
SnortTMUsers Manual
2.1.0

The Snort Project

17th December 2003

Copyright c
�

1998-2003 Martin Roesch

Copyright c
�

2001-2003 Chris Green

Copyright c
�

2003 Sourcefire, Inc.

1

Contents

1 Snort Overview 6

1.1 Getting Started . 6

1.2 Sniffer Mode . 6

1.3 Packet Logger Mode . 7

1.4 Network Intrusion Detection Mode . 8

1.4.1 NIDS Mode Output Options . 8

1.4.2 High Performance Configuration . 9

1.4.3 Changing Alert Order . 9

1.5 Miscellaneous . 10

1.6 More Information . 10

2 Using Snort as an IDS
How to Write Snort Rules and Keep Your Sanity 11

2.1 The Basics . 12

2.1.1 Includes . 12

2.1.2 Variables . 12

2.1.3 Config . 13

2.2 Rules Headers . 15

2.2.1 Rule Actions . 15

2.2.2 Protocols . 16

2.2.3 IP Addresses . 16

2.2.4 Port Numbers . 17

2.2.5 The Direction Operator . 17

2.2.6 Activate/Dynamic Rules . 17

2.3 Rule Options . 19

2.4 Meta-Data Rule Options . 19

2.4.1 msg . 19

2

2.4.2 reference . 19

2.4.3 sid . 20

2.4.4 rev . 20

2.4.5 classtype . 21

2.4.6 Priority . 22

2.5 Payload Detection Rule Options . 23

2.5.1 content . 23

2.5.2 nocase . 24

2.5.3 rawbytes . 24

2.5.4 depth . 25

2.5.5 offset . 25

2.5.6 distance . 25

2.5.7 within . 26

2.5.8 uricontent . 26

2.5.9 isdataat . 27

2.5.10 pcre . 27

2.5.11 byte_test . 28

2.5.12 byte_jump . 30

2.5.13 regex . 30

2.5.14 content-list . 30

2.6 Non-payload Detection Rule Options . 31

2.6.1 Fragoffset . 31

2.6.2 ttl . 31

2.6.3 tos . 31

2.6.4 id . 32

2.6.5 ipopts . 32

2.6.6 Fragbits . 33

2.6.7 dsize . 33

2.6.8 flags . 34

2.6.9 flow . 35

2.6.10 seq . 36

2.6.11 ack . 36

2.6.12 window . 36

2.6.13 itype . 36

2.6.14 icode . 37

3

2.6.15 icmp_id . 37

2.6.16 icmp_seq . 37

2.6.17 rpc . 38

2.6.18 ip_proto . 38

2.6.19 sameip . 39

2.7 Post-Detection Rule Options . 39

2.7.1 logto . 39

2.7.2 session . 39

2.7.3 sesp . 40

2.7.4 React . 41

2.7.5 tag . 41

2.8 Preprocessors . 43

2.8.1 Portscan Detector . 43

2.8.2 Portscan Ignorehosts . 44

2.8.3 Frag2 . 44

2.8.4 Stream4 . 45

2.8.5 Flow . 46

2.8.6 Flow-Portscan . 47

2.8.7 Telnet Decode . 52

2.8.8 RPC Decode . 52

2.8.9 Performance Monitor . 52

2.8.10 HTTP Inspect . 54

2.9 Event Thresholding . 62

2.9.1 Standalone Options . 62

2.9.2 Standalone Format . 62

2.9.3 Rule Keyword Format . 63

2.9.4 Rule Keyword format . 63

2.9.5 Examples . 64

2.10 Event Suppression . 66

2.10.1 Format . 66

2.10.2 Examples . 66

2.11 Output Modules . 67

2.11.1 Alert_syslog . 67

2.11.2 Alert_fast . 68

2.11.3 Alert_full . 69

4

2.11.4 Alert_unixsock . 69

2.11.5 Log_tcpdump . 69

2.11.6 Database . 70

2.11.7 CSV . 71

2.11.8 Unified . 72

2.11.9 Log Null . 73

2.12 Writing Good Rules . 74

3 Snort Development 75

3.1 Submitting Patches . 75

3.2 Snort Dataflow . 75

3.2.1 Preprocessors . 75

3.2.2 Detection Plugins . 76

3.2.3 Output Plugins . 76

5

Chapter 1

Snort Overview

This manual is based off of Writing Snort Rules by Martin Roesch and further work from Chris Green <cmg@snort.org>.
It is now maintained by Brian Caswell <bmc@snort.org> and Jeremy Hewlett <jh@snort.org>. If you have a better
way to say something or something in the documentation is outdated, drop us a line and we will update it. The
documentation is now in LATEX format in the doc/snortman.tex file if you would like to submit patches for this
document. Small documentation updates are the easiest way to help the Snort Project out.

1.1 Getting Started

Snort really isn’t very hard to use, but there are a lot of command line options to play with, and it’s not always obvious
which ones go together well. This file aims to make using Snort easier for new users.

Before we proceed, there are a few basic concepts you should understand about Snort. There are three main modes
in which Snort can be configured: sniffer, packet logger, and network intrusion detection system. Sniffer mode
simply reads the packets off of the network and displays them for you in a continuous stream on the console. Packet
logger mode logs the packets to the disk. Network intrusion detection mode is the most complex and configurable
configuration, allowing Snort to analyze network traffic for matches against a user defined rule set and perform several
actions based upon what it sees.

1.2 Sniffer Mode

First, let’s start with the basics. If you just want to print out the TCP/IP packet headers to the screen (i.e. sniffer mode),
try this:

./snort -v

This command will run Snort and just show the IP and TCP/UDP/ICMP headers, nothing else. If you want to see the
application data in transit, try the following:

./snort -vd

This instructs Snort to display the packet data as well as the headers. If you want an even more descriptive display,
showing the data link layer headers do this:

6

./snort -vde

(As an aside, these switches may be divided up or smashed together in any combination. The last command could also
be typed out as:

./snort -d -v -e

and it would do the same thing.)

1.3 Packet Logger Mode

OK, all of these commands are pretty cool, but if you want to record the packets to the disk, you need to specify a
logging directory and Snort will automatically know to go into packet logger mode:

./snort -dev -l ./log

Of course, this assumes you have a directory named log in the current directory. If you don’t, Snort will exit with an
error message. When Snort runs in this mode, it collects every packet it sees and places it in a directory hierarchy
based upon the IP address of one of the hosts in the datagram.

If you just specify a plain -l switch, you may notice that Snort sometimes uses the address of the remote computer as
the directory in which it places packets, and sometimes it uses the local host address. In order to log relative to the
home network, you need to tell Snort which network is the home network:

./snort -dev -l ./log -h 192.168.1.0/24

This rule tells Snort that you want to print out the data link and TCP/IP headers as well as application data into the
directory ./log, and you want to log the packets relative to the 192.168.1.0 class C network. All incoming packets will
be recorded into subdirectories of the log directory, with the directory names being based on the address of the remote
(non-192.168.1) host. Note that if both hosts are on the home network, then they are recorded based upon the higher
of the two’s port numbers, or in the case of a tie, the source address.

If you’re on a high speed network or you want to log the packets into a more compact form for later analysis you
should consider logging in binary mode. Binary mode logs the packets in tcpdump format to a single binary file in the
logging directory:

./snort -l ./log -b

Note the command line changes here. We don’t need to specify a home network any longer because binary mode
logs everything into a single file, which eliminates the need to tell it how to format the output directory structure.
Additionally, you don’t need to run in verbose mode or specify the -d or -e switches because in binary mode the entire
packet is logged, not just sections of it. All that is really required to place Snort into logger mode is the specification
of a logging directory at the command line with the -l switch, the -b binary logging switch merely provides a modifier
to tell it to log the packets in something other than the default output format of plain ASCII text.

Once the packets have been logged to the binary file, you can read the packets back out of the file with any sniffer that
supports the tcpdump binary format such as tcpdump or Ethereal. Snort can also read the packets back by using the -r
switch, which puts it into playback mode. Packets from any tcpdump formatted file can be processed through Snort in
any of its run modes. For example, if you wanted to run a binary log file through Snort in sniffer mode to dump the
packets to the screen, you can try something like this:

7

./snort -dv -r packet.log

You can manipulate the data in the file in a number of ways through Snort’s packet logging and intrusion detection
modes, as well as with the BPF interface that’s available from the command line. For example, if you only wanted to
see the ICMP packets from the log file, simply specify a BPF filter at the command line and Snort will only see the
ICMP packets in the file:

./snort -dvr packet.log icmp

For more info on how to use the BPF interface, read the snort and tcpdump man pages.

1.4 Network Intrusion Detection Mode

To enable network intrusion detection (NIDS) mode (so that you don’t record every single packet sent down the wire),
try this:

./snort -dev -l ./log -h 192.168.1.0/24 -c snort.conf

Where snort.conf is the name of your rules file. This will apply the rules set in the snort.conf file to each packet to
decide if an action based upon the rule type in the file should be taken. If you don’t specify an output directory for the
program, it will default to /var/log/snort.

One thing to note about the last command line is that if Snort is going to be used in a long term way as an IDS, the
-v switch should be left off the command line for the sake of speed. The screen is a slow place to write data to, and
packets can be dropped while writing to the display.

It’s also not necessary to record the data link headers for most applications, so it’s not necessary to specify the -e
switch either.

./snort -d -h 192.168.1.0/24 -l ./log -c snort.conf

This will configure Snort to run in it’s most basic NIDS form, logging packets that the rules tell it to in plain ASCII to
a hierarchical directory structure (just like packet logger mode).

1.4.1 NIDS Mode Output Options

There are a number of ways to configure the output of Snort in NIDS mode. The default logging and alerting mecha-
nisms are to log in decoded ASCII format and use full alerts. The full alert mechanism prints out the alert message in
addition to the full packet headers. There are several other alert output modes available at the command line, as well
as two logging facilities.

Alert modes are somewhat more complex. There are seven alert modes available at the command line, full, fast,
socket, syslog, console, cmg, and none. Six of these modes are accessed with the -A command line switch. These
options are:

-A fast fast alert mode, write the alert in a simple format with a timestamp, alert message, source and destination
IPs/ports

-A full this is also the default alert mode, so if you specify nothing this will automatically be used

8

-A unsock send alerts to a UNIX socket that another program can listen on

-A none turn off alerting

-A console send "fast-style" alerts to the console (screen)

-A cmg generate "cmg style" alerts

Packets can be logged to their default decoded ASCII format or to a binary log file via the -b command line switch. If
you wish to disable packet logging all together, use the -N command line switch.

For output modes available through the configuration file, see Section 2.28. Note that command line logging options
override any output options specified in the configuration file. This allows debugging of configuration issues quickly
via the command line.

To send alerts to syslog, use the ”-s ” switch. The default facilities for the syslog alerting mechanism are LOG_AUTHPRIV
and LOG_ALERT. If you want to configure other facilities for syslog output, use the output plugin directives in the
rules files. See Section2.11.1 for more details on configuring syslog output.

Here are some output configuration examples:

� Log to default (decoded ASCII) facility and send alerts to syslog

./snort -c snort.conf -l ./log -h 192.168.1.0/24 -s

� Log to the default facility in /var/log/snort and send alerts to a fast alert file:

./snort -c snort.conf -A fast -h 192.168.1.0/24

1.4.2 High Performance Configuration

If you want Snort to go fast (like keep up with a 1000 Mbps connect), you need to use unified logging and a unified log
reader such as barnyard. This allows snort to log alerts in a binary form as fast as possible and have another program
do the slow spooling, such as writing into a database.

If you want a text file thats easily parsable but still be somewhat fast, use try using binary logging with the "fast"
output mechanism.

This will log packets in tcpdump format and produce minimal alerts. For example:

./snort -b -A fast -c snort.conf

1.4.3 Changing Alert Order

The default way in which Snort applies it’s rules to packets may not be appropraite for all installations. The Alert rules
applied first, then the Pass rules, and finally the Log rules. This sequence is somewhat counterintuitive, but it’s a more
foolproof method than allowing the user to write a hundred alert rules and then disable them all with an errant pass
rule. For more information on rule types, see Section 2.2.1.

For people who know what they’re doing, the -o switch has been provided to change the default rule application
behavior to Pass rules, then Alert, then Log:

./snort -d -h 192.168.1.0/24 -l ./log -c snort.conf -o

9

1.5 Miscellaneous

If you want to run snort in daemon mode, you can add -D switch to any combination above. Please NOTICE that if
you want to be able to restart snort by sending SIGHUP signal to the daemon, you will need to use full path to snort
binary, when you start it, i.g.:

/usr/local/bin/snort -d -h 192.168.1.0/24 -l \
/var/log/snortlogs -c /usr/local/etc/snort.conf -s -D

Relative paths are not supported due to security concerns.

If you’re going to be posting packet logs to public mailing lists you might want to try out the -O switch. This switch
obfuscates your the IP addresses in the packet printouts. This is handy if you don’t want the people on the mailing list
to know the IP addresses involved. You can also combine the -O switch with the -h switch to only obfuscate the IP
addresses of hosts on the home network. This is useful if you don’t care who sees the address of the attacking host.
For example:

./snort -d -v -r snort.log -O -h 192.168.1.0/24

This will read the packets from a log file and dump the packets to the screen, obfuscating only the addresses from the
192.168.1.0/24 class C network.

1.6 More Information

Chapter 2 contains much information about many configuration options available in the configuration file. The snort
manual page and the output of

snort -?

contain information that can help get Snort running in several different modes. Note that often \? is needed to escape
the ? in many shells.

The Snort web page (http://www.snort.org) and the Snort User’s mailing list (http://marc.theaimsgroup.
com/?l=snort-users at snort-users@lists.sourceforge.net provide informative announcements as well as a
venue for community discussion and support. There’s a lot to Snort so sit back with a beverage of your choosing and
read the documentation and mailing list archives.

10

Chapter 2

Using Snort as an IDS
How to Write Snort Rules and Keep Your
Sanity

11

2.1 The Basics

Snort uses a simple, lightweight rules description language that is flexible and quite powerful. There are a number of
simple guidelines to remember when developing Snort rules.

Most Snort rules are written in a single line. This was required in versions prior to 1.8. In current versions of Snort,
rules may span multiple lines by adding a backslash \ to the end of the line.

Snort rules are divided into two logical sections, the rule header and the rule options. The rule header contains
the rule’s action, protocol, source and destination IP addresses and netmasks, and the source and destination ports
information. The rule option section contains alert messages and information on which parts of the packet should be
inspected to determine if the rule action should be taken.

Figure 2.1 illustrates a sample Snort rule.

alert tcp any any -> 192.168.1.0/24 111 (content:"|00 01 86 a5|"; msg:"mountd access";)

Figure 2.1: Sample Snort Rule

The text up to the first parenthesis is the rule header and the section enclosed in parenthesis is the rule options. The
words before the colons in the rule options section are called option keywords. Note that the rule options section is not
specifically required by any rule, they are just used for the sake of making tighter definitions of packets to collect or
alert on (or drop, for that matter). All of the elements in that make up a rule must be true for the indicated rule action
to be taken. When taken together, the elements can be considered to form a logical AND statement. At the same time,
the various rules in a Snort rules library file can be considered to form a large logical OR statement.

2.1.1 Includes

The include keyword allows other rule files to be included within the rules file indicated on the Snort command line.
It works much like an #include from the C programming language, reading the contents of the named file and putting
them in place in the file in the place where the include appears.

Format

include: <include file path/name>

Note that there is no semicolon at the end of this line. Included files will substitute any predefined variable values into
their own variable references. See Variables (2.2) for more information on defining and using variables in Snort rule
files.

2.1.2 Variables

Variables may be defined in Snort. These are simple substitution variables set with the var keyword as in Figure 2.2.

Format

var: <name> <value>

12

var MY_NET [192.168.1.0/24,10.1.1.0/24]
alert tcp any any -> $MY_NET any (flags:S; msg:"SYN packet";)

Figure 2.2: Example of Variable Definition and Usage

The rule variable names can be modified in several ways. You can define meta-variables using the $ operator. These
can be used with the variable modifier operators, ? and -. * $var - define meta variable * $(var) - replace with
the contents of variable var * $(var:-default) - replace with the contents of the variable var or with default if var is
undefined. * $(var:?message) - replace with the contents of variable var or print out the error message message and
exit

See Figure 2.3 for an example of these rules modifiers in action.

var MY_NET 192.168.1.0/24
log tcp any any -> $MY_NET 23

Figure 2.3: Figure Advanced Variable Usage Example

2.1.3 Config

Many configuration and command line options of Snort can be specified in the configuration file.

Format

config <directive> [: <value>]

Directives

Table 2.1: Config Directives

command example explaination

order config order: pass alert log activation dy-
namic

Change the order that rules
are evaluated

alertfile config alertfile: alerts Set the alerts output file
classification config classification: misc-activity,Misc ac-

tivity,3
See 2.3

decode_arp config decode_arp Turn on arp decoding
(snort -a)

dump_chars_only config dump_chars_only Turn on character dumps
(snort -C)

dump_payload config dump_payload Dump application layer
(snort -d)

decode_data_link config decode_data_link Decode Layer2 headers
(snort -e)

bpf_file config bpf_file: filters.bpf Specify BPF filters (snort -
F)

13

set_gid config set_gid: 30 Change to GID to specified
GID (snort -g)

daemon config daemon Fork as a daemon (snort -
D)

interface config interface: xl0 Set the network interface
(snort -i)

alert_with_interface_name config alert_with_interface_name Append interface name to
alert (snort -I)

logdir config logdir: /var/log/snort Set the logdir (snort -l)
umask config umask: 022 Set umask when running

(snort -m)
pkt_count config pkt_count: 13 Exit after N packets (snort

-n)
nolog config nolog Disable Logging. Note:

Alerts will still occur.
(snort -N)

obfuscate config obfuscate Obfuscate IP Addresses
(snort -O)

no_promisc config no_promisc Disable promiscuous mode
(snort -p)

quiet config quiet Disable banner and status
reports (snort -q)

chroot config chroot: /home/snort Chroot to specified dir
(snort -t)

checksum_mode config checksum_mode : all Types of packets to calcu-
late checksums. Values:
none, noip, notcp, noicmp,
noudp, or all

set_uid set_uid: snort_user Set UID to <id> (snort -u)
utc config utc Use UTC instead of local

time for timestamps (snort
-U)

verbose config verbose Use Verbose logging to
stdout (snort -v)

dump_payload_verbose config dump_payload_verbose Dump raw packet starting
at link layer (snort -X)

show_year config show_year show year in timestamps
(snort -y)

stateful config stateful set assurance mode for
stream4 (est). See the
stream4 reassemble config-
uration 2.8.

min_ttl config min_ttl:30 sets a snort-wide minimum
ttl to ignore all traffic.

disable_decode_alerts config disable_decode_alerts turn off the alerts gener-
ated by the decode phase of
snort

disable_tcpopt_experimental_alerts config disable_tcpopt_experimental_alerts turn off alerts generated by
experimental tcp options

14

disable_tcpopt_obsolete_alerts config disable_tcpopt_obsolete_alerts turn off alerts generated by
obsolete tcp options

disable_tcpopt_ttcp_alerts config disable_tcpopt_ttcp_alerts turn off alerts generated by
T/TCP options

disable_tcpopt_alerts config disable_tcpopt_alerts disable option length vali-
dation alerts

disable_ipopt_alerts config disable_ipopt_alerts disable IP option length
validation alerts

detection config detection: search-method ac
no_stream_inserts max_queue_events

Make changes to the detec-
tion engine.

reference config reference: www http:// add a new reference system
to snort

2.2 Rules Headers

2.2.1 Rule Actions

The rule header contains the information that defines the who, where, and what of a packet, as well as what to do in
the event that a packet with all the attributes indicated in the rule should show up. The first item in a rule is the rule
action. The rule action tells Snort what to do when it finds a packet that matches the rule criteria. There are 5 available
default actions in Snort, alert, log, pass, activate, and dynamic.

1. alert - generate an alert using the selected alert method, and then log the packet

2. log - log the packet

3. pass - ignore the packet

4. activate - alert and then turn on another dynamic rule

5. dynamic - remain idle until activated by an activate rule , then act as a log rule

You can also define your own rule types and associate one or more output plugins with them. You can then use the
rule types as actions in Snort rules.

This example will create a type that will log to just tcpdump:

ruletype suspicious
{

type log output
log_tcpdump: suspicious.log

}

This example will create a rule type that will log to syslog and a MySQL database:

15

ruletype redalert
{

typealert output
alert_syslog: LOG_AUTH LOG_ALERT
output database: log, mysql, user=snort dbname=snort host=localhost

}

2.2.2 Protocols

The next field in a rule is the protocol. There are four Protocols that Snort currently analyzes for suspicious behavior
– tcp, udp, icmp, and ip. In the future there may be more, such as ARP, IGRP, GRE, OSPF, RIP, IPX, etc.

2.2.3 IP Addresses

The next portion of the rule header deals with the IP address and port information for a given rule. The keyword any
may be used to define any address. Snort does not have a mechanism to provide host name lookup for the IP address
fields in the rules file. The addresses are formed by a straight numeric IP address and a CIDR[3] block. The CIDR
block indicates the netmask that should be applied to the rule’s address and any incoming packets that are tested against
the rule. A CIDR block mask of /24 indicates a Class C network, /16 a Class B network, and /32 indicates a specific
machine address. For example, the address/CIDR combination 192.168.1.0/24 would signify the block of addresses
from 192.168.1.1 to 192.168.1.255. Any rule that used this designation for, say, the destination address would match
on any address in that range. The CIDR designations give us a nice short-hand way to designate large address spaces
with just a few characters.

In Figure 2.1, the source IP address was set to match for any computer talking, and the destination address was set to
match on the 192.168.1.0 Class C network.

There is an operator that can be applied to IP addresses, the negation operator. This operator tells Snort to match any
IP address except the one indicated by the listed IP address. The negation operator is indicated with a !. For example,
an easy modification to the initial example is to make it alert on any traffic that originates outside of the local net with
the negation operator as shown in Figure 2.4.

alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111 \
(content: "|00 01 86 a5|"; msg: "external mountd access";)

Figure 2.4: Example IP Address Negation Rule

This rule’s IP addresses indicate any tcp packet with a source IP address not originating from the internal network and
a destination address on the internal network.

You may also specify lists of IP addresses. An IP list is specified by enclosing a comma separated list of IP addresses
and CIDR blocks within square brackets. For the time being, the IP list may not include spaces between the addresses.
See Figure 2.5 for an example of an IP list in action.

alert tcp ![192.168.1.0/24,10.1.1.0/24] any -> \
[192.168.1.0/24,10.1.1.0/24] 111 (content: "|00 01 86 a5|"; \
msg: "external mountd access";)

Figure 2.5: IP Address Lists

16

2.2.4 Port Numbers

Port numbers may be specified in a number of ways, including any ports, static port definitions, ranges, and by
negation. Any ports are a wildcard value, meaning literally any port. Static ports are indicated by a single port
number, such as 111 for portmapper, 23 for telnet, or 80 for http, etc. Port ranges are indicated with the range operator
:. The range operator may be applied in a number of ways to take on different meanings, such as in Figure 2.6.

log udp any any -> 192.168.1.0/24 1:1024 log udp
traffic coming from any port and destination ports ranging from 1 to 1024

log tcp any any -> 192.168.1.0/24 :6000

log tcp traffic from any port going to ports less than or equal to 6000

log tcp any :1024 -> 192.168.1.0/24 500:

log tcp traffic from privileged ports less than or equal to 1024 going to ports greater than or equal to 500

Figure 2.6: Port Range Examples

Port negation is indicated by using the negation operator !. The negation operator may be applied against any of the
other rule types (except any, which would translate to none, how Zen...). For example, if for some twisted reason you
wanted to log everything except the X Windows ports, you could do something like the rule in Figure 2.7.

log tcp any any -> 192.168.1.0/24 !6000:6010

Figure 2.7: Example of Port Negation

2.2.5 The Direction Operator

The direction operator -> indicates the orientation, or direction, of the traffic that the rule applies to. The IP address and
port numbers on the left side of the direction operator is considered to be the traffic coming from the source host, and
the address and port information on the right side of the operator is the destination host. There is also a bidirectional
operator, which is indicated with a <> symbol. This tells Snort to consider the address/port pairs in either the source
or destination orientation. This is handy for recording/analyzing both sides of a conversation, such as telnet or POP3
sessions. An example of the bidirectional operator being used to record both sides of a telnet session is shown in
Figure 2.8.

Also, note that there is no <- operator. In snort versions before 1.8.7, the direction operator did not have proper
error checking and many people used an invalid token. The reason the <- does not exist is so that rules always read
consistently.

log tcp !192.168.1.0/24 any <> 192.168.1.0/24 23

Figure 2.8: Snort rules using the Bidirectional Operator

2.2.6 Activate/Dynamic Rules

Note: Activate and Dynamic rules are being phased out in favor of tagging. In future versions of snort, acti-
vate/dynamic will be completely replaced by improved tagging functionality. Please see Section 2.7.5 for details.

17

Activate/dynamic rule pairs give Snort a powerful capability. You can now have one rule activate another when it’s
action is performed for a set number of packets. This is very useful if you want to set Snort up to perform follow on
recording when a specific rule goes off. Activate rules act just like alert rules, except they have a *required* option
field: activates. Dynamic rules act just like log rules, but they have a different option field: activated_by. Dynamic
rules have a second required field as well, count.

Activate rules are just like alerts but also tell snort to add a rule when a specific network event occurs . Dynamic rules
are just like log rules except are dynamically enabled when the activate rule id goes off.

Put ’em together and they look like Figure 2.9.

activate tcp !$HOME_NET any -> $HOME_NET 143 (flags: PA; \
content: "|E8C0FFFFFF|/bin"; activates: 1; \
msg: "IMAP buffer overflow!";)

dynamic tcp !$HOME_NET any -> $HOME_NET 143 (activated_by: 1; count: 50;)

Figure 2.9: Activate/Dynamic Rule Example

These rules tell Snort to alert when it detects an IMAP buffer overflow and collect the next 50 packets headed for port
143 coming from outside $HOME_NET headed to $HOME_NET. If the buffer overflow happened and was successful,
there’s a very good possibility that useful data will be contained within the next 50 (or whatever) packets going to that
same service port on the network, so there’s value in collecting those packets for later analysis.

18

2.3 Rule Options

Rule options form the heart of Snort’s intrusion detection engine, combining ease of use with power and flexibility. All
Snort rule options are separated from each other using the semicolon (;) character. Rule option keywords are separated
from their arguments with a colon (:) character.

There are three major categories of rule options.

meta-data These options provide information about the rule but do not have any affect during detection

payload These options all look for data inside the packet payload and can be inter-related

non-payload These options look for non-payload data

post-detection These options are rule specific triggers that happen after a rule has "fired".

2.4 Meta-Data Rule Options

2.4.1 msg

The msg rule option tells the logging and alerting engine the message to print along with a packet dump or to an alert.
It is a simple text string that utilizes the \ as an escape character to indicate a discrete character that might otherwise
confuse Snort’s rules parser (such as the semi-colon ; character).

Format

msg: "<message text>";

2.4.2 reference

The reference keyword allows rules to include references to external attack identification systems. The plugin currently
supports several specific systems as well as unique urls. This plugin is to be used by output plugins to provide a link
to additional information about the alert produced.

Make sure to also take a look at http://www.snort.org/snort-db/ http://www.snort.org/snort-db/ for a system
that is indexing descriptions of alerts based off of the sid (See Section ??).

Table 2.2: Supported Systems

System URL Prefix

Bugtraq http://www.securityfocus.com/bid/
CVE http://cve.mitre.org/cgi-bin/cvename.cgi?name=

Arachnids (currently down) http://www.whitehats.com/info/IDS
McAfee http://vil.nai.com/vil/dispVirus.asp?virus_k=

url http://

19

Format

reference: <id system>,<id>; [reference: <id system>,<id>;]

alert tcp any any -> any 7070 (msg: "IDS411/dos-realaudio"; \
flags: AP; content: "|fff4 fffd 06|"; reference: arachNIDS,IDS411;)

alert tcp any any -> any 21 (msg: "IDS287/ftp-wuftp260-venglin-linux"; \
flags: AP; content: "|31c031db 31c9b046 cd80 31c031db|"; \
reference: arachNIDS,IDS287; reference: bugtraq,1387; \
reference: cve,CAN-2000-1574;)

Figure 2.10: Reference Usage Examples

2.4.3 sid

The sid keyword is used to uniquely identify Snort rules. This information allows output plugins to identify rules
easily. This option should be used with the rev keyword. (See section 2.4.4)

� <100 Reserved for future use

� 100-1,000,000 Rules included with the Snort distribution

� >1,000,000 Used for local rules

The file sid-msg.map contains a mapping of alert messages to Snort rule IDs. This information is useful when post-
processing alert to map an ID to an alert message.

Format

sid: <snort rules id>;

Example

This example is a rule with the Snort Rule ID of 1000983.

alert tcp any any -> any 80 (content:"BOB"; sid:1000983; rev:1;)

2.4.4 rev

The sid keyword is used to uniquely identify revisions of Snort rules. Revisions, along with snort rule ids, allow
signatures and descriptions to be refined and replaced with updated information. This option should be used with the
sid keyword. (See section 2.4.3)

20

Format

rev: <revision integer>

Example

This example is a rule with the Snort Rule Revision of 1.

alert tcp any any -> any 80 (content:"BOB"; sid:1000983; rev:1;)

2.4.5 classtype

The classtype keyword categorizes alerts to be attack classes. By using the and prioritized. The user can specify what
priority each type of rule classification has. Rules that have a classification will have a default priority set.

Format

classtype: <class name>;

Rule classifications are defined in the classification.config file. The config file uses the following syntax:

config classification: <class name>,<class description>,<default priority>

The standard classifications included with Snort are listed in Tables 2.3, . The standard classifications are ordered
with 3 default priorities currently. A priority 1 is the most severe priority level of the default rule set and 4 is the least
severe.

Table 2.3: Snort Default Classifications

Classtype Description Priority

attempted-admin Attempted Administrator Privilege Gain high
attempted-user Attempted User Privilege Gain high
shellcode-detect Executable code was detected high
successful-admin Successful Administrator Privilege Gain high
successful-user Successful User Privilege Gain high
trojan-activity A Network Trojan was detected high
unsuccessful-user Unsuccessful User Privilege Gain high
web-application-attack Web Application Attack high
attempted-dos Attempted Denial of Service medium
attempted-recon Attempted Information Leak medium
bad-unknown Potentially Bad Traffic medium
denial-of-service Detection of a Denial of Service Attack medium
misc-attack Misc Attack medium
non-standard-protocol Detection of a non-standard protocol or event medium
rpc-portmap-decode Decode of an RPC Query medium
successful-dos Denial of Service medium
successful-recon-largescale Large Scale Information Leak medium

21

successful-recon-limited Information Leak medium
suspicious-filename-detect A suspicious filename was detected medium
suspicious-login An attempted login using a suspicious user-

name was detected
medium

system-call-detect A system call was detected medium
unusual-client-port-connection A client was using an unusual port medium
web-application-activity access to a potentially vulnerable web appli-

cation
medium

icmp-event Generic ICMP event low
misc-activity Misc activity low
network-scan Detection of a Network Scan low
not-suspicious Not Suspicious Traffic low
protocol-command-decode Generic Protocol Command Decode low
string-detect A suspicious string was detected low
unknown Unknown Traffic low

alert tcp any any -> any 80 (msg:"EXPLOIT ntpdx overflow"; \
dsize: >128; classtype:attempted-admin; priority:10);

alert tcp any any -> any 25 (msg:"SMTP expn root"; flags:A+; \
content:"expn root"; nocase; classtype:attempted-recon;)

Figure 2.11: Example Classtype Rules

Warnings

classtype uses classifications defined by the classification config option. The classifications used by the rules provided
with snort are defined in etc/classification.config

2.4.6 Priority

The priority tag assigns a severity level to rules. A classtype rule assigns a default priority that may be overridden
with a priority rule. For an example in conjunction with a classification rule refer to Figure 2.11. For use by itself, see
Figure 2.12

Format

priority: <priority integer>;

22

alert TCP any any -> any 80 (msg: "WEB-MISC phf attempt"; flags:A+; \
content: "/cgi-bin/phf"; priority:10;)

Figure 2.12: Example Priority Rule

2.5 Payload Detection Rule Options

2.5.1 content

The content keyword is one of the more important features of Snort. It allows the user to set rules that search for
specific content in the packet payload and trigger response based on that data. Whenever a content option pattern
match is performed, the Boyer-Moore pattern match function is called and the (rather computationally expensive) test
is performed against the packet contents. If data exactly matching the argument data string is contained anywhere
within the packet’s payload, the test is successful and the remainder of the rule option tests are performed. Be aware
that this test is case sensitive.

The option data for the content keyword is somewhat complex; it can contain mixed text and binary data. The binary
data is generally enclosed within the pipe (|) character and represented as bytecode. Bytecode represents binary data
as hexadecimal numbers and is a good shorthand method for describing complex binary data. Figure 2.13 contains an
example of mixed text and binary data in a Snort rule.

Note that multiple content rules can be specified in one rule. This allows rules to be tailored for less false positives.

Also note that the following characters must be escaped inside a content rule:

: ; \ "

If the rule is preceded by a !, the alert will be triggered on packets that do not contain this content. This is useful when
writing rules that want to alert on packets that do not match a certain pattern

Format

content: [!] "<content string>";

The content keyword has a number of modifier keywords. The modifier keywords change how the previously specified
content works. These modifier keywords are:

1. depth

2. offset

3. distance

4. within

5. nocase

6. rawbytes

23

alert tcp any any -> any 139 (content:"|5c 00|P|00|I|00|P|00|E|00 5c|";)

Figure 2.13: Mixed Binary Bytecode and Text in a ’content’ keyword

alert tcp any any -> any 80 (content:!"GET"; depth:3; nocase;)

Figure 2.14: Negation Example

Example

2.5.2 nocase

The nocase keyword allows the rule writer to specify that the snort should look for the specific pattern, ignoring case.
nocase modifies the previous ’content’ keyword in the rule.

Format

nocase;

Example

alert tcp any any -> any 21 (msg:"FTP ROOT"; content:"USER root"; nocase;)

Figure 2.15: Content rule with nocase modifier

2.5.3 rawbytes

The rawbytes keyword allows rules to look at the raw packet data, igoring any decoding that was done by preproces-
sors. This acts as a modifier to the previous content 2.5.1option.

format

rawbytes;

Example

This example tells the content pattern matcher to look at the raw traffic, instead of the decoded traffic provided by the
telnet decoder.

alert tcp any any -> any 21 (msg: "Telnet NOP"; content: "|FF F1|"; rawbytes;)

24

2.5.4 depth

The depth keyword allows the rule writer to specify how far into a packet snort should search for the specified pattern.
depth modifies the previous ’content’ keyword in the rule.

A depth of 5 would tell snort to only look look for the specified pattern within the first 5 bytes of the payload.

As the depth keyword is a modifier to the previous ’content’ keyword, there must be a content in the rule before ’depth’
is specified.

See Figure 2.16 for an example of a combined content, offset, and depth search rule.

Format

depth: <number>;

2.5.5 offset

The offset keyword allows the rule writer to specify where to start searching for a pattern within a packet. offset
modifies the previous ’content’ keyword in the rule.

An offset of 5 would tell snort to start looking for the specified pattern after the first 5 bytes of the payload.

As this keyword is a modifier to the previous ’content’ keyword, there must be a content in the rule before ’offset’ is
specified.

See Figure 2.16 for an example of a combined content, offset, and depth search rule.

Format

offset: <number>;

alert tcp any any -> any 80 (content: "cgi-bin/phf"; offset:4; depth:20;)

Figure 2.16: Combined Content, Offset and Depth Rule. Skip the first 4 bytes, and look for cgi-bin/phf in the next 20
bytes

2.5.6 distance

The distance keyword allows the rule writer to specify how far into a packet snort should search for the specified
pattern relative to the end of the previous pattern match. This can be thought of as exactly the same thing as depth
(See Section ??), except it is relative to the end of the last pattern match instead of the begining of the packet.

Format

distance: <byte count>;

25

Example

The rule listed in Figure 2.17 maps to a regular expression of /ABCDE.{1}EFGH/.

alert tcp any any -> any any (content:"ABC"; content: "DEF"; distance:1;)

Figure 2.17: distance usage example

2.5.7 within

The within keyword is a content modifier that makes sure that at most N bytes are between pattern matches using the
Content (See Section 2.5.1). It’s designed to be used in conjunction with the distance (Section 2.5.6) rule option.

The rule listed in Figure 2.18 contrains the search to not go past 10 bytes past the ABCDE match.

Format

within: <byte count>;

Examples

alert tcp any any -> any any (content:"ABC"; content: "EFG"; within:10;)

Figure 2.18: within usage example

2.5.8 uricontent

The uricontent parameter in the snort rule language searches the NORMALIZED request URI field. This means that
if you are writing rules that include things that are normalized, such as %2f or directory traversals, these rules will not
alert. The reason is that the things you are looking for are normalized out of the URI buffer.

For example, the URI:

/scripts/..%c0%af../winnt/system32/cmd.exe?/c+ver

will get normalized into:

/winnt/system32/cmd.exe?/c+ver

Another example, the URI:
\begin{verbatim} /cgi-bin/aaaaaaaaaaaaaaaaaaaaaaaaaa/..%252fp%68f?

will get normalized into:

/cgi-bin/phf?

26

When writing a uricontent rule, write the content that you want to find in the context that the URI will be normalized.
For example, if snort normalizes directory traversals, do not include directory traversals.

You can write rules that look for the non-normalized content by using the content option. (See Section 2.5.1)

For a description of the parameters to this function, see the content rule options in Section 2.5.1.

This option works in conjunction with the HTTP Inspect preprocessor specified in Section 2.8.10.

Format

uricontent:[!]<content string>;

2.5.9 isdataat

Verify that the payload has data at a specified location, optionally looking for data relative to the end of the previous
content match.

Format

isdataat:<int>[,relative];

Example

alert tcp any any -> any 111 (content:"PASS"; isdataat:50,relative; \
content:!"|0a|"; distance:0;)

This rule looks for the string PASS exists in the packet, then verifies there is at least 50 bytes after the end of the string
PASS, then verifies that there is not a newline character within 50 bytes of the end of the PASS string.

2.5.10 pcre

The pcre keyword allows rules to be written using perl compatible regular expressions. For more detail on what can
be done via a pcre regular expression, check out the PCRE website http://www.pcre.org

Format

pcre:[!]"(/<regex>/|m<delim><regex><delim>)[ismxAEGRUB]";

The post-re modifiers set compile time flags for the regular expression.

Table 2.4: Perl compatable modifiers

i case insensitive
s include newlines in the dot metacharacter

27

m By default, the string is treated as one big line of characters. ând
$ match at the begining and ending of the string. When m is set,
ând $ match immediately following or immediately before any
newline in the buffer, as well as the very start and very end of
the buffer.

x whitespace data characters in the pattern are ignored except
when escaped or inside a character class

Table 2.5: PCRE compatable modifiers

A the pattern must match only at the start of the buffer (same as)̂
E Set $ to match only at the end of the subject string. Without E,

$ also matches immediately before the final character if it is a
newline (but not before any other newlines

G Inverts the "greediness" of the quantifiers so that they are not
greedy by default, but become greedy if followed by "?".

Table 2.6: Snort specific modifiers

R Match relative to the end of the last patern match. (Similar to
distance:0;)

U Match the decoded URI buffers (Similar to uricontent)
B Do not use the decoded buffers (Similar to rawbytes)

The modifiers R and B should not be used together.

Example

This example looks for the string BLAH, ignoring the case of BLAH.

alert ip any any -> any any (pcre:"/BLAH/i";)

2.5.11 byte_test

Test a byte field against a specific value (with operator). Capable of testing binary values or converting represenative
byte strings to their binary equivalent and testing them.

Format

byte_test: <bytes_to_convert>, <operator>, <value>, <offset> \
[, [relative],[big],[little],[string],[hex],[dec],[oct]]

bytes_to_convert number of bytes to pick up from the packet

operator operation to perform to test the value (<,>,=,!,&)

28

value value to test the converted value against

offset number of bytes into the payload to start processing

relative use an offset relative to last pattern match

big process data as big endian (default)

little process data as little endian

string data is stored in string format in packet

hex converted string data is represented in hexadecimal

dec converted string data is represented in decimal

oct converted string data is represented in octal

alert udp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"AMD procedure 7 plog overflow "; \
content: "|00 04 93 F3|"; \
content: "|00 00 00 07|"; distance: 4; within: 4; \
byte_test: 4,>, 1000, 20, relative;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"AMD procedure 7 plog overflow "; \
content: "|00 04 93 F3|"; \
content: "|00 00 00 07|"; distance: 4; within: 4; \
byte_test: 4, >,1000, 20, relative;)

alert udp any any -> any 1234 \
(byte_test: 4, =, 1234, 0, string, dec; \
msg: "got 1234!";)

alert udp any any -> any 1235 \
(byte_test: 3, =, 123, 0, string, dec; \
msg: "got 123!";)

alert udp any any -> any 1236 \
(byte_test: 2, =, 12, 0, string, dec; \
msg: "got 12!";)

alert udp any any -> any 1237 \
(byte_test: 10, =, 1234567890, 0, string, dec; \
msg: "got 1234567890!";)

alert udp any any -> any 1238 \
(byte_test: 8, =, 0xdeadbeef, 0, string, hex; \
msg: "got DEADBEEF!";)

Figure 2.19: Byte Test Usage Example

29

2.5.12 byte_jump

The byte_jump option is used to grab some number of bytes, convert them to their numeric representation, jump the
doe_ptr up that many bytes (for further pattern matching/byte_testing). This will allow relative pattern matches to take
into account numerical values found in network data.

Format

byte_jump: <bytes_to_convert>, <offset> \
[, [relative],[big],[little],[string],[hex],[dec],[oct],[align]]

bytes_to_convert number of bytes to pick up from the packet

offset number of bytes into the payload to start processing

relative use an offset relative to last pattern match

big process data as big endian (default)

little process data as little endian

string data is stored in string format in packet

hex converted string data is represented in hexadecimal

dec converted string data is represented in decimal

oct converted string data is represented in octal

align round the number of converted bytes up to the next 32-bit boundary

alert udp any any -> any 32770:34000 (content: "|00 01 86 B8|"; \
content: "|00 00 00 01|"; distance: 4; within: 4; \
byte_jump: 4, 12, relative, align; \
byte_test: 4, >, 900, 20, relative; \
msg: "statd format string buffer overflow";)

Figure 2.20: byte jump Usage Example

2.5.13 regex

The regex keyword has been superceeded by PCRE. See Section 2.5.10.

2.5.14 content-list

The content-list keyword is broken and should not be used.

30

2.6 Non-payload Detection Rule Options

2.6.1 Fragoffset

The fragoffset keyword allows one to compare the IP fragment offset field against a decimal value. To catch all the first
framents of an IP session, you could use the fragbits keyword and look for the More fragments option in conjnection
with a fragoffset of 0.

Format

fragoffset:[<|>]<number>

alert ip any any -> any any \
(msg: "First Fragment"; fragbits: M; fragoffset: 0;)

Figure 2.21: Fragoffset usage example

2.6.2 ttl

The ttl keyword is used to check the IP time-to-live value. This option keyword was intended for use in the detection
of traceroute attempts.

Format

ttl:[[<number>-]><=]<number>;

Example

This example checks for a time-to-live value that is less than 3.

ttl:<3;

This example checks for a time-to-live value that between 3 and 5.

ttl:3-5;

2.6.3 tos

The tos keyword is used to check the IP TOS field for a specific value.

Format

tos:[!]<number>;

31

Example

This example looks for a tos value that is not 4

tos:!4;

2.6.4 id

The id keyword is used to check the IP ID field for a specific value. Some tools (exploits, scanners and other odd
programs) set this field specifically for various purposes, for example the value 31337 is very popular with some
hackers.

Format

id:<number>;

Example

This example looks for the IP ID of 31337.

id:31337;

2.6.5 ipopts

The ipopts keyword is used to check if a specific IP option is present.

The following options may be checked:

rr - Record route

eol - End of list

nop - No op

ts - Time Stamp

sec - IP security option

lsrr - Loose source routing

ssrr - Strict source routing

satid - Stream identifier

any - any IP options are set

The most frequently watched for IP options are strict and loose source routing which aren’t used in any widespread
internet applications.

32

Format

ipopts:<rr|eol|nop|ts|sec|lsrr|ssrr|satid|any>;

Example

This example looks for the IP Option of Loose Source Routing.

ipopts:lsrr;

Warning

Only a single ipopts keyword may be specified per rule.

2.6.6 Fragbits

The fragbits keyword is used to check if fragmentation and reserved bits are set in the IP header.

The following bits may be checked:

M More Fragments

D Don’t Fragment

R Reserved Bit

The following modifiers can be set to change the match criteria:

+ match on the specified bits, plus any others

- match if any of the specified bits are set

! match if the specified bits are not set

Format

fragbits:[+-*]<[MDR]>

Example

This example checks if the More Fragments bit and the Do not Fragment bit are set.

fragbits:MD+;

2.6.7 dsize

The dsize keyword is used to test the packet payload size. This may be used to check for abnormally sized packets. In
many cases, it is useful for detecting buffer overflows.

33

Format

dsize: [<>]<number>[<><number>];

Example

This example looks for a dsize that is between 300 and 400 bytes.

dsize:300<>400;

Warning

dsize will fail on stream rebuilt packets, regardless of the size of the payload.

2.6.8 flags

The flags keyword is used to check if specific TCP flag bits are present.

The following bits may be checked:

F FIN (LSB in TCP Flags byte)

S SYN

R RST

P PSH

A ACK

U URG

1 Reserved bit 1 (MSB in TCP Flags byte)

2 Reserved bit 2

0 No TCP Flags Set

The following modifiers can be set to change the match criteria:

+ match on the specified bits, plus any others

* match if any of the specified bits are set

! match if the specified bits are not set

To handle writing rules for session initiation packets such as ECN where a SYN packet is sent with the previously
reserved bits 1 and 2 set, an option mask may be specified. A rule could check for a flags value of S,12 if one wishes
to find packets with just the syn bit, regardless of the values of the reserved bits.

Format

flags:[!|*|+]<FSRPAU120>[,<FSRPAU120>];

34

Example

This example checks if just the SYN and the FIN bits are set, ignoring reserved bit 1 and reserved bit 2.

alert tcp any any -> any any (flags:SF,12;)

2.6.9 flow

The flow rule option is used in conjunction with TCP stream reassembly (see Section 2.8.4). It allows rules to only
apply to certain directions of the traffic flow.

This allows rules to only apply to clients or servers. This allows packets related to $HOME_NET clients viewing web
pages to be distinguished from servers running the $HOME_NET.

The established keyword will replace the flags: A+ used in many places to show established TCP connections.

Options

to_client trigger on server responses from A to B

to_server trigger on client requests from A to B

from_client trigger on client requests from A to B

from_server trigger on server responses from A to B

established trigger only on established TCP connections

stateless trigger regardless of the state of the stream processor (useful for packets that are designed to cause machines
to crash)

no_stream do not trigger on rebuilt stream packets (useful for dsize and stream4)

only_stream only trigger on rebuilt stream packets

Format

flow:[to_client|to_server|from_client| \
from_server|established|stateless|no_stream|only_stream]}

alert tcp !$HOME_NET any -> $HOME_NET 21 (flow: from_client; \
content: "CWD incoming"; nocase; \
msg: "cd incoming detected";)

alert tcp !$HOME_NET 0 -> $HOME_NET 0 \
(msg: "Port 0 TCP traffic"; flow: stateless;)

Figure 2.22: Flow usage examples

35

2.6.10 seq

The seq keyword is used to check for a specific TCP sequence number.

Format

seq:<number>;

Example

This example looks for a TCP sequence number of 0.

seq:0;

2.6.11 ack

The ack keyword is used to check for a specific TCP acknowledge number.

Format

ack: <number>;

Example

This example looks for a TCP acknowledge number of 0.

ack:0;

2.6.12 window

The ack keyword is used to check for a specific TCP window size.

Format

window:[!]<number>;

Example

This example looks for a TCP window size of 55808.

window:55808;

2.6.13 itype

The itype keyword is used to check for a specific ICMP type value.

36

Format

itype:[<|>]<number>[<><number>];

Example

This example looks for an ICMP type greater than 30.

itype:>30;

2.6.14 icode

The itype keyword is used to check for a specific ICMP code value.

Format

icode: [<|>]<number>[<><number>];

Example

This example looks for an ICMP code greater than 30.

code:>30;

2.6.15 icmp_id

The itype keyword is used to check for a specific ICMP ID value.

This is useful because some covert channel programs use static ICMP fields when they communicate. This particular
plugin was developed to detect the stacheldraht DDoS agent.

Format

icmp_id:<number>;

Example

This example looks for an ICMP ID of 0.

icmp_id:0;

2.6.16 icmp_seq

The itype keyword is used to check for a specific ICMP sequence value.

This is useful because some covert channel programs use static ICMP fields when they communicate. This particular
plugin was developed to detect the stacheldraht DDoS agent.

37

Format

icmp_seq: <number>;

Example

This example looks for an ICMP Sequence of 0.

icmp_seq:0;

2.6.17 rpc

The rpc keyword is used to check for a RPC application, version, and procedure numbers in SUNRPC CALL requests.

Wildcards are valid for both version and procedure numbers by using ’*’;

Format

rpc: <application number>, [<version number>|*], [<procedure number>|*]>;

Example

The following example looks for an RPC portmap GETPORT request.

alert tcp any any -> any 111 (rpc: 100000,*,3;);

Warning

Because of the fast pattern matching engine, the RPC keyword is slower than looking for the RPC values by using
normal content matching.

2.6.18 ip_proto

The ip_proto keyword allows checks against the IP protocol header. For a list of protocols that may be specified by
name, see /etc/protocols.

Format

ip_proto:[!] <name or number>;

Example

This example looks for IGMP traffic.

alert ip any any -> any any (ip_proto:igmp;)

38

2.6.19 sameip

The sameip keyword allows rules to check if the source ip is the same as the destionation IP.

Format

sameip;

Example

This example looks for any traffic where the Source IP and the Destination IP is the same.

alert ip any any -> any any (sampeip;)

2.7 Post-Detection Rule Options

2.7.1 logto

The logto option tells Snort to log all packets that trigger this rule to a special output log file. This is especially handy
for combining data from things like NMAP activity, HTTP CGI scans, etc. It should be noted that this option does not
work when Snort is in binary logging mode.

Format

logto:"filename";

2.7.2 session

The session keyword is built to extract user data from TCP Sessions. There are many cases where seeing what users
are typing in telnet, rlogin, ftp, or even web sessions is very useful.

There are two available argument keywords for the session rule option, printable or all. The printable keyword only
prints out data that the user would normally see or be able to type.

The all keyword substitutes non-printable characters with their hexadecimal equivalents.

Format

session: [printable|all];

Example

The following example logs all printable strings in a telnet packet.

log tcp any any <> any 23 (session:printable;)

39

Warnings

Using the session keyword can slow Snort down considerably, so it should not be used in heavy load situations. The
session keyword is best suited for post-processing binary (pcap) log files.

2.7.3 sesp

The resp keyword is used attempt to close sessions when an alert is triggered. In snort, this is called flexible response.

Flexible Response supports the following mechanisms for attempting to close sessions:

rst_snd send TCP-RST packets to the sending socket

rst_rcv send TCP-RST packets to the receiving socket

rst_all send TCP_RST packets in both directions

icmp_net send a ICMP_NET_UNREACH to the sender

icmp_host send a ICMP_HOST_UNREACH to the sender

icmp_port send a ICMP_PORT_UNREACH to the sender

icmp_all send all above ICMP packets to the sender

These options can be combined to send multiple responses to the target host.

Format

resp: <resp_mechanism>[,<resp_mechanism>[,<resp_mechanism>]];

Warnings

This functionality is not built in by default. Use the –enable-flexresp flag to configure when building Snort to enable
this functionality.

Be very careful when using Flexible Response. It is quite easy to get snort into an infinite loop by defining a rule such
as:

alert tcp any any -> any any (resp:rst_all;)

It is easy to be fooled into interfering with normal network traffic as well.

Example

The following example attempts to reset any TCP connection to port 1524.

alert tcp any any -> any 1524 (flags:S; resp:rst_all;)

40

2.7.4 React

The react keyword based on flexible response (Flex Resp) implements flexible reaction to traffic that matches a Snort
rule. The basic reaction is blocking interesting sites users want to access: New York Times, slashdot, or something
really important - napster and porn sites. The Flex Resp code allows Snort to actively close offending connections
and/or send a visible notice to the browser (warn modifier available soon). The notice may include your own comment.
The following arguments (basic modifiers) are valid for this option:

� block - close connection and send the visible notice

� warn - send the visible, warning notice (will be available soon)

The basic argument may be combined with the following arguments (additional modifiers):

� msg - include the msg option text into the blocking visible notice

� proxy: <port_nr> - use the proxy port to send the visible notice (will be available soon)

Multiple additional arguments are separated by a comma. The react keyword should be placed as the last one in the
option list.

Format

react: <react_basic_modifier[, react_additional_modifier]>;

alert tcp any any <> 192.168.1.0/24 80 (content: "bad.htm"; \
msg: "Not for children!"; react: block, msg;)

Figure 2.23: React Usage Example

Warnings

This functionality is not built in by default. Use the –enable-flexresp flag to configure when building Snort to enable
this functionality.

Be very careful when using react. Causing a network traffic generation loop is very easy to do with this functionality.

2.7.5 tag

The tag keyword allow rules to log more than just the single packet that triggered the rule. Once a rule is triggered,
additional traffic involving the source and/or destionation host is tagged. Tagged traffic is logged to allow analysis of
response codes and post-attack traffic. tagged alerts will be sent to the same output plugins as the original alert, but it
is the responsibility of the output plugin to properly handle these special alerts. Currently, the database output plugin,
described in Section 2.11.6, does not properly handle tagged alerts.

41

Format

tag: <type>, <count>, <metric>, [direction]

type

session log packets in the session that set off the rule

host log packets from the host that caused the tag to activate (uses [direction] modifier)

count Count is specified as a number of units. Units are specified in the <metric> field.

metric

packets tag the host/session for <count> packets

seconds tag the host/session for <count> seconds

Example

This example logs the first 10 seconds of any telnet session.

alert tcp any any -> any 23 (flags:S,12; tag:session,10,seconds;)

42

2.8 Preprocessors

Preprocessors were introduced in version 1.5 of Snort. They allow the functionality of Snort to be extended by allowing
users and programmers to drop modular plugins into Snort fairly easily. Preprocessor code is run before the detection
engine is called, but after the packet has been decoded. The packet can be modified or analyzed in an out of band
manner through this mechanism.

Preprocessors are loaded and configured using the preprocessor keyword. The format of the preprocessor directive in
the Snort rules file is:

preprocessor <name>: <options>

preprocessor minfrag: 128

Figure 2.24: Preprocessor Directive Format Example

2.8.1 Portscan Detector

The Snort Portscan Preprocessor is developed by Patrick Mullen.

What the Snort Portscan Preprocessor does

� Log the start and end of portscans from a single source IP to the standard logging facility.

� If a log file is specified, logs the destination IPs and ports scanned as well as the type of scan.

A portscan is defined as TCP connection attempts to more than P ports in T seconds or UDP packets sent to more than
P ports in T seconds. Ports can be spread across any number of destination IP addresses, and may all be the same
port if spread across multiple IPs. This version does single->single and single->many portscans. The next full release
will do distributed portscans (multiple->single or multiple->multiple). A portscan is also defined as a single stealth
scan packet, such as NULL, FIN, SYNFIN, XMAS, etc. This means that from scan-lib in the standard distribution of
snort you should comment out the section for stealth scan packets. The benefit is with the portscan module these alerts
would only show once per scan, rather than once for each packet. If you use the external logging feature you can look
at the technique and type in the log file.

The arguments to this module are:

� network to monitor The network/CIDR block to monitor for portscans

� number of ports number of ports accessed in the detection period

� detection period number of seconds to count that the port access threshold is considered for

� logdir/filename the directory/filename to place alerts in. Alerts are also written to the standard alert file

Format

portscan: <monitor network> <number of ports> <detection period> <file path>

43

preprocessor portscan: 192.168.1.0/24 5 7 /var/log/portscan.log

Figure 2.25: Portscan Preprocessor Configuration Example

2.8.2 Portscan Ignorehosts

Another module from Patrick Mullen that modifies the portscan detection system’s operation. If you have servers
which tend to trip off the portscan detector (such as NTP, NFS, and DNS servers), you can tell portscan to ignore TCP
SYN and UDP portscans from certain hosts. The arguments to this module are a list of IPs/CIDR blocks to be ignored.

Format

portscan-ignorehosts: <host list>

preprocessor portscan-ignorehosts: 192.168.1.5/32 192.168.3.0/24

Figure 2.26: Portscan Ignorehosts Module Configuration Example

2.8.3 Frag2

Frag2, introduced in Snort 1.8, is a new IP defragmentation preprocessor. Frag2 is designed to replace the defrag
preprocessor. This defragmenter is designed to memory efficient and use the same memory management routines that
are in use in other parts of Snort.

Frag2 has configurable memory usage and fragment timeout options. Given no arguments, frag2 uses the default
memory limit of 4194304 bytes (4MB) and a timeout period of 60 seconds. The timeout period is used to determine a
length of time that a unassembled fragment should be discarded.

In Snort 1.8.7, several options were added to help catch the use of evasion techniques such as fragroute.

Format

preprocessor frag2: [memcap <xxx>], [timeout <xx>], [min_ttl <xx>], \
[detect_state_problems], [ttl_limit <xx>]

[timeout <seconds>]amount of time to keep an inactive stream in the state table, sessions that are flushed will
automatically be picked up again if more activity is seen, default is 30 seconds

number of bytes to set the memory cap at, if this limit is exceeded frag2 will aggressively prune inactive re-
assemblers, default is 4MB

memcap <bytes>detect_state_problems turns on alerts for events such as overlapping fragments

min_ttl sets the minimum ttl that frag2 will accept

ttl_limit sets the delta value that will set off an evasion alert. (Initial Fragment TTL +/- TTL Limit)

44

preprocessor frag2: memcap 16777216, timeout 30

Figure 2.27: Frag2 preprocessor configuration

2.8.4 Stream4

The stream4 module provides TCP stream reassembly and stateful analysis capabilities to Snort. Robust stream re-
assembly capabilities allow Snort to ignore ”stateless” attacks such as stick and snot produce. Stream4 also gives large
scale users the ability to track more than 256 simultaneous TCP streams. Stream4 should be able to scale to handle
32,768 simultaneous TCP connections in its default configuration.

Stream4 contains two configurable modules, the stream4 preprocessor and the associated stream4 reassemble plugin.
The stream4_reassemble options are listed below.

Stream4 Format

preprocessor stream4: [noinspect], [keepstats], [timeout <seconds>], \
[memcap <bytes>], [detect_scans], [detect_state_problems], \
[disable_evasion_alerts], [ttl_limit <count>]

[noinspect]disable stateful inspection

record session summary information in <logdir>/session.log

keepstatstimeout <seconds> amount of time to keep an inactive stream in the state table, sessions that are flushed will
automatically be picked up again if more activity is seen, default is 30 seconds

memcap <bytes> number of bytes to set the memory cap at, if this limit is exceeded stream4 will aggressively prune
inactive sessions, default is 8MB

detect_scans turns on alerts for portscan events

detect_state_problems turns on alerts for stream events of note, such as evasive RST packets, data on the SYN packet,
and out of window sequence numbers

disable_evasion_alerts turns off alerts for events such as TCP overlap

ttl_limit sets the delta value that will set off

Stream4_Reassemble Format

preprocessor stream4_reassemble: [clientonly], [serveronly],\
[noalerts], [ports <portlist>]

[clientonly]provide reassembly for the client side of a connection only

provide reassembly for the server side of a connection only

serveronlynoalerts don’t alert on events that may be insertion or evasion attacks

ports <portlist> - a whitespace separated lit of ports to perform reassembly for, all provides reassembly for all ports,
default provides reassembly for ports 21 23 25 53 80 110 111 143 and 513

45

Notes

Just setting the stream4 and stream4_reassemble directives without arguments in the snort.conf file will set them up in
their default configurations shown in Table 2.7 and Table 2.8.

Stream4 introduces a new command line switch: -z. On TCP traffic, if the -z switch is specified, Snort will only alert
on streams that have been established via a three way handshake or streams where cooperative bidirectional activity
has been observed (i.e. where some traffic went one way and something other than a RST or FIN was seen going back
to the originator). With -z turned on, Snort completely ignores TCP-based stick/snot attacks.

Table 2.7: Stream4 defaults

Option Default

Session Timeout 30 seconds
Session Memory Cap 8388608 bytes

Stateful Inspection ACTIVE
Stream Stats INACTIVE

State Problem Alerts INACTIVE
Portscan Alerts INACTIVE

Table 2.8: Stream4_reassemble Defaults

Option Default

Reassemble Client ACTIVE
Reassemble Server INACTIVE
Reassemble Ports 21 23 25 53 80 143 110 111 513 1433
Reassembly Alerts ACTIVE

2.8.5 Flow

The Flow tracking module is meant to start unifying the state keeping mechanisms of snort into a single place. As of
Snort 2.1.0, only a portscan detector is implemented but in the long term, many of the stateful subsystems of snort will
be migrated over to becoming flow plugins. With the introduction of Flow, this effectively obsoletes the Conversation
preprocessor.

An IPv4 flow is unique when the IP Protocol (IP_PROTO), Source IP (SIP), Source Port (SPORT), Destination IP
(DIP), and Destination Port (DPORT) are the same. The DPORT and SPORT are 0 unless the protocol is TCP or UDP.

Format

preprocessor flow: [memcap <bytes>], [rows <count>], \
[stats_interval <seconds>], [hash <1|2>]

Example Configuration

preprocessor flow: stats_interval 0 hash 2

46

Table 2.9: Flow Options

memcap Number of bytes to allocate

rows Number of rows for the flow hash table. 1

stats_interval Interval to dump statistics stdout. Set this to 0 to disable.
hash pick a hashing method. 2

2.8.6 Flow-Portscan

This is module is designed to detect portscans based off flow creation in the flow preprocessors. The goal is to catch
one->many hosts and one->many ports scans.

The flow preprocessor to portscan recognizer is taken from experience with spp_conversation/portscan2 by Jason
Larsen & Jed Haile and ipaudit by Jon Rifkin.

This subsystem became a bit more complicated than originally intended but it does a good job of mitigating false
positives from devices such as squid proxies. The new design is also a lot more memory consistent than portscan1 or
2. It also ignores single port syn floods as they are a DoS, not a portscan.

Memory requirements should be way down from portscan2 architecture though but there’s slightly less information
saved off. The new architecture operates similarly to a ring buffer. When a scanner has not been active in a long time,
it’s only reclaimed when there is no more memory to use.

All of the prior methods for portscan detection in snort are deprecated and will be removed in the near future. If you
have custom code against conversation or one of the portscan preprocessors, consider making it a module in flow or
portscan.

The Flow preprocessor must first be enabled in order for Flow-Portscan to function properly.

The basic components of Flow-Portscan are:

1. Scoreboards

Scoreboards contain information regarding timescales for a single IP address. There are two scoreboards, one
for talkers (nodes that are active on your network) and one for scanners (nodes that have talked to a previously
unknown port in your server-watch-net)

2. Uniqueness tracker

The uniqueness tracker is used to determine if this connection should count as something "new" for a particular
IP. It checks if a connection is a new type of connection for a Source IP by disregarding the source port. Any
change in SIP, DIP, IP_PROTO, and DPORT indicates a new unique connection and will be processed further for
the server statistics table and scoring. This keeps things like a web page with 15 images from rapidly increasing
point scores with lots of accesses to the same web server.

3. Server Statistics Tracker

This is used to track flows destined to the "server-watchnet" and keep "hitcounts" on the number of times a
particular service has been requested with unique requests since snort has started. This hitcount is tracked by
DIP, DPORT, and PROTOCOL.

If a service is very popular, connections can be ignored for scoring by comparing the hitcount to the "server-ignore-
limit". If there are more requests to this service than the server-ignore-limit, then Flow-Portscan will completely ignore
this service. Similarly, the "server-scanner-limit" controls if a request to a service counts as scanner points or as talker
points.

47

If a request to a service is not in the server-watchnet, it will count as talker points. If no server-watchnet is defined, all
alerts will be Talker alerts.

Execution Path of flow-portscan

1. flow-portscan receives a new flow message from the flow module

2. The uniqueness tracker determines if message is a new type of flow by looking for changes in SIP, DIP,
IP_PROTO, and DPORT. If this is not unique, and the TCP flags are normal, exit out.

3. If this connection is to an Destination IP in the server-watchnet:

During the "server-learning-time", it increments the hitcounts for service popularity.

If it’s otherwise just get the stored hitcount. If the hitcount is greater than the server-ignore-limit, exit out. If it’s
less than the server-scanner-limit, mark the incremented points as scanner points.

4. A connection is marked as either a talker or a scanner by step 3.

There are 4 time scales; 2 each for the IP Scanner and IP Talker.

The fixed timescales detect N events in M seconds. This is the typical type of portscan alert.

The sliding timescales adjust the "score reset point" on each event after the first. This adjusts the side of the
window we’re detecting portscan events in by taking

end = end + ((end - start) * sliding-scale-factor)

Each time scale has it’s own point tally that is incremented per new flow. Each set of points only touches either
the talker-fixed-score and talker-sliding-score OR scanner-fixed-score and scanner-sliding-score

5. Evaluate the score against individual thresholds, either talker or scanner.

if(fixed_limit <= fixed_score)
generate_alert()

Format

preprocessor flow-portscan: [scoreboard-memcap-talker <bytes>] \
[scoreboard-rows-talker <count>] \
[scoreboard-rows-scanner <count>] \
[scoreboard-memcap-scanner <bytes>] \
[scanner-fixed-threshold <integer>] \
[scanner-sliding-threshold <integer>] \
[scanner-fixed-window <integer>] \
[scanner-sliding-window <integer>] \
[scanner-sliding-scale-factor <float>] \
[talker-fixed-threshold <integer>] \
[talker-sliding-threshold <integer>] \
[talker-fixed-window <integer>] \
[talker-sliding-window <integer>] \
[talker-sliding-scale-factor <float>] \
[unique-memcap <bytes>] \
[unique-rows <integer>] \

48

[server-memcap <bytes>] \
[server-rows <integer>] \
[server-watchnet <ip list in snort notation>] \
[src-ignore-net <ip list in snort notation>] \
[dst-ignore-net <ip list in snort notation>] \
[tcp-penalties <on|off>] \
[server-learning-time <seconds>] \
[server-ignore-limit <hit count>] \
[server-scanner-limit <hit count>] \
[alert-mode <once|all>] \
[output-mode <msg|pktkludge>] \
[base-score <integer>] \
[dumpall <1>]

1. scoreboard-rows-talker (Default: 1000000).

Number of rows to use for the talker table.

2. scoreboard-rows-scanner (Default: 250000).

Number of rows to use for the scanner table.

3. unique-rows (Default: 1000000)

How many rows to allocate for the uniqueness tracker.

4. server-rows (Default: 65536)

How many rows to allocate for server learning

General note about Rows: higher row counts will take more memory away from the memory caps for a specific
subsystem. In the snort output, this is referred to as "overhead bytes" and the percentage of overhead encountered
will be shown. Higher row counts provide a larger hash table to minimize collisions and have a faster overall
processing time at the expense of memory. The hash tables themselves use a psuedorandom hardening salt that
is picked at initialization time.

5. scoreboard-memcap-talker (Default: 25165824)

Number of bytes to use for the talker table.

6. scoreboard-memcap-scanner (Default: 6291456)

Number of bytes to use for the scanner table.

7. unique-memcap (Default: 25165824)

How many bytes to allocate to the uniqueness tracker. The more memory given, the less that connections to a
busy server will appear as a scan target on a popular service.

8. server-memcap (Default: 2097152)

How many bytes to allocate for server learning

9. scanner-fixed-threshold (Default: 15)

Number of points that a scanner must accumulate in the scanner-fixed-window time range. Set to 0 to disable
this type of alert.

10. talker-fixed-threshold (Default: 15)

Number of points that a scanner must accumulate in talker-fixed-window time range. Set to 0 to disable this
type of alert.

49

11. scanner-sliding-threshold (Default: 40)

Number of points that a scanner must accumulate in scanner-sliding-window time range. Set to 0 to disable this
type of alert.

12. talker-sliding-threshold (Default: 30)

Number of points that a scanner must accumulate in talker-sliding-window time range. Set to 0 to disable this
type of alert.

13. scanner-fixed-window (Default: 15)

How many seconds we should go before reseting the fixed scanner score.

14. talker-fixed-window (Default: 30)

How many seconds we should go before reseting the fixed talker score.

15. scanner-sliding-window (Default: 20)

How many seconds we should go before reseting the fixed scanner score.

16. talker-sliding-window (Default: 30)

How many seconds we should go before reseting the sliding talker score.

17. scanner-sliding-scale-factor (Default: 0.5)

How much to increase the sliding window by each time we get a new sliding scanner entry. It’s current size +
(<scale factor> * current_size).

18. talker-sliding-scale-factor (Default: 0.5)

How much to increase the sliding window by each time we get a new sliding talker entry. It’s current size +
(<scale factor> * current_size).

19. src-ignore-net

The IP list of what Source IPs to ignore.

20. dst-ignore-net

The IP list of what Destination IPs to ignore.

21. tcp-penalties (Default: On)

If this is enabled, when a new tcp flow enters the portscan detection set, check the TCP flags for non-standard
session initiators and assign penalty points for odd combinations such as SYN+FIN

22. Flag mapping

Table 2.10: Flag Mapping

SYN or SYN+ECN bits base_score (defaults to 1 point)

SYN+FIN+TH_ACK and anything else 5 points
SYN+FIN and anything else without ack 3 points

Anything Else 2 points

23. server-watchnet

The IP list of what machines to learn services on. Busy servers should be placed here to help the portscan
detector learn what services are requested on the network.

50

24. server-learning-time (Default: 28800)

How many seconds we should keep increment hitcounts of services on IPs in the server-watchnet

This does not perform validation that the service is connected correctly. It is possible while learning that some-
one floods the table with unique connections, causing something to become a service that you do not wish to be
a service. It’s generally assumed that the learning time will occur at a time where traffic is "typical". Future ver-
sions of snort should allow this state to be saved and modifiable. If this caveat is a concern in your environment,
do not set a server watchnet and rely only on talker scores.

25. server-ignore-limit (Default: 500)

How many requests a port on an IP in the server-watchnet must see before it is ignored for the purposes of
portscans.

26. server-scanner-limit (Default: 500)

How many requests a port on an IP in the server-watchnet must see before it is is treated as a talker rather than
a scanner. This is a minimum number of requests that must be seen during the server-learning-time for the flow
to be treated as a talker connection rather than as a scanner connection.

27. alert-mode (Default: Once)

Table 2.11: Alert Modes

Once alert only on the first time we get a scan entry hit. This dramati-
cally reduces clutter because the scan alert in the first place tells
one to look for other event types.

All alert each time the score increases beyond a threshold

28. output-mode (Default: msg)

Table 2.12: Output Modes

msg A variable text message with the scores included
pktkludge generate a fake packet and use the logging output system

29. dumpall When snort is exiting, dump the entire contents of the server table, the uniqueness tracker table, and
the scoreboard entries. This is useful if you suspect an underlying bug in the algorithms used or if you would
just like to see what it has learned. Set this to "1" to enable.

30. base-score (Default: 1) Default score for a new connection. This is probably only useful for debugging.

Example Configuration

preprocessor flow-portscan: server-watchnet [10.0.0.0/8] \
unique-memcap 5000000 \
unique-rows 50000 \
tcp-penalties on \
server-scanner-limit 50 \
alert-mode all \
output-mode msg \
server-learning-time 3600

51

2.8.7 Telnet Decode

The telnet_decode preprocessor allows snort to normalize telnet control protocol characters from the session data. In
Snort 1.9.0 and above, it accepts a list of ports to run on as arguments. Also in 1.9.0, it normalizes into a separate data
buffer from the packet itself so that the raw data may be logged or examined with the rawbytes content modifier2.5.3.

It defaults to running on ports 21, 23, 25, and 119.

Format

preprocessor telnet_decode: <ports>

2.8.8 RPC Decode

The rpc_decode preprocessor normalizes RPC multiple fragmented records into a single unfragmented record. It does
this by normalizing the packet into the the packet buffer. If stream4 is enabled, it will only process client side traffic.
It defaults to running on ports 111 and 32771.

Table 2.13: RPC Decoder Options

Option Purpose

alert_fragments Alert on any fragmented RPC record
no_alert_multiple_requests Don’t Alert when there are multiple records in one packet
no_alert_large_fragments Don’t Alert when the sum of fragmented records exceeds one packet

no_alert_incomplete Don’t Alert when a single fragment record exceeds the size of one packet

Format

preprocessor rpc_decode: <ports> [alert_fragments] \
[no_alert_multiple_requests] [no_alert_large_fragments] \
[no_alert_incomplete]

2.8.9 Performance Monitor

This preprocessor measures snort’s realtime and theoretical maximum performance. Whenever this preprocessor is
turned on it should have an output mode enabled, either "console" which prints statistics to the console window or
"file" with a file name, where statistics get printed to the specified file name. The default statistics that are processed
are snort’s realtime statistics. This includes:

1. packets received

2. packets dropped

3. % packets dropped

4. Packets Received

5. Kpackets per second

52

6. Average bytes per packets

7. Mbits per second (wire)

8. Mbits per second (rebuilt) [this is the average Mbits that snort injects after rebuilding packets]

9. Mbits per second (total)

10. Pattern Matching percent [the average percent of data received that snort processes in pattern matching]

11. CPU usage (user time) (system time) (idle time)

12. Alerts per second

13. SYN packets per second

14. SYN/ACK packet per second

15. New sessions per second

16. Deleted sessions per second

17. Total Sessions

18. Max Sessions during time interval

19. Stream Flushes per second

20. Stream Faults per second

21. Stream Timeouts

22. Frag Completes per second

23. Frag Inserts per second

24. Frag Deletes per second

25. Frag Flushes per second

26. Frag Timeouts

27. Frag Faults

When the keyword "flow" is enabled, statistics are printed out about the type of traffic and protocol distributions that
snort is seeing.

The keyword "events" turns on event reporting. This prints out statistics as to the number of signatures that were
matched by the setwise pattern matcher and the number of those matches that were verified with the signature flags.
We call these non-qualified and qualified events. It shows the user if there is a problem with the ruleset that they are
running.

The keyword "max" turns on the theoretical maximum performance that snort calculates given the processor speed and
current performance. This is only valid for uniprocessor machines, since many operating systems don’t keep accurate
kernel statistics for multiple CPUs.

The keyword "console" prints statistics at the console, this is on by default.

The keyword "file" prints statistics in a comma delimited format to the file that is specified. Not all statistics are output
to this file. You may also use "snortfile" which will output into your defined snort log directory.

The keyword "pktcnt" adjusts the number of pkts to process before checking for the time sample. This boosts perfor-
mance since checking the time sample reduces snort’s performance. By default, this is 10000.

53

Examples

preprocessor perfmonitor: time 30 events flow file stats.profile max \
console pktcnt 10000

preprocessor perfmonitor: time 300 file /var/tmp/snortstat pktcnt 10000

2.8.10 HTTP Inspect

HttpInspect is a generic HTTP decoder for user applications. Given a data buffer, HttpInspect will decode the buffer,
find HTTP fields, and normalize the fields. HttpInspect works on both client requests and server responses.

The current version of HttpInspect only handles stateless processing. This means that HttpInspect looks for HTTP
fields on a packet by packet basis, and will be fooled if packets are not reassembled. This works fine when there is
another module handling the reassembly, but there are limitations in analyzing the protocol. Future versions will have
a stateful processing mode which will hook into various reassembly modules.

HttpInspect has a very "rich" user configuration. Users can configure individual HTTP servers with a variety of
options, which should allow the user to emulate any type of web server. Within HttpInspect, there are two areas of
configuration, Global, and Server.

Global Configuration

The global configuration deals with configuration options that determine the global functioning of HttpInspect. The
following example gives the generic global configuration format:

Format

preprocessor http_inspect: global \
iis_unicode_map <map_filename> \
codemap <integer> \
[detect_anomalous_servers] \
[proxy_alert]

You can only have a single global configuration, you’ll get an error if you try otherwise.

Configuration

1. iis_unicode_map <map_filename> [codemap <integer>]

This is the global iis_unicode_map file. THIS ALWAYS NEEDS TO BE SPECIFIED IN THE GLOBAL CON-
FIGURATION, otherwise you get an error. This map file should live where you keep your snort.conf (or provide
a fully qualified path name to it).

A Microsoft US unicode codepoint map is provided in the snort source /etc directory by default. It is called
unicode.map and should be used if no other is available. You can generate your own unicode maps by using the
program ms_unicode_generator.c located in the snort contrib directory. Remember that this configuration is for
the global IIS unicode map, individual servers can reference their own IIS unicode map.

2. detect_anomalous_servers This global configuration option enables generic HTTP server traffic inspection on
non-HTTP configured ports, and alerts if HTTP traffic is seen.

54

3. proxy_alert

This enables global alerting on HTTP server proxy usage that is not included in the HttpInspect configuration.
By turning on proxy_alert, you can configure which web servers are valid web proxies, and use the keyword,
allow_proxy_use, to disable alerting for that web proxy. However, any web server where proxy use is not
allowed will generate an alert when an absolute request URI is detected. The presence of an absolute URI does
not mean there has been malicious proxy use, though it is usually the case.

Example Global Configuration

preprocessor http_inspect: global iis_unicode_map unicode.map 1252

Server Configuration

There are two types of server configurations, default and by IP address.

Default This configuration supplies the default server configuration for any server that is not individually configured.
Most of your web servers will most likely end up using the default configuration.

Example Default Configuration

preprocessor http_inspect_server: server default profile all ports { 80 }

Configuration by IP Address This format is very similar to "Default" the only difference being that specific IPs
can be configured.

Example IP Configuration

preprocessor http_inspect_server: server 10.1.1.1 profile all ports { 80 }

Server Configuration Options

IMPORTANT: Some configuration options have an argument of ’yes’ or ’no’. This argument specifies whether the
user wants the configuration option to generate an HttpInspect alert or not. The ’yes/no’ argument does not specify
whether the configuration option itself is on or off, only the alerting functionality. In otherwords, whether set to ’yes’
or ’no’, http normalization will still occure, and rules based off http traffic will still trigger.

1. profile <all|apache|iis>

Users can configure HttpInspect by using pre-defined HTTP server profiles. There are three profiles available:
all, apache, and IIS.

1-A. all The "all" profile is meant to normalize the URI using most of the common tricks available. We alert
on the more serious forms of evasions. This is a great profile for detecting all the types of attacks regardless
of the HTTP server. "profile all" sets the following configuration options.

55

Table 2.14: Profile "All" Options

flow_depth 300
chunk encoding alert on chunks larger than 500000 bytes
iis_unicode_map codepoint map in the global configuration

ascii decoding on, alert off
looking for NULL bytes in URL on, alert on

multiple slash on, alert off
directory normalization on, alert off

apache whitespace on
double decoding on

%u decoding on
bare byte decoding on

iis unicode codepoints alert on
iis backslash on, alert off
iis delimiter on

Non-RFC char alerting on 0x00 on

Table 2.15: Profile "Apache" Options

flow_depth 300
chunk encoding alert on chunks larger than 500000 bytes
ascii decoding on alert off

looking for NULL bytes in URL on, alert on
multiple slash on, alert off

directory normalization on, alert off
apache whitespace on, alert on

utf_8 encoding on, alert off
non_strict URL parsing on

Non-RFC char alerting on 0x00 on

56

1-B. apache
The "apache" profile is used for apache webservers. This differs from the ’iis’ profile by only excepting
utf-8 standard unicode encoding and not excepting backslashes as legitimate slashes, like IIS does. Apache
also excepts tabs as whitespace. "profile apache" sets the following configuration options:

1-C. iis
The "iis" profile mimics IIS servers. So that means we use IIS unicode codemaps for each server, %u
encoding, bare-byte encoding, double decoding, backslashes, etc. "profile iis" sets the following configu-
ration options:

Table 2.16: Profile "IIS" Options

flow_depth 300
iis_unicode_map codepoint map in the global configuration

ascii decoding on, alert off
multiple slash on, alert off

directory normalization on, alert off
double decoding on, alert on

%u decoding on, alert on
bare byte decoding on, alert on

iis unicode codepoints on, alert on
iis backslash on, alert off
iis delimiter on, alert on

Non-RFC char alerting on 0x0 on
apache whitespace on, alert on

Profiles must be specified as the first server option and cannot be combined with any other options except:

1. ports
2. iis_unicode_map
3. allow_proxy_use
4. flow_depth
5. no_alerts
6. inspect_uri_only
7. oversize_dir_length These options must be specified after the ’profile’ option.

Example

preprocessor http_inspect_server: server 1.1.1.1 profile all ports { 80 3128 }

2. ports { <port> [<port> <...>] }

This is how the user configures what ports to decode on the HTTP server.

3. iis_unicode_map <map_filename> codemap <integer>

The IIS Unicode Map is generated by the program ms_unicode_generator.c. This program is located in snort
contrib directory. Executing this program generates a unicode map for the system that it was run on. So to get
the specific unicode mappings for an IIS web server, you run this program on that server and use that unicode
map in this configuration.

When using this option, the user needs to specify the file that contains the IIS unicode map and also specify
the unicode map to use. For US servers, this is usually 1252. But the ms_unicode_generator program tells you

57

which codemap to use for you server, it’s the ANSI codepage. You can select the correct code page by looking
at the available code pages that the ms_unicode_generator outputs.

4. flow_depth <integer>

This specifies the amount of server response payload to inspect. This option significantly increases IDS perfor-
mance because we are ignoring a large part of the network traffic, that we don’t really have rules for anyway.
Most of the HTTP server rules that we do have are for the HTTP header and a few bytes after that, so we can
catch those alerts by specifying a flow_depth of about 150 - 300. Mileage may vary.

5. ascii <yes|no>

The ASCII decode option tells us whether to decode encoded ASCII chars, a.k.a %2f = /, %2e = ., etc. It is
normal to see ASCII encoding usage in URLs, so it is recommended to not enable HttpInspect alerting for this
option.

6. utf_8 <yes|no>

The UTF-8 decode option tells HttpInspect to decode standard UTF-8 unicode sequences that are in the URI.
This abides by the unicode standard and only uses % encoding. Apache uses this standard, so for any apache
servers, make sure you have this option turned on. As for alerting, you may be interested in knowing when you
have an utf-8 encoded URI, but this will be prone to false positives as legitimate web clients use this type of
encoding. When utf_8 is enabled, ascii decoding is also enabled to enforce correct functioning.

7. u_encode <yes|no>

This option emulates the IIS %u encoding scheme. How the %u encoding scheme works is as follows: The
encoding scheme is started by a %u followed by 4 chars, like %uXXXX. The XXXX is a hex encoded value
that correlates to an IIS unicode codepoint. This value can most definitely be ASCII. An ASCII char is encoded
like, %u002f = /, %u002e = ., etc. If no iis_unicode_map is specified before or after this option, the default
codemap is used.

You should alert on %u encodings, because we are not aware of any legitimate clients that use this encoding. So
it is most likely someone trying to be covert.

8. bare_byte <yes|no>

Bare byte encoding is an IIS trick that uses non-ASCII chars as valid values in decoding UTF-8 values. This is
NOT in the HTTP standard, as all non-ASCII values have to be encoded with a %. Bare byte encoding allows
the user to emulate an IIS server and interpret non-standard encodings correctly.

The alert on this decoding should be enabled, because there are no legitimate clients that encoded UTF-8 this
way, since it is non-standard.

9. base36 <yes|no>

This is an option to decode base36 encoded chars. This option is bassed off of info from http://www.yk.rim.
or.jp/~shikap/patch/spp_http_decode.patch

If %u encoding is enabled, this option will not work. You have to use the base36 option with the utf_8 option.
Don’t use the %u option, because base36 won’t work. When base36 is enabled, so is ascii encoding to enforce
correct behavior.

10. iis_unicode <yes|no>

The iis_unicode option turns on the unicode codepoint mapping. If there is no iis_unicode_map option specified
with the server config, iis_unicode uses the default codemap. The iis_unicode option handles the mapping of
non-ascii codepoints that the IIS server accepts and decodes normal UTF-8 request.

Users should alert on the iis_unicode option, because it is seen mainly in attacks and evasion attempts. When
iis_unicode is enabled, so is ascii and utf-8 decoding to enforce correct decoding. To alert on utf-8 decoding,
the user must enable also enable ’utf_8 yes’.

58

11. double_decode <yes|no> The double_decode option is once again IIS specific and emulates IIS functionality.
How this works is that IIS does two passes through the request URI, doing decodes in each one. In the first
pass, it seems that all types of IIS encoding is done: UTF-8 unicode, ASCII, bare byte, and %u. In the second
pass the following encodings are done: ASCII, bare byte, and %u. We leave out UTF-8 because I think how this
works is that the % encoded UTF-8 is decoded to the unicode byte in the first pass, and then UTF-8 decoded
in the second stage. Anyway, this is really complex and adds tons of different encodings for one char. When
double_decode is enabled, so is ascii to enforce correct decoding.

Users definitely want to alert on this option because you will never see this in the wild, unless it is an attack or
evasion of some sort.

12. non_rfc_char { <byte> [<byte ...>] }

This option let’s users receive an alert if certain non-RFC chars are used in a request URI. For instance, a user
may not want to see NULL bytes in the request-URI and we can give an alert on that. Please use this option
with care, because you could configure it to say, alert on all ’/’ or something like that. It’s flexible, so be careful.

13. multi_slash <yes|no>

This option normalizes multiple slashes in a row, so something like: "foo/////////bar" get normalized to "foo/bar".

If you want an alert when multiple slashes are seen, then configure with a yes, otherwise a no.

14. iis_backslash <yes|no>

Normalize backslashes to slashes. This is again an IIS emulation. So a request-URI of "/foo
bar" gets normalized to "/foo/bar".

15. directory <yes|no>

This option normalizes directory traversals and self-referential directories.

The directory:

/foo/fake_dir/../bar

gets normalized to:

/foo/bar

The directory:

/foo/./bar

gets normalized to:

/foo/bar

If a user wants to configure an alert, then specify "yes", otherwise "no". This alert may give false positives since
some websites refer to files using directory traversals.

16. apache_whitespace <yes|no>

This option deals with non-RFC standard of tab for a space delimiter. Apache uses this, so if the emulated web
server is Apache you need to enable this option. Alerts on this option may be interesting, but may also be false
positive prone.

17. iis_delimiter <yes|no>

This started out being IIS specific, but Apache takes this non-standard delimiter was well. Since this is common,
we always take this as standard since the most popular web servers accept it. But you can still get an alert on
this option.

59

18. chunk_length <non-zero positive integer>

This option is an anomaly detector for abnormally large chunk sizes. This picks up the apache chunk encoding
exploits, and may also alert on HTTP tunneling that uses chunk encoding.

19. no_pipeline_req

This option turns HTTP pipeline decoding off, and is a performance enhancement if needed. By default pipeline
requests are inspected for attacks, but when this option is enabled, pipeline requests are not decoded and ana-
lyzed per HTTP protocol field. It is only inspected with the generic pattern matching.

20. non_strict

This option turns on non-strict URI parsing for the broken way in which Apache servers will decode a URI.
Only use this option on servers that will accept URIs like this "GET /index.html alsjdfk alsj lj aj la jsj s
n". The non_strict option assumes the URI is between the first and second space even if there is no valid HTTP
identifier after the second space.

21. allow_proxy_use

By specifying this keyword, the user is allowing proxy use on this server. This means that no alert will be
generated if the proxy_alert global keyword has been used. If the proxy_alert keyword is not enabled, then this
option does nothing. The allow_proxy_use keyword is just a way to suppress unauthorized proxy use for an
authorized server.

22. no_alerts

This option turns off all alerts that are generated by the HttpInspect preprocessor module. This has no effect on
http rules in the ruleset. No argument is specified.

23. oversize_dir_length <non-zero positive integer>

This option takes a non-zero positive integer as an argument. The argument specifies the max char directory
length for URL directory. If a URL directory is larger than this argument size, an alert is generated. A good
argument value is 300 chars. This should limit the alerts to IDS evasion type attacks, like whisker -I 4.

24. inspect_uri_only

This is a performance optimization. When enabled, only the URI portion of HTTP requests will be inspected
for attacks. As this field usually contains 90-95% of the web attacks, you’ll catch most of the attacks. So if you
need extra performance, then enable this optimization. It’s important to note that if this option is used without
any uricontent rules, then no inspection will take place. This is obvious since the uri is only inspected with
uricontent rules, and if there are none available then there is nothing to inspect.

For example, if we have the following rule set:

alert tcp any any -> any 80 (msg:"content"; content: "foo";)

and the we inspect the following URI:

GET /foo.htm HTTP/1.0\r\n\r\n

No alert will be generated when ’inspect_uri_only’ is enabled. The ’inspect_uri_only’ configuration turns off
all forms of detection except uricontent inspection.

60

Examples

preprocessor http_inspect_server: server 10.1.1.1 \
ports { 80 3128 8080 } \
flow_depth 0 \
ascii no \
double_decode yes \
non_rfc_char { 0x00 } \
chunk_length 500000 \
non_strict \
no_alerts

preprocessor http_inspect_server: server default \
ports { 80 3128 } \
non_strict \
non_rfc_char { 0x00 } \
flow_depth 300 \
apache_whitespace yes \
directory no \
iis_backslash no \
u_encode yes \
ascii no \
chunk_length 500000 \
bare_byte yes \
double_decode yes \
iis_unicode yes \
iis_delimiter yes \
multi_slash no

preprocessor http_inspect_server: server default \
profile all \
ports { 80 8080 }

61

2.9 Event Thresholding

Event Thresholding can be used to reduce the number of logged alerts for noisy rules. This can be tuned to significantly
reduce false alarms, and it can also be used to write a newer breed of rules. Thresholding commands limit the number
of times a particular event is logged during a specified time interval.

There are 3 types of thresholding:

1. Limit

Alert on the 1st M events during the time interval, then ignore events for the rest of the time interval.

2. Threshold

Alert every M times we see this event during the time interval.

3. Both

Alert once per time interval after seeing M occurrences of the event, then ignore any additional events during
the time interval.

Thresholding commands can be included as part of a rule, or you can use standalone threshold commands that refer-
ence the generator and sid they are applied to. There is no functional difference between adding a threshold to a rule,
or using a separate threshold command applied to the same rule. There is a logical difference. Some rules may only
make sense with a threshold. These should incorporate the threshold command into the rule. For instance a rule for
detecting a too many login password attempts may require more than 5 attempts. This can be done using the ’limit’
type of threshold command. It makes sense that the threshold feature is an integral part of this rule.

You may apply only one threshold to any given sid. If you try to apply more than one threshold command to a sid,
snort will terminate while reading the configuration information.

2.9.1 Standalone Options

This format supports 6 threshold options - all are required.

Table 2.17: Standalone options

gen_id <generator ID>
sig_id <snort signature ID>
type limit, threshold, or both
track by_src or by_dst
count <number of events>

seconds <time period over which count is accrued>

2.9.2 Standalone Format

threshold gen_id <gen-id>, sig_id <sig-id>, \
type <limit|threshold|both>, \
track <by_src|by_dst>, count <s>, seconds <m>

62

2.9.3 Rule Keyword Format

This format supports 4 threshold options - all are required.

Table 2.18: Rule Keyword options

type limit, threshold, or both
track by_src or by_dst
count <number of events>

seconds <time period over which count is accrued>

2.9.4 Rule Keyword format

threshold: type <limit|threshold|both>, track <by_src|by_dst>, \
count <n>, seconds <m>;

For either standalone or rule format, all tracking is by Src or by Dst IP, ports or anything else are not tracked.

Thresholding can also be used Globally, this allows you to specifiy a threshold for every rule. Standard thresholding
tests are applied 1st to an event, if they do not block a rule from being logged than the global thresholding test is
applied.

The global threshold options are the same as the standard threshold options with the exception of the ’sig_id’ field.
The sig_id field must be set to 0 to indicate this threshold command applies to all sig_id values with the specified
gen_id. To apply the same threshold to all gen_id’s at the same time, and with just one command specify a value of
gen_id=0.

The format for Global threshold commands is as such:

threshold gen_id <gen-id>, sig_id 0, \
type <limit|threshold|both>, \
track <by_src|by_dst>, \
count <n>, \
seconds <m>

This applies a threshold to every event from <gen-id>.

OR

threshold gen_id 0 , sig_id 0, \
type <limit|threshold|both>, \
track <by_src|by_dst>, \
count <n>, \
seconds <m>

This applies a threshold to every event from every gen-id.

63

2.9.5 Examples

Standalone Thresholds

Limit to logging 1 event per 60 seconds:

threshold gen_id 1, sig_id 1851, \
type limit, track by_src, \
count 1, seconds 60

Limit to logging every 3rd event:

threshold gen_id 1, sig_id 1852, \
type threshold, track by_src, \
count 3, seconds 60

Limit to logging just 1 event per 60 seconds, but only if we exceed 30 events in 60 seconds:

threshold gen_id 1, sig_id 1853, \
type both, track by_src, \
count 30, seconds 60

Standalone Thresholds

This rule logs the 1st event of this sid every 60 seconds

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS \
(msg:"WEB-MISC robots.txt access"; flow:to_server, established; \
uricontent:"/robots.txt"; nocase; reference:nessus,10302; \
classtype:web-application-activity; threshold: type limit, track \
by_src, count 1 , seconds 60 ; sid:1000852; rev:1;)

This rule logs every 10th event on this sid during a 60 second interval, so if less than 10 occur in 60 seconds, nothing
gets logged. Once an event is logged, a new time period starts for type=threshold.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS \
(msg:"WEB-MISC robots.txt access"; flow:to_server, established; \
uricontent:"/robots.txt"; nocase; reference:nessus,10302; \
classtype:web-application-activity; threshold: type threshold, \
track by_dst, count 10 , seconds 60 ; sid:1000852; rev:1;)

This rule logs at most one event every 60 seconds if at least 10 events on this sid are fired.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS \
(msg:"WEB-MISC robots.txt access"; flow:to_server, established; \
uricontent:"/robots.txt"; nocase; reference:nessus,10302; \
classtype:web-application-activity; threshold: type both , track \
by_dst, count 10 , seconds 60 ; sid:1000852; rev:1;)

64

Global Thresholds

Limit to logging 1 event per 60 seconds per IP triggering each rule (rule gen_id is 1):

threshold gen_id 1, sig_id 0, type limit, track by_src, count 1, seconds 60

Limit to logging 1 event per 60 seconds per IP triggering each rule for each event generator:

threshold gen_id 0, sig_id 0, type limit, track by_src, count 1, seconds 60

Events in snort are generated in the usual way, thresholding is handled as part of the output system. Read gen-msg.map
for details on gen IDs.

Users can also configure a memcap for threshold with a "config:" option:

config threshold: memcap <bytes>

65

2.10 Event Suppression

Event suppression stops specified events from firing without removing the rule from the rule base. Suppression uses
a CIDR block notation to select specific networks and users for suppression. Suppression tests are performed prior to
either standard or global thresholding tests.

Suppression commands are standalone commands that reference generators, sids, and IP addresses via a CIDR block.
This allows a rule to be completely suppressed, or suppressed when the causitive traffic is going to or comming from
a specific IP or group of IP addresses.

You may apply multiple suppresion commands to a sid. You may also combine one threshold command and several
suppression commands to the same sid.

2.10.1 Format

The suppress command supports either 2 or 4 options

Table 2.19: Suppression Options

gen_id <generator ID> required
sig_id <snort signature ID> required
track by_src or by_dst optional, requires ip

ip IP[/MASK] optional, requires track

suppress gen_id <gen-id>, sid_id <sid-id>, \
track <by_src|by_dst>, ip <IP|MASK-BITS>

2.10.2 Examples

Suppress this event completely

suppress gen_id 1, sig_id 1852

Suppress this event from this IP

suppress gen_id 1, sig_id 1852, track by_src, ip 10.1.1.54

Suppress this event to this CIDR block

suppress gen_id 1, sig_id 1852, track by_dst, ip 10.1.1.0/24

66

2.11 Output Modules

Output modules are new as of version 1.6. They allow Snort to be much more flexible in the formatting and presentation
of output to its users. The output modules are run when the alert or logging subsystems of Snort are called, after
the preprocessors and detection engine. The format of the directives in the rules file is very similar to that of the
preprocessors.

Multiple output plugins may be specified in the Snort configuration file. When multiple plugins of the same type (log,
alert) are specified, they are stacked and called in sequence when an event occurs. As with the standard logging and
alerting systems, output plugins send their data to /var/log/snort by default or to a user directed directory (using the -l
command line switch).

Output modules are loaded at runtime by specifying the output keyword in the rules file:

output <name>: <options>

output alert_syslog: LOG_AUTH LOG_ALERT

Figure 2.28: Output Module Configuration Example

2.11.1 Alert_syslog

This module sends alerts to the syslog facility (much like the -s command line switch). This module also allows the
user to specify the logging facility and priority within the Snort rules file, giving users greater flexibility in logging
alerts.

Available keywords

Options

� LOG_CONS

� LOG_NDELAY

� LOG_PERROR

� LOG_PID

Facilities

� LOG_AUTH

� LOG_AUTHPRIV

� LOG_DAEMON

� LOG_LOCAL0

� LOG_LOCAL1

� LOG_LOCAL2

67

� LOG_LOCAL3

� LOG_LOCAL4

� LOG_LOCAL5

� LOG_LOCAL6

� LOG_LOCAL7

� LOG_USER

Priorities

� LOG_EMERG

� LOG_ALERT

� LOG_CRIT

� LOG_ERR

� LOG_WARNING

� LOG_NOTICE

� LOG_INFO

� LOG_DEBUG

Format

alert_syslog: <facility> <priority> <options>

2.11.2 Alert_fast

This will print Snort alerts in a quick one line format to a specified output file. It is a faster alerting method than full
alerts because it doesn’t need to print all of the packet headers to the output file

Format

alert_fast: <output filename>

output alert_fast: alert.fast

Figure 2.29: Fast alert configuration

68

2.11.3 Alert_full

Print Snort alert messages with full packet headers. The alerts will be written in the default logging directory
(/var/log/snort) or in the logging directory specified at the command line.

Inside the logging directory, a directory per IP will be created. These files will be decoded packet dumps of the packets
that triggered the alerts. The creation of these files slows snort down considerably. This output method is discouraged
for all but the lightest traffic situations.

Format

alert_full: <output filename>

output alert_full: alert.full

Figure 2.30: Full alert configuration

2.11.4 Alert_unixsock

Sets up a UNIX domain socket and sends alert reports to it. External programs/processes can listen in on this socket
and receive Snort alert and packet data in real time. This is currently an experimental interface.

Format

alert_unixsock

output alert_unixsock

Figure 2.31: UnixSock alert configuration

2.11.5 Log_tcpdump

The log_tcpdump module logs packets to a tcpdump-formatted file. This is useful for performing post process analysis
on collected traffic with the vast number of tools that are available for examining tcpdump formatted files. This module
only takes a single argument, the name of the output file. Note that the file name will have the unix timestamp in
seconds appended the file name. This is so data from separate snort runs can be kept distinct.

Format

log_tcpdump: <output filename>

69

output log_tcpdump: snort.log

Figure 2.32: Tcpdump Output Module Configuration Example

2.11.6 Database

This module from Jed Pickel sends Snort data to a variety of SQL databases. More information on installing and
configuring this module can be found on the [91]Incident.org web page. The arguments to this plugin are the name of
the database to be logged to and a parameter list. Parameters are specified with the format parameter = argument. See
Figure 2.33 for example usage.

Format

database: <log | alert>, <database type>, <parameter list>

The following parameters are available:

host Host to connect to. If a non-zero-length string is specified, TCP/IP communication is used. Without a host name,
it will connect using a local Unix domain socket.

port Port number to connect to at the server host, or socket filename extension for Unix-domain connections.

dbname Database name user Database username for authentication

password Password used if the database demands password authentication

sensor_name Specify your own name for this snort sensor. If you do not specify a name one will be generated
automatically

encoding Because the packet payload and option data is binary, there is no one simple and portable way to store it in
a database. BLOBS are not used because they are not portable across databases. So I leave the encoding option
to you. You can choose from the following options. Each has its own advantages and disadvantages:

hex (default) Represent binary data as a hex string.

storage requirements - 2x the size of the binary
searchability - very good
human readability - not readable unless you are a true geek, requires post processing

base64 Represent binary data as a base64 string.

storage requirements - 1̃.3x the size of the binary
searchability - impossible without post processing
human readability - not readable requires post processing

ascii Represent binary data as an ascii string. This is the only option where you will actually loose data. Non
ascii data is represented as a .. If you choose this option then data for ip and tcp options will still be
represented as hex because it does not make any sense for that data to be ascii.

storage requirements - Slightly larger than the binary because some characters are escaped (&,<,>)
searchability - very good for searching for a text string impossible if you want to search for binary
human readability - very good

detail How much detailed data do you want to store? The options are:

70

full (default) log all details of a packet that caused an alert (including ip/tcp options and the payload)

fast log only a minimum amount of data. You severely limit the potential of some analysis applications if you
choose this option, but this is still the best choice for some applications. The following fields are logged -
(timestamp, signature, source ip, destination ip, source port, destination port, tcp flags, and protocol)

Furthermore, there is a logging method and database type that must be defined. There are two logging types available,
log and alert. Setting the type to log attaches the database logging functionality to the log facility within the program.
If you set the type to log, the plugin will be called on the log output chain. Setting the type to alert attaches the plugin
to the alert output chain within the program.

There are four database types available in the current version of the plugin. These are MySQL, PostgreSQL, Oracle,
and unixODBC-compliant databases. Set the type to match the database you are using.

Note that this output plugin does not have the ability to handle alerts that are generated by using the tag keyword. See
Section 2.7.5 for more details.

output database: log, mysql, dbname=snort user=snort host=localhost password=xyz

Figure 2.33: Database output plugin configuration

2.11.7 CSV

The CSV output plugin allows alert data to be written in a format easily importable to a database. The plugin requires
2 arguments, a full pathname to a file and the output formatting option.

The list of formatting options is below. If the formatting option is default, the output is in the order the formatting
option is listed.

� timestamp

� msg

� proto

� src

� srcport

� dst

� dstport

� ethsrc

� ethdst

� ethlen

� tcpflags

� tcpseq

� tcpack

� tcplen

71

� tcpwindow

� ttl

� tos

� id

� dgmlen

� iplen

� icmptype

� icmpcode

� icmpid

� icmpseq

Format

output alert_CSV: <filename> <format>

output alert_CSV: /var/log/alert.csv default

output alert_CSV: /var/log/alert.csv timestamp, msg

Figure 2.34: CSV Output Configuration

2.11.8 Unified

The unified output plugin is designed to be the fastest possible method of logging Snort events. It logs events into an
alert file and a packet log file. The alert file contains the high-level details of an event (ips, protocol, port, message id).
The log file contains the detailed packet information (a packet dump with the associated event id).

Both portions of the files are written in a binary format described in spo_unified.h. Barnyard, when available, will
incorporate the current output plugins into a new architecture so that logging. The Unified-output format will soon
become the standard method of logging Snort data for sensors that have high amounts of activity. Snort will focus only
only on collecting data in realtime while Barnyard will allow complex logging methods that would otherwise diminish
sensor effectiveness.

Note that the time in unix seconds will be appened to each file as it’s written out.

Format

output alert_unified: <file name>

output log_unified: <file name>

72

output alert_unified: snort.alert

output log_unified: snort.log

Figure 2.35: Unified Configuration Example

2.11.9 Log Null

Sometimes it is useful to be able to create rules that will alert to certain types of traffic but will not cause packet log
entries. In Snort 1.8.2, the log_null plugin was introduced. This is equivalent to using the -N command line option but
it is able to work within a ruletype.

Format

output log_null

output log_null # like using snort -N

ruletype info {
type alert
output alert_fast: info.alert
output log_null

}

Figure 2.36: Log Null Usage Example

73

2.12 Writing Good Rules

There are some general concepts to keep in mind when developing Snort rules to maximize efficiency and speed.

Good rules have contents. The 2.0 detection engine changes the way snort works slightly by having the first phase
be a setwise pattern match. The longer a content option is, the more “exact” the match. If rules don’t have a content
option, they will slow the entire system down.

When writing rules, try to write rules that target the vulnerability (such as calling this procedure with an offset of 1025
or more) rather than the exploit specifics (match this shell code here).

Content Rules are Case Sensitive (unless you use the nocase option)

Don’t forget that content rules are case sensitive and that many programs typically use uppercase letters to indicate
commands. FTP is a good example of this. Consider the following two rules:

alert tcp any any -> 192.168.1.0/24 21 (content: "user root"; \
msg: "FTP root login";)

alert tcp any any -> 192.168.1.0/24 21 (content: "USER root";\
msg: "FTP root login";)

The second of those two rules will catch most every automated root login attempt, but none that use lower case
characters for user. Internet daemons are often written to be liberal in what they accept as input. When writing rules,
understanding what the protocol accepts will help minimize missed attacks.

74

Chapter 3

Snort Development

Currently, this chapter is here as a place holder. It will someday contain references on how to create new detection
plugins and preprocessors. End users don’t really need to be reading this section. This is intended to help developers
get a basic understanding of whats going on quickly.

If you are going to be helping out with snort development, please use the HEAD branch of CVS. We’ve had problems
in the past of people submitting patches only to the stable branch (since they are likely writing this stuff for their own
IDS purposes). Bugfixes are what goes into STABLE. Features go into HEAD.

3.1 Submitting Patches

Patches to snort should be sent to the snort-devel@lists.sourceforge.net mailing list. Patches should done with
the command diff -Nu snort-orig snort-new.

3.2 Snort Dataflow

First, traffic is acquired from the network link via libpcap. Packets are passed through a series of decoder routines that
first fill out the Packet structure for link level protocols then are further decoded for things like TCP and UDP ports.

Packets are then sent through the registered set of preprocessors. Each preprocessor checks to see if this packet is
something it should look at.

Packets are then sent through the detection engine. The detection engine checks each packet against the various
options listed in the snort rules files. Each of the keyword options is a plugin. This allows this to be easily extensible.

3.2.1 Preprocessors

For example, a tcp analysis preprocessor could simply return if the packet does not have a TCP header. It can do this
by checking

if (p->tcph==NULL)
return;

75

Similarly, there are a lot of packet_flags available that can be used to mark a packet as “reassembled” or logged. Check
out src/decode.h for the list of PKT_* constants.

3.2.2 Detection Plugins

Basically, look at an existing output plugin and copy it to a new item and change a few things. Later, we’ll document
what these few things are.

3.2.3 Output Plugins

Generally, new output plugins should go into the barnyard project rather than the snort project. We are currently
cleaning house on the available output options.

76

Bibliography

[1] http://packetstorm.securify.com/mag/phrack/phrack49/P49-06

[2] http://www.nmap.org

[3] http://public.pacbell.net/dedicated/cidr.html

[4] http://www.whitehats.com

[5] http://www.incident.org/snortdb

[6] http://www.pcre.org

77

