Red Hat Enterprise MRG 2.0

Messaging
Installation Guide

Installation information for the Messaging
component of Red Hat Enterprise MRG

‘® redhat.

Lana Brindley

Alison Young

Messaging Installation Guide

Red Hat Enterprise MRG 2.0 Messaging Installation Guide
Installation information for the Messaging component of Red Hat
Enterprise MRG

Edition 0.1

Author Lana Brindley lbrindle@redhat.com
Author Alison Young alyoung@redhat.com
Copyright © 2011 Red Hat, Inc

Copyright © 2011 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution—Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

All other trademarks are the property of their respective owners.

1801 Varsity Drive

Raleigh, NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281

Fax: +1 919 754 3701

This book will show you how to download and install the MRG Messaging component of the Red
Hat Enterprise MRG distributed computing platform. To learn how to program MRG Messaging
applications, see Programming in Apache Qpid.

mailto:lbrindle@redhat.com
mailto:alyoung@redhat.com
http://creativecommons.org/licenses/by-sa/3.0/

Preface Vv

1. DOCUMENT CONVENTIONS .. .iiiiiiiiiiiieeeeteeeeiie ettt e e e et e e e e e et e e e e e e e e e e e nnnnaenas %

1.1. TypographiC CONVENTIONSiiiiiiiiii e e e e e e e e e e e et e e et e e e e eaaaaees %

1.2. PUll-QUOLE CONVENTIONSiitiiiiieei e et et e e e e e e eanaaeees vii

1.3, NOtES ANA WAIMINGS ..eeiiiiiiiiii ettt ettt e et e e e e e b vii

2. Getting Help and Giving Feedback ... viii

2.1. DO YOU NEEA HEIP? et viii

2.2. We Need FeedbacCk! ..o viii

1. Installing MRG Messaging 1
1.1. Installing MRG Messaging on Red Hat Enterprise LINUX 5ccooiviiiiiiiiiiiiiee, 1

1.2. Installing MRG Messaging on Client Machinesccoooiiiiiiiiiiiiniiii e 2

1.3. Available Packages — RPM ... 2

2. Starting the Broker 5
3. Options for Running the Broker 7
3.1. Setting BroKer OPtiONScciiuiiiiiiiiii e e e e e e e e e e et e e e et e e e anas 7

3.2. Using Modules With the BroKerco.u i 8

3.3, LOQGQING BIOKEI EFTOISuueiiiiieeiiei ettt ettt e ettt e e et e e 9

3.4. Running the JMS client with Realtime Javacccooiiiiiiiiiiii e, 9

4. Persistence 11
5. Command line utilities 13
6. Clustering and federation 15
7. Authentication and Authorization 19
8. Infiniband 21
9. Windows Software Development Kit 23
9.1, WINSDK INSLAIIALIONuiitiiiiiiei e e e e e e e e e e e e e e e eeens 24

9.2, WINSDK USBQE ..evuiiiiiiiiiiiiiii e e e et e e e e e e e e e e e e e e et e et e e et e e et e e et e e et e eaneeaens 25

10. More Information 29
A. Revision History 31

Preface

Red Hat Enterprise MRG

This book contains basic installation information for the MRG Messaging component of Red Hat
Enterprise MRG. Red Hat Enterprise MRG is a high performance distributed computing platform
consisting of three components:

1. Messaging — Cross platform, high performance, reliable messaging using the Advanced Message
Queuing Protocol (AMQP) standard.

2. Realtime — Consistent low-latency and predictable response times for applications that require
microsecond latency.

3. Grid — Distributed High Throughput (HTC) and High Performance Computing (HPC).

All three components of Red Hat Enterprise MRG are designed to be used as part of the platform, but
can also be used separately.

MRG Messaging

MRG Messaging is an open source, high performance, reliable messaging distribution that implements
the Advanced Message Queuing Protocol (AMQP) standard. MRG Messaging is based on Apache
Opid".

This guide shows you how to install MRG Messaging and start the broker, and explains the basic
options available. For more in depth explanation of MRG Messaging configuration you should refer
to the MRG Messaging User Guide. If you want to write your own applications for use with MRG
Messaging, you should also look at the Programming in Apache Qpid guide.

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts® set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

! http://cwiki.apache.org/qpid/
2 https://fedorahosted.org/liberation-fonts/

http://cwiki.apache.org/qpid/
http://cwiki.apache.org/qpid/
https://fedorahosted.org/liberation-fonts/
http://cwiki.apache.org/qpid/
https://fedorahosted.org/liberation-fonts/

Preface

To see the contents of the file my_next_bestselling novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl1+Alt+F2 to switch to the first virtual terminal. Press Ctr1+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System - Preferences - Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications - Accessories

- Character Map from the main menu bar. Next, choose Search - Find... from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the

Copy button. Now switch back to your document and choose Edit — Paste from the
gedit menu bar.

The above text includes application nhames; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain. name at
a shell prompt. If the remote machine is example . com and your username on that
machine is john, type ssh john@example.com.

Vi

Pull-quote Conventions

The mount -0 remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktopl downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;
import javax.naming.InitialContext;

public class ExClient

{
public static void main(String args[])
throws Exception
{
InitialContext iniCtx = new InitialContext();
Object ref = iniCtx.lookup("EchoBean");
EchoHome home = (EchoHome) ref;
Echo echo = home.create();
System.out.println("Created Echo");
System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
}
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Vii

Preface

M

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important’ will not cause data loss but may cause irritation and frustration.

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. Getting Help and Giving Feedback

2.1. Do You Need Help?

If you experience difficulty with a procedure described in this documentation, visit the Red Hat
Customer Portal at http.://access.redhat.com. Through the customer portal, you can:

 search or browse through a knowledgebase of technical support articles about Red Hat products.
« submit a support case to Red Hat Global Support Services (GSS).
» access other product documentation.

Red Hat also hosts a large number of electronic mailing lists for discussion of Red Hat software and
technology. You can find a list of publicly available mailing lists at https://www.redhat.com/mailman/
listinfo. Click on the name of any mailing list to subscribe to that list or to access the list archives.

2.2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
against the product Red Hat Enterprise MRG.

When submitting a bug report, be sure to mention the manual's identifier:
Messaging_Installation_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

viii

http://access.redhat.com
https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo
http://bugzilla.redhat.com/

Chapter 1.

Installing MRG Messaging

In order to install MRG Messaging you will need to have registered your system with Red Hat
Network' (RHN).

To see the available Red Hat Enterprise MRG channels available for MRG Messaging, log in to
the Red Hat Network by going to Red Hat Network login screen® and entering your username and
password. If you do not have an RHN account, you can find out how to get one by visiting the RHN
Login info screen’.

Red Hat Enterprise MRG channels are child channels of Red Hat Enterprise Linux. Select the
appropriate Red Hat Enterprise Linux product to see the child channels.

File Edit View History Bookmarks Tools Help

€« v 8 & ilredhat.mm https:firhn.redhat.cemjrhn/software/channels/All.do v‘ ‘rl'v‘ Q{‘ o~
Jﬂ Red Hat Netwerk - Channe... 3¢ ‘ v X
Q RED HAT NETWORK roscen m: | sien our N
Your RHN Systems Errata Channels Configuration Schedule Users Help
| systems v || || search | NO SYSTEMS SELECTED [MANAGE | CLEAR]
Software @ Full Software Channel List ©
Channels
Al

All Release Channels Al Beta channels Retired channels
Beta
Retired Channels provide you with a way to keep your software and systems up to date
Download
Software The software channels acessible on this page are all of the channels that your organization is entitled to and are currently supported by Red Hat

BSckapeisearch Alternatively, you may also view a list of retired channels or a list of Beta channels.

Manage Software
Channels

@
“~ You can also download 1SO images of channel content on the Download Software page

Filter by Product Channel

LTRSS R | Red Hat Enterprise MRG + || Latest version | All Architectures | | Filter |
SOFTWARE
Show All Child Channels | Hide All Child Channels
(] N
BUY Now! Red Hat Enterprise Linux AS 4 1A-32, x86_64
Add systems
Renew service Red Hat Enterprise Linux ES 4 1A-32, x86_64
Manage & provision
) Red Hat Enterprise Linux Server s 1A-32, x86_64
Ded “ Red Hat MRG Grid (for RHEL-5 Server] 1 1A-32, x86_64
ome L Red Hat MRG Grid Execute Node (for RHEL-5 Server) 1 1A-32, x86_64
ente “ Red Hat MRG Management (for RHEL-5 Server) 1 1A-32, x86_64
(o e “ Red Hat MRG Messaging (for RHEL-5 Server) 1 1A-32, x86_64
M it &
et Tt ~ Red Hat MRG Messaging Base (for RHEL-5 Server) 1 IA-32, x86_64
“ Red Hat MRG Realtime (for RHEL-5 Server) 1 1A-32, x86_64
() Red Hat MRG Grid (for non-Linux) 1 1A-32
() Red Hat MRG Messaging (for non-Linux) 1 1A-32

See also: Retired Channels

Privacy statement Legal staternent - redhat.cormn ﬂ

Done & %

Before you install Red Hat Enterprise MRG check that your hardware and platform is supported.
A complete list is available on the Red Hat Enterprise MRG Supported Hardware Page“.

1.1. Installing MRG Messaging on Red Hat Enterprise Linux
5

1. Install the MRG Messaging group using the yum command.

! https://rhn.redhat.com/help/about.pxt

2 https://lwww.redhat.com/wapps/sso/rhn/login.html
8 https://rhn.redhat.com/rhn/sales/Logininfo.do

* http://www.redhat.com/mrg/hardware/

https://rhn.redhat.com/help/about.pxt
https://rhn.redhat.com/help/about.pxt
https://www.redhat.com/wapps/sso/rhn/login.html
https://rhn.redhat.com/rhn/sales/LoginInfo.do
https://rhn.redhat.com/rhn/sales/LoginInfo.do
http://www.redhat.com/mrg/hardware/
https://rhn.redhat.com/help/about.pxt
https://www.redhat.com/wapps/sso/rhn/login.html
https://rhn.redhat.com/rhn/sales/LoginInfo.do
http://www.redhat.com/mrg/hardware/

Chapter 1. Installing MRG Messaging

yum groupinstall "MRG Messaging"

@

If you find that yum is not installing all the dependencies you require, make sure that you have
registered your system with Red Hat Network®.

1.2. Installing MRG Messaging on Client Machines

MRG Messaging can be run on machines that are client-only machines, that is, they do not run the
broker. The packages required for client only machines are:

gqpid-cpp-client
For C++ clients, qpid-cpp-client is required for runtime.

gpid-cpp-client-devel
For C++ clients that will be used for development, gpid-cpp-client-devel is required.

These packages might also have dependencies that will need to be resolved so that the packages can
be successfully installed. Use yum deplist with the package name to discover the dependencies:

yum deplist gpid-cpp-client

1.3. Available Packages — RPM

This section lists the RPM packages available for MRG Messaging..

Table 1.1. MRG Messaging Packages - x86 (AMD or Intel 32bit)
RPM Package Name Description Language

gqpid-cpp-server MRG Messaging broker C++
(Apache Qpid binaries for
i386).

gqpid-cpp-server-store MRG Messaging libraries, C++
providing guaranteed message
delivery.

gpid-cpp-client MRG Messaging client C++
libraries. Required to run the
broker.

gpid-cpp-client-devel C++ client libraries, including C++
header files, developer
documentation, and symbolic
links to shared libraries.

® https://rhn.redhat.com/help/about.pxt

https://rhn.redhat.com/help/about.pxt
https://rhn.redhat.com/help/about.pxt

Available Packages — RPM

Table 1.2. MRG Messaging Packages - x86 (AMD64 or Intel 64)

RPM Package Name Description Language
gpid-cpp-server MRG Messaging broker C++
(Apache Qpid binaries for x86).
gpid-cpp-server-store MRG Messaging libraries, C++
providing guaranteed message
delivery.
gpid-cpp-client MRG Messaging client C++
libraries. Required to run the
broker.
gpid-cpp-client-devel C++ client libraries, including C++
header files, developer
documentation, and symbolic
links to shared libraries.
gpid-cpp-client-devel- C++ developer documentation. | C++
docs
Table 1.3. MRG Messaging Packages - Java
RPM Package Name Description Language Architecture
gpid-java-client | Java client library Java Architecture
including JMS Independent
implementation
gpid-java-common | Java client and broker |Java Architecture
(to be released) Independent
common library.
gpid-java-example | Java examples Java Architecture
Independent
Table 1.4. MRG Messaging Packages - Python
RPM Package Name Description Language Architecture
python-qpid Python client libraries Python Architecture
and examples. Independent
gpid-tools Python command line | Python Architecture
tools. Independent
python-qpid-qmf Python libraries for Python Architecture
the Qpid Management Independent
Framework.

Table 1.5. MRG Messaging Packages - Plugins
RPM Package Name

gpid-cpp-server-cluster

Description

Clustering plugin

gpid-cpp-server-store

Persistence plugin

gpid-cpp-server-xml

XML exchange plugin

gpid-cpp-server-ssl

SSL Server plugin

gpid-cpp-client-ssl

SSL Client plugin

gpid-cpp-server-rdma

RDMA/Infiniband Server plugin

gpid-cpp-client-rdma

RDMA/Infiniband Client plugin

w

Chapter 1. Installing MRG Messaging

Programming Examples
Programming examples are installed by default with MRG Messaging. To look for specific files, use the
rpm command:

$ rpm -gal python-qpid

» Python programming examples are installed with the python-qpid package. They are installed to
/usr/share/doc/python-qpid-0.10/examples.

» C++ programming examples are installed with the qpid-cpp-client-devel package. They are
installed to /usr/share/qpidc/examples/messaging.

» Java programming examples are installed with the qpid-java-example package. They are
installed to /usr/share/doc/qpid-java-0.10/examples.

Chapter 2.

Starting the Broker

Qpid Initialisation Script
These actions are supported by Qpid initialisation scripts.

Table 2.1. Qpid Script Options

Qpid supported action

start Starts the service.

stop Stops the service.

restart If the service is already running, stop and restart
the service. If the service isn't running, starts the
service.

condrestart (and try-restart) If the service is running, restarts the service. If
the service isn't running, this action does nothing.

force-reload Reloads the service configuration then restarts to
service to ensure the configuration takes effect.

status Prints the current status of the service.

usage If this is run without an action, by default it will

display a usage message listing all actions
(intended for use).

Starting the C++ Broker

1. By default, the broker is installed in /usr/sbin/. If this is not on your path, you will need to type
the whole path to start the broker:

$ /usr/sbin/gpidd -t

[date] [time] info Loaded Module: libbdbstore.so0.0
[date] [time] info Locked data directory: /var/lib/qpidd
[date] [time] info Management enabled

[date] [time] info Listening on port 5672

The -t or - -trace option enables debug tracing, printing messages to the terminal.

S mportant

When starting the broker, it will inform you that it has locked a data directory. This data
directory is used for persistence, which is enabled by default in MRG Messaging. For more
information about persistence see Chapter 4, Persistence

2. To stop the broker, type CTRL+C at the shell prompt

[date] [time] notice Shutting down.
[date] [time] info Unlocked data directory: /var/lib/qgpidd

3. For production use, MRG Messaging is usually run as a service. To start the broker as a service,
run the following command as the root user:

Chapter 2. Starting the Broker

service gpidd start
Starting Qpid AMQP daemon: [oK 1]

4. You can check on the status of the service using the service status command and stop the
broker with the service stop.

service gpidd status
gpidd (pid PID) is running...

service gpidd stop
Stopping Qpid AMQP daemon: [oK 1]

Running multiple brokers on a single machine
To run more than one broker on a single machine, they must run on different ports and use different
directories for the journals.

1. Select two available ports, for example 5555 and 5556.

2. Start each new broker, using the - -data-dir command to specify a new data directory for each:

$ gpidd -p 5555 --data-dir /tmp/qpid/store/1

$ gpidd -p 5556 --data-dir /tmp/qpid/store/2

Chapter 3.

Options for Running the Broker

The broker can be run with a number of options. An overview of the most common options are given
here.

3.1. Setting Broker Options

Setting Options Using the Configuration File

1. For options that persist across sessions, you can put the options in the configuration file. Become
the root user, and open the /etc/qpidd. conf file in your preferred text editor to make the
necessary changes.

2. This example uses the configuration file to enable debug tracing. Changes will take effect from the
next time the broker is started and will be used in every subsequent session.

Configuration file for qpidd
trace=1

3. If you are running the broker as a service, you will need to restart the service once you have made
the changes.

service qpidd restart
Stopping gpidd daemon:
Starting gpidd daemon:

—

oK]
oK]

—

4. If you are not running the broker as a service, you can now start the broker as normal.

/usr/sbin/qpidd -t

[date] [time] info Locked data directory: /var/lib/qpidd
[date] [time] info Management enabled

[date] [time] info Listening on port 5672

Setting Options Using the Command Line
To set options for a single instance, add the option to the command line when you start the broker.

1. This example uses command line options to start the broker with debug tracing. These options will
need to be explicitly stated every time the broker is run.

$ /usr/sbin/qpidd -t

Common Options
For more options, type man qpidd or /usr/sbin/qpidd --help at the shell prompt.

Table 3.1. General Broker Options

General options for running the broker

-t This option enables verbose log messages, for
debugging only.

Chapter 3. Options for Running the Broker

General options for running the broker

-p <Port_Number> Instructs the broker to use the specified port.
Defaults to port 5672. It is possible to run
multiple brokers simultaneously by using different
port numbers.

-V Displays the installed version.

-h Displays the help message.

Table 3.2. Options for running the broker as a service (daemon)

Options for running the broker as a service

-d This option instructs MRG Messaging to run

in the background as a daemon. Log lessages
from the broker are sent to syslog (/var/log/
messages) by default.

-q This command shuts down the broker that is
currently running.

-C This command checks if the daemon is already
running. If it is running, it returns the process ID
number.

-d --wait=<seconds> This sets the maximum wait time (in seconds) for

the daemon to initialize. If the daemon has not
successfully completed initialization within this
time, an error is returned. This option must be
used in conjunction with the -d option, or it will
be ignored.

3.2. Using Modules with the Broker

MRG Messaging installs several modules by default, which are automatically loaded when the broker
is started. The module directory for the client is located at /usr/1ib/qpid/client (or /usr/
lib64/qpid/client on 64-bit installations) and for the daemon at /usr/1ib/qpid/daemon (or /
usr/1ib64/qpid/daemon on 64-bit installations). The default modules are:

SSL

Authorization (ACL enforcement)

RDMA (Infiniband)

XML exchange type

Persistence

Clustering

All these modules are server side only, with the exception of the SSL and RDMA modules, which have
both client and server side plugins. More information on working with these modules can be found in
the MRG Messaging User Guide.

o

Logging Broker Errors

Table 3.3. Options for using modules with the broker

Options for using modules with the broker

--load-module MODULENAME Instructs the broker to use the specified module
as a plug-in.

--module-dir <DIRECTORY> Causes the broker to use a different module
directory.

--no-module-dir Causes the broker to ignore module directories.

Getting Help with Modules
To see the help text for modules, use the - -help command:

/usr/sbin/qpidd --help

3.3. Logging Broker Errors

By default, log output is sent to stderr if the broker is run on the command line, or to syslog (/
var/log/messages/), if the broker is run as a service. You can also choose to send them to a file.

Table 3.4. Logging Options

Options for logging with syslog

--log-to-stderr yes|no Send logging output to stderr. Enabled by
default when run from command line.

--log-to-stdout yes|no Send logging output to stdout.
--log-to-file FILE Send log output to the specified filename. FILE.
--log-to-syslog yes|no Send logging output to syslog. Enabled by

default when run as a service.

--syslog-name NAME Specify the name to use in syslog messages.
The default is qpidd.

--syslog-facility LOG XXX Specify the facility to use in syslog messages.
The default is LOG_DAEMON.

If the broker is started with the -d or - -daemon options, it will log to syslog by default. If the broker is
started as a service, it will log to STDERR by default instead.

3.4. Running the JMS client with Realtime Java

To achieve more deterministic behavior, the JMS Client can be run in a Realtime Java environment.

1. The client must be run on a realtime operating system, and supported by your realtime java
vendor. Red Hat supports only Sun and IBM implementations.

2. Place the realtime .jar files provided by your vendor in the classpath.

3. Set the following JVM argument:

-Dgpid.thread_factory="org.apache.qpid.thread.RealtimeThreadFactory"

Chapter 3. Options for Running the Broker

This ensures that the JMS Client will use javax.realtime.RealtimeThreads instead of
java.lang.Threads.

Optionally, the priority of the Threads can be set using:

-Dgpid.rt_thread_priority=30

By default, the priority is set at 20.

4. Based on your workload, the JVM will need to be tuned to achieve the best results. Refer to your
vendor's JVM tuning guide for more information.

10

Chapter 4.

Persistence

A persistence library allows MRG Messaging to store messages and queue configuration, ready to be
reloaded in the event of machine or network failure. When the persistence store module is loaded, it
allows messages and other persistent state information to be recovered when a broker is restarted.

In order for messages to be stored the persistence store must be loaded. The - -store-dir option
specifies the directory used for for the persistence store and any configuration information. The default
directory is /var/1ib/qpidd. See Table 4.1, “Persistence Options” for options on how to change this
behaviour.

In addition to loading the persistence store, queues and messages also need to be identified as
durable. This can be done in the client application or by using the qpid-config command line tool.
See the Programming in Apache Qpid guide for more information about creating client applications.

M

If the persistence module is not loaded, messages and the broker state will not be stored to disk,
even if the queue and messages sent to it are marked persistent.

Table 4.1. Persistence Options

Persistence Options

--data-dir DIRECTORY Specifies the directory for data storage and log
files generated by the broker. The default is /
var/1lib/qpidd.

--no-data-dir Disables storage of configuration information and

other data. If the default directory at /var/1ib/
gpidd exists, it will be ignored.

--num-jfiles NUMBER Set the number of files for each instance of the
persistence journal. The default is 8.

--jfile-size-pgs NUMBER Set the size of each journal file in multiples of
64KB. The default is 24.

--wcache-page-size NUMBER The size (in KB) of the pages in the write page

cache. Allowable values must be powers of 2 (1,
2,4, ...128). Lower values will decrease latency
but also decrease throughput. The default is 32.

@

Persistence is dealt with in more depth in the MRG Messaging User Guide

12

Chapter 5.

Command line utilities

MRG Messaging contains a number of command line utilities for monitoring and configuring
messaging brokers.

@roe

A graphical interface is also available for download from the Red Hat Enterprise MRG yum
repository, see the MRG Management Console Installation Guide for more information on this
tool.

gpid-config
Display and configure exchanges, queues, and bindings in the broker

gpid-route
Display and configure broker federation, including routing and links between brokers

gpid-tool
Access configuration, statistics, and control within the broker

gpid-queue-stats
Monitor the size and enqueue/dequeue rates of queues in a broker

gpid-stat
Display details and statistics for various broker objects.

gpid-printevents
Subscribes to events from a broker and prints details of events raised to the console window.

gpid-cluster
Display information about cluster membership, stop one or all members in a clean fashion. See
MRG Messaging User Guide for more details on clustered brokers.

gpid-cluster-store
Used in recovering persistent data after a non-clean cluster shutdown. See Messaging User Guide
for more details.

To install the command line utilities follow the installation instructions in Chapter 1, Installing MRG
Messaging and install the qpid-tools package.

@

For more information on the command line utilities see the MRG Messaging User Guide

13

14

Chapter 6.

Clustering and federation

Messaging Clusters

A Messaging Cluster is a group of brokers that act as a single broker. Changes on any broker are
replicated to all other brokers in the same Messaging Cluster, so if one broker fails, its clients can fail-
over to another broker without loss of state. The brokers in a Messaging Cluster may run on the same
host or on different hosts. Two brokers are in the same cluster if

1. They use the same OpenAlS mcastaddr, mcastport, and bindnetaddr, and

2. They use the same cluster name.

Messaging Clusters are implemented using using OpenAlS, which provides a reliable multicast
protocol, tools, and infrastructure for implementing replicated services. You must install and configure
OpenAlS to use MRG broker groups. Once you have installed OpenAlS, configure MRG Messaging to
run in a cluster as follows.

1. Set the binding address for openais in /etc/ais/openais.conf. Use ifconfig to find the inet addr
and the netmask for the interface you want:

ifconfig

eth® Link encap:Ethernet Hwaddr 00:E0:81:76:B6:C6
inet addr:10.16.44.222 Bcast:10.16.47.255 Mask:255.255.248.0
inet6 addr: fe80::2e0:81ff:fe76:b6c6/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:35914541 errors:6 dropped:® overruns:0 frame:6
TX packets:6529841 errors:0 dropped:® overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:20294124383 (18.9 GiB) TX bytes:12925473031 (12.0 GiB)
Interrupt:98 Base address:0x8000

The binding address in /etc/ais/openais.conf should be the network address for the
interface, which you can find by doing a bitwise AND of the inet addr (in this case, 10.16.44.222)
and the network mask (in this case, 255.255.248.0). The result is 10.16.40.0. As a sanity check,
you can use route and make sure the address you computed is associated with the interface:

$ /sbin/route
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
20.0.10.0 * 255.255.255.0 U 0 0 0 eth1i
192.168.122.0 * 255.255.255.0 U 0 0 0 virbro
10.16.40.0 * 255.255.248.0 U 0 0 0 etho
169.254.0.0 * 255.255.0.0 u 0 0 0 eth1i
default 10.16.47.254 0.0.0.0 UG 0 0 0 etho

To use eth0 as the interface for the cluster, find the setting for bindnetaddr in /etc/ais/
openais.conf, and set it to 10.16.40.0:

bindnetaddr: 10.16.40.0

2. Make sure that the primary group for the user running gpidd is “ais”. For instance, if you are
running gpidd as a daemon, the user is named gqpidd. You can make ais the primary group for
gpidd as follows:

15

Chapter 6. Clustering and federation

usermod -g ais qpidd

3. Set the name of the cluster in gpidd.conf.

cluster-name="Mick"

4. You can use qpid-cluster to list the membership of the cluster or to shutdown cleanly.

[conway@mrg32 ~]$ gpid-cluster mrg33
Cluster Name:
Cluster Status:
Cluster Size:
Members:

URL=

tep:

URL=

tep:

URL=

amgp:t

cp:20.

20.0.100.33:

amgp:t

cp:20.

20.0.100.34:

amgp:t

cp:20.

conway-test-cluster

ACTIVE

3

ID=20.0.100.33:22689
0.10.33:5672,tcp:10.16.44.238:5672,\
5672, tcp:192.168.122.1:5672
ID=20.0.100.34:20810
0.10.34:5672,tcp:10.16.44.239:5672,\
5672,tcp:192.168.122.1:5672
ID=20.0.100.35:20139
0.10.35:5672,tcp:20.0.20.35:5672, tc\

p:10.16.44.240:5672,tcp:20.0.100.35:5672, tcp:192.168.122.1:5672

You can also run gqpid-tool against any cluster node to view details of the cluster. The cluster is
one of the objects shown by the 1ist command.

gpid: list

Management Object Types:

ObjectType Active Deleted
com.redhat.rhm.store:journal 1 0
com.redhat.rhm.store:store 1 0
org.apache.qgpid.broker:binding 5 (0]
org.apache.gpid.broker:broker 1 0
org.apache.qgpid.broker:connection 1 0
org.apache.qgpid.broker:exchange 7 (0]
org.apache.qgpid.broker:queue 2 0
org.apache.gpid.broker:session 1 0
org.apache.qgpid.broker:system 1 (0]
org.apache.gpid.broker:vhost 1 0
org.apache.qgpid.cluster:cluster 1 0

To see the properties of the cluster, use show cluster:

gpid: show cluster
Object of type org.apache.qpid.cluster:cluster: (last sample time: 13:56:40)

Type Element 112
property brokerRef 102
property clusterName foo
property clusterID da821ff9-2a88-4002-b976-18680556290
property publishedURL
amgp:tcp:10.16.44.222:52265,tcp:20.0.10.15:52265, tcp:192.168.122.1:52265
property clusterSize 1
property status ACTIVE

16

property members
amgp:tcp:10.16.44.222:52265, tcp:20.0.10.15:52265,tcp:192.168.122.1:52265

Messaging Clusters can be used together with Red Hat Clustering Services (RHCS) by starting
brokers with the - -cluster-cman option.

Federation

Federation is used to provide geographical distribution of brokers. A number of individual brokers, or
clusters of brokers, can be federated together. This allows client machines to see and interact with the
federation as though it were a single broker. Federation can also be used where client machines need
to remain on a local network, even though their messages have to be routed out.

Client

Receives
from queue

broker cluster

broker broker bbroker
broker

Federation

sends to
exchange

Federation is used primarily for connecting disparate locations across a wide area network. Full
connectivity across an enterprise can be achieved while keeping local message traffic isolated to
a single location. Departmental brokers can be specified with individual policies that control inter-
departmental message traffic flow.

Some applications can benefit from having a broker co-resident with the client. This is good for
situations where the client produces data that must be delivered reliably but connectivity can not be
guaranteed. In this case, a co-resident broker provides queueing and durability that is not available in
the client on its own.

Federation bridges disjointed IP networks. Message brokers can be configured to allow message
connectivity between networks where there is no IP connectivity. For example, an isolated, private IP
network can have messaging connectivity to brokers in other outside IP networks.

Links and routes
Federation is configured through a series of links and routes.

17

Chapter 6. Clustering and federation

A link is a connection between two brokers that allows messages to be passed between them. A link
is a transport level connection (using a protocol such as TCP, RDMA, or SSL) that is initiated by a
broker and accepted by another broker. The broker that initiates the link is considered the client in
the connection. The broker that receives that connection will not treat it any differently from any other
client connection, other than annotating it as being for federation.

Routes are the paths that messages take from one broker to another, and can run along one or more
links to the final destination. A route is associated with an AMQP session established over the link
connection. A route controls the flow of messages across the link between brokers, and multiple
routes can share the same link. Messages will flow over a single route in only one direction. For bi-
directional connectivity a pair of routes must be created, one for each direction of message flow.
Routes always consist of a session and a subscription for consuming messages. Depending on the
configuration, a route can have a private queue on the source broker with a binding to an exchange on
that broker.

@

Clustering and federation are dealt with in more depth in the MRG Messaging User Guide

18

Chapter 7.

Authentication and Authorization

MRG Messaging uses Simple Authentication and Security Layer (SASL) for identifying and authorizing
incoming connections to the broker, as mandated in the AMQP specification. SASL provides a variety
of authentication methods. MRG Messaging clients (with the exception of the JMS client) and the
broker use the Cyrus SASL Iibraryl to allow for a full SASL implementation.

M

The PLAIN authentication method sends passwords in cleartext. If using this mechanism,
for complete security using Security Services Library (SSL) is recommended. See the MRG
Messaging User Guide for information on setting SSL on client machines.

@roe

To use SSL in python Qpid clients using a version earlier than Python 2.6, you need to install the
python-ssl package from the Extra Packages for Enterprise Linux (EPEL) repository.

Enabling and Using SASL Plain Authentication

To use the default SASL PLAIN authentication mechanism implemented by the MRG Messaging client
libraries, either use the default username and password of guest, which are included in the database
at /var/1lib/qgpidd/qpidd. sasldb on installation, or add your own accounts.

1. Add new users to the database by using the saslpasswd2 command. The User ID for
authentication and ACL authorization uses the form user-id@domain. .

Ensure that the correct realm has been set for the broker. This can be done by editing the
configuration file or using the -u option. The default realm for the broker is QPID.

saslpasswd2 -f /var/lib/qpidd/qpidd.sasldb -u QPID new_user_name

2. Existing user accounts can be listed by using the -f option:

sasldblistusers2 -f /var/lib/qpidd/qpidd.sasldb

K

The user database at /var/1ib/qpidd/qpidd.sasldb is readable only by the qpidd
user. If you start the broker from a user other than the qpidd user, you will need to either
modify the configuration file, or turn authentication off.

3—To-switeh-adthentication on or off, use the auth yes|no option when you start the broker:
! http://cyrusimap.web.cmu.edu/

19

http://cyrusimap.web.cmu.edu/
http://cyrusimap.web.cmu.edu/

Chapter 7. Authentication and Authorization

/usr/sbin/qpidd --auth yes
/usr/sbin/qpidd --auth no

You can also set authentication to be on or off by adding the appropriate line to to the /etc/
gpidd.conf configuration file:

auth=no

auth=yes

4. The SASL configuration file is in /etc/sasl2/qpidd. conf for Red Hat Enterprise Linux 5.

For information on using a different configuration, use your web browser to view the Cyrus SASL
documentation at /usr/share/doc/cyrus-sasl-1ib-2.1.22/index.html for Red Hat
Enterprise Linux 5.

Using ACL
1. The ACL module is loaded by default. You can check that it is loaded by running the qpidd - -
help command and checking the output for ACL options:

$ gpidd --help

...[output truncated]...

ACL Options:

--acl-file FILE (policy.acl) The policy file to load from, loaded from data dir

2. To start using the ACL, you will need to specify the file to use. This is done by using the - -acl-
file command with a path and filename. The filename should have a .acl extension:

$ gqpidd --acl-file ./aclfilename.acl

You can now view the file with the cat command and edit it in your preferred text editor. If the path
and filename is not found, gpidd will fail to start.

@

For more information on authentication and authorization see the MRG Messaging User Guide

20

Chapter 8.

Infiniband

MRG Messaging connections can use Infiniband, which provides high speed point-to-point
bidirectional serial links that can be faster and have much lower latency than TCP connections.

The machines running the server and client must each have Infiniband properly installed. In particular:

The kernel driver and the user space driver for your Infiniband hardware must both be installed.

See the Knowledge Base article™ for a list of hardware supported on RHEL 4 and RHEL 5, and the
kernel and user space drivers associated with each.

Allocate lockable memory for Infiniband.

By default, the operating system can swap out all user memory. Infiniband requires lockable
memory, which can not be swapped out. Each connection requires 8 Megabytes (8192 bytes) of
lockable memory.

To allocate lockable memory, edit /etc/security/limits.conf to set the limit, which is the
maximum amount of lockable memory that a given process can allocate.

The Infiniband interface must be configured to allow IP over Infiniband. This is not used for message
transport, but is nevertheless needed for RDMA connection management.

To enable Infiniband on the Qpid server:

» Make sure that the package qpid-cpp-server-rdma has been installed for Qpid to use RDMA.

Then make sure that the RDMA plugin, rdma. so, is present in the plugins directory.

 Allocate lockable memory for Infiniband.

For example, if the user running the server is gpidd, and you wish to support 64 connections
(64*8192=524288), add these entries:

gpidd soft memlock 524288
gpidd hard memlock 524288

To use Infiniband in a Qpid messaging client:

» Make sure that the package gqpid-cpp-client-rdma has been installed. If it has, the file

rdmaconnector . so will be present in the plugins directory.

« Allocate lockable memory for Infiniband.

To set a limit for all users, for example supporting 16 connections (16*8192=32768), add this entry:

* soft memlock 32768

If you want to set a limit for a particular user, use the UID for that user when setting the limits:

andrew soft memlock 32768

21

https://access.redhat.com/kb/docs/DOC-22217

22

Chapter 9.

Windows Software Development Kit

The MRG Messaging Windows software development kit (WinSDK) is used for developing MRG
Messaging applications on a Microsoft Windows system, and contains a set of libraries, header files,
example code, and documentation. It supports native C++ (unmanaged) code and .NET (managed)
code in any supported .NET language.

The WIinSDK kit is distributed as a set of directories, as follows:

* \bin

Precompiled binary (.d11 and . exe) files and the associated debug program database (. pdb) files

Boost library files

Microsoft Visual Studio 2008 MSVC90 runtime library files
* \include
A directory tree of . h files
* \1ib
The linker . 11ib files that correspond to files in /bin
* \docs
Apache Qpid C++ API Reference
* \examples

A Visual Studio solution file and associated project files to demonstrate using the WinSDK in
unmanaged C++

* \dotnet_examples
A Visual Studio solution file and associated project files to demonstrate using the WinSDK in C#
* \management

A python scripting code set for generating QMF data structures

@

For more information about Qpid QMF visit The Apache Qpid Wiki*

23

https://cwiki.apache.org/qpid/qpid-management-framework.html

Chapter 9. Windows Software Development Kit

9.1. WinSDK Installation

Installing the WinSDK on 32-bit Windows systems

iﬁ_

Before you install the WinSDK check that your hardware and platform is supported. A complete
list is available on the Red Hat Enterprise MRG Supported Hardware Pagez.

The WinSDK kits are distributed as . zip files. The kit contents are copied to your system using file
copy operations.

1. Unzip the gpid-cpp-winsdk-1.3.0.24-x86.zip file into your preferred directory.

2. The qpid-cpp-winsdk-1.3.0.24-x86.zip kit contains a copy of the Microsoft C++ 2008
Redistributable Package (x86). This package is located in the \bin directory after the kit has been
unzipped. No further installation is necessary.

Installing the WinSDK on 64-bit Windows systems

M

Before you install the WinSDK check that your hardware and platform is supported. A complete
list is available on the Red Hat Enterprise MRG Supported Hardware Pagea.

The WinSDK kits are distributed as . zip files. The kit contents are copied to your system using file
copy operations.

1. Unzip the gpid-cpp-winsdk-1.3.0.24-x64.zip file into your preferred directory.

2. The qpid-cpp-winsdk-1.3.0.24-x64.zip file does not contain the Microsoft C++ 2008
Redistributable Package (x64). On 64-bit systems this package must be installed using a formal
installation process. See the Microsoft Download Center” for information about getting and
installing this package.

e

Microsoft provides Release versions of redistributable packages of the C++ runtime libraries for
all platform architectures, but do not allow redistribution of Debug versions of the C++ runtime
libraries.

If you require Debug versions of the C++ runtime libraries, you will need to get them by installing
an end-user development platform, such as Microsoft Visual Studio or Microsoft Visual Studio
Express.

2 http://lwww.redhat.com/mrg/hardware/
8 http://www.redhat.com/mrg/hardware/

24

http://www.redhat.com/mrg/hardware/
http://www.redhat.com/mrg/hardware/
http://www.microsoft.com/downloads/en/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6&displaylang=en
http://www.redhat.com/mrg/hardware/
http://www.redhat.com/mrg/hardware/

WinSDK Usage

M

The MRG Messaging WinSDK has been built using Microsoft Visual Studio 2008. All native C
++ component libraries have been linked to the specific C++ runtime libraries that come with
Microsoft Visual Studio 2008. You must use Microsoft Visual Studio 2008 when compiling
example projects or when developing your own code. Executable programs created using
Microsoft Visual Studio 2010 that link to this version of the MRG Messaging WinSDK could
experience problems due to multiple conflicting versions of the C++ runtime libraries.

9.2. WinSDK Usage

Building the CPP Examples
1. Open the examples\examples. sln solution file in Visual Studio.

2. When prompted, select the platform architecture the match the development target.
3. Build the solution.

Table 9.1. CPP Examples

Example Description

Server Creates a receiver and listens for messages.
Upon message receipt the message content is
converted to upper case and forwarded to the
received message's ReplyTo address.

Client Sends a series of messages to the server and
prints the original message content and the
received message reply content.

Map_receiver Creates a receiver and listens for a map
message. Upon message receipt the message is
decoded and displayed on the console.

Map_sender Creates a map message and sends it to the
map_receiver. The map message contains
string, integer, floating point, list, and UUID
values.

Spout Spout is a more complex example of code that
generates a series of messages and sends them
to the peer program Drain. Flexible command
line arguments allow the user to specify a variety
of message and program options.

Drain Drain is a more complex example of code that
receives a series of messages and displays their
contents on the console.

Building the C# Examples
1. Openthe dotnet_examples\winsdk_dotnet_examples. sln solution file in Visual Studio.

2. When prompted, select the platform architecture the match the development target.

3. Build the solution.

25

Chapter 9. Windows Software Development Kit

@

The WinSDK MRG Messaging Managed Callback Library is built specifically for .NET Framework
v2.0 and can be included in any project using v2.0 or higher. No other MRG Messaging libraries
have a dependency on a .NET Framework version number.

Table 9.2. C# Examples

Example Description

csharp.example.server Creates a receiver and listens for messages.
Upon message receipt the message content is
converted to upper case and forwarded to the
received message's ReplyTo address.

csharp.example.client Sends a series of messages to the server and
prints the original message content and the
received message reply content.

csharp.map.receiver Creates a receiver and listens for a map
message. Upon message receipt the message is
decoded and displayed on the console.

csharp.map.sender Creates a map message and sends it to the
map_receiver. The map message contains
values for every supported MRG Messaging data
type.

csharp.example.spout Spout is a more complex example of code that
generates a series of messages and sends them
to the peer program Drain. Flexible command
line arguments allow the user to specify a variety
of message and program options.

csharp.example.drain Drain is a more complex example of code that
receives a series of messages and displays their
contents on the console.

csharp.map.callback.receiver Creates a receiver and listens for a map
message. Upon message reception the message
is decoded and displayed on the console. This
example illustrates the use of the C# managed
code callback mechanism provided by the MRG
Messaging Managed Callback Library

csharp.map.callback.sender Creates a map message and sends it to the
map_receiver. The map message contains
values for every supported MRG Messaging data

type.
csharp.example.declare_queues A program to illustrate creating objects on a

broker. This program creates a queue used by
spout and drain.

csharp.direct.receiver Creates a receiver and listens for a messages.
Upon message receipt the message is decoded
and displayed on the console.

csharp.direct.sender Creates a series of messages and sends them to
csharp.direct.receiver.

WinSDK Usage

Example Description

csharp.example.helloworld A program to send a message and to receive the
same message from a broker.

The C++ and .NET C# example programs are designed to demonstrate how the two language
environments interoperate. In test cases, running the C++ and .NET C# examples will produce the
same results at the test console.

This table describes which code functions are supported by equivalent code examples:

Table 9.3. Equivalent Examples

Program Function C++ Code Example .NET C# Code Example
client C++ client csharp.example.client
server C++ server csharp.example.server
map_receiver C++ map_receiver csharp.map.receiver
map_sender C++ map_sender csharp.map.sender
spout C++ spout csharp.example.spout
drain C++ drain csharp.example.drain

27

28

Chapter 10.

Reporting a Bug

If you have found a bug in MRG Messaging, follow these instructions to enter a bug report:
1. You will need a Bugzillal account. You can create one at Create Bugzilla Account’.

2. Once you have a Bugzilla account, log in and click on Enter A New Bug ReportS.

3. When submitting a bug report, you will need to identify the product (Red Hat Enterprise MRG),
the version (2.0), and whether the bug occurs in the software (component = messaging) or in the
documentation (component = Messaging_Installation_Guide).

Further Reading
Red Hat Enterprise MRG and MRG Messaging Product Information
http://www.redhat.com/mrg

MRG Messaging and other Red Hat Enterprise MRG manuals
http://docs.redhat.com/docs/en-US/index.html

http://www.redhat.com/mrg/resources/

Red Hat Knowledgebase
https://access.redhat.com/knowledge/search

29

https://bugzilla.redhat.com/index.cgi
https://bugzilla.redhat.com/createaccount.cgi
https://bugzilla.redhat.com/enter_bug.cgi
http://www.redhat.com/mrg
http://docs.redhat.com/docs/en-US/index.html
http://www.redhat.com/mrg/resources/
https://access.redhat.com/knowledge/search

30

Appendix A. Revision History

Revision 0.1-3 Fri May 27 2011
Technical Review fixes

Revision 0.1-2 Wed May 18 2011
BZ#704546 - Technical review fixes

Revision 0.1-1 Tue Mar 01 2011
BZ#628516 - Chapter 2

Revision 0.1-0 Tue Feb 22 2011
Fork from 1.3

Alison Young alyoung@redhat.

Alison Young alyoung@redhat .

Alison Young alyoung@redhat .

Alison Young alyoung@redhat.

com

com

com

com

31

mailto:alyoung@redhat.com
mailto:alyoung@redhat.com
mailto:alyoung@redhat.com
mailto:alyoung@redhat.com

32

	Messaging Installation Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Getting Help and Giving Feedback
	2.1. Do You Need Help?
	2.2. We Need Feedback!

	Chapter 1. Installing MRG Messaging
	1.1. Installing MRG Messaging on Red Hat Enterprise Linux 5
	1.2. Installing MRG Messaging on Client Machines
	1.3. Available Packages — RPM

	Chapter 2. Starting the Broker
	Chapter 3. Options for Running the Broker
	3.1. Setting Broker Options
	3.2. Using Modules with the Broker
	3.3. Logging Broker Errors
	3.4. Running the JMS client with Realtime Java

	Chapter 4. Persistence
	Chapter 5. Command line utilities
	Chapter 6. Clustering and federation
	Chapter 7. Authentication and Authorization
	Chapter 8. Infiniband
	Chapter 9. Windows Software Development Kit
	9.1. WinSDK Installation
	9.2. WinSDK Usage

	Chapter 10. More Information
	Appendix A. Revision History

