
Drawing Boxes with MetaPost
John D. Hobby

Abstract
This paper describes a package for drawing boxes of different shapes. The boxes package

has been implemented as an extension to the MetaPost graphics language and is a mandatory
part of every MetaPost installation.

Contents
1 Introduction 1

2 Rectangular Boxes 1

3 Circular and Oval Boxes 4

A Reference manual 7

1 Introduction
This document describes auxiliary macros not included in Plain MetaPost that make it convenient
to do things that pic is good at [1]. What follows is a description of how to use the macros contained
in the file boxes.mp. This file is included in a special directory reserved for MetaPost macros and
support software1 and can be accessed by giving the MetaPost command input boxes before any
figures that use the box making macros. The syntax for the input command is

input ⟨file name⟩

where a final “.mp” can be omitted from the file name. The input command looks first in the
current directory and then in the special macro directory. Users interested in writing macros may
want to look at the boxes.mp file in this directory.

Since the advent of the boxes package several alternative packages for drawing boxes of all
kinds have been developed by the MetaPost community. The most widely known ones are MetaObj,
MetaUML, expressg, and blockdraw_mp. If you intend to create lots of structural drawings, flow
charts, etc., those packages might be an interesting ressource, too.

2 Rectangular Boxes
The main idea of the box-making macros is that one should say

boxit.⟨suffix⟩(⟨picture expression⟩)

where the ⟨suffix⟩ does not start with a subscript.2 This creates pair variables ⟨suffix⟩.c, ⟨suffix⟩.n,
⟨suffix⟩.e, . . . that can then be used for positioning the picture before drawing it with a separate
command such as

drawboxed(⟨suffix list⟩)

The argument to drawboxed should be a comma-separated list of box names, where a box name is
a ⟨suffix⟩ with which boxit has been called.

1The name of this directory is likely to be something like /usr/lib/mp/lib, but this is system dependent.
2Some early versions of the box making macros did not allow any subscripts in the boxit suffix.

1

For the command boxit.bb(pic), the box name is bb and the contents of the box is the picture
pic. In this case, bb.c the position where the center of picture pic is to be placed, and bb.sw,
bb.se, bb.ne, and bb.nw are the corners of a rectangular path that will surround the resulting
picture. Variables bb.dx and bb.dy give the spacing between the shifted version of pic and the
surrounding rectangle, and bb.off is the amount by which pic has to be shifted to achieve all this.

When the boxit macro is called with box name 𝑏, it gives linear equations that force 𝑏.sw, 𝑏.se,
𝑏.ne, and 𝑏.nw to be the corners of a rectangle aligned on the 𝑥 and 𝑦 axes with the box contents
centered inside as indicated by the gray rectangle in Figure 1. The values of 𝑏.dx, 𝑏.dy, and 𝑏.c are
left unspecified so that the user can give equations for positioning the boxes. If no such equations
are given, macros such as drawboxed can detect this and give default values. The default values for
dx and dy variables are controlled by the internal variables defaultdx and defaultdy.

n

c

s

ne

e

se

nw

w

sw

dy

dy

dxdx

Figure 1: The relationship between the picture given to boxit and the associated variables. The
picture is indicated by a gray rectangle.

If 𝑏 represents a box name, drawboxed(𝑏) draws the rectangular boundary of box 𝑏 and then the
contents of the box. This bounding rectangle can be accessed separately as bpath 𝑏, or in general

bpath ⟨box name⟩

It is useful in combination with operators like cutbefore and cutafter in order to control paths
that enter the box. For example, if 𝑎 and 𝑏 are box names and 𝑝 is a path from 𝑎.c to 𝑏.c,

drawarrow 𝑝 cutbefore bpath 𝑎 cutafter bpath 𝑏

draws an arrow from the edge of box 𝑎 to the edge of box 𝑏.
Figure 2 shows a practical example including some arrows drawn with cutafter bpath ⟨box

name⟩. It is instructive to compare Figure 2 to the similar figure in the pic manual [1]. The figure
uses a macro

boxjoin(⟨equation text⟩)

to control the relationship between consecutive boxes. Within the ⟨equation text⟩, a and b represent
the box names given in consecutive calls to boxit and the ⟨equation text⟩ gives equations to control
the relative sizes and positions of the boxes.

For example, the second line of input for the above figure contains

boxjoin(a.se=b.sw; a.ne=b.nw)

This causes boxes to line up horizontally by giving additional equations that are invoked each time
some box a is followed by some other box b. These equations are first invoked on the next line when
box a is followed by box ni. This yields

a.se=ni.sw; a.ne=ni.nw

2

input boxes
beginfig(49);
boxjoin(a.se=b.sw; a.ne=b.nw);
boxit.a(btex\strut\cdots etex); boxit.ni(btex\strutn_i etex);
boxit.di(btex\strutd_i etex); boxit.ni1(btex\strutn_{i+1} etex);
boxit.di1(btex\strutd_{i+1} etex); boxit.aa(btex\strut\cdots etex);
boxit.nk(btex\strutn_k etex); boxit.dk(btex\strutd_k etex);
drawboxed(di,a,ni,ni1,di1,aa,nk,dk); label.lft("ndtable:", a.w);
interim defaultdy:=7bp;
boxjoin(a.sw=b.nw; a.se=b.ne);
boxit.ba(); boxit.bb(); boxit.bc();
boxit.bd(btex \vdots etex); boxit.be(); boxit.bf();
bd.dx=8bp; ba.ne=a.sw-(15bp,10bp);
drawboxed(ba,bb,bc,bd,be,bf); label.lft("hashtab:",ba.w);
vardef ndblock suffix $ =

boxjoin(a.sw=b.nw; a.se=b.ne);
forsuffixes $$=$1,$2,$3: boxit$$(); ($$dx,$$dy)=(5.5bp,4bp);
endfor; enddef;

ndblock nda; ndblock ndb; ndblock ndc;
nda1.c-bb.c = ndb1.c-nda3.c = (whatever,0);
xpart ndb3.se = xpart ndc1.ne = xpart di.c;
ndc1.c - be.c = (whatever,0);
drawboxed(nda1,nda2,nda3, ndb1,ndb2,ndb3, ndc1,ndc2,ndc3);
drawarrow bb.c -- nda1.w;
drawarrow be.c -- ndc1.w;
drawarrow nda3.c -- ndb1.w;
drawarrow nda1.c{right}..{curl0}ni.c cutafter bpath ni;
drawarrow nda2.c{right}..{curl0}di.c cutafter bpath di;
drawarrow ndc1.c{right}..{curl0}ni1.c cutafter bpath ni1;
drawarrow ndc2.c{right}..{curl0}di1.c cutafter bpath di1;
drawarrow ndb1.c{right}..nk.c cutafter bpath nk;
drawarrow ndb2.c{right}..dk.c cutafter bpath dk;
x.ptr=xpart aa.c; y.ptr=ypart ndc1.ne;
drawarrow subpath (0,.7) of (z.ptr..{left}ndc3.c) dashed evenly;
label.rt(btex \strut ndblock etex, z.ptr); endfig;

di· · · ni ni+1 di+1 · · · nk dkndtable:

...

hashtab:

ndblock

Figure 2: MetaPost code and the corresponding figure

3

The next pair of boxes is box ni and box di. This time the implicitly generated equations are

ni.se=di.sw; ni.ne=di.nw

This process continues until a new boxjoin is given. In this case the new declaration is

boxjoin(a.sw=b.nw; a.se=b.ne)

which causes boxes to be stacked below each other.
After calling boxit for the first eight boxes a through dk, the box heights are constrained to

match but the widths are still unknown. Thus the drawboxed macro needs to assign default values
to the ⟨box name⟩.dx and ⟨box name⟩.dy variables. First, di.dx and di.dy get default values so
that all the boxes are forced to be large enough to contain the contents of box di.

The macro that actually assigns default values to dx and dy variables is called fixsize. It takes
a list of box names and considers them one at a time, making sure that each box has a fixed size
and shape. A macro called fixpos then takes this same list of box names and assigns default values
to the ⟨box name⟩.off variables as needed to fix the position of each box. By using fixsize to fix
the dimensions of each box before assigning default positions to any of them, the number of needing
default positions can usually be cut to at most one.

Since the bounding path for a box cannot be computed until the size, shape, and position of the
box is determined, the bpath macro applies fixsize and fixpos to its argument. Other macros
that do this include

pic ⟨box name⟩

where the ⟨box name⟩ is a suffix, possibly in parentheses. This returns the contents of the named
box as a picture positioned so that

draw pic⟨box name⟩

draws the box contents without the bounding rectangle. This operation can also be accomplished by
the drawunboxed macro that takes a comma-separated list of box names. There is also a drawboxes
macro that draws just the bounding rectangles.

Another way to draw empty rectangles is by just saying

boxit⟨box name⟩()

with no picture argument as is done several times in Figure 2. This is like calling boxit with an
empty picture. Alternatively the argument can be a string expression instead of a picture expression
in which case the string is typeset in the default font.

3 Circular and Oval Boxes
Circular and oval boxes are a lot like rectangular boxes except for the shape of the bounding path.
Such boxes are set up by the circleit macro:

circleit⟨box name⟩(⟨box contents⟩)

where ⟨box name⟩ is a suffix and ⟨box contents⟩ is either a picture expression, a string expression,
or ⟨empty⟩.

The circleit macro defines pair variables just as boxit does, except that there are no corner
points ⟨box name⟩.ne, ⟨box name⟩.sw, etc. A call to

circleit.a(. . .)

4

n

c

s

ew

dy

dy

dxdx

Figure 3: The relationship between the picture given to circleit and the associated variables. The
picture is indicated by a gray rectangle.

gives relationships among points a.c, a.s, a.e, a.n, a.w and distances a.dx and a.dy. Together
with a.c and a.off, these variables describe how the picture is centered in an oval as can be seen
from the Figure 3.

The drawboxed, drawunboxed, drawboxes, pic, and bpath macros work for circleit boxes
just as they do for boxit boxes. By default, the boundary path for a circleit box is a circle large
enough to surround the box contents with a small safety margin controlled by the internal variable
circmargin. Figure 4 gives a basic example of the use of bpath with circleit boxes.

vardef drawshadowed(text t) =
fixsize(t);
forsuffixes s=t:

fill bpath.s shifted (1pt,-1pt);
unfill bpath.s;
drawboxed(s);

endfor
enddef;

beginfig(51)
circleit.a(btex Box 1 etex);
circleit.b(btex Box 2 etex);
b.n = a.s - (0,20pt);
drawshadowed(a,b);
drawarrow a.s -- b.n;
endfig;

Box 1

Box 2

Figure 4: MetaPost code and the resulting figure. Note that the drawshadowed macro used here is
not part of the boxes.mp macro package.

A full example of circleit boxes appears in Figure 5. The oval boundary paths around “Start”
and “Stop” are due to the equations

aa.dx=aa.dy; and ee.dx=ee.dy

after

circleit.ee(btex\strut Stop etex) and circleit.ee(btex\strut Stop etex).

The general rule is that bpath.𝑐 comes out circular if 𝑐.dx, 𝑐.dy, and 𝑐.dx− 𝑐.dy are all unknown.
Otherwise, the macros select an oval big enough to contain the given picture with the safety margin
circmargin.

5

vardef cuta(suffix a,b) expr p =
drawarrow p cutbefore bpath.a cutafter bpath.b;
point .5*length p of p

enddef;

vardef self@# expr p =
cuta(@#,@#) @#.c{curl0}..@#.c+p..{curl0}@#.c enddef;

beginfig(52);
verbatimtex \def\stk#1#2{$\displaystyle{\matrix{#1\cr#2\cr}}$} etex
circleit.aa(btex\strut Start etex); aa.dx=aa.dy;
circleit.bb(btex \stk B{(a|b)^*a} etex);
circleit.cc(btex \stk C{b^*} etex);
circleit.dd(btex \stk D{(a|b)^*ab} etex);
circleit.ee(btex\strut Stop etex); ee.dx=ee.dy;
numeric hsep;
bb.c-aa.c = dd.c-bb.c = ee.c-dd.c = (hsep,0);
cc.c-bb.c = (0,.8hsep);
xpart(ee.e - aa.w) = 3.8in;
drawboxed(aa,bb,cc,dd,ee);
label.ulft(btexbetex, cuta(aa,cc) aa.c{dir50}..cc.c);
label.top(btexbetex, self.cc(0,30pt));
label.rt(btexaetex, cuta(cc,bb) cc.c..bb.c);
label.top(btexaetex, cuta(aa,bb) aa.c..bb.c);
label.llft(btexaetex, self.bb(-20pt,-35pt));
label.top(btexbetex, cuta(bb,dd) bb.c..dd.c);
label.top(btexbetex, cuta(dd,ee) dd.c..ee.c);
label.lrt(btexaetex, cuta(dd,bb) dd.c..{dir140}bb.c);
label.bot(btexaetex, cuta(ee,bb) ee.c..tension1.3 ..{dir115}bb.c);
label.urt(btexbetex, cuta(ee,cc) ee.c{(cc.c-ee.c)rotated-15}..cc.c);
endfig;

Start B
(a|b)∗a

C
b∗

D
(a|b)∗ab Stop

b

b

a

a

a

b b

a

a

b

Figure 5: MetaPost code and the corresponding figure

6

A Reference manual
Tables 1 to 3 summarize macros, box variables and internal variables provided by the boxes package.

Table 1: Function-Like Macros

Name Arguments Result Page Explanation
boxit suffix, picture – 1 Define a box containing the picture
boxit suffix, string – 4 Define a box containing text
boxit suffix, ⟨empty⟩ – 4 Define an empty box
boxjoin equations – 2 Give equations for connecting boxes
bpath suffix path 2 A box’s bounding circle or rectangle
circleit suffix, picture – 4 Put picture in a circular box
circleit suffix, picture – 4 Put a string in a circular box
circleit suffix, ⟨empty⟩ – 4 Define an empty circular box
drawboxed list of suffixes – 1 Draw the named boxes and their contents
drawboxes list of suffixes – 4 Draw the named boxes
drawunboxed list of suffixes – 4 Draw contents of named boxes
fixpos list of suffixes – 4 Solve for the size and position of the

named boxes
fixsize list of suffixes – 4 Solve for size of named boxes
pic suffix picture 4 Box contents shifted into position

Table 2: Box variables

Variable Explanation Validity
⟨box name⟩.c center point
⟨box name⟩.n top center point
⟨box name⟩.s bottom center point
⟨box name⟩.w center left point
⟨box name⟩.e center right point
⟨box name⟩.nw top left corner boxit only
⟨box name⟩.ne top right corner boxit only
⟨box name⟩.sw bottom left corner boxit only
⟨box name⟩.se bottom right corner boxit only
⟨box name⟩.dx horizontal clearance
⟨box name⟩.dy vertical clearance
⟨box name⟩.off actual location of box contents

References
[1] Brian W. Kernighan. Pic—a graphics language for typesetting. In Unix Research System Papers,

Tenth Edition, pages 53–77. AT&T Bell Laboratories, 1990.

7

Table 3: Internal variables with numeric values

Name Page Explanation
circmargin 5 clearance around contents of a circular or oval box
defaultdx 2 usual horizontal space around box contents (default 3bp)
defaultdy 2 usual vertical space around box contents (default 3bp)

8

Index
blockdraw_mp, 1
box name, 1
box variables, see variables, box
boxes.mp, 1
boxit, 1, 7
boxjoin, 2, 4, 7
bpath, 2, 4, 5, 7

circleit, 4, 7
circmargin, 5, 8
cutafter, 2
cutbefore, 2

defaultdx, 2, 8
defaultdy, 2, 8
drawarrow, 2
drawboxed, 1, 4, 5, 7
drawboxes, 4, 5, 7
drawshadowed, 5
drawunboxed, 4, 5, 7

expressg, 1

fixpos, 4, 7
fixsize, 4, 7

input, 1
internal variables, see variables, internal

MetaObj, 1
MetaUML, 1

pic, 4, 5, 7

variables
box, 1–2, 4–5, 7
internal, 2, 5, 8

9

	Introduction
	Rectangular Boxes
	Circular and Oval Boxes
	Reference manual

