/***** Autogenerated from runarray.in; changes will be overwritten *****/ #line 1 "runtimebase.in" /***** * runtimebase.in * Andy Hammerlindl 2009/07/28 * * Common declarations needed for all code-generating .in files. * *****/ #line 1 "runarray.in" /***** * runarray.in * * Runtime functions for array operations. * *****/ #line 1 "runtimebase.in" #include "stack.h" #include "types.h" #include "builtin.h" #include "entry.h" #include "errormsg.h" #include "array.h" #include "triple.h" #include "callable.h" using vm::stack; using vm::error; using vm::array; using vm::callable; using types::formal; using types::function; using camp::triple; #define PRIMITIVE(name,Name,asyName) using types::prim##Name; #include #undef PRIMITIVE typedef double real; void unused(void *); namespace run { array *copyArray(array *a); array *copyArray2(array *a); array *copyArray3(array *a); double *copyArrayC(const array *a, size_t dim=0, GCPlacement placement=NoGC); double *copyArray2C(const array *a, bool square=true, size_t dim2=0, GCPlacement placement=NoGC); triple *copyTripleArrayC(const array *a, size_t dim=0); triple *copyTripleArray2C(const array *a, bool square=true, size_t dim2=0); double *copyTripleArray2Components(array *a, bool square=true, size_t dim2=0, GCPlacement placement=NoGC); } function *realRealFunction(); #define CURRENTPEN processData().currentpen #line 20 "runarray.in" #include "array.h" #include "arrayop.h" #include "triple.h" #include "path3.h" #include "Delaunay.h" #include "glrender.h" #ifdef HAVE_LIBFFTW3 #include "fftw++.h" #endif using namespace camp; using namespace vm; typedef array boolarray; typedef array Intarray; typedef array Intarray2; typedef array realarray; typedef array realarray2; typedef array pairarray; typedef array triplearray2; using types::booleanArray; using types::IntArray; using types::IntArray2; using types::realArray; using types::realArray2; using types::pairArray; using types::tripleArray2; typedef callable callableReal; void outOfBounds(const char *op, size_t len, Int n) { ostringstream buf; buf << op << " array of length " << len << " with out-of-bounds index " << n; error(buf); } inline item& arrayRead(array *a, Int n) { size_t len=checkArray(a); bool cyclic=a->cyclic(); if(cyclic && len > 0) n=imod(n,len); else if(n < 0 || n >= (Int) len) outOfBounds("reading",len,n); return (*a)[(unsigned) n]; } // Helper function to create deep arrays. static array* deepArray(Int depth, Int *dims) { assert(depth > 0); if (depth == 1) { return new array(dims[0]); } else { Int length = dims[0]; depth--; dims++; array *a = new array(length); for (Int index = 0; index < length; index++) { (*a)[index] = deepArray(depth, dims); } return a; } } namespace run { array *Identity(Int n) { size_t N=(size_t) n; array *c=new array(N); for(size_t i=0; i < N; ++i) { array *ci=new array(N); (*c)[i]=ci; for(size_t j=0; j < N; ++j) (*ci)[j]=0.0; (*ci)[i]=1.0; } return c; } } static const char *incommensurate="Incommensurate matrices"; static const char *singular="Singular matrix"; static size_t *pivot,*Row,*Col; namespace run { array *copyArray(array *a) { size_t size=checkArray(a); array *c=new array(size); for(size_t i=0; i < size; i++) (*c)[i]=(*a)[i]; return c; } inline size_t checkdimension(const array *a, size_t dim) { size_t size=checkArray(a); if(dim && size != dim) { ostringstream buf; buf << "array of length " << dim << " expected"; error(buf); } return size; } double *copyArrayC(const array *a, size_t dim, GCPlacement placement) { size_t size=checkdimension(a,dim); double *c=(placement == NoGC) ? new double [size] : new(placement) double[size]; for(size_t i=0; i < size; i++) c[i]=read(a,i); return c; } triple *copyTripleArrayC(const array *a, size_t dim) { size_t size=checkdimension(a,dim); triple *c=new triple[size]; for(size_t i=0; i < size; i++) c[i]=read(a,i); return c; } array *copyArray2(array *a) { size_t size=checkArray(a); array *c=new array(size); for(size_t i=0; i < size; i++) { array *ai=read(a,i); size_t aisize=checkArray(ai); array *ci=new array(aisize); (*c)[i]=ci; for(size_t j=0; j < aisize; j++) (*ci)[j]=(*ai)[j]; } return c; } array *copyArray3(array *a) { size_t size=checkArray(a); array *c=new array(size); for(size_t i=0; i < size; i++) { array *ai=read(a,i); size_t aisize=checkArray(ai); array *ci=new array(aisize); (*c)[i]=ci; for(size_t j=0; j < aisize; j++) { array *aij=read(ai,j); size_t aijsize=checkArray(aij); array *cij=new array(aijsize); (*ci)[j]=cij; for(size_t k=0; k < aijsize; k++) (*cij)[k]=(*aij)[k]; } } return c; } double *copyArray2C(const array *a, bool square, size_t dim2, GCPlacement placement) { size_t n=checkArray(a); size_t m=(square || n == 0) ? n : checkArray(read(a,0)); if(n > 0 && dim2 && m != dim2) { ostringstream buf; buf << "second matrix dimension must be " << dim2; error(buf); } double *c=(placement == NoGC) ? new double [n*m] : new(placement) double[n*m]; for(size_t i=0; i < n; i++) { array *ai=read(a,i); size_t aisize=checkArray(ai); if(aisize == m) { double *ci=c+i*m; for(size_t j=0; j < m; j++) ci[j]=read(ai,j); } else error(square ? "matrix must be square" : "matrix must be rectangular"); } return c; } triple *copyTripleArray2C(const array *a, bool square, size_t dim2) { size_t n=checkArray(a); size_t m=(square || n == 0) ? n : checkArray(read(a,0)); if(n > 0 && dim2 && m != dim2) { ostringstream buf; buf << "second matrix dimension must be " << dim2; error(buf); } triple *c=new triple[n*m]; for(size_t i=0; i < n; i++) { array *ai=read(a,i); size_t aisize=checkArray(ai); if(aisize == m) { triple *ci=c+i*m; for(size_t j=0; j < m; j++) ci[j]=read(ai,j); } else error(square ? "matrix must be square" : "matrix must be rectangular"); } return c; } double *copyTripleArray2Components(array *a, bool square, size_t dim2, GCPlacement placement) { size_t n=checkArray(a); size_t m=(square || n == 0) ? n : checkArray(read(a,0)); if(n > 0 && dim2 && m != dim2) { ostringstream buf; buf << "second matrix dimension must be " << dim2; error(buf); } size_t nm=n*m; double *cx=(placement == NoGC) ? new double [3*nm] : new(placement) double[3*nm]; double *cy=cx+nm; double *cz=cx+2*nm; for(size_t i=0; i < n; i++) { array *ai=read(a,i); size_t aisize=checkArray(ai); if(aisize == m) { double *xi=cx+i*m; double *yi=cy+i*m; double *zi=cz+i*m; for(size_t j=0; j < m; j++) { triple v=read(ai,j); xi[j]=v.getx(); yi[j]=v.gety(); zi[j]=v.getz(); } } else error(square ? "matrix must be square" : "matrix must be rectangular"); } return cx; } triple operator *(const array& t, const triple& v) { size_t n=checkArray(&t); if(n != 4) error(incommensurate); array *t0=read(t,0); array *t1=read(t,1); array *t2=read(t,2); array *t3=read(t,3); if(checkArray(t0) != 4 || checkArray(t1) != 4 || checkArray(t2) != 4 || checkArray(t3) != 4) error(incommensurate); double x=v.getx(); double y=v.gety(); double z=v.getz(); double f=read(t3,0)*x+read(t3,1)*y+read(t3,2)*z+ read(t3,3); if(f == 0.0) run::dividebyzero(); f=1.0/f; return triple((read(t0,0)*x+read(t0,1)*y+read(t0,2)*z+ read(t0,3))*f, (read(t1,0)*x+read(t1,1)*y+read(t1,2)*z+ read(t1,3))*f, (read(t2,0)*x+read(t2,1)*y+read(t2,2)*z+ read(t2,3))*f); } triple multshiftless(const array& t, const triple& v) { size_t n=checkArray(&t); if(n != 4) error(incommensurate); array *t0=read(t,0); array *t1=read(t,1); array *t2=read(t,2); array *t3=read(t,3); if(checkArray(t0) != 4 || checkArray(t1) != 4 || checkArray(t2) != 4 || checkArray(t3) != 4) error(incommensurate); double x=v.getx(); double y=v.gety(); double z=v.getz(); double f=read(t3,0)*x+read(t3,1)*y+read(t3,2)*z+ read(t3,3); if(f == 0.0) run::dividebyzero(); f=1.0/f; return triple((read(t0,0)*x+read(t0,1)*y+read(t0,2)*z)*f, (read(t1,0)*x+read(t1,1)*y+read(t1,2)*z)*f, (read(t2,0)*x+read(t2,1)*y+read(t2,2)*z)*f); } double norm(double *a, size_t n) { if(n == 0) return 0.0; double M=fabs(a[0]); for(size_t i=1; i < n; ++i) M=::max(M,fabs(a[i])); return M; } double norm(triple *a, size_t n) { if(n == 0) return 0.0; double M=a[0].abs2(); for(size_t i=1; i < n; ++i) M=::max(M,a[i].abs2()); return sqrt(M); } } static inline void inverseAllocate(size_t n) { pivot=new size_t[n]; Row=new size_t[n]; Col=new size_t[n]; } static inline void inverseDeallocate() { delete[] pivot; delete[] Row; delete[] Col; } callable *Func; stack *FuncStack; double wrapFunction(double x) { FuncStack->push(x); Func->call(FuncStack); return pop(FuncStack); } callable *compareFunc; bool compareFunction(const vm::item& i, const vm::item& j) { FuncStack->push(i); FuncStack->push(j); compareFunc->call(FuncStack); return pop(FuncStack); } void checkSquare(array *a) { size_t n=checkArray(a); for(size_t i=0; i < n; i++) if(checkArray(read(a,i)) != n) error("matrix a must be square"); } // Crout's algorithm for computing the LU decomposition of a square matrix. // cf. routine ludcmp (Press et al., Numerical Recipes, 1991). Int LUdecompose(double *a, size_t n, size_t* index, bool warn=true) { double *vv=new double[n]; Int swap=1; for(size_t i=0; i < n; ++i) { double big=0.0; double *ai=a+i*n; for(size_t j=0; j < n; ++j) { double temp=fabs(ai[j]); if(temp > big) big=temp; } if(big == 0.0) { delete[] vv; if(warn) error(singular); else return 0; } vv[i]=1.0/big; } for(size_t j=0; j < n; ++j) { for(size_t i=0; i < j; ++i) { double *ai=a+i*n; double sum=ai[j]; for(size_t k=0; k < i; ++k) { sum -= ai[k]*a[k*n+j]; } ai[j]=sum; } double big=0.0; size_t imax=j; for(size_t i=j; i < n; ++i) { double *ai=a+i*n; double sum=ai[j]; for(size_t k=0; k < j; ++k) sum -= ai[k]*a[k*n+j]; ai[j]=sum; double temp=vv[i]*fabs(sum); if(temp >= big) { big=temp; imax=i; } } double *aj=a+j*n; double *aimax=a+imax*n; if(j != imax) { for(size_t k=0; k < n; ++k) { double temp=aimax[k]; aimax[k]=aj[k]; aj[k]=temp; } swap *= -1; vv[imax]=vv[j]; } if(index) index[j]=imax; if(j != n) { double denom=aj[j]; if(denom == 0.0) { delete[] vv; if(warn) error(singular); else return 0; } for(size_t i=j+1; i < n; ++i) a[i*n+j] /= denom; } } delete[] vv; return swap; } namespace run { void dividebyzero(size_t i) { ostringstream buf; if(i > 0) buf << "array element " << i << ": "; buf << "Divide by zero"; error(buf); } void integeroverflow(size_t i) { ostringstream buf; if(i > 0) buf << "array element " << i << ": "; buf << "Integer overflow"; error(buf); } } // Autogenerated routines: namespace run { // Create an empty array. #line 479 "runarray.in" void emptyArray(stack *Stack) { #line 480 "runarray.in" {Stack->push(new array(0)); return;} } // Create a new array (technically a vector). // This array will be multidimensional. First the number of dimensions // is popped off the stack, followed by each dimension in reverse order. // The array itself is technically a one dimensional array of one // dimension arrays and so on. #line 489 "runarray.in" void newDeepArray(stack *Stack) { Int depth=vm::pop(Stack); #line 490 "runarray.in" assert(depth > 0); Int *dims = new Int[depth]; for (Int index = depth-1; index >= 0; index--) { Int i=pop(Stack); if(i < 0) error("cannot create a negative length array"); dims[index]=i; } array *a=deepArray(depth, dims); delete[] dims; {Stack->push(a); return;} } // Creates an array with elements already specified. First, the number // of elements is popped off the stack, followed by each element in // reverse order. #line 509 "runarray.in" void newInitializedArray(stack *Stack) { Int n=vm::pop(Stack); #line 510 "runarray.in" assert(n >= 0); array *a = new array(n); for (Int index = n-1; index >= 0; index--) (*a)[index] = pop(Stack); {Stack->push(a); return;} } // Similar to newInitializedArray, but after the n elements, append another // array to it. #line 523 "runarray.in" void newAppendedArray(stack *Stack) { Int n=vm::pop(Stack); array* tail=vm::pop(Stack); #line 524 "runarray.in" assert(n >= 0); array *a = new array(n); for (Int index = n-1; index >= 0; index--) (*a)[index] = pop(Stack); copy(tail->begin(), tail->end(), back_inserter(*a)); {Stack->push(a); return;} } // The function T[] array(int n, T value, int depth=0) produces a array of n // copies of x, where each copy is copied up to depth. #line 539 "runarray.in" void newDuplicateArray(stack *Stack) { Int depth=vm::pop(Stack,Int_MAX); item value=vm::pop(Stack); Int n=vm::pop(Stack); #line 540 "runarray.in" if(n < 0) error("cannot create a negative length array"); if(depth < 0) error("cannot copy to a negative depth"); {Stack->push(new array(n, value, depth)); return;} } // Read an element from an array. Checks for initialization & bounds. #line 548 "runarray.in" void arrayRead(stack *Stack) { Int n=vm::pop(Stack); array * a=vm::pop(Stack); #line 549 "runarray.in" item& i=arrayRead(a,n); if (i.empty()) { ostringstream buf; buf << "read uninitialized value from array at index " << n; error(buf); } {Stack->push(i); return;} } // Slice a substring from an array. #line 560 "runarray.in" void arraySliceRead(stack *Stack) { Int right=vm::pop(Stack); Int left=vm::pop(Stack); array * a=vm::pop(Stack); #line 561 "runarray.in" checkArray(a); {Stack->push(a->slice(left, right)); return;} } // Slice a substring from an array. This implements the cases a[i:] and a[:] // where the endpoint is not given, and assumed to be the length of the array. #line 568 "runarray.in" void arraySliceReadToEnd(stack *Stack) { Int left=vm::pop(Stack); array * a=vm::pop(Stack); #line 569 "runarray.in" size_t len=checkArray(a); {Stack->push(a->slice(left, (Int)len)); return;} } // Read an element from an array of arrays. Check bounds and initialize // as necessary. #line 576 "runarray.in" void arrayArrayRead(stack *Stack) { Int n=vm::pop(Stack); array * a=vm::pop(Stack); #line 577 "runarray.in" item& i=arrayRead(a,n); if (i.empty()) i=new array(0); {Stack->push(i); return;} } // Write an element to an array. Increase size if necessary. #line 584 "runarray.in" void arrayWrite(stack *Stack) { Int n=vm::pop(Stack); array * a=vm::pop(Stack); item value=vm::pop(Stack); #line 585 "runarray.in" size_t len=checkArray(a); bool cyclic=a->cyclic(); if(cyclic && len > 0) n=imod(n,len); else { if(cyclic) outOfBounds("writing cyclic",len,n); if(n < 0) outOfBounds("writing",len,n); if(len <= (size_t) n) a->resize(n+1); } (*a)[n] = value; {Stack->push(value); return;} } #line 599 "runarray.in" void arraySliceWrite(stack *Stack) { Int right=vm::pop(Stack); Int left=vm::pop(Stack); array * dest=vm::pop(Stack); array * src=vm::pop(Stack); #line 600 "runarray.in" checkArray(src); checkArray(dest); dest->setSlice(left, right, src); {Stack->push(src); return;} } #line 607 "runarray.in" void arraySliceWriteToEnd(stack *Stack) { Int left=vm::pop(Stack); array * dest=vm::pop(Stack); array * src=vm::pop(Stack); #line 608 "runarray.in" checkArray(src); size_t len=checkArray(dest); dest->setSlice(left, (Int) len, src); {Stack->push(src); return;} } // Returns the length of an array. #line 616 "runarray.in" void arrayLength(stack *Stack) { array * a=vm::pop(Stack); #line 617 "runarray.in" {Stack->push((Int) checkArray(a)); return;} } // Returns an array of integers representing the keys of the array. #line 622 "runarray.in" void arrayKeys(stack *Stack) { array * a=vm::pop(Stack); #line 623 "runarray.in" size_t size=checkArray(a); array *keys=new array(); for (size_t i=0; ipush((Int)i); } {Stack->push(keys); return;} } // Return the cyclic flag for an array. #line 637 "runarray.in" void arrayCyclicFlag(stack *Stack) { array * a=vm::pop(Stack); #line 638 "runarray.in" checkArray(a); {Stack->push(a->cyclic()); return;} } #line 643 "runarray.in" void arraySetCyclicFlag(stack *Stack) { array * a=vm::pop(Stack); bool b=vm::pop(Stack); #line 644 "runarray.in" checkArray(a); a->cyclic(b); {Stack->push(b); return;} } // Check to see if an array element is initialized. #line 651 "runarray.in" void arrayInitializedHelper(stack *Stack) { array * a=vm::pop(Stack); Int n=vm::pop(Stack); #line 652 "runarray.in" size_t len=checkArray(a); bool cyclic=a->cyclic(); if(cyclic && len > 0) n=imod(n,len); else if(n < 0 || n >= (Int) len) {Stack->push(false); return;} item&i=(*a)[(unsigned) n]; {Stack->push(!i.empty()); return;} } // Returns the initialize method for an array. #line 662 "runarray.in" void arrayInitialized(stack *Stack) { array * a=vm::pop(Stack); #line 663 "runarray.in" {Stack->push(new thunk(new bfunc(arrayInitializedHelper),a)); return;} } // The helper function for the cyclic method that sets the cyclic flag. #line 668 "runarray.in" void arrayCyclicHelper(stack *Stack) { array * a=vm::pop(Stack); bool b=vm::pop(Stack); #line 669 "runarray.in" checkArray(a); a->cyclic(b); } // Set the cyclic flag for an array. #line 675 "runarray.in" void arrayCyclic(stack *Stack) { array * a=vm::pop(Stack); #line 676 "runarray.in" {Stack->push(new thunk(new bfunc(arrayCyclicHelper),a)); return;} } // The helper function for the push method that does the actual operation. #line 681 "runarray.in" void arrayPushHelper(stack *Stack) { array * a=vm::pop(Stack); item x=vm::pop(Stack); #line 682 "runarray.in" checkArray(a); a->push(x); {Stack->push(x); return;} } // Returns the push method for an array. #line 689 "runarray.in" void arrayPush(stack *Stack) { array * a=vm::pop(Stack); #line 690 "runarray.in" {Stack->push(new thunk(new bfunc(arrayPushHelper),a)); return;} } // The helper function for the append method that appends b to a. #line 695 "runarray.in" void arrayAppendHelper(stack *Stack) { array * a=vm::pop(Stack); array * b=vm::pop(Stack); #line 696 "runarray.in" checkArray(a); size_t size=checkArray(b); for(size_t i=0; i < size; i++) a->push((*b)[i]); } // Returns the append method for an array. #line 704 "runarray.in" void arrayAppend(stack *Stack) { array * a=vm::pop(Stack); #line 705 "runarray.in" {Stack->push(new thunk(new bfunc(arrayAppendHelper),a)); return;} } // The helper function for the pop method. #line 710 "runarray.in" void arrayPopHelper(stack *Stack) { array * a=vm::pop(Stack); #line 711 "runarray.in" size_t asize=checkArray(a); if(asize == 0) error("cannot pop element from empty array"); {Stack->push(a->pop()); return;} } // Returns the pop method for an array. #line 719 "runarray.in" void arrayPop(stack *Stack) { array * a=vm::pop(Stack); #line 720 "runarray.in" {Stack->push(new thunk(new bfunc(arrayPopHelper),a)); return;} } // The helper function for the insert method. #line 725 "runarray.in" void arrayInsertHelper(stack *Stack) { array * a=vm::pop(Stack); array * x=vm::pop(Stack); Int i=vm::pop(Stack); #line 726 "runarray.in" size_t asize=checkArray(a); checkArray(x); if(a->cyclic() && asize > 0) i=imod(i,asize); if(i < 0 || i > (Int) asize) outOfBounds("inserting",asize,i); (*a).insert((*a).begin()+i,(*x).begin(),(*x).end()); } // Returns the insert method for an array. #line 736 "runarray.in" void arrayInsert(stack *Stack) { array * a=vm::pop(Stack); #line 737 "runarray.in" {Stack->push(new thunk(new bfunc(arrayInsertHelper),a)); return;} } // Returns the delete method for an array. #line 742 "runarray.in" void arrayDelete(stack *Stack) { array * a=vm::pop(Stack); #line 743 "runarray.in" {Stack->push(new thunk(new bfunc(arrayDeleteHelper),a)); return;} } #line 747 "runarray.in" void arrayAlias(stack *Stack) { array * b=vm::pop(Stack); array * a=vm::pop(Stack); #line 748 "runarray.in" {Stack->push(a==b); return;} } // Return array formed by indexing array a with elements of integer array b #line 753 "runarray.in" void arrayIntArray(stack *Stack) { array * b=vm::pop(Stack); array * a=vm::pop(Stack); #line 754 "runarray.in" size_t asize=checkArray(a); size_t bsize=checkArray(b); array *r=new array(bsize); bool cyclic=a->cyclic(); for(size_t i=0; i < bsize; i++) { Int index=read(b,i); if(cyclic && asize > 0) index=imod(index,asize); else if(index < 0 || index >= (Int) asize) outOfBounds("reading",asize,index); (*r)[i]=(*a)[index]; } {Stack->push(r); return;} } // returns the complement of the integer array a in {0,2,...,n-1}, // so that b[complement(a,b.length)] yields the complement of b[a]. #line 772 "runarray.in" // Intarray* complement(Intarray *a, Int n); void gen_runarray31(stack *Stack) { Int n=vm::pop(Stack); Intarray * a=vm::pop(Stack); #line 773 "runarray.in" size_t asize=checkArray(a); array *r=new array(0); bool *keep=new bool[n]; for(Int i=0; i < n; ++i) keep[i]=true; for(size_t i=0; i < asize; ++i) { Int j=read(a,i); if(j >= 0 && j < n) keep[j]=false; } for(Int i=0; i < n; i++) if(keep[i]) r->push(i); delete[] keep; {Stack->push(r); return;} } // Generate the sequence {f(i) : i=0,1,...n-1} given a function f and integer n #line 790 "runarray.in" void arraySequence(stack *Stack) { Int n=vm::pop(Stack); callable * f=vm::pop(Stack); #line 791 "runarray.in" if(n < 0) n=0; array *a=new array(n); for(Int i=0; i < n; ++i) { Stack->push(i); f->call(Stack); (*a)[i]=pop(Stack); } {Stack->push(a); return;} } // Return the array {0,1,...n-1} #line 803 "runarray.in" // Intarray* sequence(Int n); void gen_runarray33(stack *Stack) { Int n=vm::pop(Stack); #line 804 "runarray.in" if(n < 0) n=0; array *a=new array(n); for(Int i=0; i < n; ++i) { (*a)[i]=i; } {Stack->push(a); return;} } // Apply a function to each element of an array #line 814 "runarray.in" void arrayFunction(stack *Stack) { array * a=vm::pop(Stack); callable * f=vm::pop(Stack); #line 815 "runarray.in" size_t size=checkArray(a); array *b=new array(size); for(size_t i=0; i < size; ++i) { Stack->push((*a)[i]); f->call(Stack); (*b)[i]=pop(Stack); } {Stack->push(b); return;} } #line 826 "runarray.in" void arraySort(stack *Stack) { callable * f=vm::pop(Stack); array * a=vm::pop(Stack); #line 827 "runarray.in" array *c=copyArray(a); compareFunc=f; FuncStack=Stack; stable_sort(c->begin(),c->end(),compareFunction); {Stack->push(c); return;} } #line 835 "runarray.in" // bool all(boolarray *a); void gen_runarray36(stack *Stack) { boolarray * a=vm::pop(Stack); #line 836 "runarray.in" size_t size=checkArray(a); bool c=true; for(size_t i=0; i < size; i++) if(!get((*a)[i])) {c=false; break;} {Stack->push(c); return;} } #line 844 "runarray.in" // boolarray* !(boolarray* a); void gen_runarray37(stack *Stack) { boolarray* a=vm::pop(Stack); #line 845 "runarray.in" size_t size=checkArray(a); array *c=new array(size); for(size_t i=0; i < size; i++) (*c)[i]=!read(a,i); {Stack->push(c); return;} } #line 853 "runarray.in" // Int sum(boolarray *a); void gen_runarray38(stack *Stack) { boolarray * a=vm::pop(Stack); #line 854 "runarray.in" size_t size=checkArray(a); Int sum=0; for(size_t i=0; i < size; i++) sum += read(a,i) ? 1 : 0; {Stack->push(sum); return;} } #line 862 "runarray.in" void arrayCopy(stack *Stack) { array * a=vm::pop(Stack); #line 863 "runarray.in" {Stack->push(copyArray(a)); return;} } #line 867 "runarray.in" void arrayConcat(stack *Stack) { array * a=vm::pop(Stack); #line 868 "runarray.in" // a is an array of arrays to be concatenated together. // The signature is // T[] concat(... T[][] a); size_t numArgs=checkArray(a); size_t resultSize=0; for (size_t i=0; i < numArgs; ++i) { resultSize += checkArray(a->read(i)); } array *result=new array(resultSize); size_t ri=0; for (size_t i=0; i < numArgs; ++i) { array *arg=a->read(i); size_t size=checkArray(arg); for (size_t j=0; j < size; ++j) { (*result)[ri]=(*arg)[j]; ++ri; } } {Stack->push(result); return;} } #line 895 "runarray.in" void array2Copy(stack *Stack) { array * a=vm::pop(Stack); #line 896 "runarray.in" {Stack->push(copyArray2(a)); return;} } #line 900 "runarray.in" void array3Copy(stack *Stack) { array * a=vm::pop(Stack); #line 901 "runarray.in" {Stack->push(copyArray3(a)); return;} } #line 905 "runarray.in" void array2Transpose(stack *Stack) { array * a=vm::pop(Stack); #line 906 "runarray.in" size_t asize=checkArray(a); array *c=new array(0); for(size_t i=0; i < asize; i++) { size_t ip=i+1; array *ai=read(a,i); size_t aisize=checkArray(ai); size_t csize=checkArray(c); if(csize < aisize) { c->resize(aisize); for(size_t j=csize; j < aisize; j++) { (*c)[j]=new array(ip); } } for(size_t j=0; j < aisize; j++) { array *cj=read(c,j); if(checkArray(cj) < ip) cj->resize(ip); (*cj)[i]=(*ai)[j]; } } {Stack->push(c); return;} } // a is a rectangular 3D array; perm is an Int array indicating the type of // permutation (021 or 120, etc; original is 012). // Transpose by sending respective members to the permutated locations: // return the array obtained by putting a[i][j][k] into position perm{ijk}. #line 933 "runarray.in" void array3Transpose(stack *Stack) { array * perm=vm::pop(Stack); array * a=vm::pop(Stack); #line 934 "runarray.in" const size_t DIM=3; if(checkArray(perm) != DIM) { ostringstream buf; buf << "permutation array must have length " << DIM; error(buf); } size_t* size=new size_t[DIM]; for(size_t i=0; i < DIM; ++i) size[i]=DIM; for(size_t i=0; i < DIM; ++i) { Int p=read(perm,i); size_t P=(size_t) p; if(p < 0 || P >= DIM) { ostringstream buf; buf << "permutation index out of range: " << p; error(buf); } size[P]=P; } for(size_t i=0; i < DIM; ++i) if(size[i] == DIM) error("permutation indices must be distinct"); static const char *rectangular= "3D transpose implemented for rectangular matrices only"; size_t isize=size[0]=checkArray(a); array *a0=read(a,0); size[1]=checkArray(a0); array *a00=read(a0,0); size[2]=checkArray(a00); for(size_t i=0; i < isize; i++) { array *ai=read(a,i); size_t jsize=checkArray(ai); if(jsize != size[1]) error(rectangular); for(size_t j=0; j < jsize; j++) { array *aij=read(ai,j); if(checkArray(aij) != size[2]) error(rectangular); } } size_t perm0=(size_t) read(perm,0); size_t perm1=(size_t) read(perm,1); size_t perm2=(size_t) read(perm,2); size_t sizep0=size[perm0]; size_t sizep1=size[perm1]; size_t sizep2=size[perm2]; array *c=new array(sizep0); for(size_t i=0; i < sizep0; ++i) { array *ci=new array(sizep1); (*c)[i]=ci; for(size_t j=0; j < sizep1; ++j) { array *cij=new array(sizep2); (*ci)[j]=cij; } } size_t* i=new size_t[DIM]; for(i[0]=0; i[0] < size[0]; ++i[0]) { array *a0=read(a,i[0]); for(i[1]=0; i[1] < size[1]; ++i[1]) { array *a1=read(a0,i[1]); for(i[2]=0; i[2] < size[2]; ++i[2]) { array *c0=read(c,i[perm0]); array *c1=read(c0,i[perm1]); (*c1)[i[perm2]]=read(a1,i[2]); } } } delete [] i; delete [] size; {Stack->push(c); return;} } // In a boolean array, find the index of the nth true value or -1 if not found // If n is negative, search backwards. #line 1018 "runarray.in" // Int find(boolarray *a, Int n=1); void gen_runarray45(stack *Stack) { Int n=vm::pop(Stack,1); boolarray * a=vm::pop(Stack); #line 1019 "runarray.in" size_t size=checkArray(a); Int j=-1; if(n > 0) for(size_t i=0; i < size; i++) if(read(a,i)) { n--; if(n == 0) {j=(Int) i; break;} } if(n < 0) for(size_t i=size; i > 0;) if(read(a,--i)) { n++; if(n == 0) {j=(Int) i; break;} } {Stack->push(j); return;} } // construct vector obtained by replacing those elements of b for which the // corresponding elements of a are false by the corresponding element of c. #line 1037 "runarray.in" void arrayConditional(stack *Stack) { array * c=vm::pop(Stack); array * b=vm::pop(Stack); array * a=vm::pop(Stack); #line 1038 "runarray.in" size_t size=checkArray(a); array *r=new array(size); if(b && c) { checkArrays(a,b); checkArrays(b,c); for(size_t i=0; i < size; i++) (*r)[i]=read(a,i) ? (*b)[i] : (*c)[i]; } else { r->clear(); if(b) { checkArrays(a,b); for(size_t i=0; i < size; i++) if(read(a,i)) r->push((*b)[i]); } else if(c) { checkArrays(a,c); for(size_t i=0; i < size; i++) if(!read(a,i)) r->push((*c)[i]); } } {Stack->push(r); return;} } // Return an n x n identity matrix. #line 1062 "runarray.in" // realarray2* identity(Int n); void gen_runarray47(stack *Stack) { Int n=vm::pop(Stack); #line 1063 "runarray.in" {Stack->push(Identity(n)); return;} } // Return the diagonal matrix with diagonal entries given by a. #line 1068 "runarray.in" void diagonal(stack *Stack) { realarray * a=vm::pop(Stack); #line 1069 "runarray.in" size_t n=checkArray(a); array *c=new array(n); for(size_t i=0; i < n; ++i) { array *ci=new array(n); (*c)[i]=ci; for(size_t j=0; j < i; ++j) (*ci)[j]=0.0; (*ci)[i]=read(a,i); for(size_t j=i+1; j < n; ++j) (*ci)[j]=0.0; } {Stack->push(c); return;} } // Return the inverse of an n x n matrix a using Gauss-Jordan elimination. #line 1085 "runarray.in" // realarray2* inverse(realarray2 *a); void gen_runarray49(stack *Stack) { realarray2 * a=vm::pop(Stack); #line 1086 "runarray.in" a=copyArray2(a); size_t n=checkArray(a); checkSquare(a); inverseAllocate(n); for(size_t i=0; i < n; i++) pivot[i]=0; size_t col=0, row=0; // This is the main loop over the columns to be reduced. for(size_t i=0; i < n; i++) { real big=0.0; // This is the outer loop of the search for a pivot element. for(size_t j=0; j < n; j++) { array *aj=read(a,j); if(pivot[j] != 1) { for(size_t k=0; k < n; k++) { if(pivot[k] == 0) { real temp=fabs(read(aj,k)); if(temp >= big) { big=temp; row=j; col=k; } } else if(pivot[k] > 1) { inverseDeallocate(); error(singular); } } } } ++(pivot[col]); // Interchange rows, if needed, to put the pivot element on the diagonal. array *acol=read(a,col); if(row != col) { array *arow=read(a,row); for(size_t l=0; l < n; l++) { real temp=read(arow,l); (*arow)[l]=read(acol,l); (*acol)[l]=temp; } } Row[i]=row; Col[i]=col; // Divide the pivot row by the pivot element. real denom=read(acol,col); if(denom == 0.0) { inverseDeallocate(); error(singular); } real pivinv=1.0/denom; (*acol)[col]=1.0; for(size_t l=0; l < n; l++) (*acol)[l]=read(acol,l)*pivinv; // Reduce all rows except for the pivoted one. for(size_t k=0; k < n; k++) { if(k != col) { array *ak=read(a,k); real akcol=read(ak,col); (*ak)[col]=0.0; for(size_t l=0; l < n; l++) (*ak)[l]=read(ak,l)-read(acol,l)*akcol; } } } // Unscramble the inverse matrix in view of the column interchanges. for(size_t l=n; l > 0;) { l--; size_t r=Row[l]; size_t c=Col[l]; if(r != c) { for(size_t k=0; k < n; k++) { array *ak=read(a,k); real temp=read(ak,r); (*ak)[r]=read(ak,c); (*ak)[c]=temp; } } } inverseDeallocate(); {Stack->push(a); return;} } // Solve the linear equation ax=b by LU decomposition, returning the // solution x, where a is an n x n matrix and b is an array of length n. // If no solution exists, return an empty array. #line 1179 "runarray.in" // realarray* solve(realarray2 *a, realarray *b, bool warn=true); void gen_runarray50(stack *Stack) { bool warn=vm::pop(Stack,true); realarray * b=vm::pop(Stack); realarray2 * a=vm::pop(Stack); #line 1180 "runarray.in" size_t n=checkArray(a); if(n == 0) {Stack->push(new array(0)); return;} size_t m=checkArray(b); if(m != n) error(incommensurate); real *A=copyArray2C(a); size_t *index=new size_t[n]; if(LUdecompose(A,n,index,warn) == 0) {Stack->push(new array(0)); return;} array *x=new array(n); real *B=copyArrayC(b); for(size_t i=0; i < n; ++i) { size_t ip=index[i]; real sum=B[ip]; B[ip]=B[i]; real *Ai=A+i*n; for(size_t j=0; j < i; ++j) sum -= Ai[j]*B[j]; B[i]=sum; } for(size_t i=n; i > 0;) { --i; real sum=B[i]; real *Ai=A+i*n; for(size_t j=i+1; j < n; ++j) sum -= Ai[j]*B[j]; B[i]=sum/Ai[i]; } for(size_t i=0; i < n; ++i) (*x)[i]=B[i]; delete[] index; delete[] B; delete[] A; {Stack->push(x); return;} } // Solve the linear equation ax=b by LU decomposition, returning the // solution x, where a is an n x n matrix and b is an n x m matrix. // If no solution exists, return an empty array. #line 1230 "runarray.in" // realarray2* solve(realarray2 *a, realarray2 *b, bool warn=true); void gen_runarray51(stack *Stack) { bool warn=vm::pop(Stack,true); realarray2 * b=vm::pop(Stack); realarray2 * a=vm::pop(Stack); #line 1231 "runarray.in" size_t n=checkArray(a); if(n == 0) {Stack->push(new array(0)); return;} if(checkArray(b) != n) error(incommensurate); size_t m=checkArray(read(b,0)); real *A=copyArray2C(a); real *B=copyArray2C(b,false); size_t *index=new size_t[n]; if(LUdecompose(A,n,index,warn) == 0) {Stack->push(new array(0)); return;} array *x=new array(n); for(size_t i=0; i < n; ++i) { real *Ai=A+i*n; real *Bi=B+i*m; real *Bip=B+index[i]*m; for(size_t k=0; k < m; ++k) { real sum=Bip[k]; Bip[k]=Bi[k]; size_t jk=k; for(size_t j=0; j < i; ++j, jk += m) sum -= Ai[j]*B[jk]; Bi[k]=sum; } } for(size_t i=n; i > 0;) { --i; real *Ai=A+i*n; real *Bi=B+i*m; for(size_t k=0; k < m; ++k) { real sum=Bi[k]; size_t jk=(i+1)*m+k; for(size_t j=i+1; j < n; ++j, jk += m) sum -= Ai[j]*B[jk]; Bi[k]=sum/Ai[i]; } } for(size_t i=0; i < n; ++i) { real *Bi=B+i*m; array *xi=new array(m); (*x)[i]=xi; for(size_t j=0; j < m; ++j) (*xi)[j]=Bi[j]; } delete[] index; delete[] B; delete[] A; {Stack->push(x); return;} } // Compute the determinant of an n x n matrix. #line 1292 "runarray.in" // real determinant(realarray2 *a); void gen_runarray52(stack *Stack) { realarray2 * a=vm::pop(Stack); #line 1293 "runarray.in" real *A=copyArray2C(a); size_t n=checkArray(a); real det=LUdecompose(A,n,NULL,false); size_t n1=n+1; for(size_t i=0; i < n; ++i) det *= A[i*n1]; delete[] A; {Stack->push(det); return;} } #line 1307 "runarray.in" // realarray* *(realarray2 *a, realarray *b); void gen_runarray53(stack *Stack) { realarray * b=vm::pop(Stack); realarray2 * a=vm::pop(Stack); #line 1308 "runarray.in" size_t n=checkArray(a); size_t m=checkArray(b); array *c=new array(n); real *B=copyArrayC(b); for(size_t i=0; i < n; ++i) { array *ai=read(a,i); if(checkArray(ai) != m) error(incommensurate); real sum=0.0; for(size_t j=0; j < m; ++j) sum += read(ai,j)*B[j]; (*c)[i]=sum; } delete[] B; {Stack->push(c); return;} } #line 1325 "runarray.in" // realarray* *(realarray *a, realarray2 *b); void gen_runarray54(stack *Stack) { realarray2 * b=vm::pop(Stack); realarray * a=vm::pop(Stack); #line 1326 "runarray.in" size_t n=checkArray(a); if(n != checkArray(b)) error(incommensurate); real *A=copyArrayC(a); array **B=new array*[n]; array *bk=read(b,0); B[0]=bk; size_t m=bk->size(); for(size_t k=1; k < n; k++) { array *bk=read(b,k); if(bk->size() != m) error(incommensurate); B[k]=bk; } array *c=new array(m); for(size_t i=0; i < m; ++i) { real sum=0.0; for(size_t k=0; k < n; ++k) sum += A[k]*read(B[k],i); (*c)[i]=sum; } delete[] B; delete[] A; {Stack->push(c); return;} } #line 1353 "runarray.in" // realarray2* *(realarray2 *a, realarray2 *b); void gen_runarray55(stack *Stack) { realarray2 * b=vm::pop(Stack); realarray2 * a=vm::pop(Stack); #line 1354 "runarray.in" size_t n=checkArray(a); size_t nb=checkArray(b); size_t na0=n == 0 ? 0 : checkArray(read(a,0)); if(na0 != nb) error(incommensurate); size_t nb0=nb == 0 ? 0 : checkArray(read(b,0)); array *c=new array(n); real *A=copyArray2C(a,false); real *B=copyArray2C(b,false); for(size_t i=0; i < n; ++i) { real *Ai=A+i*nb; array *ci=new array(nb0); (*c)[i]=ci; for(size_t j=0; j < nb0; ++j) { real sum=0.0; size_t kj=j; for(size_t k=0; k < nb; ++k, kj += nb0) sum += Ai[k]*B[kj]; (*ci)[j]=sum; } } delete[] B; delete[] A; {Stack->push(c); return;} } #line 1388 "runarray.in" // triple *(realarray2 *t, triple v); void gen_runarray56(stack *Stack) { triple v=vm::pop(Stack); realarray2 * t=vm::pop(Stack); #line 1389 "runarray.in" {Stack->push(*t*v); return;} } #line 1393 "runarray.in" // pair project(triple v, realarray2 *t); void gen_runarray57(stack *Stack) { realarray2 * t=vm::pop(Stack); triple v=vm::pop(Stack); #line 1394 "runarray.in" size_t n=checkArray(t); if(n != 4) error(incommensurate); array *t0=read(t,0); array *t1=read(t,1); array *t3=read(t,3); if(checkArray(t0) != 4 || checkArray(t1) != 4 || checkArray(t3) != 4) error(incommensurate); real x=v.getx(); real y=v.gety(); real z=v.getz(); real f=read(t3,0)*x+read(t3,1)*y+read(t3,2)*z+ read(t3,3); if(f == 0.0) dividebyzero(); f=1.0/f; {Stack->push(pair((read(t0,0)*x+read(t0,1)*y+read(t0,2)*z+ read(t0,3))*f, (read(t1,0)*x+read(t1,1)*y+read(t1,2)*z+ read(t1,3))*f)); return;} } // Compute the dot product of vectors a and b. #line 1419 "runarray.in" // real dot(realarray *a, realarray *b); void gen_runarray58(stack *Stack) { realarray * b=vm::pop(Stack); realarray * a=vm::pop(Stack); #line 1420 "runarray.in" size_t n=checkArrays(a,b); real sum=0.0; for(size_t i=0; i < n; ++i) sum += read(a,i)*read(b,i); {Stack->push(sum); return;} } // Solve the problem L\inv f, where f is an n vector and L is the n x n matrix // // [ b[0] c[0] a[0] ] // [ a[1] b[1] c[1] ] // [ a[2] b[2] c[2] ] // [ ... ] // [ c[n-1] a[n-1] b[n-1] ] #line 1435 "runarray.in" // realarray* tridiagonal(realarray *a, realarray *b, realarray *c, realarray *f); void gen_runarray59(stack *Stack) { realarray * f=vm::pop(Stack); realarray * c=vm::pop(Stack); realarray * b=vm::pop(Stack); realarray * a=vm::pop(Stack); #line 1436 "runarray.in" size_t n=checkArrays(a,b); checkEqual(n,checkArray(c)); checkEqual(n,checkArray(f)); array *up=new array(n); array& u=*up; if(n == 0) {Stack->push(up); return;} // Special case: zero Dirichlet boundary conditions if(read(a,0) == 0.0 && read(c,n-1) == 0.0) { real temp=read(b,0); if(temp == 0.0) dividebyzero(); temp=1.0/temp; real *work=new real[n]; u[0]=read(f,0)*temp; work[0]=-read(c,0)*temp; for(size_t i=1; i < n; i++) { real temp=(read(b,i)+read(a,i)*work[i-1]); if(temp == 0.0) {delete[] work; dividebyzero();} temp=1.0/temp; u[i]=(read(f,i)-read(a,i)*read(u,i-1))*temp; work[i]=-read(c,i)*temp; } for(size_t i=n-1; i >= 1; i--) u[i-1]=read(u,i-1)+work[i-1]*read(u,i); delete[] work; {Stack->push(up); return;} } real binv=read(b,0); if(binv == 0.0) dividebyzero(); binv=1.0/binv; if(n == 1) {u[0]=read(f,0)*binv; {Stack->push(up); return;}} if(n == 2) { real factor=(read(b,0)*read(b,1)- read(a,0)*read(c,1)); if(factor== 0.0) dividebyzero(); factor=1.0/factor; real temp=(read(b,0)*read(f,1)- read(c,1)*read(f,0))*factor; u[0]=(read(b,1)*read(f,0)- read(a,0)*read(f,1))*factor; u[1]=temp; {Stack->push(up); return;} } real *gamma=new real[n-2]; real *delta=new real[n-2]; gamma[0]=read(c,0)*binv; delta[0]=read(a,0)*binv; u[0]=read(f,0)*binv; real beta=read(c,n-1); real fn=read(f,n-1)-beta*read(u,0); real alpha=read(b,n-1)-beta*delta[0]; for(size_t i=1; i <= n-3; i++) { real alphainv=read(b,i)-read(a,i)*gamma[i-1]; if(alphainv == 0.0) {delete[] gamma; delete[] delta; dividebyzero();} alphainv=1.0/alphainv; beta *= -gamma[i-1]; gamma[i]=read(c,i)*alphainv; u[i]=(read(f,i)-read(a,i)*read(u,i-1))*alphainv; fn -= beta*read(u,i); delta[i]=-read(a,i)*delta[i-1]*alphainv; alpha -= beta*delta[i]; } real alphainv=read(b,n-2)-read(a,n-2)*gamma[n-3]; if(alphainv == 0.0) {delete[] gamma; delete[] delta; dividebyzero();} alphainv=1.0/alphainv; u[n-2]=(read(f,n-2)-read(a,n-2)*read(u,n-3)) *alphainv; beta=read(a,n-1)-beta*gamma[n-3]; real dnm1=(read(c,n-2)-read(a,n-2)*delta[n-3])*alphainv; real temp=alpha-beta*dnm1; if(temp == 0.0) {delete[] gamma; delete[] delta; dividebyzero();} u[n-1]=temp=(fn-beta*read(u,n-2))/temp; u[n-2]=read(u,n-2)-dnm1*temp; for(size_t i=n-2; i >= 1; i--) u[i-1]=read(u,i-1)-gamma[i-1]*read(u,i)-delta[i-1]*temp; delete[] delta; delete[] gamma; {Stack->push(up); return;} } // Root solve by Newton-Raphson #line 1533 "runarray.in" // real newton(Int iterations=100, callableReal *f, callableReal *fprime, real x, bool verbose=false); void gen_runarray60(stack *Stack) { bool verbose=vm::pop(Stack,false); real x=vm::pop(Stack); callableReal * fprime=vm::pop(Stack); callableReal * f=vm::pop(Stack); Int iterations=vm::pop(Stack,100); #line 1535 "runarray.in" static const real fuzz=1000.0*DBL_EPSILON; Int i=0; size_t oldPrec=0; if(verbose) oldPrec=cout.precision(DBL_DIG); real diff=DBL_MAX; real lastdiff; do { real x0=x; Stack->push(x); fprime->call(Stack); real dfdx=pop(Stack); if(dfdx == 0.0) { x=DBL_MAX; break; } Stack->push(x); f->call(Stack); real fx=pop(Stack); x -= fx/dfdx; lastdiff=diff; if(verbose) cout << "Newton-Raphson: " << x << endl; diff=fabs(x-x0); if(++i == iterations) { x=DBL_MAX; break; } } while (diff != 0.0 && (diff < lastdiff || diff > fuzz*fabs(x))); if(verbose) cout.precision(oldPrec); {Stack->push(x); return;} } // Root solve by Newton-Raphson bisection // cf. routine rtsafe (Press et al., Numerical Recipes, 1991). #line 1581 "runarray.in" // real newton(Int iterations=100, callableReal *f, callableReal *fprime, real x1, real x2, bool verbose=false); void gen_runarray61(stack *Stack) { bool verbose=vm::pop(Stack,false); real x2=vm::pop(Stack); real x1=vm::pop(Stack); callableReal * fprime=vm::pop(Stack); callableReal * f=vm::pop(Stack); Int iterations=vm::pop(Stack,100); #line 1583 "runarray.in" static const real fuzz=1000.0*DBL_EPSILON; size_t oldPrec=0; if(verbose) oldPrec=cout.precision(DBL_DIG); Stack->push(x1); f->call(Stack); real f1=pop(Stack); if(f1 == 0.0) {Stack->push(x1); return;} Stack->push(x2); f->call(Stack); real f2=pop(Stack); if(f2 == 0.0) {Stack->push(x2); return;} if((f1 > 0.0 && f2 > 0.0) || (f1 < 0.0 && f2 < 0.0)) { ostringstream buf; buf << "root not bracketed, f(x1)=" << f1 << ", f(x2)=" << f2 << endl; error(buf); } real x=0.5*(x1+x2); real dxold=fabs(x2-x1); if(f1 > 0.0) { real temp=x1; x1=x2; x2=temp; } if(verbose) cout << "midpoint: " << x << endl; real dx=dxold; Stack->push(x); f->call(Stack); real y=pop(Stack); Stack->push(x); fprime->call(Stack); real dy=pop(Stack); Int j; for(j=0; j < iterations; j++) { if(((x-x2)*dy-y)*((x-x1)*dy-y) >= 0.0 || fabs(2.0*y) > fabs(dxold*dy)) { dxold=dx; dx=0.5*(x2-x1); x=x1+dx; if(verbose) cout << "bisection: " << x << endl; if(x1 == x) {Stack->push(x); return;} } else { dxold=dx; dx=y/dy; real temp=x; x -= dx; if(verbose) cout << "Newton-Raphson: " << x << endl; if(temp == x) {Stack->push(x); return;} } if(fabs(dx) < fuzz*fabs(x)) {Stack->push(x); return;} Stack->push(x); f->call(Stack); y=pop(Stack); Stack->push(x); fprime->call(Stack); dy=pop(Stack); if(y < 0.0) x1=x; else x2=x; } if(verbose) cout.precision(oldPrec); {Stack->push((j == iterations) ? DBL_MAX : x); return;} } #line 1661 "runarray.in" // real simpson(callableReal *f, real a, real b, real acc=DBL_EPSILON, real dxmax=0); void gen_runarray62(stack *Stack) { real dxmax=vm::pop(Stack,0); real acc=vm::pop(Stack,DBL_EPSILON); real b=vm::pop(Stack); real a=vm::pop(Stack); callableReal * f=vm::pop(Stack); #line 1663 "runarray.in" real integral; if(dxmax == 0) dxmax=b-a; Func=f; FuncStack=Stack; if(!simpson(integral,wrapFunction,a,b,acc,dxmax)) error("nesting capacity exceeded in simpson"); {Stack->push(integral); return;} } // Compute the fast Fourier transform of a pair array #line 1674 "runarray.in" // pairarray* fft(pairarray *a, Int sign=1); void gen_runarray63(stack *Stack) { Int sign=vm::pop(Stack,1); pairarray * a=vm::pop(Stack); #line 1675 "runarray.in" unsigned n=(unsigned) checkArray(a); #ifdef HAVE_LIBFFTW3 array *c=new array(n); if(n) { Complex *f=FFTWComplex(n); fft1d Forward(n,intcast(sign),f); for(size_t i=0; i < n; i++) { pair z=read(a,i); f[i]=Complex(z.getx(),z.gety()); } Forward.fft(f); for(size_t i=0; i < n; i++) { Complex z=f[i]; (*c)[i]=pair(z.real(),z.imag()); } FFTWdelete(f); } #else unused(&n); unused(&sign); array *c=new array(0); error("Please install fftw3, run ./configure, and recompile"); #endif // HAVE_LIBFFTW3 {Stack->push(c); return;} } #line 1704 "runarray.in" // Intarray2* triangulate(pairarray *z); void gen_runarray64(stack *Stack) { pairarray * z=vm::pop(Stack); #line 1705 "runarray.in" size_t nv=checkArray(z); // Call robust version of Gilles Dumoulin's port of Paul Bourke's // triangulation code. XYZ *pxyz=new XYZ[nv+3]; ITRIANGLE *V=new ITRIANGLE[4*nv]; for(size_t i=0; i < nv; ++i) { pair w=read(z,i); pxyz[i].p[0]=w.getx(); pxyz[i].p[1]=w.gety(); pxyz[i].i=(Int) i; } Int ntri; Triangulate((Int) nv,pxyz,V,ntri,true,false); size_t nt=(size_t) ntri; array *t=new array(nt); for(size_t i=0; i < nt; ++i) { array *ti=new array(3); (*t)[i]=ti; ITRIANGLE *Vi=V+i; (*ti)[0]=pxyz[Vi->p1].i; (*ti)[1]=pxyz[Vi->p2].i; (*ti)[2]=pxyz[Vi->p3].i; } delete[] V; delete[] pxyz; {Stack->push(t); return;} } #line 1739 "runarray.in" // real norm(realarray *a); void gen_runarray65(stack *Stack) { realarray * a=vm::pop(Stack); #line 1740 "runarray.in" size_t n=checkArray(a); real M=0.0; for(size_t i=0; i < n; ++i) { real x=fabs(vm::read(a,i)); if(x > M) M=x; } {Stack->push(M); return;} } #line 1750 "runarray.in" // real norm(realarray2 *a); void gen_runarray66(stack *Stack) { realarray2 * a=vm::pop(Stack); #line 1751 "runarray.in" size_t n=checkArray(a); real M=0.0; for(size_t i=0; i < n; ++i) { vm::array *ai=vm::read(a,i); size_t m=checkArray(ai); for(size_t j=0; j < m; ++j) { real a=fabs(vm::read(ai,j)); if(a > M) M=a; } } {Stack->push(M); return;} } #line 1765 "runarray.in" // real norm(triplearray2 *a); void gen_runarray67(stack *Stack) { triplearray2 * a=vm::pop(Stack); #line 1766 "runarray.in" size_t n=checkArray(a); real M=0.0; for(size_t i=0; i < n; ++i) { vm::array *ai=vm::read(a,i); size_t m=checkArray(ai); for(size_t j=0; j < m; ++j) { real a=vm::read(ai,j).abs2(); if(a > M) M=a; } } {Stack->push(sqrt(M)); return;} } #line 1780 "runarray.in" // real change2(triplearray2 *a); void gen_runarray68(stack *Stack) { triplearray2 * a=vm::pop(Stack); #line 1781 "runarray.in" size_t n=checkArray(a); if(n == 0) {Stack->push(0.0); return;} vm::array *a0=vm::read(a,0); size_t m=checkArray(a0); if(m == 0) {Stack->push(0.0); return;} triple a00=vm::read(a0,0); real M=0.0; for(size_t i=0; i < n; ++i) { vm::array *ai=vm::read(a,i); size_t m=checkArray(ai); for(size_t j=0; j < m; ++j) { real a=(vm::read(ai,j)-a00).abs2(); if(a > M) M=a; } } {Stack->push(M); return;} } #line 1802 "runarray.in" // triple minbezier(triplearray2 *P, triple b); void gen_runarray69(stack *Stack) { triple b=vm::pop(Stack); triplearray2 * P=vm::pop(Stack); #line 1803 "runarray.in" real *A=copyTripleArray2Components(P,true,4); b=triple(bound(A,::min,b.getx(),sqrtFuzz*norm(A,16)), bound(A+16,::min,b.gety(),sqrtFuzz*norm(A+16,16)), bound(A+32,::min,b.getz(),sqrtFuzz*norm(A+32,16))); delete[] A; {Stack->push(b); return;} } #line 1812 "runarray.in" // triple maxbezier(triplearray2 *P, triple b); void gen_runarray70(stack *Stack) { triple b=vm::pop(Stack); triplearray2 * P=vm::pop(Stack); #line 1813 "runarray.in" real *A=copyTripleArray2Components(P,true,4); b=triple(bound(A,::max,b.getx(),sqrtFuzz*norm(A,16)), bound(A+16,::max,b.gety(),sqrtFuzz*norm(A+16,16)), bound(A+32,::max,b.getz(),sqrtFuzz*norm(A+32,16))); delete[] A; {Stack->push(b); return;} } #line 1822 "runarray.in" // pair minratio(triplearray2 *P, pair b); void gen_runarray71(stack *Stack) { pair b=vm::pop(Stack); triplearray2 * P=vm::pop(Stack); #line 1823 "runarray.in" triple *A=copyTripleArray2C(P,true,4); real fuzz=sqrtFuzz*norm(A,16); b=pair(bound(A,::min,xratio,b.getx(),fuzz), bound(A,::min,yratio,b.gety(),fuzz)); delete[] A; {Stack->push(b); return;} } #line 1832 "runarray.in" // pair maxratio(triplearray2 *P, pair b); void gen_runarray72(stack *Stack) { pair b=vm::pop(Stack); triplearray2 * P=vm::pop(Stack); #line 1833 "runarray.in" triple *A=copyTripleArray2C(P,true,4); real fuzz=sqrtFuzz*norm(A,16); b=pair(bound(A,::max,xratio,b.getx(),fuzz), bound(A,::max,yratio,b.gety(),fuzz)); delete[] A; {Stack->push(b); return;} } #line 1842 "runarray.in" // realarray* _projection(); void gen_runarray73(stack *Stack) { #line 1843 "runarray.in" #ifdef HAVE_LIBGL array *a=new array(14); gl::projection P=gl::camera(); size_t k=0; (*a)[k++]=P.orthographic ? 1.0 : 0.0; triple camera=P.camera; (*a)[k++]=camera.getx(); (*a)[k++]=camera.gety(); (*a)[k++]=camera.getz(); triple up=P.up; (*a)[k++]=up.getx(); (*a)[k++]=up.gety(); (*a)[k++]=up.getz(); triple target=P.target; (*a)[k++]=target.getx(); (*a)[k++]=target.gety(); (*a)[k++]=target.getz(); (*a)[k++]=P.zoom; (*a)[k++]=P.angle; (*a)[k++]=P.viewportshift.getx(); (*a)[k++]=P.viewportshift.gety(); #endif {Stack->push(new array(0)); return;} } } // namespace run namespace trans { void gen_runarray_venv(venv &ve) { #line 478 "runarray.in" REGISTER_BLTIN(run::emptyArray,"emptyArray"); #line 484 "runarray.in" REGISTER_BLTIN(run::newDeepArray,"newDeepArray"); #line 506 "runarray.in" REGISTER_BLTIN(run::newInitializedArray,"newInitializedArray"); #line 521 "runarray.in" REGISTER_BLTIN(run::newAppendedArray,"newAppendedArray"); #line 537 "runarray.in" REGISTER_BLTIN(run::newDuplicateArray,"newDuplicateArray"); #line 547 "runarray.in" REGISTER_BLTIN(run::arrayRead,"arrayRead"); #line 559 "runarray.in" REGISTER_BLTIN(run::arraySliceRead,"arraySliceRead"); #line 566 "runarray.in" REGISTER_BLTIN(run::arraySliceReadToEnd,"arraySliceReadToEnd"); #line 574 "runarray.in" REGISTER_BLTIN(run::arrayArrayRead,"arrayArrayRead"); #line 583 "runarray.in" REGISTER_BLTIN(run::arrayWrite,"arrayWrite"); #line 599 "runarray.in" REGISTER_BLTIN(run::arraySliceWrite,"arraySliceWrite"); #line 607 "runarray.in" REGISTER_BLTIN(run::arraySliceWriteToEnd,"arraySliceWriteToEnd"); #line 615 "runarray.in" REGISTER_BLTIN(run::arrayLength,"arrayLength"); #line 621 "runarray.in" REGISTER_BLTIN(run::arrayKeys,"arrayKeys"); #line 636 "runarray.in" REGISTER_BLTIN(run::arrayCyclicFlag,"arrayCyclicFlag"); #line 643 "runarray.in" REGISTER_BLTIN(run::arraySetCyclicFlag,"arraySetCyclicFlag"); #line 650 "runarray.in" REGISTER_BLTIN(run::arrayInitializedHelper,"arrayInitializedHelper"); #line 661 "runarray.in" REGISTER_BLTIN(run::arrayInitialized,"arrayInitialized"); #line 667 "runarray.in" REGISTER_BLTIN(run::arrayCyclicHelper,"arrayCyclicHelper"); #line 674 "runarray.in" REGISTER_BLTIN(run::arrayCyclic,"arrayCyclic"); #line 680 "runarray.in" REGISTER_BLTIN(run::arrayPushHelper,"arrayPushHelper"); #line 688 "runarray.in" REGISTER_BLTIN(run::arrayPush,"arrayPush"); #line 694 "runarray.in" REGISTER_BLTIN(run::arrayAppendHelper,"arrayAppendHelper"); #line 703 "runarray.in" REGISTER_BLTIN(run::arrayAppend,"arrayAppend"); #line 709 "runarray.in" REGISTER_BLTIN(run::arrayPopHelper,"arrayPopHelper"); #line 718 "runarray.in" REGISTER_BLTIN(run::arrayPop,"arrayPop"); #line 724 "runarray.in" REGISTER_BLTIN(run::arrayInsertHelper,"arrayInsertHelper"); #line 735 "runarray.in" REGISTER_BLTIN(run::arrayInsert,"arrayInsert"); #line 741 "runarray.in" REGISTER_BLTIN(run::arrayDelete,"arrayDelete"); #line 747 "runarray.in" REGISTER_BLTIN(run::arrayAlias,"arrayAlias"); #line 752 "runarray.in" REGISTER_BLTIN(run::arrayIntArray,"arrayIntArray"); #line 770 "runarray.in" addFunc(ve, run::gen_runarray31, IntArray(), "complement", formal(IntArray(), "a", false, false), formal(primInt(), "n", false, false)); #line 789 "runarray.in" REGISTER_BLTIN(run::arraySequence,"arraySequence"); #line 802 "runarray.in" addFunc(ve, run::gen_runarray33, IntArray(), "sequence", formal(primInt(), "n", false, false)); #line 813 "runarray.in" REGISTER_BLTIN(run::arrayFunction,"arrayFunction"); #line 826 "runarray.in" REGISTER_BLTIN(run::arraySort,"arraySort"); #line 835 "runarray.in" addFunc(ve, run::gen_runarray36, primBoolean(), "all", formal(booleanArray(), "a", false, false)); #line 844 "runarray.in" addFunc(ve, run::gen_runarray37, booleanArray(), "!", formal(booleanArray(), "a", false, false)); #line 853 "runarray.in" addFunc(ve, run::gen_runarray38, primInt(), "sum", formal(booleanArray(), "a", false, false)); #line 862 "runarray.in" REGISTER_BLTIN(run::arrayCopy,"arrayCopy"); #line 867 "runarray.in" REGISTER_BLTIN(run::arrayConcat,"arrayConcat"); #line 895 "runarray.in" REGISTER_BLTIN(run::array2Copy,"array2Copy"); #line 900 "runarray.in" REGISTER_BLTIN(run::array3Copy,"array3Copy"); #line 905 "runarray.in" REGISTER_BLTIN(run::array2Transpose,"array2Transpose"); #line 929 "runarray.in" REGISTER_BLTIN(run::array3Transpose,"array3Transpose"); #line 1016 "runarray.in" addFunc(ve, run::gen_runarray45, primInt(), "find", formal(booleanArray(), "a", false, false), formal(primInt(), "n", true, false)); #line 1035 "runarray.in" REGISTER_BLTIN(run::arrayConditional,"arrayConditional"); #line 1061 "runarray.in" addFunc(ve, run::gen_runarray47, realArray2(), "identity", formal(primInt(), "n", false, false)); #line 1067 "runarray.in" REGISTER_BLTIN(run::diagonal,"diagonal"); #line 1084 "runarray.in" addFunc(ve, run::gen_runarray49, realArray2(), "inverse", formal(realArray2(), "a", false, false)); #line 1176 "runarray.in" addFunc(ve, run::gen_runarray50, realArray(), "solve", formal(realArray2(), "a", false, false), formal(realArray(), "b", false, false), formal(primBoolean(), "warn", true, false)); #line 1227 "runarray.in" addFunc(ve, run::gen_runarray51, realArray2(), "solve", formal(realArray2(), "a", false, false), formal(realArray2(), "b", false, false), formal(primBoolean(), "warn", true, false)); #line 1291 "runarray.in" addFunc(ve, run::gen_runarray52, primReal(), "determinant", formal(realArray2(), "a", false, false)); #line 1307 "runarray.in" addFunc(ve, run::gen_runarray53, realArray(), "*", formal(realArray2(), "a", false, false), formal(realArray(), "b", false, false)); #line 1325 "runarray.in" addFunc(ve, run::gen_runarray54, realArray(), "*", formal(realArray(), "a", false, false), formal(realArray2(), "b", false, false)); #line 1353 "runarray.in" addFunc(ve, run::gen_runarray55, realArray2(), "*", formal(realArray2(), "a", false, false), formal(realArray2(), "b", false, false)); #line 1388 "runarray.in" addFunc(ve, run::gen_runarray56, primTriple(), "*", formal(realArray2(), "t", false, false), formal(primTriple(), "v", false, false)); #line 1393 "runarray.in" addFunc(ve, run::gen_runarray57, primPair(), "project", formal(primTriple(), "v", false, false), formal(realArray2(), "t", false, false)); #line 1418 "runarray.in" addFunc(ve, run::gen_runarray58, primReal(), "dot", formal(realArray(), "a", false, false), formal(realArray(), "b", false, false)); #line 1428 "runarray.in" addFunc(ve, run::gen_runarray59, realArray(), "tridiagonal", formal(realArray(), "a", false, false), formal(realArray(), "b", false, false), formal(realArray(), "c", false, false), formal(realArray(), "f", false, false)); #line 1532 "runarray.in" addFunc(ve, run::gen_runarray60, primReal(), "newton", formal(primInt(), "iterations", true, false), formal(realRealFunction(), "f", false, false), formal(realRealFunction(), "fprime", false, false), formal(primReal(), "x", false, false), formal(primBoolean(), "verbose", true, false)); #line 1579 "runarray.in" addFunc(ve, run::gen_runarray61, primReal(), "newton", formal(primInt(), "iterations", true, false), formal(realRealFunction(), "f", false, false), formal(realRealFunction(), "fprime", false, false), formal(primReal(), "x1", false, false), formal(primReal(), "x2", false, false), formal(primBoolean(), "verbose", true, false)); #line 1661 "runarray.in" addFunc(ve, run::gen_runarray62, primReal(), "simpson", formal(realRealFunction(), "f", false, false), formal(primReal(), "a", false, false), formal(primReal(), "b", false, false), formal(primReal(), "acc", true, false), formal(primReal(), "dxmax", true, false)); #line 1673 "runarray.in" addFunc(ve, run::gen_runarray63, pairArray(), "fft", formal(pairArray(), "a", false, false), formal(primInt(), "sign", true, false)); #line 1704 "runarray.in" addFunc(ve, run::gen_runarray64, IntArray2(), "triangulate", formal(pairArray(), "z", false, false)); #line 1739 "runarray.in" addFunc(ve, run::gen_runarray65, primReal(), "norm", formal(realArray(), "a", false, false)); #line 1750 "runarray.in" addFunc(ve, run::gen_runarray66, primReal(), "norm", formal(realArray2(), "a", false, false)); #line 1765 "runarray.in" addFunc(ve, run::gen_runarray67, primReal(), "norm", formal(tripleArray2(), "a", false, false)); #line 1780 "runarray.in" addFunc(ve, run::gen_runarray68, primReal(), "change2", formal(tripleArray2(), "a", false, false)); #line 1802 "runarray.in" addFunc(ve, run::gen_runarray69, primTriple(), "minbezier", formal(tripleArray2(), "p", false, false), formal(primTriple(), "b", false, false)); #line 1812 "runarray.in" addFunc(ve, run::gen_runarray70, primTriple(), "maxbezier", formal(tripleArray2(), "p", false, false), formal(primTriple(), "b", false, false)); #line 1822 "runarray.in" addFunc(ve, run::gen_runarray71, primPair(), "minratio", formal(tripleArray2(), "p", false, false), formal(primPair(), "b", false, false)); #line 1832 "runarray.in" addFunc(ve, run::gen_runarray72, primPair(), "maxratio", formal(tripleArray2(), "p", false, false), formal(primPair(), "b", false, false)); #line 1842 "runarray.in" addFunc(ve, run::gen_runarray73, realArray(), "_projection"); } } // namespace trans