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CHAPTER 7

Logistic Regression and Generalized Linear
Models: Blood Screening, Women’s Role in
Society, Colonic Polyps, Driving and Back

Pain, and Happiness in China

7.1 Introduction

7.2 Logistic Regression and Generalized Linear Models

7.3 Analysis Using R

7.3.1 ESR and Plasma Proteins

We can now fit a logistic regression model to the data using the glm func-
tion. We start with a model that includes only a single explanatory variable,
fibrinogen. The code to fit the model is

R> plasma_glm_1 <- glm(ESR ~ fibrinogen, data = plasma,

+ family = binomial())

The formula implicitly defines a parameter for the global mean (the intercept
term) as discussed in Chapter 5 and Chapter 6. The distribution of the re-
sponse is defined by the family argument, a binomial distribution in our case.
(The default link function when the binomial family is requested is the logistic
function.)

From the results in Figure 7.2 we see that the regression coefficient for
fibrinogen is significant at the 5% level. An increase of one unit in this variable
increases the log-odds in favor of an ESR value greater than 20 by an estimated
1.83 with 95% confidence interval

R> confint(plasma_glm_1, parm = "fibrinogen")

2.5 % 97.5 %

0.339 3.998

These values are more helpful if converted to the corresponding values for the
odds themselves by exponentiating the estimate

R> exp(coef(plasma_glm_1)["fibrinogen"])

fibrinogen

6.22

and the confidence interval

R> exp(confint(plasma_glm_1, parm = "fibrinogen"))

3
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R> data("plasma", package = "HSAUR3")

R> layout(matrix(1:2, ncol = 2))

R> cdplot(ESR ~ fibrinogen, data = plasma)

R> cdplot(ESR ~ globulin, data = plasma)
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Figure 7.1 Conditional density plots of the erythrocyte sedimentation rate (ESR)
given fibrinogen and globulin.

2.5 % 97.5 %

1.4 54.5

The confidence interval is very wide because there are few observations overall
and very few where the ESR value is greater than 20. Nevertheless it seems
likely that increased values of fibrinogen lead to a greater probability of an
ESR value greater than 20.
We can now fit a logistic regression model that includes both explanatory

variables using the code

R> plasma_glm_2 <- glm(ESR ~ fibrinogen + globulin,

+ data = plasma, family = binomial())

and the output of the summary method is shown in Figure 7.3.
The coefficient for gamma globulin is not significantly different from zero.

Subtracting the residual deviance of the second model from the corresponding
value for the first model we get a value of 1.87. Tested using a χ2-distribution
with a single degree of freedom this is not significant at the 5% level and so
we conclude that gamma globulin is not associated with ESR level. In R, the
task of comparing the two nested models can be performed using the anova

function
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R> summary(plasma_glm_1)

Call:

glm(formula = ESR ~ fibrinogen, family = binomial(), data = plasma)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.845 2.770 -2.47 0.013

fibrinogen 1.827 0.901 2.03 0.043

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 30.885 on 31 degrees of freedom

Residual deviance: 24.840 on 30 degrees of freedom

AIC: 28.84

Number of Fisher Scoring iterations: 5

Figure 7.2 R output of the summary method for the logistic regression model fitted
to ESR and fibrigonen.

R> summary(plasma_glm_2)

Call:

glm(formula = ESR ~ fibrinogen + globulin, family = binomial(),

data = plasma)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.792 5.796 -2.21 0.027

fibrinogen 1.910 0.971 1.97 0.049

globulin 0.156 0.120 1.30 0.193

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 30.885 on 31 degrees of freedom

Residual deviance: 22.971 on 29 degrees of freedom

AIC: 28.97

Number of Fisher Scoring iterations: 5

Figure 7.3 R output of the summary method for the logistic regression model fitted
to ESR and both globulin and fibrinogen.

R> anova(plasma_glm_1, plasma_glm_2, test = "Chisq")

Analysis of Deviance Table

Model 1: ESR ~ fibrinogen

Model 2: ESR ~ fibrinogen + globulin

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 30 24.8

2 29 23.0 1 1.87 0.17

Nevertheless we shall use the predicted values from the second model and plot
them against the values of both explanatory variables using a bubbleplot to
illustrate the use of the symbols function. The estimated conditional proba-
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R> plot(globulin ~ fibrinogen, data = plasma, xlim = c(2, 6),

+ ylim = c(25, 55), pch = ".")

R> symbols(plasma$fibrinogen, plasma$globulin, circles = prob,

+ add = TRUE)
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Figure 7.4 Bubbleplot of fitted values for a logistic regression model fitted to the
plasma data.

bility of a ESR value larger 20 for all observations can be computed, following
formula (??), by

R> prob <- predict(plasma_glm_2, type = "response")

and now we can assign a larger circle to observations with larger probability
as shown in Figure 7.4. The plot clearly shows the increasing probability of
an ESR value above 20 (larger circles) as the values of fibrinogen, and to a
lesser extent, gamma globulin, increase.
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7.3.2 Women’s Role in Society

Originally the data in Table ?? would have been in a completely equivalent
form to the data in Table ?? data, but here the individual observations have
been grouped into counts of numbers of agreements and disagreements for the
two explanatory variables, gender and education. To fit a logistic regression
model to such grouped data using the glm function we need to specify the
number of agreements and disagreements as a two-column matrix on the left-
hand side of the model formula. We first fit a model that includes the two
explanatory variables using the code

R> data("womensrole", package = "HSAUR3")

R> fm1 <- cbind(agree, disagree) ~ gender + education

R> womensrole_glm_1 <- glm(fm1, data = womensrole,

+ family = binomial())

R> summary(womensrole_glm_1)

Call:

glm(formula = fm1, family = binomial(), data = womensrole)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.5094 0.1839 13.65 <2e-16

genderFemale -0.0114 0.0841 -0.14 0.89

education -0.2706 0.0154 -17.56 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 451.722 on 40 degrees of freedom

Residual deviance: 64.007 on 38 degrees of freedom

AIC: 208.1

Number of Fisher Scoring iterations: 4

Figure 7.5 R output of the summary method for the logistic regression model fitted
to the womensrole data.

From the summary output in Figure 7.5 it appears that education has a
highly significant part to play in predicting whether a respondent will agree
with the statement read to them, but the respondent’s gender is apparently
unimportant. As years of education increase the probability of agreeing with
the statement declines. We now are going to construct a plot comparing the
observed proportions of agreeing with those fitted by our fitted model. Because
we will reuse this plot for another fitted object later on, we define a function
which plots years of education against some fitted probabilities, e.g.,

R> role.fitted1 <- predict(womensrole_glm_1, type = "response")

and labels each observation with the person’s gender:

1 R> myplot <- function(role.fitted) {

2 + f <- womensrole$gender == "Female"

3 + plot(womensrole$education, role.fitted, type = "n",
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4 + ylab = "Probability of agreeing",

5 + xlab = "Education", ylim = c(0,1))

6 + lines(womensrole$education[!f], role.fitted[!f], lty = 1)

7 + lines(womensrole$education[f], role.fitted[f], lty = 2)

8 + lgtxt <- c("Fitted (Males)", "Fitted (Females)")

9 + legend("topright", lgtxt, lty = 1:2, bty = "n")

10 + y <- womensrole$agree / (womensrole$agree +

11 + womensrole$disagree)

12 + size <- womensrole$agree + womensrole$disagree

13 + size <- size - min(size)

14 + size <- (size / max(size)) * 3 + 1

15 + text(womensrole$education, y, ifelse(f, "\\VE", "\\MA"),

16 + family = "HersheySerif", cex = size)

17 + }

In lines 3–5 of function myplot, an empty scatterplot of education and fitted
probabilities (type = "n") is set up, basically to set the scene for the following
plotting actions. Then, two lines are drawn (using function lines in lines 6
and 7), one for males (with line type 1) and one for females (with line type
2, i.e., a dashed line), where the logical vector f describes both genders. In
line 9 a legend is added. Finally, in lines 12 onwards we plot ‘observed’ values,
i.e., the frequencies of agreeing in each of the groups (y as computed in lines
10 and 11) and use the Venus and Mars symbols to indicate gender. The size
of the plotted symbol is proportional to the numbers of observations in the
corresponding group of gender and years of education.
The two curves for males and females in Figure 7.6 are almost the same

reflecting the non-significant value of the regression coefficient for gender in
womensrole_glm_1. But the observed values plotted on Figure 7.6 suggest
that there might be an interaction of education and gender, a possibility that
can be investigated by applying a further logistic regression model using

R> fm2 <- cbind(agree,disagree) ~ gender * education

R> womensrole_glm_2 <- glm(fm2, data = womensrole,

+ family = binomial())

The gender and education interaction term is seen to be highly significant,
as can be seen from the summary output in Figure 7.7.
We can obtain a plot of deviance residuals plotted against fitted values using

the following code above Figure 7.9. The residuals fall into a horizontal band
between −2 and 2. This pattern does not suggest a poor fit for any particular
observation or subset of observations.

7.3.3 Colonic Polyps

The data on colonic polyps in Table ?? involves count data. We could try to
model this using multiple regression but there are two problems. The first is
that a response that is a count can take only positive values, and secondly
such a variable is unlikely to have a normal distribution. Instead we will apply
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R> myplot(role.fitted1)
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Figure 7.6 Fitted (from womensrole_glm_1) and observed probabilities of agreeing
for the womensrole data. The size of the symbols is proportional to the
sample size.

a GLM with a log link function, ensuring that fitted values are positive, and
a Poisson error distribution, i.e.,

P(y) =
e−λλy

y!
.

This type of GLM is often known as Poisson regression. We can apply the
model using

R> data("polyps", package = "HSAUR3")

R> polyps_glm_1 <- glm(number ~ treat + age, data = polyps,

+ family = poisson())



10 LOGISTIC REGRESSION AND GENERALIZED LINEAR MODELS

R> summary(womensrole_glm_2)

Call:

glm(formula = fm2, family = binomial(), data = womensrole)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.0982 0.2355 8.91 <2e-16

genderFemale 0.9047 0.3601 2.51 0.0120

education -0.2340 0.0202 -11.59 <2e-16

genderFemale:education -0.0814 0.0311 -2.62 0.0089

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 451.722 on 40 degrees of freedom

Residual deviance: 57.103 on 37 degrees of freedom

AIC: 203.2

Number of Fisher Scoring iterations: 4

Figure 7.7 R output of the summary method for the logistic regression model fitted
to the womensrole data.

(The default link function when the Poisson family is requested is the log
function.)

We can deal with overdispersion by using a procedure known as quasi-

likelihood, which allows the estimation of model parameters without fully
knowing the error distribution of the response variable. McCullagh and Nelder
(1989) give full details of the quasi-likelihood approach. In many respects it
simply allows for the estimation of φ from the data rather than defining it
to be unity for the binomial and Poisson distributions. We can apply quasi-
likelihood estimation to the colonic polyps data using the following R code

R> polyps_glm_2 <- glm(number ~ treat + age, data = polyps,

+ family = quasipoisson())

R> summary(polyps_glm_2)

Call:

glm(formula = number ~ treat + age, family = quasipoisson(),

data = polyps)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.5290 0.4811 9.41 3.7e-08

treatdrug -1.3591 0.3853 -3.53 0.0026

age -0.0388 0.0195 -1.99 0.0628

(Dispersion parameter for quasipoisson family taken to be 10.7)

Null deviance: 378.66 on 19 degrees of freedom

Residual deviance: 179.54 on 17 degrees of freedom

AIC: NA
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R> role.fitted2 <- predict(womensrole_glm_2, type = "response")

R> myplot(role.fitted2)
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Figure 7.8 Fitted (from womensrole_glm_2) and observed probabilities of agreeing
for the womensrole data.

Number of Fisher Scoring iterations: 5

The regression coefficients for both explanatory variables remain significant
but their estimated standard errors are now much greater than the values
given in Figure 7.10. A possible reason for overdispersion in these data is that
polyps do not occur independently of one another, but instead may ‘cluster’
together.

7.3.4 Driving and Back Pain

A frequently used design in medicine is the matched case-control study in
which each patient suffering from a particular condition of interest included
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R> res <- residuals(womensrole_glm_2, type = "deviance")

R> plot(predict(womensrole_glm_2), res,

+ xlab="Fitted values", ylab = "Residuals",

+ ylim = max(abs(res)) * c(-1,1))

R> abline(h = 0, lty = 2)
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Figure 7.9 Plot of deviance residuals from logistic regression model fitted to the
womensrole data.

in the study is matched to one or more people without the condition. The most
commonly used matching variables are age, ethnic group, mental status, etc.
A design with m controls per case is known as a 1 : m matched study. In many
cases m will be one, and it is the 1 : 1 matched study that we shall concentrate
on here where we analyze the data on low back pain given in Table ??. To
begin we shall describe the form of the logistic model appropriate for case-
control studies in the simplest case where there is only one binary explanatory
variable.
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R> summary(polyps_glm_1)

Call:

glm(formula = number ~ treat + age, family = poisson(), data = polyps)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.52902 0.14687 30.84 <2e-16

treatdrug -1.35908 0.11764 -11.55 <2e-16

age -0.03883 0.00596 -6.52 7e-11

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 378.66 on 19 degrees of freedom

Residual deviance: 179.54 on 17 degrees of freedom

AIC: 273.9

Number of Fisher Scoring iterations: 5

Figure 7.10 R output of the summarymethod for the Poisson regression model fitted
to the polyps data.

With matched pairs data the form of the logistic model involves the proba-
bility, ϕ, that in matched pair number i, for a given value of the explanatory
variable the member of the pair is a case. Specifically the model is

logit(ϕi) = αi + βx.

The odds that a subject with x = 1 is a case equals exp(β) times the odds
that a subject with x = 0 is a case.

The model generalizes to the situation where there are q explanatory vari-
ables as

logit(ϕi) = αi + β1x1 + β2x2 + . . . βqxq.

Typically one x is an explanatory variable of real interest, such as past
exposure to a risk factor, with the others being used as a form of statistical
control in addition to the variables already controlled by virtue of using them
to form matched pairs. This is the case in our back pain example where it is
the effect of car driving on lower back pain that is of most interest.
The problem with the model above is that the number of parameters in-

creases at the same rate as the sample size with the consequence that maxi-
mum likelihood estimation is no longer viable. We can overcome this problem
if we regard the parameters αi as of little interest and so are willing to forgo
their estimation. If we do, we can then create a conditional likelihood function

that will yield maximum likelihood estimators of the coefficients, β1, . . . , βq,
that are consistent and asymptotically normally distributed. The mathematics
behind this are described in Collett (2003).

The model can be fitted using the clogit function from package survival;
the results are shown in Figure 7.11.

R> library("survival")
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R> backpain_glm <- clogit(I(status == "case") ~

+ driver + suburban + strata(ID), data = backpain)

The response has to be a logical (TRUE for cases) and the strata command
specifies the matched pairs.

R> print(backpain_glm)

Call:

clogit(I(status == "case") ~ driver + suburban + strata(ID),

data = backpain)

coef exp(coef) se(coef) z p

driveryes 0.7 1.9 0.3 2 0.03

suburbanyes 0.3 1.3 0.2 1 0.26

Likelihood ratio test=10 on 2 df, p=0.008

n= 434, number of events= 217

Figure 7.11 R output of the print method for the conditional logistic regression
model fitted to the backpain data.

The estimate of the odds ratio of a herniated disc occurring in a driver
relative to a nondriver is 1.93 with a 95% confidence interval of (1.09, 3.44).
Conditional on residence we can say that the risk of a herniated disc occurring
in a driver is about twice that of a nondriver. There is no evidence that where
a person lives affects the risk of lower back pain.

7.3.5 Happiness in China

We model the probability distribution of reported happiness using a propor-
tional odds model. In R, the function polr from the MASS package (Venables
and Ripley, 2002, Ripley, 2014) implements such models, but in a slightly
different form as explained in Section ??. The model we are going to fit reads

log

(

P(y ≤ k|x1, . . . , xq)

P(y > k|x1, . . . , xq)

)

= ζk − (β1x1 + · · ·+ βqxq)

and we have to take care when interpreting the signs of the estimated regres-
sion coefficients. Another issue needs our attention before we start. Three of
the explanatory variables are itself ordered (R_edu, the level of education of
the responding woman; R_health, the health status of the responding woman
in the last year; and A_edu, the level of education of the woman’s partner).
For unordered factors, the default treatment contrasts, see Chapters ??, ??,
and ??, compares the effect of each level to the first level. This coding does
not take the ordinal nature of an ordered factor into account. One more ap-
propriate coding is called Helmert contrasts. Here, we compare each level k
to the average of the preceding levels, i.e., the second level to the first, the
third to the average of the first and the second, and so on (these contrasts
are also sometimes called reverse Helmert contrasts). The option function
can be used to specify the default contrasts for unordered (we don’t change



ANALYSIS USING R 15

the default contr.treatment option) and ordered factors. The returned opts

variable stores the options before manipulation and can be used to conve-
niently restore them after we fitted the proportional odds model:

R> library("MASS")

R> opts <- options(contrasts = c("contr.treatment",

+ "contr.helmert"))

R> CHFLS_polr <- polr(R_happy ~ ., data = CHFLS, Hess = TRUE)

R> options(opts)

R> summary(CHFLS_polr)

Call:

polr(formula = R_happy ~ ., data = CHFLS, Hess = TRUE)

Coefficients:

Value Std. Error t value

R_regionCoastal East -1.70e-01 1.23e-01 -1.387

R_regionInlands -4.63e-01 1.49e-01 -3.105

R_regionNorth -2.10e-01 1.32e-01 -1.593

R_regionNortheast -5.86e-01 1.27e-01 -4.602

R_regionCentral West -6.66e-01 1.35e-01 -4.919

R_age 1.52e-02 6.26e-03 2.434

R_edu1 2.98e-02 1.44e-01 0.208

R_edu2 -6.42e-02 6.19e-02 -1.038

R_edu3 2.63e-02 4.12e-02 0.638

R_edu4 7.59e-03 4.85e-02 0.156

R_edu5 -1.44e-02 6.56e-02 -0.219

R_income 1.00e-04 1.08e-04 0.930

R_health1 5.75e-01 2.41e-02 23.870

R_health2 5.32e-01 6.19e-02 8.592

R_health3 4.27e-01 3.79e-02 11.258

R_health4 5.31e-01 3.23e-02 16.461

R_height 2.46e-02 9.96e-03 2.467

A_height -9.43e-03 9.35e-03 -1.009

A_edu1 -4.53e-01 2.24e-01 -2.019

A_edu2 -8.67e-02 8.53e-02 -1.016

A_edu3 -3.80e-02 5.02e-02 -0.758

A_edu4 -1.65e-02 4.82e-02 -0.343

A_edu5 -1.63e-02 4.79e-02 -0.340

A_income 7.85e-05 7.44e-05 1.055

Intercepts:

Value Std. Error t value

Very unhappy|Not too happy -1.848 0.002 -770.786

Not too happy|Somewhat happy 1.079 0.263 4.098

Somewhat happy|Very happy 5.051 0.285 17.696

Residual Deviance: 2375.25

AIC: 2429.25

(3 observations deleted due to missingness)

Figure 7.12 R output of the summary method for the proportional odds model fitted
to the CHFLS data.

As (almost) always, the summary function can be used to display the fitted
model, see Figure 7.12. The largest absolute values of the t-statistics are asso-
ciated with the self-reported health variable. To interpret the results correctly,
we first make sure to understand the definition of the Helmert contrasts.
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R> H <- with(CHFLS, contr.helmert(table(R_health)))

R> rownames(H) <- levels(CHFLS$R_health)

R> colnames(H) <- paste(levels(CHFLS$R_health)[-1], "- avg")

R> H

Not good - avg Fair - avg Good - avg Excellent - avg

Poor -1 -1 -1 -1

Not good 1 -1 -1 -1

Fair 0 2 -1 -1

Good 0 0 3 -1

Excellent 0 0 0 4

Let’s focus on the probability of being very unhappy. A positive regression
coefficient for the first contrast of health means that the probability of being
very unhappy is smaller (because of the sign switch in the regression coeffi-
cients) for women that reported their health as not good compared to women
that reported a poor health. Thus, the results given in Figure 7.12 indicate
that better health leads to happier women, a finding that sits well with our
expectations. The other effects are less clear to interpret, also because formal
inference is difficult and no p-values are displayed in the summary output
of Figure 7.12. As a remedy, making use of the asymptotic distribution of
maximum-likelihood-based estimators, we use the cftest function from the
multcomp package (Hothorn et al., 2014) to compute normal p-values assum-
ing that the estimated regression coefficients follow a normal limiting distribu-
tion (which is, for 1531 observations, not completely unrealistic); the results
are given in Figure 7.13.
There seem to be geographical differences and also older and larger women

seem to be happier. Other than that, education and income don’t seem to
contribute much in this model. One remarkable thing about the proportional
odds model is that, similar to the quantile regression models presented in
Chapter ??, it directly formulates a regression problem in terms of conditional
distributions, not only conditional means (the same is trivially true for the bi-
nary case in logistic regression). Consequently, the model allows making distri-
butional predictions, in other words, we can infer the predicted distribution or
density of happiness in a woman with certain values for the explanatory vari-
ables that entered the model. To do so, we focus on the woman corresponding
to the first row of the data set:
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R> library("multcomp")

R> cftest(CHFLS_polr)

Simultaneous Tests for General Linear Hypotheses

Fit: polr(formula = R_happy ~ ., data = CHFLS, Hess = TRUE)

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

R_regionCoastal East -1.70e-01 1.23e-01 -1.39 0.1653

R_regionInlands -4.63e-01 1.49e-01 -3.10 0.0019

R_regionNorth -2.10e-01 1.32e-01 -1.59 0.1112

R_regionNortheast -5.86e-01 1.27e-01 -4.60 4.2e-06

R_regionCentral West -6.66e-01 1.35e-01 -4.92 8.7e-07

R_age 1.52e-02 6.26e-03 2.43 0.0149

R_edu1 2.98e-02 1.44e-01 0.21 0.8354

R_edu2 -6.42e-02 6.19e-02 -1.04 0.2993

R_edu3 2.63e-02 4.12e-02 0.64 0.5235

R_edu4 7.59e-03 4.85e-02 0.16 0.8757

R_edu5 -1.44e-02 6.56e-02 -0.22 0.8263

R_income 1.00e-04 1.08e-04 0.93 0.3523

R_health1 5.75e-01 2.41e-02 23.87 < 2e-16

R_health2 5.32e-01 6.19e-02 8.59 < 2e-16

R_health3 4.27e-01 3.79e-02 11.26 < 2e-16

R_health4 5.31e-01 3.23e-02 16.46 < 2e-16

R_height 2.46e-02 9.96e-03 2.47 0.0136

A_height -9.43e-03 9.35e-03 -1.01 0.3132

A_edu1 -4.53e-01 2.24e-01 -2.02 0.0435

A_edu2 -8.67e-02 8.53e-02 -1.02 0.3096

A_edu3 -3.80e-02 5.02e-02 -0.76 0.4487

A_edu4 -1.65e-02 4.82e-02 -0.34 0.7318

A_edu5 -1.63e-02 4.79e-02 -0.34 0.7342

A_income 7.85e-05 7.44e-05 1.06 0.2913

(Univariate p values reported)

Figure 7.13 R output of the cftest function for the proportional odds model fitted
to the CHFLS data.
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R> CHFLS[1,]

R_region R_age R_edu R_income R_health

2 Northeast 54 Senior high school 900 Good

R_height R_happy A_height A_edu A_income

2 165 Somewhat happy 172 Senior high school 500

and repeat these values as often as there are levels in the R_health factor,
and each row is assigned one of these levels

R> nd <- CHFLS[rep(1, nlevels(CHFLS$R_health)),]

R> nd$R_health <- ordered(levels(nd$R_health),

+ labels = levels(nd$R_health))

We can now use the predict function to compute the density of the response
variable R_happy for each of these five hypothetical women:

R> (dens <- predict(CHFLS_polr, newdata = nd, type = "probs"))

Very unhappy Not too happy Somewhat happy Very happy

2 0.00114 0.0197 0.510 0.4696

2.1 0.00449 0.0732 0.740 0.1828

2.2 0.02330 0.2847 0.651 0.0406

2.3 0.00851 0.1295 0.757 0.1052

2.4 0.07003 0.5142 0.403 0.0132

From each row, we get the predicted probability that the self-reported happi-
ness will correspond to the levels shown in the column name. These densities,
one for each row in nd and therefore for each level of health, can now be plot-
ted, for example using a conditional barchart, see Figure 7.14. We clearly see
that better health is associated with greater happiness.
We’ll present an alternative and maybe simpler model in Chapter ??.

7.4 Summary of Findings

Blood screening Application of logistic regression shows that an increase of
one unit in the fibrinogen value produces approximately a six fold increase
in the odds of an ESR value greater than 20. However, because the number
of observations is small the corresponding 95% confidence interval for the
odds is rather wide namely, (1.4, 54.52). Gamma globulin values do not
help in the prediction of ESR values greater than 20 over and above the
fibrinogen values.

Women’s role in society Modeling the probability of agreeing with the state-
ment about women’s role in society using logistic regression demonstrates
that it is the interaction of education and gender which is of most im-
portance; for fewer years of education women have a higher probability of
agreeing with the statement than men, but when the years of education
exceed about ten then this situation reverses.

Colonic polyps Fitting a Poisson regression allowing for overdispersion shows
that the drug treatment is effective in reducing the number of polyps with
age having only a marginal effect.
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R> library("lattice")

R> D <- expand.grid(R_health = nd$R_health,

+ R_happy = ordered(LETTERS[1:4]))

R> D$dens <- as.vector(dens)

R> barchart(dens ~ R_happy | R_health, data = D,

+ ylab = "Density", xlab = "Happiness",)

Happiness

D
en

si
ty

0.0

0.2

0.4

0.6

A B C D

Poor

A B C D

Not good

A B C D

Fair

Good

0.0

0.2

0.4

0.6

Excellent

Figure 7.14 Predicted distribution of happiness for hypothetical women with health
conditions rating from poor to excellent, with the remaining explana-
tory variables being the same as for the woman corresponding to the
first row in the CHFLS data frame. The levels of happiness have been
abbreviated (A: very unhappy, B: not too happy, C: somewhat happy;
D: very happy).
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Driving and back pain Application of conditional logistic regression shows that
the odds ratio of a herniated disc occurring in a driver relative to a non-
driver is 1.93 with a 95% confidence interval of (1.09, 3.44). There is no
evidence that where a person lives affects the risk of suffering lower back
pain.

Happiness in China Better health is associated with greater happiness – what
a surprise!

7.5 Final Comments

Generalized linear models provide a very powerful and flexible framework
for the application of regression models to a variety of non-normal response
variables, for example, logistic regression to binary responses and Poisson
regression to count data.
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