1

Manual for Version 3.1.5b

\begin { }
\coordinate (front) at (0,0);
\coordinate (horizon) at (0, .31\paperheight);
\coordinate (bottom) at (0,-.6\paperheight);
\coordinate (sky) at (0, .57\paperheight);
\coordinate (left) at (-.51\paperwidth,0);
\coordinate (right) at (.51\paperwidth,0);
\ [bottom color=white,
top color=blue!30!black!50]
([yshift=-5mm]horizon —| left)

rectangle (sky -| right);

\ [bottom color=black!70!green!25,
top color=black!70!green!10]
(front -| left) —- (horizon -| left)
decorate [decoration=random steps] {
—- (horizon -| right) }
—— (front -| right) -- cycle;

\ [top color=black!70!green!25,
bottom color=black!25]
([yshift=-5mm-1pt]front -| left)
rectangle ([yshift=I1pt]front -| right);

\ [black!25]
(bottom —-| left)
rectangle ([yshift=-5mm]front -| right);

\def\nodeshadowed [#1]#2; {
\ [scale=2, above, #1] {
\global\setbox\mybox=\hbox{#2}
\copy \mybox} ;
\ [scale=2, above, #1, yscale=-1,
scope fading=south,opacity=0.4] {\box\mybox};

\nodeshadowed [at={ (-5,8)},yslant=0.05]
{\Huge Ti\textcolor{orange}{\emph{k}}Z};
\nodeshadowed [at={(0,8.3)}]
{\huge \textcolor{green!50!black!50}{\&}};
\nodeshadowed [at={(5,8)},yslant=-0.05]
{\Huge \textsc{PGF}};
\nodeshadowed [at={(0,5)}]

{Manual for Version \pgftypesetversion};

\foreach \where in {-9cm, 9cm} {
\nodeshadowed [at={ (\where,5cm)}] { \tikz
\ [green!20!black, rotate=90,

l-system={rule set={F -> FF-[-F+F]+[+F-F]},
axiom=F, order=4, step=2pt,
randomize step percent=50, angle=30,

randomize angle percent=5}] l-system; }}
\foreach \i in {0.5,0.6,...,2}
\
[white, opacity=\i/2,
decoration=Koch snowflake,
shift= (horizon),shift={ (randx11l, rndx7) },
scale=\i,double copy shadow={
opacity=0.2, shadow xshift=0pt,
shadow yshift=3x\i pt, =white, =none}]
decorate {
decorate {
decorate {
(0,0)- ++(60:1) -— ++(-60:1) -- cycle
}oyobs
\ (left text)
\ (right text)
\ [decorate, decoration={footprints, foot of=gnome},
opacity=.5,brown] (rand*8, —-rnd*10)

to [out=randx180,in=rand*x180] (rand*8,-rndx*10);

\end{ }

Fiir meinen Vater, damit er noch viele schone TEX-Graphiken erschaffen kann.

Till

Copyright 2007 to 2013 by Till Tantau

Permission is granted to copy, distribute and/or modify the documentation under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in
the section entitled GNU Free Documentation License.

Permission is granted to copy, distribute and/or modify the code of the package under the terms of the GNU
Public License, Version 2 or any later version published by the Free Software Foundation. A copy of the
license is included in the section entitled GNU Public License.

Permission is also granted to distribute and/or modify both the documentation and the code under the
conditions of the LaTeX Project Public License, either version 1.3 of this license or (at your option) any
later version. A copy of the license is included in the section entitled IWTEX Project Public License.

The TikZ and PGF Packages

Manual for version 3.1.5b
https://github.com/pgf-tikz/pgf

Till Tantau™*

Institut fiir Theoretische Informatik
Universitat zu Libeck

January 8, 2020

Contents

1 Introduction
1.1 The Layers Below TikZ o
1.2 Comparison with Other Graphics Packages
1.3 Utility Packages
14 How to Read This Manual
1.5 Authors and Acknowledgements L Lo
1.6 Getting Help o o o o e

I Tutorials and Guidelines

2 Tutorial: A Picture for Karl’s Students

2.1 Problem Statement
2.2 Setting up the Environment L

221 Setting up the Environment in BTEX

2.2.2 Setting up the Environment in Plain TEX

223 Setting up the Environment in ConTEXt
2.3 Straight Path Construction oo
2.4 Curved Path Construction
2.5 Circle Path Construction
2.6 Rectangle Path Construction
2.7 Grid Path Construction
2.8 Adding a Touch of Style
2.9 Drawing Options L
2.10 Arc Path Construction e
2.11 Clipping a Path e
2.12 Parabola and Sine Path Construction
2.13 Filling and Drawing e
214 Shading e
2.15 Specifying Coordinates L e
2.16 Intersecting Paths
217 Adding Arrow Tips
218 Scoping e
2.19 Transformations L L e
2.20 Repeating Things: For-Loops L e
221 Adding Text e
2.22 Pics: The Angle Revisited

27
27
28
28
29
29
29

30

31
31
31
31
32
32
33
33
34
34
35
35
36
36
37
38
38
39
40
41
41
42
43
43
45
48

*Editor of this documentation. Parts of this documentation have been written by other authors as indicated in these parts

or chapters and in Section 1.5.

https://github.com/pgf-tikz/pgf

3 Tutorial: A Petri-Net for Hagen 50

3.1 Problem Statement 50
3.2 Setting up the Environment L o 50
3.2.1 Setting up the Environment in BTEX 50

3.2.2 Setting up the Environment in Plain TEX 50

3.2.3 Setting up the Environment in ConTEXt o1

3.3 Introduction to Nodes L L 51
3.4 Placing Nodes Using the At Syntax 52
3.5 Using Styles o o L e 52
3.6 Node Size 53
3.7 Naming Nodes 53
3.8 Placing Nodes Using Relative Placement 54
3.9 Adding Labels Next to Nodes i 54
3.10 Connecting Nodes o e 56
3.11 Adding Labels Next to Lines 58
3.12 Adding the Snaked Line and Multi-Line Text 58
3.13 Using Layers: The Background Rectangles 59
3.14 The Complete Code e 60
4 Tutorial: Euclid’s Amber Version of the Elements 62
4.1 Book I, Proposition I oo 62
4.1.1 Setting up the Environment L Lo 62

4.1.2 The Line AB e 63

4.1.3 The Circle Around A 63

4.1.4 The Intersection of the Circles. 65

4.1.5 The Complete Code 66

4.2 Book I, Proposition IT. o 67
4.2.1 Using Partway Calculations for the Constructionof D 67

4.2.2 Intersecting a Lineand a Circle 68

4.2.3 The Complete Code 69

5 Tutorial: Diagrams as Simple Graphs 70
5.1 Styling the Nodes e 70
5.2 Aligning the Nodes Using Positioning Options 72
5.3 Aligning the Nodes Using Matrices 74
5.4 The Diagram as a Graph L 75
5.4.1 Connecting Already Positioned Nodes 75

5.4.2 Creating Nodes Using the Graph Command 76

6 Tutorial: A Lecture Map for Johannes 80
6.1 Problem Statement 80
6.2 Introduction to Trees L 80
6.3 Creating the Lecture Map e 83
6.4 Adding the Lecture Annotations Lo 87
6.5 Adding the Background oL o 88
6.6 Adding the Calendar 89
6.7 The Complete Code e 91
7 Guidelines on Graphics 95
7.1 Planning the Time Needed for the Creation of Graphics. 95
7.2 Workflow for Creating a Graphic 95
7.3 Linking Graphics With the Main Text 96
7.4 Consistency Between Graphics and Text 96
7.5 Labels in Graphics o e 97
7.6 Plots and Charts 97
7.7 Attention and Distraction L 100
II Installation and Configuration 102

8 Installation

8.1 Package and Driver Versions L L
8.2 Installing Prebundled Packages L.
8.2.1 Debian e
8.2.2 MiKTeX o e
8.3 Installation in a texmf Tree Lo
8.3.1 Installation that Keeps Everything Together
8.3.2 Installation that is TDS-Compliant
8.4 Updating the Installation L L
9 Licenses and Copyright
9.1 Which License Applies? o o e
9.2 The GNU Public License, Version 2
9.2.1 Preamble
9.2.2 Terms and Conditions For Copying, Distribution and Modification
9.2.3 No Warranty e
9.3 The IATEX Project Public License, Version 1.3c 2006-05-20
9.3.1 Preamble e
9.3.2 Definitions
9.3.3 Conditions on Distribution and Modification.
9.3.4 No Warranty e
9.3.5 Maintenance of The Work L .
9.3.6 Whether and How to Distribute Works under This License
9.3.7 Choosing This License or Another License
9.3.8 A Recommendation on Modification Without Distribution
9.3.9 How to Use This License
9.3.10 Derived Works That Are Not Replacements
9.3.11 Important Recommendations
9.4 GNU Free Documentation License, Version 1.2, November 2002
9.4.1 Preamble
9.4.2 Applicability and definitions Lo
9.4.3 Verbatim Copying o e
9.4.4 Copying in Quantity
9.4.5 Modifications e e e
9.4.6 Combining Documents L
9.4.7 Collection of Documents L
9.4.8 Aggregating with independent Works oL
9.4.9 Translation L
9.4.10 Termination
9.4.11 Future Revisions of this License,
9.4.12 Addendum: How to use this License for your documents

10 Supported Formats

10.1 Supported Input Formats: BTEX, Plain TEX, ConTeXt
10.1.1 Using the IWTEX Format
10.1.2 Using the Plain TEX Format
10.1.3 Using the ConTEXt Format
10.2 Supported Output Formats
10.2.1 Selecting the Backend Driver
10.2.2 Producing PDF Output o
10.2.3 Producing PostScript Output o o
10.2.4 Producing SVG Output

10.2.5 Producing Perfectly Portable DVI Output

III TikZ ist kein Zeichenprogramm

103
103
103
103
104
104
104
104
104

105
105
105
105
106
108
108
108
108
109
110
111
111
111
112
112
112
112
113
113
113
114
114
114
116
116
116
116
116
117
117

118
118
118
118
118
119
119
119
120
120
122

123

11

12

13

14

Design Principles

11.1 Special Syntax For Specifying Points
11.2 Special Syntax For Path Specifications
11.3 Actions on Paths L
11.4 Key—Value Syntax for Graphic Parameters
11.5 Special Syntax for Specifying Nodes L L.
11.6 Special Syntax for Specifying Trees
11.7 Special Syntax for Graphs
11.8 Grouping of Graphic Parameters
11.9 Coordinate Transformation System

Hierarchical Structures: Package, Environments, Scopes, and Styles

12.1 Loading the Package and the Libraries

12.2 Creating a Picture L e
12.2.1 Creating a Picture Using an Environment
12.2.2 Creating a Picture Using a Command
12.2.3 Handling Catcodes and the Babel Package
12.2.4 Adding a Background L oL oL

12.3 Using Scopes to Structure a Picture L o oL
12.3.1 The Scope Environment L
12.3.2 Shorthand for Scope Environments,
12.3.3 Single Command Scopes e
12.3.4 Using Scopes Inside Paths oo L.

12.4 Using Graphic Options
12.4.1 How Graphic Options Are Processed
12.4.2 Using Styles to Manage How Pictures Look

Specifying Coordinates

131 Overview L e e e

13.2 Coordinate Systemso e
13.2.1 Canvas, XYZ, and Polar Coordinate Systems
13.2.2 Barycentric Systems
13.2.3 Node Coordinate System L o
13.2.4 Tangent Coordinate Systems
13.2.5 Defining New Coordinate Systems

13.3 Coordinates at Intersections L
13.3.1 Intersections of Perpendicular Lines
13.3.2 Intersections of Arbitrary Paths 0.

13.4 Relative and Incremental Coordinates L L.
13.4.1 Specifying Relative Coordinates
13.4.2 Rotational Relative Coordinates
13.4.3 Relative Coordinates and Scopes

13.5 Coordinate Calculations
13.5.1 The General Syntax e
13.5.2 The Syntax of Factors
13.5.3 The Syntax of Partway Modifiers
13.5.4 The Syntax of Distance Modifiers
13.5.5 The Syntax of Projection Modifiers

Syntax for Path Specifications
14.1 The Move-To Operation it e e
14.2 The Line-To Operation et e
14.2.1 Straight Lines e
14.2.2 Horizontal and Vertical Lines
14.3 The Curve-To Operation e
14.4 The Rectangle Operation e
14.5 Rounding COrners o it e e e e
14.6 The Circle and Ellipse Operations
14.7 The Arc Operation e e

124
124
124
125
125
125
125
126
126
127

128
128
128
128
130
130
131
131
131
132
132
133
133
133
133

136
136
136
136
139
140
142
143
143
144
144
146
146
147
148
148
149
149
150
151
151

15

16

14.8 The Grid Operation e 160
14.9 The Parabola Operation 162
14.10 The Sine and Cosine Operation o 163
14.11 The SVG Operation e 164
14.12 The Plot Operation 164
14.13 The To Path Operation 164
14.14 The Foreach Operation i 167
14.15 The Let Operation e 168
14.16 The Scoping Operation e 169
14.17 The Node and Edge Operations 169
14.18 The Graph Operation L 170
14.19 The Pic Operation o o e 170
14.20 The Attribute Animation Operation 170
14.21 The PGF-Extra Operation 170
14.22 Interacting with the Soft Path subsystem 171
Actions on Paths 172
15.1 OVerview e 172
15.2 Specifying a Color e 173
153 Drawinga Path o 173
15.3.1 Graphic Parameters: Line Width, Line Cap, and Line Join 174
15.3.2 Graphic Parameters: Dash Pattern, .. 175
15.3.3 Graphic Parameters: Draw Opacity 177
15.3.4 Graphic Parameters: Double Lines and Bordered Lines 178
154 Adding Arrow Tipstoa Path 179
15,5 Fillinga Path 179
15.5.1 Graphic Parameters: Fill Pattern 180
15.5.2 Graphic Parameters: Interior Rules 181
15.5.3 Graphic Parameters: Fill Opacity 181
15.6 Generalized Filling: Using Arbitrary Pictures to Filla Path 181
15.7 Shadinga Path 183
15.8 Establishing a Bounding Box Lo oo 184
15.9 Clipping and Fading (Soft Clipping) v v i 186
15.10 Doing Multiple Actionsona Path, 187
15.11 Decorating and Morphinga Path o oo 190
Arrows 191
16.1 Overview 191
16.2 Where and When Arrow Tips Are Placed 191
16.3 Arrow Keys: Configuring the Appearance of a Single Arrow Tip 193
16.3.1 Size 194
16.3.2 Scaling e 197
16.3.3 Arc Angles 197
16.3.4 Slanting L e 198
16.3.5 Reversing, Halving, Swapping 198
16.3.6 Coloring e 199
16.3.7 Line Styling e 201
16.3.8 Bending and Flexing Lo 202
16.4 Arrow Tip Specifications 207
16.4.1 Syntax oL e e 207
16.4.2 Specifying Paddings oL 208
16.4.3 Specifying the Line End o oo 209
16.4.4 Defining Shorthands L 209
16.4.5 Scoping of Arrow Keys Lo 211
16.5 Reference: Arrow Tips e 212
16.5.1 Barbed Arrow Tips 214
16.5.2 Mathematical Barbed Arrow Tips. 216
16.5.3 Geometric Arrow Tips 218
16.5.4 Caps . .« o o e 221

17

18

19

16.5.5 Special Arrow Tips

Nodes and Edges

17.1
17.2

17.3
17.4

17.5

17.6
17.7
17.8
17.9
17.10

17.11

17.12

17.13

17.14

Pics:

18.1
18.2

18.3

19.1
19.2

19.3

Overview
Nodes and Their Shapes
17.2.1 Syntax of the Node Command
17.2.2 Predefined Shapes
17.2.3 Common Options: Separations, Margins, Padding and Border Rotation

Multi-Part Nodes

The Node Text o o e
17.4.1 Text Parameters: Color and Opacity
17.4.2 Text Parameters: Font L o
17.4.3 Text Parameters: Alignment and Width for Multi-Line Text
17.4.4 Text Parameters: Height and Depth of Text
Positioning Nodes e
17.5.1 Positioning Nodes Using Anchors
17.5.2 Basic Placement Options.
17.5.3 Advanced Placement Options
17.5.4 Advanced Arrangements of Nodes
Fitting Nodes to a Set of Coordinates
Transformations L
Placing Nodes on a Line or Curve Explicitly
Placing Nodes on a Line or Curve Implicitly
The Label and Pin Options
17.10.1 Overview oL e
17.10.2 The Label Option
17.10.3 The Pin Option e
17.10.4 The Quotes Syntax L e
Connecting Nodes: Using Nodes as Coordinates
Connecting Nodes: Using the Edge Operation
17.12.1 Basic Syntax of the Edge Operation
17.12.2 Nodes on Edges: Quotes Syntax
Referencing Nodes Outside the Current Picture
17.13.1 Referencing a Node in a Different Picture
17.13.2 Referencing the Current Page Node — Absolute Positioning
Late Code and Late Options
Small Pictures on Paths
Overview e
The Pic Syntaxo
18.2.1 The Quotes Syntax e
Defining New Pic Types e
Specifying Graphs
OVerview L e
Concepts oo e
19.2.1 Concept: Node Chains i
19.2.2 Concept: Chain Groups it ittt
19.2.3 Concept: Edge Labels and Styles,
19.2.4 Concept: Node Sets o e
19.2.5 Concept: Graph Macros i e
19.2.6 Concept: Graph Expressions and Color Classes
Syntax of the Graph Path Command
19.3.1 The Graph Command
19.3.2 Syntax of Group Specificationso
19.3.3 Syntax of Chain Specifications L.
19.3.4 Syntax of Node Specifications 0.
19.3.5 Specifying Tries e
Quick Graphs L

19.4

20

21

22

19.5 Simple Versus Multi-Graphs
19.6 Graph Edges: Labeling and Styling
19.6.1 Options For All Edges Between Two Groups
19.6.2 Changing Options For Certain Edges
19.6.3 Options For Incoming and Outgoing Edges
19.6.4 Special Syntax for Options For Incoming and Outgoing Edges
19.6.5 Placing Node Texts on Incoming Edges
19.7 Graph Operators, Color Classes, and Graph Expressions
19.7.1 Color Classes o v i i i e e
19.7.2 Graph Operators on Groups of Nodes
19.7.3 Graph Operators for Joining Groups
19.8 Graph Macros
19.9 Online Placement Strategies L
19.9.1 Manual Placement L
19.9.2 Placement ona Grid
19.9.3 Placement Taking Node Sizes Into Account
19.9.4 Placement On a Circle
19.9.5 Levels and Level Styles
19.9.6 Defining New Online Placement Strategies
19.10 Reference: Predefined Elements L.
19.10.1 Graph Macros
19.10.2 Group Operators e
19.10.3 Joining Operators. e
Matrices and Alignment
20.1 OVerview e e e e
20.2 Matrices are Nodes L e
20.3 Cell Pictures e e
20.3.1 Alignment of Cell Pictures
20.3.2 Setting and Adjusting Column and Row Spacing
20.3.3 Cell Styles and Options L
20.4 Anchoring a Matrix L
20.5 Considerations Concerning Active Characters
20.6 Exampleso L e
Making Trees Grow
21.1 Introduction to the Child Operation
21.2 Child Paths and Child Nodes
21.3 Naming Child Nodes e
21.4 Specifying Options for Trees and Children
21.5 Placing Child Nodes e
21.5.1 Basicldea e
21.5.2 Default Growth Function
21.5.3 Missing Children
21.5.4 Custom Growth Functions
21.6 Edges From the Parent Node
Plots of Functions
221 OVErVIEW o e e e
22.2 The Plot Path Operation
22.3 Plotting Points Given Inline
22.4 Plotting Points Read From an External File
22.5 Plotting a Function e
22.6 Plotting a Function Using Gnuplot
22.7 Placing Marks on the Plot
22.8 Smooth Plots, Sharp Plots, Jump Plots, Comb Plots and Bar Plots

23

24

25

26

Transparency

231 OVerview e
23.2 Specifying a Uniform Opacity
23.3 Blend Modes e
234 Fadings e
23.4.1 Creating Fadings
23.42 FadingaPath
23.4.3 Fading a Scope
23.5 Transparency Groups v v ottt e e e
Decorated Paths
24.1 OVErVIEW o e e
24.2 Decorating a Subpath Using the Decorate Path Command
24.3 Decorating a Complete Path oo
24.4 Adjusting Decorations. e
24.4.1 Positioning Decorations Relative to the To-Be-Decorate Path
24.4.2 Starting and Ending Decorations Early or Late
Transformations
25.1 The Different Coordinate Systems o
25.2 The XY- and XYZ-Coordinate Systems
25.3 Coordinate Transformations
25.4 Canvas Transformations L
Animations
26.1 Introduction L
26.1.1 Animations Change Attributes
26.1.2 Limitations of the Animation System
26.1.3 Concepts: (Graphic) Objects
26.1.4 Concepts: Attributes
26.1.5 Concepts: Timelines
26.2 Creating an Animation e
26.2.1 The Animate Key
26.2.2 Timeline Entries oo
26.2.3 Specifying Objects
26.2.4 Specifying Attributes
26.2.5 Specifying IDso
26.2.6 Specifying Times
26.2.7 Values e
26.2.8 SCOPES « v v v e e
26.3 Syntactic Simplificationso oL
26.3.1 The Colon Syntax I: Specifying Objects and Attributes.
26.3.2 The Colon Syntax II: Animating Myself
26.3.3 The Time Syntax: Specifying Times
26.3.4 The Quote Syntax: Specifying Values
26.3.5 Timesheets e
26.4 The Attributes That Can Be Animated
26.4.1 Animating Color, Opacity, and Visibility
26.4.2 Animating Paths and their Rendering
26.4.3 Animating Transformations: Relative Transformations
26.4.4 Animating Transformations: Positioning
26.4.5 Animating Transformations: Views
26.5 Controlling the Timeline
26.5.1 Before and After the Timeline: Value Filling.
26.5.2 Beginning and Ending Timelines
26.5.3 Repeating Timelines and Accumulation
26.5.4 Smoothing and Jumping Timelines
26.6 Snapshots L

10

353
353
353
355
357
358
360
361
362

365
365
367
369
370
370
371

373
373
373
374
378

IV Graph Drawing

27

28

29

30

31

Introduction to Algorithmic Graph Drawing

27.1 What Is Algorithmic Graph Drawing?
27.2 Using the Graph Drawing System
27.3 Extending the Graph Drawing System
27.4 The Layers of the Graph Drawing System
27.5 Organisation of the Graph Drawing Documentation
27.6 Acknowledgements
Using Graph Drawing in TikZ
28.1 Choosing a Layout and a Library
28.2 Graph Drawing Parameters.
28.3 Padding and Node Distances
28.4 Anchoring a Graph oL
28.5 Orientinga Graph
28.6 Fine-Tuning Positions of Nodes
28.7 Packing of Connected Components
28.7.1 Ordering the Components
28.7.2 Arranging Components in a Certain Direction
28.7.3 Aligning Components
28.7.4 The Distance Between Components
28.8 Anchoring Edges. oo
28.9 Hyperedges.
28.10 Using Several Different Layouts to Draw a Single Graph
28.10.1 Sublayouts.
28.10.2 Subgraph Nodes
28.10.3 Overlapping Sublayouts
28.11 Miscellaneous Options
Using Graph Drawing in PGF
29.1 Overview
29.2 How Graph Drawing in PGF Works
29.2.1 Graph Drawing Scopes
29.3 Layout Scopes
29.4 Layout Keys
29.5 Parameters oL
206 Events
29.7 Subgraph Nodes
Graph Drawing Layouts: Trees
30.1 The Tree Layouts
30.1.1 The Reingold-Tilford Layout
30.2 Specifying Missing Children
30.3 Spanning Tree Computation
Graph Drawing Algorithms: Layered Layouts
31.1 The Modular Sugiyama Method
31.2 CycleRemoval
31.3 Layer Assignment (Node Ranking)
31.4 Crossing Minimization (Node Ordering)
31.5 Node Positioning (Coordinate Assignment)
316 EdgeRouting o

11

32

33

34

35

36

Graph Drawing Algorithms: Force-Based Methods

32.1 Controlling and Configuring Force-Based Algorithms
32.1.1 Start Configuration L
32.1.2 The Iterative Process and Cooling
32.1.3 Forces and Their Effects: Springs
32.1.4 Forces and Their Effects: Electrical Repulsion
32.1.5 Coarsening
322 Spring Layouts
32.3 Spring Electrical Layouts o

Graph Drawing Algorithms: Circular Layouts

Graph Drawing Layouts: Phylogenetic Trees
34.1 Generating a Phylogenetic Tree o
34.2 Laying out the Phylogramo o

Graph Drawing Algorithms: Edge Routing

The Algorithm Layer

36.1 Overview e e
36.2 Getting Started
36.2.1 The Hello World of Graph Drawing
36.2.2 Declaring an Algorithm
36.2.3 The Run Method
36.2.4 Loading Algorithms on Demand
36.2.5 Declaring Options
36.2.6 Adding Inline Documentation L L.
36.2.7 Adding External Documentation,
36.3 Namespaces and File Names e
36.3.1 Namespaces o e
36.3.2 Defining and Using Namespaces and Classes
36.4 The Graph Drawing Scope o
36.5 The Model Classes o i it
36.5.1 Directed Graphs (Digraphs)
36.5.2 Vertices
36.5.3 ATCS
36.5.4 Edges
36.5.5 Collections L
36.5.6 Coordinates, Paths, and Transformations
36.5.7 Options and Data Storages for Vertices, Arcs, and Digraphs
36.5.8 Events
36.6 Graph Transformations e
36.6.1 The Layout Pipeline
36.6.2 Hints For Edge Routing Lo L.
36.7 The Interface To Algorithms
36.8 Examples of Implementations of Graph Drawing Algorithms
36.8.1 The “Hello World” of Graph Drawing
36.8.2 How To Generate Edges Inside an Algorithm
36.8.3 How To Generate Nodes Inside an Algorithm
36.9 Support Libraries
36.9.1 Basic Functions Lo
36.9.2 Lookup Tables
36.9.3 Computing Distances in Graphs
36.9.4 Priority Queues

12

473
474
474
474
476
477
478
479
479

481

483
483
485

488

37

38

39

40

41

42

43

44

45

46

47

Writing Graph Drawing Algorithms in C

37.1 How C and TgX Communicate
37.2 Writing Graph Drawing Algorithmsin C
37.2.1 The Hello World of Graph Drawing in C . . .
37.2.2 Documenting Algorithms Written in C
37.2.3 The Interface From C
37.3 Writing Graph Drawing Algorithms in C+4+
37.3.1 The Hello World of Graph Drawing in C++ .
37.3.2 The Interface From C++
37.4 Writing Graph Drawing Algorithms Using OGDF . . .

37.4.1 The Hello World of Graph Drawing in OGDF —
37.4.2 The Hello World of Graph Drawing in OGDF —
37.4.3 Documenting OGDF Algorithms
37.4.4 The Interface From OGDF

The Display Layer

38.1 Introduction: The Interplay of the Different Layers . .
38.2 An Example Display System
38.3 The Interface to Display Systems

The Binding Layer

39.1 Overview e
39.2 The Binding Class and the Interface Core.
39.3 The Binding ToPGF
39.4 An Example Binding Class
Libraries

Three Dimensional Drawing Library

40.1 Coordinate Systems
40.2 Coordinate Planes
40.2.1 Switching to an arbitrary plane
40.2.2 Predefined planes
40.3 Examples Lo

Angle Library
Arrow Tip Library

Automata Drawing Library

43.1 Drawing Automata
43.2 States With and Without Output
43.3 Initial and Accepting States
434 Exampleso

Babel Library
Background Library

Bounding Boxes for Bézier Curves
46.1 Current Status
46.2 Computing the Bounding Box

Calc Library

13

539
539
540
540
542
542
543
543
544
546
546
047
548
548

From Scratch
Adapting Existing Classes . .

549
549
550
551

557
557
557
560
560

563

564
564
564
565
565
566

568
570

571
571
572
572
574

576
577

581
581
581

583

48

49

50

51

Calendar Library
48.1 Calendar Command
48.1.1 Creating a Simple List of Days
48.1.2 Adding a Month Label o
48.1.3 Creating a Week List Arrangement
48.1.4 Creating a Month List Arrangement
48.2 Arrangements
48.3 Month Labels e
48.4 Examples e
Chains
49.1 OVeIVIEW o e e e e
49.2 Starting and Continuing a Chain L Lo
49.3 Nodesona Chain e
49.4 Joining Nodes ona Chain L
49.5 Branches e
Circuit Libraries
50.1 Imtroduction
50.1.1 A First Example
50.1.2 Symbols
50.1.3 Symbol Graphics
50.1.4 Annotations e
50.2 The Base Circuit Library o
50.2.1 Symbol Size L
50.2.2 Declaring New Symbols
50.2.3 Pointing Symbols in the Right Direction
50.2.4 Info Labels
50.2.5 Declaring and Using Annotations
50.2.6 Theming Symbols.
50.3 Logical Circuits e
50.3.1 Overview e e e
50.3.2 Symbols: The Gates
50.3.3 Implementation: The Logic Gates Shape Library
50.3.4 Implementation: The US-Style Logic Gates Shape Library
50.3.5 Implementation: The IEC-Style Logic Gates Shape Library
50.4 Electrical Engineering Circuits
50.4.1 Overview
50.4.2 Symbols: Indicating Current Directions
50.4.3 Symbols: Basic Elements oo
50.4.4 Symbols: Diodes
50.4.5 Symbols: Contacts
50.4.6 Symbols: Measurement devices
50.4.7 Units o e
50.4.8 Annotations
50.4.9 Implementation: The EE-Symbols Shape Library
50.4.10 Implementation: The IEC-Style EE-Symbols Shape Library
Decoration Library
51.1 Overview and Common Options
51.2 Path Morphing Decorations
51.2.1 Decorations Producing Straight Line Paths
51.2.2 Decorations Producing Curved Line Paths
51.3 Path Replacing Decorations o
51.4 Marking Decorations L
5141 OVerview o e
51.5 Arbitrary Markings L
51.5.1 Arrow Tip Markings
51.5.2 Footprint Markings L

52

53

54

55

56

57

58

59

51.5.3 Shape Background Markings
51.6 Text Decorations e e
51.7 Fractal Decorations
Entity-Relationship Diagram Drawing Library
52.1 Entities oL
52.2 Relationships. o
52.3 Attributes L
Externalization Library
B3. 1 OVerview e
53.2 Requirements
53.3 A Word About ConTEXt And Plain TEX
53.4 Externalizing Graphics L
53.4.1 Support for Labels and References In External Files
53.4.2 Customizing the Generated File Names
53.4.3 Remaking Figures or Skipping Figures
53.4.4 Customizing the Externalization
53.4.5 Details About The Process,
53.5 Using External Graphics Without PGF Installed
53.6 eps Graphics Export e
53.7 Bitmap Graphics Export
53.8 Compatibility Issues L
53.8.1 References In External Pictures
53.8.2 Compatibility With Other Libraries or Packages
53.8.3 Compatibility With Bounding Box Restrictions
53.8.4 Interoperability With The Basic Layer Externalization
Fading Library
Fitting Library
Fixed Point Arithmetic Library
56.1 OVerview e
56.2 Using Fixed Point Arithmetic in PGF and TikZ
Floating Point Unit Library
B7.1 OVerview o e e e e
B7.2 USAZE . .« v v o e e
57.3 Comparison to the fixed point arithmetics library
57.4 Command Reference and Programmer’s Manual
57.4.1 Creating and Converting Floats
57.4.2 Symbolic Rounding Operations
57.4.3 Math Operations Commands
57.4.4 Accessing the Original Math Routines for Programmers
Lindenmayer System Drawing Library
581 OVErview e e e s
58.1.1 Declaring L-systems e
58.2 Using Lindenmayer Systems e
58.2.1 Using L-Systems in PGF o
58.2.2 Using L-Systems in TikZ
Math Library
5I. 1 OVErvIeW e e
59.2 Assignment
59.3 Integers, “Real” Numbers, and Coordinates
59.4 Repeating Things e
59.5 Branching Statements
59.6 Declaring Functions Lo

59.7 Executing Code Outside the Parser 709

Matrix Library 710
60.1 Matrices of Nodes e 710
60.2 End-of-Lines and End-of-Row Characters in Matrices of Nodes 711
60.3 Delimiters e e e e 712
Mindmap Drawing Library 714
61.1 OVerview e e e 714
61.2 The Mindmap Style e 714
61.3 Concepts Nodes e 715

61.3.1 Isolated Concepts L 715

61.3.2 Conceptsin Trees L 716
61.4 Connecting Concepts v v it e e 718

61.4.1 Simple Connections L L 718

61.4.2 The Circle Connection Bar Decoration 719

61.4.3 The Circle Connection Bar To-Path 720

61.44 Tree Edges 721
61.5 Adding Annotations 722
Paper-Folding Diagrams Library 724
Pattern Library 730
63.1 Form-Only Patterns 730
63.2 Inherently Colored Patterns 731
63.3 User-Defined Patterns 731
Three Point Perspective Drawing Library 738
64.1 Coordinate Systems 738
64.2 Setting the view e e e 738
64.3 Defining the perspective 739
64.4 Shortcomings e e e 741
64.5 Examples e 741
Petri-Net Drawing Library 744
65.1 Places. e e e e 744
65.2 Transitions e e e e e e e e e e e e e e e e e e e 744
65.3 Tokens e e e e 745
65.4 Examples e 747
Plot Handler Library 749
66.1 Curve Plot Handlers 749
66.2 Constant Plot Handlers 750
66.3 Comb Plot Handlers. e 751
66.4 Bar Plot Handlers e e 752
66.5 Gapped Plot Handlers 755
66.6 Mark Plot Handler 755
Plot Mark Library 758
Profiler Library 760
68.1 OVErview e e e 760
68.2 Requirements e e 760
68.3 Defining Profiler Entries oL o 760

16

69

70

71

72

73

74

75

76

77

78

79

Resource Description Framework Library

69.1 Starting the RDF Engine L
69.2 Creating Statements. L.
69.3 Creating Resources
69.4 Creating Containers L e
69.5 Creating Semantic Information Inside Styles and Libraries
69.5.1 An Example Library for Drawing Finite Automata
69.5.2 Adding Semantic Information About the Automata as a Whole
69.5.3 Adding Semantic Information About the States
69.5.4 Adding Semantic Information About the Transitions
69.5.5 Using Containers
69.5.6 The Resulting RDF Graph

Shadings Library

Shadows Library

71.1 Overview
71.2 The General Shadow Option
71.3 Shadows for Arbitrary Paths and Shapes
71.3.1 Drop Shadows
71.3.2 Copy Shadows
71.4 Shadows for Special Paths and Nodes . .
Shape Library
72.1 Overview
72.2 Predefined Shapes
72.3 Geometric Shapes
72.4 Symbol Shapes.
72.5 Arrow Shapes
72.6 Shapes with Multiple Text Parts
72.7 Callout Shapes
72.8 Miscellaneous Shapes
Spy Library: Magnifying Parts of Pictures
73.1 Magnifying a Part of a Picture
73.2 Spy Scopes
73.3 The Spy Command
73.4 Predefined Spy Styles
73.5 Examples.,

SVG-Path Library

To Path Library

75.1 Straight Lines
752 Move-Tos
75.3 Curves
754 Loops

Through Library

Tree Library
77.1 Growth Functions
77.2 Edges From Parent

Turtle Graphics Library

Views Library

VI Data Visualization

17

763
763
764
766
767
769
769
769
770
771
771
772

776

780
780
780
781
781
781
782

785
785
785
786
801
810
816
822
826

831
831
832
832
834
835

837

838
838
838
838
841

843

844
844
846

847

849

851

80

81

82

83

Introduction to Data Visualization
80.1 Concept: Data Points
80.2 Concept: Visualization Pipeline o

Creating Data Visualizations

8L.1 OVerviewo e e
81.2 Concept: Data Points and Data Formats
81.3 Concept: Axes, Ticks, and Grids
81.4 Concept: Visualizers
81.5 Concept: Style Sheets and Legends
81.6 Usage o o e e e
81.7 Advanced: Executing User Code During a Data Visualization
81.8 Advanced: Creating New Objects

Providing Data for a Data Visualization

82.1 OVErvIeW e e
82.2 Comncepts e
82.3 Reference: Build-In Formats o
82.4 Reference: Advanced Formats
82.5 Advanced: The Data Parsing Process
82.6 Advanced: Defining New Formats

Axes

83.1 Overviewo

83.2 Basic Configuration of Axes L
83.2.1 Usage e
83.2.2 The Axis Attribute
83.2.3 The Axis Attribute Range Interval
83.2.4 Scaling: The General Mechanism
83.2.5 Scaling: Logarithmic Axes
83.2.6 Scaling: Setting the Length or Unit Length
83.2.7 AxisLabel
83.2.8° Reference: Axis Types

83.3 Axis Systems e
83.3.1 Usage e
83.3.2 Reference: Scientific Axis Systems oo
83.3.3 Reference: School Book Axis Systems
83.3.4 Advanced Reference: Underlying Cartesian Axis Systems

83.4 Ticks and Grids
83.4.1 Concepts
83.4.2 The Main Options: Tick and Grid
83.4.3 Semi-Automatic Computation of Tick and Grid Line Positions
83.4.4 Automatic Computation of Tick and Grid Line Positions
83.4.5 Manual Specification of Tick and Grid Line Positions
83.4.6 Styling Ticks and Grid Lines: Introduction
83.4.7 Styling Ticks and Grid Lines: The Style and Node Style Keys
83.4.8 Styling Ticks and Grid Lines: Styling Grid Lines
83.4.9 Styling Ticks and Grid Lines: Styling Ticks and Tick Labels
83.4.10 Styling Ticks and Grid Lines: Exceptional Ticks
83.4.11 Styling Ticks and Grid Lines: Styling and Typesetting a Value
83.4.12 Stacked Ticks L
83.4.13 Reference: Basic Strategies oL
83.4.14 Advanced: Defining New Placement Strategies

83.5 Advanced: Creating New Axis Systems
83.5.1 Creating the Axes
83.5.2 Visualizing the Axes L
83.5.3 Visualizing Grid Lines L o
83.5.4 Visualizing the Ticks and Tick Labels
83.5.5 Visualizing the Axis Labels

83.5.6 The Complete Axis System
83.5.7 Using the New Axis System Key

84 Visualizers
84.1 OVerview e
84.2 Usage o e e
84.2.1 Using a Single Visualizer
84.2.2 Using Multiple Visualizers 0.
84.2.3 Styling a Visualizer
84.3 Reference: Basic Visualizers o
84.3.1 Visualizing Data Points Using Lines
84.3.2 Visualizing Data Points Using Marks
84.4 Advanced: Creating New Visualizers

85 Style Sheets and Legends
85.1 OVervIEW e e
85.2 Concepts: Style Sheets e
85.3 Comncepts: Legends
85.4 Usage: Style Sheets e
85.4.1 Picking a Style Sheet L
85.4.2 Creating a New Style Sheet
85.4.3 Creating a New Color Style Sheet
85.5 Reference: Style Sheets for Lines oo
85.6 Reference: Style Sheets for Scatter Plots
85.7 Reference: Color Style Sheets
85.8 Usage: Labeling Data Sets Inside the Visualization
85.8.1 Placing a Label Next toa Data Set
85.8.2 Connecting a Label to a Data Set viaa Pin
85.9 Usage: Labeling Data Sets Inside a Legend
85.9.1 Creating Legends and Legend Entries
85.9.2 Rows and Columns of Legend Entries
85.9.3 Legend Placement: The General Mechanism
85.9.4 Legend Placement: Outside to the Data Visualization
85.9.5 Legend Placement: Inside to the Data Visualization
85.9.6 Legend Entries: General Styling
85.9.7 Legend Entries: Styling the Text Node
85.9.8 Legend Entries: Text Placement
85.9.9 Advanced: Labels in Legends and Their Visualizers
85.9.10 Reference: Label in Legend Visualizers for Lines and Scatter Plots

86 Polar Axes
86.1 OVErvIeW e e
86.2 Scientific Polar Axis System
86.2.1 Tick Placements
86.2.2 Angle Ranges
86.3 Advanced: Creating a New Polar Axis System

87 The Data Visualization Backend
87.1 OVErview e e e
87.2 The Rendering Pipeline Lo
87.3 Usage e
87.4 The Mathematical Micro-Kernel

VII Utilities

19

920
920
920
920
921
922
924
924
927
927

930
930
930
931
932
932
933
935
935
937
938
940
940
942
943
944
946
950
950
952
954
955
956
956
958

963
963
964
965
966
970

972
972
972
972
972

973

88

89

90

91

92

93

Key Management

88.1 Imtroduction oL
88.1.1 Comparison to Other Packages
88.1.2 Quick Guide to Using the Key Mechanism . .
88.2 TheKey Tree
88.3 SettingKeyso 0oL
88.3.1 First Char Syntax Detection
88.3.2 Default Arguments
88.3.3 Keys That Execute Commands
88.3.4 Keys That Store Values
88.3.5 Keys That Are Handled
88.3.6 Keys That Are Unknown
88.3.7 Search Paths And Handled Keys
88.4 Key Handlers
88.4.1 Handlers for Path Management
88.4.2 Setting Defaults.
88.4.3 Defining Key Codes
88.4.4 Defining Styles
88.4.5 Defining Value-, Macro-, If- and Choice-Keys
88.4.6 Expanded and Multiple Values
88.4.7 Handlers for Forwarding
88.4.8 Handlers for Testing Keys
88.4.9 Handlers for Key Inspection
88.5 ErrorKeys
88.6 Key Filtering
88.6.1 Starting With An Example
88.6.2 Setting Filters
88.6.3 Handlers For Unprocessed Keys
88.6.4 Family Support
88.6.5 Other Key Filters
88.6.6 Programmer Interface
88.6.7 Defining Own Filters Or Filter Handlers . . .

Repeating Things: The Foreach Statement

Date and Calendar Utility Macros

90.1 Handling Dates
90.1.1 Conversions Between Date Types
90.1.2 Checking Dates
90.1.3 Typesetting Dates
90.1.4 Localization
90.2 Typesetting Calendars
Page Management
91.1 BasicUsage,
91.2 The Predefined Layouts
91.3 Defining a Layout
91.4 Creating Logical Pages

Extended Color Support

Parser Module

93.1 Keys of the Parser Module
93.2 Examples.

VIII Mathematical and Object-Oriented Engines

20

974
974
974
974
975
977
977
979
980
981
981
983
983
984
984
984
985
986
987
989
990
992
992
993
993
993
994
995
996
997
998
999

1000

1006
1006
1006
1007
1008
1009
1009

1013
1013
1014
1016
1019

1020

1021
1023
1023

1024

94

95

96

97

98

99

IX

100

101

Design Principles
94.1 Loading the Mathematical Engine
94.2 Layers of the Mathematical Engine
94.3 Efficiency and Accuracy of the Mathematical Engine
Mathematical Expressions
95.1 Parsing Expressions oL
95.1.1 Commands e e
95.1.2 Considerations Concerning Units
95.2 Syntax for Mathematical Expressions: Operators
95.3 Syntax for Mathematical Expressions: Functions
95.3.1 Basic arithmetic functions
95.3.2 Rounding functions L. L
95.3.3 Imteger arithmetics functions oL
95.3.4 Trigonometric functions L oo
95.3.5 Comparison and logical functions
95.3.6 Pseudo-random functions
95.3.7 Base conversion functions
95.3.8 Miscellaneous functions
Additional Mathematical Commands
96.1 Basic arithmetic functions
96.2 Comparison and logical functions oL oL
96.3 Pseudo-Random Numbers o
96.4 Base Conversion e
96.5 Angle Computations
Customizing the Mathematical Engine
Number Printing
98.1 Changing display styles
Object-Oriented Programming
99.1 OVerview e e
99.2 A Running Example: The Stamp Class
99.3 ClasSes i e
99.4 ODbjects e e
99.5 Methods e
99.6 Attributes L e e e
99.7 Identities e
99.8 The Object Class i e e
99.9 The Signal Class i
99.10 Implementation Notes L

The Basic Layer

Design Principles

100.1 Core and Modules
100.2 Communicating with the Basic Layer via Macros
100.3 Path-Centered Approach
100.4 Coordinate Versus Canvas Transformations

Hierarchical Structures: Package, Environments, Scopes, and Text

101.1 Overview

101.2

101.1.1 The Hierarchical Structure of the Package
101.1.2 The Hierarchical Structure of Graphics
The Hierarchical Structure of the Package
101.2.1 The Core Package e
101.2.2 The Modules e

1025
1025
1025
1025

1026
1026
1026
1028
1029
1031
1031
1034
1035
1035
1038
1039
1040
1041

1043
1043
1043
1043
1044
1045

1046

1049
1054

1060
1060
1060
1060
1061
1062
1063
1065
1066
1066
1067

102

104

101.2.3 The Library Packages

101.3 The Hierarchical Structure of the Graphics
101.3.1 The Main Environment
101.3.2 Graphic Scope Environments L
101.3.3 Inserting Text and Images

101.4 Object Identifiers oL
101.4.1 Commands for Creating Graphic Objects
101.4.2 Settings and Querying Identifiers

101.5 Resource Description Framework Annotations (RDFa)

101.6 Error Messages and Warnings L oo

Specifying Coordinates

102.1 OVEIVIEW . . . v o v o e e e e e e e e e e e e

102.2 Basic Coordinate Commands

102.3 Coordinates in the XY-Coordinate System

102.4 Three Dimensional Coordinates

102.5 Building Coordinates From Other Coordinates
102.5.1 Basic Manipulations of Coordinates
102.5.2 Points Traveling along Lines and Curves
102.5.3 Points on Borders of Objects
102.5.4 Points on the Intersection of Lines
102.5.5 Points on the Intersection of Two Circles
102.5.6 Points on the Intersection of Two Paths

102.6 Extracting Coordinates L e

102.7 Internals of How Point Commands Work

103 Constructing Paths

103.1 OVErVIEW . . . v o v o e e e e e e e e e e e e e e e

103.2 The Move-To Path Operation

103.3 The Line-To Path Operation

103.4 The Curve-To Path Operations

103.5 The Close Path Operation

103.6 Arc, Ellipse and Circle Path Operations.

103.7 Rectangle Path Operations

103.8 The Grid Path Operation L o

103.9 The Parabola Path Operation

103.10 Sine and Cosine Path Operations

103.11 Plot Path Operations

103.12 Rounded Corners e

103.13 Internal Tracking of Bounding Boxes for Paths and Pictures

Decorations

104.1 OVerview o e e

104.2 Decoration Automatao
104.2.1 The Different Paths
104.2.2 Segments and States

104.3 Declaring Decorations L e
104.3.1 Predefined Decorations

104.4 Using Decorations

104.5 Meta-Decorations L L
104.5.1 Declaring Meta-Decorations L o o

104.5.2 Predefined Meta-decorations
104.5.3 Using Meta-Decorations L o

22

108

105 Using Paths
105.1 OVerview o .
105.2 Stroking a Path o
105.2.1 Graphic Parameter: Line Width
105.2.2 Graphic Parameter: Caps and Joins
105.2.3 Graphic Parameter: Dashing 0oL
105.2.4 Graphic Parameter: Stroke Color
105.2.5 Graphic Parameter: Stroke Opacity
105.2.6 Inner Lines
105.3 Arrow Tipsona Path
105.4 Fillinga Path e
105.4.1 Graphic Parameter: Interior Rule
105.4.2 Graphic Parameter: Filling Color
105.4.3 Graphic Parameter: Fill Opacity
105.5 Clipping a Path
105.6 Using a Path as a Bounding Box L .
106 Defining New Arrow Tip Kinds
106.1 OVErview o e
106.2 Terminology L. e e
106.3 Caching and Rendering of Arrows
106.4 Declaring an Arrow Tip Kind o o
106.5 Handling Arrow Options e
106.5.1 Dimension Options
106.5.2 True-False Options
106.5.3 Inaccessible Options L L
106.5.4 Defining New Arrow Keys o o
107 Nodes and Shapes
107.1 OVerview o o e e e s
107.1.1 Creating and Referencing Nodes
107.1.2 Anchors e
107.1.3 Layersof a Shape L
107.1.4 Node Parts
107.2 Creating Nodes e
107.2.1 Creating Simple Nodes L
107.2.2 Creating Multi-Part Nodes
107.2.3 Deferred Node Positioning o oo
107.3 Using Anchors o e
107.3.1 Referencing Anchors of Nodes in the Same Picture
107.3.2 Referencing Anchors of Nodes in Different Pictures
107.4 Special Nodes e
107.5 Declaring New Shapes e
107.5.1 What Must Be Defined For a Shape?
107.5.2 Normal Anchors Versus Saved Anchors
107.5.3 Command for Declaring New Shapes
Matrices
108.1 OVerview o e e
108.2 Cell Pictures and Their Alignment
108.3 The Matrix Command e
108.4 Row and Column Spacing e
108.5 Callbacks e

23

109 Coordinate, Canvas, and Nonlinear Transformations

110

111

112

113

114

115

109.1
109.2

109.3

109.4

Overview L e e
Coordinate Transformations
109.2.1 How PGF Keeps Track of the Coordinate Transformation Matrix
109.2.2 Commands for Relative Coordinate Transformations
109.2.3 Commands for Absolute Coordinate Transformations
109.2.4 Saving and Restoring the Coordinate Transformation Matrix
109.2.5 Computing Adjustments for Coordinate Transformations
Canvas Transformations
109.3.1 Applying General Canvas Transformations
109.3.2 Establishing View Boxes oo oL,
Nonlinear Transformations
109.4.1 Introduction L
109.4.2 Installing Nonlinear Transformation
109.4.3 Applying Nonlinear Transformations to Points
109.4.4 Applying Nonlinear Transformations to Paths
109.4.5 Applying Nonlinear Transformations to Text
109.4.6 Approximating Nonlinear Transformations Using Linear Transformations

109.4.7 Nonlinear Transformation Libraries

Patterns

110.1
110.2
110.3

OVEIVIEW o o o e
Declaring a Pattern Lo
Setting a Pattern e

Declaring and Using Images

111.1
111.2
111.3
111.4

OVErVIEW o e
Declaring an Image L.
Using an Image L
Masking an Image e

Externalizing Graphics

112.1
112.2
112.3
1124
112.5

Overview e e e e
Workflow Step 1: Naming Graphics
Workflow Step 2: Generating the External Graphics
Workflow Step 3: Including the External Graphics
A Complete Example

Creating Plots

113.1
113.2

113.3
113.4

OVEIVIEW o o o e e e e e e e
Generating Plot Streams Lo
113.2.1 Basic Building Blocks of Plot Streams
113.2.2 Commands That Generate Plot Streams
Plot Handlers e
Defining New Plot Handlers

Layered Graphics

114.1
114.2
114.3

Overview L e
Declaring Layers e
Using Layers o . 0 e

Shadings

115.1

115.2

115.3

OVervIew o e
115.1.1 Color models
Declaring Shadings
115.2.1 Horizontal and Vertical Shadings
115.2.2 Radial Shadings
115.2.3 General (Functional) Shadings
Using Shadings« . . e

24

116

117

118

119

Transparency

116.1 Specifying a Uniform Opacity
116.2 Specifying a Blend Mode L e
116.3 Specifying a Fading L
116.4 Transparency Groups o v v v vttt e e e

Animations
T17.1 OVerview o o o e e
117.2 Animating an Attribute
117.2.1 The Main Command
117.2.2 Specifying the Timeline
117.2.3 “Anti-Animations”: Snapshots oL,
117.3 Animating Color, Opacity, Visibility, and Staging
117.4 Animating Paths and their Rendering o000
117.5 Animating Transformations and Views,
117.6 Commands for Specifying Timing: Beginnings and Endings
117.7 Commands for Specifying Timing: Repeats

Adding libraries to pgf: temporary registers

Quick Commands

119.1 Quick Coordinate Commands L L
119.2 Quick Path Construction Commands
119.3 Quick Path Usage Commands e
119.4 Quick Text Box Commands

X The System Layer

120

121

122

Design of the System Layer
120.1 Driver Files e e e
120.2 Common Definition Files

Commands of the System Layer

121.1 Beginning and Ending a Stream of System Commands
121.2 Scoping System Commands
121.3 Path Construction System Commands
121.4 Canvas Transformation System Commands
121.5 Stroking, Filling, and Clipping System Commands
121.6 Graphic State Option System Commands
121.7 Color System Commands L e
121.8 Pattern System Commands L oL
121.9 Image System Commands L e
121.10 Shading System Commands L L
121.11 Transparency System Commands e
121.12 Animation Commands Lo e
121.13 Object Identification System Commands
121.14 Resource Description Framework Annotations (RDFa)
121.15 Reusable Objects System Commands
121.16 Invisibility System Commands L L
121.17 Page Size Commandso e e
121.18 Position Tracking Commands
121.19 Internal Conversion Commands

The Soft Path Subsystem

122.1 Path Creation Process e e
122.2 Starting and Ending a Soft Path L oo
122.3 Soft Path Creation Commands
122.4 The Soft Path Data Structure

25

1200
1200
1200
1201
1203

1205
1205
1205
1205
1207
1210
1211
1214
1217
1220
1222

1224

1226
1226
1226
1227
1227

123 The Protocol Subsystem

124 Animation System Layer
124.1 Animations and Snapshots

124.2 Commands for Animating an Attribute: Color, Opacity, Visibility, Staging
124.3 Commands for Animating an Attribute: Paths and Their Rendering
124.4 Commands for Animating an Attribute: Transformations and Views

124.5 Commands for Specifying the Target Object

124.6 Commands for Specifying Timelines: Specifying Times
124.7 Commands for Specifying Timelines: Specifying Values

124.8 Commands for Specifying Timing: Repeats

124.9 Commands for Specifying Timing: Beginning and Ending
124.10 Commands for Specifying Timing: Restart Behaviour
124.11 Commands for Specifying Accumulation

XI References and Index

Index

26

1250

1251
1251
1253
1254
1257
1261
1261
1262
1264
1264
1266
1268

1269

1270

1 Introduction

Welcome to the documentation of TikZ and the underlying PGF system. What began as a small KTEX style
for creating the graphics in my (Till Tantau’s) PhD thesis directly with pdfI4TEX has now grown to become
a full-blown graphics language with a manual of over a thousand pages. The wealth of options offered by
TikZ is often daunting to beginners; but fortunately this documentation comes with a number slowly-paced
tutorials that will teach you almost all you should know about TikZ without your having to read the rest.

I wish to start with the questions “What is TikZ?” Basically, it just defines a number of TEX commands
that draw graphics. For example, the code \tikz \draw (Opt,Opt) --(20pt,6pt); yields the line —
and the code \tikz \fill[orange] (lex,lex) circle (lex); yields @. In a sense, when you use TikZ
you “program” your graphics, just as you “program” your document when you use TEX. This also explains
the name: TikZ is a recursive acronym in the tradition of “GNU’s Not Unix” and means “TikZ ist kein
Zeichenprogramm”, which translates to “TikZ is not a drawing program”, cautioning the reader as to what
to expect. With TikZ you get all the advantages of the “TEX-approach to typesetting” for your graphics:
quick creation of simple graphics, precise positioning, the use of macros, often superior typography. You also
inherit all the disadvantages: steep learning curve, no WySIWYG, small changes require a long recompilation
time, and the code does not really “show” how things will look like.

Now that we know what TikZ is, what about “PGF”? As mentioned earlier, TikZ started out as a
project to implement TEX graphics macros that can be used both with pdfI4TEX and also with the classical
(PostScript-based) IATEX. In other words, I wanted to implement a “portable graphics format” for TEX —
hence the name PGF. These early macros are still around and they form the “basic layer” of the system
described in this manual, but most of the interaction an author has theses days is with TikZ — which has
become a whole language of its own.

1.1 The Layers Below TikZ
It turns out that there are actually two layers below TikZ:

System layer: This layer provides a complete abstraction of what is going on “in the driver”. The driver
is a program like dvips or dvipdfm that takes a .dvi file as input and generates a .ps or a .pdf file.
(The pdftex program also counts as a driver, even though it does not take a .dvi file as input. Never
mind.) Each driver has its own syntax for the generation of graphics, causing headaches to everyone
who wants to create graphics in a portable way. PGF’s system layer “abstracts away” these differences.
For example, the system command \pgfsys@lineto{10pt}{10pt} extends the current path to the
coordinate (10pt, 10pt) of the current {pgfpicture}. Depending on whether dvips, dvipdfm, or
pdftex is used to process the document, the system command will be converted to different \special
commands. The system layer is as “minimalistic” as possible since each additional command makes it
more work to port PGF to a new driver.

As a user, you will not use the system layer directly.

Basic layer: The basic layer provides a set of basic commands that allow you to produce complex graphics
in a much easier manner than by using the system layer directly. For example, the system layer provides
no commands for creating circles since circles can be composed from the more basic Bézier curves (well,
almost). However, as a user you will want to have a simple command to create circles (at least I do)
instead of having to write down half a page of Bézier curve support coordinates. Thus, the basic layer
provides a command \pgfpathcircle that generates the necessary curve coordinates for you.

The basic layer consists of a core, which consists of several interdependent packages that can only be
loaded en bloc, and additional modules that extend the core by more special-purpose commands like
node management or a plotting interface. For instance, the BEAMER package uses only the core and
not, say, the shapes modules.

In theory, TikZ itself is just one of several possible “frontends”. which are sets of commands or a special
syntax that makes using the basic layer easier. A problem with directly using the basic layer is that code
written for this layer is often too “verbose”. For example, to draw a simple triangle, you may need as many
as five commands when using the basic layer: One for beginning a path at the first corner of the triangle,
one for extending the path to the second corner, one for going to the third, one for closing the path, and
one for actually painting the triangle (as opposed to filling it). With the TikZ frontend all this boils down
to a single simple METAFONT-like command:

\draw (0,0) -- (1,0) -- (1,1) -- cycle;

27

In practice, TikZ is the only “serious” frontend for PGF. It gives you access to all features of PGF, but
it is intended to be easy to use. The syntax is a mixture of METAFONT and PSTRICKS and some ideas
of myself. There are other frontends besides TikZ, but they are intended more as “technology studies”
and less as serious alternatives to TikZ. In particular, the pgfpict2e frontend reimplements the standard
IXTEX {picture} environment and commands like \1ine or \vector using the PGF basic layer. This layer
is not really “necessary” since the pict2e.sty package does at least as good a job at reimplementing the
{picture} environment. Rather, the idea behind this package is to have a simple demonstration of how a
frontend can be implemented.

Since most users will only use TikZ and almost no one will use the system layer directly, this manual is
mainly about TikZ in the first parts; the basic layer and the system layer are explained at the end.

1.2 Comparison with Other Graphics Packages

TikZ is not the only graphics package for TEX. In the following, I try to give a reasonably fair comparison
of TikZ and other packages.

1. The standard IATEX {picture} environment allows you to create simple graphics, but little more. This
is certainly not due to a lack of knowledge or imagination on the part of INTEX’s designer(s). Rather,
this is the price paid for the {picture} environment’s portability: It works together with all backend
drivers.

2. The pstricks package is certainly powerful enough to create any conceivable kind of graphic, but it
is not really portable. Most importantly, it does not work with pdftex nor with any other driver that
produces anything but PostScript code.

Compared to TikZ, pstricks has a similar support base. There are many nice extra packages for
special purpose situations that have been contributed by users over the last decade. The TikZ syntax
is more consistent than the pstricks syntax as TikZ was developed “in a more centralized manner”
and also “with the shortcomings on pstricks in mind”.

3. The xypic package is an older package for creating graphics. However, it is more difficult to use and
to learn because the syntax and the documentation are a bit cryptic.

4. The dratex package is a small graphic package for creating a graphics. Compared to the other package,
including TikZ, it is very small, which may or may not be an advantage.

5. The metapost program is a powerful alternative to TikZ. It used to be an external program, which
entailed a bunch of problems, but in LuaTEX it is now built in. An obstacle with metapost is the
inclusion of labels. This is much easier to achieve using PGF.

6. The xfig program is an important alternative to TikZ for users who do not wish to “program” their
graphics as is necessary with TikZ and the other packages above. There is a conversion program that
will convert xfig graphics to TikZ.

1.3 Utility Packages

The PGF package comes along with a number of utility package that are not really about creating graphics
and which can be used independently of PGF. However, they are bundled with PGF, partly out of convenience,
partly because their functionality is closely intertwined with PGF. These utility packages are:

1. The pgfkeys package defines a powerful key management facility. It can be used completely indepen-
dently of PGF.

2. The pgffor package defines a useful \foreach statement.

3. The pgfcalendar package defines macros for creating calendars. Typically, these calendars will be
rendered using PCGF’s graphic engine, but you can use pgfcalendar also typeset calendars using normal
text. The package also defines commands for “working” with dates.

4. The pgfpages package is used to assemble several pages into a single page. It provides commands for
assembling several “virtual pages” into a single “physical page”. The idea is that whenever TEX has a
page ready for “shipout”, pgfpages interrupts this shipout and instead stores the page to be shipped
out in a special box. When enough “virtual pages” have been accumulated in this way, they are scaled

28

down and arranged on a “physical page”, which then really shipped out. This mechanism allows you
to create “two page on one page” versions of a document directly inside IXTEX without the use of any
external programs. However, pgfpages can do quite a lot more than that. You can use it to put logos
and watermark on pages, print up to 16 pages on one page, add borders to pages, and more.

1.4 How to Read This Manual

This manual describes both the design of TikZ and its usage. The organization is very roughly according to
“user-friendliness”. The commands and subpackages that are easiest and most frequently used are described
first, more low-level and esoteric features are discussed later.

If you have not yet installed TikZ, please read the installation first. Second, it might be a good idea to
read the tutorial. Finally, you might wish to skim through the description of TikZ. Typically, you will not
need to read the sections on the basic layer. You will only need to read the part on the system layer if you
intend to write your own frontend or if you wish to port PGF to a new driver.

The “public” commands and environments provided by the system are described throughout the text.
In each such description, the described command, environment or option is printed in red. Text shown in
green is optional and can be left out.

1.5 Authors and Acknowledgements

The bulk of the PGF system and its documentation was written by Till Tantau. A further member of the main
team is Mark Wibrow, who is responsible, for example, for the PGF mathematical engine, many shapes, the
decoration engine, and matrices. The third member is Christian Feuersinger who contributed the floating
point library, image externalization, extended key processing, and automatic hyperlinks in the manual.

Furthermore, occasional contributions have been made by Christophe Jorssen, Jin-Hwan Cho, Olivier
Binda, Matthias Schulz, Renée Ahrens, Stephan Schuster, and Thomas Neumann.

Additionally, numerous people have contributed to the PGF system by writing emails, spotting bugs, or
sending libraries and patches. Many thanks to all these people, who are too numerous to name them all!

1.6 Getting Help
When you need help with PGF and TikZ, please do the following:

1. Read the manual, at least the part that has to do with your problem.

2. If that does not solve the problem, try having a look at the GitHub development page for PGF and
TikZ (see the title of this document). Perhaps someone has already reported a similar problem and
someone has found a solution.

3. On the website you will find numerous forums for getting help. There, you can write to help forums,
file bug reports, join mailing lists, and so on.

4. Before you file a bug report, especially a bug report concerning the installation, make sure that this
is really a bug. In particular, have a look at the .log file that results when you TEX your files. This
.log file should show that all the right files are loaded from the right directories. Nearly all installation
problems can be resolved by looking at the .log file.

5. As a last resort you can try to email me (Till Tantau) or, if the problem concerns the mathematical
engine, Mark Wibrow. I do not mind getting emails, I simply get way too many of them. Because
of this, I cannot guarantee that your emails will be answered in a timely fashion or even at all. Your
chances that your problem will be fixed are somewhat higher if you mail to the PGF mailing list
(naturally, I read this list and answer questions when I have the time).

29

Part 1
Tutorials and Guidelines
by Till Tantau

To help you get started with TikZ, instead of a long installation and configuration section, this manual starts
with tutorials. They explain all the basic and some of the more advanced features of the system, without
going into all the details. This part also contains some guidelines on how you should proceed when creating
graphics using TikZ.

\tikz \draw[thick,rounded corners=8pt]
(0,0) -- (0,2) -- (1,3.25) -- (2,2) -- (2,0) -- (0,2) -- (2,2) -- (0,0) -- (2,0);

30

2 Tutorial: A Picture for Karl’s Students

This tutorial is intended for new users of TikZ. It does not give an exhaustive account of all the features of
TikZ, just of those that you are likely to use right away.

Karl is a math and chemistry high-school teacher. He used to create the graphics in his worksheets and
exams using IWTEX’s {picture} environment. While the results were acceptable, creating the graphics often
turned out to be a lengthy process. Also, there tended to be problems with lines having slightly wrong angles
and circles also seemed to be hard to get right. Naturally, his students could not care less whether the lines
had the exact right angles and they find Karl’s exams too difficult no matter how nicely they were drawn.
But Karl was never entirely satisfied with the result.

Karl’s son, who was even less satisfied with the results (he did not have to take the exams, after all),
told Karl that he might wish to try out a new package for creating graphics. A bit confusingly, this package
seems to have two names: First, Karl had to download and install a package called PGF. Then it turns out
that inside this package there is another package called TikZ, which is supposed to stand for “TikZ ist kein
Zeichenprogramm”. Karl finds this all a bit strange and TikZ seems to indicate that the package does not
do what he needs. However, having used GNU software for quite some time and “GNU not being Unix”, there
seems to be hope yet. His son assures him that TikZ’s name is intended to warn people that TikZ is not a
program that you can use to draw graphics with your mouse or tablet. Rather, it is more like a “graphics
language”.

2.1 Problem Statement

Karl wants to put a graphic on the next worksheet for his students. He is currently teaching his stu-
dents about sine and cosine. What he would like to have is something that looks like this (ideally):

Y

The angle o is 30° in the example
1 (w/6 in radians). The sine of «, which
— is the height of the red line, is

sina = 1/2.

(SIS

sina By the Theorem of Pythagoras we

cosa have cos? o + sin® & = 1. Thus the

o z length of the blue line, which is the
cos o 1 cosine of o, must be

/ cosa=+/1-1/4=1V3.

This shows that tan «, which is the
height of the orange line, is

sin o tana =

N

_ sin «
1 tan o = =1/V3.
COS (v

2.2 Setting up the Environment

In TikZ, to draw a picture, at the start of the picture you need to tell TEX or I¥TEX that you want to
start a picture. In IATEX this is done using the environment {tikzpicture}, in plain TEX you just use
\tikzpicture to start the picture and \endtikzpicture to end it.

2.2.1 Setting up the Environment in IATEX
Karl, being a IATEX user, thus sets up his file as follows:

31

\documentclass{article} 7 say
\usepackage{tikz}
\begin{document}
We are working on
\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\end{tikzpicture}.
\end{document}

When executed, that is, run via pdflatex or via latex followed by dvips, the resulting will contain
something that looks like this:

We are working on
\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\end{tikzpicture}.

We are working on

Admittedly, not quite the whole picture, yet, but we do have the axes established. Well, not quite, but
we have the lines that make up the axes drawn. Karl suddenly has a sinking feeling that the picture is still
some way off.

Let’s have a more detailed look at the code. First, the package tikz is loaded. This package is a so-called
“frontend” to the basic PGF system. The basic layer, which is also described in this manual, is somewhat
more, well, basic and thus harder to use. The frontend makes things easier by providing a simpler syntax.

Inside the environment there are two \draw commands. They mean: “The path, which is specified
following the command up to the semicolon, should be drawn.” The first path is specified as (-1.5,0)
--(0,1.5), which means “a straight line from the point at position (—1.5,0) to the point at position (0,1.5)”.
Here, the positions are specified within a special coordinate system in which, initially, one unit is lcm.

Karl is quite pleased to note that the environment automatically reserves enough space to encompass the
picture.

2.2.2 Setting up the Environment in Plain TpX

Karl’s wife Gerda, who also happens to be a math teacher, is not a IXTEX user, but uses plain TEX since
she prefers to do things “the old way”. She can also use TikZ. Instead of \usepackage{tikz} she has
to write \input tikz.tex and instead of \begin{tikzpicture} she writes \tikzpicture and instead of
\end{tikzpicture} she writes \endtikzpicture.

Thus, she would use:

4% Plain TeX file
\input tikz.tex
\baselineskip=12pt
\hsize=6.3truein
\vsize=8.7truein
We are working on
\tikzpicture
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\endtikzpicture.
\bye

Gerda can typeset this file using either pdftex or tex together with dvips. TikZ will automatically
discern which driver she is using. If she wishes to use dvipdfm together with tex, she either needs to
modify the file pgf.cfg or can write \def\pgfsysdriver{pgfsys-dvipdfm.def} somewhere before she
inputs tikz.tex or pgf.tex.

2.2.3 Setting up the Environment in ConTEXt

Karl’s uncle Hans uses ConTEXt. Like Gerda, Hans can also use TikZ. Instead of \usepackage{tikz} he
says \usemodule[tikz]. Instead of \begin{tikzpicture} he writes \starttikzpicture and instead of
\end{tikzpicture} he writes \stoptikzpicture.

32

His version of the example looks like this:

A% ConTeXt file
\usemodule [tikz]

\starttext
We are working on
\starttikzpicture
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\stoptikzpicture.
\stoptext

Hans will now typeset this file in the usual way using texexec or context.

2.3 Straight Path Construction

The basic building block of all pictures in TikZ is the path. A path is a series of straight lines and curves
that are connected (that is not the whole picture, but let us ignore the complications for the moment). You
start a path by specifying the coordinates of the start position as a point in round brackets, as in (0,0).
This is followed by a series of “path extension operations”. The simplest is ——, which we used already. It
must be followed by another coordinate and it extends the path in a straight line to this new position. For
example, if we were to turn the two paths of the axes into one path, the following would result:

\tikz \draw (-1.5,0) -- (1.5,0) -- (0,-1.5) -- (0,1.5);

Karl is a bit confused by the fact that there is no {tikzpicture} environment, here. Instead, the little
command \tikz is used. This command either takes one argument (starting with an opening brace as in
\tikz{\draw (0,0) --(1.5,0)}, which yields ____) or collects everything up to the next semicolon
and puts it inside a {tikzpicture} environment. As a rule of thumb, all TikZ graphic drawing commands
must occur as an argument of \tikz or inside a {tikzpicture} environment. Fortunately, the command
\draw will only be defined inside this environment, so there is little chance that you will accidentally do
something wrong here.

2.4 Curved Path Construction

The next thing Karl wants to do is to draw the circle. For this, straight lines obviously will not do. Instead,
we need some way to draw curves. For this, TikZ provides a special syntax. One or two “control points”
are needed. The math behind them is not quite trivial, but here is the basic idea: Suppose you are at point
2 and the first control point is y. Then the curve will start “going in the direction of y at x”, that is, the
tangent of the curve at x will point toward y. Next, suppose the curve should end at z and the second
support point is w. Then the curve will, indeed, end at z and the tangent of the curve at point z will go
through w.
Here is an example (the control points have been added for clarity):

° ® \begin{tikzpicture}

\filldraw [gray] (0,0) circle [radius=2pt]
(1,1) circle [radius=2pt]
(2,1) circle [radius=2pt]

(2,0) circle [radius=2pt];
\draw (0,0) .. controls (1,1) and (2,1) .. (2,0);

\end{tikzpicture}
The general syntax for extending a path in a “curved” way is .. controls (first control point) and
(second control point) .. {end point). You can leave out the and (second control point), which causes the

first one to be used twice.
So, Karl can now add the first half circle to the picture:

33

\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);
\draw (-1,0) .. controls (-1,0.555) and (-0.555,1) .. (0,1)
.. controls (0.555,1) and (1,0.555) .. (1,0);

\end{tikzpicture}

Karl is happy with the result, but finds specifying circles in this way to be extremely awkward. Fortu-
nately, there is a much simpler way.

2.5 Circle Path Construction

In order to draw a circle, the path construction operation circle can be used. This operation is followed
by a radius in brackets as in the following example: (Note that the previous position is used as the center
of the circle.)

<:::> \tikz \draw (0,0) circle [radius=10pt];

You can also append an ellipse to the path using the ellipse operation. Instead of a single radius you
can specify two of them:

<:i::::::> \tikz \draw (0,0) ellipse [x radius=20pt, y radius=10pt];

To draw an ellipse whose axes are not horizontal and vertical, but point in an arbitrary direction (a
“turned ellipse” like C’) you can use transformations, which are explained later. The code for the little
ellipse is \tikz \draw[rotate=30] (0,0) ellipse [x radius=6pt, y radius=3pt];, by the way.

So, returning to Karl’s problem, he can write \draw (0,0) circle [radius=Icm]; to draw the cir-
cle:

\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=Icm];
\\\\\\——////// \end{tikzpicture}

At this point, Karl is a bit alarmed that the circle is so small when he wants the final picture to be much
bigger. He is pleased to learn that TikZ has powerful transformation options and scaling everything by a
factor of three is very easy. But let us leave the size as it is for the moment to save some space.

2.6 Rectangle Path Construction

The next things we would like to have is the grid in the background. There are several ways to produce it.
For example, one might draw lots of rectangles. Since rectangles are so common, there is a special syntax
for them: To add a rectangle to the current path, use the rectangle path construction operation. This
operation should be followed by another coordinate and will append a rectangle to the path such that the
previous coordinate and the next coordinates are corners of the rectangle. So, let us add two rectangles to
the picture:

34

\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=Icm];
\draw (0,0) rectangle (0.5,0.5);

\ —////// \draw (-0.5,-0.5) rectangle (-1,-1);

\end{tikzpicture}

While this may be nice in other situations, this is not really leading anywhere with Karl’s problem: First,
we would need an awful lot of these rectangles and then there is the border that is not “closed”.

So, Karl is about to resort to simply drawing four vertical and four horizontal lines using the nice \draw
command, when he learns that there is a grid path construction operation.

2.7 Grid Path Construction

The grid path operation adds a grid to the current path. It will add lines making up a grid that fills
the rectangle whose one corner is the current point and whose other corner is the point following the grid
operation. For example, the code \tikz \draw[step=2pt] (0,0) grid (10pt,10pt); produces B Note
how the optional argument for \draw can be used to specify a grid width (there are also xstep and ystep to
define the steppings independently). As Karl will learn soon, there are lots of things that can be influenced
using such options.

For Karl, the following code could be used:

\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=Icm];
\draw[step=.5cm] (-1.4,-1.4) grid (1.4,1.4);
\end{tikzpicture}

Having another look at the desired picture, Karl notices that it would be nice for the grid to be more
subdued. (His son told him that grids tend to be distracting if they are not subdued.) To subdue the grid,
Karl adds two more options to the \draw command that draws the grid. First, he uses the color gray for the
grid lines. Second, he reduces the line width to very thin. Finally, he swaps the ordering of the commands
so that the grid is drawn first and everything else on top.

\begin{tikzpicture}
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=lcm];
\end{tikzpicture}

2.8 Adding a Touch of Style

Instead of the options gray,very thin Karl could also have said help lines. Styles are predefined sets of
options that can be used to organize how a graphic is drawn. By saying help lines you say “use the style
that I (or someone else) has set for drawing help lines”. If Karl decides, at some later point, that grids should
be drawn, say, using the color blue!50 instead of gray, he could provide the following option somewhere:

help lines/.style={color=blue!50,very thin}

The effect of this “style setter” is that in the current scope or environment the help lines option has
the same effect as color=blue!50,very thin.

35

Using styles makes your graphics code more flexible. You can change the way things look easily in a
consistent manner. Normally, styles are defined at the beginning of a picture. However, you may sometimes
wish to define a style globally, so that all pictures of your document can use this style. Then you can easily
change the way all graphics look by changing this one style. In this situation you can use the \tikzset
command at the beginning of the document as in

\tikzset{help lines/.style=very thin}

To build a hierarchy of styles you can have one style use another. So in order to define a style Karl's
grid that is based on the grid style Karl could say

\tikzset{Karl's grid/.style={help lines,color=blue!/50}}
\draw[Karl's grid] (0,0) grid (5,5);

Styles are made even more powerful by parametrization. This means that, like other options, styles can
also be used with a parameter. For instance, Karl could parameterize his grid so that, by default, it is blue,
but he could also use another color.

\begin{tikzpicture}
[Karl's grid/.style ={help lines,color=#1/50},
Karl's grid/.default=blue]

\draw[Karl's grid] (0,0) grid (1.5,2);
\draw[Karl's grid=red] (2,0) grid (3.5,2);
\end{tikzpicture}

In this example, the definition of the style Karl's grid is given as an optional argument to the
{tikzpicture} environment. Additional styles for other elements would follow after a comma. With many
styles in effect, the optional argument of the environment may easily happen to be longer than the actual
contents.

2.9 Drawing Options

Karl wonders what other options there are that influence how a path is drawn. He saw already that the
color=(color) option can be used to set the line’s color. The option draw=(color) does nearly the same, only
it sets the color for the lines only and a different color can be used for filling (Karl will need this when he
fills the arc for the angle).

He saw that the style very thin yields very thin lines. Karl is not really surprised by this and neither is
he surprised to learn that thin yields thin lines, thick yields thick lines, very thick yields very thick lines,
ultra thick yields really, really thick lines and ultra thin yields lines that are so thin that low-resolution
printers and displays will have trouble showing them. He wonders what gives lines of “normal” thickness.
It turns out that thin is the correct choice, since it gives the same thickness as TEX’s \hrule command.
Nevertheless, Karl would like to know whether there is anything “in the middle” between thin and thick.
There is: semithick.

Another useful thing one can do with lines is to dash or dot them. For this, the two styles dashed and
dotted can be used, yielding - - - - and . Both options also exist in a loose and a dense version, called
loosely dashed, densely dashed, loosely dotted, and densely dotted. If he really, really needs to,
Karl can also define much more complex dashing patterns with the dash pattern option, but his son insists
that dashing is to be used with utmost care and mostly distracts. Karl’s son claims that complicated dashing
patterns are evil. Karl’s students do not care about dashing patterns.

2.10 Arc Path Construction

Our next obstacle is to draw the arc for the angle. For this, the arc path construction operation is useful,
which draws part of a circle or ellipse. This arc operation is followed by options in brackets that specify
the arc. An example would be arc[start angle=10, end angle=80, radius=10pt], which means exactly
what it says. Karl obviously needs an arc from 0° to 30°. The radius should be something relatively small,
perhaps around one third of the circle’s radius. When one uses the arc path construction operation, the
specified arc will be added with its starting point at the current position. So, we first have to “get there”.

36

\begin{tikzpicture}

\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\ \draw (0,0) circle [radius=1cm];

\end{tikzpicture}

\draw [step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);

\draw (3mm,Omm) arc [start angle=0, end angle=30, radius=3mm] ;

Karl thinks this is really a bit small and he cannot continue unless he learns how to do scaling. For
this, he can add the [scale=3 option. He could add this option to each \draw command, but that would
be awkward. Instead, he adds it to the whole environment, which causes this option to apply to everything

within.

\begin{tikzpicture}[scale=3]
\draw [step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=1cm];
\draw (3mm,0mm) arc [start angle=0, end angle=30, radius=3mm];
\end{tikzpicture}

As for circles, you can specify “two” radii in order to get an elliptical arc.
\tikz \draw (0,0)

arc [start angle=0, end angle=315,
x radius=1.75cm, y radius=1Icm];

2.11 Clipping a Path

In order to save space in this manual, it would be nice to clip Karl’s graphics a bit so that we can focus
on the “interesting” parts. Clipping is pretty easy in TikZ. You can use the \clip command to clip all
subsequent drawing. It works like \draw, only it does not draw anything, but uses the given path to clip

everything subsequently.

37

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle [radius=Icm];
\ \draw (3mm,0mm) arc [start angle=0, end angle=30, radius=3mm] ;
\end{tikzpicture}

You can also do both at the same time: Draw and clip a path. For this, use the \draw command and add
the clip option. (This is not the whole picture: You can also use the \clip command and add the draw
option. Well, that is also not the whole picture: In reality, \draw is just a shorthand for \path[draw] and
\clip is a shorthand for \path[clip] and you could also say \path[draw,clipl.) Here is an example:

\begin{tikzpicture}[scale=3]

\clip[draw] (0.5,0.5) circle (.6cm);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle [radius=1Icm];

\draw (3mm,Omm) arc [start angle=0, end angle=30, radius=3mm] ;
\end{tikzpicture}

2.12 Paral;ol/aénd Sine Path Construction

Althqugh Karl dees not need them for his picture, he is pleased to learn that there are parabola and sin and
ath opetations for adding parabolas and sine and cosine curves to the current path. For the parabola

operation, the current point will lie on the parabola as well as the point given after the parabola operation.
Consider the following example:

\tikz \draw (0,0) rectangle (1,1) (0,0) parabola (1,1);

It is also possible to place the bend somewhere else:

/\ \tikz \draw[x=1pt,y=1pt] (0,0) parabola bend (4,16) (6,12);

The operations sin and cos add a sine or cosine curve in the interval [0,7/2] such that the previous
current point is at the start of the curve and the curve ends at the given end point. Here are two examples:

A sine ~ curve. A sine \tikz \draw[x=Iez,y=Iez] (0,0) sin (1.57,1); curve.

M \tikz \draw[x=1.57ez,y=1lex] (0,0) sin (1,1) cos (2,0) sin (3,-1) cos (4,0)
(0,1) cos (1,0) sin (2,-1) cos (3,0) sin (4,1);

2.13 Filling and Drawing

Returning to the picture, Karl now wants the angle to be “filled” with a very light green. For this he uses
\fill instead of \draw. Here is what Karl does:

38

\begin{tikzpicture}[scale=3]

\clip (-0.1,-0.2) rectangle (1.1,0.75);

\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);

\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle [radius=Icm];

\fill[green!20!white] (0,0) -- (3mm,Omm)

arc [start angle=0, end angle=30, radius=3mm] -- (0,0);

\end{tikzpicture}

The color green!20!white means 20% green and 80% white mixed together. Such color expression are
possible since TikZ uses Uwe Kern’s xcolor package, see the documentation of that package for details on
color expressions.

What would have happened, if Karl had not “closed” the path using --(0,0) at the end? In this case,
the path is closed automatically, so this could have been omitted. Indeed, it would even have been better to
write the following, instead:

\fill[green!20!white] (0,0) -- (3mm,Omm)
arc [start angle=0, end angle=30, radius=3mm] -- cycle;

The --cycle causes the current path to be closed (actually the current part of the current path) by
smoothly joining the first and last point. To appreciate the difference, consider the following example:

\begin{tikzpicture}[line width=5pt]
\draw (0,0) -- (1,0) -- (1,1) -- (0,0);
\draw (2,0) -- (3,0) -- (3,1) -- cycle;
\useasboundingbox (0,1.5); 7 make bounding box higher
\end{tikzpicture}

You can also fill and draw a path at the same time using the \filldraw command. This will first draw
the path, then fill it. This may not seem too useful, but you can specify different colors to be used for filling
and for stroking. These are specified as optional arguments like this:

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw [step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=1cm];

\filldraw[fill=green!/20!white, draw=green!/50!black] (0,0) -- (3mm,Omm)
arc [start angle=0, end angle=30, radius=3mm] -- cycle;
\end{tikzpicture}

2.14 Shading

Karl briefly considers the possibility of making the angle “more fancy” by shading it. Instead of filling
the area with a uniform color, a smooth transition between different colors is used. For this, \shade and
\shadedraw, for shading and drawing at the same time, can be used:

] y N \tikz \shade (0,0) rectangle (2,1) (3,0.5) circle (.5cm);

The default shading is a smooth transition from gray to white. To specify different colors, you can use
options:

we B B30

39

\begin{tikzpicture} [rounded corners,ultra thick]
\shade [top color=yellow,bottom color=black] (0,0) rectangle +(2,1);
\shade[left color=yellow,right color=black] (3,0) rectangle +(2,1);
\shadedraw[inner color=yellow,outer color=black,draw=yellow] (6,0) rectangle +(2,1);
\shade [ball color=green] (9,.5) circle (.5cm);
\end{tikzpicture}

For Karl, the following might be appropriate:

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=Icm];
‘ \shadedraw[left color=gray,right color=green, draw=green!/50!black]
(0,0) -- (3mm,Omm)
arc [start angle=0, end angle=30, radius=3mm] -- cycle;
\end{tikzpicture}

However, he wisely decides that shadings usually only distract without adding anything to the picture.

2.15 Specifying Coordinates

Karl now wants to add the sine and cosine lines. He knows already that he can use the color= option to set
the lines’ colors. So, what is the best way to specify the coordinates?

There are different ways of specifying coordinates. The easiest way is to say something like (10pt,2cm).
This means 10pt in z-direction and 2cm in y-directions. Alternatively, you can also leave out the units as in
(1,2), which means “one times the current z-vector plus twice the current y-vector”. These vectors default
to lcm in the x-direction and lcm in the y-direction, respectively.

In order to specify points in polar coordinates, use the notation (30:1cm), which means lcm in direction
30 degree. This is obviously quite useful to “get to the point (cos 30°,sin30°) on the circle”.

You can add a single + sign in front of a coordinate or two of them as in +(0cm,1cm) or ++(2cm,Ocm).
Such coordinates are interpreted differently: The first form means “lcm upwards from the previous specified
position” and the second means “2cm to the right of the previous specified position, making this the new
specified position”. For example, we can draw the sine line as follows:

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=lcm];
\filldraw[fill=green/20,draw=green!50!black] (0,0) -- (3mm,Omm)

arc [start angle=0, end angle=30, radius=3mm] -- cycle;
\draw[red,very thick] (30:1cm) -- +(0,-0.5);
\end{tikzpicture}

Karl used the fact sin 30° = 1/2. However, he very much doubts that his students know this, so it would
be nice to have a way of specifying “the point straight down from (30:1cm) that lies on the z-axis”. This
is, indeed, possible using a special syntax: Karl can write (30:1cm |- 0,0). In general, the meaning of
(p) |- (g)) is “the intersection of a vertical line through p and a horizontal line through ¢”.

Next, let us draw the cosine line. One way would be to say (30:1cm |- 0,0) -- (0,0). Another way
is the following: we “continue” from where the sine ends:

\begin{tikzpicture} [scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle [radius=Icm];
/////\ \filldraw[fill=green/20,draw=green!50!black] (0,0) -- (3mm,Omm)
arc [start angle=0, end angle=30, radius=3mm] -- cycle;

\draw([red,very thick] (30:1cm) -- +(0,-0.5);
\draw[blue,very thick] (30:1cm) ++(0,-0.5) -- (0,0);
\end{tikzpicture}

Note that there is no -- between (30:1cm) and ++(0,-0.5). In detail, this path is interpreted as
follows: “First, the (30:1cm) tells me to move by pen to (cos 30°,1/2). Next, there comes another coordinate

40

specification, so I move my pen there without drawing anything. This new point is half a unit down from the
last position, thus it is at (cos 30°,0). Finally, I move the pen to the origin, but this time drawing something
(because of the --).”

To appreciate the difference between + and ++ consider the following example:

\begin{tikzpicture}
\def\rectanglepath{-- ++(lcm,0cm) -- ++(Ocm,lcm) =-- ++(-1lcm,0cm) -- cycle}
\draw (0,0) \rectanglepath;
\draw (1.5,0) \rectanglepath;

\end{tikzpicture}

By comparison, when using a single +, the coordinates are different:

\begin{tikzpicture}
\def\rectanglepath{-- +(lcm,0cm) -- +(icm,icm) -- +(Ocm,lcm) -- cycle}
\draw (0,0) \rectanglepath;
\draw (1.5,0) \rectanglepath;

\end{tikzpicture}

Naturally, all of this could have been written more clearly and more economically like this (either with
a single of a double +):

\tikz \draw (0,0) rectangle +(1,1) (1.5,0) rectangle +(1,1);

2.16 Intersecting Paths

Karl is left with the line for tan o, which seems difficult to specify using transformations and polar coordi-
nates. The first — and easiest — thing he can do is so simply use the coordinate (1,{tan(30)3}) since TikZ’s
math engine knows how to compute things like tan(30). Note the added braces since, otherwise, TikZ’s
parser would think that the first closing parenthesis ends the coordinate (in general, you need to add braces
around components of coordinates when these components contain parentheses).

Karl can, however, also use a more elaborate, but also more “geometric” way of computing the length
of the orange line: He can specify intersections of paths as coordinates. The line for tan « starts at (1,0)
and goes upward to a point that is at the intersection of a line going “up” and a line going from the origin
through (30:1cm). Such computations are made available by the intersections library.

What Karl must do is to create two “invisible” paths that intersect at the position of interest. Creating
paths that are not otherwise seen can be done using the \path command without any options like draw or
£ill. Then, Karl can add the name path option to the path for later reference. Once the paths have been
constructed, Karl can use the name intersections to assign names to the coordinate for later reference.

\path [name path=upward line] (1,0) -- (1,1);
\path [name path=sloped line] (0,0) -- (30:1.5cm); % a bit longer, so that there is an intersection

% (add “\usetikzlibrary{intersections}' after loading tikz in the preamble)
\draw [name intersections={of=upward line and sloped line, by=z}]
[very thick,orange] (1,0) -- (x);

2.17 Adding Arrow Tips

Karl now wants to add the little arrow tips at the end of the axes. He has noticed that in many plots, even in
scientific journals, these arrow tips seem to be missing, presumably because the generating programs cannot
produce them. Karl thinks arrow tips belong at the end of axes. His son agrees. His students do not care
about arrow tips.

It turns out that adding arrow tips is pretty easy: Karl adds the option -> to the drawing commands for
the axes:

41

\usetikzlibrary {intersections}

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,1.51);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw[->] (-1.5,0) -- (1.5,0);
\draw[->] (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=Icm];
\filldraw[fill=green/20,draw=green!50!/black] (0,0) -- (3mm,Omm)

arc [start angle=0, end angle=30, radius=3mm] -- cycle;
[— \draw[red,very thick] (30:1cm) -- +(0,-0.5);
\draw[blue,very thick] (30:1cm) ++(0,-0.5) -- (0,0);
/////\ \path [name path=upward line] (1,0) -- (1,1);
\path [name path=sloped linel (0,0) —-- (30:1.5cm);
A \draw [name intersections={of=upward line and sloped line, by=z}]
[very thick,orange] (1,0) -- (x);
\end{tikzpicture}

If Karl had used the option <- instead of ->, arrow tips would have been put at the beginning of the
path. The option <-> puts arrow tips at both ends of the path.

There are certain restrictions to the kind of paths to which arrow tips can be added. As a rule of thumb,
you can add arrow tips only to a single open “line”. For example, you cannot add tips to, say, a rectangle
or a circle. However, you can add arrow tips to curved paths and to paths that have several segments, as in
the following examples:

¢/"y z//N\\V//Z \begin{tikzpicture}

\draw [<->] (0,0) arc [start angle=180, end angle=30, radius=10pt];
\draw [<->] (1,0) -- (1.5cm,10pt) -- (2cm,Opt) -- (2.5cm,10pt);
\end{tikzpicture}

Karl has a more detailed look at the arrow that TikZ puts at the end. It looks like this when he zooms
it: =. The shape seems vaguely familiar and, indeed, this is exactly the end of TEX’s standard arrow used
in something like f: A — B.

Karl likes the arrow, especially since it is not “as thick” as the arrows offered by many other packages.
However, he expects that, sometimes, he might need to use some other kinds of arrow. To do so, Karl can
say >=(kind of end arrow tip), where (kind of end arrow tip) is a special arrow tip specification. For example,
if Karl says >=Stealth, then he tells TikZ that he would like “stealth-fighter-like” arrow tips:

r\ A/ \usetikzlibrary {arrows.meta}
\begin{tikzpicture} [>=Stealth]
\draw [->] (0,0) arc [start angle=180, end angle=30, radius=10pt];
\draw [<<-,very thick] (1,0) -- (1.5cm,10pt) -- (2cm,Opt) -- (2.5cm,10pt);
\end{tikzpicture}

Karl wonders whether such a military name for the arrow type is really necessary. He is not really
mollified when his son tells him that Microsoft’s PowerPoint uses the same name. He decides to have his
students discuss this at some point.

In addition to Stealth there are several other predefined kinds of arrow tips Karl can choose from, see
Section 106. Furthermore, he can define arrows types himself, if he needs new ones.

2.18 Scoping

Karl saw already that there are numerous graphic options that affect how paths are rendered. Often, he
would like to apply certain options to a whole set of graphic commands. For example, Karl might wish to
draw three paths using a thick pen, but would like everything else to be drawn “normally”.

If Karl wishes to set a certain graphic option for the whole picture, he can simply pass this option to
the \tikz command or to the {tikzpicture} environment (Gerda would pass the options to \tikzpicture
and Hans passes them to \starttikzpicture). However, if Karl wants to apply graphic options to a local
group, he put these commands inside a {scope} environment (Gerda uses \scope and \endscope, Hans
uses \startscope and \stopscope). This environment takes graphic options as an optional argument and
these options apply to everything inside the scope, but not to anything outside.

Here is an example:

42

\begin{tikzpicture}[ultra thick]
\draw (0,0) -- (0,1);
\begin{scope} [thin]

\draw (1,0) -- (1,1);
\draw (2,0) -- (2,1);
\end{scope}
\draw (3,0) -- (3,1);
\end{tikzpicture}

Scoping has another interesting effect: Any changes to the clipping area are local to the scope. Thus,
if you say \clip somewhere inside a scope, the effect of the \clip command ends at the end of the scope.
This is useful since there is no other way of “enlarging” the clipping area.

Karl has also already seen that giving options to commands like \draw apply only to that command.
It turns out that the situation is slightly more complex. First, options to a command like \draw are not
really options to the command, but they are “path options” and can be given anywhere on the path.
So, instead of \draw[thin] (0,0) --(1,0); one can also write \draw (0,0) [thin] --(1,0); or \draw
(0,0) --(1,0) [thin];; all of these have the same effect. This might seem strange since in the last case,
it would appear that the thin should take effect only “after” the line from (0,0) to (1,0) has been drawn.
However, most graphic options only apply to the whole path. Indeed, if you say both thin and thick on
the same path, the last option given will “win”.

When reading the above, Karl notices that only “most” graphic options apply to the whole path. Indeed,
all transformation options do not apply to the whole path, but only to “everything following them on the
path”. We will have a more detailed look at this in a moment. Nevertheless, all options given during a path
construction apply only to this path.

2.19 Transformations

When you specify a coordinate like (1cm,1cm), where is that coordinate placed on the page? To determine
the position, TikZ, TEX, and PDF or PostScript all apply certain transformations to the given coordinate in
order to determine the final position on the page.

TikZ provides numerous options that allow you to transform coordinates in TikZ’s private coordinate
system. For example, the xshift option allows you to shift all subsequent points by a certain amount:

“ \tikz \draw (0,0) -- (0,0.5) [xshift=2pt] (0,0) -- (0,0.5);

It is important to note that you can change transformation “in the middle of a path”, a feature that is
not supported by PDF or PostScript. The reason is that TikZ keeps track of its own transformation matrix.
Here is a more complicated example:

\begin{tikzpicture}[even odd rule,rounded corners=2pt,x=10pt,y=10pt]
\filldraw[fill=yellow!80!black] (0,0) rectangle (1,1)
[xshift=5pt,yshift=5pt] (0,0) rectangle (1,1)
[rotate=30] (-1,-1) rectangle (2,2);
\end{tikzpicture}

The most useful transformations are xshift and yshift for shifting, shift for shifting to a given point
as in shift={(1,0)} or shift={+(0, 0)} (the braces are necessary so that TEX does not mistake the comma
for separating options), rotate for rotating by a certain angle (there is also a rotate around for rotating
around a given point), scale for scaling by a certain factor, xscale and yscale for scaling only in the -
or y-direction (xscale=-1is a flip), and xslant and yslant for slanting. If these transformation and those
that I have not mentioned are not sufficient, the cm option allows you to apply an arbitrary transformation
matrix. Karl’s students, by the way, do not know what a transformation matrix is.

2.20 Repeating Things: For-Loops

Karl’s next aim is to add little ticks on the axes at positions —1, —1/2, 1/2, and 1. For this, it would be
nice to use some kind of “loop”, especially since he wishes to do the same thing at each of these positions.
There are different packages for doing this. I¥TEX has its own internal command for this, pstricks comes
along with the powerful \multido command. All of these can be used together with TikZ, so if you are
familiar with them, feel free to use them. TikZ introduces yet another command, called \foreach, which

43

I introduced since I could never remember the syntax of the other packages. \foreach is defined in the
package pgffor and can be used independently of TikZ, but TikZ includes it automatically.
In its basic form, the \foreach command is easy to use:

r=1,x2=2 =3, \foreach \x in {1,2,3} {$x =\x$, }

The general syntax is \foreach (variable) in {(list of values)} (commands). Inside the {commands),
the (variable) will be assigned to the different values. If the (commands) do not start with a brace, everything
up to the next semicolon is used as (commands).

For Karl and the ticks on the axes, he could use the following code:

\begin{tikzpicturel}[scale=3]

\clip (-0.1,-0.2) rectangle (1.1,1.51);

\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);

\filldraw[fill=green/20,draw=green!50!black] (0,0) -- (3mm,Omm)
arc [start angle=0, end angle=30, radius=3mm] -- cycle;

\draw[->] (-1.5,0) -- (1.5,0);

\draw[->] (0,-1.5) -- (0,1.5);

\draw (0,0) circle [radius=Icm];

\foreach \x in {-1cm,-0.5cm,lcm}
\draw (\x,-1pt) -- (\x,1pt);
\foreach \y in {-1cm,-0.5cm,0.5cm,lcm}
\draw (-1pt,\y) -- (ipt,\y);
\end{tikzpicture}

As a matter of fact, there are many different ways of creating the ticks. For example, Karl could have
put the \draw ...; inside curly braces. He could also have used, say,

\foreach \x in {-1,-0.5,1}
\draw [xshift=\z em] (Opt,-1pt) -- (Opt,ipt);

Karl is curious what would happen in a more complicated situation where there are, say, 20 ticks. It
seems bothersome to explicitly mention all these numbers in the set for \foreach. Indeed, it is possible to
use ... inside the \foreach statement to iterate over a large number of values (which must, however, be
dimensionless real numbers) as in the following example:

OOOOOOOO0OO

\tikz \foreach \x in {1,...,10}
\draw (\x,0) circle (0.4cm);

If you provide two numbers before the ..., the \foreach statement will use their difference for the
stepping:

\tikz \foreach \x in {-1,-0.5,...,1}
\draw (\x cm,-1pt) -- (\x cm,1pt);

We can also nest loops to create interesting effects:

15 | 25|35 | 45 | 55 75 | 85 | 95 | 105|115 | 12,5
14 | 24|34 | 44| 54 74 | 84| 94 | 104|114 | 124
13233314353 73 | 83|93 (103 |11,3] 12,3
12 223242 |52 72 | 82192 |102|11,2] 12,2
1121314151 71 | 81 | 91 10,1 | 11,1 | 12,1

44

\begin{tikzpicture}

\foreach \x in {1,2,...,5,7.,8,...,12}
\foreach \y in {1,...,5}
{

\draw (\x,\y) +(-.5,-.5) rectangle ++(.5,.5);
\draw (\x,\y) node{\x,\y};
}
\end{tikzpicture}

The \foreach statement can do even trickier stuff, but the above gives the idea.

2.21 Adding Text

Karl is, by now, quite satisfied with the picture. However, the most important parts, namely the labels, are
still missing!

TikZ offers an easy-to-use and powerful system for adding text and, more generally, complex shapes to a
picture at specific positions. The basic idea is the following: When TikZ is constructing a path and encounters
the keyword node in the middle of a path, it reads a node specification. The keyword node is typically followed
by some options and then some text between curly braces. This text is put inside a normal TEX box (if the
node specification directly follows a coordinate, which is usually the case, TikZ is able to perform some magic
so that it is even possible to use verbatim text inside the boxes) and then placed at the current position,
that is, at the last specified position (possibly shifted a bit, according to the given options). However, all
nodes are drawn only after the path has been completely drawn/filled/shaded/clipped/whatever.

\begin{tikzpicture}
Text at node 2 \draw (0,0) rectangle (2,2);
\draw (0.5,0.5) node [fill=yellow!/80!black]
///)/ {Text at \verb!mode 1!}
Text at node 1 -- (1.5,1.5) node {Text at \verb!mode 2!'};

\end{tikzpicture}

Obviously, Karl would not only like to place nodes on the last specified position, but also to the left
or the right of these positions. For this, every node object that you put in your picture is equipped with
several anchors. For example, the north anchor is in the middle at the upper end of the shape, the south
anchor is at the bottom and the north east anchor is in the upper right corner. When you give the option
anchor=north, the text will be placed such that this northern anchor will lie on the current position and
the text is, thus, below the current position. Karl uses this to draw the ticks as follows:

\begin{tikzpicture} [scale=3]
\clip (-0.6,-0.2) rectangle (0.6,1.51);
\draw[step=.5cm,help lines] (-1.4,-1.4) grid (1.4,1.4);

\filldraw[fill=green/20,draw=green!50!black] (0,0) -- (3mm,Omm)
1 arc [start angle=0, end angle=30, radius=3mm] -- cycle;
| \draw[->] (-1.5,0) -- (1.5,0); \draw[->] (0,-1.5) -- (0,1.5);

\draw (0,0) circle [radius=lcm];

\foreach \x in {-1,-0.5,1}
\draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north] {\x};
\foreach \y in {-1,-0.5,0.5,1}
\draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east] {\y};
\end{tikzpicture}

@
(W3}

This is quite nice, already. Using these anchors, Karl can now add most of the other text elements.
However, Karl thinks that, though “correct”, it is quite counter-intuitive that in order to place something
below a given point, he has to use the north anchor. For this reason, there is an option called below, which
does the same as anchor=north. Similarly, above right does the same as anchor=south west. In addition,
below takes an optional dimension argument. If given, the shape will additionally be shifted downwards by
the given amount. So, below=1pt can be used to put a text label below some point and, additionally shift
it 1pt downwards.

Karl is not quite satisfied with the ticks. He would like to have 1/2 or % shown instead of 0.5, partly to
show off the nice capabilities of TEX and TikZ, partly because for positions like 1/3 or = it is certainly very

45

much preferable to have the “mathematical” tick there instead of just the “numeric” tick. His students, on
the other hand, prefer 0.5 over 1/2 since they are not too fond of fractions in general.

Karl now faces a problem: For the \foreach statement, the position \x should still be given as 0.5 since
TikZ will not know where \frac{1}{2} is supposed to be. On the other hand, the typeset text should really
be \frac{1}{2}. To solve this problem, \foreach offers a special syntax: Instead of having one variable \x,
Karl can specify two (or even more) variables separated by a slash as in \x / \xtext. Then, the elements
in the set over which \foreach iterates must also be of the form (first)/(second). In each iteration, \x will
be set to (first) and \xtext will be set to (second). If no (second) is given, the (first) will be used again.
So, here is the new code for the ticks:

\begin{tikzpicture}[scale=3]
\clip (-0.6,-0.2) rectangle (0.6,1.51);
\draw[step=.5cm,help lines] (-1.4,-1.4) grid (1.4,1.4);
\filldraw[fill=green/20,draw=green!50!black] (0,0) -- (3mm,Omm)
1 arc [start angle=0, end angle=30, radius=3mm] -- cycle;
| \draw[->] (-1.5,0) -- (1.5,0); \draw[->] (0,-1.5) -- (0,1.5);

\draw (0,0) circle [radius=Icm];

\foreach \x/\xtext in {-1, -0.5/-\frac{1}{2}, 1}
) \draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north] {\xtext};
\foreach \y/\ytext in {-1, -0.5/-\frac{1}{2}, 0.5/\frac{1}{2}, 1}
\draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east] {\ytextl};
\end{tikzpicture}

=

NI

Karl is quite pleased with the result, but his son points out that this is still not perfectly satisfactory:
The grid and the circle interfere with the numbers and decrease their legibility. Karl is not very concerned
by this (his students do not even notice), but his son insists that there is an easy solution: Karl can add the
[fill=white option to fill out the background of the text shape with a white color.

The next thing Karl wants to do is to add the labels like sin «. For this, he would like to place a label
“in the middle of the line”. To do so, instead of specifying the label node {$\sin\alpha$} directly after one
of the endpoints of the line (which would place the label at that endpoint), Karl can give the label directly
after the —-, before the coordinate. By default, this places the label in the middle of the line, but the pos=
options can be used to modify this. Also, options like near start and near end can be used to modify this
position:

N[

sin o

St cos o

|
—_
\
Ol

COS (v 1
| .

46

\usetikzlibrary {intersections}

\begin{tikzpicture}[scale=3]
\clip (-2,-0.2) rectangle (2,0.8);
\draw [step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\filldraw[fill=green!20,draw=green!50/black] (0,0) -- (3mm,Omm)

arc [start angle=0, end angle=30, radius=3mm] -- cycle;

\draw[->] (-1.5,0) -- (1.5,0) coordinate (x axis);
\draw[->] (0,-1.5) -- (0,1.5) coordinate (y axis);
\draw (0,0) circle [radius=1cm];

\draw [very thick,red]

(30:1cm) -- node[left=1pt,fill=white] {$\sin \alpha$} (30:1lcm |- x axis);
\draw [very thick,blue]

(30:1cm |- x axis) -- nodel[below=2pt,fill=white] {$\cos \alpha$} (0,0);
\path [name path=upward line] (1,0) -- (1,1);
\path [name path=sloped line] (0,0) -- (30:1.5cm);
\draw [name intersections={of=upward line and sloped line, by=t}]

[very thick,orange]l (1,0) -- node [right=Ipt,fill=white]

{$\displaystyle \tan \alpha \color{black}=

\frac{{\color{red}\sin \alpha}}{\color{blue}\cos \alpha}$} (t);

\draw (0,0) -- (t);

\foreach \x/\xtext in {-1, -0.5/-\frac{1}{2}, 1}
\draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north,fill=white] {\xtextl};
\foreach \y/\ytext in {-1, -0.5/-\frac{1}{2}, 0.5/\frac{1}{2}, 1}
\draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east,fill=white] {\ytext};
\end{tikzpicture}

You can also position labels on curves and, by adding the sloped option, have them rotated such that
they match the line’s slope. Here is an example:

/meﬂw\
Vety

le

a opg

\begin{tikzpicture}
\draw (0,0) .. controls (6,1) and (9,1)
node [near start,sloped,above] {near start}
node {midway}
node [very near end,sloped,below] {very near end} (12,0);
\end{tikzpicture}

It remains to draw the explanatory text at the right of the picture. The main difficulty here lies in
limiting the width of the text “label”, which is quite long, so that line breaking is used. Fortunately, Karl
can use the option text width=6cm to get the desired effect. So, here is the full code:

47

\begin{tikzpicture}
[scale=3,line cap=round,
% Styles
axes/.style=,
important line/.style={very thick},
information text/.style={rounded corners,fill=red!/10,inner sep=1ez}]

7 Colors
\colorlet{anglecolor}{green!50!black}
\colorlet{sincolor}{red}
\colorlet{tancolor}{orange!80!black}
\colorlet{coscolor}{blue}

% The graphic
\draw[help lines,step=0.5cm] (-1.4,-1.4) grid (1.4,1.4);

\draw (0,0) circle [radius=1cm];

\begin{scope} [axes]
\draw[->] (-1.5,0) -- (1.5,0) node[right] {x} coordinate(x axis);
\draw[->] (0,-1.5) -- (0,1.5) nodel[abovel {y} coordinate(y axis);

\foreach \x/\xtext in {-1, -.5/-\frac{1}{2}, 1}
\draw [xshift=\z cm] (Opt,1pt) -- (Opt,-1pt) nodel[below,fill=white] {\xtextl};

\foreach \y/\ytext in {-1, -.5/-\frac{1}{2}, .5/\frac{1}{2}, 1}
\draw[yshift=\y em] (1pt,Opt) -- (-1pt,Opt) node[left,fill=white] {\ytextl};
\end{scope}

\filldraw([fill=green!/20,draw=anglecolor] (0,0) -- (3mm,Opt)
arc [start angle=0, end angle=30, radius=3mm] ;
\draw (15:2mm) node[anglecolor] {α};

\draw [important line,sincolor]
(30:1cm) -- node[left=1pt,fill=white] {$\sin \alpha$} (30:1cm |- x axis);

\draw [important line,coscolor]
(30:1cm |- x axis) -- nodel[below=2pt,fill=whitel {$\cos \alpha$} (0,0);

\path [name path=uwpward line] (1,0) -- (1,1);

\path [name path=sloped line] (0,0) -- (30:1.5cm);

\draw [name intersections={of=upward line and sloped line, by=t}]
[very thick,orange] (1,0) -- node [right=Ipt,fill=white]
{$\displaystyle \tan \alpha \color{black}=

\frac{{\color{red}\sin \alphal}}{\color{blue}\cos \alpha}$} (t);

\draw (0,0) -- (t);

\draw [xshift=1.85cm]

node [right,text width=6cm,information text]

{
The {\color{anglecolor} angle α} is $30"\circ$ in the
example ($\pi/6$ in radians). The {\color{sincolor}sine of

α}, which is the height of the red line, is

\[
{\color{sincolor} \sin \alpha} = 1/2.
\]
By the Theorem of Pythagoras ...

ks
\end{tikzpicture}

2.22 Pics: The Angle Revisited

Karl expects that the code of certain parts of the picture he created might be so useful that he might wish
to reuse them in the future. A natural thing to do is to create TEX macros that store the code he wishes to
reuse. However, TikZ offers another way that is integrated directly into its parser: pics!

A “pic” is “not quite a full picture”, hence the short name. The idea is that a pic is simply some code
that you can add to a picture at different places using the pic command whose syntax is almost identical to
the node command. The main difference is that instead of specifying some text in curly braces that should
be shown, you specify the name of a predefined picture that should be shown.

48

Defining new pics is easy enough, see Section 18, but right now we just want to use one such predefined
pic: the angle pic. As the name suggests, it is a small drawing of an angle consisting of a little wedge and
an arc together with some text (Karl needs to load the angles library and the quotes for the following
examples). What makes this pic useful is the fact that the size of the wedge will be computed automatically.

The angle pic draws an angle between the two lines BA and BC, where A, B, and C are three coordinates.
In our case, B is the origin, A is somewhere on the z-axis and C' is somewhere on a line at 30°.

\usetikzlibrary {angles,quotes}
\begin{tikzpicture}[scale=3]
\coordinate (A) at (1,0);
\coordinate (B) at (0,0);
(€] \coordinate (C) at (30:1cm);

\draw (A) -- (B) -- (C)
pic [draw=green!/50!black, fill=green!/20, angle radius=9mm,
"α"] {angle = A--B--C};
\end{tikzpicture}

Let us see, what is happening here. First we have specified three coordinates using the \coordinate
command. It allows us to name a specific coordinate in the picture. Then comes something that starts as a
normal \draw, but then comes the pic command. This command gets lots of options and, in curly braces,
comes the most important point: We specify that we want to add an angle pic and this angle should be
between the points we named A, B, and C (we could use other names). Note that the text that we want to
be shown in the pic is specified in quotes inside the options of the pic, not inside the curly braces.

To learn more about pics, please see Section 18.

49

3 Tutorial: A Petri-Net for Hagen

In this second tutorial we explore the node mechanism of TikZ and PGF.

Hagen must give a talk tomorrow about his favorite formalism for distributed systems: Petri nets!
Hagen used to give his talks using a blackboard and everyone seemed to be perfectly content with this.
Unfortunately, his audience has been spoiled recently with fancy projector-based presentations and there
seems to be a certain amount of peer pressure that his Petri nets should also be drawn using a graphic
program. One of the professors at his institute recommends TikZ for this and Hagen decides to give it a try.

3.1 Problem Statement

For his talk, Hagen wishes to create a graphic that demonstrates how a net with place capacities can be
simulated by a net without capacities. The graphic should look like this, ideally:

replacement of

E
the capacity
‘6< by two places
ANNNNANNNNNNND

j

3.2 Setting up the Environment

For the picture Hagen will need to load the TikZ package as did Karl in the previous tutorial. However,
Hagen will also need to load some additional library packages that Karl did not need. These library packages
contain additional definitions like extra arrow tips that are typically not needed in a picture and that need
to be loaded explicitly.

Hagen will need to load several libraries: The arrows library for the special arrow tip used in the graphic,
the decorations.pathmorphing library for the “snaking line” in the middle, the backgrounds library for
the two rectangular areas that are behind the two main parts of the picture, the fit library to easily compute
the sizes of these rectangles, and the positioning library for placing nodes relative to other nodes.

3.2.1 Setting up the Environment in IATEX
When using IATEX use:

\documentclass{article} 7 say

\usepackage{tikz}
\usetikzlibrary{arrows,decorations.pathmorphing,backgrounds,positioning,fit,petri}

\begin{document}
\begin{tikzpicture}
\draw (0,0) -- (1,1);

\end{tikzpicture}
\end{document}

3.2.2 Setting up the Environment in Plain TEX
When using plain TEX use:

50

A% Plain TeX file
\input tikz.tex
\usetikzlibrary{arrows,decorations.pathmorphing,backgrounds,positioning,fit,petri}
\baselineskip=12pt
\hsize=6.3truein
\vsize=8.7truein
\tikzpicture
\draw (0,0) -- (1,1);
\endtikzpicture
\bye

3.2.3 Setting up the Environment in ConTgXt
When using ConTEXt, use:

%% ConTeXt file
\usemodule [tikz]
\usetikzlibrary[arrows,decorations.pathmorphing,backgrounds,positioning,fit,petri]

\starttext
\starttikzpicture
\draw (0,0) -- (1,1);
\stoptikzpicture
\stoptext

3.3 Introduction to Nodes

In principle, we already know how to create the graphics that Hagen desires (except perhaps for the snaked
line, we will come to that): We start with big light gray rectangle and then add lots of circles and small
rectangle, plus some arrows.

However, this approach has numerous disadvantages: First, it is hard to change anything at a later stage.
For example, if we decide to add more places to the Petri nets (the circles are called places in Petri net
theory), all of the coordinates change and we need to recalculate everything. Second, it is hard to read the
code for the Petri net as it is just a long and complicated list of coordinates and drawing commands — the
underlying structure of the Petri net is lost.

Fortunately, TikZ offers a powerful mechanism for avoiding the above problems: nodes. We already came
across nodes in the previous tutorial, where we used them to add labels to Karl’s graphic. In the present
tutorial we will see that nodes are much more powerful.

A node is a small part of a picture. When a node is created, you provide a position where the node
should be drawn and a shape. A node of shape circle will be drawn as a circle, a node of shape rectangle
as a rectangle, and so on. A node may also contain some text, which is why Karl used nodes to show text.
Finally, a node can get a name for later reference.

In Hagen'’s picture we will use nodes for the places and for the transitions of the Petri net (the places are
the circles, the transitions are the rectangles). Let us start with the upper half of the left Petri net. In this
upper half we have three places and two transitions. Instead of drawing three circles and two rectangles, we
use three nodes of shape circle and two nodes of shape rectangle.

C) \begin{tikzpicture}
\path (0,2) node [shape=circle,draw] {}
(0,1) node [shape=circle,draw] {}
O () O (0,0) node [shape=circle,draw] {}
(1,1) node [shape=rectangle,draw] {}
(-1,1) node [shape=rectangle,draw] {};
() \end{tikzpicture}

Hagen notes that this does not quite look like the final picture, but it seems like a good first step.

Let us have a more detailed look at the code. The whole picture consists of a single path. Ignoring the
node operations, there is not much going on in this path: It is just a sequence of coordinates with nothing
“happening” between them. Indeed, even if something were to happen like a line-to or a curve-to, the \path
command would not “do” anything with the resulting path. So, all the magic must be in the node commands.

In the previous tutorial we learned that a node will add a piece of text at the last coordinate. Thus,
each of the five nodes is added at a different position. In the above code, this text is empty (because of the

51

empty {}). So, why do we see anything at all? The answer is the draw option for the node operation: It
causes the “shape around the text” to be drawn.

So, the code (0,2) node [shape=circle,draw] {} means the following: “In the main path, add a
move-to to the coordinate (0,2). Then, temporarily suspend the construction of the main path while the
node is built. This node will be a circle around an empty text. This circle is to be drawn, but not filled or
otherwise used. Once this whole node is constructed, it is saved until after the main path is finished. Then,
it is drawn.” The following (0,1) node [shape=circle,draw] {} then has the following effect: “Continue
the main path with a move-to to (0,1). Then construct a node at this position also. This node is also
shown after the main path is finished.” And so on.

3.4 Placing Nodes Using the At Syntax

Hagen now understands how the node operation adds nodes to the path, but it seems a bit silly to create a
path using the \path operation, consisting of numerous superfluous move-to operations, only to place nodes.
He is pleased to learn that there are ways to add nodes in a more sensible manner.

First, the node operation allows one to add at ({coordinate)) in order to directly specify where the node
should be placed, sidestepping the rule that nodes are placed on the last coordinate. Hagen can then write
the following:

\begin{tikzpicture}
\path node at (0,2)
node at

O

[shape=circle,draw] {}

O

O O

(0,1)
node at (0,0)
node at (1,1)

node at (-1,1)

[shape=circle,draw] {}
[shape=circle,draw] {}
[shape=rectangle,draw] {}
[shape=rectangle,draw] {};

\end{tikzpicture}

O

Now Hagen is still left with a single empty path, but at least the path no longer contains strange move-
to’s. It turns out that this can be improved further: The \node command is an abbreviation for \path
node, which allows Hagen to write:

O \begin{tikzpicture}
\node at (0,2) [circle,draw] {};
\node at (0,1) [circle,draw] {};
\node at (0,0) [circle,draw] {};
\node at (1,1) [rectangle,draw] {J};
\node at (-1,1) [rectangle,draw] {};
\end{tikzpicture}

U U

O
O

Hagen likes this syntax much better than the previous one. Note that Hagen has also omitted the shape=
since, like color=, TikZ allows you to omit the shape= if there is no confusion.

3.5 Using Styles

Feeling adventurous, Hagen tries to make the nodes look nicer. In the final picture, the circles and rectangle
should be filled with different colors, resulting in the following code:

@)
@)
@)

\begin{tikzpicture} [thick]
\node at (0,2) [circle,draw=blue!50,fill=blue!20] {};
\node at (0,1) [circle,draw=blue!50,fill=blue!/20] {};
\node at (0,0) [circle,draw=blue!50,fill=blue!/20] {};
\node at (1,1) [rectangle,draw=black!/50,fill=black!20] {};
\node at (-1,1) [rectangle,draw=black!/50,fill=black!/20] {};
\end{tikzpicture}

O O

While this looks nicer in the picture, the code starts to get a bit ugly. Ideally, we would like our code
to transport the message “there are three places and two transitions” and not so much which filling colors
should be used.

To solve this problem, Hagen uses styles. He defines a style for places and another style for transitions:

52

(:) \begin{tikzpicture}
[place/.style={circle,draw=blue!50,fill=blue!20,thick},
transition/.style={rectangle,draw=black!/50,fill=black/20,thick}]

O (:) O \node at (0,2) [place] {};
\node at (0,1) [placel {};
\node at (0,0) [place] {};

(:) \node at (1,1) [transition] {};

\node at (-1,1) [transition] {};
\end{tikzpicture}

3.6 Node Size

Before Hagen starts naming and connecting the nodes, let us first make sure that the nodes get their final
appearance. They are still too small. Indeed, Hagen wonders why they have any size at all, after all, the
text is empty. The reason is that TikZ automatically adds some space around the text. The amount is set
using the option inner sep. So, to increase the size of the nodes, Hagen could write:

\begin{tikzpicture}

O [inner sep=2mm,
place/.style={circle,draw=blue/50,fill=blue/20,thick},
transition/.style={rectangle,draw=black!50,fill=black/20,thick}]

[:] (::) [:] \node at (0,2) [place] {J};
\node at (0,1) [place]l {};

\node at (0,0) [place] {};
(::) \node at (1,1) [transition] {};
\node at (-1,1) [transition] {};
\end{tikzpicture}

However, this is not really the best way to achieve the desired effect. It is much better to use the
minimum size option instead. This option allows Hagen to specify a minimum size that the node should
have. If the node actually needs to be bigger because of a longer text, it will be larger, but if the text
is empty, then the node will have minimum size. This option is also useful to ensure that several nodes
containing different amounts of text have the same size. The options minimum height and minimum width
allow you to specify the minimum height and width independently.

So, what Hagen needs to do is to provide minimum size for the nodes. To be on the safe side, he also
sets inner sep=0pt. This ensures that the nodes will really have size minimum size and not, for very small
minimum sizes, the minimal size necessary to encompass the automatically added space.

\begin{tikzpicture}
(::) [place/.style={circle,draw=blue!50,fill=blue!20,thick,
inner sep=Opt,minimum size=6mm}t,
transition/.style={rectangle,draw=black!50,fill=black!20,thick,
[:] <::> [:] inner sep=Opt,minimum size=/mm}]
\node at (0,2) [placel {};
\node at (0,1) [place] {};
<::> \node at (0,0) [place] {};
\node at (1,1) [transition] {};

\node at (-1,1) [transition] {};
\end{tikzpicture}

3.7 Naming Nodes

Hagen’s next aim is to connect the nodes using arrows. This seems like a tricky business since the arrows
should not start in the middle of the nodes, but somewhere on the border and Hagen would very much like
to avoid computing these positions by hand.

Fortunately, PGF will perform all the necessary calculations for him. However, he first has to assign
names to the nodes so that he can reference them later on.

There are two ways to name a node. The first is to use the name= option. The second method is to write
the desired name in parentheses after the node operation. Hagen thinks that this second method seems
strange, but he will soon change his opinion.

53

% ... set up styles
Q \begin{tikzpicture}
\node (waiting 1) at
[place]l {3};

(0,2) [placel {};
\node (critical 1) at (0,1)

I:' O I:' \node (semaphore) at (0,0) [placel {};
(1,1)
(-1,1)

\node (leave critical) at [transition] {};

\node (enter critical) at [transition] {};
\end{tikzpicture}

Hagen is pleased to note that the names help in understanding the code. Names for nodes can be
pretty arbitrary, but they should not contain commas, periods, parentheses, colons, and some other special
characters. However, they can contain underscores and hyphens.

The syntax for the node operation is quite liberal with respect to the order in which node names, the at
specifier, and the options must come. Indeed, you can even have multiple option blocks between the node
and the text in curly braces, they accumulate. You can rearrange them arbitrarily and perhaps the following
might be preferable:

\begin{tikzpicture}
Q \node [place] (waiting 1) at (0,2) {};
\node [place] (critical 1) at (0,1) {};
\node [place] (semaphore) at (0,0) {};
I:' O I:' \node [transition] (leave critical) at (1,1) {};
\node [transition] (enter critical) at (-1,1) {};

Q \end{tikzpicture}

3.8 Placing Nodes Using Relative Placement

Although Hagen still wishes to connect the nodes, he first wishes to address another problem again: The
placement of the nodes. Although he likes the at syntax, in this particular case he would prefer placing the
nodes “relative to each other”. So, Hagen would like to say that the critical 1 node should be below the
waiting 1 node, wherever the waiting 1 node might be. There are different ways of achieving this, but
the nicest one in Hagen’s case is the below option:

\usetikzlibrary {positioning}
Q \begin{tikzpicture}
\node [place] (waiting) {3;
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of criticall {};
|:| O |:| \node [transition] (leave critical) [right=of criticall {3};
\node [transition] (enter critical) [left=of criticall {I};
\end{tikzpicture}

@)

With the positioning library loaded, when an option like below is followed by of, then the position
of the node is shifted in such a manner that it is placed at the distance node distance in the specified
direction of the given direction. The node distance is either the distance between the centers of the nodes
(when the on grid option is set to true) or the distance between the borders (when the on grid option is
set to false, which is the default).

Even though the above code has the same effect as the earlier code, Hagen can pass it to his colleagues
who will be able to just read and understand it, perhaps without even having to see the picture.

3.9 Adding Labels Next to Nodes

Before we have a look at how Hagen can connect the nodes, let us add the capacity “s < 3” to the bottom
node. For this, two approaches are possible:

1. Hagen can just add a new node above the north anchor of the semaphore node.

54

\usetikzlibrary {positioning}
O \begin{tikzpicture}
\node [place] (waiting) {};
\node [place] (critical) [below=of waitingl {};
\node [place] (semaphore) [below=of criticall {};

|:| O |:| \node [transition] (leave critical) [right=of criticall {};

\node [transition] (enter critical) [left=of criticall {I};

\node [red,abovel at (semaphore.north) {$s\le 3$};

s<3 \end{tikzpicture}

O

This is a general approach that will “always work”.

. Hagen can use the special 1label option. This option is given to a node and it causes another node
to be added next to the node where the option is given. Here is the idea: When we construct the
semaphore node, we wish to indicate that we want another node with the capacity above it. For this,
we use the option label=above:$s\le 3$. This option is interpreted as follows: We want a node
above the semaphore node and this node should read “s < 3”. Instead of above we could also use
things like below left before the colon or a number like 60.

\usetikzlibrary {positioning}

Q \begin{tikzpicture}
\node [place] (waiting) {};
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of critical,

|:| Q |:| label=above:$s\le38] {};

\node [transition] (leave critical) [right=of criticall {};
\node [transition] (enter critical) [left=of criticall {I};

s<3 \end{tikzpicture}

O

It is also possible to give multiple label options, this causes multiple labels to be drawn.

60° \tikz
\node [circle,draw,label=60:$60"\circ$,label=below:$-90 \circ$]l {my circlel};

-90°

Hagen is not fully satisfied with the label option since the label is not red. To achieve this, he has
two options: First, he can redefine the every label style. Second, he can add options to the label’s
node. These options are given following the label=, so he would write label=[red] above:$s\1le3$.
However, this does not quite work since TEX thinks that the] closes the whole option list of the
semaphore node. So, Hagen has to add braces and writes label={[red]above:$s\le3$}. Since this
looks a bit ugly, Hagen decides to redefine the every label style.

\usetikzlibrary {positioning}

O \begin{tikzpicture} [every label/.style={red}]
\node [place] (waiting) {};
\node [place] (critical) [below=of waitingl {3};
\node [place] (semaphore) [below=of critical,

|:| Q |:| label=above:$s\le3$] {};

\node [transition] (leave critical) [right=of criticall {3};
\node [transition] (enter critical) [left=of criticall {};

s<3 \end{tikzpicture}

55

3.10 Connecting Nodes

It is now high time to connect the nodes. Let us start with something simple, namely with the straight line
from enter critical to critical. We want this line to start at the right side of enter critical and to
end at the left side of critical. For this, we can use the anchors of the nodes. Every node defines a whole
bunch of anchors that lie on its border or inside it. For example, the center anchor is at the center of the
node, the west anchor is on the left of the node, and so on. To access the coordinate of a node, we use a
coordinate that contains the node’s name followed by a dot, followed by the anchor’s name:

\usetikzlibrary {positioning}
<::> \begin{tikzpicture}
\node [place] (waiting) {3;
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of criticall {3};
[:] () [:] \node [transition] (leave critical) [right=of criticall {};

\node [transition] (enter critical) [left=of criticall {I};
\draw [->] (critical.west) -- (enter critical.east);

\end{tikzpicture}

@)

Next, let us tackle the curve from waiting to enter critical. This can be specified using curves and
controls:

\usetikzlibrary {positioning}

\begin{tikzpicture}

\node [place] (waiting) {3;
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of criticall {I};

[:] \node [transition] (leave critical) [right=of criticall {};
\node [transition] (enter critical) [left=of criticall {I};
\draw [->] (enter critical.east) -- (critical.west);
\draw [->] (waiting.west) .. controls +(left:5mm) and +(up:5mm)

. (enter critical.north);

<::> \end{tikzpicture}

Hagen sees how he can now add all his edges, but the whole process seems a but awkward and not very
flexible. Again, the code seems to obscure the structure of the graphic rather than showing it.
So, let us start improving the code for the edges. First, Hagen can leave out the anchors:

\usetikzlibrary {positioning}

\begin{tikzpicture}

\node [place] (waiting) {};

\node [place] (critical) [below=of waitingl {};

\node [place] (semaphore) [below=of criticall {};
[:] \node [transition] (leave critical) [right=of criticall {I};

\node [transition] (enter critical) [left=of criticall {I};

\draw [->] (enter critical) -- (critical);

\draw [->] (waiting) .. controls +(left:8mm) and +(up:8mm)

. (enter critical);

<::> \end{tikzpicture}

Hagen is a bit surprised that this works. After all, how did TikZ know that the line from enter critical
to critical should actually start on the borders? Whenever TikZ encounters a whole node name as a
“coordinate”, it tries to “be smart” about the anchor that it should choose for this node. Depending on
what happens next, TikZ will choose an anchor that lies on the border of the node on a line to the next
coordinate or control point. The exact rules are a bit complex, but the chosen point will usually be correct
— and when it is not, Hagen can still specify the desired anchor by hand.

Hagen would now like to simplify the curve operation somehow. It turns out that this can be accomplished
using a special path operation: the to operation. This operation takes many options (you can even define
new ones yourself). One pair of options is useful for Hagen: The pair in and out. These options take angles
at which a curve should leave or reach the start or target coordinates. Without these options, a straight line
is drawn:

56

\usetikzlibrary {positioning}

\begin{tikzpicture}
\node [place] (waiting) {};
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of criticall {};

[:] \node [transition] (leave critical) [right=of criticall {};
\node [transition] (enter critical) [left=of criticall {I};
\draw [->] (enter critical) to (critical);
\draw [->] (waiting) to [out=180,in=90] (enter critical);
<::> \end{tikzpicture}

There is another option for the to operation, that is even better suited to Hagen’s problem: The
bend right option. This option also takes an angle, but this angle only specifies the angle by which
the curve is bent to the right:

\usetikzlibrary {positioning}

\begin{tikzpicture}
\node [place] (waiting) {3};
\node [place] (critical) [below=0f waiting]l {};
\node [place] (semaphore) [below=of criticall {};

[:] \node [transition] (leave critical) [right=of criticall {3};

\node[transition] (enter critical) [left=of criticall {};
\draw [->] (enter critical) to (critical);
\draw [->] (waiting) to [bend right=45] (enter critical);
\draw [->] (enter critical) to [bend right=45] (semaphore) ;

\end{tikzpicture}

It is now time for Hagen to learn about yet another way of specifying edges: Using the edge path
operation. This operation is very similar to the to operation, but there is one important difference: Like a
node the edge generated by the edge operation is not part of the main path, but is added only later. This
may not seem very important, but it has some nice consequences. For example, every edge can have its own
arrow tips and its own color and so on and, still, all the edges can be given on the same path. This allows
Hagen to write the following:

\usetikzlibrary {positioning}

\begin{tikzpicture}
\node [place] (waiting) {};
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of criticall {};
[:] \node [transition] (leave critical) [right=of criticall {I};
\node [transition] (enter critical) [left=of criticall {}
edge [->] (critical)

edge [<-,bend left=45] (waiting)
edge [->,bend right=45] (semaphore);
\end{tikzpicture}

Jo

Each edge caused a new path to be constructed, consisting of a to between the node enter critical
and the node following the edge command.

The finishing touch is to introduce two styles pre and post and to use the bend angle=45 option to set
the bend angle once and for all:

57

\usetikzlibrary {arrows.meta,positioning}
% Styles place and transition as before

\begin{tikzpicture}
[bend angle=45,

pre/.style={<-,shorten <=1pt,>={Stealth[round]},semithick},

//\\ post/.style={->,shorten >=1pt,>={Stealth[round]},semithick}]
N
\node [place] (waiting) {};
\node [place] (critical) [below=of waitingl {};
\node [place] (semaphore) [below=of criticall {};

\node [transition] (leave
edge [pre]
edge [post,bend right]
edge [pre, bend left]
\node [transition] (enter
edge [post]
edge [pre, bend left]
edge [post,bend right]

critical) [right=of criticall {}
(critical)

(waiting)

(semaphore) ;

critical) [left=of criticall
(critical)

(waiting)

(semaphore) ;

{3

\end{tikzpicture}

3.11 Adding Labels Next to Lines

The next thing that Hagen needs to add is the “2” at the arcs. For this Hagen can use TikZ’s automatic
node placement: By adding the option auto, TikZ will position nodes on curves and lines in such a way that
they are not on the curve but next to it. Adding swap will mirror the label with respect to the line. Here is
a general example:

\begin{tikzpicture} [auto,bend right]

120° 1 \node (a) at (0:1) {$0"\circ$};
} \node (b) at (120:1) {$120"\circ$};
2 (9 0° \node (c) at (240:1) {$240"\circ$};
_ji/// \draw (a) to node {1} node [swap] {1'} (b)
240° gy (b) to node {2} node [swap]l {2'} (c)
(c) to node {3} node [swap] {3'} (a);
\end{tikzpicture}

What is happening here? The nodes are given somehow inside the to operation! When this is done, the
node is placed on the middle of the curve or line created by the to operation. The auto option then causes
the node to be moved in such a way that it does not lie on the curve, but next to it. In the example we
provide even two nodes on each to operation.

For Hagen that auto option is not really necessary since the two “2” labels could also easily be placed
“by hand”. However, in a complicated plot with numerous edges automatic placement can be a blessing.

0!

\usetikzlibrary {arrows.meta,positioning}
/% Styles as before
\begin{tikzpicture} [bend angle=45]

\node [place] (waiting) {};
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of criticall {};

\node [transition]
edge [prel
edge [post,bend
edge [pre, bend

\node [transition]
edge [post]
edge [pre, bend
edge [post,bend

\end{tikzpicture}

e/

3.12

(leave critical) [right=of criticall {}

(critical)
right] nodelauto,swap] {2} (waiting)
left] (semaphore) ;
(enter critical) [left=of criticall {}

(critical)
left] (waiting)
right] (semaphore) ;

Adding the Snaked Line and Multi-Line Text

With the node mechanism Hagen can now easily create the two Petri nets. What he is unsure of is how he

can create the snaked line between the nets.
For this he can use a decoration. To draw
decoration=snake and decorate on the path.

the snaked line, Hagen only needs to set the two options
This causes all lines of the path to be replaced by snakes.

It is also possible to use snakes only in certain parts of a path, but Hagen will not need this.

58

ANANNANNSY> \usetikzlibrary {decorations.pathmorphing}
\begin{tikzpicture}
\draw [->,decorate,decoration=snake] (0,0) -- (2,0);
\end{tikzpicture}

Well, that does not look quite right, yet. The problem is that the snake happens to end exactly at the
position where the arrow begins. Fortunately, there is an option that helps here. Also, the snake should be
a bit smaller, which can be influenced by even more options.

ANNANNNNNNNNNNN \usetikzlibrary {decorations.pathmorphing}
\begin{tikzpicture}
\draw [->,decorate,
decoration={snake, amplitude=.4mm, segment length=2mm,post length=1mm}]
(0,0) -- (3,0);
\end{tikzpicture}

Now Hagen needs to add the text above the snake. This text is a bit challenging since it is a multi-line
text. Hagen has two options for this: First, he can specify an align=center and then use the \\ command
to enforce the line breaks at the desired positions.

\usetikzlibrary {decorations.pathmorphing}
replacement of \begin{tikzpi
. egin{tikzpicture}
the capacity \draw [->,decorate,
by'tvvo p]aces decoration={snake,amplitude=.4mm, segment length=2mm,post length=1mm}]
(0,0) -- (3,0)
node [above,align=center,midway]
{
replacement of\\
the \textcolor{red}{capacity}\\
by \textcolor{red}{two places}
3
\end{tikzpicture}

Instead of specifying the line breaks “by hand”, Hagen can also specify a width for the text and let TEX
perform the line breaking for him:

\usetikzlibrary {decorations.pathmorphing}
replacement of v 4 L

) \begin{tikzpicture}
the capacity \draw [->,decorate,
by’t\vo p]aces decoration={snake, amplitude=.4mm, segment length=2mm,post length=1mm}]

(0,0) -- (3,0)
node [above,text width=3cm,align=center,midway]
{
replacement of the \textcolor{red}{capacity} by
\textcolor{red}{two places}
};
\end{tikzpicture}

3.13 Using Layers: The Background Rectangles

Hagen still needs to add the background rectangles. These are a bit tricky: Hagen would like to draw the
rectangles after the Petri nets are finished. The reason is that only then can he conveniently refer to the
coordinates that make up the corners of the rectangle. If Hagen draws the rectangle first, then he needs to
know the exact size of the Petri net — which he does not.

The solution is to use layers. When the backgrounds library is loaded, Hagen can put parts of his picture
inside a scope with the on background layer option. Then this part of the picture becomes part of the
layer that is given as an argument to this environment. When the {tikzpicture} environment ends, the
layers are put on top of each other, starting with the background layer. This causes everything drawn on
the background layer to be behind the main text.

The next tricky question is, how big should the rectangle be? Naturally, Hagen can compute the size
“by hand” or using some clever observations concerning the x- and y-coordinates of the nodes, but it would
be nicer to just have TikZ compute a rectangle into which all the nodes “fit”. For this, the fit library can
be used. It defines the fit options, which, when given to a node, causes the node to be resized and shifted
such that it exactly covers all the nodes and coordinates given as parameters to the fit option.

59

()

\usetikzlibrary {arrows.meta,backgrounds,fit,positioning}
/% Styles as before
\begin{tikzpicture}[bend angle=45]

\node [place] (waiting) {il;
\node [place] (critical) [below=of waitingl {};
\node [place] (semaphore) [below=of criticall {};

\node [transition] (leave critical) [right=of criticall {}

edge [prel (critical)
edge [post,bend right] nodel[auto,swap] {2} (waiting)
edge [pre, bend left] (semaphore) ;
\node [transition] (enter critical) [left=of criticall {}
edge [post] (critical)
edge [pre, bend left] (waiting)
edge [post,bend right] (semaphore) ;

\begin{scope} [on background layer]
\node [fill=black!30,fit=(waiting) (critical) (semaphore)

(leave critical) (enter critical)] {};

\end{scope}
\end{tikzpicture}

3.14 The Complete Code

Hagen has now finally put everything together. Only then does he learn that there is already a library for
drawing Petri nets! It turns out that this library mainly provides the same definitions as Hagen did. For
example, it defines a place style in a similar way as Hagen did. Adjusting the code so that it uses the library

shortens Hagen code a bit, as shown in the following.

First, Hagen needs less style definitions, but he still needs to specify the colors of places and transi-

tions.
\begin{tikzpicture}
[node distance=1.3cm,on grid,>={Stealth[round]},bend angle=45,auto,
every place/.style= {minimum size=6mm,thick,draw=blue!75,fill=blue!20},
every transition/.style={thick,draw=black!75,fill=black!20},
red place/.style= {place,draw=red!75,fill=red/20},
every label/.style= {red}]

Now comes the code for the nets:

o
-
>

\usetikzlibrary {arrows.meta,petri,positioning}

\node [place,tokens=1] (w1l) 45
\node [place] (c1) [below=of wi] {};
\node [placel (s) [below=of c1,label=above:$s\le 381 {I};
\node [place] (c2) [below=of sl {};
\node [place,tokens=1] (w2) [below=of cZ2] s
\node [transition] (el) [left=of ci1] {}

edge [pre,bend left] (w1)

edge [post,bend right] (s)

edge [post] (c1);
\node [transition] (e2) [left=of c2] {}

edge [pre,bend right] (w2)

edge [post,bend left] (s)

edge [post] (c2);
\node [transition] (11) [right=of c1] {}

edge [pre] (c1)

edge [pre,bend left] (s)

edge [post,bend right] node[swap] {2} (wl);

\node [transition] (12) [right=of c2] {}
edge [prel (c2)
edge [pre,bend right] (s)
edge [post,bend left] node {2} w2) ;

60

\usetikzlibrary {arrows.meta,petri,positioning}

2 \begin{scopel} [xshift=6cm]

\node [place,tokens=1] (wi') {3};
\node [place] (c1') [below=of wi'] g

\node [red placel (s1') [below=of c1',xshift=-5mm]
O_' [label=left:$s8] 1F;

\node [red place,tokens=3] (s2') [below=of c1',xshift=5mm]

[label=right:$\bar sl {};
S 5 \node [place] (c2') [below=of s1',xshift=b6mm] {};
\node [place,tokens=1] (w2') [below=of c2'] {3};

\node [transition] (el') [left=of c1'] {}

<) edge [pre,bend left] (wi")
edge [post] (s1")

edge [pre] (s2")
edge [post] (c1');
2 \node [transition] (e2') [left=of c2'] {}
edge [pre,bend right] (w2')
edge [post] (s1")
edge [pre] (s2")
edge [post] (c2');
\node [transition] (11') [right=of c1'] {}
edge [pre] (c1")
edge [pre] (s1")
edge [post] (s2')

edge [post,bend right] nodel[swap] {2} (wl');
\node [transition] (12') [right=of c2'] {}

edge [pre] (c2")

edge [pre] (s1")

edge [post] (s2")

edge [post,bend left] mnode {2} (w2');
\end{scope}

The code for the background and the snake is the following;:

\begin{scopel} [on background layer]
\node (r1) [fill=black’/10,rounded corners,fit=(wl) (w2) (el) (e2)(11)(12)] {};
\node (r2) [fill=black!/10,rounded corners,fit=(w1')w2') (e1')(e2')(11')(12')] {};
\end{scope}

\draw [shorten >=1mm,-to,thick,decorate,
decoration={snake, amplitude=.4mm, segment length=2mm,
pre=moveto,pre length=1mm,post length=2mm}]
(r1) -- (r2) node [above=1mm,midway,text width=3cm,align=center]
{replacement of the \textcolor{red}{capacity} by \textcolor{red}{two places}};
\end{tikzpicture}

61

4 Tutorial: Euclid’s Amber Version of the FElements

In this third tutorial we have a look at how TikZ can be used to draw geometric constructions.

Euclid is currently quite busy writing his new book series, whose working title is “Elements” (Euclid is
not quite sure whether this title will convey the message of the series to future generations correctly, but he
intends to change the title before it goes to the publisher). Up to know, he wrote down his text and graphics
on papyrus, but his publisher suddenly insists that he must submit in electronic form. Euclid tries to argue
with the publisher that electronics will only be discovered thousands of years later, but the publisher informs
him that the use of papyrus is no longer cutting edge technology and Euclid will just have to keep up with
modern tools.

Slightly disgruntled, Euclid starts converting his papyrus entitled “Book I, Proposition I” to an amber
version.

4.1 Book I, Proposition I
The drawing on his papyrus looks like this:!

Proposition I
To construct an on a given finite straight line.

Let AB be the given finite straight line. It is required to construct an
on the straight line AB.

Describe the circle BC'D with center A and radius AB. Again describe
the circle ACE with center B and radius BA. Join the straight lines
CA and CB from the point C at which the circles cut one another to
the points A and B.

Now, since the point A is the center of the circle C' DB, therefore AC
equals AB. Again, since the point B is the center of the circle CAFE,
therefore BC' equals BA. But AC was proved equal to AB, therefore
each of the straight lines AC and BC' equals AB. And things which
equal the same thing also equal one another, therefore AC' also equals
BC'. Therefore the three straight lines AC, AB, and BC equal one
another. Therefore the ABC' is equilateral, and it has been

constructed on the given finite straight line AB.

Let us have a look at how Euclid can turn this into TikZ code.

4.1.1 Setting up the Environment

As in the previous tutorials, Euclid needs to load TikZ, together with some libraries. These libraries are
calc, intersections, through, and backgrounds. Depending on which format he uses, Euclid would use
one of the following in the preamble:

% For LaTeX:
\usepackage{tikz}
\usetikzlibrary{calc, intersections,through,backgrounds}

7% For plain TeX:
\input tikz.tex
\usetikzlibrary{calc,intersections,through,backgrounds}

% For ConTeXt:
\usemodule [tikz]
\usetikzlibrary[calc,intersections,through,backgrounds]

IThe text is taken from the wonderful interactive version of Euclid’s Elements by David E. Joyce, to be found on his website
at Clark University.

62

4.1.2 The Line AB

The first part of the picture that Euclid wishes to draw is the line AB. That is easy enough, something like
\draw (0,0) --(2,1); might do. However, Euclid does not wish to reference the two points A and B as
(0,0) and (2,1) subsequently. Rather, he wishes to just write A and B. Indeed, the whole point of his book
is that the points A and B can be arbitrary and all other points (like C') are constructed in terms of their
positions. It would not do if Euclid were to write down the coordinates of C' explicitly.

So, Euclid starts with defining two coordinates using the \coordinate command:

___— \begin{tikzpicture}
\coordinate (A) at (0,0);
\coordinate (B) at (1.25,0.25);

\draw[blue] (A) -- (B);
\end{tikzpicture}

That was easy enough. What is missing at this point are the labels for the coordinates. Euclid does not
want them on the points, but next to them. He decides to use the label option:

B \begin{tikzpicture}
A _— \coordinate [label=left:\textcolor{blue}{A}] (A) at (0,0);
\coordinate [label=right:\teztcolor{blue}{B}] (B) at (1.25,0.25);

\draw[blue] (4) -- (B);
\end{tikzpicture}

At this point, Euclid decides that it would be even nicer if the points A and B were in some sense
“random”. Then, neither Euclid nor the reader can make the mistake of taking “anything for granted”
concerning these position of these points. Euclid is pleased to learn that there is a rand function in TikZ
that does exactly what he needs: It produces a number between —1 and 1. Since TikZ can do a bit of math,
Euclid can change the coordinates of the points as follows:

\coordinate [...] (A) at (0+0.1*rand,0+0.1*rand);
\coordinate [...] (B) at (1.25+0.1*rand,0.25+0.1*rand);

This works fine. However, Euclid is not quite satisfied since he would prefer that the “main coordinates”
(0,0) and (1.25,0.25) are “kept separate” from the perturbation 0.1(rand, rand). This means, he would like
to specify that coordinate A as “the point that is at (0,0) plus one tenth of the vector (rand, rand)”.

It turns out that the calc library allows him to do exactly this kind of computation. When this library is
loaded, you can use special coordinates that start with ($ and end with $) rather than just (and). Inside
these special coordinates you can give a linear combination of coordinates. (Note that the dollar signs are
only intended to signal that a “computation” is going on; no mathematical typesetting is done.)

The new code for the coordinates is the following;:

\coordinate [...] (A) at ($ (0,0) + .1*(rand,rand) $);
\coordinate [...] (B) at ($ (1.25,0.25) + .1x(rand,rand) $);

Note that if a coordinate in such a computation has a factor (like . 1), you must place a * directly before
the opening parenthesis of the coordinate. You can nest such computations.

4.1.3 The Circle Around A

The first tricky construction is the circle around A. We will see later how to do this in a very simple manner,
but first let us do it the “hard” way.

The idea is the following: We draw a circle around the point A whose radius is given by the length of
the line AB. The difficulty lies in computing the length of this line.

Two ideas “nearly” solve this problem: First, we can write ($§ (A) - (B) $) for the vector that is the
difference between A and B. All we need is the length of this vector. Second, given two numbers z and
y, one can write veclen(x,y) inside a mathematical expression. This gives the value y/x? + y2, which is
exactly the desired length.

The only remaining problem is to access the z- and y-coordinate of the vector AB. For this, we need
a new concept: the let operation. A let operation can be given anywhere on a path where a normal path
operation like a line-to or a move-to is expected. The effect of a let operation is to evaluate some coordinates
and to assign the results to special macros. These macros make it easy to access the z- and y-coordinates of
the coordinates.

Euclid would write the following;:

63

\usetikzlibrary {calc}

\begin{tikzpicture}
\coordinate [label=left:4] (A) at (0,0);
B \coordinate [label=right:B] (B) at (1.25,0.25);

\draw (A) -- (B);

\draw (A) let
\pl = ($ (B) - (4) $)
in
circle ({veclen(\x1,\y1)});
\end{tikzpicture}

Each assignment in a let operation starts with \p, usually followed by a (digit). Then comes an equal
sign and a coordinate. The coordinate is evaluated and the result is stored internally. From then on you can
use the following expressions:

1. \x(digit) yields the z-coordinate of the resulting point.
2. \y(digit) yields the y-coordinate of the resulting point.
3. \p(digit) yields the same as \x(digit) , \y(digit).

You can have multiple assignments in a let operation, just separate them with commas. In later assignments
you can already use the results of earlier assignments.

Note that \p1 is not a coordinate in the usual sense. Rather, it just expands to a string like 10pt,20pt.
So, you cannot write, for instance, (\pl.center) since this would just expand to (10pt,20pt.center),
which makes no sense.

Next, we want to draw both circles at the same time. Each time the radius is veclen(\x1,\y1). It seems
natural to compute this radius only once. For this, we can also use a let operation: Instead of writing \p1
= ..., we write \n2 = Here, “n” stands for “number” (while “p” stands for “point”). The assignment
of a number should be followed by a number in curly braces.

\usetikzlibrary {calc}

\begin{tikzpicture}
\coordinate [label=left:4] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);

\draw let \pl
\n2
in
(A) circle (\n2)
(B) circle (\n2);
\end{tikzpicture}

($ (B - (1) $,
{veclen(\x1,\y1)}

In the above example, you may wonder, what \n1 would yield? The answer is that it would be undefined
— the \p, \x, and \y macros refer to the same logical point, while the \n macro has “its own namespace”.
We could even have replaced \n2 in the example by \n1 and it would still work. Indeed, the digits following
these macros are just normal TEX parameters. We could also use a longer name, but then we have to use
curly braces:

\usetikzlibrary {calc}

\begin{tikzpicture}
\coordinate [label=left:4] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);

\draw let \pi
\n{radius}
in
(A) circle (\n{radius})
(B) circle (\n{radius});
\end{tikzpicture}

$ (B - A %,
{veclen(\x1,\y1)}

At the beginning of this section it was promised that there is an easier way to create the desired circle.
The trick is to use the through library. As the name suggests, it contains code for creating shapes that go
through a given point.

The option that we are looking for is circle through. This option is given to a node and has the
following effects: First, it causes the node’s inner and outer separations to be set to zero. Then it sets the

64

shape of the node to circle. Finally, it sets the radius of the node such that it goes through the parameter
given to circle through. This radius is computed in essentially the same way as above.

\usetikzlibrary {through}

\begin{tikzpicture}
\coordinate [label=left:4] (A) at (0,0);
B \coordinate [label=right:B] (B) at (1.25,0.25);

\draw (A) -- (B);

\node [draw,circle through=(B),label=left:D] at (A) {};
\end{tikzpicture}

4.1.4 The Intersection of the Circles

Euclid can now draw the line and the circles. The final problem is to compute the intersection of the two
circles. This computation is a bit involved if you want to do it “by hand”. Fortunately, the intersections
library allows us to compute the intersection of arbitrary paths.

The idea is simple: First, you “name” two paths using the name path option. Then, at some later
point, you can use the option name intersections, which creates coordinates called intersection-1,
intersection-2, and so on at all intersections of the paths. FEuclid assigns the names D and E to the paths
of the two circles (which happen to be the same names as the nodes themselves, but nodes and their paths
live in different “namespaces”).

C

N, s

\usetikzlibrary {intersections,through}
\begin{tikzpicture}
\coordinate [label=left:4] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);

\node (D) [name path=D,draw,circle through=(B),label=left:D] at (A) {};
\node (E) [name path=E,draw,circle through=(4),label=right:E] at (B) {};

% Name the coordinates, but do not draw anything:
\path [name intersections={of=D and E}];

\coordinate [label=above:C] (C) at (intersection-1);
\draw [red] (A) -- (C);
\draw [red] (B) -- (C);

\end{tikzpicture}

It turns out that this can be further shortened: The name intersections takes an optional argument
by, which lets you specify names for the coordinates and options for them. This creates more compact code.
Although Euclid does not need it for the current picture, it is just a small step to computing the bisection
of the line AB:

N\
D/

65

\usetikzlibrary {intersections,through}
\begin{tikzpicture}
\coordinate [label=left:4] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw [name path=4--B] (A) -- (B);

\node (D) [name path=D,draw,circle through=(B),label=left:D] at (A) {};
\node (E) [name path=E,draw,circle through=(4),label=right:E] at (B) {};

\path [name intersections={of=D and E, by={[label=above:$CHIC, [label=below:$C'$IC'}};
\draw [name path=C--C’,red] (C) -- (C');
\path [name intersections={of=4--B and C--C',by=F}];

\node [fill=red,inner sep=1pt,label=-45:F] at (F) {};
\end{tikzpicture}

4.1.5 The Complete Code

Back to Euclid’s code. He introduces a few macros to make life simpler, like a \A macro for typesetting a
blue A. He also uses the background layer for drawing the triangle behind everything at the end.

Proposition I
To construct an cquilateral triangle on a given finite straight line.

Let AB be the given finite straight line. ..

'y N

\usetikzlibrary {backgrounds,calc,intersections,through}

\begin{tikzpicture}[thick,help lines/.style={thin,draw=black/50}]

\def\A{\textcolor{input}{A}} \def\B{\textcolor{input}{B}}
\def\C{\textcolor{output}{C}} \def\D{D}
\def\E{E}

\colorlet{input}{blue!80!black} \colorlet{output}{red!70!black}
\colorlet{triangle}{orange}

\coordinate [label=left:\4] (A) at ($ (0,0) + .1x(rand,rand) $);
\coordinate [label=right:\B] (B) at ($ (1.25,0.25) + .1x(rand,rand) $);

\draw [input] (A) -- (B);

\node [name path=D,help lines,draw,label=left:\D] (D) at (A) [circle through=(B)] {};
\node [name path=E,help lines,draw,label=right:\E] (E) at (B) [circle through=(4)] {};

\path [name intersections={of=D and E,by={[label=above:\C]C}}];
\draw [output] (A) -- (C) -- (B);

\foreach \point in {A,B,C}
\fill [black,opacity=.5] (\point) circle (2pt);

\begin{pgfonlayer}{background}
\fill[triangle!80] (A) -- (C) -- (B) -- cycle;
\end{pgfonlayer}

\node [below right, text width=10cm,align=justify]l at (4,3) {
\small\textbf{Proposition I}\par
\emph{To construct an \textcolor{trianglel}{equilateral triangle}
on a given \textcolor{input}{finite straight line}.}
\par\vskiplem
Let \A\B\ be the given \textcolor{input}{finite straight line}. \dots
T;
\end{tikzpicture}

66

4.2 Book I, Proposition II

The second proposition in the Elements is the following:

Proposition II
To place a straight line equal to a given straight line with one
end at a

Let A be the given point, and BC the given straight line. It is
required to place a straight line equal to the given straight line
BC with one end at the point
Join the straight line AB from the point A to the point B, and
construct the equilateral triangle DAB on it.
Produce the straight lines AE and BF in a straight line with D
and DB. Describe the circle CGH with center B and radius BC,
and again, describe the circle GK L with center D and radius
DQ@G.
Since the point B is the center of the circle CGH, therefore BC
equals BG. Again, since the point D is the center of the circle
GK L, therefore DL equals DG. And in these DA equals DB,
therefore the remainder AL equals the remainder BG. But BC
was also proved equal to BG, therefore each of the straight lines
L and BC equals BG. And things which equal the same thing
also equal one another, therefore AL also equals BC'

Therefore the straight line AL equal to the given straight line
BC has been placed with one end at the

4.2.1 Using Partway Calculations for the Construction of D

Euclid’s construction starts with “referencing” Proposition I for the construction of the point D. Now, while
we could simply repeat the construction, it seems a bit bothersome that one has to draw all these circles
and do all these complicated constructions.

For this reason, TikZ supports some simplifications. First, there is a simple syntax for computing a point
that is “partway” on a line from p to ¢: You place these two points in a coordinate calculation — remember,
they start with ($ and end with $) — and then combine them using ! (part)!. A (part) of 0 refers to the first
coordinate, a (part) of 1 refers to the second coordinate, and a value in between refers to a point on the line
from p to q. Thus, the syntax is similar to the xcolor syntax for mixing colors.

Here is the computation of the point in the middle of the line AB:

B \usetikzlibrary {calc}
A e \begin{tikzpicture}
X \coordinate [label=left:4] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);
\node [fill=red,inner sep=Ipt,label=below:X] (X) at ($ (A)!.5!(B) $) {};
\end{tikzpicture}

The computation of the point D in Euclid’s second proposition is a bit more complicated. It can be
expressed as follows: Consider the line from X to B. Suppose we rotate this line around X for 90° and then
stretch it by a factor of sin(60°) - 2. This yields the desired point D. We can do the stretching using the
partway modifier above, for the rotation we need a new modifier: the rotation modifier. The idea is that
the second coordinate in a partway computation can be prefixed by an angle. Then the partway point is
computed normally (as if no angle were given), but the resulting point is rotated by this angle around the
first point.

D \usetikzlibrary {calc}
. \begin{tikzpicture}
\coordinate [label=left:4] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
B \draw (A) -- (B);
X \node [fill=red,inner sep=Ipt,label=below:X] (X) at ($ (A)!.5!(B) $) {};
\node [fill=red,inner sep=1pt,label=above:D] (D) at
($ (X) ! {sin(60)*2} ! 90:(B) $) {};
\draw (A) -- (D) -- (B);
\end{tikzpicture}

67

Finally, it is not necessary to explicitly name the point X. Rather, again like in the xcolor package, it
is possible to chain partway modifiers:

l) \usetikzlibrary {calc}
\begin{tikzpicture}
\coordinate [label=left:4] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
B \draw (A) -- (B);
A \node [fill=red,inner sep=1pt,label=above:D] (D) at
($ (&) ! .51 (B) ! {sin(60)*2} ! 90:(B) $) {};
\draw (A) -- (D) -- (B);
\end{tikzpicture}

4.2.2 Intersecting a Line and a Circle

The next step in the construction is to draw a circle around B through C, which is easy enough to do using
the circle through option. Extending the lines DA and DB can be done using partway calculations, but
this time with a part value outside the range [0,1]:

\usetikzlibrary {calc,through}
\begin{tikzpicture}

\coordinate [label=left:4] (A) at (0,0);

\coordinate [label=right:B] (B) at (0.75,0.25);

\coordinate [label=above:C] (C) at (1,1.5);

\draw (A) -- (B) -- (C);

\coordinate [label=above:D] (D) at

($ (A) ' .51 (B) ! {sin(60)*2} ! 90:(B) $) {};

\node (H) [label=135:H,draw,circle through=(C)] at (B) {};

\draw (D) -- ($ (D) ! 3.5 ! (B) $) coordinate [label=below:F] (F);

\draw (D) -- ($ (D) ! 2.5 ! (A) $) coordinate [label=below:E] (E);
\end{tikzpicture}

We now face the problem of finding the point G, which is the intersection of the line BF' and the circle H.
One way is to use yet another variant of the partway computation: Normally, a partway computation has the
form (p)! (factor)!{q), resulting in the point (1 — (factor)){p) + (factor)(q). Alternatively, instead of (factor)
you can also use a (dimension) between the points. In this case, you get the point that is (dimension) away
from (p) on the straight line to (g).

We know that the point G is on the way from B to F'. The distance is given by the radius of the circle H.
Here is the code for computing H:

\usetikzlibrary {calc,through}
\node (H) [label=135:H,draw,circle through=(C)] at (B) {};
\path let \p1 = (§ (B) - (C) $) in
coordinate [label=left:G] (G) at ($ (B) ! veclen(\x1,\y1) ! (F) $);
\fill[red,opacity=.5] (G) circle (2pt);

However, there is a simpler way: We can simply name the path of the circle and of the line in question
and then use name intersections to compute the intersections.

\usetikzlibrary {calc,intersections,through}
\node (H) [name path=H,label=135:8H$,draw,circle through=(C)] at (B) {};
\path [name path=B--F] (B) —- (F);
\path [name intersections={of=H and B--F,by={[label=left:G]IG}}];
\fill[red,opacity=.5] (G) circle (2pt);

68

4.2.3 The Complete Code

\usetikzlibrary {calc,intersections,through}

\begin{tikzpicture}[thick,help lines/.style={thin,draw=black!/50}]
\def\A{\textcolor{orange}{A}} \def\B{\textcolor{input}{B}}
\def\C{\textcolor{input}{C}} \def\D{D}

\def\E{E} \def\F{F}
\def\G{G} \def \H{H}
\def\K{K} \def\L{\textcolor{output}{L}}

\colorlet{input}{blue!80!black} \colorlet{output}{red!70!black}
\coordinate [label=left:\4] (A) at ($ (0,0) + .1x(rand,rand) $);
\coordinate [label=right:\B] (B) at ($ (1,0.2) + .1x(rand,rand) $);
\coordinate [label=above:\C] (C) at ($ (1,2) + .1x(rand,rand) $);

\draw [input] (B) -- (C);
\draw [help lines] (A) -- (B);

\coordinate [label=above:\D] (D) at ($ (A)!.5!(B) ! {sin(60)*2} ! 90:(B) $);

\draw [help lines] (D) -- ($ (D)!3.75!(A) $) coordinate [label=-135:\E] (E);
\draw [help lines] (D) -- ($ (D)!3.75!(B) $) coordinate [label=-45:\F] (F);

\node (H) at (B) [name path=H,help lines,circle through=(C),draw,label=135:\H] {};
\path [name path=B--F] (B) -- (F);

\path [name intersections={of=H and B--F,by={[label=right:\GJG}} ;

\node (K) at (D) [name path=K,help lines,circle through=(G),draw,label=135:\K] {};
\path [name path=4--E] (A) -- (E);

\path [name intersections={of=K and A--E,by={[label=below:\LJL}}];

\draw [output] (&) -- (L);

\foreach \point in {A,B,C,D,G,L}
\fill [black,opacity=.5] (\point) circle (2pt);

% \node ...
\end{tikzpicture}

69

5 Tutorial: Diagrams as Simple Graphs

In this tutorial we have a look at how graphs and matrices can be used to typeset a diagram.

Ilka, who just got tenure for her professorship on Old and Lovable Programming Languages, has recently
dug up a technical report entitled The Programming Language Pascal in the dusty cellar of the library of
her university. Having been created in the good old times using pens and rules, it looks like this?:

unsigned integer

—»Lunsigned integer

For her next lecture, Ilka decides to redo this diagram, but this time perhaps a bit cleaner and perhaps
also bit “cooler”.

—>| unsigned integer i»@

—I—>{ digit) L l unsigned integer —J—>

Having read the previous tutorials, Ilka knows already how to set up the environment for her diagram,
namely using a tikzpicture environment. She wonders which libraries she will need. She decides that she
will postpone the decision and add the necessary libraries as needed as she constructs the picture.

5.1 Styling the Nodes

The bulk of this tutorial will be about arranging the nodes and connecting them using chains, but let us
start with setting up styles for the nodes.

There are two kinds of nodes in the diagram, namely what theoreticians like to call terminals and
nonterminals. For the terminals, Ilka decides to use a black color, which visually shows that “nothing needs
to be done about them”. The nonterminals, which still need to be “processed” further, get a bit of red mixed
in.

Ilka starts with the simpler nonterminals, as there are no rounded corners involved. Naturally, she sets
up a style:

. B \usetikzlibrary {positioning}
unsigned integer \begin{tikzpicture}[
nonterminal/.style={
/% The shape:
rectangle,
/% The size:
minimum size=6mm,
% The border:
very thick,
draw=red!50!black!50, 4 50% red and 50) black,
7 and that mized with 50/ white

% The filling:

top color=white, /% a shading that is white at the top...
bottom color=red!/50/black!20, 7 and something else at the bottom
% Font
font=\itshape
H
\node [nonterminal] {unsigned integer};
\end{tikzpicture}

Tlka is pretty proud of the use of the minimum size option: As the name suggests, this option ensures
that the node is at least 6mm by 6mm, but it will expand in size as necessary to accommodate longer text.
By giving this option to all nodes, they will all have the same height of 6mm.

Styling the terminals is a bit more difficult because of the round corners. Ilka has several options how
she can achieve them. One way is to use the rounded corners option. It gets a dimension as parameter

2The shown diagram was not scanned, but rather typeset using TikZ. The jittering lines were created using the randomsteps
decoration.

70

and causes all corners to be replaced by little arcs with the given dimension as radius. By setting the radius
to 3mm, she will get exactly what she needs: circles, when the shapes are, indeed, exactly 6mm by 6mm
and otherwise half circles on the sides:

. - \usetikzlibrary {positioning}
Q @ \begin{tikzpicture}[node distance=5mm,
terminal/.style={

/% The shape:
rectangle,minimum size=6mm,rounded corners=3mm,
/% The rest
very thick,draw=black!50,
top color=white,bottom color=black!20,

font=\ttfamily}]

\node (dot) [terminal] L

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal ,right=of digit] {E};
\end{tikzpicture}

Another possibility is to use a shape that is specially made for typesetting rectangles with arcs on the
sides (she has to use the shapes.misc library to use it). This shape gives Ilka much more control over the
appearance. For instance, she could have an arc only on the left side, but she will not need this.

.. \usetikzlibrary {positioning,shapes.misc}
@ @ \begin{tikzpicture}[node distance=5mn,
terminal/.style={

% The shape:
rounded rectangle,
minimum size=6mm,
% The rest
very thick,draw=black!50,
top color=white,bottom color=black!20,
font=\ttfamily}]

\node (dot) [terminal] Lolrg

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal,right=of digit] {E};
\end{tikzpicture}

At this point, she notices a problem. The baseline of the text in the nodes is not aligned:

(.. \ \usetikzlibrary {calc,positioning,shapes.misc}
flq\ digit f:;\ y P & P

N S 7 < \begin{tikzpicture}[node distance=5mm]

\node (dot) [terminall Lalrg
\node (digit) [terminal,right=of dot] {digit};
\node (E) [terminal ,right=of digit] {E};

\draw [help lines] let \pl = (dot.base),
\p2 = (digit.base),
\p3 = (E.base)
in (-.5,\y1) -- (3.5,\y1)
(-.5,\y2) -- (3.5,\y2)
(=.5,\y3) == (3.5,\y3);

\end{tikzpicture}

(Ilka has moved the style definition to the preamble by saying \tikzset{terminal/.style=...}, so that
she can use it in all pictures.)

For the digit and the E the difference in the baselines is almost imperceptible, but for the dot the
problem is quite severe: It looks more like a multiplication dot than a period.

Ilka toys with the idea of using the base right=of... option rather than right=of... to align the
nodes in such a way that the baselines are all on the same line (the base right option places a node right
of something so that the baseline is right of the baseline of the other object). However, this does not have
the desired effect:

. \usetikzlibrary {positioning,shapes.misc}
@ \begin{tikzpicture} [node distance=5mm]

\node (dot) [terminal] Lo g

\node (digit) [terminal,base right=of dot] {digit};

\node (E) [terminal ,base right=of digit] {E};
\end{tikzpicture}

The nodes suddenly “dance around”! There is no hope of changing the position of text inside a node
using anchors. Instead, Ilka must use a trick: The problem of mismatching baselines is caused by the fact

71

that . and digit and E all have different heights and depth. If they all had the same, they would all be
positioned vertically in the same manner. So, all Ilka needs to do is to use the text height and text depth
options to explicitly specify a height and depth for the nodes.

.. \usetikzlibrary {positioning,shapes.misc}
digit \begin{tikzpicture} [node distance=5mm