ERLANG

IC

Copyright © 1998-2017 Ericsson AB. All Rights Reserved.
ic4.4

April 25, 2017

Copyright © 1998-2017 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

April 25, 2017

1.1 Using the IC Compiler

1 IC User's Guide

The IC application is an Erlang implementation of an IDL compiler.

1.1 Using the IC Compiler

1.1.1 Introduction

The IC application is an IDL compiler implemented in Erlang. The IDL compiler generates client stubs and server
skeletons. Several back-ends are supported, and they fall into three main groups.

Thefirst group consists of a CORBA back-end:
IDL to Erlang CORBA

This back-end is for CORBA communication and implementation, and the generated code uses the CORBA
specific protocol for communication between clients and servers. See the Orber application User's Guide and
manuals for further details.

The second group consists of a simple Erlang back-end:
IDL to plain Erlang

This back-end provides avery simple Erlang client interface. It can only be used within an Erlang node, and the
communication between client and "server" is therefore in terms of ordinary function calls.

This back-end can be considered a short-circuit version of the IDL to Erlang gen_server back-end (see further
below).

The third group consists of backends for Erlang, C, and Java. The communication between clients and serversis by
the Erlang distribution protocol, facilitated by erl_interface and jinterface for C and Java, respectively.

All back-ends of the third group generate code compatible with the Erlang gen_server behavior protocol. Thus
generated client code correspondsto cal | () or cast () of an Erlang gen_ser ver. Similarly, generated server
code correspondsto handl e_cal | () or handl e_cast () of an Erlang gen_ser ver .

The back-ends of the third group are:
IDL to Erlang gen_server
Client stubs and server skeletons are generated. Data types are mapped according to the IDL to Erlang mapping
described in the Orber User's Guide.
IDL to Cclient
Client stubs are generated. The mapping of data typesis described further on in the C client part of this guide.
IDL to C server
Server skeletons are generated. The mapping of datatypesisdescribed further oninthe C server part of thisguide.
IDL to Java

Client stubs and server skeletons are generated. The mapping of data types is described further on in the Java
part of this guide.

Ericsson AB. All Rights Reserved.: ic | 1

1.2 OMG IDL

1.1.2 Compilation of IDL Files

The IC compiler isinvoked by executing the generic er | ¢ compiler from a shell:
% erlc + {be, BackEnd}' File.idl

where Back End is according to the table below, and Fi | e. i dl isthelIDL fileto be compiled.

Back-end BackEndoption
IDL to CORBA erl _corba
IDL to CORBA template er|l _tenplate
IDL to plain Erlang erl _plain
IDL to Erlang gen_server erl _genserv
IDL to Cclient c_client

IDL to C server c_server

IDL to Java j ava

Table 1.1: Compiler back-ends and options

For more details on IC compiler options consult the ic(3) manual page.

1.2 OMG IDL

1.2.1 OMG IDL - Overview

The purpose of OMG IDL, Interface Definition Language, mapping is to act as trandator between platforms and
languages. An IDL specification is supposed to describe data types, object types etc.

Since the C and Java IC backends only supports a subset of the IDL types supported by the other backends, the
mapping is divided into different parts. For more information about IDL to Erlang mapping, i.e., CORBA, plain Erlang
and generic Erlang Server, see the Orber User's Guide. How to use the plain Erlang and generic Erlang Server isfound
in this User's Guide.

Reserved Compiler Names and Keywords

The use of some names is strongly discouraged due to ambiguities. However, the use of some names is prohibited
when using the Erlang mapping , as they are strictly reserved for IC.

IC reserves dl identifiers starting with OE_ and oe__ for internal use.

Note also, that an identifier in IDL can contain aphabetic, digits and underscore characters, but the first character
must be al phabetic.

Using underscores in IDL names can lead to ambiguities due to the name mapping described above. It is advisable
to avoid the use of underscores in identifiers.

2 | Ericsson AB. All Rights Reserved.: ic

1.2 OMG IDL

The OMG defines a set of reserved words, shown below, for use as keywords. These may not be used as, for example,

identifiers.

abstract double local raises typedef
any exception long readonly unsigned
attribute enum module sequence union
boolean factory native short VaueBase
case FALSE Object string valuetype
char fixed octet struct void
const float oneway supports wchar
context in out switch wstring
custom inout private TRUE

default interface public truncatable

Table 2.1: OMG IDL keywords

The keywords listed above must be written exactly as shown. Any usage of identifiers that collide with a keyword
isillegal. For example, long is a valid keyword; Long and LONG are illegal as keywords and identifiers. But, since
the OMG must be able to expand the IDL grammar, it is possible to use Escaped |dentifiers. For example, it is not
unlikely that nat i ve have been used in IDL-specifications as identifiers. One option is to change all occurrences
tomyNat i ve. Usually, it is necessary to change programming language code that depends upon that IDL as well.
Since Escaped Identifiers just disable type checking (i.e. if it is a reserved word or not) and leaves everything else
unchanged, it is only necessary to update the I DL-specification. To escape an identifier, smply prefix it with _. The
following IDL-codeisillega:

typedef string native;

interface i {

void foo(in native Arg);

}s
}s

With Escaped Identifiers the code will look like:

typedef string _native;

interface i {

void foo(in _native Arg);

b
) ¢

Ericsson AB. All Rights Reserved.: ic | 3

1.3 IC Protocol

1.3 IC Protocol

The purpose of this chapter is to explain the bits and bytes of the IC protocol, which is a composition of the Erlang
distribution protocol and the Erlang/OTP gen_server protocol. If you do not intend to replace the Erlang distribution
protocol, or replace the gen_server protocol, skip over this chapter.

1.3.1 Introduction

The IDL Compiler (IC) transforms Interface Definition Language (IDL) specifications files to interface code for
Erlang, C, and Java. The Erlang language mapping is described in the Orber documentation, while the other mappings
aredescribed inthe | C documentation (they are of coursein accordancewiththe CORBA C and Javalanguage mapping
specifications, with some restrictions).

Themost important parts of an IDL specification are the operation declarations. An operation defineswhat information
a client provides to a server, and what information (if any) the client gets back from the server. We consider IDL
operations and language mappings in section 2.

What we herecall the | C protocol, isthe description of messages exchanged between |1C end-points (client and servers).
It isvalid for all IC back-ends, except the 'erl_plain' and 'erl_corba' back-ends. The IC protocol isin turn embedded
into the Erlang gen_server protocol, which is described below. Finaly, the gen_server protocol is embedded in the
Erlang distribution protocol. Pertinent parts of that protocol is described further below.

1.3.2 Language mappings and IDL operations
IDL Operations

An IDL operation is declared as follows:

[oneway] Ret Type Op(in |ITypel 11, in |IType2 12, ..., in |TypeN IN,
out Olypel Ol, out Olype2 @, ..., out OlypeM OV
N M=0, 1, 2, ... (2.1.1)

"Op' isthe operation name, RetTypeisthe return type, and I Typei, i =1, 2, ..., N, and OTypej,j =1, 2, ..., M, are the
“in' types and “out' types, respectively. Thevalues 11, 12, ..., IN are provided by the caller, and the value of RetType,
and the values O1, O2, ..., OM, are provided as results to the caller.

The types can be any basic types or derived types declared in the IDL specification of which the operation declaration
isapart.

If the RetType hasthe special name “void' thereisno return value (but there might still beresult valuesO1, 02, ..., OM).

The "in' and “out' parameters can be declared in any order, but for clarity we have listed all “in' parameters before the
“out' parameters in the declaration above.

If the keyword “oneway' is present, the operation is a cadt, i.e. there is no confirmation of the operation, and
consequently there must be no result values: RetType must be equal to “void', and M = 0 must hold.

Otherwise the operation isacall, i.e. it is confirmed (or else an exception is raised).
Note carefully that an operation declared without “oneway' is always acall, even if RetTypeis "void and M = 0.
Language Mappings

There are severa CORBA Language Mapping specifications. These are about mapping interfaces to various
programming languages. 1C supports the CORBA C and Java mapping specifications, and the Erlang language
mapping specified in the Orber documentation.

4 | Ericsson AB. All Rights Reserved.: ic

1.3 IC Protocol

Excerpt from "6.4 Basic OMG IDL Types' in the Orber User's Guide:
* Functions with return type void will return the atom ok.
Excerpt from "6.13 Invocations of Operations” in the Orber User's Guide:

e A function call will invoke an operation. The first parameter of the function should be the object reference and
then al in and inout parameters follow in the same order as specified in the IDL specification. The result will be
areturn value unless the function has inout or out parameters specified; in which case, atuple of the return value,
followed by the parameters will be returned.

Hence the function that is mapped from an IDL operation to Erlang always have a return value (an Erlang function
always has). That fact has influenced the I C protocal, in that there is always a return value (which is'ok' if the return
type was declared 'void').

1.3.3 IC Protocol
Given the operation declaration (2.1.1) the IC protocol maps to messages as follows, defined in terms of Erlang terms.

Call (Request/Reply, i.e. not oneway)

request: (0] atom() N=20
{Op, 11, 12, ..., IN tupl e() N>0

(3.1.1)
reply: Ret M=0
{Ret, 01, @2, ..., OM M> 0

(3.1.2)

Notice: Even if the RetType of the operation Op is declared to be 'void', a return value 'ok' is returned in the reply
message. That return value is of no significance, and is therefore ignored (note however that a C server back-end
returns the atom 'void' instead of 'ok’).

Cast (oneway)

notification: (0] atom()
{Op, I, 12, ..., IN tupl e()

(Thereis of course no return message).

1.3.4 Gen_server Protocol

Most of the IC generated code deals with encoding and decoding the gen_server protocol.

Call
request : {"$gen_call', {self(), Ref}, Request} (4.1.1)

reply: {Ref, Reply} (4.1.2)

where Reguest and Reply are the messages defined in the previous chapter.

Ericsson AB. All Rights Reserved.: ic | 5

1.4 Using the Plain Erlang Back-end

Cast

notification: {' $gen_cast', Notification} (4.2.1)
where Notification is the message defined in the previous chapter.

1.3.5 Erlang Distribution Protocol

Messages (of interest here) between Erlang nodes are of the form:

Len(4), Type(l), CrIBin(N, MgBin(M (5.1)

Typeisequal to 112 = PASS THROUGH.

CtrIBin and MsgBin are Erlang termsin binary form (asif created by term_to_binary/1), whence for each of them the
first byteisequal to 131 = VERSION_MAGIC.

CtrIBin (of interest here) containsthe SEND and REG_SEND control messages, which are binary forms of the Erlang
terms

{2, Cookie, ToPid} , (5.2)
and

{6, FronPid, Cookie, ToNane} |, (5.3)
respectively.

The CtrIBin(N) messageisread and written by erl_interface code (C), j_interface code (Java), or the Erlang distribution
implementation, which are invoked from 1C generated code.

The MsgBin(N) isthe "real" message, i.e. of the form described in the previous section.

1.4 Using the Plain Erlang Back-end

1.4.1 Introduction

The mapping of OMG IDL to the Erlang programming language when Plain Erlang isthe back-end of choiceissimilar
to the one used in pure Erlang IDL mapping. The only difference is on the generated code and the extended use of
pragmas for code generation: IDL functions are translated to Erlang module function calls.

1.4.2 Compiling the Code

In the Erlang shell type:
ic.gen(<fil enanme>, [{be, erl _plain}]).

1.4.3 Writing the Implementation File

For each IDL interface <i nt er f ace nane> defined inthe IDL file:

6 | Ericsson AB. All Rights Reserved.: ic

1.4 Using the Plain Erlang Back-end

» Createthe corresponding Erlang file that will hold the Erlang implementation of the IDL definitions.
e Cdl theimplementation file after the scope of the IDL interface, followed by the suffix _i npl .
* Export the implementation functions.

For each function defined in the IDL interface :

e Implement an Erlang function that uses as arguments in the same order, as the input arguments described in the
IDL file, and returns the value described in the interface.

* When using the function, follow the mapping described in chapter 2.
1.4.4 An Example

In this example, afile "random.idl" is generates code for the plain Erlang back-end :
e Mainfile: "plain.idl"

nmodul e rnod {
interface random {
doubl e produce();

oneway void init(in long seedl, in long seed2, in |ong seed3);

Compilethefile:

Erl ang (BEAM enul ator version 4.9

Eshell V4.9 (abort with "G

1> ic:gen(random[{be, erl_plain}]).
Erlang I DL conpiler version 2.5.1
ok

2>

When the file "random.idl" is compiled it produces five files: two for the top scope, two for the interface scope, and
one for the modul e scope. The header filesfor top scope and interface are empty and not shown here. In this case only
thefilefor theinterfacer rod_r andom er | isimportant :.

» Erlangfilefor interface: "rmod_random.erl"

- modul e(r nod_r andon) .

%% I nterface functions
-export ([produce/0, init/3]).

Ericsson AB. All Rights Reserved.: ic | 7

1.4 Using the Plain Erlang Back-end

%% Oper ati on: produce
W
%6 Returns: RetVal
W
produce() ->
rmod_r andom i npl : produce() .

ifo=====c=22=2cc=222css222css2 22222222 22222222200
%% Operation: init

W

%6 Returns: RetVal

W

i nit(Seedl, Seed2, Seed3) ->
rod_random i npl :init(Seedl, Seed2, Seed3).

The implementation file should be called r rod_r andom i npl . er| and could look like this:

-nmodul e(' rmod_random.inpl ') .

-export ([produce/0,init/3]).

produce() ->
random uni forn().

init(si S2,S3) ->
random seed(S1, S2, S3) .

Compiling the code :

2> make:all ().

Reconpi | e: rnod_random
Reconpi | e: oe_random
Reconpi | e: rnod_random_ i npl
up_to_date

Running the example:

3> rnod_randominit(1,2,3).
ok

4> rnod_random produce().
1.97963e-4

5>

8 | Ericsson AB. All Rights Reserved.: ic

1.5 Using the Erlang Generic Server Back-end

1.5 Using the Erlang Generic Server Back-end

1.5.1 Introduction

The mapping of OMG IDL to the Erlang programming language when Erlang generic server isthe back-end of choice
is similar to the one used in the chapter 'OMG IDL Mapping'. The only difference is in the generated code, a client
stub and server skeleton to an Erlang gen_ser ver . Orber's User's Guide contain amore detailed description of IDL
to Erlang mapping.

1.5.2 Compiling the Code

Thei c: gen/ 2 function can be called from the command line as follows:

shell > erlc "+{be, erl_genserv}" MFile.idl

1.5.3 Writing the Implementation File
For each IDL interface <i nt er f ace namne> defined inthe IDL file:

* Createthe corresponding Erlang file that will hold the Erlang implementation of the IDL definitions.

» Cadl theimplementation file after the scope of the IDL interface, followed by the suffix _i npl .

e Export the implementation functions.

For each function defined in the IDL interface :

* Implement an Erlang function that uses as arguments in the same order, as the input arguments described in the
IDL file, and returns the value described in the interface.

e When using the function, follow the mapping described in chapter 2.

1.5.4 An Example

Inthisexample, afiler andom i dl generates code for the Erlang gen_server back-end:

/1 Filename random i dl
modul e rnod {

interface random {
/] Generate a new random nunber
doubl e produce();
// Initialize random generat or
oneway void init(in long seedl, in long seed2, in |Iong seed3);

When the file "random.idl" is compiled (e.g., shel | > erlc "+{be, erl _genserv}" randomidl) five
files are produced; two for the top scope, two for the interface scope, and one for the module scope. The header files
for top scope and interface are empty and not shown here. In this case, the stub/skeleton filer nrod_r andom er | is
the most important. This module exports two kinds of operations:

e Administrative - used when, for example, creating and terminating the server.

* |DL dependent - operations defined in the IDL specification. In this case, pr oduce andi ni t .

Ericsson AB. All Rights Reserved.: ic | 9

1.5 Using the Erlang Generic Server Back-end

Administrative Operations
To create anew server instance, one of the following functions should be used:

* 0e_create/0/1/2 - create a new instance of the object. Accepts Env and RegNane, in that order, as parameters.
The former is passed uninterpreted to the initialization operation of the call-back module, while the latter must
beasthegen_ser ver parameter Ser ver Nane. If Env isleft out, an empty list will be passed.

e 0e create link/O/1/2 - similar tooe_cr eat e/ 0/ 1/ 2, but create alinked server.

* typelD/0 - returns the scooped id compliant with the OMG standard. In this case the string " | DL: r nod/
random 1.0".

e stop/l - asynchronously terminate the server. The required argument is the return value from any of the start
functions.

IDL Dependent Operations

Operations can either be synchronous or asynchronous (i.e., oneway). These are, respectively, mapped to
gen_server: call/2/3andgen_server: cast/ 2.Consultthegen_ser ver documentationfor valid return
values.

The IDL dependent operations in this example are listed below. The first argument must be the whatever the create
operation returned.

e init(ServerReference, Seedl, Seed2, Seed3) - initialize the random number generator.
* produce(ServerReference) - generate a new random number.

If the compile optiont i meout isused atimeout must be added (e.g., pr oduce(Ser ver Ref er ence, 5000)).
For moreinformation, seethegen_ser ver documentation.

Implementation Module

The implementation module shall, unless the compile option i nmpl isused, benamedr nod_r andom i npl . er| .
and could look like this:

-modul e(*' rnod_random_ i npl ') .

%% Mandat ory gen_server operations
-export([init/1, term nate/2, code_change/3]).
%6 Add if 'handle_info' conpile option used
-export ([handl e_info/2]).

%6 APl defined in | DL specification
-export([produce/1,init/4]).

%% Mandat ory operati ons
init(Env) ->

{ok, [1}.

term nate(From Reason) ->
ok.

code_change(d dVsn, State, Extra) ->
{ok, State}.

%% Opt i onal
handl e_i nfo(lnfo, State) ->
{noreply, NewState}.

%% | DL specification
produce(State) ->
case catch random uniforn() of
{"EXIT,_} ->
{stop, normal, “randomuniform O - EXIT", State};

10 | Ericsson AB. All Rights Reserved.: ic

1.6 IDL to C mapping

RUni f ->
{reply, RUnif, State}
end.

init(State, S1, S2, S3) ->
case catch random seed(S1, S2, S3) of
{"EXIT,_} ->
{stop, normal, State};
->

{noreply, State}
end.

Compile the code and run the example:

1> make: all ().

Reconpi | e: rnod_random

Reconpi | e: oe_random

Reconpi | e: rnod_random. i npl
up_to_date

2> {ok, R} = rnod_random oe_create().
{ ok, <0. 30. 0>}

3> rnmod_randominit(R 1, 2, 3).
ok

4> rnod_r andom produce(R).
1.97963e-4

5>

1.6 IDL to C mapping

1.6.1 Introduction
ThelC C mapping (used by the C client and C server back-ends) followsthe OMG C Language Mapping Specification.
The C mapping supports the following:

e« AllOMG IDL basic typesexcept | ong doubl e and any.

e All OMG IDL constructed types.

« OMGIDL constants.

» Operations with passing of parameters and receiving of results. i nout parameters are not supported.

Thefollowing is not supported:

* Accessto attributes.
e User defined exceptions.

e User defined objects.

1.6.2 C Mapping Characteristics

Reserved Names
The IDL compiler reserves all identifiers starting with OE_ and oe__ for internal use.

Ericsson AB. All Rights Reserved.: ic | 11

1.6 IDL to C mapping

Scoped Names

The C programmer must alwaysusetheglobal namefor atype, constant or operation. The C global name corresponding
to an OMG IDL globa name is derived by converting occurrences of "::" to underscore, and eliminating the leading
"::". So, for example, an operation opl defined in interface | 1 which is defined in module ML would be written as
ML: :11::0pliniDLandasML |1 oplinC.

Warning:

If underscores are used in IDL names it can lead to ambiguities due to the name mapping described above,
thereforeit is advisable to avoid underscores in identifiers.

Generated Files

Two fileswill be generated for each scope. One set of fileswill be generated for each module and each interface scope.
An extraset is generated for those definitions at top level scope. One of thefilesisaheader file(. h), and the other file
isaC source codefile (. ¢). In addition to these files anumber of C source fileswill be generated for type encodings,
they are named according to the following template: oe_code_<t ype>. c.

For example:

/[l IDL, in the file "spec.idl"
modul e ml {

typedef sequence<l ong> | seq;

interface il {

b

XXX Thisis C client specific. Will producethefilesoe_spec. h andoe_spec. c for thetop scope level. Then the
filesml. h and ni. ¢ for the module mL and filesml_i 1. h and nl_i 1. ¢ for the interface i 1. The typedef will
produceoe_code_ml_| seq.c.

The header file contains type definitions for all st r uct types and sequences and constantsin the IDL file. Thecfile
contains all operation stubs if the the scopeis an interface.

In addition to the scope-related files a C source file will be generated for encoding operations of all st ruct and
sequence types.

1.6.3 Basic OMG IDL Types

The mapping of basic typesisasfollows.

OMG IDL type C type Mapped to C type
float CORBA _float float
double CORBA _double double

12 | Ericsson AB. All Rights Reserved.: ic

1.6 IDL to C mapping

short CORBA _short short
unsigned short CORBA _unsigned_short unsigned short
long CORBA _long long

long long CORBA _long_long long

unsigned long CORBA _unsigned long unsigned long
unsigned long long CORBA _unsigned _long_long unsigned long
char CORBA _char char

wchar CORBA_wchar unsigned long
boolean CORBA _hoolean unsigned char
octet CORBA _octet char

any Not supported

long double Not supported

Object Not supported

void void void

Table 6.1: OMG IDL Basic Types

XXX Note that several mappings are not according to OMG C Language mapping.

1.6.4 Constructed OMG IDL Types
Constructed types have mappings as shown in the following table.

OMG IDL type Mapped to C type
string CORBA _char*
wstring CORBA_wchar*
struct struct

union union

enum enum

seguence struct (see below)

Ericsson AB. All Rights Reserved

cic] 13

1.6 IDL to C mapping

array array

Table 6.2: OMG IDL Constructed Types

An OMG IDL sequence (an array of variable length),

/1 1DL
typedef sequence <IDL_TYPE> NAME;

is mapped to a C struct as follows:

[* C*/

typedef struct {
CORBA _unsi gned_I| ong _naxi mum
CORBA _unsi gned_| ong _| engt h;
C TYPE* _buffer;

} C_NAME;

where C_TYPE isthe mapping of | DL_ TYPE, and where C_NANE is the scoped name of NANE.

1.6.5 OMG IDL Constants

An IDL constant is mapped to a C constant through a C #def i ne macro, where the name of the macro is scoped.
Example:

/1 1DL
nmodul e ML {
const long cl1 = 99;

IE
resultsin the following:

[* C*/
#define ML_cl 99

1.6.6 OMG IDL Operations

An OMG IDL operation is mapped to C function. Each C operation function has two mandatory parameters: a first
parameter of interface object type, and alast parameter of environment type.

In a C operation function the thei n and out parameters are located between the first and last parameters described
above, and they appear in the same order asin the IDL operation declaration.

Noticethat i hout parameters are not supported.

Thereturn value of an OMG IDL operation is mapped to a corresponding return value of the C operation function.

14 | Ericsson AB. All Rights Reserved.: ic

1.6 IDL to C mapping

Mandatory C operation function parameters:

e CORBA (bj ect oe_obj -thefirst parameter of a C operation function. This parameter is required by the
OMG C Language Mapping Specification, but in the current implementation there is no particular use for it.

e CORBA Environnment* oe_env - thelast parameter of a C operation function. The parameter is defined in
the C header filei c. h and has the following public fields:

CORBA Exception_type _mgjor -indicatesif an operation invocation was successful which will be
one of the following:

e CORBA_NO _EXCEPTION

e CORBA_SYSTEM_EXCEPTION

int _fd - afile descriptor returned from erl_connect function.

int _inbufsz - size of input buffer.

char* _inbuf - pointer to a buffer used for input.

int _outbufsz - size of output buffer.

char* _outbuf - pointer to a buffer used for output.

int _memchunk - expansion unit size for the output buffer. Thisis the size of memory chunks in bytes used
for increasing the output in case of buffer expansion. The value of this field must be always set to >= 32,
should be at least 1024 for performance reasons.

char regname| 256] - aregistered name for a process.

erlang_pid* _to pid - an Erlang process identifier, is only used if the registered_name parameter is the
empty string.

erlang_pid* _from pid - your own processid so the answer can be returned

Beside the public fields, other private fields are internally used but are not mentioned here.

Example:

/1 1DL

interface il {

I ong opl(in long a);
long op2(in string s, out |ong count);

Is mapped to the following C functions

[* C*/

CORBA long i1l opl(il oe_obj, CORBA |ong a, CORBA Environnent* oe_env)

{
}

CORBA long i1l op2(il oe_obj, CORBA char* s, CORBA_|ong *count,
CORBA_Envi ronnment * oe_env)

{
}

Ericsson AB. All Rights Reserved.: ic | 15

1.6 IDL to C mapping

Operation Implementation

There is no standard CORBA mapping for the C-server side, asit is implementation-dependent but built in asimilar
way. The current server side mapping is different from the client side mapping in several ways.

1.6.7 Exceptions

Argument mappings

Result values
Structure

Usage

Exception handling

Although exception mapping is not implemented, the stubs will generate CORBA system exceptions in case of
operation failure. Thus, the only exceptions propagated by the system are built in system exceptions.

1.6.8 Access to Attributes
Not Supported

1.6.9 Summary of Argument/Result Passing for the C-client

The user-defined parameters can only bei n or out parameters, asi nout parameters are not supported.

This table summarize the types a client passes as arguments to a stub, and receives as a result.

ng

OMG IDL type In Out Return

short CORBA _short CORBA _short* CORBA _short

long CORBA _long CORBA_long* CORBA_long

long long CORBA _long_long CORBA _long_long* CORBA _long_long
unsigned short CORBA _unsigned short | CORBA_unsigned short* | CORBA_unsigned short
unsigned long CORBA _unsigned long CORBA _unsigned _long* | CORBA_unsigned long
unsigned long long CORBA _unsigned long_lon@ORBA _unsigned long |on@ORBA _unsigned long lo
float CORBA _float CORBA_float* CORBA _float

double CORBA _double CORBA _double* CORBA _double
boolean CORBA _boolean CORBA _hoolean* CORBA _bhoolean

char CORBA _char CORBA _char* CORBA _char

wchar CORBA_wchar CORBA_wchar* CORBA_wchar

octet CORBA_octet CORBA_octet* CORBA_octet

enum CORBA_enum CORBA_enum* CORBA_enum

16 | Ericsson AB. All Rights Reserved.: ic

1.6 IDL to C mapping

struct, fixed struct* struct* struct

struct, variable struct* struct** struct*

union, fixed union* union* union

union, variable union* union** union*

string CORBA _char* CORBA _char** CORBA _char*
wstring CORBA_wchar* CORBA_wchar** CORBA_wchar*
sequence sequence* sequence* * sequence*

array, fixed array array array_dlice*
array, variable array array_slice** array_dlice*

Table 6.3: Basic Argument and Result passing

A client isresponsible for providing storage of all arguments passed as in arguments.

OMG IDL type Out Return
short 1 1
long 1 1
long long 1 1
unsigned short 1 1
unsigned long 1 1
unsigned long long 1 1
float 1 1
double 1 1
boolean 1 1
char 1 1
wchar 1 1
octet 1 1
enum 1 1
struct, fixed 1 1

Ericsson AB. All Rights Reserved.: ic | 17

1.6 IDL to C mapping

struct, variable 2 2
string 2 2
wstring 2 2
sequence 2 2
array, fixed 1 3
array, variable 3 3

Table 6.4: Client argument storage responsibility

Case Description

Caller alocates all necessary storage, except that which
1 may be encapsulated and managed within the parameter
itself.

The caller allocates a pointer and passes it by reference
to the callee. The callee sets the pointer to point to a
valid instance of the parameter'stype. The caler is
responsible for releasing the returned storage. Following
completion of arequest, the caller is not allowed to
modify any values in the returned storage. To do so the
caller must first copy the returned instance into a new
instance, then modify the new instance.

The caller allocates a pointer to an array slice which
has all the same dimensions of the original array except
thefirst, and passesit by reference to the callee. The
callee sets the pointer to point to avalid instance of

the array. The caller isresponsible for releasing the
returned storage. Following completion of arequest,
the caller is not allowed to modify any valuesin the
returned storage. To do so the caller must first copy the
returned instance into a new instance, then modify the
new instance.

Table 6.5: Argument passing cases

The returned storage in case 2 and 3 is allocated as one block of memory so it is possible to deallocate it with one
call of CORBA _free.

1.6.10 Supported Memory Allocation Functions
e CORBA_Environment can be allocated from the user by calling CORBA_Environment_alloc().
The interface for thisfunction is

CORBA_Envi ronnent *CORBA Environnment _al l oc(int inbufsz, int outbufsz);

18 | Ericsson AB. All Rights Reserved.: ic

1.6 IDL to C mapping

where:

» inbufszisthe desired size of input buffer

» outhbufszisthe desired size of output buffer

e returnvaueisapointer to an allocated and initialized CORBA_Environment structure
» Strings can be allocated from the user by calling CORBA_string_alloc().

Theinterface for this function is

CORBA char *CORBA string_all oc(CORBA unsigned |ong |en);

where:

* lenisthelength of the string to be alocated.
Thus far, no other type alocation function is supported.

1.6.11 Special Memory Deallocation Functions
e void CORBA free(void *storage)

This function will free storage allocated by the stub.
e void CORBA exception_free(CORBA environment *ev)

This function will free storage allocated under exception propagation.

1.6.12 Exception Access Functions

* CORBA char *CORBA exception_i d(CORBA_Envi ronnment *ev)
This function will return raised exception identity.

*+ void *CORBA exception_val ue(CORBA_Envi ronment *ev)

This function will return the value of araised exception.

1.6.13 Special Types

e Theerlang binary type has some special features.

Whiletheer | ang: : bi nary idl type has the same C-definition as a generated sequence of octets :

nodul e erl ang

{

/'l an erlang binary
typedef sequence<oct et > bi nary;

b

it provides away on sending trasparent data between C and Erlang.
The C-definition (ic.h) for an erlang binary is:

typedef struct {
CORBA unsi gned_| ong _nmaxi num

Ericsson AB. All Rights Reserved.: ic | 19

1.6 IDL to C mapping

CORBA _unsi gned_| ong _| engt h;
CORBA octet* _buffer;
} erlang_binary; /* ERLANG BI NARY */

The differences (between er | ang: : bi nary and sequence< octet >)are:

e on the elang side the user is sending/receiving typical built in erlang binaries, using
termto_binary() / binary_to_tern{() tocreate/ extract binary structures.

* no encoding/decoding functions are generated

» theunderlying protocol is more efficient than usual sequences of octets

Theerlang binary IDL typeisdefinediner | ang. i dl , whileits C definitionislocatedinthei c. h header file,
bothinthel C-< vsn >/incl ude directory. The user will have to include the file er | ang. i dl in order
tousetheer| ang: : bi nary type.

1.6.14 A Mapping Example

Thisis asmall example of a simple stack. There are two operations on the stack, push and pop. The example shows
all generated files as well as conceptual usage of the stack.

/1l The source IDL file: stack.idl
struct s {
long |;
string s;
b
interface stack {
voi d push(in s val);
s pop();

When this file is compiled it produces four files, two for the top scope and two for the stack interface scope. The
important parts of the generated C code for the stack API is shown below.

stack.c

voi d push(stack oe_obj, s val, CORBA Environment* oe_env) {

:

s* pop(stack oe_obj, CORBA Environnent* oe_env) {

, e
oe_stack.h

#i f ndef OE_STACK H
#define OE_STACK H

20 | Ericsson AB. All Rights Reserved.: ic

1.7 The C Client Back-end

* Struct definition: s
*/
typedef struct {
long |;
char *s;

} s

#endi f

stack.h just contains an include statement of oe_st ack. h.

oe _code s.c

int oe_sizecal c_s(CORBA _Environnent
oe_env, int oe_size count_index, int* oe_size) {

—

int oe_encode_s(CORBA Environnent *oe_env, s* oe_rec) {

—

int oe_decode_s(CORBA Environnment *oe_env, char *oe first,
int* oe_outindex, s *oe_ out) {

The only filesthat are really important are the . h files and the stack.c file.

1.7 The C Client Back-end

1.7.1 Introduction

With theoption{ be, c¢_cl i ent} thelDL Compiler generates C client stubs according to the IDL to C mapping,
on top of the Erlang distribution and gen_server protocols.

The devel oper hasto write additional code, that together with the generated C client stubs, form a hidden Erlang node.
That additional codeuseser | _i nt er f ace functionsfor defining the hidden node, and for establishing connections
to other Erlang nodes.

1.7.2 Generated Stub Files

The generated stub files are:

« ForeachIDL interface, aC sourcefile, thename of whichis<Scoped | nt er f ace Nanme>. c. Each operation
of the IDL interface is mapped to a C function (with scoped name) in that file;

» Csourcefilesthat contain functions for type conversion, memory allocation, and data encoding/decoding;
» Cheader files that contain function prototypes and type definitions.

All C functions are exported (i.e. not declared static).

Ericsson AB. All Rights Reserved.: ic | 21

1.7 The C Client Back-end

1.7.3 C Interface Functions
For each IDL operation a C interface function is generated, the prototype of which is:

<Return Val ue> <Scoped Function Name>(<lnterface Object> oe_obj, <Paraneters>,
CORBA_Envi ronment *oe_env);

where

* <Return Val ue>isthevalueto bereturned as defined by the IDL specification;

e <Interface Object> oe_obj istheclient interface object;

* <Paraneters> isalist of parameters of the operation, defined in the same order as defined by the IDL
specification;

+ CORBA _Environment *oe_env isapointer to the current client environment. It contains the current file
descriptor, the current input and output buffers, etc. For details see CORBA _Environment C Structure.

1.7.4 Generating, Compiling and Linking
To generate the C client stubs type the following in an appropriate shell:

erlc -1 ICROOT/include "+{be, c_client}" File.idl,

where | CROOT is the root of the IC application. The- 1 | CROOT/ i ncl ude isonly needed if Fi | e. i dl refers
toerlang.idl.

When compiling a generated C stub file, the directories | CROOT/ i ncl ude and EI CROOT/ i ncl ude, have to be
specified asinclude directories, where EI ROOT isthe root directory of the Erl_interface application.

When linking object filesthe El ROOT/ | i b and | CROOT/ pri v/ | i b directories have to be specified.

1.7.5 An Example

In this example the IDL specification file "random.idl" is used for generating C client stubs (the file is contained in
thelC/ exanpl es/ c-cl i ent directory):

modul e rrod {
interface random {
doubl e produce();

oneway void init(in long seedl, in long seed2, in |ong seed3);

Generate the C client stubs;

erlc '+{be, c_client}' randomi dl
Erlang IDL conpiler version X Y.Z

Six files are generated.
Compile the C client stubs:
Please read the ReadMe file att the exanpl es/ c- cl i ent directory

22 | Ericsson AB. All Rights Reserved.: ic

1.8 The C Server Back-end

In the same directory you can find all the code for this example.

In particular you will find the cl i ent . ¢ file that contains all the additional code that must be written to obtain a
complete client.

Inthe exanpl es/ c- cl i ent directory you will also find source code for an Erlang server, which can be used for
testing the C client.

1.8 The C Server Back-end

1.8.1 Introduction

With the option { be, c_server} the IDL Compiler generates C server skeletons according to the IDL to C
mapping, on top of the Erlang distribution and gen_server protocols.

The developer has to write additional code, that together with the generated C server skeletons, form a hidden
Erlang node. That additional code contains implementations of call-back functions that implement the true server
functionality, and also code uses er| _i nt er f ace functions for defining the hidden node and for establishing
connections to other Erlang nodes.

1.8.2 Generated Stub Files

The generated stub files are:

» For each IDL interface, a C source file, the name of which is<Scoped | nterface Nane>__s. c. Each
operation of the IDL interface is mapped to a C function (with scoped name) in that file;

e Csourcefilesthat contain functions for type conversion, memory allocation, and data encoding/decoding;
* Cheader filesthat contain function prototypes and type definitions.

All C functions are exported (i.e. not declared static).

1.8.3 C Skeleton Functions

For each IDL operation a C skeleton function is generated, the prototype of which is int <Scoped
Functi on Nane>__exec(<lnterface Object> oe_obj, CORBA Environnent *oe_env),where
<Interface hject> andCORBA _Envi r onnment areof the sametypeasfor the generated C client stubs code.

Each<Scoped Function Nane>__exec() function calsthe call-back function

<Scoped Function Nane>_rs* <Scoped Functi on Name>__cb(<Interface Object> oe_obj,
<Par amet er s>, CORBA_Envi ronnent *oe_env)

where the arguments are of the same type as those generated for C client stubs.

The return value <Scoped Functi on Name> rs* isapointer to afunction with the same signature as the
call-back function <Scoped Functi on Nanme>_cb, andiscalled after the call-back function has been evaluated
(provided that the pointer is not equal to NULL).

1.8.4 The Server Loop

Thedeveloper hasto implement codefor establishing connectionswith other Erlang nodes, codefor call-back functions
and restore functions.

In addition, the devel oper also has to implement code for a server loop, that receives messages and calls the relevant
___exec function. For that purpose the IC library function oe_server _recei ve() function can be used.

Ericsson AB. All Rights Reserved.: ic | 23

1.9 CORBA_Environment C Structure

1.8.5 Generating, Compiling and Linking
To generate the C server skeletons type the following in an appropriate shell:
erlc -1 1 CROOI/include "+{be, c_server}" File.idl,

where | CROOT is the root of the IC application. The- 1 |1 CROOT/ i ncl ude isonly needed if Fi | e. i dl refers
toerl ang.idl.

When compiling a generated C skeleton file, the directories| CROOT/ i ncl ude and EI CROOT/ i ncl ude, haveto
be specified as include directories, where EI ROOT isthe root directory of the Erl_interface application.

When linking object filesthe El ROOT/ | i b and | CROOT/ pri v/ | i b directories have to be specified.

1.8.6 An Example

In this example the IDL specification file "random.idl" is used for generating C server skeletons (thefile is contained
inthe IC/ exanpl es/ c- server directory):

modul e rnod {
interface random {
doubl e produce();

oneway void init(in long seedl, in long seed2, in |Iong seed3);

Generate the C server skeletons:

erlc '+{be, c_server}' randomidl
Erlang I DL conpiler version X.Y.Z

Six files are generated.
Compile the C server skeletons:
Please read the ReadMe fileinthe exanpl es/ c- ser ver directory.

In the same directory you can find all the code for this example. In particular you will find the ser ver . ¢ file that
contains al the additional code that must be written to obtain a complete server.

Inthe exanpl es/ c- ser ver directory you will also find source code for an Erlang client, which can be used for
testing the C server.

1.9 CORBA_Environment C Structure

This chapter describes the CORBA_Environment C structure.

1.9.1 C Structure
Here is the complete definition of the CORBA_Environment C structure, defined in file "ic.h" :

24 | Ericsson AB. All Rights Reserved.: ic

1.9 CORBA_Environment C Structure

/* Environment definition */
typedef struct {

[*----- CORBA conpatibility part ------------------------ */
/* Exception tag, initially set to CORBA NO EXCEPTION ---*/
CORBA exception_type _nmmjor;

[*eee-- External |nplenentation part - initiated by the user ---*/
/* File descriptor */
i nt _fd;

/* Size of input buffer */
i nt _inbufsz;

/* Pointer to always dynami cally allocated buffer for input */
char * i nbuf;

/* Size of output buffer */
i nt _out bufsz;

/* Pointer to always dynamically allocated buffer for output */
char * _out buf ;

/* Size of menory chunks in bytes, used for increasing the output
buffer, set to >= 32, should be around >= 1024 for perfornance

reasons */
i nt _menchunk;
/* Pointer for registered nane */
char _regnane[256] ;
/* Process identity for caller */
erl ang_pi d * _to_pid;
/* Process identity for callee */
erl ang_pi d * frompid;
/*- Internal |nplenmentation part - used by the server/client ---*/
/* Index for input buffer */
i nt _iin;
/* I ndex for output buffer */
i nt _iout;
/* Pointer for operation nane */
char _operation[256] ;
/* Used to count paraneters */
i nt _received;
/* Used to identify the caller */
erlang_pid _caller;
/* Used to identify the call */
erl ang_ref _uni que;
/* Exception id field */
CORBA char * _exc_id;
/* Exception value field */
voi d * _exc_val ue;

} CORBA_Envi ronnent ;

The structure is divided into three parts:

e« The CORBA Compatibility part, demanded by the standard OMG IDL mapping v2.0.
* Theexterna implementation part used for generated client/server code.
e Theinterna part useful for those who wish to define their own functions.

1.9.2 The CORBA Compatibility Part

Contains only one field _naj or defined as a CORBA_Exception_type. The CORBA_Exception type is an integer
which can be one of:

« CORBA_NO_EXCEPTION, by default equal to 0, can be set by the application programmer to another value.

Ericsson AB. All Rights Reserved.: ic | 25

1.9 CORBA_Environment C Structure

CORBA_SYSTEM_EXCEPTION, by default equal to -1, can be set by the application programmer to another value.

The current definition of these values are:

#defi ne CORBA_NO_EXCEPTI ON 0
#defi ne CORBA_SYSTEM EXCEPTI ON -1

1.9.3 The External Part

This part contains the following fields:

int _fd - afile descriptor returned from erl_connect. Used for connection setting.

char* _inbuf - pointer to a buffer used for input. Buffer size checks are done under runtime that prevent buffer
overflows. This is done by expanding the buffer to fit the input message. In order to allow buffer reallocation,
the output buffer must always be dynamically allocated. The pointer value can change under runtime in case of
buffer reallocation.

int_inbufsz- start size of input buffer. Used for setting theinput buffer size under initialization of the Erl_Interface
functionei_receive_encoded/5. Thevalue of thisfield can change under runtimein case of input buffer expansion
to fit larger messages

int _outbufsz - start size of output buffer. The value of thisfield can change under runtimein case of input buffer
expansion to fit larger messages

char* _outbuf - pointer to a buffer used for output. Buffer size checks prevent buffer overflows under runtime,
by expanding the buffer to fit the output message in cases of lack of space in buffer. In order to allow buffer
reallocation, the output buffer must always be dynamically alocated. The pointer value can change under runtime
in case of buffer reallocation.

int _memchunk - expansion unit size for the output buffer. This is the size of memory chunks in bytes used for
increasing the output in case of buffer expansion. The value of this field must be always set to >= 32, should be
at least 1024 for performance reasons.

char regname] 256] - aregistered name for a process.

erlang_pid* _to_pid - an Erlang process identifier, is only used if the registered name parameter is the empty
string.

erlang_pid* _from pid - your own processid so the answer can be returned.

1.9.4 The Internal Part

This part contains the following fields:

int _iin - Index for input buffer. Initially set to zero. Updated to agree with the length of the received encoded
message.

int _iout - Index for output buffer Initially set to zero. Updated to agree with the length of the message encoded
to the communication counterpart.

char _operation[256] - Pointer for operation name. Set to the operation to be called.

int _received - Used to count parameters. Initially set to zero.

erlang_pid _caller - Used to identify the caller. Initiated to a value that identifies the caller.

erlang_ref _unique - Used to identify the call. Set to adefault value in the case of generated functions.
CORBA_char* _exc id - Exception id field. Initially set to NULL to agree with the initial value of _major
(CORBA_NO_EXCEPTION).

void* _exc value -