp

ar vx ../$f

gcc -shared -o ../${f%%.a}.so *.o

cd $top

rm -rf tmp

done

• ATLAS instead of reference blas and lapack

Suggestions on how to compile ATLAS would be most welcome.

• glpk

Suggestions on how to compile glpk would be most welcome.

• Qhull (http://www.qhull.org)

Suggestions on how to compile Qhull would be most welcome.

• Octave

Octave’s 64-bit index support is activated with the configure option ‘--enable-64’.

./configure \

LD_LIBRARY_PATH="$prefix64/lib" \

CPPFLAGS="-I$prefix64/include" LDFLAGS="-L$prefix64/lib" \

--enable-64

You must ensure that all Fortran sources except those in the ‘libcruft/ranlib’ direc-
tory are compiled such that INTEGERS are 8-bytes wide. If you are using gfortan, the
configure script should automatically set the Makefile variable F77_INTEGER_8_FLAG

to ‘-fdefault-integer-8’. If you are using another compiler, you must set this
variable yourself. You should NOT set this flag in FFLAGS, otherwise the files in
‘libcruft/ranlib’ will be miscompiled.

• Other dependencies

Probably nothing special needs to be done for the following dependencies. If you
discover that something does need to be done, please submit a bug report.

− pcre

http://www.qhull.org

Appendix G: Installing Octave 749

− zlib

− hdf5

− fftw3

− cURL

− GraphicsMagick++

− OpenGL

− freetype

− fontconfig

− fltk

G.4 Installation Problems

This section contains a list of problems (and some apparent problems that don’t really mean
anything is wrong) that may show up during installation of Octave.

• On some SCO systems, info fails to compile if HAVE_TERMIOS_H is defined in
‘config.h’. Simply removing the definition from ‘info/config.h’ should allow it to
compile.

• If configure finds dlopen, dlsym, dlclose, and dlerror, but not the header file
‘dlfcn.h’, you need to find the source for the header file and install it in the directory
‘usr/include’. This is reportedly a problem with Slackware 3.1. For Linux/GNU
systems, the source for ‘dlfcn.h’ is in the ldso package.

• Building ‘.oct’ files doesn’t work.

You should probably have a shared version of libstdc++. A patch is needed to build
shared versions of version 2.7.2 of libstdc++ on the HP-PA architecture. You can find
the patch at ftp://ftp.cygnus.com/pub/g++/libg++-2.7.2-hppa-gcc-fix.

• On some DEC alpha systems there may be a problem with the libdxml library, result-
ing in floating point errors and/or segmentation faults in the linear algebra routines
called by Octave. If you encounter such problems, then you should modify the configure
script so that SPECIAL_MATH_LIB is not set to -ldxml.

• On FreeBSD systems Octave may hang while initializing some internal constants. The
fix appears to be to use

options GPL_MATH_EMULATE

rather than

options MATH_EMULATE

in the kernel configuration files (typically found in the directory ‘/sys/i386/conf’.
After making this change, you’ll need to rebuild the kernel, install it, and reboot.

• If you encounter errors like

passing ‘void (*)()’ as argument 2 of

‘octave_set_signal_handler(int, void (*)(int))’

or

warning: ANSI C++ prohibits conversion from ‘(int)’

to ‘(...)’

ftp://ftp.cygnus.com/pub/g++/libg++-2.7.2-hppa-gcc-fix

750 GNU Octave

while compiling ‘sighandlers.cc’, you may need to edit some files in the gcc include
subdirectory to add proper prototypes for functions there. For example, Ultrix 4.2
needs proper declarations for the signal function and the SIG_IGN macro in the file
‘signal.h’.

On some systems the SIG_IGN macro is defined to be something like this:

#define SIG_IGN (void (*)())1

when it should really be something like:

#define SIG_IGN (void (*)(int))1

to match the prototype declaration for the signal function. This change should also
be made for the SIG_DFL and SIG_ERR symbols. It may be necessary to change the
definitions in ‘sys/signal.h’ as well.

The gcc fixincludes and fixproto scripts should probably fix these problems when
gcc installs its modified set of header files, but I don’t think that’s been done yet.

You should not change the files in ‘/usr/include’. You can find the gcc include
directory tree by running the command

gcc -print-libgcc-file-name

The directory of gcc include files normally begins in the same directory that contains
the file ‘libgcc.a’.

• Some of the Fortran subroutines may fail to compile with older versions of the Sun
Fortran compiler. If you get errors like

zgemm.f:

zgemm:

warning: unexpected parent of complex expression subtree

zgemm.f, line 245: warning: unexpected parent of complex

expression subtree

warning: unexpected parent of complex expression subtree

zgemm.f, line 304: warning: unexpected parent of complex

expression subtree

warning: unexpected parent of complex expression subtree

zgemm.f, line 327: warning: unexpected parent of complex

expression subtree

pcc_binval: missing IR_CONV in complex op

make[2]: *** [zgemm.o] Error 1

when compiling the Fortran subroutines in the ‘libcruft’ subdirectory, you should
either upgrade your compiler or try compiling with optimization turned off.

• On NeXT systems, if you get errors like this:

/usr/tmp/cc007458.s:unknown:Undefined local

symbol LBB7656

/usr/tmp/cc007458.s:unknown:Undefined local

symbol LBE7656

when compiling ‘Array.cc’ and ‘Matrix.cc’, try recompiling these files without ‘-g’.

• Some people have reported that calls to system() and the pager do not work on SunOS
systems. This is apparently due to having G_HAVE_SYS_WAIT defined to be 0 instead of
1 when compiling libg++.

Appendix G: Installing Octave 751

• On NeXT systems, linking to ‘libsys_s.a’ may fail to resolve the following functions

_tcgetattr

_tcsetattr

_tcflow

which are part of ‘libposix.a’. Unfortunately, linking Octave with ‘-posix’ results in
the following undefined symbols.

.destructors_used

.constructors_used

_objc_msgSend

_NXGetDefaultValue

_NXRegisterDefaults

.objc_class_name_NXStringTable

.objc_class_name_NXBundle

One kluge around this problem is to extract ‘termios.o’ from ‘libposix.a’, put it in
Octave’s ‘src’ directory, and add it to the list of files to link together in the makefile.
Suggestions for better ways to solve this problem are welcome!

• If Octave crashes immediately with a floating point exception, it is likely that it is
failing to initialize the IEEE floating point values for infinity and NaN.

If your system actually does support IEEE arithmetic, you should be able to fix this
problem by modifying the function octave_ieee_init in the file ‘lo-ieee.cc’ to cor-
rectly initialize Octave’s internal infinity and NaN variables.

If your system does not support IEEE arithmetic but Octave’s configure script incor-
rectly determined that it does, you can work around the problem by editing the file
‘config.h’ to not define HAVE_ISINF, HAVE_FINITE, and HAVE_ISNAN.

In any case, please report this as a bug since it might be possible to modify Octave’s
configuration script to automatically determine the proper thing to do.

• If Octave is unable to find a header file because it is installed in a location that is not
normally searched by the compiler, you can add the directory to the include search
path by specifying (for example) CPPFLAGS=-I/some/nonstandard/directory as an
argument to configure. Other variables that can be specified this way are CFLAGS,
CXXFLAGS, FFLAGS, and LDFLAGS. Passing them as options to the configure script also
records them in the ‘config.status’ file. By default, CPPFLAGS and LDFLAGS are
empty, CFLAGS and CXXFLAGS are set to "-g -O" and FFLAGS is set to "-O".

Appendix H: Emacs Octave Support 753

Appendix H Emacs Octave Support

The development of Octave code can greatly be facilitated using Emacs with Octave mode,
a major mode for editing Octave files which can e.g. automatically indent the code, do some
of the typing (with Abbrev mode) and show keywords, comments, strings, etc. in different
faces (with Font-lock mode on devices that support it).

It is also possible to run Octave from within Emacs, either by directly entering commands
at the prompt in a buffer in Inferior Octave mode, or by interacting with Octave from within
a file with Octave code. This is useful in particular for debugging Octave code.

Finally, you can convince Octave to use the Emacs info reader for help -i.

All functionality is provided by the Emacs Lisp package EOS (for “Emacs Octave Sup-
port”). This chapter describes how to set up and use this package.

Please contact Kurt.Hornik@wu-wien.ac.at if you have any questions or suggestions
on using EOS.

H.1 Installing EOS

The Emacs package EOS consists of the three files ‘octave-mod.el’, ‘octave-inf.el’,
and ‘octave-hlp.el’. These files, or better yet their byte-compiled versions, should be
somewhere in your Emacs load-path.

If you have GNU Emacs with a version number at least as high as 19.35, you are all set
up, because EOS is respectively will be part of GNU Emacs as of version 19.35.

Otherwise, copy the three files from the ‘emacs’ subdirectory of the Octave distribution
to a place where Emacs can find them (this depends on how your Emacs was installed).
Byte-compile them for speed if you want.

H.2 Using Octave Mode

If you are lucky, your sysadmins have already arranged everything so that Emacs automat-
ically goes into Octave mode whenever you visit an Octave code file as characterized by its
extension ‘.m’. If not, proceed as follows.

1. To begin using Octave mode for all ‘.m’ files you visit, add the following lines to a file
loaded by Emacs at startup time, typically your ‘~/.emacs’ file:

(autoload ’octave-mode "octave-mod" nil t)

(setq auto-mode-alist

(cons ’("\\.m$" . octave-mode) auto-mode-alist))

2. Finally, to turn on the abbrevs, auto-fill and font-lock features automatically, also add
the following lines to one of the Emacs startup files:

(add-hook ’octave-mode-hook

(lambda ()

(abbrev-mode 1)

(auto-fill-mode 1)

(if (eq window-system ’x)

(font-lock-mode 1))))

See the Emacs manual for more information about how to customize Font-lock mode.

mailto:Kurt.Hornik@wu-wien.ac.at

754 GNU Octave

In Octave mode, the following special Emacs commands can be used in addition to the
standard Emacs commands.

C-h m Describe the features of Octave mode.

LFD Reindent the current Octave line, insert a newline and indent the new line
(octave-reindent-then-newline-and-indent). An abbrev before point is
expanded if abbrev-mode is non-nil.

TAB Indents current Octave line based on its contents and on previous lines (indent-
according-to-mode).

; Insert an “electric” semicolon (octave-electric-semi). If octave-auto-

indent is non-nil, reindent the current line. If octave-auto-newline is
non-nil, automagically insert a newline and indent the new line.

‘ Start entering an abbreviation (octave-abbrev-start). If Abbrev mode is
turned on, typing ‘C-h or ‘? lists all abbrevs. Any other key combination is
executed normally. Note that all Octave abbrevs start with a grave accent.

M-LFD Break line at point and insert continuation marker and alignment (octave-
split-line).

M-TAB Perform completion on Octave symbol preceding point, comparing that sym-
bol against Octave’s reserved words and built-in variables (octave-complete-
symbol).

M-C-a Move backward to the beginning of a function (octave-beginning-of-defun).
With prefix argument N, do it that many times if N is positive; otherwise, move
forward to the N-th following beginning of a function.

M-C-e Move forward to the end of a function (octave-end-of-defun). With prefix
argument N, do it that many times if N is positive; otherwise, move back to
the N-th preceding end of a function.

M-C-h Puts point at beginning and mark at the end of the current Octave function,
i.e., the one containing point or following point (octave-mark-defun).

M-C-q Properly indents the Octave function which contains point (octave-indent-
defun).

M-; If there is no comment already on this line, create a code-level comment (started
by two comment characters) if the line is empty, or an in-line comment (started
by one comment character) otherwise (octave-indent-for-comment). Point
is left after the start of the comment which is properly aligned.

C-c ; Puts the comment character ‘#’ (more precisely, the string value of octave-
comment-start) at the beginning of every line in the region (octave-comment-
region). With just C-u prefix argument, uncomment each line in the region.
A numeric prefix argument N means use N comment characters.

C-c : Uncomments every line in the region (octave-uncomment-region).

C-c C-p Move one line of Octave code backward, skipping empty and comment lines
(octave-previous-code-line). With numeric prefix argument N, move that
many code lines backward (forward if N is negative).

Appendix H: Emacs Octave Support 755

C-c C-n Move one line of Octave code forward, skipping empty and comment lines
(octave-next-code-line). With numeric prefix argument N, move that many
code lines forward (backward if N is negative).

C-c C-a Move to the ‘real’ beginning of the current line (octave-beginning-of-line).
If point is in an empty or comment line, simply go to its beginning; otherwise,
move backwards to the beginning of the first code line which is not inside a
continuation statement, i.e., which does not follow a code line ending in ‘...’
or ‘\’, or is inside an open parenthesis list.

C-c C-e Move to the ‘real’ end of the current line (octave-end-of-line). If point is in
a code line, move forward to the end of the first Octave code line which does
not end in ‘...’ or ‘\’ or is inside an open parenthesis list. Otherwise, simply
go to the end of the current line.

C-c M-C-n Move forward across one balanced begin-end block of Octave code (octave-
forward-block). With numeric prefix argument N, move forward across n
such blocks (backward if N is negative).

C-c M-C-p Move back across one balanced begin-end block of Octave code (octave-
backward-block). With numeric prefix argument N, move backward across N
such blocks (forward if N is negative).

C-c M-C-d Move forward down one begin-end block level of Octave code (octave-down-
block). With numeric prefix argument, do it that many times; a negative
argument means move backward, but still go down one level.

C-c M-C-u Move backward out of one begin-end block level of Octave code (octave-
backward-up-block). With numeric prefix argument, do it that many times;
a negative argument means move forward, but still to a less deep spot.

C-c M-C-h Put point at the beginning of this block, mark at the end (octave-mark-block).
The block marked is the one that contains point or follows point.

C-c] Close the current block on a separate line (octave-close-block). An error is
signaled if no block to close is found.

C-c f Insert a function skeleton, prompting for the function’s name, arguments and
return values which have to be entered without parentheses (octave-insert-
defun).

C-c C-h Search the function, operator and variable indices of all info files with docu-
mentation for Octave for entries (octave-help). If used interactively, the entry
is prompted for with completion. If multiple matches are found, one can cycle
through them using the standard ‘,’ (Info-index-next) command of the Info
reader.

The variable octave-help-files is a list of files to search through and defaults
to ’("octave"). If there is also an Octave Local Guide with corresponding info
file, say, ‘octave-LG’, you can have octave-help search both files by

(setq octave-help-files ’("octave" "octave-LG"))

in one of your Emacs startup files.

756 GNU Octave

A common problem is that the RET key does not indent the line to where the new text
should go after inserting the newline. This is because the standard Emacs convention is
that RET (aka C-m) just adds a newline, whereas LFD (aka C-j) adds a newline and indents
it. This is particularly inconvenient for users with keyboards which do not have a special
LFD key at all; in such cases, it is typically more convenient to use RET as the LFD key
(rather than typing C-j).

You can make RET do this by adding

(define-key octave-mode-map "\C-m"

’octave-reindent-then-newline-and-indent)

to one of your Emacs startup files. Another, more generally applicable solution is

(defun RET-behaves-as-LFD ()

(let ((x (key-binding "\C-j")))

(local-set-key "\C-m" x)))

(add-hook ’octave-mode-hook ’RET-behaves-as-LFD)

(this works for all modes by adding to the startup hooks, without having to know the
particular binding of RET in that mode!). Similar considerations apply for using M-RET
as M-LFD. As Barry A. Warsaw bwarsaw@cnri.reston.va.us says in the documentation
for his cc-mode, “This is a very common question. :-) If you want this to be the default
behavior, don’t lobby me, lobby RMS!”

The following variables can be used to customize Octave mode.

octave-auto-indent

Non-nil means auto-indent the current line after a semicolon or space. Default
is nil.

octave-auto-newline

Non-nil means auto-insert a newline and indent after semicolons are typed.
The default value is nil.

octave-blink-matching-block

Non-nil means show matching begin of block when inserting a space, newline
or ‘;’ after an else or end keyword. Default is t. This is an extremely useful
feature for automatically verifying that the keywords match—if they don’t, an
error message is displayed.

octave-block-offset

Extra indentation applied to statements in block structures. Default is 2.

octave-continuation-offset

Extra indentation applied to Octave continuation lines. Default is 4.

octave-continuation-string

String used for Octave continuation lines. Normally ‘\’.

octave-mode-startup-message

If t (default), a startup message is displayed when Octave mode is called.

If Font Lock mode is enabled, Octave mode will display

• strings in font-lock-string-face

• comments in font-lock-comment-face

mailto:bwarsaw@cnri.reston.va.us

Appendix H: Emacs Octave Support 757

• the Octave reserved words (such as all block keywords) and the text functions (such as
‘cd’ or ‘who’) which are also reserved using font-lock-keyword-face

• the built-in operators (‘&&’, ‘==’, . . .) using font-lock-reference-face

• and the function names in function declarations in font-lock-function-name-face.

There is also rudimentary support for Imenu (currently, function names can be indexed).

You can generate TAGS files for Emacs from Octave ‘.m’ files using the shell script
octave-tags that is installed alongside your copy of Octave.

Customization of Octave mode can be performed by modification of the variable octave-
mode-hook. If the value of this variable is non-nil, turning on Octave mode calls its value.

If you discover a problem with Octave mode, you can conveniently send a bug report
using C-c C-b (octave-submit-bug-report). This automatically sets up a mail buffer
with version information already added. You just need to add a description of the problem,
including a reproducible test case and send the message.

H.3 Running Octave from Within Emacs

The package ‘octave’ provides commands for running an inferior Octave process in a special
Emacs buffer. Use

M-x run-octave

to directly start an inferior Octave process. If Emacs does not know about this command,
add the line

(autoload ’run-octave "octave-inf" nil t)

to your ‘.emacs’ file.

This will start Octave in a special buffer the name of which is specified by the variable
inferior-octave-buffer and defaults to "*Inferior Octave*". From within this buffer,
you can interact with the inferior Octave process ‘as usual’, i.e., by entering Octave com-
mands at the prompt. The buffer is in Inferior Octave mode, which is derived from the
standard Comint mode, a major mode for interacting with an inferior interpreter. See the
documentation for comint-mode for more details, and use C-h b to find out about available
special keybindings.

You can also communicate with an inferior Octave process from within files with Octave
code (i.e., buffers in Octave mode), using the following commands.

C-c i l Send the current line to the inferior Octave process (octave-send-line). With
positive prefix argument N, send that many lines. If octave-send-line-auto-
forward is non-nil, go to the next unsent code line.

C-c i b Send the current block to the inferior Octave process (octave-send-block).

C-c i f Send the current function to the inferior Octave process (octave-send-defun).

C-c i r Send the region to the inferior Octave process (octave-send-region).

C-c i s Make sure that ‘inferior-octave-buffer’ is displayed (octave-show-process-
buffer).

C-c i h Delete all windows that display the inferior Octave buffer (octave-hide-
process-buffer).

758 GNU Octave

C-c i k Kill the inferior Octave process and its buffer (octave-kill-process).

The effect of the commands which send code to the Octave process can be customized
by the following variables.

octave-send-echo-input

Non-nil means echo input sent to the inferior Octave process. Default is t.

octave-send-show-buffer

Non-nil means display the buffer running the Octave process after sending a
command (but without selecting it). Default is t.

If you send code and there is no inferior Octave process yet, it will be started automat-
ically.

The startup of the inferior Octave process is highly customizable. The variable
inferior-octave-startup-args can be used for specifying command lines arguments
to be passed to Octave on startup as a list of strings. For example, to suppress the
startup message and use ‘traditional’ mode, set this to ’("-q" "--traditional"). You
can also specify a startup file of Octave commands to be loaded on startup; note that
these commands will not produce any visible output in the process buffer. Which file to
use is controlled by the variable inferior-octave-startup-file. If this is nil, the file
‘~/.emacs-octave’ is used if it exists.

And finally, inferior-octave-mode-hook is run after starting the process and putting
its buffer into Inferior Octave mode. Hence, if you like the up and down arrow keys to
behave in the interaction buffer as in the shell, and you want this buffer to use nice colors,
add

(add-hook ’inferior-octave-mode-hook

(lambda ()

(turn-on-font-lock)

(define-key inferior-octave-mode-map [up]

’comint-previous-input)

(define-key inferior-octave-mode-map [down]

’comint-next-input)))

to your ‘.emacs’ file. You could also swap the roles of C-a (beginning-of-line) and C-c

C-a (comint-bol) using this hook.

Note that if you set your Octave prompts to something different from the de-
faults, make sure that inferior-octave-prompt matches them. Otherwise,
nothing will work, because Emacs will not know when Octave is waiting for
input, or done sending output.

H.4 Using the Emacs Info Reader for Octave

You may also use the Emacs Info reader with Octave’s doc function. For this, the package
‘gnuserv’ needs to be installed.

If ‘gnuserv’ is installed, add the lines

(autoload ’octave-help "octave-hlp" nil t)

(require ’gnuserv)

(gnuserv-start)

Appendix H: Emacs Octave Support 759

to your ‘.emacs’ file.

You can use either ‘plain’ Emacs Info or the function octave-help as your Octave info
reader (for ‘help -i’). In the former case, use info_program ("info-emacs-info"). The
latter is perhaps more attractive because it allows to look up keys in the indices of several
info files related to Octave (provided that the Emacs variable octave-help-files is set
correctly). In this case, use info_program ("info-emacs-octave-help").

If you use Octave from within Emacs, it is best to add these settings to your
‘~/.emacs-octave’ startup file (or the file pointed to by the Emacs variable
inferior-octave-startup-file).

Appendix I: Grammar and Parser 761

Appendix I Grammar and Parser

This appendix will eventually contain a semi-formal description of Octave’s language.

I.1 Keywords

The following identifiers are keywords, and may not be used as variable or function names:

__FILE__ __LINE__ break

case catch classdef

continue do else

elseif end end_try_catch

end_unwind_protect endclassdef endenumeration

endevents endfor endfunction

endif endmethods endparfor

endproperties endswitch endwhile

enumeration events for

function get global

if methods otherwise

parfor persistent properties

return set static

switch try until

unwind_protect unwind_protect_cleanup while

The function iskeyword can be used to quickly check whether an identifier is reserved
by Octave.

[Built-in Function]iskeyword ()
[Built-in Function]iskeyword (name)

Return true if name is an Octave keyword. If name is omitted, return a list of
keywords.

See also: [isvarname], page 113, [exist], page 120.

I.2 Parser

The parser has a number of variables that affect its internal operation. These variables
are generally documented in the manual alongside the code that they affect. For example,
allow_noninteger_range_as_index is discussed in the section on index expressions.

In addition, there are three non-specific parser customization functions. add_input_

event_hook can be used to schedule a user function for periodic evaluation. remove_

input_event_hook will stop a user function from being evaluated periodically.

[Built-in Function]add_input_event_hook (fcn)
[Built-in Function]add_input_event_hook (fcn, data)

Add the named function fcn to the list of functions to call periodically when Octave
is waiting for input. The function should have the form

fcn (data)

If data is omitted, Octave calls the function without any arguments.

See also: [remove input event hook], page 762.

762 GNU Octave

[Built-in Function]remove_input_event_hook (fcn)
Remove the named function fcn from the list of functions to call periodically when
Octave is waiting for input.

See also: [add input event hook], page 761.

Finally, when the parser cannot identify an input token it calls a particular function
to handle this. By default, this is the function "unimplemented" which makes suggestions
about possible Octave substitutes for matlab functions.

[Built-in Function]val = missing_function_hook ()
[Built-in Function]old_val = missing_function_hook (new_val)
[Built-in Function]missing_function_hook (new_val, "local")

Query or set the internal variable that specifies the function to call when an unknown
identifier is requested.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

Appendix J: GNU GENERAL PUBLIC LICENSE 763

Appendix J GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/

764 GNU Octave

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

Appendix J: GNU GENERAL PUBLIC LICENSE 765

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

766 GNU Octave

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

Appendix J: GNU GENERAL PUBLIC LICENSE 767

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

768 GNU Octave

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

Appendix J: GNU GENERAL PUBLIC LICENSE 769

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

770 GNU Octave

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

Appendix J: GNU GENERAL PUBLIC LICENSE 771

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

772 GNU Octave

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

Appendix J: GNU GENERAL PUBLIC LICENSE 773

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

Concept Index 775

Concept Index

#
‘#’ . 34
‘#!’ . 33
‘#{’ . 34

%
‘%’ . 34
‘%{’ . 34

-
--braindead . 17
--debug . 15
--doc-cache-file filename 15
--echo-commands . 15
--exec-path path . 15
--help . 15
--image-path path . 15
--info-file filename . 16
--info-program program . 16
--interactive . 16
--line-editing . 16
--no-history . 16
--no-init-file . 16
--no-init-path . 16
--no-line-editing . 16
--no-site-file . 16
--norc . 16
--path path . 16
--persist . 16
--quiet . 16
--silent . 16
--traditional . 17
--verbose . 17
--version . 17
-? . 15
-d . 15
-f . 16
-h . 15
-H . 16
-i . 16
-p path . 16
-q . 16
-v . 17
-V . 17
-x . 15

.

... continuation marker . 155

.octaverc . 18

:
:end . 123

\
\ continuation marker . 155

~
~/.inputrc . 29
~/.octaverc . 18

A
acknowledgements . 1
addition . 129, 605
and operator . 133, 605
anonymous functions . 177
ans . 113
answers, incorrect . 735, 737
application-defined data . 317
apply . 402
area series . 321
arguments in function call . 127
arithmetic operators . 129, 605
assignment expressions . 137
assignment operators . 137
axes graphics object . 295
axes properties . 301

B
bar series . 322
batch processing . 33
block comments . 34
body of a loop . 149
boolean expressions . 133, 605
boolean operators . 133, 605
break statement . 152
broadcast . 399
broadcasting . 399
BSX . 399
bug criteria . 735
bug tracker . 736
bugs . 735
bugs, investigating . 737
bugs, known . 735
bugs, reporting . 736
built-in data types . 37
built-in function . 12

C
callbacks . 316

776 GNU Octave

case statement . 147
catch . 154
cell arrays . 40, 102
character strings . 40, 63
Cholesky factorization . 383
clearing the screen . 24
code profiling . 198
coding standards . 715, 725
colors, graphics . 315
comma separated lists . 110
command and output logs . 31
command completion . 25
command descriptions . 13
command echoing . 31
command history . 26
command options . 15
command-line editing . 23
comments . 34
comparison expressions 132, 605
complex-conjugate transpose 129, 605
containers . 91
continuation lines . 155
continue statement . 153
contour series . 323
contributing to Octave . 4
contributors . 1
conversion specifications (printf) 222
conversion specifications (scanf) 228
copy-on-write . 409
copyright . 763
core dump . 735
COW . 409
cs-lists . 110
customizing readline . 29
customizing the prompt . 29

D
DAE . 473
data sources in object groups 321
data structures . 40, 91
data types . 37
data types, built-in . 37
data types, user-defined . 41
decrement operator . 139
default arguments . 166
default graphics properties . 314
defining functions . 157
deprecated functions . 731
description format . 12
diary of commands and output 31
differential equations . 473
diffs, submitting . 737
distribution of Octave . 5
division . 129, 605
do-until statement . 150
documentation fonts . 11
documentation notation . 11

documenting functions . 35
documenting Octave programs 34
documenting user scripts . 35
Dulmage-Mendelsohn decomposition 443
dynamic naming . 96
dynamic-linking . 667

E
echoing executing commands 31
editing the command line . 23
element-by-element evaluation 133
else statement . 145
elseif statement . 145
Emacs TAGS files . 757
end statement . 145
end, indexing . 123
end_try_catch . 154
end_unwind_protect . 154
endfor statement . 150
endfunction statement . 157
endif statement . 145
endswitch statement . 147
endwhile statement . 149
equality operator . 132, 605
equality, tests for . 132, 605
equations, nonlinear . 411
erroneous messages . 735
erroneous results . 735, 737
error bar series . 324
error message notation . 12
error messages . 32
error messages, incorrect . 735
escape sequence notation . 63
evaluation notation . 11
executable scripts . 33
execution speed . 408
exiting octave . 7, 19
exponentiation . 129, 605
expression, range . 50
expressions . 123
expressions, assignment . 137
expressions, boolean . 133, 605
expressions, comparison 132, 605
expressions, logical . 133, 605

F
factorial function . 128
fatal signal . 735
figure graphics object . 295
figure properties . 298
finding minimums . 414
flag character (printf) . 224
flag character (scanf) . 228
for statement . 150
Frobenius norm . 381
function application . 402

Concept Index 777

function descriptions . 12
function file . 12, 167
function statement . 157
functions, deprecated . 731
functions, obsolete . 731
functions, user-defined . 157
funding Octave development . 4

G
general p-norm . 381
global statement . 114
global variables . 114
grammar rules . 761
graphics . 237
graphics colors . 315
graphics data structures . 293
graphics line styles . 315
graphics marker styles . 315
graphics object properties . 297
graphics object, axes . 295
graphics object, figure . 295
graphics object, image . 295
graphics object, line . 295
graphics object, patch . 295
graphics object, root figure 294
graphics object, surface . 295
graphics object, text . 295
graphics objects . 294
graphics properties, default 314
graphics toolkits . 329
greater than operator . 132, 605
group objects 325, 326, 327, 328

H
handle functions . 295
handle, function handles . 177
header comments . 716
help, on-line . 19
help, user-defined functions . 35
help, where to find . 738
Hermitian operator . 129, 605
Hessenberg decomposition . 384
history . 1
history of commands . 26

I
if statement . 145
image graphics object . 295
image properties . 308
improving Octave . 736, 737
incorrect error messages . 735
incorrect output . 735, 737
incorrect results . 735, 737
increment operator . 139
infinity norm . 381

initialization . 18
inline, inline functions . 177
input conversions, for scanf 229
input history . 26
installation trouble . 735
installing Octave . 739
introduction . 7
introduction to graphics structures 293
invalid input . 735

K
Kendall’s Tau . 509
keywords . 761
known causes of trouble . 735

L
language definition . 761
less than operator . 132, 605
line graphics object . 295
line properties . 305
line series . 325
line styles, graphics . 315
loadable function . 13
loading data . 209
local minimum . 414
logging commands and output 31
logical expressions . 133, 605
logical operators . 133, 605
loop . 149
looping over structure elements 151
LP . 485
LU decomposition . 385, 457
lvalue . 137

M
manipulation of plot windows 282
map . 402
mapping function . 13
marker styles, graphics . 315
matching failure, in scanf . 228
matrices . 46
matrix multiplication . 129, 605
maximum field width (scanf) 229
memory management . 409
messages, error . 32
mex . 690
mex-files . 690
minimum field width (printf) 224
missing data . 40
mkoctfile . 667
multi-line comments . 34
multiplication . 129, 605

778 GNU Octave

N
negation . 129, 605
NLP . 485
nonlinear equations . 411
nonlinear programming . 485
not operator . 133, 605
numeric constant . 39, 45
numeric value . 39, 45

O
object groups . 317
obsolete functions . 731
oct . 667
oct-files . 667
Octave command options . 15
Octave development . 725
octave-tags . 757
ODE . 473
on-line help . 19
operator precedence . 139
operators, arithmetic . 129, 605
operators, assignment . 137
operators, boolean . 133, 605
operators, decrement . 139
operators, increment . 139
operators, logical . 133, 605
operators, relational . 132, 605
optimization . 408, 485
options, Octave command . 15
or operator . 133, 605
oregonator . 475
otherwise statement . 147
output conversions, for printf 224

P
parser . 761
patch graphics object . 295
patch properties . 309
patches, submitting . 737
persistent statement . 116
persistent variables . 116
personal startup file . 18
plotting . 237
precision (printf) . 224
printing notation . 11
printing plots . 287
profiler . 198
program, self contained . 33
Progress Bar . 614
project startup file . 18
prompt customization . 29

Q
QP . 485

QR factorization . 386
quadratic programming . 485
quitting octave . 7, 19
quiver group . 325
quotient . 129, 605

R
range expressions . 50
readline customization . 29
recycling . 399
relational operators . 132, 605
reporting bugs . 735, 736
results, incorrect . 735, 737
root figure graphics object . 294
root figure properties . 297

S
saving data . 209
saving plots . 287
scatter group . 326
Schur decomposition . 390
script files . 157
scripts . 33
self contained programs . 33
series objects 321, 322, 323, 324, 325, 327
short-circuit evaluation . 135
side effect . 137
SIMD . 399
singular value decomposition 390
site startup file . 18
Spearman’s Rho . 508
speedups . 408
stair group . 327
standards of coding style . 715
startup . 18
startup files . 18
statements . 145
stem series . 327
strings . 40, 63
structural rank . 448
structure elements, looping over 151
structures . 40, 91
submitting diffs . 737
submitting patches . 737
subtraction . 129, 605
suggestions . 736
surface graphics object . 295
surface group . 328
surface properties . 311
switch statement . 147

T
TAGS . 757
test functions . 707
tests for equality . 132, 605

Concept Index 779

text graphics object . 295
text properties . 307
tips . 715
toolkit customization . 329
toolkits, graphics . 329
transpose . 129, 605
transpose, complex-conjugate 129, 605
troubleshooting . 735
try statement . 154

U
unary minus . 129, 605
undefined behavior . 735
undefined function value . 735
unwind_protect statement 154
unwind_protect_cleanup . 154
use of axis, line, and patch functions 281
use of comments . 34
use of the interpreter property 284
user-defined data types . 41
user-defined functions . 157

user-defined variables . 113

V
varargin . 163
varargout . 165
variable descriptions . 13
variable-length argument lists 163
variable-length return lists . 165
variables, global . 114
variables, persistent . 116
variables, user-defined . 113
vectorization . 397
vectorize . 397
version startup file . 18

W
warning ids . 188
warranty . 763
while statement . 149
wrong answers . 735, 737

Function Index 781

Function Index

A
abs . 355
accumarray . 406
accumdim . 408
acos . 356
acosd . 359
acosh . 357
acot . 357
acotd . 359
acoth . 358
acsc . 357
acscd . 359
acsch . 358
add_input_event_hook . 761
addlistener . 319
addpath . 170
addpref . 616
addproperty . 318
addtodate . 628
airy . 367
all . 331
allchild . 297
allow_noninteger_range_as_index 126
amd . 439
ancestor . 297
and . 134
angle . 355
anova . 518
any . 331
arch_fit . 574
arch_rnd . 574
arch_test . 574
area . 255
arg . 355
argnames . 178
argv . 17
arma_rnd . 575
arrayfun . 402
ascii . 639
asctime . 621
asec . 356
asecd . 359
asech . 357
asin . 356
asind . 359
asinh . 357
assert . 711
assignin . 144
atan . 356
atan2 . 358
atand . 359
atanh . 357
atexit . 19
autoload . 173

autoreg_matrix . 575
autumn . 586
available_graphics_toolkits 329
axes . 281
axis . 256

B
balance . 377
bar . 242
barh . 243
bartlett . 575
bartlett_test . 518
base2dec . 84
beep . 183
beep_on_error . 183
besselh . 368
besseli . 367
besselj . 367
besselk . 367
bessely . 367
beta . 368
betacdf . 510
betainc . 368
betainv . 510
betaln . 369
betapdf . 510
betarnd . 526
bicg . 394
bicgstab . 394
bicubic . 555
bin2dec . 82
binary . 639
bincoeff . 369
binocdf . 511
binoinv . 511
binopdf . 511
binornd . 526
bitand . 55
bitcmp . 56
bitget . 55
bitmax . 55
bitor . 55
bitpack . 38
bitset . 54
bitshift . 56
bitunpack . 39
bitxor . 56
blackman . 575
blanks . 65
blkdiag . 342
blkmm . 393
bone . 586
box . 279
brighten . 589

782 GNU Octave

bsxfun . 400
builtin . 173
bunzip2 . 637
byte_size . 671
bzip2 . 638

C
calendar . 628
canonicalize_file_name . 636
cart2pol . 372
cart2sph . 373
cast . 37
cat . 336
cauchy_cdf . 511
cauchy_inv . 511
cauchy_pdf . 511
cauchy_rnd . 527
caxis . 257
cbrt . 354
ccolamd . 440
cd . 13, 648
ceil . 360
cell . 104
cell2mat . 109
cell2struct . 110
celldisp . 103
cellfun . 404
cellindexmat . 108
cellslices . 106
cellstr . 109
center . 504
cgs . 395
char . 67
chdir . 13, 648
chi2cdf . 511
chi2inv . 511
chi2pdf . 511
chi2rnd . 527
chisquare_test_homogeneity 519
chisquare_test_independence 519
chol . 383
chol2inv . 383
choldelete . 384
cholinsert . 384
cholinv . 383
cholshift . 384
cholupdate . 383
chop . 366
circshift . 338
cla . 284
clabel . 278
class . 37
clc . 24
clear . 120
clf . 283
clock . 623
cloglog . 506

close . 284
closereq . 284
colamd . 441
colloc . 470
colon . 602
colorbar . 279
colormap . 586
colperm . 442
colstyle . 316
columns . 41
comet . 256
comet3 . 256
command_line_path . 172
common_size . 333
commutation_matrix . 369
compan . 538
compare_versions . 652
compass . 254
completion_append_char . 25
completion_matches . 26
complex . 45
computer . 650
cond . 378
condest . 447
confirm_recursive_rmdir 631
conj . 355
contour . 247
contour3 . 249
contourc . 248
contourf . 248
contrast . 588
conv . 539
conv2 . 540
convhull . 566
convhulln . 566
convn . 539
cool . 586
copper . 586
copyfile . 629
cor_test . 519
corr . 508
cos . 356
cosd . 358
cosh . 357
cot . 356
cotd . 358
coth . 357
cov . 508
cplxpair . 355
cputime . 624
crash_dumps_octave_core 217
cross . 364
csc . 356
cscd . 358
csch . 357
cstrcat . 68
csvread . 215
csvwrite . 215

Function Index 783

csymamd . 442
ctime . 620
ctranspose . 130
cummax . 362
cummin . 363
cumprod . 360
cumsum . 360
cumtrapz . 470
curl . 364
cylinder . 275

D
daspect . 272
daspk . 476
daspk_options . 477
dasrt . 481
dasrt_options . 483
dassl . 479
dassl_options . 480
date . 623
datenum . 625
datestr . 626
datetick . 629
datevec . 627
dbclear . 195
dbcont . 194
dbdown . 197
dblquad . 471
dbnext . 197
dbquit . 194
dbstack . 197
dbstatus . 195
dbstep . 197
dbstop . 194
dbtype . 196
dbup . 197
dbwhere . 196
deal . 165
deblank . 73
debug_on_error . 193
debug_on_interrupt . 193
debug_on_warning . 193
dec2base . 84
dec2bin . 83
dec2hex . 83
deconv . 539
default_save_options . 213
del2 . 365
delaunay . 557
delaunay3 . 558
delaunayn . 558
delete . 284
dellistener . 319
demo . 712
det . 378
detrend . 569
diag . 342

diary . 31
diff . 332
diffpara . 575
diffuse . 268
dims . 671
dir . 648
discrete_cdf . 512
discrete_inv . 512
discrete_pdf . 511
discrete_rnd . 527
disp . 203
display . 595
divergence . 364
dlmread . 215
dlmwrite . 214
dmperm . 443
do_braindead_shortcircuit_evaluation 136
do_string_escapes . 86
doc . 20
doc_cache_file . 22
dos . 641
dot . 364
double . 45
drawnow . 282
dsearch . 562
dsearchn . 562
dump_prefs . 19
dup2 . 644
duplication_matrix . 369
durbinlevinson . 576

E
e . 373
echo . 31
echo_executing_commands . 31
edit . 168
edit_history . 27
EDITOR . 29
eig . 378
eigs . 449, 450
elem . 671
ellipsoid . 276
empirical_cdf . 512
empirical_inv . 512
empirical_pdf . 512
empirical_rnd . 527
endgrent . 650
endpwent . 649
eomday . 629
eps . 375
eq . 133
erf . 369
erfc . 369
erfcx . 370
erfinv . 370
errno . 186
errno_list . 186

784 GNU Octave

error . 181
errorbar . 250
etime . 623
etree . 433
etreeplot . 434
eval . 141
evalin . 144
example . 713
exec . 643
EXEC_PATH . 643
exist . 120
exit . 19
exp . 353
expcdf . 512
expinv . 512
expm . 392
expm1 . 353
exppdf . 512
exprnd . 528
eye . 343
ezcontour . 259
ezcontourf . 260
ezmesh . 273
ezmeshc . 274
ezplot . 259
ezplot3 . 273
ezpolar . 260
ezsurf . 274
ezsurfc . 275

F
f_test_regression . 520
factor . 365
factorial . 365
fail . 711
false . 57
fcdf . 512
fclear . 234
fclose . 220
fcntl . 646
fdisp . 214
feather . 254
feof . 234
ferror . 234
feval . 142
fflush . 208
fft . 569
fft2 . 571
fftconv . 572
fftfilt . 572
fftn . 571
fftshift . 576
fftw . 569
fgetl . 221
fgets . 221
fieldnames . 98
figure . 280

file_in_loadpath . 171
file_in_path . 635
fileattrib . 633
filemarker . 635
fileparts . 636
fileread . 212
filesep . 635
fill . 281
filter . 572
filter2 . 573
find . 333
find_dir_in_path . 172
findall . 313
findobj . 313
findstr . 73
finite . 332
finv . 512
fix . 360
fixed_point_format . 49
flag . 587
flipdim . 335
fliplr . 334
flipud . 335
floor . 361
fminbnd . 414
fminunc . 415
fmod . 366
fnmatch . 635
foo . 12
fopen . 219
fork . 643
format . 204
formula . 179
fortran_vec . 672
fpdf . 512
fplot . 258
fprintf . 222
fputs . 221
fractdiff . 576
fread . 230
freport . 234
freqz . 573
freqz_plot . 574
frewind . 235
frnd . 528
fscanf . 227
fseek . 235
fskipl . 221
fsolve . 411
ftell . 235
ftp . 639
full . 429
fullfile . 636
func2str . 177
functions . 177
fwrite . 233
fzero . 414

Function Index 785

G
gamcdf . 512
gaminv . 513
gamma . 370
gammainc . 370
gammaln . 371
gampdf . 512
gamrnd . 528
gca . 295
gcbf . 317
gcbo . 316
gcd . 365
gcf . 295
ge . 133
gen_doc_cache . 22
genpath . 170
genvarname . 113
geocdf . 513
geoinv . 513
geopdf . 513
geornd . 528
get . 296
get_first_help_sentence . 23
get_help_text . 23
get_help_text_from_file . 23
getappdata . 317
getegid . 647
getenv . 648
geteuid . 647
getfield . 98
getgid . 647
getgrent . 650
getgrgid . 650
getgrnam . 650
gethostname . 638
getpgrp . 647
getpid . 647
getppid . 647
getpref . 616
getpwent . 649
getpwnam . 649
getpwuid . 649
getrusage . 654
getuid . 647
ginput . 291
givens . 379
glob . 634
glpk . 485
gls . 495
gmap40 . 589
gmres . 396
gmtime . 620
gnuplot_binary . 329
gplot . 434
gradient . 363
graphics_toolkit . 329
gray . 587
gray2ind . 585

grid . 279
griddata . 567
griddata3 . 567
griddatan . 568
gt . 133
gtext . 291
gui_mode . 330
guidata . 615
guihandles . 615
gunzip . 637
gzip . 637

H
hadamard . 350
hamming . 576
hankel . 350
hanning . 576
help . 20
hess . 384
hex2dec . 83
hex2num . 84
hggroup . 317
hidden . 263
hilb . 351
hist . 243
histc . 505
history . 26
history_control . 28
history_file . 28
history_size . 28
history_timestamp_format_string 28
hold . 283
home . 24
horzcat . 336
hot . 587
hotelling_test . 520
hotelling_test_2 . 520
housh . 391
hsv . 587
hsv2rgb . 590
hurst . 576
hygecdf . 513
hygeinv . 513
hygepdf . 513
hygernd . 529
hypot . 363

I
i . 374
I . 374
idivide . 54
ifelse . 136
ifft . 570
ifft2 . 571
ifftn . 572
ifftshift . 576

786 GNU Octave

ignore_function_time_stamp 169
imag . 355
image . 584
IMAGE_PATH . 582
imagesc . 585
imfinfo . 582
imread . 581
imshow . 584
imwrite . 581
ind2gray . 585
ind2rgb . 586
ind2sub . 126
index . 74
inf . 374
Inf . 374
inferiorto . 606
info . 21
info_file . 21
info_program . 21
inline . 178
inpolygon . 565
input . 208
inputname . 159
int16 . 52
int2str . 70
int32 . 52
int64 . 52
int8 . 52
interp1 . 547
interp1q . 549
interp2 . 552
interp3 . 552
interpft . 550
interpn . 553
intersect . 534
intmax . 53
intmin . 53
inv . 379
invhilb . 351
ipermute . 337
iqr . 500
is_absolute_filename . 636
is_dq_string . 64
is_function_handle . 177
is_leap_year . 624
is_rooted_relative_filename 636
is_sq_string . 64
is_valid_file_id . 220
isa . 37
isalnum . 87
isalpha . 87
isappdata . 317
isargout . 165
isascii . 88
isbool . 60
iscell . 103
iscellstr . 109
ischar . 64

iscntrl . 88
iscolumn . 60
iscomplex . 59
isdebugmode . 196
isdefinite . 60
isdeployed . 651
isdigit . 88
isdir . 634
isempty . 42
isequal . 133
isequalwithequalnans . 133
isfield . 98
isfigure . 295
isfinite . 332
isfloat . 59
isglobal . 115
isgraph . 88
ishandle . 295
ishermitian . 60
ishghandle . 295
ishold . 283
isieee . 651
isindex . 126
isinf . 332
isinteger . 52
iskeyword . 761
isletter . 87
islogical . 60
islower . 87
ismac . 651
ismatrix . 59
ismember . 533
ismethod . 595
isna . 40
isnan . 332
isnull . 42
isnumeric . 59
isobject . 595
isocolors . 267
isonormals . 266
isosurface . 264
ispc . 651
ispref . 616
isprime . 61
isprint . 88
isprop . 294
ispunct . 88
isreal . 59
isrow . 60
isscalar . 60
issorted . 340
isspace . 88
issparse . 431
issquare . 60
isstrprop . 88
isstruct . 98
issymmetric . 60
isunix . 651

Function Index 787

isupper . 87
isvarname . 113
isvector . 59
isxdigit . 88

J
j . 374
J . 374
jet . 587

K
kbhit . 209
kendall . 509
keyboard . 196
kill . 647
kolmogorov_smirnov_cdf . 513
kolmogorov_smirnov_test 520
kolmogorov_smirnov_test_2 521
kron . 393
kruskal_wallis_test . 521
krylov . 392
kurtosis . 502

L
laplace_cdf . 514
laplace_inv . 514
laplace_pdf . 514
laplace_rnd . 529
lasterr . 185
lasterror . 184
lastwarn . 187
lcm . 366
ldivide . 131
le . 133
legend . 277
legendre . 370
length . 41
lgamma . 371
license . 653
lin2mu . 591
line . 281
link . 630
linkprop . 320
linspace . 344
list_in_columns . 203
list_primes . 367
load . 211
loadaudio . 591
loaded_graphics_toolkits 329
loadobj . 598
localtime . 620
log . 353
log10 . 353
log1p . 353
log2 . 353

logical . 57
logistic_cdf . 514
logistic_inv . 514
logistic_pdf . 514
logistic_regression . 509
logistic_rnd . 529
logit . 506
loglog . 241
loglogerr . 251
logm . 393
logncdf . 514
logninv . 514
lognpdf . 514
lognrnd . 529
logspace . 345
lookfor . 20
lookup . 334
lower . 86
ls . 648
ls_command . 648
lsode . 473
lsode_options . 474
lsqnonneg . 495
lstat . 631
lt . 133
lu . 385
luinc . 457
luupdate . 386

M
magic . 351
mahalanobis . 507
make_absolute_filename . 636
makeinfo_program . 21
manova . 521
mat2cell . 105
mat2str . 69
matlabroot . 652
matrix_type . 379
max . 361
max_recursion_depth . 129
mcnemar_test . 522
md5sum . 655
mean . 499
meansq . 500
median . 499
menu . 208
merge . 136
mesh . 262
meshc . 262
meshgrid . 269
meshz . 263
methods . 595
mex . 691
mexext . 691
mfilename . 169
mget . 639

788 GNU Octave

mgorth . 382
min . 362
minus . 131
mislocked . 175
missing_function_hook . 762
mkdir . 630
mkfifo . 631
mkoctfile . 667
mkpp . 543
mkstemp . 233
mktime . 621
mldivide . 131
mlock . 174
mod . 366
mode . 500
moment . 502
more . 207
mouse_wheel_zoom . 330
movefile . 629
mpoles . 538
mpower . 131
mput . 639
mrdivide . 131
mtimes . 131
mu2lin . 591
munlock . 174

N
NA . 40
namelengthmax . 114
nan . 375
NaN . 375
nargchk . 162
nargin . 159
narginchk . 162
nargout . 161
nargoutchk . 162
native_float_format . 213
nbincdf . 515
nbininv . 515
nbinpdf . 515
nbinrnd . 530
nchoosek . 505, 723
ndgrid . 269
ndims . 41
ne . 133
nelem . 671
newplot . 283
news . 21
nextpow2 . 354
nfields . 98
nnz . 431
nonzeros . 431
norm . 380
normcdf . 515
normest . 446
norminv . 515

normpdf . 515
normrnd . 530
not . 134
now . 619
nproc . 651
nth_element . 340
nthargout . 160
nthroot . 354
ntsc2rgb . 590
null . 381
num2cell . 104
num2hex . 84
num2str . 69
numel . 41
nzmax . 431

O
ocean . 587
octave_config_info . 653
octave_core_file_limit . 217
octave_core_file_name . 218
octave_core_file_options 217
OCTAVE_HOME . 651
octave_tmp_file_name . 233
OCTAVE_VERSION . 652
ols . 495
onCleanup . 186
onenormest . 446
ones . 343
operator () . 671
optimget . 497
optimize_subsasgn_calls 601
optimset . 496
or . 134
orderfields . 99
orient . 291
orth . 381
output_max_field_width . 47
output_precision . 48

P
P_tmpdir . 636
pack . 121
page_output_immediately 207
page_screen_output . 207
PAGER . 207
PAGER_FLAGS . 207
pareto . 246
parseparams . 164
pascal . 351
patch . 281
path . 171
pathdef . 171
pathsep . 171
pause . 624
pbaspect . 272

Function Index 789

pcg . 453
pchip . 576
pclose . 642
pcolor . 255
pcr . 455
peaks . 292, 293
periodogram . 577
perl . 641
perms . 506
permute . 337
pi . 374
pie . 252
pie3 . 253
pink . 587
pinv . 382
pipe . 644
pkg . 657, 658
planerot . 379
playaudio . 592
plot . 238
plot3 . 269
plotmatrix . 246
plotyy . 240
plus . 131
poisscdf . 516
poissinv . 516
poisspdf . 515
poissrnd . 530
pol2cart . 372
polar . 252
poly . 545
polyaffine . 542
polyarea . 564
polyder . 542
polyfit . 542
polygcd . 540
polyint . 542
polyout . 545
polyreduce . 545
polyval . 537
polyvalm . 537
popen . 642
popen2 . 642
postpad . 342
pow2 . 354
power . 131
powerset . 535
ppder . 544
ppint . 544
ppjumps . 544
ppplot . 507
ppval . 544
pqpnonneg . 492
prctile . 504
prepad . 341
primes . 366
print . 287
print_empty_dimensions . 49

print_struct_array_contents 93
print_usage . 183
printf . 222
prism . 588
probit . 506
prod . 360
profexplore . 199
profile . 198
profshow . 199
program_invocation_name . 18
program_name . 17
prop_test_2 . 522
PS1 . 30
PS2 . 30
PS4 . 31
putenv . 648
puts . 221
pwd . 649
python . 642

Q
qp . 491
qqplot . 507
qr . 386
qrdelete . 388
qrinsert . 388
qrshift . 388
qrupdate . 387
quad . 464
quad_options . 465
quadcc . 468
quadgk . 466
quadl . 466
quadv . 465
quantile . 503
quit . 19
quiver . 253
quiver3 . 253, 254
qz . 388
qzhess . 389

R
rainbow . 588
rand . 345
rande . 347
randg . 348
randi . 346
randn . 346, 347
randp . 347
randperm . 350
range . 500
rank . 382
ranks . 506
rat . 372
rats . 372
rcond . 382

790 GNU Octave

rdivide . 132
re_read_readline_init_file 29
read_readline_init_file . 29
readdir . 634
readlink . 630
real . 355
reallog . 353
realmax . 375, 376
realmin . 376
realpow . 354
realsqrt . 354
record . 592
rectangle . 260
rectangle_lw . 577
rectangle_sw . 577
rectint . 565
recycle . 637
refresh . 282
refreshdata . 321
regexp . 79
regexpi . 81
regexprep . 81
regexptranslate . 82
register_graphics_toolkit 329
rehash . 171
rem . 366
remove_input_event_hook 762
rename . 629
repelems . 344
repmat . 344
reset . 314
reshape . 337
residue . 540
resize . 337, 671
restoredefaultpath . 171
rethrow . 185
return . 166
rgb2hsv . 590
rgb2ind . 585
rgb2ntsc . 590
ribbon . 271
rindex . 74
rmappdata . 317
rmdir . 630
rmfield . 99
rmpath . 170
rmpref . 617
roots . 538
rose . 247
rosser . 352
rot90 . 335
rotdim . 335
round . 361
roundb . 361
rows . 41
rref . 382
rsf2csf . 390
run . 142

run_count . 506
run_history . 27
run_test . 522
rundemos . 713
runlength . 506
runtests . 713

S
S_ISBLK . 632
S_ISCHR . 632
S_ISDIR . 632
S_ISFIFO . 633
S_ISLNK . 633
S_ISREG . 633
S_ISSOCK . 633
save . 209
save_header_format_string 213
save_precision . 213
saveas . 290
saveaudio . 591
saveobj . 598
savepath . 170
saving_history . 27
scanf . 227
scatter . 245
scatter3 . 271
schur . 390
sec . 356
secd . 358
sech . 357
SEEK_CUR . 235
SEEK_END . 235
SEEK_SET . 235
semilogx . 240
semilogxerr . 251
semilogy . 241
semilogyerr . 251
set . 296
setappdata . 317
setaudio . 592
setdiff . 534
setenv . 648
setfield . 99
setgrent . 650
setpref . 617
setpwent . 649
setxor . 535
shading . 271
shg . 284
shift . 338
shiftdim . 338
SIG . 647
sighup_dumps_octave_core 217
sign . 367
sign_test . 522
sigterm_dumps_octave_core 217
silent_functions . 159

Function Index 791

sin . 356
sinc . 574
sind . 358
sinetone . 578
sinewave . 578
single . 51
sinh . 357
size . 42
size_equal . 42
sizemax . 47
sizeof . 42
skewness . 502
sleep . 625
slice . 270
sombrero . 292
sort . 339
sortrows . 340
source . 177
spalloc . 429
sparse . 430
sparse_auto_mutate . 436
spaugment . 449
spconvert . 430
spdiags . 427
spearman . 508
spectral_adf . 578
spectral_xdf . 578
specular . 268
speed . 713
spencer . 578
speye . 427
spfun . 404
sph2cart . 373
sphere . 276
spinmap . 589
spline . 551
split_long_rows . 48
spones . 428
spparms . 447
sprand . 428
sprandn . 428
sprandsym . 428
sprank . 448
spring . 588
sprintf . 222
spstats . 431
spy . 433
sqp . 493
sqrt . 354
sqrtm . 393
squeeze . 43
sscanf . 228
stairs . 244
stat . 631
statistics . 504
std . 501
stderr . 219
stdin . 218

stdnormal_cdf . 516
stdnormal_inv . 516
stdnormal_pdf . 516
stdnormal_rnd . 530
stdout . 218
stem . 244
stem3 . 245
stft . 578
str2double . 85
str2func . 177
str2num . 85
strcat . 68
strchr . 74
strcmp . 71
strcmpi . 71
strfind . 74
strftime . 621
string_fill_char . 65
strjust . 85
strmatch . 75
strncmp . 71
strncmpi . 72
strptime . 623
strread . 76
strrep . 78
strsplit . 76
strtok . 75
strtrim . 73
strtrunc . 73
struct . 98
struct_levels_to_print . 93
struct2cell . 101
structfun . 406
strvcat . 67
sub2ind . 126
subplot . 280
subsasgn . 600
subsindex . 602
subspace . 390
subsref . 599
substr . 78
substruct . 100
sum . 359
summer . 588
sumsq . 360
superiorto . 606
suppress_verbose_help_message 22
surf . 263
surface . 282
surfc . 263
surfl . 263
surfnorm . 264
svd . 390
svd_driver . 391
svds . 452
swapbytes . 38
syl . 393
symamd . 443

792 GNU Octave

symbfact . 448
symlink . 630
symrcm . 444
symvar . 179
synthesis . 579
system . 640

T
t_test . 523
t_test_2 . 523
t_test_regression . 523
table . 507
tan . 356
tand . 358
tanh . 357
tar . 637
tcdf . 516
tempdir . 636
tempname . 637
terminal_size . 204
test . 707
text . 278
textread . 215
textscan . 216
tic . 624
tilde_expand . 636
time . 619
times . 132
tinv . 516
title . 276
tmpfile . 233
tmpnam . 233
toascii . 86
toc . 624
toeplitz . 352
tolower . 86
toupper . 86
tpdf . 516
trace . 382
transpose . 132
trapz . 469
treelayout . 434
treeplot . 434
triangle_lw . 579
triangle_sw . 579
tril . 340
trimesh . 559
triplequad . 472
triplot . 559
trisurf . 560
triu . 340, 341
trnd . 531
true . 57
tsearch . 561
tsearchn . 561
type . 122
typecast . 37

typeinfo . 37

U
u_test . 523
uigetdir . 613
uigetfile . 613
uimenu . 291
uint16 . 52
uint32 . 52
uint64 . 52
uint8 . 52
uiputfile . 614
uiresume . 615
uiwait . 615
umask . 631
uminus . 132
uname . 651
undo_string_escapes . 86
unidcdf . 516
unidinv . 516
unidpdf . 516
unidrnd . 531
unifcdf . 517
unifinv . 517
unifpdf . 517
unifrnd . 531
union . 534
unique . 533
unix . 641
unlink . 630
unmkpp . 544
unpack . 638
untabify . 82
untar . 638
unwrap . 574
unzip . 638
uplus . 132
upper . 86
urlread . 639
urlwrite . 640
usage . 183
usejava . 653
usleep . 625

V
validatestring . 72
vander . 352
var . 501
var_test . 524
vec . 341
vech . 341
vectorize . 398
ver . 652
version . 652
vertcat . 337
view . 270

Function Index 793

voronoi . 563
voronoin . 563

W
waitbar . 614
waitfor . 615
waitforbuttonpress . 291
waitpid . 644
warning . 187
warranty . 21
wavread . 592
wavwrite . 592
wblcdf . 517
wblinv . 517
wblpdf . 517
wblrnd . 531
WCONTINUE . 645
WCOREDUMP . 645
weekday . 628
welch_test . 524
WEXITSTATUS . 645
what . 122
which . 122
white . 588
whitebg . 589
who . 118
whos . 118
whos_line_format . 119
wienrnd . 532
WIFCONTINUED . 645
WIFEXITED . 645

WIFSIGNALED . 645
WIFSTOPPED . 645
wilcoxon_test . 524
wilkinson . 352
winter . 588
WNOHANG . 646
WSTOPSIG . 646
WTERMSIG . 646
WUNTRACED . 646

X
xlabel . 278
xlim . 258
xor . 332

Y
yes_or_no . 208
ylabel . 278
ylim . 258
yulewalker . 579

Z
z_test . 525
z_test_2 . 525
zeros . 344
zip . 638
zlabel . 278
zlim . 258
zscore . 505

Operator Index 795

Operator Index

!
! . 134, 605
!= . 132, 133, 605

"
" . 40, 63

&
& . 134, 605
&& . 135

’
’ . 40, 63, 130, 605

(
(. 123

)
) . 123

*
* . 129, 131, 605
** . 130, 131
*= . 138

+
+ . 129, 130, 131, 132, 605
++ . 139
+= . 138

,
, . 46

-
- . 129, 130, 131, 132, 605
-- . 139
-= . 138

.

. 91

.’ . 130, 132, 605

.* . 129, 132, 605

.** . 130, 131

.+ . 129

./ . 129, 132, 605

.^ . 130, 131, 605

.\ . 130, 131, 605

/
/ . 129, 131, 605
/= . 138

:
: . 50, 123, 605

;
; . 46

<
< . 132, 133, 605
<= . 132, 133, 605

=
= . 137
== . 132, 133, 605

>
> . 132, 133, 605
>= . 132, 133, 605

[
[. 46

]
] . 46

^
^ . 130, 131, 605

{
{ . 102

}
} . 102

796 GNU Octave

\
\ . 129, 131, 605

|
| . 134, 605

|| . 135

~
~ . 134
~= . 132, 133, 605

	Preface
	Acknowledgements
	How You Can Contribute to Octave
	Distribution

	A Brief Introduction to Octave
	Running Octave
	Simple Examples
	Elementary Calculations
	Creating a Matrix
	Matrix Arithmetic
	Solving Systems of Linear Equations
	Integrating Differential Equations
	Producing Graphical Output
	Editing What You Have Typed
	Help and Documentation

	Conventions
	Fonts
	Evaluation Notation
	Printing Notation
	Error Messages
	Format of Descriptions
	A Sample Function Description
	A Sample Command Description
	A Sample Variable Description

	Getting Started
	Invoking Octave from the Command Line
	Command Line Options
	Startup Files

	Quitting Octave
	Commands for Getting Help
	Command Line Editing
	Cursor Motion
	Killing and Yanking
	Commands For Changing Text
	Letting Readline Type For You
	Commands For Manipulating The History
	Customizing readline
	Customizing the Prompt
	Diary and Echo Commands

	How Octave Reports Errors
	Executable Octave Programs
	Comments in Octave Programs
	Single Line Comments
	Block Comments
	Comments and the Help System

	Data Types
	Built-in Data Types
	Numeric Objects
	Missing Data
	String Objects
	Data Structure Objects
	Cell Array Objects

	User-defined Data Types
	Object Sizes

	Numeric Data Types
	Matrices
	Empty Matrices

	Ranges
	Single Precision Data Types
	Integer Data Types
	Integer Arithmetic

	Bit Manipulations
	Logical Values
	Promotion and Demotion of Data Types
	Predicates for Numeric Objects

	Strings
	Escape Sequences in String Constants
	Character Arrays
	Creating Strings
	Concatenating Strings
	Conversion of Numerical Data to Strings

	Comparing Strings
	Manipulating Strings
	String Conversions
	Character Class Functions

	Data Containers
	Structures
	Basic Usage and Examples
	Structure Arrays
	Creating Structures
	Manipulating Structures
	Processing Data in Structures

	Cell Arrays
	Basic Usage of Cell Arrays
	Creating Cell Array
	Indexing Cell Arrays
	Cell Arrays of Strings
	Processing Data in Cell Arrays

	Comma Separated Lists
	Comma Separated Lists Generated from Cell Arrays
	Comma Separated Lists Generated from Structure Arrays

	Variables
	Global Variables
	Persistent Variables
	Status of Variables

	Expressions
	Index Expressions
	Advanced Indexing

	Calling Functions
	Call by Value
	Recursion

	Arithmetic Operators
	Comparison Operators
	Boolean Expressions
	Element-by-element Boolean Operators
	Short-circuit Boolean Operators

	Assignment Expressions
	Increment Operators
	Operator Precedence

	Evaluation
	Calling a Function by its Name
	Evaluation in a Different Context

	Statements
	The if Statement
	The switch Statement
	Notes for the C Programmer

	The while Statement
	The do-until Statement
	The for Statement
	Looping Over Structure Elements

	The break Statement
	The continue Statement
	The unwind_protect Statement
	The try Statement
	Continuation Lines

	Functions and Scripts
	Defining Functions
	Multiple Return Values
	Variable-length Argument Lists
	Ignoring Arguments
	Variable-length Return Lists
	Returning from a Function
	Default Arguments
	Function Files
	Manipulating the Load Path
	Subfunctions
	Private Functions
	Overloading and Autoloading
	Function Locking
	Function Precedence

	Script Files
	Function Handles, Inline Functions, and Anonymous Functions
	Function Handles
	Anonymous Functions
	Inline Functions

	Commands
	Organization of Functions Distributed with Octave

	Errors and Warnings
	Handling Errors
	Raising Errors
	Catching Errors
	Recovering From Errors

	Handling Warnings
	Issuing Warnings
	Enabling and Disabling Warnings

	Debugging
	Entering Debug Mode
	Leaving Debug Mode
	Breakpoints
	Debug Mode
	Call Stack
	Profiling
	Profiler Example

	Input and Output
	Basic Input and Output
	Terminal Output
	Paging Screen Output

	Terminal Input
	Simple File I/O
	Saving Data on Unexpected Exits

	C-Style I/O Functions
	Opening and Closing Files
	Simple Output
	Line-Oriented Input
	Formatted Output
	Output Conversion for Matrices
	Output Conversion Syntax
	Table of Output Conversions
	Integer Conversions
	Floating-Point Conversions
	Other Output Conversions
	Formatted Input
	Input Conversion Syntax
	Table of Input Conversions
	Numeric Input Conversions
	String Input Conversions
	Binary I/O
	Temporary Files
	End of File and Errors
	File Positioning

	Plotting
	Introduction to Plotting
	High-Level Plotting
	Two-Dimensional Plots
	Axis Configuration
	Two-dimensional Function Plotting
	Two-dimensional Geometric Shapes

	Three-Dimensional Plots
	Aspect Ratio
	Three-dimensional Function Plotting
	Three-dimensional Geometric Shapes

	Plot Annotations
	Multiple Plots on One Page
	Multiple Plot Windows
	Use of axis, line, and patch functions
	Manipulation of plot windows
	Use of the interpreter Property
	Printing and Saving Plots
	Interacting with Plots
	Test Plotting Functions

	Graphics Data Structures
	Introduction to Graphics Structures
	Graphics Objects
	Handle Functions

	Graphics Object Properties
	Root Figure Properties
	Figure Properties
	Axes Properties
	Line Properties
	Text Properties
	Image Properties
	Patch Properties
	Surface Properties

	Searching Properties
	Managing Default Properties

	Advanced Plotting
	Colors
	Line Styles
	Marker Styles
	Callbacks
	Application-defined Data
	Object Groups
	Data Sources in Object Groups
	Area Series
	Bar Series
	Contour Groups
	Error Bar Series
	Line Series
	Quiver Group
	Scatter Group
	Stair Group
	Stem Series
	Surface Group

	Graphics Toolkits
	Customizing Toolkit Behavior

	Matrix Manipulation
	Finding Elements and Checking Conditions
	Rearranging Matrices
	Special Utility Matrices
	Famous Matrices

	Arithmetic
	Exponents and Logarithms
	Complex Arithmetic
	Trigonometry
	Sums and Products
	Utility Functions
	Special Functions
	Rational Approximations
	Coordinate Transformations
	Mathematical Constants

	Linear Algebra
	Techniques Used for Linear Algebra
	Basic Matrix Functions
	Matrix Factorizations
	Functions of a Matrix
	Specialized Solvers

	Vectorization and Faster Code Execution
	Basic Vectorization
	Broadcasting
	Broadcasting and Legacy Code

	Function Application
	Accumulation
	Miscellaneous Techniques
	Examples

	Nonlinear Equations
	Solvers
	Minimizers

	Diagonal and Permutation Matrices
	Creating and Manipulating Diagonal and Permutation Matrices
	Creating Diagonal Matrices
	Creating Permutation Matrices
	Explicit and Implicit Conversions

	Linear Algebra with Diagonal and Permutation Matrices
	Expressions Involving Diagonal Matrices
	Expressions Involving Permutation Matrices

	Functions That Are Aware of These Matrices
	Diagonal Matrix Functions
	Permutation Matrix Functions

	Some Examples of Usage
	The Differences in Treatment of Zero Elements

	Sparse Matrices
	The Creation and Manipulation of Sparse Matrices
	Storage of Sparse Matrices
	Creating Sparse Matrices
	Finding out Information about Sparse Matrices
	Basic Operators and Functions on Sparse Matrices
	Sparse Functions
	The Return Types of Operators and Functions
	Mathematical Considerations

	Linear Algebra on Sparse Matrices
	Iterative Techniques applied to sparse matrices
	Real Life Example of the use of Sparse Matrices

	Numerical Integration
	Functions of One Variable
	Orthogonal Collocation
	Functions of Multiple Variables

	Differential Equations
	Ordinary Differential Equations
	Differential-Algebraic Equations

	Optimization
	Linear Programming
	Quadratic Programming
	Nonlinear Programming
	Linear Least Squares

	Statistics
	Descriptive Statistics
	Basic Statistical Functions
	Statistical Plots
	Correlation and Regression Analysis
	Distributions
	Tests
	Random Number Generation

	Sets
	Set Operations

	Polynomial Manipulations
	Evaluating Polynomials
	Finding Roots
	Products of Polynomials
	Derivatives / Integrals / Transforms
	Polynomial Interpolation
	Miscellaneous Functions

	Interpolation
	One-dimensional Interpolation
	Multi-dimensional Interpolation

	Geometry
	Delaunay Triangulation
	Plotting the Triangulation
	Identifying Points in Triangulation

	Voronoi Diagrams
	Convex Hull
	Interpolation on Scattered Data

	Signal Processing
	Image Processing
	Loading and Saving Images
	Displaying Images
	Representing Images
	Plotting on top of Images
	Color Conversion

	Audio Processing
	Object Oriented Programming
	Creating a Class
	Manipulating Classes
	Indexing Objects
	Defining Indexing And Indexed Assignment
	Indexed Assignment Optimization

	Overloading Objects
	Function Overloading
	Operator Overloading
	Precedence of Objects

	Inheritance and Aggregation

	GUI Development
	I/O Dialogs
	Progress Bar
	GUI Utility Functions
	User-Defined Preferences

	System Utilities
	Timing Utilities
	Filesystem Utilities
	File Archiving Utilities
	Networking Utilities
	FTP Objects
	URL Manipulation

	Controlling Subprocesses
	Process, Group, and User IDs
	Environment Variables
	Current Working Directory
	Password Database Functions
	Group Database Functions
	System Information
	Hashing Functions

	Packages
	Installing and Removing Packages
	Using Packages
	Administrating Packages
	Creating Packages
	The DESCRIPTION File
	The INDEX File
	PKG_ADD and PKG_DEL Directives

	Dynamically Linked Functions
	Oct-Files
	Getting Started with Oct-Files
	Matrices and Arrays in Oct-Files
	Character Strings in Oct-Files
	Cell Arrays in Oct-Files
	Structures in Oct-Files
	Sparse Matrices in Oct-Files
	The Differences between the Array and Sparse Classes
	Creating Sparse Matrices in Oct-Files
	Using Sparse Matrices in Oct-Files

	Accessing Global Variables in Oct-Files
	Calling Octave Functions from Oct-Files
	Calling External Code from Oct-Files
	Allocating Local Memory in Oct-Files
	Input Parameter Checking in Oct-Files
	Exception and Error Handling in Oct-Files
	Documentation and Test of Oct-Files

	Mex-Files
	Getting Started with Mex-Files
	Working with Matrices and Arrays in Mex-Files
	Character Strings in Mex-Files
	Cell Arrays with Mex-Files
	Structures with Mex-Files
	Sparse Matrices with Mex-Files
	Calling Other Functions in Mex-Files

	Standalone Programs

	Test and Demo Functions
	Test Functions
	Demonstration Functions

	Tips and Standards
	Writing Clean Octave Programs
	Tips on Writing Comments
	Conventional Headers for Octave Functions
	Tips for Documentation Strings

	Contributing Guidelines
	How to Contribute
	Building the Development Sources
	Basics of Generating a Changeset
	General Guidelines
	Octave Sources (m-files)
	C++ Sources
	Other Sources

	Obsolete Functions
	Known Causes of Trouble
	Actual Bugs We Haven't Fixed Yet
	Reporting Bugs
	Have You Found a Bug?
	Where to Report Bugs
	How to Report Bugs
	Sending Patches for Octave

	How To Get Help with Octave

	Installing Octave
	Build Dependencies
	Tips for Specific Systems
	Build Tools
	External Packages

	Running Configure and Make
	Compiling Octave with 64-bit Indexing
	Installation Problems

	Emacs Octave Support
	Installing EOS
	Using Octave Mode
	Running Octave from Within Emacs
	Using the Emacs Info Reader for Octave

	Grammar and Parser
	Keywords
	Parser

	GNU GENERAL PUBLIC LICENSE
	Concept Index
	Function Index
	Operator Index

