|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectucar.jpeg.jj2000.j2k.wavelet.analysis.AnWTFilter
ucar.jpeg.jj2000.j2k.wavelet.analysis.AnWTFilterFloat
public abstract class AnWTFilterFloat
This extends the analysis wavelet filter general definitions of AnWTFilter by adding methods that work for float data specifically. Implementations that work on float data should inherit from this class.
See the AnWTFilter class for details such as normalization, how to split odd-length signals, etc.
The advantage of using the specialized method is that no casts are performed.
AnWTFilter
Field Summary |
---|
Fields inherited from class ucar.jpeg.jj2000.j2k.wavelet.analysis.AnWTFilter |
---|
OPT_PREFIX |
Fields inherited from interface ucar.jpeg.jj2000.j2k.wavelet.WaveletFilter |
---|
WT_FILTER_FLOAT_CONVOL, WT_FILTER_FLOAT_LIFT, WT_FILTER_INT_LIFT |
Constructor Summary | |
---|---|
AnWTFilterFloat()
|
Method Summary | |
---|---|
abstract void |
analyze_hpf(float[] inSig,
int inOff,
int inLen,
int inStep,
float[] lowSig,
int lowOff,
int lowStep,
float[] highSig,
int highOff,
int highStep)
A specific version of the analyze_hpf() method that works on int data. |
void |
analyze_hpf(Object inSig,
int inOff,
int inLen,
int inStep,
Object lowSig,
int lowOff,
int lowStep,
Object highSig,
int highOff,
int highStep)
The general version of the analyze_hpf() method, it just calls the specialized version. |
abstract void |
analyze_lpf(float[] inSig,
int inOff,
int inLen,
int inStep,
float[] lowSig,
int lowOff,
int lowStep,
float[] highSig,
int highOff,
int highStep)
A specific version of the analyze_lpf() method that works on int data. |
void |
analyze_lpf(Object inSig,
int inOff,
int inLen,
int inStep,
Object lowSig,
int lowOff,
int lowStep,
Object highSig,
int highOff,
int highStep)
The general version of the analyze_lpf() method, it just calls the specialized version. |
int |
getDataType()
Returns the type of data on which this filter works, as defined in the DataBlk interface, which is always TYPE_FLOAT for this class. |
Methods inherited from class ucar.jpeg.jj2000.j2k.wavelet.analysis.AnWTFilter |
---|
getFilterType, getHPSynthesisFilter, getHPSynWaveForm, getLPSynthesisFilter, getLPSynWaveForm, getParameterInfo |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface ucar.jpeg.jj2000.j2k.wavelet.WaveletFilter |
---|
getAnHighNegSupport, getAnHighPosSupport, getAnLowNegSupport, getAnLowPosSupport, getImplType, getSynHighNegSupport, getSynHighPosSupport, getSynLowNegSupport, getSynLowPosSupport, isReversible, isSameAsFullWT |
Constructor Detail |
---|
public AnWTFilterFloat()
Method Detail |
---|
public abstract void analyze_lpf(float[] inSig, int inOff, int inLen, int inStep, float[] lowSig, int lowOff, int lowStep, float[] highSig, int highOff, int highStep)
inSig
- This is the array that contains the input
signal.inOff
- This is the index in inSig of the first sample to
filter.inLen
- This is the number of samples in the input signal
to filter.inStep
- This is the step, or interleave factor, of the
input signal samples in the inSig array.lowSig
- This is the array where the low-pass output
signal is placed.lowOff
- This is the index in lowSig of the element where
to put the first low-pass output sample.lowStep
- This is the step, or interleave factor, of the
low-pass output samples in the lowSig array.highSig
- This is the array where the high-pass output
signal is placed.highOff
- This is the index in highSig of the element where
to put the first high-pass output sample.highStep
- This is the step, or interleave factor, of the
high-pass output samples in the highSig array.AnWTFilter.analyze_lpf(java.lang.Object, int, int, int, java.lang.Object, int, int, java.lang.Object, int, int)
public void analyze_lpf(Object inSig, int inOff, int inLen, int inStep, Object lowSig, int lowOff, int lowStep, Object highSig, int highOff, int highStep)
analyze_lpf
in class AnWTFilter
inSig
- This is the array that contains the input
signal. It must be an float[].inOff
- This is the index in inSig of the first sample to
filter.inLen
- This is the number of samples in the input signal
to filter.inStep
- This is the step, or interleave factor, of the
input signal samples in the inSig array.lowSig
- This is the array where the low-pass output
signal is placed. It must be an float[].lowOff
- This is the index in lowSig of the element where
to put the first low-pass output sample.lowStep
- This is the step, or interleave factor, of the
low-pass output samples in the lowSig array.highSig
- This is the array where the high-pass output
signal is placed. It must be an float[].highOff
- This is the index in highSig of the element where
to put the first high-pass output sample.highStep
- This is the step, or interleave factor, of the
high-pass output samples in the highSig array.AnWTFilter.analyze_lpf(java.lang.Object, int, int, int, java.lang.Object, int, int, java.lang.Object, int, int)
public abstract void analyze_hpf(float[] inSig, int inOff, int inLen, int inStep, float[] lowSig, int lowOff, int lowStep, float[] highSig, int highOff, int highStep)
inSig
- This is the array that contains the input
signal.inOff
- This is the index in inSig of the first sample to
filter.inLen
- This is the number of samples in the input signal
to filter.inStep
- This is the step, or interleave factor, of the
input signal samples in the inSig array.lowSig
- This is the array where the low-pass output
signal is placed.lowOff
- This is the index in lowSig of the element where
to put the first low-pass output sample.lowStep
- This is the step, or interleave factor, of the
low-pass output samples in the lowSig array.highSig
- This is the array where the high-pass output
signal is placed.highOff
- This is the index in highSig of the element where
to put the first high-pass output sample.highStep
- This is the step, or interleave factor, of the
high-pass output samples in the highSig array.AnWTFilter.analyze_hpf(java.lang.Object, int, int, int, java.lang.Object, int, int, java.lang.Object, int, int)
public void analyze_hpf(Object inSig, int inOff, int inLen, int inStep, Object lowSig, int lowOff, int lowStep, Object highSig, int highOff, int highStep)
analyze_hpf
in class AnWTFilter
inSig
- This is the array that contains the input
signal. It must be an float[].inOff
- This is the index in inSig of the first sample to
filter.inLen
- This is the number of samples in the input signal
to filter.inStep
- This is the step, or interleave factor, of the
input signal samples in the inSig array.lowSig
- This is the array where the low-pass output
signal is placed. It must be an float[].lowOff
- This is the index in lowSig of the element where
to put the first low-pass output sample.lowStep
- This is the step, or interleave factor, of the
low-pass output samples in the lowSig array.highSig
- This is the array where the high-pass output
signal is placed. It must be an float[].highOff
- This is the index in highSig of the element where
to put the first high-pass output sample.highStep
- This is the step, or interleave factor, of the
high-pass output samples in the highSig array.AnWTFilter.analyze_hpf(java.lang.Object, int, int, int, java.lang.Object, int, int, java.lang.Object, int, int)
public int getDataType()
jj2000.j2k.image.DataBlk
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |