Debugging with DDD

User's Guide and Reference Manual
First Edition, for DDD Version 3.3.11
Last updated 15 January, 2004

DataDisplayDebugger

Andreas Zeller

Debugging with DDD
User's Guide and Reference Manual

Copyright(©) 2004 Universitat des Saarlandes
Lehrstuhl Softwaretechnik

Postfach 15 11 50

66041 Saarbriicken

GERMANY

Distributed by

Free Software Foundation, Inc.
59 Temple Place — Suite 330
Boston, MA 02111-1307

USA

DDD and this manual are available via
theDDD www page

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1 or any later version published by the Free Software Foun-
dation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”ASpendix |
[Documentation License], page 196r details.

Send questions, comments, suggestions, ettdd@gnu.org .
Send bug reports toug-ddd@gnu.org

http://www.gnu.org/software/ddd/
mailto:ddd@gnu.org
mailto:bug-ddd@gnu.org

Short Contents

SUMMary of DDD. v v v v v v i it ittt s s st s s 1.
1 ASampleDDD SeSSION. « v v v vt v vt vt s a s e 5.
2 Gettinglnand OutofDDD . .+ v v ot i i e e e e e 15
3 TheDDDWINAOWS & v v vttt sttt i e s e it i a i a i a i a s a e aannns 41
4 Navigating throughtheCode oo oottt e e e e e 73
5 StoppingtheProgram.o v v v i it i i i ittt s i s 81
6 Runningthe Program. v i ittt et s e s e 91
7 ExaminingData. . . v v v v v v i e s e s e i 105
8 Machine-Level Debugging . « v« v v v v vt vt e e e i e 141
9 Changingthe Program.« i it ittt it s e e nne e 145
10 The Command-Lineinterface. oo v i vt i i i i 147
Appendix A ApplicationDefaults o o v i i i e e e 159
Appendix B Bugsand How ToReportThem . . . v v v v i v it v e e v v us 169
Appendix C Configuration NOtes. . .« v v o v v i it it e e s e n e e e s 175
AppendiXxD Dirty THCKS. + v v v v v v v e ettt s st s s n e e a s 181
AppendixE Extending DDD . . .o v v it i i e e e e 183
Appendix F Frequently Answered Questions. oo v v i it v i n s 185
Appendix G GNU General PublicLicense oo v v it i i i v i i ae e ns 187
AppendixH Helpand AssiStance. . . . v v v v vt ittt e 195
Appendix | GNU Free Documentation LiceENSe . . . v v v v v v v v e v v v a e s 197
Label INdeX. « v v v i ot et e e e e s e e e e 203
Key INAeX. v v v v et ittt e s i i i ittt s s st s 207
Command INdeX . « v v v vt et sttt et e e e e 209
Resource INdeX . . v v ottt et e e e e e 211
FileIndeX. v v it e e e i e e e 215

CoNCEPLINAEX & v v v it e e e e e e 217

Debugging with DDD

Table of Contents

Summary of DDDot e e 1.
AboutthisManual.......... 2.
TypographiC CONVENtiONSot e s 2.
Free software.o 3.
GettiNng DDD. . .. oottt 3.
Contributors tO DDD o e 3.
HIiStory of DDDo 4.

1 ASample DDD SeSSION cv v ittt 5
1.1 Sample Programc.oviiiiiiiiii i 14

2 Gettinglnand Outof DDDco it 15
2.1 InVOKING DDD. ... 15

2.1.1 Choosing an Inferior Debugger................... 15

2.1.2 DDDOPtONS e 16

2.1.3 XOPUONS. .o e 24

2.1.4 Inferior Debugger Options..............cvevnn. 24
2.141 GDBOPLONS.oviiiiiiiiiieaann. 24

2.1.4.2 DBXand Ladebug Options............... 25

2.1.4.3 XDBOPtONS......covviiiii i 25

2144 JDBOptions..........coiiiiiiiii 25

2.1.45 PYDBOpPtioONS.........covviiiiiiiinn.n. 27

2.1.46 PerlOptions..........ccoviiiiiiiiinn.. 27

2.1.47 BashOptions...........ccovivviiininnn. 27

2.1.5 MultipleDDD Instances..............ccvviiveennn.. 28

2.1.6 XWaAMINGS. ..ottt it 28

2.2 QUItING DDD.o 28
2.3 Persistent SESSIONSt 29
2.3.1 Saving SESSIONS.ottt 29

2.3.2 Resuming SesSIONSvviiiieniiineininanns 30

2.3.3 Deleting Sessions.c.coviviiiiii i 31

2.3.4 Customizing SesSioNScovviiiii i 32

2.4 Remote Debugging....... ..o 32
2.4.1 Running DDD onaRemote Host................. 32

2.4.2 Using DDD with a Remote Inferior Debugger...... 32
2.4.2.1 Customizing Remote Debugging........ 33

2.4.3 Debugging a Remote Program.................... 34

2.5 Customizing Interaction with the Inferior Debugger.......... 34
2.5.1 Invoking an Inferior Debugger..................... 34

2.5.2 Initializing the Inferior Debugger.................. 35
2.5.2.1 GDB Initialization....................... 35

2.5.2.2 DBX Initialization 36

iv Debugging with DDD

2.5.2.3 XDB Initialization 36

2.5.2.4 JDBInitialization........................ 36

2.5.2.5 PYDB Initialization...................... 37

2.5.2.6 PerlInitialization........................ 37

2.5.2.7 Bash Initialization....................... 37

2.5.2.8 FindingaPlacetoStart.................. 37

2.5.2.9 Openingthe Selection.................. 38

2.5.3 Communication with the Inferior Debugger........ 38

3 The DDDWINAOWS. . .o v ittt i it e e e iiieee e e 41
3.1 TheMenuBar....... ... 41
3.1.1 TheFileMenu.... ... 42

3.1.2 TheEditMenu..........coiiiii i 43

3.1.3 TheViewMenu...........cooiiiiiiiiiiiina.d 44

3.1.4 TheProgramMenu..............ccooviiiiinnennn. 45

3.1.5 TheCommandsMenu..................ccovue.... 46

3.1.6 TheStatusMenu..........cooiiiiiiiiiiiiann.n. a7

3.1.7 TheSourceMenu............cooviiiiiiinennnnn.. a7

3.1.8 TheDataMenu...........cccoiiiiiiiiiineanns. 48

3.1.9 The MaintenanceMenu......................c..... 49

3.1.10 TheHelpMenu..............ccooiiiiiiiinn... 50

3.1.11 Customizingthe MenuBar...................... 50
3.1.11.1 Auto-RaiseMenus..................... 51

3.1.11.2 Customizing the EditMenu............. 51

3.2 TheToolBar. ... e h2
3.2.1 Customizingthe ToolBar......................... 54

3.3 TheCommand TOOL........ooiriiii e 55
3.3.1 Customizing the Command Taol................... 57
3.3.1.1 Disabling the Command Tool 57

3.3.2 Command Tool Positian.......................... 58
3.3.2.1 Customizing Tool Decoration 59

34 GettingHelp. ... 59
3.5 Undoing and Redoing Commands.oo.... 60
3.6 CustomizingDDDot 60
3.6.1 How CustomizingDDDWorks.................... 60
3.6.1.1 RESOUICES......oiitiiiiiiiianieaanns 60

3.6.1.2 ChangingResources...................! 61

3.6.1.3 SavingOptionsccovvvvinnnn.. 61

3.6.2 CustomizingDDD Help..................oooas. 61
3.6.2.1 ButtonTipS.....ovviiiiiiiii i 61

3.6.2.2 Tipoftheday............................ 62

3.6.2.3 HelpHelpers...........ccoiiiiiiia. 63

3.6.3 CustomizingUnda............cooiiiiiiiiiiii.. 64

3.6.4 Customizing the DDD Windows................... 64
3.6.4.1 SplashScreen.......................... 64

3.6.4.2 WindowlLayout......................... 65

3.6.4.3 Customizing Fonts...................... 67

3.6.4.4 TogglingWindows....................... 70

3.6.45 TextFields...........cooviiiiinn... 70

3646 Icons..........coiiiiiiiiiiiiiiiee 0

3.6.4.7 AddingButtons................ 71

3.6.4.8 More Customizations.................... 71

3.6.5 DebuggerSettings...........cooiiiiiii i 71

4 Navigating throughtheCode. 73
4.1 CompilingforDebugging ... 73
4.2 Opening Files.o 73
4.2.1 Opening Programs.ccoveiiiiieeniinnnanns 7.3

4.2.2 OpeningCore DUMPS.ccovviiiiineiiiinenn 74

4.2.3 Opening SourceFiles......................oo. .. 74

424 FilteringFiles. ... 75

4.3 LookingQupltems.o 75
4.3.1 Looking up Definitions............................ 75

432 TextualSearch.......... 76

4.3.3 Looking up Previous Locations................... 76

4.3.4 Specifying Source Directories 76

4.4 Customizing the Source Window.coovvuvnn... 7
4.4.1 CustomizingGlyphs.................. ool 78

4.4.2 Customizing Searching........................... 79

4.4.3 Customizing Source Appearance.................. 79

4.4.4 Customizing Source Scrolling..................... 80

4.45 Customizing Source LOOKUpP.covvvnunn. 80

4.4.6 Customizing File Filtering. 80

5 Stoppingthe Program.o 81
5.1 Breakpoints.ori i e 31
5.1.1 Setting Breakpoints.ccooviiiiiiinnnn...d 81
5.1.1.1 Setting Breakpoints by Location......... 81

5.1.1.2 Setting Breakpoints by Name............ 82

5.1.1.3 Setting Regexp Breakpoints............. 82

5.1.2 Deleting Breakpoints..................ccovviunn.. 82

5.1.3 Disabling Breakpoints..................covuns. 83

5.1.4 Temporary Breakpoints.cccoovvnn... 83

5.1.5 Editing Breakpoint Properties..................... 84

5.1.6 Breakpoint Conditions.................. ..., 84

5.1.7 BreakpointignoreCounts......................... 85

5.1.8 BreakpointCommands...............cccviviniinn.. 85

5.1.9 Moving and Copying Breakpoints.................. 86

5.1.10 Lookingup Breakpoints......................... 86

5.1.11 Editing all Breakpoints........................... 86

5.1.12 Hardware-Assisted Breakpoints................. 87

5.2 WatChpoints. 87
5.2.1 Setting Watchpoints...................ccovin.n. 88

5.2.2 Editing Watchpoint Properties..................... 88

5.2.3 Editing all Watchpoints............................ 88

5.2.4 Deleting Watchpoints............................. 88

Vi Debugging with DDD

5.3 INtermrupting .. oo oo e 38
5.4 Stopping X Programs. ..ot 89
5.4.1 Customizing Grab Checking...................... 89

6 RunningtheProgram...........c.ouiiiiiiniinnnnnennnn a1
6.1 Starting Program Execution..................ccoiiieiann.. a1l
6.1.1 Your Program's Arguments....................... 92

6.1.2 Your Program’s Environment...................... 92

6.1.3 Your Program’s Working Directoty................. 92

6.1.4 Your Program’s Inputand Output................. 92

6.2 Using the Execution Window.................cccviiinn., 23
6.2.1 Customizing the Execution Window................ 94

6.3 Attachingtoa RunningProcess...............covivin... 94
6.3.1 Customizing Attaching to Processes............... 95

6.4 Program StOPScoiiii i 96
6.5 Resuming Execution...............coiiiiiiiiiiiiiiineann, 96
6.5.1 ContinUING.....oorriiiii i 96

6.5.2 SteppingoneLine..........ccviiiiiiiiiiiiiiin. 96

6.5.3 Continuingtothe NextLine....................... 96

6.5.4 ContinuingUntilHere............................. 97

6.5.5 Continuing Until a Greater Line is Reached........ 97

6.5.6 Continuing Until Function Returns. 97

6.6 Continuing at a Different Address........................... 97
6.7 ExaminingtheStack i, a8
6.7.1 StackFrames............ ... i, 98

6.7.2 Backtraces.............c.oiiiiiii 99

6.7.3 SelectingaFrame....................... ... 100

6.8 “Undoing” Program Executian.................ccoovvuen.. 100
6.9 ExaminingThreads, 101
6.10 HandlingSignals..............ciiiiiiiiii i 102
6.11 Killingthe Program.............ccciiiiiiiiiii ... 104
7 ExaminingData...........c.iiiiiiiiii e 105
7.1 Showing Simple Values using Value Tips.................. 105
7.2 Printing Simple Values in the Debugger Console........... 106
7.3 Displaying Complex Values in the Data Window 107
7.3.1 DisplayBasics..........coiiiiiiii 107
7.3.1.1 Creating Single Displays................ 107

7.3.1.2 Selecting Displays..................... 108

7.3.1.3 Showing and Hiding Details............. 109

7.3.1.4 Rotating Displays...................... 110

7.3.1.5 Displaying Local Variables.............. 111

7.3.1.6 Displaying Program Status............. 112

7.3.1.7 Refreshing the Data Window............. 113

7.3.1.8 Display Placement..................... 113

7.3.1.9 Clustering Displays.................... 114

7.3.1.10 Creating Multiple Displays............ 115

7.3.1.11 Editing all Displays................... 115

7.3.1.12 DeletingDisplays...................... 116

7.3.2 AITAYS .o 117
7.3.21 ArraySIlices.........cooiiiiiiiiii 117

7.3.2.2 RepeatedValues....................... 118

7.3.2.3 ArraysasTables....................... 119

7.3.3 Assignmentto Variables......................... 119

7.3.4 Examining Structures. ..., 120
7.3.4.1 Displaying Dependent Values........... 120

7.3.4.2 Dereferencing Pointers................ 120

7.3.4.3 Shared Structures 121

7.3.4.4 Display Shortcuts...................... 122

7.3.5 Customizing Displaysc.coiiiiiiiiia... 125
7.3.5.1 UsingDataThemes.................... 125

7.3.5.2 Applying Data Themes to Several Values.26

7.3.5.3 EditingThemes........................ 127

7.3.5.4 Writing Data Themes................... 127

7.3.5.5 Display Resources..................... 128

7.3.5.6 VSLResources.............ccoviunn.. 128

7.3.6 LayoutingtheGraph............................. 129
7.3.6.1 Moving Displays....................... 129

7.3.6.2 ScrollingData.................cooiun.. 130

7.3.6.3 Aligning Displays...................... 130

7.3.6.4 AutomaticLayout...................... 130

7.3.6.5 Rotatingthe Graph..................... 131

7.3.7 PrintingtheGraph...................... 131

7.4 Plotting Values. 133
7.4.1 PlOtiNg Arrays.oove i 133

7.4.2 Changing the Plot Appearance................... 134

7.4.3 Plotting Scalars and Composites................. 134

7.4.4 Plotting Display Histories........................ 135

7.45 PrintingPlots. ... 135

7.4.6 Entering Plotting Commands.................... 136

7.4.7 ExportingPlotData.....................oooat. 136

7.4.8 AnimatingPlots..................ci i 136

7.4.9 CustomizingPlots............cooiiiiii i 137
7.4.9.1 GnuplotInvocation...................... 137

7.4.9.2 GnuplotSettings..............ccoovnnt. 137

7.5 EXamining MemOry.ouiiii it iiae e 138
8 Machine-LevelDebuggingcoviiiiiiin.. 141
8.1 Examining MachineCode................ccciiiiiinann.. 141
8.2 Machine Code Execution.ccoviiiinnnnn.nn. 142
8.3 ExaminingRegisters 142
8.4 Customizing MachineCode...................ccoviiin... 143

Vii

viii Debugging with DDD

9 Changingthe Program.cciuiiiiiienennn.. 145
9.1 EditingSource Code........oviiiiiiiii 145
9.1.1 Customizing Editingooiia.. 145

9.1.2 In-Place Editing...........oiiiiiiii i 145

9.2 RecompPiliNg. e 146
9.3 Patching....... oo 146
10 The Command-LineInterface............., 147
10.1 EnteringCommands...........ccoiiiiiiiiiiiniinans 147
10.1.1 Command Completian......................... 147

10.1.2 CommandHistory..............ccoviiivinnnn.. 148

10.1.3 Typing in the Source Windaw. 149

10.2 Entering Commands atthe TTY..............coviiiinn.. 150
10.3 Integrating DDD. ...t e 150
10.3.1 UsingDDDWwithEmacs............cvvvvennn. 150

10.3.2 Using DDD with XEmacs....................... 150

10.3.3 Using DDD WithKXGDBo vvveiii i 151

10.4 Defining BUttons. ... 151
10.4.1 CustomizingButtons........................... 152

10.5 DefiningCommands.............ccoviiiiiiiiineiinnn.. 154
10.5.1 Defining Simple Commands using GDB.......... 155

10.5.2 Defining Argument Commands using GDB...... 156

10.5.3 Defining Commands using Other Debuggers....157

Appendix A Application Defaults 159
Al ACHONS. . e 159

A1l General ACtIONS. ...t 159

A.1.2 DataDisplay Actions.............ccovviiiiin.. 159

A.1.3 Debugger Console Actions. 162

A.1.4 Source Window Actions..................coonn.. 163

A2 IMaAgES. . e 164
Appendix B Bugs and How To Report Them. 169
B.1 Whereto Send BugReportsc.ovviiiiiiiiinnnnn. 169

B.2 ISitaDDD BUQ?t 169

B.3 HowtoReportBugs...........ooiiiiiiiii s 169

B.4 WhattolIncludeinaBugReport.......................... 170

B.5 Getting DiagnostiCSvvii e e 170

B.5.1 LOQQING .. uvieei e e 170

B.5.1.1 DisablingLogging...................... 171

B.5.2 DebuggingDDD............cciiiii 171

B.5.3 Customizing Diagnostics.................cvuue.. 171

Appendix C Configuration Notes.coiiiiinnnn. 175
C.1 UsingDDDWIithGDBccoiiiiiiii i 175

C.1.1 UsingDDDWwWithWDB..............ccoiiivvannn.. 175

C.1.2 Using DDD with WindRiver GDB (Tornado)...... 175

C.2 UsingDDDWithDBX.cooiiii i 178

C.3 Using DDD with Ladebug.cooiiiiiint. 178

C.4 UsingDDDWIith XDB........oiiiiiiiiii i 178

C.5 UsingDDDWIithJDB.......coviiiiii i 178

C.6 UsingDDDwithPerl...........ccoiiiiiii i, 179

C.7 UsingDDDwithBash................ooiiiiiiiii, 179

C.8 Using DDD with LeSSTif........oiuiiiiii e 179
AppendixD Dirty Tricksooei i e 131
Appendix E ExtendingDDD ... 183
Appendix F Frequently Answered Questions 185
Appendix G GNU General Public License. 187
Preamble. 187
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION ... o e 187

How to Apply These Terms to Your New Programs.............. 192
AppendixH HelpandAssistanceciviie.... 195
Appendix | GNU Free Documentation License. 197
ADDENDUM: How to use this License for your documenits...... 202
LabelIndexo e e 203
Key INdeX ..o e s e e 207
Command INdeX.ovi i e e 209
Resource Index.o e 211
File IndeX. ..o e e e 215

ConceptINdeX. . oo v v e 217

Debugging with DDD

Summary of DDD 1

Summary of DDD

The purpose of a debugger suchoas is to allow you to see what is going on “inside” another

program while it executes—or what another program was doing at the moment it crashed.

DpDD can do four main kinds of things (plus other things in support of these) to help you catch

bugs in the act:

Start your program, specifying anything that might affect its behavior.
Make your program stop on specified conditions.
Examine what has happened, when your program has stopped.

Change things in your program, so you can experiment with correcting the effects of one bug
and go on to learn about another.

Technically speakingypp is a front-end to a command-line debugger (callefdrior debugger,

because it lies at the layer beneathD). bbD supports the following inferior debuggers:

To debugexecutable binariesg/ou can usepp with ¢DB, DBX, Ladebug, Or XDB.

— GDB, theaNU debugger, is the recommended inferior debuggepfop. ¢DB supports
native executables binaries originally written in G;€ Java, Modula-2, Modula-3, Pas-
cal, Chill, Ada, and FORTRAN. (see=ction “Usingaps with Different Languages” in
Debugging with DB, for information on language supportd@oB.)

— As an alternative t@pB, you can useoDD with the DBx debugger, as found on several
UNIX systems. MosbBx incarnations offer fewer features thams, and some of the
more advancedBx features may not be supportedibybd. However, usingsx may be
useful ifacps does not understand or fully support the debugging information as generated
by your compiler.

— As an alternative t@:pB andDBX, you can usebDD with Ladebug, as found on Com-
paqg and DEC systems. Ladebug offers fewer features ¢iman) and some of the more
advanced Ladebug features may not be supportezblny However, using Ladebug may
be useful ifcpB or bBX do not understand or fully support the debugging information as
generated by your compilér.

— As another alternative tapB, you can useoDD with the xpB debugger, as found on
HP-UX systems.

To debuglava byte code programgou can useDD with JDB, the Java debugger, as 0k
1.1 and later.¥pD has been tested witibk 1.1 andipk 1.2.)

To debugPython programsyou can useDD with PYDB, a Python debugger.
To debugPerl programs you can useDD with the Perl debugger, as of Perl 5.003 and later.

To debugBash programsyou need a version Bash that supports extended debugging support.
To get this enhanced version seip://bashdb.sourceforge.net . You will need
version 2.05b-debugger-0.32 or later to work withp.

SeeSection 2.1.1 [Choosing an Inferior Debugger], paggfabechoosing the appropriate infe-

rior debugger. Seehapter 1 [Sample Session], pagddr getting a first impression afbp.

L within ppp (and this manual), Ladebug is considereasha variant. Hence, everything said fosx also

2

applies to Ladebug, unless stated otherwise.
xpB Will no longer be maintained in futunepp releases. Use a recemis version instead.

http://bashdb.sourceforge.net

2 Debugging with DDD

About this Manual

This manual comes in several formats:

e TheInfo format is used for browsing on character devices; it comes without pictures. You
should have a local copy installed, which you can browse via Emacs, the standrdtone
program, or fronpDD via ‘Help = pDD Reference ’

TheDpDD source distributionddd-3.3.11.tar.gz ’ contains this manual as pre-formatted
info files; you can also download them from
theDDD Www page

e ThePostScriptformat is used for printing on paper; it comes with pictures as well.

TheppD source distributionddd-3.3.11.tar.gz ' contains this manual as pre-formatted
PostScript file; you can also download it from
theDDD www page

e The PDF format is used for printing on paper as well as for online browsing; it comes with
pictures as well.

TheDDD source distributionddd-3.3.11.tar.gz ’ contains this manual as pre-formatted
PDF file; you can also download it from
theDDD www page

e TheHTML format is used for browsing on bitmap devices; it includes several pictures. You
can view it using a HTML browser, typically from a local copy.

A pre-formatted HTML version of this manual comes in a sepavate package
‘ddd-3.3.11-html-manual.tar.gz "» you can browse and download it via
theDDD www page

The manual itself is written ingXinfo format; its source codeddd.texi ’is contained in the
DDD source distributionddd-3.3.11.tar.gz '

The picture sources come in a separate packddd-3.3.11-pics.tar.gz "; you need
this package only if you want to re-create the PostScript, HTML, or PDF versions.

Typographic conventions

The name for a key on the keyboard (or multiple keys pressed simultaneously)

run A sequence of characters to be typed on the keyboard.
‘~/.ddd/init ’

Afile.
‘Help’ A graphical control element, such as a button or menu item.

‘File = Open Program’
A sequence of menu items, starting at the top-level menu bar.

argc-1 Program code or debugger command.
A command-line option.

$ System prompt.

(gdb) Debugger prompt.

http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/

Summary of DDD 3

Cursor position.

version A metasyntactic variable; something that stands for another piece of text.
definition A definition.

caution Emphasis.

A warning Strong emphasis.

DDD An acronym.

Here’s an examplebtreak location’ is a typed command at théddb) ' prompt; the meta-
syntactic variablelocation’ would be replaced by the actual location. is the cursor position after
entering the command.

(gdb) break location
Breakpoint number at Ilocation

(gdb) _

Free software

DDD is free; this means that everyone is free to use it and free to redistribute it on a free basis.
DDD is not in the public domain; it is copyrighted and there are restrictions on its distribution, but
these restrictions are designed to permit everything that a good cooperating citizen would want to
do. What is not allowed is to try to prevent others from further sharing any versiomofthat
they might get from you. The precise conditions are found inidke General Public License that
comes withbpbp; SeeAppendix G [License], page 13for detalils.

The easiest way to get a copy obD is from someone else who has it. You need not ask for
permission to do so, or tell any one else; just copy it.

Getting DDD

If you have access to the Internet, you can get the latest versiommfrom the anonymousTp
server ftp.gnu.org "in the directory fgnu/ddd ’. This should contain the following files:

“‘ddd- version.tar.gz’
TheppD source distribution. This should be all you need.

“*ddd- version-html-manual.tar.gz’ ’
The bbb manual in HTML format. You need this only if you want to install a local
copy of theppp manual in HTML format.

‘‘ddd- version-pics.tar.gz’
Sources of images included in tlmp manual. You need this only if you want to
recreate the&pp manual.

DDD can also be found at numerous other archive sites around the world; check the file
‘ANNOUNCIH a ppp distribution for the latest known list.

Contributors to DDD

Dorothea Litkehaus and Andreas Zeller were the original author®of Many others have
contributed to its development. The fileSHangeLog’ and ‘THANKSIn the ppp distribution
approximates a blow-by-blow account.

4 Debugging with DDD

History of DDD

The history ofbDD is a story of code recycling. The oldest partsoofb were written in 1990,
whenAndreas ZelledesignedvsL, a box-based visual structure language for visualizing data and
program structures. ThesL interpreter and the Box library became part of Andreas’ Diploma
Thesis, a graphical syntax editor based on the Programming System Genecator

In 1992, thevsy and Box libraries were recycled for theorA project. FOrNORA, an experi-
mental inference-based software development tool set, Andreas wrote a graph editor (based on
and the Box libraries) and facilities for inter-process knowledge exchange. Based on these tools,
Dorothea Litkehauéhow Dorothea Krabiel) realizedppp as her Diploma Thesis, 1994.

The originalppp had no source window; this was added by Dorothea during the winter of
1994-1995. In the first quarter of 1995, finally, Andreas completed by adding command and
execution windows, extensions foBx and remote debugging as well as configuration support for
several architectures. Since then, Andreas has further maintained and extemgdzhsed on the
comments and suggestions of severab users around the world. See the comments incthe
source for details.

Major DDD events:
April, 1995 ppD 0.9: FirstbpD beta release.
May, 1995 DDD 1.0: First publicobDpD release.

December, 1995
pDD 1.4: Machine-level debugging, glyphs, Emacs integration.

October, 1996
DpDD 2.0: Color displaysxpB support, generioBx support, command tool.

May, 1997 ppD 2.1: Alias detection, button tips, status displays.

November, 1997
DDD 2.2: Sessions, display shortcuts.

June, 1998 ppD 3.0: Icon tool bar, Java supportyB support.

December, 1998
ppD 3.1: Data plotting, Perl support, Python support, Undo/Redo.

January, 2000
DpDD 3.2: New manual, Readline support, Ladebug support.

January, 2001
pDD 3.3: Data themes, JDB 1.2 support, VXWorks support.

November, 2002
DpDD 3.3.2: Bash support.

March, 2003
DpDD 3.3.3: Better Bash support. Compiles using modern tools thanks to Daniel Schep-
ler.

Chapter 1: A Sample DDD Session 5

1 A Sample DDD Session

You can use this manual at your leisure to read all albbauai. However, a handful of features
are enough to get started using the debugger. This chapter illustrates those features.

The sample progransample.c ' (seeSection 1.1 [Sample Program], page &xhibits the fol-
lowing bug. Normallysample should sort and print its arguments numerically, as in the following
example:

$ Jsample 8 754 1 3
134578
$

However, with certain arguments, this goes wrong:
$./sample 8000 7000 5000 1000 4000
1000 1913 4000 5000 7000
$

Although the output is sorted and contains the right number of arguments, some arguments are
missing and replaced by bogus numbers; h@d60 is missing and replaced 1913 .1

Let us usepDD to see what is going on. First, you must compsarnple.c ' for debugging
(seeSection 4.1 [Compiling for Debugging], page)/giving the -g ’ flag while compiling:

$ gcc -g -0 sample sample.c
$

Now, you can invokeoDD (seeChapter 2 [Invocation], page).bn thesample executable:
$ ddd sample

L Actual numbers and behavior on your system may vary.

6 Debugging with DDD

After a few secondshpp comes up. Th&ource Window contains the source of your debugged
program; use th&croll Bar to scroll through the file.

£ DDD: Musriusersists]izelleridduidocisample.c [-[0]
Hie Edit View Program Commands Staws Source Data ﬂelp'l
. o = e R G
Argument Field—[isin R s s el 8
for (i =h; 1 < size; i+
{) Command Tool
B e e awar o) —
or (J=1; J>=ha&sali-hl>v j—
alil = ali'~ hl; il
if (]a[:i]: i)v- Step | Stepi
3 while (h =12 e et
while (h 1= 13;
Unil | Firish
int main{int arac, char *argy[1} Ea N
[Up_ | Down
int *a;
int 1i; Uhde} | Fzda
B = (int *Jmalloc({arge = 1) * sizeof(int)); il
for (i =0; i ¢ argc = 1; i++)

alil = atoi(argv[i + 113;
shell_sort(a, argcl;

for (1 =0: i <arge =13 1+ 9 Scroll Bar
printf("sd ", alil);
printf{"wn");

A\

Source Window —

freaa);

return 0;

)

00D 3.1.3 (i986-pc-Tinux—gnulibci), by Dorothea Litkehaus and Andreas Zeller.
Copyright @ 1393 Technische Universitdt Braunschweig, Germany.
Readinlg sywbols from sample...done.

dbd

Debugger Console —+s

Status Line ——=weicome to DOD 5.1.3 "Wiles Ahead” (1558-pe-lnus-gnuibe1) Hd

Initial DDD Window

The Debugger Console (at the bottom) containspp version information as well as apB

prompt!

GNU DDD Version 3.3.11, by Dorothea Lutkehaus and Andreas Zeller.

Copyright © 1995-1999 Technische Universitat Braunschweig, Germany.

Copyright © 1999-2001 Universitat Passau, Germany.

Copyright © 2001-2004 Universitat des Saarlandes, Germany.

Reading symbols from sample..done.

(gdb) _

The first thing to do now is to place Breakpoint (seeSection 5.1 [Breakpoints], page B1
making sample stop at a location you are interested in. Click on the blank space left to the
initialization ofa. The Argument field ‘(): ' now contains the locationg$ample.c:31). Now,
click on ‘Break ' to create a breakpoint at the location {i ”. You see a little red stop sign appear
in line 31.

! Re-invokeppp with ‘--gdb ', if you do not see a(gdb) ' prompt here (se&ection 2.1.1 [Choosing an
Inferior Debugger], page 35

Chapter 1: A Sample DDD Session 7

The next thing to do is to actualbxecute the program, such that you can examine its behavior
(seeChapter 6 [Running], page R1Select Program = Run’ to execute the program; th&un
Program ’ dialog appears.

£ DDD: lusriusersfstsl/zellerfddd/docisample.c =1

Fle Edit View Program Commands Status Source Data ﬂelpl

0| wddrdocssampe.cia £ D EHT @ 600 20 el G G0 B e

Wp Fiidn. s WGER Prnl Cedioy Pt show eiste. set Unden

i 4 P a
'::nr (i =h; 1 <size; i+
int v = alil; Run
nr(j—1]>—h&&a[j—h]>vj(h) ﬁ
alil = alj - hl: w
if (;[]!T B step | Stepi
3 _ DDD: Run Program i Hext | Nexti
3 while (h 1=1);
Arguments Uril| et
int mainCint argc, char e ———————— Mm
£) 87541 g | bown
int *a;
int i; Urelas | Fedles
Breakpoint—»@ Cint *malloc((e Edit | make
fur(l—U i ¢ arge

alil = atoi(argy

shell_sortia, argc);)
Run with Arguments

for (i =0; 1 < arge

srintF{'zd *. a |3000 7000 5000 1000 4000 Arguments
printf{"wn");
. freefa):
Click here to run o~ —Run | cancel | Hem

3

Reading symbols from sample...done. =

(gdb) break fusr/‘users/‘st51/zaﬂer[ddd!dnc/‘sampla <

Ereakpmnt 1 at 0x8048666: file fusr/users/st51/ze'l'\er/ddd/dnc/samp'\E <. line

(gdh) i =
/

A Breakpoint 1 at 4 file fusrfusersists ample.c, line 1. i

Running the Program

In ‘Run with Arguments ’, you can now enter arguments for tt@mple program. Enter the
arguments resulting in erroneous behavior here—tha8@90 7000 5000 1000 4000 . Click
on ‘Run’ to start execution with the arguments you just entered.

GDB now startssample . Execution stops after a few moments as the breakpoint is reached.
This is reported in the debugger console.
(gdb) break sample.c:31
Breakpoint 1 at 0x8048666: file sample.c, line 31.
(gdb) run 8000 7000 5000 1000 4000
Starting program: sample 8000 7000 5000 1000 4000

Breakpoint 1, main (argc=6, argv=0xbffff918) at sample.c:31
(gdb) _
The current execution line is indicated by a green arrow.
= a = (int *)malloc((argc - 1) * sizeof(int));
You can now examine the variable values. To examine a simple variable, you can simply move
the mouse pointer on its name and leave it there. After a second, a small window with the variable
value pops up (seBection 7.1 [Value Tips], page 1)5Try this with ‘argc ’ to see its value§).

The local variabled’ is not yet initialized; you'll probably se®x0 or some other invalid pointer
value.

Debugging with DDD

To execute the current line, click on theéxt ’ button on the command tool. The arrow ad-

vances to the following line. Now, point again cad to see that the value has changed and taat *
has actually been initialized.

£2 DDD: fusriusersists1izelleridddidocisample.c [_ IO x]
Fle Edit View Program Commands SEMS Source Data ﬂelp'l

o« 00 Z® @ @ el o

Laskup ra Beak bateh Pt DEpiRy et shon 6 &t Uhd

for (1 =h; 1 < size; i+

int v =alil;
for (= 1:
alil =
aljl =

3[>—h]&&a[jfh]>v i—=nh
if it j)
1

3 while (h 1=1);

int main(int argc, char *argv[1)
£

int *a;
int 17

@ a = (int *Imalloci{arge — 1) * sizeof(int));

Execution Position—=* it sl 1,17
shell_sortia, arge);

. for (i =0; i <argc — 1; i+
Value Tip SrintFCad "o AT
printFCHn®y:

freelal;

return 0;

Breakpoint 1, main (argc=k, argv—UxbffffEﬂB) at
Eusr;users;‘stﬂ/zeller/‘dddldnc/sample <
g next

A a=(int %) 0x8049878

Viewing Values in DDD

To examine the individual values of tha’‘array, enter a[0] ’ in the argument field (you can
clear it beforehand by clicking or{): ') and then click on thePrint ' button. This prints the
current value of() ' in the debugger console (s€gction 7.2 [Printing Values], page 1)0@n our
case, you'll get

(gdb) print af0]
$1 =0
(gdb) _

or some other value (note thad'*has only been allocated, but the contents have not yet been
initialized).

To see all members of' at once, you must use a speci@bn operator. Sinced’ has been
allocated dynamicallyzpB does not know its size; you must specify it explicitly using tk@
operator (se€ection 7.3.2.1 [Array Slices], page)1Enter a[0]@(argc - 1) ’"inthe argument
field and click on thePrint ' button. You get the firsargc - 1 elements of&’, or

(gdb) print a[0]@(argc - 1)
$2 = {0, 0, 0, O, 0}
(gdb) _

Chapter 1: A Sample DDD Session 9

Rather than usingPrint ' at each stop to see the current value af, ‘you can alsodisplay
‘a’, such that its is automatically displayed. With[0]@(argc-1) ' still being shown in the
argument field, click onDisplay ’. The contents ofa’ are now shown in a new window, th@ata
Window. Click on ‘Rotate '’ to rotate the array horizontally.

£ DDD: /usrfusersisisifzellertddd/doc/sample.c [[0
Fle Edit View Program Commands Status Source Data ﬂalpl

0:lam € Grac 11 (4,8 W @ G 7 arde— oo 8 e — Display Button

1: al0] @ (arge - 1) :

Data Window—-

i o
}while Cht=1);
3 Run
int mainint arge, char *arge[1} Interrupt.
. Step | Stepi

int *a;
int i; Mext | Mexti
@ a = (int ©malloc((argc = 1) ; sizeof(int)); Until | Frish

B for (i =0; 1 <argc - 1; i+
ali]l = atoifaravli + 112; Cont | kil

Up | Dawn

shell_sortla, argcd;
Undo | Fedor

for (i =0; 1 < argc —1; i+
printfi"sd ", alil):
printf("\n");

Ediit | Make

freelal;

return 0;

H

$1 =0
{gdb) print a[0] @ {argc — 1)
2 =

.0,0, 0,
(gdb) graph display a0l @ (argc — 12
(gdb) |

T

A Display 1: al0] @ arac — 1) (enabled, scope main, address 0x8049878)

Data Window

Now comes the assignment @f'*s members:
= for (i = 0; i < argc - 1; i++)
ali] = atoi(argv[i + 1));
You can now click onNext ' and ‘Next ' again to see how the individual members af are
being assigned. Changed members are highlighted.

To resume execution of the loop, use thitil " button. This makes:DB execute the program
until a line greater than the current is reached. Click ntil * until you end at the call of
‘shell_sort 'in

= shell_sort(a, argc);
At this point, ‘a”’s contents should beB000 7000 5000 1000 4000 . Click again on Next ’
to step over the call teshell_sort . DbD ends in
= for (i = 0; i < argc - 1; i++)
printf("%d ", a[i]);
and you see that afteshell_sort " has finished, the contents ai*are ‘1000, 1913, 4000,
5000, 7000 '—that s, ‘shell_sort " has somehow garbled the contents af *

To find out what has happened, execute the program once again. This time, you do not skip
through the initialization, but jump directly into theHell_sort ' call. Delete the old breakpoint
by selecting it and clicking orClear . Then, create a new breakpoint in line 35 before the call to
‘shell_sort ’. To execute the program once again, sel€bgram =- Run Again .

Once morepbD ends up before the call tahell_sort ™

10 Debugging with DDD

= shell_sort(a, argc);

This time, you want to examine closer whahell_sort ' is doing. Click on ‘Step ’ to step
into the call to Shell_sort . This leaves your program in the first executable line, or

= int h = 1;

while the debugger console tells us the function just entered:
(gdb) step
shell_sort (a=0x8049878, size=6) at sample.c:9
(gdb) _

This output that shows the function wheigample ' is now suspended (and its arguments)
is called astack frame display. It shows a summary of the stack. You can uSgatus =
Backtrace 'to see where you are in the stack as a whole; selecting a line (or clickingmmand

‘Down) will let you move through the stack. Note how th&' display disappears when its frame
is left.

£ DDD: Jusriusersistsizellerfddd/doc/sample.c M=
Hle Edit View Program Commands Status Source Data ﬂelpl

0| 7ddd/doc/sample. g 4 @ GHT @ Gt 2 a0 CF 0 B
Lookup Fins -Bremk’ RIC(Print OEpEy Hiot Hidef Rotetas ser Updiep:

Ey
£ 5
L int i, 3 BT
SR < 000 Bacicrace] i
=, |
h=h* E Backirace Riprpk
3 while (h <= step | stepl
do #2 0xB0484be in ___crt dummy__ O £
/=3 #1 0x80486ed in main () at sample.c:3S Mext | Nexti
PR 0 chell cort O at sanle.c:d T
int w
Cont | Hil
Backtrace —
. al U | B
if O
al Undo | Ferl
3 while h 1= o e
up | v Close Help
j‘gnt mainfint arge,
int *a;
int i;
Y
Jusrfusers/sts1/zel Ter fddd/doc/sample. c: 35 o)

(gdb) down

#0 chell_sort (a=0x8049578, size=5) at
éu;g;usars!stﬂ/zaﬂer/dddfdnc/samp]e.c:ﬁ
i

i

A Updating displays...done.

The DDD Backtrace

Let us now check whetheshell _sort s arguments are correct. After returning to the lowest
frame, enter@[0]@size ' inthe argument field and click orPrint ’:
(gdb) print a[0] @ size
$4 = {8000, 7000, 5000, 1000, 4000, 1913}
(gdb) _

Surprise! Where does this additional vall&l3 come from? The answer is simple: The array
size as passed irsize ’to ‘shell_sort '’ is too large by one-1913 is a bogus value which
happens to reside in memory after.' And this last value is being sorted in as well.

To see whether this is actually the problem cause, you can now assign the correct vsilzee to ‘
(seeSection 7.3.3 [Assignment], page)1Select size ’in the source code and click osét '
A dialog pops up where you can edit the variable value.

Chapter 1: A Sample DDD Session

11

£2 DDD: Jusriusersistsizellerfdddidocfsample.c [_ 10}
Fle Edit View Program Commands Status Source Data Help
0 size C B @ B W 2o A G 5 R o
Lockup Findi Ereak Uatch Pt DopEw Plst jde foir Set Ui
. . = &
Select Vanable n the source itatwc void shelT_sort(int all, int EREE) 3 DDD EX
Run
int i, i
B int h=1; Interrupt
do {h RPN - DD: Set Value X Step | Stepl
énw?ﬂe th <= Selviilleorsize Mext | Mexti
h /=3 Until | Firish
. $ I?E i
Edit value P € e = Cont | Kil
int w2 Up | Dx
for (4 i
ol ok | Apply | | cancel Help | tndo] Feric || | |
if (;[Edit | Make
3
3 while (h =13
wfnt main{int argc, char *argvl[l}
int *a;
J
#0 shell_sort (a=0x8049878, size=6) at o
Jusrfusers/stsl/zeller/ddd/doc/sample. c:9
(adb} print all] @ sizd
4 = {8000, 7000, 5000, 1000, 4000, 19133
7
1 $4 = {8000, 7000, 5000, 1000, 4000, 1913} F

— Set Button

Change the value otize ’to 5 and click on OK. Then, click on Finish
" function:

tion of the ‘shell_sort

Setting a Value

(gdb) set variable size = 5

(gdb) finish

Run till exit from #0

’to resume execu-

shell_sort (a=0x8049878, size=5) at sample.c:9

0x80486ed in main (argc=6, argv=0xbffffo18) at sample.c:35

(gdb) _

12 Debugging with DDD

Success! Thed’ display now contains the correct values000, 4000, 5000, 7000,
8000".

£ DDD: fusriusersisislizelleridddidddisample.c M=
Hle Edit View Program Commands Stalus Source Dala Help |
| siza 7B g @ o 2 oa ha A7 5w
Lookup Fings Ereak baich Print Ospiy POt e Goie St Unoen
‘|3:_alol @ (arge — 1) :
Changed values ?_ 1000[4000]5000[7000]8000]|"
iy
Snr (i =hs 1 <size; 141D == ooo E3|NB
Wfﬂt \é=a[i]; b i % W Run
or {j =1; Jj »=h && alj - P
; (a[]'] :)a[]' = hl; Interrupt
if (=1
ali] ¥ - Step | Stepi
i Mt | et
} while (h 1=1);
Until | Finish
int main(int argc, char *argv[l) Cont| Kl
£ Up | Down
int *a;
int i; Unda | Feda
a = (int *Imalloc{{arge — 13 * sizeof(intd); A
for (i =0; 1 <argc —1; i+
alil = atoi(aravli + 113;
shell_sart(a, argc);
for (i =0; i <argc —1; i+
printf("sd ", alil); ¥/
Run til1 ewit from #1 shell_sort (a=0x8043300, size=5) at e
Jusrfusers/stst/zeller/ddd/ddd/sample.c: 9
0%804872d in main (arac=6, argv=0zbffffa2c) at
Jusrifusers/stsi/zeller/ddd/ddd/sample. ¢35
(gdb) | =
7
A Updating displays. dane ‘F

Changed Values after Setting

You can verify that these values are actually printed to standard output by further executing the
program. Click onCont ’ to continue execution.

(gdb) cont
1000 4000 5000 7000 8000

Program exited normally.
(gdb) _

The messageProgram exited normally. "is from GDB; it indicates that thesample
program has finished executing.

Having found the problem cause, you can now fix the source code. ClicEdinh ° to edit
‘sample.c ’, and change the line

shell_sort(a, argc);
to the correct invocation
shell_sort(a, argc - 1);
You can now recompilsample
$ gcc -g -0 sample sample.c
$ _
and verify (via Program =- Run Again ’) that sample works fine now.

(gdb) run

‘sample’ has changed; re-reading symbols.

Reading in symbols..done.

Starting program: sample 8000 7000 5000 1000 4000

Chapter 1: A Sample DDD Session

1000 4000 5000 7000 8000

Program exited normally.
(gdb) _
All is done; the program works fine now. You can end thisb session with Program =
Exit "or Ctrl +Q

13

14

1.1 Sample Program

Here’s the sourcesample.c ' of the sample program.

Debugging with DDD

e N
/* sample.c -- Sample C program to be debugged with DDD
*/
#include <stdio.h>
#include <stdlib.h>
static void shell_sort(int a[], int size)
{
int i, j;
int h = 1;
do {
h=h*3+ 1;
} while (h <= size);
do {
h /= 3;
for (i = h; i < size; i++)
{
int v = alil;
for =1;) >=h && afj - h] > v; j -= h)
afi] = afj - hJ;
if (i =]
afj] = v,
}
} while (h = 1);
}
int main(int argc, char *argvl[])
{
int *a;
int i
a = (int *)malloc((argc - 1) * sizeof(int));
for (i = 0; i < argc - 1; i++)
ali] = atoi(argv[i + 1));
shell_sort(a, argc);
for (i = 0; i < argc - 1; i++)
printf("%d ", ali]);
printf("\n");
free(a);
return O;
}
N J

Chapter 2: Getting In and Out of DDD 15

2 Getting In and Out of DDD

This chapter discusses how to startb, and how to get out of it. The essentials are:
e Type ‘ddd’ to startppp (seeSection 2.1 [Invoking], page)5
e Use File = Exit ’or Ctrl +Qto exit (seeSection 2.2 [Quitting], page 38

2.1 Invoking DDD

Normally, you can rumbDD by invoking the progranddd .

You can also rumbDD with a variety of arguments and options, to specify more of your debug-
ging environment at the outset.

The most usual way to stapbp is with one argument, specifying an executable program:
ddd program

If you useGDB, DBX, Ladebug, orxpB as inferior debuggers, you can also start with both an
executable program and a core file specified:

ddd program core

You can, instead, specify a process ID as a second argument, if you want to debug a running
process:

ddd program 1234

would attaclppp to procesd234 (unless you also have a file namd@34’; pbp does check for
a core file first).

You can further contrabbpp by invoking it with specificoptions. To get a list ofbDD options,
invokeDpDD as

ddd --help

Most important are the options to specify the inferior debugger$se¢on 2.1.1 [Choosing an
Inferior Debugger], page)5but you can also customize several aspectsmab upon invocation
(seeSection 2.1.2 [Options], page L6

DDD also understands the usual X options such-display ' or ‘-geometry '. SeeSec-
tion 2.1.3 [X Options], page 24or details.

All arguments and options that are not understoodby are passed to the inferior debug-
ger; SeeSection 2.1.4 [Inferior Debugger Options], page for a survey. To pass an option to
the inferior debugger that conflicts with an X option, or wittbap option listed here, use the
‘--debugger ’option (seeSection 2.1.2 [Options], page L6

2.1.1 Choosing an Inferior Debugger

The most frequently required options are those to choose a specific inferior debugger.
Normally, the inferior debugger is determined by the program to analyze:

e If the program requires a specific interpreter, such as Java, Python, Perl or Bash, then you
should use aps, pYDB, Perl, or Bash inferior debugger.

Use
ddd --jdb program
ddd --pydb program

16 Debugging with DDD

ddd --perl program

ddd --bash program
ddd --interpreter=’ path-to-debugger-bash-debugger’ program

to runppD With JDB, PYDB, Perl, or Bash as an inferior debugger.

e [fthe program is an executable binary, you shouldass, pBx, Ladebug, oxDB. In general,
GDB (or its HP variantwpB) provides the most functionality of these debuggers.

Use
ddd --gdb program
ddd --wdb program
ddd --dbx program
ddd --ladebug program
ddd --xdb program
to runbDD with GDB, WDB, DBX, Ladebug, oxDB as inferior debugger.

If you invoke bDD without any of these options, but givepeogram to analyze, themnpbD will
automatically determine the inferior debugger:

e If program is a Python program, a Perl script, or a Java class; will invoke the appropriate
debugger.

e If program is an executable binargbb will invoke its default debugger for executables (usu-
ally ¢pB).

SeeSection 2.5 [Customizing Debugger Interaction], pagef@rimore details on determining
the inferior debugger.

2.1.2 DDD Options

You can further control howpD starts up using the following options. All options may be
abbreviated, as long as they are unambiguous; single dashastead of double dashes ‘'’ may
also be used. Almost all options control a spedifitb resource or resource class (Seection 3.6
[Customizing], page 60

‘--attach-windows '
Attach the source and data windows to the debugger console, creating one single big
DpDD window. This is the default setting.

Giving this option is equivalent to setting theD ‘Separate ’ resource class to
‘off . SeeSection 3.6.4.2 [Window Layout], page @6r details.

‘--attach-source-window
Attach only the source window to the debugger console.

Giving this option is equivalent to setting thepp ‘separateSourceWindow
resource tooff '. SeeSection 3.6.4.2 [Window Layout], page &or details.

‘--attach-data-window '
Attach only the source window to the debugger console.

Giving this option is equivalent to setting theoD ‘separateDataWindow
source to off '. SeeSection 3.6.4.2 [Window Layout], page &or details.

re-

Chapter 2: Getting In and Out of DDD 17

‘--automatic-debugger

‘--button-tips

‘--configuration

‘--check-configuration

‘--data-window

‘--debugger

‘--debugger-console

Determine the inferior debugger automatically from the given arguments.

Giving this option is equivalent to setting theoD ‘autoDebugger ' resource to
‘on’. SeeSection 2.5 [Customizing Debugger Interaction], pagef@idetails.

Enable button tips.

Giving this option is equivalent to setting thep ‘buttonTips ' resource toon'.
SeeSection 3.6.2 [Customizing Help], page, 6ar details.

Print theppD configuration settings on standard output and exit.

Giving this option is equivalent to setting thep ‘showConfiguration 'resource
to ‘on’. SeeSection B.5 [Diagnostics], page 1,/or details.

Check theppp environment (in particular, the X configuration), report any possible
problem causes and exit.

Giving this option is equivalent to setting theoD ‘checkConfiguration
source toon’. SeeSection B.5 [Diagnostics], page 1,7or details.

re-

Open the data window upon start-up.

Giving this option is equivalent to setting thabD ‘openDataWindow ’ resource to
‘on’. SeeSection 3.6.4.4 [Toggling Windows], page, Tor detalils.

Run pBX as inferior debugger.

Giving this option is equivalent to setting tleD ‘debugger ' resource to dbx'.
SeeSection 2.5 [Customizing Debugger Interaction], pagef@rdetails.

name’
Invoke the inferior debuggerame. This is useful if you have several debugger versions
around, or if the inferior debugger cannot be invoked under its usual namegdbe.
wdb, dbx, xdb, jdb , pydb, orperl).
This option can also be used to pass options to the inferior debugger that would oth-
erwise conflict withppp options. For instance, to pass the optieth ‘directory’ to
XDB, US€:

ddd --debugger "xdb -d directory"

If you use the ‘-debugger ' option, be sure that the type of inferior debugger
is specified as well. That is, use one of the optiongdb ’, ‘--dbx ’, ‘--xdb ’,
‘--jdb ', *--pydb ’, or‘--perl ' (unless the default setting works fine).

Giving this option is equivalent to setting teD ‘debuggerCommand’ resource

to name. SeeSection 2.5 [Customizing Debugger Interaction], pagef@ddetails.

Open the debugger console upon start-up.

Giving this option is equivalent to setting tmeD ‘openDebuggerConsole
source toon’. SeeSection 3.6.4.4 [Toggling Windows], page, for details.

re-

18

‘--disassemble

‘--exec-window

Debugging with DDD

Disassemble the source code. See also-the-disassemble " option, below.

Giving this option is equivalent to setting tb®p ‘disassemble ' resource toon’.
SeeSection 4.4 [Customizing Source], page f details.

Run the debugged program in a specially created execution window. This is useful
for programs that have special terminal requirements not provided by the debugger
window, as raw keyboard processing or terminal control sequencesSe3¢en 6.2
[Using the Execution Window], page 9fbr details.

Giving this option is equivalent to setting theoD ‘separateExecWindow ' re-
source toon’. SeeSection 6.2.1 [Customizing the Execution Window], pagefés
details.

‘--font fontname’
‘-fn fontname’

‘--fonts

‘--fontsize

‘--fullname
‘_f 1

l__gdb i)

‘--glyphs

Usefontname as default font.

Giving this option is equivalent to setting thebp ‘defaultFont ’ resource to
‘fontname . SeeSection 3.6.4.3 [Customizing Fonts], page for details.

Show the font definitions used lmypD on standard output.
Giving this option is equivalent to setting tleD ‘showFonts ' resource to 6n’.
SeeSection B.5 [Diagnostics], page 1,7or details.

size’
Set the default font size taze (in 1/10 points). To makepb use 12-point fonts, say
‘--fontsize 120 "

Giving this option is equivalent to setting thepp ‘FontSize ' resource class to
‘size . SeeSection 3.6.4.3 [Customizing Fonts], page i details.

Enable therTy interface, taking additional debugger commands from standard input
and forwarding debugger output on standard output. Current positions are issued in
apB ‘-fullname ' format suitable for debugger front-ends. By default, both the
debugger console and source window are disabled. S8egon 10.2 [TTY mode],

page 150for a discussion.

Giving this option is equivalent to setting thep ‘TTYModé€ resource class tan'.
SeeSection 10.2 [TTY mode], page 15for details.
Run ¢pB as inferior debugger.

Giving this option is equivalent to setting tleD ‘debugger ' resource to gdb’.
SeeSection 2.5 [Customizing Debugger Interaction], pagef@rdetails.

Display the current execution position and breakpoints as glyphs. See also the
‘--no-glyphs ' option, below.

Giving this option is equivalent to setting teop ‘displayGlyphs ' resource to
‘on’. SeeSection 4.4 [Customizing Source], page for details.

Chapter 2: Getting In and Out of DDD 19

‘--help

l_h)

-7 Give a list of frequently used options. Show options of the inferior debugger as well.
Giving this option is equivalent to setting thaD ‘showlnvocation ’ resource to
‘on’. SeeSection B.5 [Diagnostics], page 1,/or details.

‘--host hostname’

--host username @hostname’
Invoke the inferior debugger directly on the remote hlosttname. If username is
given and the--login ’ option is not used, usasername as remote user name. See
Section 2.4.2 [Remote Debugger], page fé details.

Giving this option is equivalent to setting theoD ‘debuggerHost ' resource to
hostname. SeeSection 2.4.2 [Remote Debugger], page fér details.

‘-<jdb ' RunJDB as inferior debugger.

Giving this option is equivalent to setting tleD ‘debugger ’ resource to gdb’.
SeeSection 2.5 [Customizing Debugger Interaction], pagef@ridetails.

‘--ladebug
Run Ladebug as inferior debugger.
Giving this option is equivalent to setting thepp ‘debugger ' resource to
‘ladebug . See Section 2.5 [Customizing Debugger Interaction], page fof

details.
‘--lesstif-hacks '
Equivalent to :-lesstif-version 999 ". Deprecated.
Giving this option is equivalent to setting thaD ‘lessTifVersion ' resource to
999. SeeSection C.8 [LessTif|, page 17for details.
‘--lesstif-version version’

Enable some hacks to makeb run properly with LessTif. SeBection C.8 [LessTif],
page 179for a discussion.

Giving this option is equivalent to setting theD ‘lessTifVersion " resource to
version. SeeSection C.8 [LessTif], page 17for details.

‘--license
Print theppD license on standard output and exit.

Giving this option is equivalent to setting tlmaD ‘showLicense ’resource toon.
SeeSection B.5 [Diagnostics], page 1,7or details.

‘--login username’

‘-| username’
Useusername as remote user name. S8ection 2.4.2 [Remote Debugger], page 32
for details.

Giving this option is equivalent to setting tb®D ‘debuggerHostLogin 'resource
to username. SeeSection 2.4.2 [Remote Debugger], page fér details.

‘--maintenance
Enable the top-levelMaintenance ' menu with options for debuggingpp. See
Section 3.1.9 [Maintenance Menu], page ft# details.

20 Debugging with DDD

Giving this option is equivalent to setting tl®D ‘maintenance ' resource toon.
SeeSection 3.1.9 [Maintenance Menu], page ## details.

‘--manual
Print theppb manual on standard output and exit.

Giving this option is equivalent to setting tleoD ‘showManual ’ resource toon.
SeeSection B.5 [Diagnostics], page 1,7or details.

‘--news ' PrintthepDD hews on standard output and exit.
Giving this option is equivalent to setting tl®D ‘showNews’ resource toon. See
Section B.5 [Diagnostics], page 1,40r details.

‘--no-button-tips '
Disable button tips.

Giving this option is equivalent to setting tb@D ‘buttonTips '’ resource to off
SeeSection 3.6.2 [Customizing Help], page, 6adr details.

‘--no-data-window
Do not open the data window upon start-up.

Giving this option is equivalent to setting thaD ‘openDataWindow ’ resource to
‘off . SeeSection 3.6.4.4 [Toggling Windows], page, 70r details.

‘--no-debugger-console
Do not open the debugger console upon start-up.
Giving this option is equivalent to setting tmeD ‘openDebuggerConsole
source to Off '. SeeSection 3.6.4.4 [Toggling Windows], page, for details.

re-

‘--no-disassemble '
Do not disassemble the source code.
Giving this option is equivalent to setting thepp ‘disassemble
‘off '. SeeSection 4.4 [Customizing Source], page f details.

resource to

‘--no-exec-window
Do not run the debugged program in a specially created execution window; use the
debugger console instead. Useful for programs that have little terminal input/output,
or for remote debugging. Sée=ction 6.2 [Using the Execution Window]|, page for
details.

Giving this option is equivalent to setting theoD ‘separateExecWindow ' re-
source tooff '. SeeSection 6.2.1 [Customizing the Execution Window], pagefés
details.

‘--no-glyphs
Do not use glyphs; display the current execution position and breakpoints as text char-
acters.

Giving this option is equivalent to setting tmeD ‘displayGlyphs ' resource to
‘off '. SeeSection 4.4 [Customizing Source], page fof details.

‘--no-lesstif-hacks
Equivalent to :-lesstif-version 1000 ". Deprecated.
Giving this option is equivalent to setting thaD ‘lessTifVersion ' resource to
1000. SeeSection C.8 [LessTif], page 17for details.

Chapter 2: Getting In and Out of DDD 21

‘--no-maintenance

‘--no-source-window

‘--no-value-tips

‘ -NnwW ’

‘--perl

‘--pydb

‘--panned-graph-editor

‘--play-log

Do not enable the top-leveMaintenance ' menu with options for debuggingpp.
This is the default. SeBection 3.1.9 [Maintenance Menu], page for details.

Giving this option is equivalent to setting thaD ‘maintenance ' resource tooff.
SeeSection 3.1.9 [Maintenance Menu], page ## details.

Do not open the source window upon start-up.

Giving this option is equivalent to setting th@D ‘openSourceWindow ' resource
to ‘off ’. SeeSection 3.6.4.4 [Toggling Windows], page, for details.

Disable value tips.

Giving this option is equivalent to setting thaD ‘valueTips ' resource to off
SeeSection 7.1 [Value Tips], page 10for details.

Do not use the X window interface. Start the inferior debugger on the local host.

Run Perl as inferior debugger.

Giving this option is equivalent to setting thD ‘debugger ' resource to perl .
SeeSection 2.5 [Customizing Debugger Interaction], pagef@rdetails.

Run pYDB as inferior debugger.

Giving this option is equivalent to setting theD ‘debugger ' resource to pydb .
SeeSection 2.5 [Customizing Debugger Interaction], paggef@ridetails.

Use an Athena panner to scroll the data window. Most people prefer panners on
scroll bars, since panners allow two-dimensional scrolling. However, the panner is
off by default, since some M*tif implementations do not work well with Athena
widgets. SeeSection 7.3.5.5 [Display Resources], page ,1ft# details; see also
‘--scrolled-graph-editor ", below.

Giving this option is equivalent to setting tb®p ‘pannedGraphEditor ' resource
to ‘on’. SeeSection 7.3.5.5 [Display Resources], page,faBdetails.
log-file’
Recapitulate a previousbD session.
ddd --play-log log-file
invokesppD as inferior debugger, simulating the inferior debugger givelojnfile
(see below). This is useful for debuggingp.

Giving this option is equivalent to setting thep ‘playLog ’resource tobn’. See
Section 2.5 [Customizing Debugger Interaction], pagef@rdetails.

‘--PLAY log-file’

Simulate an inferior debuggdig-file is a ‘~/.ddd/log ' file as generated by some
previouspDD session (se&ection B.5.1 [Logging], page 1Y.0When a command is
entered, scafog-file for this command and re-issue the logged reply; if the command
is not found, do nothing. This is used by theplay ' option.

22

Debugging with DDD

‘--rhost hostname’
‘--rhost username @ostname’

‘--scrolled-graph-editor

‘--separate-windows

‘--separate

‘--session

‘--source-window

‘--status-at-

‘--status-at-top

‘--sync-debugger

Run the inferior debugger interactively on the remote tostname. If username is
given and the--login ' option is not used, usesername as remote user name. See
Section 2.4.2 [Remote Debugger], page fé? details.

Giving this option is equivalent to setting tlD ‘debuggerRHost ' resource to
hostname. SeeSection 2.4.2 [Remote Debugger], pageg fér details.

Use M*tif scroll bars to scroll the data window. This is the default in mosb
configurations. Seé&ection 7.3.5.5 [Display Resources], page,lfof details; see
also “-panned-graph-editor ', above.

Giving this option is equivalent to setting tbeD ‘pannedGraphEditor 'resource
to ‘off '. SeeSection 7.3.5.5 [Display Resources], page,faBdetails.

Separate the console, source and data windows. See alsedtiach * options,
above.

Giving this option is equivalent to setting thepD ‘Separate ' resource class to
‘off . SeeSection 3.6.4.2 [Window Layout], page @6r details.

session’
Load session upon start-up. Seé&ection 2.3.2 [Resuming Sessions], page féb
details.
Giving this option is equivalent to setting tleD ‘session ' resource tosession.
SeeSection 2.3.2 [Resuming Sessions], pagef@0details.

Open the source window upon start-up.
Giving this option is equivalent to setting tihD ‘openSourceWindow ' resource
to ‘on’. SeeSection 3.6.4.4 [Toggling Windows], page, for details.

bottom
Place the status line at the bottom of the source window.

Giving this option is equivalent to setting thebD ‘statusAtBottom ' resource to
‘on’. SeeSection 3.6.4.2 [Window Layout], page @6r details.

Place the status line at the top of the source window.

Giving this option is equivalent to setting thaD *‘statusAtBottom ’ resource to
‘off . SeeSection 3.6.4.2 [Window Layout], page @0r details.

Do not process X events while the debugger is busy. This may result in slightly better
performance on single-processor systems.

Giving this option is equivalent to setting tlm®D ‘synchronousDebugger ' re-
source to 6n’. See Section 2.5 [Customizing Debugger Interaction], page fa4
details.

Chapter 2: Getting In and Out of DDD 23

‘--toolbars-at-bottom
Place the toolbars at the bottom of the respective window.

Giving this option is equivalent to setting tiD ‘toolbarsAtBottom ' resource
to ‘on’. SeeSection 3.6.4.2 [Window Layout], page &or details.

‘--toolbars-at-top '
Place the toolbars at the top of the respective window.

Giving this option is equivalent to setting th@bD ‘toolbarsAtBottom ' resource
to ‘off ’. SeeSection 3.6.4.2 [Window Layout], page ,dor details.

‘--trace
Show the interaction betweermp and the inferior debugger on standard error. This is
useful for debuggingpp. If ‘--trace '’ is not specified, this information is written
into ‘~/.ddd/log ' (* ~’ stands for your home directory), such that you can also do
a post-mortem debugging. Se&ection B.5.1 [Logging], page 17for details about
logging.

Giving this option is equivalent to setting thep ‘trace ' resource toon. SeeSec-
tion B.5 [Diagnostics], page 17for details.

-t EnableTTy interface, taking additional debugger commands from standard input and
forwarding debugger output on standard output. Current positions are issued in a for-
mat readable for humans. By default, the debugger console is disabled.

Giving this option is equivalent to setting thep ‘ttyMode ’resource to6n’. See
Section 10.2 [TTY mode], page 15for details.

‘--value-tips
Enable value tips.

Giving this option is equivalent to setting tleD ‘valueTips ' resource to 6n’.
SeeSection 7.1 [Value Tips], page 10for details.

‘--version
‘v

Print theppD version on standard output and exit.

Giving this option is equivalent to setting tb®p ‘showVersion ’resource toon’.
SeeSection B.5 [Diagnostics], page 1,f0r details.

‘--vsl-library library’
Load thevsu library library instead of using thepp built-in library. This is useful
for customizing display shapes and fonts.

Giving this option is equivalent to setting tbep ‘vslLibrary ’resource tdibrary.
SeeSection 7.3.5.6 [VSL Resources], page 128 details.

‘--vsl-path path’
SearchvsL libraries inpath (a colon-separated directory list).

Giving this option is equivalent to setting tiD ‘vsIPath ' resource tgpath. See
Section 7.3.5.6 [VSL Resources], page]1{e8 details.

‘--vsl-help
Show a list of further options controlling thesL interpreter. These options are in-
tended for debugging purposes and are subject to change without further notice.

24 Debugging with DDD

‘--wdb ' RunwbDB as inferior debugger.
Giving this option is equivalent to setting tleD ‘debugger ' resource to wdb'.
SeeSection 2.5 [Customizing Debugger Interaction], pagef@ridetails.

‘--xdb ’* RunxDB as inferior debugger.

Giving this option is equivalent to setting tleD ‘debugger ' resource to xdb .
SeeSection 2.5 [Customizing Debugger Interaction], pagef@rdetails.

2.1.3 X Options

DDD also understands the following X options. Note that these options only take a single dash

‘-display display’
Use the X servedisplay. By default,display is taken from thédISPLAY environment
variable.

‘-geometry geometry’
Specify the initial size and location of the debugger console.

‘-iconic
Startppp iconified.
‘-name name’
Give DDD the namename.
‘-selectionTimeout timeout’
Specify the timeout in milliseconds within which two communicating applications
must respond to one another for a selection request.
‘-title name’

Give theppD window the titlename.

‘-Xrm resourcestring’
Specify a resource name and value to override any defaults.

2.1.4 Inferior Debugger Options

All options thatpbpD does not recognize are passed to the inferior debugger. This section lists
the most useful options of the different inferior debuggers supportethy In case these options
do not work as expected, please lookup the appropriate reference.

2.1.4.1 GDB Options
ThesecDB options are useful when usingbp with GbB as inferior debugger. Single dashes
‘- "instead of double dashes ‘' may also be used.

‘-b baudrate’
Set serial port baud rate used for remote debugging.

‘--cd dir’ Change current directory tair.

‘—-command file’
ExecutecDB commands fronfile.

Chapter 2: Getting In and Out of DDD 25

‘--core corefile’
Analyze the core dumgporefile.

‘--directory dir’
‘-d dir’ Add directory to the path to search for source files.

‘--exec execfile’
Useexecfile as the executable.

‘--mapped ’
Use mapped symbol files if supported on this system.

’

‘--nx

-n Do not read :gdbinit " file.

‘--readnow
Fully read symbol files on first access.

‘--se file’
Usefile as symbol file and executable file.

‘--symbols symfile’
Read symbols fromymfile.

Seesection “Invoking GDB” inDebugging with GDB, for further options that can be used with
GDB.

2.1.4.2 DBX and Ladebug Options

DBX variants differ widely in their options, so we cannot give a list here. Check outtthd)
andladebug(1) manual pages.

2.1.4.3 XDB Options

ThesexDpB options are useful when usimgpp with xpB as inferior debugger.
‘-d dir’ Specify dir as an alternate directory where source files are located.

‘-P process-id’
Specify the process ID of an existing process the user wants to debug.

‘“-| library’
Pre-load information about the shared librdiyrary. ‘-| ALL ' means always pre-
load shared library information.

‘S num’ Set the size of the string cache tam bytes (default is 1024, which is also the mini-
mum).

-S Enable debugging of shared libraries.

Further options can be found in tlkdb(1) manual page.

2.1.4.4 JDB Options

26 Debugging with DDD

JDB as of JDK 1.2

The following JDB options are useful when usingpbp with JpB (from JDK 1.2) as inferior
debugger.

‘-attach address’
attach to a running virtual machine (VM) address using standard connector

‘-listen address’
wait for a running VM to connect aiddress using standard connector

‘-listenany
wait for a running VM to connect at any available address using standard connector

‘-launch
launch VM immediately instead of waiting forun ' command

ThesespB options are forwarded to the debuggee:

‘-verbose[.class|gc|jni]
v Turn on verbose mode.

‘-D name=value’
Set the system properhame to value.

‘-classpath path’
List directories in which to look for classepath is a list of directories separated by
colons.

*-X option’
Non-standard target VM option

JDB as of JDK 1.1

The following JDB options are useful when usingop with JpB (from JpDK 1.1) as inferior
debugger.

‘-host hostname’
host machine of interpreter to attach to

‘-password psswd’
password of interpreter to attach to (froméebug)

ThesespB options are forwarded to the debuggee:

‘-verbose
VAN Turn on verbose mode.

‘-debug ' Enable remote Java debugging,

‘-noasyncgc
Don't allow asynchronous garbage collection.

‘-verbosegc
Print a message when garbage collection occurs.

Chapter 2: Getting In and Out of DDD 27

‘-noclassgc
Disable class garbage collection.

‘-checksource
‘-cs Check if source is newer when loading classes.

‘-SS number’
Set the maximum native stack size for any thread.

‘-0SS number’
Set the maximum Java stack size for any thread.

‘-ms number’
Set the initial Java heap size.

‘-mx number’

Set the maximum Java heap size.
‘-D name=value’

Set the system properhame to value.

‘-classpath path’
List directories in which to look for classepath is a list of directories separated by
colons.
‘-prof ’
‘-prof. file’
Output profiling data to./java.prof " If file is given, write the data ta/ file’.
‘-verify ’
Verify all classes when read in.

‘-verifyremote
Verify classes read in over the network (default).

‘-noverify "’
Do not verify any class.

‘-dbgtrace ’
Print info for debuggingDB.

Further options can be found in theB documentation.
2.1.4.5 PYDB Options

For a list of usefubyDB options, check out theybB documentation.
2.1.4.6 Perl Options

The most important Perl option to use wibtloD is ‘-w’; it enables several important warnings.
For further options, see therlrun(1) manual page.

2.1.4.7 Bash Options

If you have the proper bash installed, the option needed to specify debugging support is
‘--debugger . (If your bash doesn't understand this option you need to pick up a version of
bash that does fronnttp://bashdb.sourceforge.net)

http://bashdb.sourceforge.net

28 Debugging with DDD

2.1.5 Multiple DDD Instances

If you have multiplepDD instances running, they share common preferences and history files.
This means that changes applied to one instance may get lost when being overwritten by the other in-
stance DDD has two means to protect you against unwanted losses. The first means is an automatic
reloading of changed options, controlled by the following resourcegseéon 3.6 [Customizing],

page 60

checkOptions (class CheckOptions) Resource
Everyn seconds, where is the value of this resourcepp checks whether the options file
has changed. Default 80, which means that every 30 secondsp checks for the options
file. Setting this resource @ disables checking for changed option files.

Normally, automatic reloading of options should already suffice. If you need stronger protection,
DDD also provides a warning against multiple instances. This warning is disabled by default, If you
want to be warned about multipiebp invocations sharing the same preferences and history files,
enable Edit = Preferences = Warn if Multiple DDD Instances are Running "

This setting is tied to the following resource (seection 3.6 [Customizing], page 0

warnlfLocked (class WarnlfLocked) Resource
Whether to warn if multipleopp instances are runninggh’) or not (‘off ’, default).

2.1.6 X warnings

If you are bothered by X warnings, you can suppress them by seEuhy * = Preferences
= General = Suppress X warnings '

This setting is tied to the following resource (seection 3.6 [Customizing], page 0

suppressWarnings (class SuppressWarnings) Resource
If ‘on’, X warnings are suppressed. This is sometimes useful for executables that were built
on a machine with a different X or M*tif configuration. By default, this af* .

2.2 Quitting DDD

To exitDDD, select File = Exit ’. You may also type thguit command at the debugger
prompt or presgCiri+Q). GDB andxDB also accept theg command or an end-of-file character
(usually Ctri+D)). Closing the lasbpp window will also exitbp.

An interrupt (ESC or ‘Interrupt ') does not exit frompDD, but rather terminates the action
of any debugger command that is in progress and returns to the debugger command level. It is safe
to type the interrupt character at any time because the debugger does not allow it to take effect until
atime when itis safe.

In case an ordinary interrupt does not succeed, you can also use an@bBit(or ‘Abort),
which sends &IGABRTsignal to the inferior debugger. Use this in emergencies only; the inferior
debugger may be left inconsistent or even exit aftSt@ABRT signal.

As a last resort (ibpp hangs, for example), you may also interroptp itself using an interrupt
signal SIGINT). This can be done by typing the interrupt character (usyatiy+C)) in the shell

Chapter 2: Getting In and Out of DDD 29

DDD was started from, or by using thevix ‘kill ' command. An interrupt signal interrupts any

DDD action; the inferior debugger is interrupted as well. Since this interrupt signal can result in
internal inconsistencies, use this as a last resort in emergencies only; save your work as soon as
possible and restattpD.

2.3 Persistent Sessions

If you want to interrupt your currerntbb session, you can save the entire the eniib® state
assession on disk and resume later.

2.3.1 Saving Sessions

To save a session, sele¢tile =- Save Session As . You will be asked for a symbolic
session nameession.

If your program is running (se€hapter 6 [Running], page Rlor if you have opened a core
file (seeSection 4.2.2 [Opening Core Dumps|, page, @bD can also include a core file in the
session such that the debuggee data will be restored when re-opening it. To get a cormfile,
typically mustkill the debuggee. This means that you cannot resume program execution after
saving a session. Depending on your architecture, other options for getting a core file may also be
available.

Including a core dump is necessary for restoring memory contents and the current execution
position. To include a core dump, enablieclude Core Dump .

£2 DDD: Save Session

Sessions
Default session —————tlnonel
catrmands
ctest+dbx
ctest

Saved sessions ———— EEH

Set to save
Prggram Data ————————F Include Core Dump via Kill'in_g the Debugyee

Save Session
| cuntest]

Click to save —W Delete Cancel Help

Saving a Session

After clicking on ‘Save’, the session is saved ir/.ddd/sessions/ session’.
Here’s a list of the items whose state is saved in a session:
e The state of the debugged program, as a coré file.

L Only if a core file is included.

30 Debugging with DDD

e All breakpoints and watchpoints (s@€apter 5 [Stopping], page R1

e All signal settings (se&ection 6.10 [Signals], page 102

e All displays (seesection 7.3 [Displaying Values], page)#7

e All DDD options (seéection 3.6.1.3 [Saving Options], page 61

e All debugger settings (segection 3.6.5 [Debugger Settings]|, pagg.71

e All user-defined buttons (sé&ection 10.4 [Defining Buttons], page)51

e All user-defined commands (s€ection 10.5 [Defining Commands], page .54
e The positions and sizes obp windows.

e The command history (s€&ection 10.1.2 [Command History], page)48

After saving the current state as a session, the session beaormes This means thabpD
state will be saved as session defaults:

e User options will be saved in ~f/.ddd/sessions/ session/init instead of

‘~/.ddd/init '. SeeSection 3.6.1.3 [Saving Options], page fdr details.

e TheDpDD command history will be saved ir-/.ddd/sessions/ session/history ' in-
stead of ~/.ddd/history '. SeeSection 10.1.2 [Command History], page 1f& details.

To make the current session inactive, open dieéault sessiomamed [None] ’. See Sec-
tion 2.3.2 [Resuming Sessions], page féb details on opening sessions.

2.3.2 Resuming Sessions

To resume a previously saved session, seleitd © = Open Session ' and choose a session
name from the list. After clicking onOpen’, the entirepDD state will be restored from the given
session.

The session namefNone] ' is the default session which is active when startingpp. To save
options for default sessions, choose the default session before exiting SeeSection 3.6.1.3
[Saving Options], page 6 for details.

2 If a core file isnot to be included in the sessionpp data displays are saved dsferred that is, they
will be restored as soon as program execution reaches the scope in which they were creatzzt:- See
tion 7.3.1.1 [Creating Single Displays], page 1fof details.

Chapter 2: Getting In and Out of DDD 31

£: DDD: Open Session %]
Sessions
Default session ————fnanel
commands45

ctest+dbx

Saved sessions

Open Session
I cuntest]

Click to open Open | Delete Cancel Help

Opening a Session

If a the restored session includes a core dump, the program being debugged will be in the same
state at the time the session was saved; in particular, you can examine the program data. However,
you will not be able to resume program execution since the process and its environment (open
files, resources, etc.) no longer exist. However, you can restart the program, re-using the restored
breakpoints and data displays.

Opening sessions also restores command definitions, buttons, display shortcuts and the source
tab width. This way, you can maintain a different set of definitions for each session.

You can also specify a session to open when stariing. To invokepDD with a sessioression,
use

ddd --session session

There is also a shortcut that opens the sessisgion and invokes the inferior debugger on an
executable namegtssion (in casesession cannot be opened):

ddd =session

There is no need to give further command-line options when restarting a session, as they will be
overridden by the options saved in the session.

You can also use an X session manager suoctsasto save and restonepn sessions. When
being shut down by a session managerp saves its state under the name specified by the session
manager; resuming the X session make® reload its saved state.

2.3.3 Deleting Sessions

To delete sessions that are no longer needed, sélget ‘= Open Session ’or ‘File =
Save Session . Select the sessions you want to delete and clickizelete

The default sessiorfNone] ’ cannot be deleted.

3 Requires X11R6 or later.

32 Debugging with DDD

2.3.4 Customizing Sessions

You can change the place whep®D saves its sessions by setting the environment variable
DDD_SESSIONSo the name of a directory. Default is/.ddd/sessions/ "

Where applicableppp supports ajcore command to obtain core files of the running program.
You can enter its path vigEdit = Preferences = Helpers = Get Core File . Leave
the value empty if you have rgcore or similar command.

This setting is tied to the following resource (seection 3.6 [Customizing], page 0

getCoreCommand (class GetCoreCommand) Resource
A command to get a core dump of a running process (typicgipre) ‘@FILE@is re-
placed by the base name of the file to crea@PID@is replaced by the process id. The
output must be written ta@FILE@.@PID@

Leave the value empty if you have goore or similar command.

2.4 Remote Debugging

You can have each aipDp, the inferior debugger, and the debugged program run on different
machines.

2.4.1 Running DDD on a Remote Host

You can runbDD on a remote host, using your current host as X display. On the remote host,
invokeDDD as

ddd -display display

wheredisplay is the name of the X server to connect to (for instan&esthame:0.0 ’, where
hostname is your host).

Instead of specifying-tlisplay display’, you can also set thBISPLAY environment variable
to display.

2.4.2 Using DDD with a Remote Inferior Debugger

In order to run the inferior debugger on a remote host, you nesadsh ’ (called ‘rsh ' on BSD
systems) access on the remote host.

To run the debugger on a remote hbsttname, invokebDD as
ddd --host hostname remote-program

If your remoteusername differs from the local username, use

ddd --host hostname --login username remote-program
or

ddd --host username@hostname remote-program
instead.

There are a fewaveatsn remote mode:

Chapter 2: Getting In and Out of DDD 33

e The remote debugger is started in your remote home directory. Hence, you must specify an ab-
solute path name faemote-program (or a path name relative to your remote home directory).
Same applies to remote core files. Also, be sure to specify a remote process id when debugging
a running program.

e The remote debugger is started non-interactively. Somre versions have trouble with this.
If you do not get a prompt from the remote debugger, use-thiedst ' option instead of
‘--host . This will invoke the remote debugger via an interactive shell on the remote host,
which may lead to better results.

Note: using *-rhost ’, DDD invokes the inferior debugger as soon as a shell prompt appears.
The first output on the remote host ending in a space charactet and not followed by a
newline is assumed to be a shell prompt. If necessary, adjust your shell prompt on the remote
host.

e To run the remote progranppD invokes an xterm ’ terminal emulator on the remote
host, giving your currentDISPLAY’ environment variable as address. If the remote host
cannot invoke xterm ’, or does not have access to your X display, stan> with the
‘--no-exec-window ' option. The program input/output will then go through thep
debugger console.

e Inremote mode, all sources are loaded from the remote host; file dialogs scan remote directo-
ries. This may result in somewhat slower operation than normal.

e To help you find problems due to remote execution,spm with the --trace ’ option. This
prints the shell commands issuedibyD on standard error.

SeeSection 2.4.2.1 [Customizing Remote Debugging], pagddiustomizing remote mode.

2.4.2.1 Customizing Remote Debugging

When having the inferior debugger run on a remote host$se¢on 2.4 [Remote Debugging],
page 3), all commands to access the inferior debugger as well as its files must be run remotely.
This is controlled by the following resources (seection 3.6 [Customizing], page 0

rshCommand (class RshCommand) Resource
The remote shell command to invokery-based commands on remote hosts. Usually,
remsh , rsh , ssh, oron.

listCoreCommand (class listCoreCommand) Resource
The command to list all core files on the remote host. The st@iIASK® replaced by a
file filter. The default setting is:

Ddd*listCoreCommand: \
file @MASK@ | grep '.*.*core.* | cut -d: -f1

listDirCommand (class listDirCommand) Resource
The command to list all directories on the remote host. The st@IASK@ replaced by
a file filter. The default setting is:

Ddd*listDirCommand: \
file @MASK@ | grep '.*.*directory.* | cut -d: -f1

34 Debugging with DDD

listExecCommand (class listExecCommand) Resource
The command to list all executable files on the remote host. The s@MASK® replaced
by a file filter. The default setting is:

Ddd*listExecCommand: \

file @MASK@ | grep '.*.*exec.* \
| grep -v .*l*script.* |\
| cut -d: -f1 | grep -v "*\.o%

listSourceCommand (class listSourceCommand) Resource
The command to list all source files on the remote host. The st@JASK®@ replaced by
a file filter. The default setting is:

Ddd*listSourceCommand: \
file @MASK@ | grep '.*.*text.* | cut -d: -f1

2.4.3 Debugging a Remote Program

Thecbs debugger allows you to run tlieebugged prograran a remote machine (calleemote
targed), while GDB runs on the local machine.

Seesection "Remote Debugging” iPebugging with GDB, for details. Basically, the following
steps are required:

e Transfer the executable to the remote target.
e Startgdbserver on the remote target.

e Startppp usingeDB on the local machine, and load the same executable usingkdile
command.

e Attach to the remotegdbserver ’using thecDB targetremote command.

The local ‘gdbinit ' file is useful for setting up directory search paths, etc.

Of course, you can also combip®D remote mode andDB remote mode, runningdD, GDB,
and the debugged program each on a different machine.

2.5 Customizing Interaction with the Inferior Debugger

These settings control the interactionoasp with its inferior debugger.

2.5.1 Invoking an Inferior Debugger

To choose the default inferior debugger, seldetit = Preferences = Startup =
Debugger Type . You can

e haveppD determine the appropriate inferior debugger automatically from its command-line
arguments. SeDetermine Automatically from Arguments "to enable.

e havepDD start the debugger of your choice, as specifiediaebugger Type .

The following bDD resources control the invocation of the inferior debugger sagion 3.6
[Customizing], page 60

Chapter 2: Getting In and Out of DDD 35

autoDebugger (class AutoDebugger) Resource
If this is ‘on’ (default), pDD will attempt to determine the debugger type from its arguments,
possibly overriding thedebugger ’ resource (see below). If this i®ff ', bpD will invoke
the debugger specified by théebugger ' resource regardless ofbD arguments.

debugger (class Debugger) Resource
The type of the inferior debugger to invokeg@b’, ‘dbx’, ‘ladebug ’, ‘xdb’, “jdb ’,
‘pydb’, ‘perl ’, or ‘bash’).
This resource is usually set through thegdb ’, ‘--dbx °’, ‘--ladebug ’, ‘--xdb ’,
‘--jdb ’, *--pydb ’, ‘--perl ’, and ‘--bash ' options; SeeSection 2.1.2 [Options],
page 16for details.

debuggerCommand (class DebuggerCommand) Resource
The name under which the inferior debugger is to be invoked. If this string is empty (default),
the debugger typedebugger ’'resource) is used.

This resource is usually set through thelebugger ' option; SeeSection 2.1.2 [Options],
page 16 for details.

2.5.2 Initializing the Inferior Debugger

DDD uses a number of resources to initialize the inferior debuggerysegon 3.6 [Customiz-
ing], page 6.

2.5.2.1 GDB Initialization

gdblnitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially sent#o

As a side-effect, all settings specified in this resource are considered fixed and cannot be

changed through thepB settings panel, unless preceded by white space. By default, the
‘gdbInitCommands ’resource contains some settings vitabtob:

Ddd*gdblInitCommands: \

set height 0\n\

set width O\n\

set verbose offin\

set prompt (gdb) \n
While the ‘set height 7, ‘setwidth ’, and ‘set prompt °’ settings are fixed, theset

verbose ' settings can be changed through thes settings panel (although being reset
upon each newDD invocation).

Do not use this resource to customizes; instead, use a personal/:gdbinit "file. See
your ¢DB documentation for details.

gdbSettings (class Settings) Resource

This string contains a list of newline-separated commands that are also initially savto
Its default value is

36 Debugging with DDD

Ddd*gdbSettings: \
set print asm-demangle on\n

This resource is used to save and restore the debugger settings.

sourcelnitCommands (class SourcelnitCommands) Resource
If “on’ (default), DDD writes allcDB initialization commands into a temporary file and makes

GDB read this file, rather than sending each initialization command separately. This results in

faster startup (especially if you have several user-defined commandsif. If ‘DDD makes
GDB process each command separately.

2.5.2.2 DBX Initialization

dbxInitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially sepixtoBy
default, it is empty.
Do not use this resource to customizex; instead, use a personat/:dbxinit " or
‘~/.dbxrc ’file. See yournBx documentation for details.

dbxSettings (class Settings) Resource
This string contains a list of newline-separated commands that are also initially et to
By default, it is empty.

2.5.2.3 XDB Initialization

xdblInitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially senitoBy
default, it is empty.
Do not use this resource to customizex; instead, use a personal/:xdbrc '’ file. See
your xDB documentation for details.

xdbSettings (class Settings) Resource
This string contains a list of newline-separated commands that are also initially sav.to
By default, it is empty.

2.5.2.4 JDB Initialization

jdbInitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially sem td his
resource may be used to customipass. By default, it is empty.

jdbSettings (class Settings) Resource
This string contains a list of newline-separated commands that are also initially sem.to
By default, it is empty.
This resource is used hypD to save and restormB settings.

Chapter 2: Getting In and Out of DDD 37

2.5.2.5 PYDB Initialization

pydbinitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially senbta By
default, it is empty.

This resource may be used to custonezaB.

pydbSettings (class Settings) Resource
This string contains a list of newline-separated commands that are also initially semito
By default, it is empty.

This resource is used hypD to save and restoreyDB settings.

2.5.2.6 Perl Initialization

perlinitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially sent to the Perl
debugger. By default, it is empty.

This resource may be used to customize the Perl debugger.

perlSettings (class Settings) Resource
This string contains a list of newline-separated commands that are also initially sent to the
Perl debugger. By default, it is empty.

This resource is used hypp to save and restore Perl debugger settings.

2.5.2.7 Bash Initialization

bashlnitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially sent to the Bash
debugger. By default, it is empty.

This resource may be used to customize the Bash debugger.

bash (class Settings) Resource
This string contains a list of newline-separated commands that are also initially sent to the
Perl debugger. By default, it is empty.

This resource is used hypD to save and restore Bash debugger settings.

2.5.2.8 Finding a Place to Start

initSymbols (class InitSymbols) Resource
When loading an executableypp queries the inferior debugger for the initial source
location—typically themain function. If this location is not foundypp tries other symbols
from this newline-separated list. The default value mabkes look for a variety of main
functions (especially FORTRAN main functions):

38 Debugging with DDD

main\n\
MAIN\n\
main_\n\
MAIN_\n\
main__\n\
MAIN__\n\
__main\n\
_MAIN\n\
__main\n\
__MAIN

2.5.2.9 Opening the Selection

openSelection(class OpenSelection) Resource
If this is ‘on’, pDD invoked without argument checks whether the current selection or clip-
board contains the file name or URL of an executable program. If this istso will auto-
matically open this program for debugging. If this resourcefs “ (default), bpD invoked
without arguments will always start without a debugged program.

2.5.3 Communication with the Inferior Debugger

The following resources control the communication with the inferior debugger.

blockTTYInput (class BlockTTYInput) Resource
Whetherppb should block when reading data from the inferior debugger via the pseudo-tty
interface. MostUNIX systems exceptNU/Linux requirethis; set it to bn’. On aNU/Linux,
set it to ‘off '. The value auto ’ (default) will always select the “best” choice (that is, the
best choice known to thepp developers).

bufferGDBOutput (class BufferGDBOutput) Resource
If this is ‘on’, all output from the inferior debugger is buffered until a debugger prompt ap-
pears. This makes it easier fopD to parse the output, but has the drawback that interaction
with a running debuggee in the debugger console is not possibleff If, output is shown
as soon as it arrives, enabling interaction, but making it hardapiior to parse the output.
If “auto ' (default), output is buffered if and only if the execution window is open, which
redirects debuggee output and thus enables interactiorséSgien 6.2 [Using the Execution
Window], page 93for details.

continterruptDelay (class InterruptDelay) Resource
The time (in ms) to wait before automatically interruptingcant ' command.ppD cannot
interrupt a tont * command immediately, because this may disturb the status change of the
process. Default i200.

displayTimeout (class DisplayTimeout) Resource
The time (in ms) to wait for the inferior debugger to finish a partial display information.
Default is2000.

Chapter 2: Getting In and Out of DDD 39

positionTimeout (class PositionTimeout) Resource
The time (in ms) to wait for the inferior debugger to finish a partial position information.
Default is500.

guestionTimeout (class QuestionTimeout) Resource
The time (in seconds) to wait for the inferior debugger to reply. Defadl®is

runinterruptDelay (class InterruptDelay) Resource
The time (in ms) to wait before automatically interruptingran’ * command. DDD cannot
interrupt a tont ' command immediately, because this may disturb process creation. Default
is2000.

stopAndContinue (class StopAndContinue) Resource
If “on’ (default), debugger commands interrupt program execution, resuming execution after
the command has completed. This only happens if the last debugger command was either a
‘run 'ora‘continue ’'command. If off ’, debugger commands do not interrupt program
execution.

synchronousDebugger(class SynchronousDebugger) Resource
If ‘on’, X events are not processed while the debugger is busy. This may result in slightly
better performance on single-processor systems.S8egon 2.1.2 [Options], page 1for
the --sync-debugger ' option.

terminateONEOF (class TerminateOnEOF) Resource
If “on’, pDD terminates the inferior debugger whepp detects an EOF condition (that is,
as soon as the inferior debugger closes its output channel). This was the default behavior in
pDD 2.X and earlier. Ifoff ’ (default), DDD takes no special action.

useTTYCommand (class UseTTYCommand) Resource
If ‘on’, use thecpB tty command for redirecting input/output to the separate execution
window. If ‘off ’, use explicit redirection through shell redirection operater'saind >'.
The default is 6ff ’ (explicit redirection), since on some systems, ttye command does
not work properly on somebpB versions.

40

Debugging with DDD

Chapter 3: The DDD Windows 41

3 The DDD Windows

DDD is composed of three main windows. From top to bottom, we have:

e TheData Window shows the current data of the debugged program.S8e&on 7.3 [Display-
ing Values], page 1Q7or detalils.

e The Source Window shows the current source code of the debugged programCiSsger 4
[Navigating], page 73for details.

e TheDebugger Console accepts debugger commands and shows debugger messagesaSee
ter 10 [Commands], page 14for details.

22 DDD: lusriusersists1/zellerfdddfdddicxxtest.C [_ IO x]
Menu Bar ——>Ale Edit View Program Commands Status Source Data Help
e | Tist— W i 3 i e if 7 T 5 #
Tool Bar—ffll istoreonexcone: [FERESENENGEINEN E
2: *list X : *list->next N A
. value = 85 value = 86
(List *) 0x804ab78| self = 0x804ab7s self = 0xB804ab@s
Data WlndOW r next = 0x804ab88] next = 0xB04ab3s|f Panner
44 Simple circular Tist. Ewamine “1ist” with alias detection enabled psg
wold Tist_test{int start)
Run
ist ®1ist = 0;
List #list = 0; interrupt
Tist = new List({a_global + start+);
Tist-snext = nen List{a_global + start+) ST
Tist—rnext—>next = new List(a_global + start+); Hext | Mexti
Tist—rnext—rnext->next = list; =
4 delete 1ist-snext—>next; i | Command TOOI
delete 1ist-snext; ot obe
. delete 1ist; Up | Down
. Back | Fwd
Source WindOW —/ Test disanbiquation +— Scroll Bar
Uoid Tist_testidooble d) Eait | aba |
Tist_testlintld)l;
A .
. ‘ #1— Resize Sash
. . 0x8048a27 <list_test__Fi+1515: mov] OxFFFFFFFc(%ebn) . %eax
Machine Code Window — 1= xitdgaza <list_test_Fi+i54:: movl Ox8(%eax) ,¥eds =
04ab?8 (1343237 [
(gdb) graph display *1ist dependent on 1 Value Tlp
(gdb) graph display *(list->next) dependent on 2
{gdb) graph display *(list->next—>next) dependent on 3
Debugger Conso|e 74(«3%% graph display *(1ist—>next—next—>next) dependent on 4 -
3 i
A
Status Line — s~ n804ab78 (134523768 = Busy Indicator

The DDD Layout using Stacked Windows

Besides these three main windows, there are some other optional windows:

e The Command Tool offers buttons for frequently used commands. It is usually placed on the
source window. Se8ection 3.3 [Command Tool], page,F6r detalils.

e The Machine Code Window shows the current machine code. It is usually placed beneath the
current source. Seeection 8.1 [Machine Code], page 144r details.

e TheExecution Window shows the input and output of the debugged program.S8e&on 6.2
[Using the Execution Window], page 9for details.

3.1 The Menu Bar

TheDbppb Menu Bar gives you access to albp functions.

File Perform file-related operations such as selecting programs, processes, and sessions,
printing graphs, recompiling, as well as exitingb.

42 Debugging with DDD

Edit Perform standard editing operations, such as cutting, copying, pasting, and killing
selected text. Also allows editingbp options and preferences.

View Allows accessing the individualpp windows.

Program Perform operations related to the program being debugged, such as starting and stop-
ping the program.

Commands
Perform operations related tmb commands, such as accessing the command history
or defining new commands.

Status Examine the program status, such as the stack traces, registers, or threads.
Source Perform source-related operations such as looking up items or editing breakpoints.
Data Perform data-related operations such as editing displays or layouting the display graph.

Maintenance
Perform operations that are useful for debuggimgp. By default, this menu is dis-
abled.

Help Give help onbDD usage.

There are two ways of selecting an item from a pull-down menu:

e Select an item in the menu bar by moving the cursor over it and aticlgse button.1Then
move the cursor over the menu item you want to choose and click left again.

e Select an item in the menu bar by moving the cursor over it and click anchinmlde button.1
With the mouse button depressed, move the cursor over the menu item you want, then release
it to make your selection.

The menus can also liern off (i.e. turned into a persistent window) by selecting the dashed
line at the top.

If a command in the pull-down menu is not applicable in a given situation, the command is
disabled and its name appears faded. You cannot invoke items that are faded. For example, many
commands on theEdit ' menu appear faded until you select text on which they are to operate;
after you select a block of text, edit commands are enabled.

3.1.1 The File Menu

The ‘File ' menu contains file-related operations such as selecting programs, processes, and
sessions, printing graphs, recompiling, as well as exiting.

Open Program

Open Class
Open a program or class to be debugg@iiFrO)). SeeSection 4.2.1 [Opening Pro-
grams], page 7,3or details.

Open Recent
Re-open a recently opened program to be debuggedsSSaen 4.2.1 [Opening Pro-
grams], page 7,Jor detalils.

Open Core Dump
Open a core dump for the currently debugged program. S8e¢on 4.2.2 [Opening
Core Dumps], page 74or details.

Chapter 3: The DDD Windows 43

Open Source
Open a source file of the currently debugged program. SSeion 4.2.3 [Opening
Source Files], page 74or detalils.

Open Session
Resume a previously savedD session {CirT+N)). SeeSection 2.3.2 [Resuming Ses-
sions], page 3(for details.

Save Session As
Save the currenbpp session such that you can resume it latE€irFS). SeeSec-
tion 2.3.1 [Saving Sessions], page, #&r details.

Attach to Process
Attach to a running process of the debugged program.S8&eé&on 6.3 [Attaching to a
Process], page 9for details.

Detach Process
Detach from the running process. Seection 6.3 [Attaching to a Process], pagg 94
for details.

Print Graph
Print the current graph on a printer. Seection 7.3.7 [Printing the Graph], page 131
for details.

Change Directory
Change the working directory of your program. Seection 6.1.3 [Working Direc-
tory], page 92for details.

Make Run themake program (Cirl+#M)). SeeSection 9.2 [Recompiling], page 14for
details.

Close Close thisbpp window ([CtrT¥W)). SeeSection 2.2 [Quitting], page 2for details.
Restart Restartopp.
Exit Exit ppD (CHMFQ). SeeSection 2.2 [Quitting], page 2for details.

3.1.2 The Edit Menu

The ‘Edit ’ menu contains standard editing operations, such as cutting, copying, pasting, and
killing selected text. Also allows editingpp options and preferences.

Undo Undo the most recent actioCfri+2)). Almost all commands can be undone this way.
SeeSection 3.5 [Undo and Redo], page, for details.

Redo Redo the action most recently undon€t{+Y)). Every command undone can be
redone this way. Se®gection 3.5 [Undo and Redo], page, far details.

Cut Removes the selected text block from the current text area and makes it the X clipboard
selection (CtT+X) or ShiftfDel); SeeSection 3.1.11.2 [Customizing the Edit Menul],
page 51for details). Before executing this command, you have to select a region in a
text area—either with the mouse or with the usual text selection keys.
This item can also be applied to displays (S&ection 7.3.1.12 [Deleting Displays],
page 115

44

Copy

Paste

Clear
Delete

Select All

Debugging with DDD

Makes a selected text block the X clipboard selecti@rkrC) or Cirl+Ins); SeeSec-

tion 3.1.11.2 [Customizing the Edit Menu], page, fdr details). You can select text

by selecting a text region with the usual text selection keys or with the mouse. See
Section 3.1.11.2 [Customizing the Edit Menu], page fot changing the default ac-
celerator.

This item can also be applied to displays (S&ection 7.3.1.12 [Deleting Displays],
page 115

Inserts the current value of the X clipboard selection in the most recently selected
text area (CirI+V) or (ShiftfIng); SeeSection 3.1.11.2 [Customizing the Edit Menu],
page 5] for details). You can paste in text you have placed in the clipboard using
‘Copy’ or ‘Cut’. You can also usePaste ' to insert text that was pasted into the
clipboard from other applications.

Clears the most recently selected text ak€alrU)).

Removes the selected text block from the most recently selected text area, but does not
make it the X clipboard selection.

This item can also be applied to displays (Seection 7.3.1.12 [Deleting Displays],

page 11§

Selects all characters from the most recently selected text #&@e&FA) or or

({CIT+ShiftfA); see Section 3.1.11.2 [Customizing the Edit Menu], page %dr
details).

Preferences

Allows you to customizepDD interactively. Seéection 3.6 [Customizing], page 60
for details.

Debugger Settings

Allows you to customize the inferior debugger. Seection 3.6.5 [Debugger Settings],
page 71for details.

Save Options

If set, all preferences and settings will be saved for the mexb invocation. See
Section 3.6.1.3 [Saving Options], page €dr details.

3.1.3 The View Menu

The ‘View ' menu allows accessing the individuabp windows.

Command Tool

Open and recenter the command to@liFr8)). SeeSection 3.3 [Command Tool],
page 55for details.

Execution Window

Open the separate execution windoi+9)). SeeSection 6.2 [Using the Execution
Window], page 93for details.

Debugger Console

Open the debugger consol@if+1)). SeeChapter 10 [Commands], page 14or
details.

Chapter 3: The DDD Windows 45

Source Window
Open the source windowA[t+2). SeeChapter 4 [Navigating], page /for details.

Data Window

Open the data windowAIlt+3)). SeeSection 7.3 [Displaying Values], page 1,dor
details.

Machine Code Window
Show machine codeAlt+4)). SeeSection 8.1 [Machine Code], page 14ar details.

3.1.4 The Program Menu

The ‘Program ' menu performs operations related to the program being debugged, such as
starting and stopping the program.

Most of these operations are also found on the command toobseien 3.3 [Command Tool],
page 5%.
Run Start program execution, prompting for program argumef#®)(SeeSection 6.1
[Starting Program Execution], page,9ar details.
Run Again
Start program execution with the most recently used argum@&rgs. (SeeSection 6.1
[Starting Program Execution], page,3ar details.

Run in Execution Window
If enabled, start next program execution in separate execution windoveSeen 6.2
[Using the Execution Window], page 9for details.

Step Continue running your program until control reaches a different source line, then stop
it and return control topD (FH). SeeSection 6.5 [Resuming Execution], page 96
for details.

Step Instruction
Execute one machine instruction, then stop and retunio (ShifttF5). SeeSec-
tion 8.2 [Machine Code Execution], page 14@r details.

Next Continue to the next source line in the current (innermost) stack fr&m8ae. (This is
similar to ‘Step ’, but function calls that appear within the line of code are executed
without stopping. Se&ection 6.5 [Resuming Execution], page far details.

Next Instruction
Execute one machine instruction, but if it is a function call, proceed until the function
returns (ShifttF6). SeeSection 8.2 [Machine Code Execution], page ,Jf6? details.

Until Continue running until a source line past the current line, in the current stack frame, is
reached 7). SeeSection 6.5 [Resuming Execution], page fdr details.

Finish Continue running until just after function in the selected stack frame ret@8g. (
Print the returned value (if any). S&€ection 6.5 [Resuming Execution], page far
details.

Continue

Resume program execution, at the address where your program last st@@edriy
breakpoints set at that address are bypassedS&e@n 6.5 [Resuming Execution],
page 96 for details.

46 Debugging with DDD

Continue Without Signal
Continue execution without giving a sign@hiftFF9). This is useful when your pro-
gram stopped on account of a signal and would ordinary see the signal when resumed
with ‘Continue '. SeeSection 6.10 [Signals], page 1,d@r details.

Kill Kill the process of the debugged prograff4(). SeeSection 6.11 [Killing the Pro-
gram], page 104for details.

Interrupt
Interrupt program execution§s¢ or (Ctri+C); seeSection 3.1.11.2 [Customizing the
Edit Menu], page 5]1for details). This is equivalent to sending an interrupt signal to
the process. Segection 5.3 [Interrupting], page 3for details.

Abort Abort program execution (and maybe debugger execution{@®t\)). This is equiv-
alent to sending 8l GABRTsignal to the process. S&ection 2.2 [Quitting], page 28
for detalils.

3.1.5 The Commands Menu

The ‘Commands menu performs operations relatedii@op commands, such as accessing the
command history or defining new commands.

Most of these items are not meant to be actually executed via the menu; instead, they serve as
reminderfor the equivalent keyboard commands.

Command History
View the command history. Segection 10.1.2 [Command History], page 146r

details.

Previous
Show the previous command from the command histdig)]. SeeSection 10.1.2
[Command History], page 14for details.

Next Show the next command from the command histgBo@n). SeeSection 10.1.2

[Command History], page 14for details.

Find Backward
Do an incremental search backward through the command higG@ir#B)). SeeSec-
tion 10.1.2 [Command History], page 148r details.

Find Forward
Do an incremental search forward through the command histGg%P)). SeeSec-
tion 10.1.2 [Command History], page 148r details.

Quit Search
Quit incremental search through the command histdEgd). SeeSection 10.1.2
[Command History], page 14§or detalils.

Complete
Complete the current command in the debugger consoé®). SeeSection 10.1
[Entering Commands], page 14fr details.

Apply Apply the current command in the debugger cons@edly)). SeeSection 10.1 [En-

tering Commands], page 14for details.

Chapter 3: The DDD Windows 47

Clear Line
Clear the current command line in the debugger constiEtU)). SeeSection 10.1
[Entering Commands], page 14for details.

Clear Window
Clear the debugger consol@kiftrCirI+U)). SeeSection 10.1 [Entering Commands],
page 147for details.

Define Command
Define a new debugger command. Seestion 10.5 [Defining Commands], page 154
for detalils.

Edit Buttons
Customizeppp buttons. Se&ection 10.4 [Defining Buttons], page 13ar detalils.

3.1.6 The Status Menu

The ‘Status ' menu lets you examine the program status, such as the stack traces, registers, or
threads.

Backtrace
View the current backtrace. S&€ection 6.7.2 [Backtraces]|, page, $6r a discussion.

Registers
View the current register contents. Seection 8.3 [Registers], page 14@r details.

Threads View the current threads. Sée=ction 6.9 [Threads], page 1,dar details.
Signals View and edit the current signal handling. Seection 6.10 [Signals], page 10ér

details.
Up Select the stack frame (i.e. the function) that called this @@+{Up)). This advances

toward the outermost frame, to higher frame numbers, to frames that have existed
longer. Seésection 6.7 [Stack], page 9for details.

Down Select the stack frame (i.e. the function) that was called by this @ig+HDown)).
This advances toward the innermost frame, to lower frame numbers, to frames that
were created more recently. S8ection 6.7 [Stack], page 9fbr details.

3.1.7 The Source Menu

The ‘Source ' menu performs source-related operations such as looking up items or editing
breakpoints.

Breakpoints
Edit all Breakpoints. SeBection 5.1.11 [Editing all Breakpoints], page fiar details.

Lookup ()
Look up the argument} ' in the source code(Cir+/)). SeeSection 4.3.1 [Looking
up Definitions], page 75or details.

Find >> ()
Look up the next occurrence of the argumdint*in the current source cod&IirT+.)).
SeeSection 4.3.2 [Textual Search], page far details.

48 Debugging with DDD

Find << ()
Look up the previous occurrence of the argumdint’‘in the current source code
((CrT+y). SeeSection 4.3.2 [Textual Search], page far details.

Find Words Only
If enabled, find only complete wordgAli+W)). SeeSection 4.3.2 [Textual Search],
page 76for details.

Find Case Sensitive
If enabled, find is case-sensitiv@if+1)). SeeSection 4.3.2 [Textual Search], pagg 76
for detalils.

Display Line Numbers
If enabled, prefix source lines with their line numb&i{+N)). SeeSection 4.4 [Cus-
tomizing Source], page 7Tor details.

Display Machine Code
If enabled, show machine cod@if+4)). SeeSection 8.1 [Machine Code], page 141
for details.

Edit Source
Invoke an editor for the current source filSHif+CirI+V)). SeeSection 9.1 [Editing
Source Code], page 14for details.

Reload Source
Reload the current source fil&hiftFCIrT+L)). SeeSection 9.1 [Editing Source Code],
page 145for details.

3.1.8 The Data Menu

The ‘Data’ menu performs data-related operations such as editing displays or layouting the
display graph.

Displays
Invoke the Display Editor. Se®ection 7.3.1.11 [Editing all Displays], page 116ér
details.

Watchpoints
Edit all Watchpoints. SeBection 5.2.3 [Editing all Watchpoints], page, #ar details.

Memory View a memory dump. Segection 7.5 [Examining Memory], page 1,36r detalils.

Print () Print the value of () " in the debugger consoleGir+=)). SeeSection 7.2 [Printing
Values], page 106or detalils.

Display ()
Display the value of() ' in the data window (Cirl+-)). SeeSection 7.3 [Displaying
Values], page 10 7for details.

Detect Aliases
If enabled, detect shared data structufB&{A)). SeeSection 7.3.4.3 [Shared Struc-
tures], page 121for a discussion.

Chapter 3: The DDD Windows 49

Display Local Variables
Show all local variables in a display{t+L)). SeeSection 7.3.1.5 [Displaying Local
Variables], page 11¥or details.

Display Arguments
Show all arguments of the current function in a displ@ft#U)). SeeSection 7.3.1.5
[Displaying Local Variables], page 11lfor details.

Status Displays
Show current debugging information in a display. Se&ection 7.3.1.6 [Displaying
Program Status], page 11for details.

Align on Grid
Align all displays on the grid Bf+G)). SeeSection 7.3.6.3 [Aligning Displays],
page 130for a discussion.

Rotate Graph
Rotate the graph by 90 degre€8{+R)). SeeSection 7.3.6.5 [Rotating the Graph],
page 13]1for details.

Layout Graph
Layout the graph@[t+Y)). SeeSection 7.3.6 [Layouting the Graph], page 1f&r
details.

Refresh Update all values in the data windoC{r+L)). SeeSection 7.3.1.7 [Refreshing the
Data Window], page 113or details.

3.1.9 The Maintenance Menu

The ‘Maintenance ' menu performs operations that are useful for debugging.

By default, this menu is disabled; it is enabled by specifically requestingbibatinvocation
(via the --maintenance ' option; seeSection 2.1.2 [Options], page LAt is also enabled when
DDD gets a fatal signal.

Debug pDD
Invoke a debugger (typically;pB) and attach it to thi®DD process EI2). This is
useful only if you are abpp maintainer.

Dump Core Now
Make thisppp process dump core. This can also be achieved by sengimga
SIGUSR1signal.

Tic Tac Toe
Invoke a Tic Tac Toe game. You must try to get three stop signs in a row, while
preventingppp from doing so with its skulls. Click onrNew Gameéto restart.

WhenpDD Crashes
Select what to do whenpb gets a fatal signal.

Debug pDD
Invoke a debugger on thepp core dump whembDD crashes. This is
useful only if you are app maintainer.

50 Debugging with DDD

Dump Core
Just dump core whenpD crashes; don't invoke a debugger. This is
the default setting, as the core dump may contain important information
required for debuggingpD.

Do Nothing
Do not dump core or invoke a debugger wharb crashes.

Remove Menu
Make this menu inaccessible again.

3.1.10 The Help Menu

The ‘Help ' menu gives help omDD usage. Se&ection 3.4 [Getting Help], page Hfor a
discussion on how to get help withirbp.

Overview
Explains the most important conceptsmaip help.

On Item Lets you click on an item to get help on it.

On Window
Gives you help on thispp window.

What Now?
Gives a hint on what to do next.

Tip of the Day
Shows the current tip of the day.

DDD Reference
Shows theobp Manual.

pDD News Shows what's new in thisDD release.

Debugger Reference
Shows the on-line documentation for the inferior debugger.

DDD License
Shows the>DpD License (seé\ppendix G [License], page 137

DDD WWW Page
Invokes awww browser for theobD www page.

About DDD
Shows version and copyright information.

3.1.11 Customizing the Menu Bar

The Menu Bar can be customized in various ways segion 3.6 [Customizing], page 0

Chapter 3: The DDD Windows 51

3.1.11.1 Auto-Raise Menus

You can cause pull-down menus to be raised automatically.

autoRaiseMenu (class AutoRaiseMenu) Resource
If * on’ (default), ppD will always keep the pull down menu on top of thep main window.
If this setting interferes with your window manager, or if your window manager does not
auto-raise windows, set this resourcedé * .

autoRaiseMenuDelay (class AutoRaiseMenuDelay) Resource
The time (in ms) during which an initial auto-raised window blocks further auto-raises. This
is done to prevent two overlapping auto-raised windows from enterirgugsiraise loop
Default is100.

3.1.11.2 Customizing the Edit Menu

In the Menu Bar, the Edit * Menu can be customized in various ways. Ugait =
Preferences = Startup ’to customize these keys.

The (CirT+C) key can be bound to different actions, each in accordance with a specific style guide.

Copy This setting bindgCtrI+C) to the Copy operation, as specified by the KDE style guide.
In this setting, us€ESC to interrupt the debuggee.

Interrupt

This (default) setting bind&trT+C) to the Interrupt operation, as used in severaix command-
line programs. In this setting, Ugetri+ins to copy text to the clipboard.

The Cirl+A) key can be bound to different actions, too.

Select All
This (default) setting bind&irT+A) to the ‘Select All ' operation, as specified by
the KDE style guide. In this setting, uggome to move the cursor to the beginning of
aline.

Beginning of Line
This setting bindgCirI+A) to the ‘Beginning of Line ' operation, as used in sev-
eral UNIX text-editing programs. In this setting, USEIMFShiftFA) to select all text.

Here are the relatenbD resources:

cutCopyPasteBindings(class BindingStyle) Resource
Controls the key bindings for clipboard operations.

e If thisis ‘Motif ' (default), Cut/Copy/Paste is oBhifttDel)/(Cirl+Ins)/ShifttIns. This
is conformant to the M*tif style guide.

e If this is ‘KDE, Cut/Copy/Paste is ofCirI+X)/({CtrI+C)/({CtrT+V). This is conformant
to the KDE style guide. Note that this means tif@iT+C) no longer interrupts the
debuggee; us@&SQC instead.

52

se

Debugging with DDD

lectAllIBindings (class BindingStyle) Resource
Controls the key bindings for th&elect All -’ operation.

e Ifthisis ‘Motif ', Select All is onShift+Cir+A).

e |[f this is ‘KDE (default), Select All is onCir+A). This is conformant to the KDE style
guide. Note that this means th@ir+A) no longer moves the cursor to the beginning of
a line; useHome instead.

3.2 The Tool Bar

SomepDD commands require aargument This argument is specified in tleegument field

labeled (): . Basically, there are four ways to set arguments:

firs

You cankey inthe argument manually.

You canpastethe current selection into the argument field (typically usimguse button
2). To clear old contents beforehand, click on tfe *’ label.

You canselect an itenfrom the source and data windows. This will automatically copy the
item to the argument field.

You can select areviously used argumeifriom the drop-down menu at the right of the argu-
ment field.

Using GbB and Perl, the argument field provides a completion mechanism. You can enter the
t few characters of an item an press {h&@B) key to complete it. Pressin@AB) again shows

alternative completions.

After having entered an argument, you can select one of the buttons on the right. Most of these

buttons also have menus associated with them; this is indicated by a small arrow in the upper right
corner. Pressing and holdingouse button bn such a button will pop up a menu with further

operations.
Enter Argument Get Previous Arguments
'.::':Iarral""E ¢ E‘ L?tlaéup /F;%; Bﬁk‘r u%:jhv P:%WT\D%a;\Ef}L(R-:?i; ;‘g /Un%n
Lookup Commands Breakpoint Commands Data Commands
The Tool Bar

cur

These are the buttons of the tool bar. Note that not all buttons may be inactive, depending on the
rent state and the capabilities of the inferior debugger.

Lookup

Fin

Look up the argumen{) ’in the source code. Segection 4.3.1 [Looking up Defini-
tions], page 75for details.

d>>

Chapter 3: The DDD Windows 53

Break/Clear

Look up the next occurrence of the argumef)t * in the current source code. See
Section 4.3.2 [Textual Search], page fd@ details.

Toggle a breakpoint (segection 5.1 [Breakpoints], page)3t the location() .

Break If there is no breakpoint at(} ’, then this button is labeledBreak .
Clicking on ‘Break ' sets a breakpoint at the locatiof) *’. See Sec-
tion 5.1.1 [Setting Breakpoints], page,3ar details.

Clear If there already is a breakpoint af) ‘', then this button is labeled
‘Clear . Clicking on ‘Clear ' clears (deletes) the breakpoint at the
location () . SeeSection 5.1.2 [Deleting Breakpoints], page, &@r
details.

Watch/Unwatch

Print

Display

Plot

Show/Hide

Rotate

Set

Undisp

Toggle a watchpoint (seeection 5.2 [Watchpoints], page)3dh the expression(} .

Watch If () "is not being watched, then this button is label®ddtch’. Click-
ing on ‘Watch’ creates a watchpoint on the expressign”. SeeSec-
tion 5.2.1 [Setting Watchpoints], page,86r details.

Unwatch If*() ’is being watched, then this button is label&thwvatch *. Clicking
on ‘Unwatch ’ clears (deletes) the watchpoint df) . SeeSection 5.2.4
[Deleting Watchpoints], page 8for details.

Print the value of () ' in the debugger console. Sé&ction 7.2 [Printing Values],
page 106for details.

Display the value of() ’ in the data window. Seé&ection 7.3 [Displaying Values],
page 107for details.

Plot ‘() ’in a plot window. Se§ion 7.4 [Plotting Values], page 1,38r details.

Toggle details of the selected display(s). Seetion 7.3.1.3 [Showing and Hiding
Details], page 105or a discussion.

Rotate the selected display(s). Sgection 7.3.1.4 [Rotating Displays], page 1fa@r
details.

Set (change) the value df)‘ . SeeSection 7.3.3 [Assignment], page 1 16r details.

Undisplay (delete) the selected display(s). Seetion 7.3.1.12 [Deleting Displays],
page 116for details.

54 Debugging with DDD

3.2.1 Customizing the Tool Bar

The ppp tool bar buttons can appear in a variety of styles, customized Kiit * =
Preferences = Startup .

Images This lets each tool bar button show an image illustrating the action.

Captions
This shows the action name below the image.

The default is to have images as well as captions, but you can choose to have only images (saving
space) or only captions.

No captions, no images

(: [fnaiin 7 Lookup ()| Find>> (7| Breakat (J| Watch () 7| Print (J| Display (}'||

Captions, images, flat, color

0z | ain Y B @ @ R ooa T W o R ﬁvl

Lookup Finds: EBreak Llatch Print Display Plot Shiowl - Botate Set URdisgr

Captions only, non-flat

{): |inain o L-:u:-kupl Fin-:l»vl Breakvl Watch Prin'rvl Displa;l Plntvl 5h-:-w7| Fotate| | set | undizo
Images only, flat

— = = = = . = - =
0 [inain 1o MO F Tasadse |

Tool Bar Appearance

If you choose to have neither images nor captions, tool bar buttons are labeled like other buttons,
as inppD 2.X. Note that this implies that in the stacked window configuration, the common tool bar
cannot be displayed; it is replaced by two separate tool bars,rasnrR.x.

If you enable Flat ' buttons (default), the border of tool bar buttons will appear only if the
mouse pointer is over them. This latest-and-greatestinvention can be disabled, such that the
button border is always shown.

If you enable Color ’ buttons, tool bar images will be colored when enterehib was built
using M*tif 2.0 and later, you can also choose a third setting, where buttons appear in color all the
time.

Here are the related resources (Seetion 3.6 [Customizing], page 0

activeButtonColorKey (class ColorKey) Resource
The xpMm color key to use for the images of active buttons (entered or armed)neans
color, ‘g’ (default) means grey, anari means monochrome.

Chapter 3: The DDD Windows 55

buttonCaptions (class ButtonCaptions) Resource
Whether the tool bar buttons should be shown using captiams, (default) or not (off °).
If neither captions nor images are enabled, tool bar buttons are shown using ordinary labels.
See alsobuttonimages ', below.

buttonCaptionGeometry (class ButtonCaptionGeometry) Resource
The geometry of the caption subimage within the button icons. Defa@®is/+0-0 .

buttonimages (class Buttonimages) Resource
Whether the tool bar buttons should be shown using images, (efault) or not (off).
If neither captions nor images are enabled, tool bar buttons are shown using ordinary labels.
See alsobuttonCaptions ', above.

buttonimageGeometry (class ButtonimageGeometry) Resource
The geometry of the image within the button icon. Defaul2sX21+2+0 .

buttonColorKey (class ColorKey) Resource
ThexpwM color key to use for the images of inactive buttons (non-entered or insensitive). *
means color,g’ (default) means grey, andri means monochrome.

flatToolbarButtons (class FlatButtons) Resource
If ‘on’ (default), all tool bar buttons with images or captions are given a ‘flat’ appearance—
the 3-D border only shows up when the pointer is over the icoroftf °, the 3-D border is
shown all the time.

flatDialogButtons (class FlatButtons) Resource
If “on’ (default), all dialog buttons with images or captions are given a ‘flat’ appearance—
the 3-D border only shows up when the pointer is over the icoroftf °, the 3-D border is
shown all the time.

3.3 The Command Tool

The command tool is a small window that gives you access to the most frequentlyposed
commands. It can be moved around on top ofmie windows, but it can also be placed besides
them.

By default, the command tosticksto theppp source window: Whenever you move thep
source window, the command tool follows such that the distance between source window and com-
mand tool remains the same. By default, the command tool issafseraised such that it stays on
top of otherbDD windows.

The command tool can be configured to appear as a command tool bar above the source window;
see Edit = Preferences = Source = Tool Buttons Location ' for details.

Whenever you saveDD state,DDD also saves the distance between command tool and source
window, such that you can select your own individual command tool placement. To move the
command tool to its saved position, us8eéw = Command Tool'.

56

Debugging with DDD

Start debugged program Hu“
Interrupt debugged program I“t'E"“FtE ;
Step program one line (step into calls) Step | Stepi Step one instruction (step into calls)
Step program one line (step over calls) Mext | Mexti Step one instruction (step over calls)
Continue until program reaches next line |__|-r'|"|;'i| Flnlsh Continue until frame returns

Continue program after breakpoint |:|:||-Tt kill Kill execution of debugged program

Select stack frame that called this one g Doy Select stack frame called by this one
Undo previous action Undo | Redo Redo next action
Edit source file -E.!j-lf Flake Invoke the make program

The Command Tool

These are the buttons of the command tool. Note that not all buttons may be inactive, depending
on the current state and the capabilities of the inferior debugger.

Run

Interrupt

Step

Stepi

Next

Nexti

Until

Finish

Start program execution. When you click this button, your program will begin to exe-
cute immediately. SeBection 6.1 [Starting Program Execution], pagefet details.

Interrupt program execution. This is equivalent to sending an interrupt signal to the
process. SeBection 5.3 [Interrupting], page Sfor details.

Continue running your program until control reaches a different source line, then stop
it and return control tmbpDp. SeeSection 6.5 [Resuming Execution], page, $6r
details.

Execute one machine instruction, then stop and retuppto. SeeSection 8.2 [Ma-
chine Code Execution], page 14@r details.

Continue to the next source line in the current (innermost) stack frame. This is similar
to ‘Step ’, but function calls that appear within the line of code are executed without
stopping. Se&ection 6.5 [Resuming Execution], page far details.

Execute one machine instruction, but if it is a function call, proceed until the function
returns. Se&ection 8.2 [Machine Code Execution], page ,1fo? details.

Continue running until a source line past the current line, in the current stack frame, is
reached. Seg€ection 6.5 [Resuming Execution], page far details.

Continue running until just after function in the selected stack frame returns. Print the
returned value (if any). Seeection 6.5 [Resuming Execution], page for details.

Chapter 3: The DDD Windows 57

Cont

Kill

Up

Down

Undo

Redo

Edit

Make

Resume program execution, at the address where your program last stopped; any
breakpoints set at that address are bypassedS8e@n 6.5 [Resuming Execution],
page 96for details.

Kill the process of the debugged program. Sawtion 6.11 [Killing the Program],
page 104for details.

Select the stack frame (i.e. the function) that called this one. This advances toward
the outermost frame, to higher frame numbers, to frames that have existed longer. See
Section 6.7 [Stack], page 9for detalils.

Select the stack frame (i.e. the function) that was called by this one. This advances
toward the innermost frame, to lower frame numbers, to frames that were created more
recently. Seé&ection 6.7 [Stack], page 9for details.

Undo the most recent action. Almost all commands can be undone this way. See
Section 3.5 [Undo and Redo], page, &@r details.

Redo the action most recently undone. Every command undone can be redone this
way. SeeSection 3.5 [Undo and Redo], page, for details.

Invoke an editor for the current source file. Seection 9.1 [Editing Source Code],
page 145for details.

Run themake program with the most recently given arguments. Seetion 9.2 [Re-
compiling], page 146for details.

3.3.1 Customizing the Command Tool

The Command Tool can be customized in various ways.

SeeSection 10.4.1 [Customizing Buttons], page et details on customizing the tool buttons.

3.3.1.1 Disabling the Command Tool

You can disable the command tool and show its buttons in a separate row beneath the tool
bar. To disable the command tool, setlit = Preferences = Source = Tool Buttons

Location

= Source Window .

58 Debugging with DDD

£ DDD Preferences

General || Source Data || Startup | Fonts || Helpers |

Show Position and Breakpoints <> as Glyphs - as Text Characters

Tool buttons location “ Command Tool -~ Source Window
Refer to Program Sources “ by Path Name < by Base Hame
FAnd J7 Words Only |7 Case Sensitive
Cache 7 Source Files [T Machine Code

L1 Display Source Line Numbers
i 0 4.

J— | 2= il [
Tab Width Source Indentation Machine Code Indentation
oK | Hagal | Help |

Source Preferences

Here's the related resource:

commandToolBar (class ToolBar) Resource
Whether the tool buttons should be shown in a tool bar above the source windoty ('
or within the command tool ¢ff ’, default). Enabling the command tool bar disables the
command tool and vice versa.

3.3.2 Command Tool Position

The following resources control the position of the command tool fserion 3.6 [Customiz-
ing], page 60

autoRaiseTool (class AutoRaiseTool) Resource
If ‘on’ (default), ppp will always keep the command tool on top of othepp windows.
If this setting interferes with your window manager, or if your window manager keeps the
command tool on top anyway, set this resourceofd *.

stickyTool (class StickyTool) Resource
If “on’ (default), the command tool automatically follows every movement of the source
window. Whenever the source window is moved, the command tool is moved by the same
offset such that its position relative to the source window remains unchangexdt If, ‘the
command tool does not follow source window movements.

toolRightOffset (class Offset) Resource
The distance between the right border of the command tool and the right border of the source
text (in pixels). Default is 8.

toolTopOffset (class Offset) Resource
The distance between the upper border of the comm