Mobile Manager Reference Guide

Open Source GPRS/3G device management

COPYRIGHT Telefénica Méviles Espana 2008



Mobile Manager Reference

1 Mobile Manager desCription. ... ..o 2
2 Mobile Manager dbUS SEIVICE......oiuuiii e 3
2.1 Manager objeCt INtErfaCeS. . ...iie i 3
2.1.1 Controller InterfaCe......couiiiii 3
2.1.1.1 Interface desCription......ccoiiiiiiiii e 3
2.1.1.2 MetNOAS ..oniiiiiii 3
2.1.1.3 SigNalS. e 4
2.1.2 Dialer Interface. .o 8
2.1.2.1 Interface desCription......cccoiiiiiii 8
2.1.2.2 MEtNOAS ..oeiiii i 8
2.1.2.3 SigNalS. e 8

2.2 Device objeCt INterfaCeS. .. 9
2.2.1 DeVviceAuth INterfacCe......oiiiiii 9
2.2.1.1 Interface desCription.......ccoiiiiiiiiiii 9
2.2.1.2 MetNOAS. . e 9
2.2.2 Devicelnfo Interface. ..o 10
2.2.2.1 Interface desCription.......coiiiiiiiiiii 10
2.2.2.2 MEtNOAS . oeiiiiii 11
2.2.3 DeviceState Interface.. ..o 12
2.2.3.1 Interface desCription.......coiiiiiiiiii 12
2.2.3.2 MEENOAS ..oniiiiii e 12
2.2.4 DeviceXZone INnterface. ... 15
2.2.4.1 MEENOAS . ceiieiii e 15

1 Mobile Manager description

Mobile Manager is an abstraction layer for GPRS and 3G devices. It launches,
manages and takes statistics of GPRS and 3G connections.

lts main features are:

e Plug & Play device support. Your GPRS/3G devices are automatically
detected and configured.

e PIN/PUK management. Mobile Manager will take care about
authentication, code changes, card activations, etc.

e Device status control and card information. Is it attached? Is it on?
Configured? Ready? You can also know about carrier selection, network
information, signal strength...

e Connection establishment and control.

It is engineered as a Dbus service. It creates a Dbus object when a new device
is connected, and automatically destroy it when the device is removed. It is
also event based, so you can handle different signals and connect them to your

apps.



2 Mobile Manager dbus service
2.1 Manager object interfaces

2.1.1 Controller Interface

2.1.1.1 Interface description

The controller detects any mobile device inserted in your system and configure
it if it's supported.

There are two groups of signals, emitted by the active device and emitted by
all devices. The controller

always has active device that it's the device by default. You can change it with
the controller API.

2.1.1.2 Methods

GetAvailableDevices() -> (ao)
Return:

(ao) -> an array of dbus objects representing all devices detected by Mobile
Manager

FromDevldGetObject(s: dev _id) -> (o)
dev_id : represent the id of the device
Return:
(o) -> a dbus object representing the device referenced by dev _id

GetActiveDevice() -> (0)
Return:
(o) -> a dbus object representing the active device

SetActiveDevice(s: device _obj path) -> (b)
device_obj path : The device object path will be the active device
Return :

(b) -> True if the action has been successful, False if there was an error.



2.1.1.3 Signals

ActiveDevCardStatusChanged(i: status)

Desc : Emitted when the status of the active device has changed

~> status :
CARD_STATUS ERROR = -1
CARD_STATUS NO DETECTED =0
CARD_STATUS DETECTED = 10
CARD_STATUS _CONFIGURED = 20
CARD_STATUS NO SIM = 25
CARD_STATUS PIN REQUIRED = 30
CARD_STATUS PUK REQUIRED = 40
CARD_STATUS OFF = 50
CARD_STATUS ATTACHING = 60
CARD_STATUS READY = 70

ActiveDevTechStatusChanged(i: status)
Desc : Emitted when the card technology of the active device has changed
~> status :

CARD TECH GSM =0

CARD _TECH_GSM _COMPACT =1

CARD TECH _UMTS = 2

CARD TECH HSPA =3

ActiveDevModeStatusChanged(i: status)

Desc : Emitted when the card mode of the active device has changed

~> status :
CARD_TECH_SELECTION GPRS =0
CARD_TECH_SELECTION UMTS =1
CARD_TECH_SELECTION_GRPS_PREFERED = 2
CARD_TECH_SELECTION_UMTS PREFERED = 3
CARD_TECH _SELECTION_NO CHANGE = 4
CARD_TECH_SELECTION_AUTO =5

ActiveDevDomainStatusChanged(i: status)
Desc : Emitted when the domain of the active device has changed



~> status :
CARD _DOMAIN CS =0
CARD _DOMAIN PS =1
CARD_DOMAIN _CS PS =2
CARD_DOMAIN_ANY =4

ActiveDevSignalStatusChanged(i: status)
Desc : Emitted when the signal level of the active device has changed
~> status : signal level of the active device

ActiveDevPinActStatusChanged(b: status)
Desc : Emitted when the PIN activation status of the active device has changed
~> status : True if PIN is activate , False when it's deactivate

ActiveDevRoamingActStatusChanged(b: status)
Desc : Emitted when the active device is in roaming
~> status : True if device is in roaming , False it's not.

ActiveDevCarrierChanged(s: carrier name)
Desc : Emitted when the carrier name of the active device has changed
~> carrier : Carrier name

ActiveDevCarrierSmStatusChanged(i: status)

ActiveDevXZoneChanged(s: xzone_name)

DevCardStatusChanged(s: device, i: status)
Desc : Emitted when the status any device has changed
~> device : the device id
~> status :
CARD_STATUS ERROR = -1
CARD_STATUS NO DETECTED =0
CARD _STATUS DETECTED = 10
CARD_STATUS CONFIGURED = 20
CARD_STATUS NO SIM = 25
CARD_STATUS PIN_REQUIRED = 30



CARD_STATUS_PUK_REQUIRED = 40
CARD_STATUS OFF = 50
CARD_STATUS_ATTACHING = 60
CARD_STATUS READY = 70

DevTechStatusChanged(s: device, i: status)
Desc : Emitted when the card technology of any active device has changed
~> device : the device id
~> status :
CARD TECH GSM =0
CARD _TECH GSM _COMPACT =1
CARD TECH UMTS =2
CARD TECH _HSPA = 3

DevModeStatusChanged(s: device, i: status)
Desc : Emitted when the card mode of any device has changed
~> device : the device id
~> status :
CARD_TECH_SELECTION _GPRS =0
CARD_TECH_SELECTION UMTS =1
CARD TECH_SELECTION_GRPS PREFERED = 2
CARD_TECH_SELECTION_UMTS PREFERED = 3
CARD_TECH _SELECTION_NO CHANGE = 4
CARD TECH_SELECTION_AUTO =5

DevDomainStatusChanged(s: device, i: status)
Desc : Emitted when the domain of any device has changed
~> device : the device id
~> status :
CARD DOMAIN CS =0
CARD DOMAIN PS =1
CARD DOMAIN CS PS =2
CARD DOMAIN_ANY =4

DevSignalStatusChanged(s: device, i: status)
Desc : Emitted when the signal level of any device has changed



~> device : the device id
~> status : signal level of the active device

DevPinActStatusChanged(s: device, b: status)

Desc : Emitted when the PIN activation status of any device has changed
~> device : the device id

~> status : True if PIN is activate , False when it's deactivate

DevRoamingActStatusChanged(s: device, b: status)
Desc : Emitted when any device is in roaming

~> device : the device id

~> status : True if device is in roaming , False it's not.

DevCarrierChanged(s: device, s: carrier_name)

Desc : Emitted when the carrier name of any device has changed
~> device : the device id

~> carrier : Carrier name

DevCarrierSmStatusChanged(s: device, i: status)
~> device : The device id
~> status :

DevXZoneChanged(s: device, s: xzone_name)
~> device : The device id
~> Xxzone_name : The xzone nhame

ActiveDeviceChanged(s: device)
Desc : Emitted when any device has changed
~> device : The device id

AddedDevice(s: device)
Desc : Emitted when a device is added to mobile manager device list
~> device : The device id

RemovedDevice (s: device)
Desc : Emitted when a device is removed from mobile manager device list



~> device : The device id

SupportedDeviceDetected (s: device)

Desc : Emitted when a device is detected by mobile manager and it's
supported.

~> device : The device id
2.1.2 Dialer Interface

2.1.2.1 Interface description

This interface is a wrapper of ppp management tasks. With this interface is
possible start/stop a ppp connection using the active device of Mobile Manager
by default and receive events about it status.

2.1.2.2 Methods

Start (s: username, s: password, s: apn, b: auto_dns, s: primary_dns, s:
secundary_dns, s: dns_suffixes)

Desc : Start a ppp connection with params

username : username string. If there isn't username send "
password: password string . If there isn't password send "
auto_dns: True : use peer dns's , False: use parameters information
primary_dns: primary dns. If there isn't primary dns send "
secundary_dns: primary dns. If there isn't secundary dns send "
dns_suffixes: dns suffixes. If there isn't dns suffixes send "

Stop ()
Desc : Stop the ppp connection

Status () -> (i)
Desc : Status of the ppp connection

Return :
-> 0 Disconnected, 1 Connected, 2 Connecting, 3 Disconnecting

2.1.2.3 Signals

Connected ()



Connecting ()

Disconnected ()

Disconnecting ()

Stats (i: recv_bytes, i: sent_bytes, d: interval_time)
Desc : Report ppp connection stats

~> recv_bytes : Received bytes in "interval_time"
~> sent_bytes : Sent bytes in "interval_time"

~> interval_time : Interval time

2.2 Device object interfaces

2.2.1 DeviceAuth Interface

2.2.1.1 Interface description

This interface helps to the developer with the PIN/PUK management

2.2.1.2 Methods

SendPIN(s: pin) -> (b)
Desc : Send the PIN code to the device
pin : PIN code
Return :
(b) : True if the action has been successful, False if there was an error.

SetPIN(s: old pin, s: new _pin) -> (b)
Desc : Set new PIN to the SIM card
old_pin : Old PIN code

new_pin : New PIN code



Return :
(b) : True if the action has been successful, False if there was an error.

SetPINActive(s: pin, b: active) -> (b)
Desc : Active/Deactive PIN in the SIM card
pin :
active :
Return :
(b) : True if the action has been successful, False if there was an error.

IsPINActive() -> (b)
Desc : Report the PIN activation status
Return :

(b) : True is active, False is deactive

PINStatus() -> (i)
Return : Report the PIN Status
(i) :

PIN_STATUS WAITING PIN =1
PIN_STATUS WAITING PUK = 2
PIN_STATUS READY = 3
PIN_STATUS NO SIM = 4
PIN_STATUS SIM FAILURE =5

SendPUK(s: puk, s: pin) -> (b)
Desc : Send PUK code to the SIM card
puk : PUK code
pin : PIN code
Return :
(b) : True if the action has been successful, False if there was an error.

2.2.2 Devicelnfo Interface



2.2.2.1 Interface description

This interface report information to the developer about the device.

2.2.2.2 Methods

GetCapabilities() -> (as)

Desc : Each device has its own capabilities. These capabilities determine the
access to the interfaces .

Some devices, as bluetooth or serial port, hasn't Auth management interface or
Xzone interface, for example.

Return :

(as) : Array with the capabilities list. Each capability is returned in dbus URI
format.

HasCapability(s: capability) -> (b)
capability : Capability
Return :
(b) True if the device has this capability, False if hasn't it.

GetDataDevicePath() -> (s)
Return :
(s) : Return the data device port used for establish the ppp connection

GetConfDevicePath() -> (s)
Return :

(s) : Return the conf device port used for communicate with the device with
AT commands

GetVelocity() -> (i)
Return :

(s) : Return the device velocity

SetVelocity(i: velocity)
velocity : Velocity

GetHardwareFlowControl() -> (b)



Return :
(b) : True/False if has/hasn't hardware flow control

SetHardwareFlowControl(b: value)
value : True/False if you want active/deactive hardware flow control

GetHardwareErrorControl() -> (b)
Return :
(b) : True/False if has/hasn't hardware error control

SetHardwareErrorControl(b: value)
value : True/False if you want active/deactive hardware error control

GetHardwareCompress() -> (b)
Return :
(b) : True/False if has/hasn't hardware compress

SetHardwareCompress(b: value)
value : True/False if you want active/deactive hardware compress

GetPrettyName() -> (s)
Return :

(s) : Return the device pretty name
GetPriority() -> (i)

Return :
(i) : Return the device priority

2.2.3 DeviceState Interface

2.2.3.1 Interface description

This interface report information about the state of the device.



2.2.3.2 Methods

EmitStatusSignals()

Desc : Mobile manager emit again all status signals. Useful when you star up
your client and need

all status information.

GetSingal() -> (i)
Desc : Get the device signal level.
Return :

(i) : Return the signal level

GetCarrierlList() -> (a(isssi)aiai)

Desc : (ASYNC method) GetCarrierList return all information about the carriers
that your device

has detected.

Return :
a(isssi) : Array with carrier informations
ai : Supported modes
ai : Supported formats

GetCarrier() -> (s)
Return :
(s) : Return the carrier name

IsOn() -> (b)
Return :
(b) : True/False if the device is on/off.

TurnOn() -> (b)
Return :
(b) : True/False if the device is turn on/off.

TurnOff() -> (b)
Return :
(b) : True/False if the device is turn off/on.



GetNetInfo() -> (iiisi)
Desc : GetNetInfo return network informations
Return :

(i) : Tech in use

(i) : Card mode

(i) : Card domain

(s) : Carrier

(i) : Carrier mode

GetModeDomain() -> (ii)
Return :

(i) : Card mode

(i) : Card domain

SetModeDomain(i: mode, i: domain) -> (b)
mode : Card mode
domain : Card domain
Return :
(b) : True if the action has been successful

GetCardiInfo() -> (as)
Desc : GetCardInfo return the information reported by the device about itself.
Return :

(as) : An array of strings return from ATI command

GetCardStatus() -> (i)

Desc : Return the device status

Return :

(i) : CARD_STATUS ERROR = -1

CARD_STATUS NO DETECTED =0
CARD _STATUS DETECTED = 10
CARD_STATUS CONFIGURED = 20
CARD_STATUS NO SIM = 25
CARD_STATUS PIN_REQUIRED = 30



CARD_STATUS_PUK_REQUIRED = 40
CARD_STATUS OFF = 50
CARD_STATUS_ATTACHING = 60
CARD_STATUS READY = 70

SetCarrier(i: carrier_id, i: tech) -> (b)
carrier_id : carried id
tech : tech
Return:
(b) : True if the action has been successful

SetCarrierAutoSelection() -> (b)
Desc : Set the device in auto selection mode.
Return :

(b) : True if the action has been successful

IsCarrierAuto() -> (b)
Return:
(b) : True if the device is in auto selection mode

IsAttached() -> (b)
Return:
(b) : True if the device is attached to any network

GetAttachState() -> (i)
Return:

(i) :
IsRoaming() -> (b)

Return :
(b) : True if the device is roaming.

2.2.4 DeviceXZone Interface



2.2.4.1 Methods

GetXZone() -> (s)
Return :
(s) : Zone name



	1Mobile Manager description
	2Mobile Manager dbus service
	2.1Manager object interfaces
	2.1.1Controller Interface
	2.1.1.1Interface description
	2.1.1.2Methods 
	2.1.1.3Signals

	2.1.2Dialer Interface
	2.1.2.1Interface description
	2.1.2.2Methods 
	2.1.2.3Signals


	2.2Device object interfaces
	2.2.1DeviceAuth Interface
	2.2.1.1Interface description
	2.2.1.2Methods

	2.2.2DeviceInfo Interface
	2.2.2.1Interface description
	2.2.2.2Methods 

	2.2.3DeviceState Interface
	2.2.3.1Interface description
	2.2.3.2Methods 

	2.2.4DeviceXZone Interface
	2.2.4.1Methods 




