| v

ERLANG

orber

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.
orber 3.8.1

June 2, 2016

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

June 2, 2016

1.1 The Orber Application

1 Orber User's Guide

The Orber application is an Erlang implementation of a CORBA Object Request Broker.

1.1 The Orber Application

1.1.1 Content Overview
The Orber documentation is divided into three sections:

* PART ONE - The User's Guide
Description of the Orber Application including IDL-to-Erlang language mapping, services and a small tutorial
demonstrating the devel opment of asimple service.

* PART TWO - Release Notes
A concise history of Orber.

e PART THREE - The Reference Manual
A quick reference guide, including a brief description, to al the functions available in Orber.

1.1.2 Brief Description of the User's Guide
The User's Guide contains the following parts:

e ORB kernel and 110P support

» Interface Repository

e |DL to Erlang mapping

e CosNaming Service

e Resolving initia reference from Java or C++
e Tutoria - creating asimple service

* CORBA Exceptions

e Interceptors

e OrberWeb

e Debugging

ORB Kernel and IIOP Support

The ORB kernel which has 110P support will allow the creation of persistent server objects in Erlang. These objects
can also be accessed via Erlang and Java environments. For the moment a Java enabled ORB is needed to generate
Javafrom IDL to use Java server objects (this has been tested using OrbixWeb).

Interface Repository

The IFR is an interface repository used for some type-checking when coding/decoding I1OP. The IFR is capable of
storing all interfaces and declarations of OMG IDL.

IDL to Erlang Mapping

The OMG IDL mapping for Erlang, which is necessary to access the functionality of Orber, is described, The
mapping structure is included as the basic and the constructed OMG IDL types references, invocations and Erlang
characteristics. An example is aso provided.

Ericsson AB. All Rights Reserved.: orber | 1

1.2 Introduction to Orber

CosNaming Service

Orber contains a CosNaming compliant service.

Resolving Initial References from Java or C++
A couple of classes are added to Orber to simplify initial reference access from Java or C++.

Resolving initial reference from Java
A class with only one method which returns an Interoperable Object Referenceon the external string format to the
INIT object (see "Interoperable Naming Service" specification).

Resolving initial reference from C++
A class (and header file) with only one method which returns an IOR on the external string format to the INIT object
(see"Interoperable Naming Service" specification).

Orber Stub/Skeleton
An example which describes the APl and behavior of Orber stubs and skeletons.

CORBA Exceptions

A listing of all system exceptions supported by Orber and how one should handle them. This chapter also describe
how to generate user defined exceptions.

Interceptors

Descibes how to implement and activate interceptors.

OrberWeb
Offers the possibility to administrate and supervise Orber viaa GUI.

Debugging

Describes how to use different tools when debugging and/or developing new applications using Orber. Also includes
aFAQ, which deal with the most common mistakes when using Orber.

1.2 Introduction to Orber

1.2.1 Overview

The Orber application isa CORBA compliant Object Request Brokers (ORB), which provides CORBA functionality
in an Erlang environment. Essentially, the ORB channels communication or transactions between nodes in a
heterogeneous environment.

Common Object Request Broker Architecture is a common communication standard developed by the OMG
(Object Management Group)(Common Object Request Broker Architecture) provides an interface definition language
allowing efficient system integration and also supplies standard specifications for some services.

The Orber application contains the following parts:

* ORB kernel and 110OP support

« Interface Repository

* Interface Definition Language Mapping for Erlang

e CosNaming Service

Benefits

Orber provides CORBA functionality in an Erlang environment that enables:

2 | Ericsson AB. All Rights Reserved.: orber

1.2 Introduction to Orber

» Platforminteroperability and transparency

Orber enables communication between OTP applications or Erlang environment applications and other platforms;
for example, Windows NT, Solaris etc, allowing platform transparency. This is especialy helpful in situations
wherethere are many userswith different platforms. For example, booking airlineticketswould requirethe airline
database and hundreds of travel agents (who may not have the same platform) to book seats on flights.

« Application level interoperability and transparency
As Orber is a CORBA compliant application, its purpose is to provide interoperability and transparency on the
application level. Orber simplifies the distributed system software by defining the environment as objects, which
in effect, views everything asidentical regardless of programming languages.
Previously, time-consuming programming was reguired to facilitate communication between different languages.
However, with CORBA compliant Orber the Application Programmer is relieved of this task. This makes
communication on an application level relatively transparent to the user.

Purpose and Dependencies
The system architecture and OTP dependencies of Orber are illustrated in figure 1 below:

Figure 2.1: Figure 1: Orber Dependencies and Structure.

Orber is dependent on Mnesia (see the Mnesia documentation) - an Erlang database management application used to
store object information.

Note:

Although Orber does not have a run-time application dependency to IC (an Interface Definition Language - IDL
is the OMG specified interface definition language, used to define the CORBA object interfaces.compiler for
Erlang), it is necessary when building services and applications. See the |C documentation for further details.

Figure 2.2: Figure 2: ORB interface between Java and Erlang Environment Nodes.

This simplified illustration in figure 2 demonstrates how Orber can facilitate communication in a heterogeneous
environment. The Erlang Nodesrunning OTP and the other Node running applicationswritten in Javacan communicate
via an Object Request Broker - ORB open software bus architecture specified by the OMG which allows object
components to communicate in a heterogeneous environment.(Object Request Broker). Using Orber means that
CORBA functions can be used to achieve this communication.

For example, if one of the above nodes requests an object, it does not need to know if that object is located on the
same, or different, Erlang or Java nodes. The ORB will channel the information creating platform and application
transparency for the user.

Prerequisites

To fully understand the concepts presented in the documentation, it is recommended that the user is familiar with
distributed programming and CORBA (Common Object Request Broker Architecture).

Recommended reading includes Open Telecom Platform Documentation Set and Concurrent Programming in Erlang.

Ericsson AB. All Rights Reserved.: orber | 3

1.3 The Orber Application

1.3 The Orber Application
1.3.1 ORB Kernel and IIOP

This chapter givesabrief overview of the ORB and its relation to objectsin adistributed environment and the usage of
Domainsin Orber. Also Internet-Inter ORB Protocol (Internet-Inter ORB Protocol) is discussed and how this protocol
facilitates communication between ORBs to allow the accessory of persistent server objects in Erlang.

1.3.2 The Object Request Broker (ORB)

An ORB kernel can be best described as the middle-ware, which creates relationships between clients and servers,
but is defined by its interfaces. This allows transparency for the user, as they do not have to be aware of where the
requested object is located. Thus, the programmer can work with any other platform provided that an IDL mapping
and interfaces exist.

The IDL mapping which is described in a later chapter is the trandator between other platforms, and languages.
However, it is the ORB, which provides objects with a structure by which they can communicate with other objects.

ORBsintercept and direct messages from one object, pass this message using 110P to another ORB, which then directs
the message to the indicated object.

An ORB is the base on which interfaces, communication stubs and mapping can be built to enable communication
between objects. Orber uses A domain allows a more efficient communication protocol to be used between objects
not on the same node without the need of an ORBto group objects of different nodes

How the ORB provides communication is shown very simply in figure 1 below:

Figure 3.1: Figure 1: How the Object Request Broker works.

The domain in Orber gives an extra aspect to the distributed object environment as each domain has one ORB, but
it is distributed over a number of object in different nodes. The domain binds objects on nodes more closely than
distributed objects in different domains. The advantage of a domain is that a faster communication exists between
nodes and objects of the same domain. An internal communication protocol (other than 110P) allows a more efficient
communication between these objects.

Note:

Unlike objects, domains can only have one name so that no communication ambiguities exist between domains.

1.3.3 Internet Inter-Object Protocol (IIOP)

I1OP isacommunication protocol developed by the OMG to facilitate communication in a distributed object-oriented
environment.
Figure 2 below demonstrates how |10OP works between objects:

Figure 3.2: Figure 2: IOP communication between domains and objects.

4 | Ericsson AB. All Rights Reserved.: orber

1.4 Interface Repository

Note:

Within the Orber domains the objects communi cate without using the [1OP. However, the user is unaware of the
difference in protocols, as this difference is not visible.

1.4 Interface Repository

1.4.1 Interface Repository(IFR)

The IFR is an interface repository built on the Mnesia application. Orber uses the IFR for some type-checking when
coding/decoding I1OP. The IFR is capable of storing all interfaces and declarations of OMG IDL.

The interface repository is mainly used for dynamical interfaces, and as none are currently supported this function is
only really used for retrieving information about interfaces.

Functions relating to the manipulation of the IFR including, initialization of the IFR, aswell as, locating, creating and
destroying initial references are detailed further in the Manual Pages.

1.5 Installing Orber

1.5.1 Installation Process

This chapter describes how to install Orber in an Erlang Environment.

Preparation

To begin with, you must decide if you want to run Orber as a

* Single node (non-distributed) - all communication with other Orber instances and ORB's supplied by other
vendors use the OMG GIOP protocol.

e Multi node (distributed) - al Orber nodes, within the same dornai n, communicate via the Erlang distribution
protocol. For all other Orber instances, i.e. not part of the same donai n, and ORB's supplied by other vendors,
the OMG GIOP protocol is used.

Which approach to useis highly implementation specific, but afew things you should consider:

e All nodes within an Orber domain should have the same security level.

» If the capacity is greater than load (volume of traffic) a single-node Orber might be a good solution.

* Insome cases the distributed system architecture requires a single-node is the structure of the ORB or ORBs as
defined during the install processis called the "installation"..

e A multi-node Orber makes it possible to load balance and create a more fault tolerant system. The Objects can
also have auniform view if you use distributed Mnesia tables.

e Sincethe GIOP protocol creates alarger overhead than the Erlang distribution protocol, the performance
will be better when communicating with Objects within the same Orber domain compared with inter ORB
communication (GIOP).

You also have to decide if you want Orber to store internal data using di sc_copi es and/or r am copi es.
Which storage type you should depends if/lhow you intend to use Mnesia in your application. If you intend to use
di sc_copi es you must start with creating a Mnesia schema, which contain information about the location of the
Erlang nodes where Orber is planned to be run. For more background information, see the Mnesia documentation.

In some casesit isabsolutely necessary to change the default configuration of Orber. For example, if two Orber-ORB's
shall be able to communicate via GIOP, they must have aunique domai n domain. Consult the configuration settings
section. If you encounter any problems; see the chapter about Debugging in this User's Guide.

Ericsson AB. All Rights Reserved.: orber | 5

1.5 Installing Orber

Jump Start Orber

The easiest way to start Orber isto use or ber : j unp_st art (Port), which start a single-node ORB with (most
likely) a unique domain (i.e. "IP-number:Port"). This function may only be used during development and testing.
For any other situation, install and start Orber as described in the following sections. The listen port, i.e. iiop_port
configuration parameter, is set to the supplied Port.

Warning:

How Orber is configured when using or ber : j unp_st art (Port) may change at any time without warning.
Hence, this operation must not be used in systems delivered to a customer.

Install Single Node Orber

Since asingle node Orber communicate viathe OMG GIOP protocol it isnot hecessary to start the Erlang distribution
(i.e.using - nane/ - snane).

If weuser am _copi es thereisno need for creating a disk based schema. Simply use:

erl> mesia:start().

erl> corba:orb_init([{domain, "MRAMS ngl eNodeORB"}]).

erl> orber:install ([node()], [{ifr_storage_type, ramcopies}]).
erl> orber:start().

If youinstallation requiresdi sc_copi es youmust begin with creating aMnesiaschema. Otherwise, theinstallation
issimilar to aRAM installation:

erl > mmesi a: creat e_schema([node()]).

erl > mesia:start().

erl> corba:orb_init([{domain, "M/D skSingl eNodeORB"}]).

erl> orber:install ([node()], [{ifr_storage_type, disc_copies},
{naneservi ce_storage_type, disc_copies}]).

erl> orber:start().

You can till choose to store the IFR data as ram_copies, but then the data must be re-installed (i.e. invoke
orber:install/2) if the node is restarted. Hence, since the IFR data is rather static you should use
di sc_copi es. For moreinformation seethe or ber section in the reference manual.

If you do not need to change Orber's configuration you can skip orb_init/1. But, you should at least set the [IOP
timeout parameters.

Install RAM Based Multi Node Orber

Within adomain Orber uses the Erlang distribution protocol. Hence, you must start it first by, for example, using:

host A> erl -snane nodeA

6 | Ericsson AB. All Rights Reserved.: orber

1.5 Installing Orber

In this example, we assume that we want to use two nodes; node A and nodeB. Since Mnesiamust know which other
nodes should a part of the distribution we either need to add the Mnesia configuration parameter ext r a_db_nodes
or use mesi a: change_confi g/ 2. To begin with, Mnesia must be started on all nodes before we can install
Orber:

nodeA@ost A> mmesi a: start ().
nodeA@ost A> mmesi a: change_confi g(extra_db_nodes,
[nodeA@ost A, nodeB@ost B]) .

After that the above have been repeated on node B we must first make sure that both nodes will use the same domain
name, then we can install Orber:

nodeA@ost A> corba:orb_init([{domain, "“M/RAMVIti NodeORB"}]).
nodeA@ost A> orber:install ([nodeA@ost A, nodeB@ost B] ,

[{ifr_storage_type, ram copies}]).
nodeA@ost A> orber:start().

Notethat youcanonly invokeor ber : i nst al | / 1/ 2 on oneof the nodes. Now we can start Orber on the other node:

nodeB@ost B> corba:orb_init([{domain, "MyRAMVUIti NodeORB"}]).
nodeB@ost B> orber:start ().

Install Disk Based Multi Node Orber

Asfor RAM based multi-node Orber installations, the Erlang distribution must be started (e.g. erl -sname nodeA). The
major difference isthat when it is disk based a Mnesia schema must be created:

nodeA@ost A> mmesi a: cr eat e_schenma([nodeA@ost A, nodeB@ost B]) .
nodeA@ost A> mmesi a: start ().

In this example, we assume that we want to use two nodes, nodeA and nodeB. Since it is not possible to create
a schema on more than one node. Hence, all we have to do is to start Mnesia (i.e. invoke nmesi a: start ()) on
nodeB.

After Mnesia have been started on all nodes, you must confirm that all nodes have the same domain name, then Orber
isready to beinstalled:

nodeA@nost A> corba:orb_init([{domain, "MD skMilti NodeORB"}]).
nodeA@nost A> orber:install ([nodeA@ost A, nodeB@ost B] ,

[{ifr_storage_ type, disc_copies}]).
nodeA@host A> orber:start().

Notethat youcanonly invokeor ber : i nst al | / 1/ 2 on oneof the nodes. Now we can start Orber on the other node:

Ericsson AB. All Rights Reserved.: orber | 7

1.5 Installing Orber

nodeB@ost B> corba:orb_init([{domain, "MD skMilti NodeORB"}]).
nodeB@ost B> orber:start().

1.5.2 Configuration

Itisessential that one configure Orber properly, to avoid, for example, malicious attacks and automatically terminate
[1OP connections no longer in use. An easy way to extract information about Orber's configuration parametersis to
invoke the operation orber:info/1/2. Orber offer the following configuration parameters:

Key Range Default
domain string() "ORBER"
iiop_port integer() >=0 4001
nat_iiop_port i[?:i?;ggl?rlltg;%}i]?tegero, Thesameasi i op_port
iiop_out_ports 0| {integer(),integer()} 0
iiop_out_ports_attempts integer() >0 1
iiop_out_ports_random true | false fase
iiop_max_fragments integer() > O | infinity infinity
iiop_max_in_requests integer() > 0| infinity infinity
iiop_max_in_connections integer() >0 infinity
iiop_backlog integer() >0 5
iiop_packet size integer() > O | infinity infinity
ip_address string() | { multiple, [string()]} All interfaces
ip_address local string() Defined by the underlying system
nat_ip _address {Stlggglosltﬁr:g;](l)u F[)Etr[lang 8?2]&”'90}]} Thesameasi p_addr ess
objectkeys gc time integer() > O | infinity infinity
giop_version {1,0} |{1,1} |{1,2} {1,1}
iiop_setup_connection_timeout integer() > O | infinity infinity
iiop_connection_timeout integer() > 0 | infinity infinity
iiop_in_connection_timeout integer() > O | infinity infinity

8 | Ericsson AB. All Rights Reserved.: orber

1.5 Installing Orber

iiop_out_keepalive true | false fase
iiop_in_keepalive true | false fase
iiop_timeout integer() > 0| infinity infinity
interceptors {native, [atom()]} -
local_interceptors {native, [atom()]} -

orbl nitRef [string()] | undefined undefined
orbDefaultl nitRef string() | undefined undefined
orber_debug_level 0-10 0

flags integer() >=0 0
D |
secure no | ssl no
ssl_generation 213 2
iiop_ssl_port integer() >=0 4002
iiop_ss_accept_timeout integer() > 0 | infinity infinity
iiop_ss_backlog integer() >0 5
iiop_sd_ip address local string() Defined by the underlying system

integer() > 0 | {local, integer(),

nat_iiop_ssl_port ; . Thesameasi i op_ssl _port
PSP [{integer(), integer(}} P_S31-P

ssl_sarver_options list(See;theSS_ application for valid
options.

«l_client_options list() See_theSSL application for valid
options.

iiop_sd_out_keepalive true | false fase

iiop_sd_in keepalive true | false fase

Table 5.1: Orber Configuration Parameters

Comments on the table 'Orber Configuration Parameters':

domain

Since Orber domains, they are supposed to communicate via [lOP, MUST have unique names, communication
will fail if two domains have the same name. The domain name MAY NOT contain * G (i.e.\ 007).

Ericsson AB. All Rights Reserved.: orber | 9

1.5 Installing Orber

iiop_port
If set to 0 the OS will pick any vacant port.
Note:On a UNIX system it is preferable to have a 1lOP port higher than 1023, since it is not recommended to
run Erlang as aroot user.
nat_iiop_port
Thevalueiseither aninteger or {| ocal , Def aul t NATPort, [{Port, NATPort}]}.Seeaso
Firewall Configuration.
iiop_out_ports
When set to 0 any available port will be used. If arangeis specified, Orber will only use the local ports
within the interval when trying to connect to another ORB (Orber acts as aclient ORB). If all portsarein use
communication will fail. Hence, it is absolutely necessary to seti i op_connecti on_ti neout aswell.
Otherwise, connections no longer in use will block further communication. If one use, for example, er | -
orber iiop_out_ports "{5000, 5020}", Orber will only use port 5000 to 5020 when connecting. If
communicating via SSL, make sure you use aversion that supportsthelocal { port, Port} option. Seeaso
Firewall Configuration.
iiop_out_ports_random
Requiresthati i op_out _port s define aport range. If that is the case Orber will select aport randomly from
that sequence.
iiop_out_ports_attempts
Requiresthati i op_out _port s define aport range. If so Orber will accept a number of timeouts, defined by
this parameter, when trying to connect to another ORB.
iiop_max_fragments
Limits the number of I10OP fragments allowed per request.
iiop_max_in_requests
Limits the number of concurrent incoming requests per incoming connection.
iiop_max_in_connections
Limits the number of concurrent incoming connections.
iiop_backlog
Defines the maximum length the queue of pending incoming connections may grow to.
iiop_packet_size
Defines the maximum size of incoming requests. If thislimit is exceeded, the connection is closed.
ip_address
Thisoption isused if orber only should listen on a specific ip interface on a multi-interface host or if exported
IOR:s should contain multiple components. The valueisthe IPv4 or IPv6 addressasastring or { nul ti pl e,
| PLi st} . Thelatter requires that the object is available viathe al |P addresses found in the list.
ip_address |ocal
This option defines the default local interface Orber will use when connecting to another ORB viallOP, i.e.,
Orber act asthe client side ORB. ThevaueisalPv4 or IPv6 address as a string. It is possible to override
i p_address_| ocal bydefiningii op_acl or passing the Orber generici nt er f ace Context. If
this option is not used, the underlying OS will choose which interface to use. For more information, see the
Interface Configuration section.
nat_ip_address
Thevalueistheip addressasastring (IPv4 or IPv6), {mul ti pl e, 1PList} or{l ocal,
Def aul t NATI PAddr ess, [{I| PAddress, NATI PAddress}]}. Seeaso Firewall Configuration.
objectkeys gc_time
This option should be set if objects are started using the option { per si st ent, true}.Thevaueis
i nt eger () seconds.
giop_version
Defines the default GIOP protocol version.

10 | Ericsson AB. All Rights Reserved.: orber

1.5 Installing Orber

iiop_setup_connection_timeout
The value is an integer (seconds) or the atom infinity. This option is only valid for client-side connections. If
this option is set, attempts to connect to other ORB's will timeout after the given time limit. Note, if the time
limit is large the TCP protocol may timeout before the supplied value.

iiop_connection_timeout
The value is an integer (timeout in seconds between 0 and 1000000) or the atom infinity. This optionisonly
valid for client object connections, i.e., will have no effect on server connections. Setting this option will
cause client connections to be terminated, if and only if, there are no pending requests. If there are aclient still
waiting for areply, Orber will try again after the given seconds have passed. The main purpose for this option
isto reduce the number of open connections; it is, for example, not necessary to keep a connection, only used
once aday, open at al time.

iiop_in_connection_timeout
Thesameasfori i op_connecti on_ti neout . Theonly differenceisthat this option only affects
incoming connections (i.e. Orber act as server-side ORB).

iiop_out_keepalive
Enables periodic transmission on a connected socket, when no other data is being exchanged. If the other
end does not respond, the connection is considered broken and will be terminated. When enabled the
SO_KEEPALIVE socket level option is set.

iiop_in_keepalive
Thesameasfori i op_out _keepal i ve. Theonly differenceis that this option only affectsincoming
connections.

iiop_timeout
The value is an integer (timeout in seconds between 0 and 1000000) or the atom infinity. Thisoptionis
only valid on the client side. Setting this option, cause all intra-ORB requests to timeout and raise a system
exception, e.g. TI MEQUT, if no replies are delivered within the given time limit.

interceptors
If one set thisparameter, eg.,erl -orber interceptors "{native, ['nylnterceptor']}",
Orber will use the supplied interceptor(s) for all inter-ORB communication. ' nyl nt er cept or' isthe
module name of the interceptor. For more information, see the interceptor chapter in the User's Guide and the
Reference Manual.

local_interceptors
If defined, its value will be used when activating local interceptors via Orber Environment Flags. If not
defined, but the flag is set, Orber will use the value of thei nt er cept or s parameter.

orblnitRef
Setting thisoption, eg.,erl -orber orblnitRef [\"NaneServi ce=corbal oc:: host.com
NameSer vi ce\ "], will alter the location from wherecor ba: resol ve_i niti al _r ef er ences(Key)
tries to find an object matching the given Key. The keys will also appear when invoking
corba:list_initial_services().Thisvariableoverridesor bDef aul t | ni t Ref

orbDefaultlnitRef
If amatching Key for or bl ni t Ref isnot found, and this variable is set, it determines the location from
whereor ber: resol ve_initial _references(Key) triesto find an object matching the given Key.
Usage:erl -orber orbDefaultlnitRef \"corbal oc::host.com".

orber_debug_level
Therangeis0to 10. Using level 10 isthe most verbose configuration. This option will generate reports, using
theerror _| ogger, for abnormal situations. It is not recommended to use this option for delivered systems
since some of the reportsis not to be considered as errors. The main purpose is to assist during development.

flags
No flags are activated in the default case. The available configuration settings are described in Orber
Environment Flags.

iiop_acl
This option must be activated by setting Orber Environment Flags parameter. The value of this parameter
shal bealistof [{Direction, Filter}] andlor[{Direction, Filter, [Interfaces]}].

Ericsson AB. All Rights Reserved.: orber | 11

1.5 Installing Orber

TheDirection,tcp_in,ssl_in,tcp_out orssl _out,determinesif the Access Control List (ACL)
applies to incoming or outgoing connections and 11OP or I1OP over SSL. The Fi | t er uses aextended format
of Classless Inter Domain Routing (CIDR). For example, " 123. 123. 123. 10" limits the connection
to that particular host, while" 123. 123. 123. 10/ 17" alows connectionsto or from any host equal to
the 17 most significant bits. Orber also allow the user to specify a certain port or port range, for example,
"123.123.123. 10/ 17#4001" and" 123. 123. 123. 10/ 17#4001/ 5001" respectively. IPv4 or none
compressed 1Pv6 strings are accepted.
Thelist of | nt er f aces, IPv4 or IPv6 strings, may only contain one address for outgoing connections. For
incoming connections, the | nt er f aces list may contain several IP strings. If set for outgoing connections,
and access is granted, Orber will use that local interface when connecting to the server-side ORB. For incoming
connections, the client-side ORB is required to use one of the listed interfaces locally. If it fail to do so, access
will be denied. The module orber_acl provides operations for eval uating the access control for filters and
addresses. See aso the Interface Configuration and Firewall Configuration chapters.

secure
Determines the security mode Orber will use, which is either no if it is an insecure domain or the type of
security mechanism used. Currently, per default, Orber is compliant with CSI v1 level 0, which means I1OP
via SSL/TLS. The security chapter later in this manual describes how to get security in Orber and how the
options are used.

ssl_generation
Defineswhich SSL version, i.e. available AP, isinstalled. The default value, 2, refersto SSL-3.1 or later, but
earlier than SSL-4.0. If set to 3 SSL-4.0, or later, must be available. Currently it not possibleto use 1, it isonly
reserved for future use.

iiop_sd_port
If set, the value must be an integer greater than zero and not equal to iiop_port.

iiop_sd_accept_timeout
Thevalueisan integer (timeout in seconds) or the atom infinity and determine how long the SSL handshake
may take. This option should be set to avoid if aclient never initiate the handshake.

iiop_sd_backlog
Defines the maximum length the queue of pending incoming connections may grow to.

iiop_sd_ip_address local
This option defines the default local interface Orber will use when connecting to another ORB via llOP SSL,
i.e., Orber act asthe client side ORB. ThevalueisalPv4 or IPv6 address as a string. It is possible to override
iiop_ssl_ip_address_| ocal bydefiningii op_acl orpassingthe Orber generici nt er f ace
Context. If thisoption is not used, the underlying OS will choose which interface to use. For more information,
see the Interface Configuration section.

nat_iiop_sd_port
If set, the value must be an integer greater than zeroor { | ocal , Def aul t NATPort, [{Port,
NATPort}]}. Seealso Firewall Configuration.

ssl_server_options
A list of the SSL options when Orber isthe server. In genera it'sjust to remove the 'sd_server ' prefix from the
oldoptions, i.e. ssl _server _veri fy will justbeveri fy inthisoption list. See the SS_ application for
the correct list of possible options and their values.

ss_client_options
A list of the SSL options when Orber isthe client. In general it'sjust to removethessl _cl i ent _ prefix
from the old options, i.e. ssl _cl i ent _dept h will just bedept h in this option list. See the SS_ application
for the correct list of possible options and their values.

iiop_ss_out_keepalive
Enables periodic transmission on a connected socket, when no other data is being exchanged. If the other
end does not respond, the connection is considered broken and will be terminated. When enabled the
SO_KEEPALIVE socket level option is set. Requires that the installed SSL version support the keepalive
option and that the ssl_generation points to this version.

12 | Ericsson AB. All Rights Reserved.: orber

1.5 Installing Orber

iiop_sd_in_keepalive
Thesameasforii op_ssl _out _keepal i ve. Theonly differenceisthat this option only affectsincoming
connections.

It is possible to invoke operations using the extra timeout parameter:

erl > nodul e_i nterface: functi on(Qoj Ref, Timeout, ..Arguments..).
erl > nodul e_i nterface: functi on(Ooj Ref, [{timeout, Tinmeout}], ..Argunents..).
erl > nodul e_interface: functi on(Ooj Ref, ..Argunents..).

The extra Timeout argument will override the configuration parameter i i op_t i meout . Itis, however, not possible
tousei nfinity to override the Timeout parameter. The Timeout option is also valid for objects which resides
within the same A domain containing several Erlang nodes, which are communicating by using the Erlang internal
format. An Orber domain looks as one ORB from the environment..

The iiop_setup_connection_timeout, iiop_timeout, iiop_connection_tineout and
iiop_in_connection_timeout variables should be used. The specified values is implementation
specific, i.e, WAN or LAN, but they should range from iiop_setup_connection_timeout to
i i op_connection_timeout.

To change these settings in the configuration file, the - conf i g flag must be added to the erl command. See the
Reference Manual config(4) for further information. The values can also be sent separately as options to the Erlang
node when it is started, see the Reference Manual erl(1) for further information.

Orber Environment Flags

The Envi ronnent Fl ags alows the user to activate debugging facilities or change Orber's behavior. The latter
may result in that Orber isno longer compliant with the OM G standard, which may be necessary when communicating
with anon-compliant ORB.

Hexadecimal Value OMG Compliant Description

0001 no Exclude CodeSet Component
0002 yes Local Typechecking
0004 yes Use Host Namein IOR
0008 yes Enable NAT

0020 yes Local Interceptors
0080 yes Light IFR

0100 yes Use IPv6

0200 yes EXIT Tolerance

0400 yes Enable Incoming ACL
0800 yes Enable Outgoing ACL

Ericsson AB. All Rights Reserved.: orber | 13

1.5 Installing Orber

1000 yes Use Current Interfacein IOR

Table 5.2: Orber Environment Flags

Any combination of the flags above may be used and changes the behavior as follows:

* Exclude CodeSet Component - instruct Orber to exclude the CodeSet component in exported IOR:s. When
activated, no negotiating regarding character and wide character conversions between the client and the server
will occur. Thisflag will, most likely, cause problemsif your IDL specification contains the data types wchar
and/or wstring.

* Local Typechecking - If activated, parameters, replies and raised exceptions will be checked to ensure that the
datais correct. If an error occurs, theer r or _| ogger isused to generate reports. One MAY NOT use this
option for delivered systems due to the extra overhead. Since this option activates typechecking for all objects
generated on the target node, it is also possibleto usetheoption {1 ocal _t ypecheck, bool ean()},
wheninvokingoe_create/ 2,0e_create_link/2,corba: create/ 4orcorba:create_link/4,
to override the configuration parameter.

e UseHost Namein IOR - normally Orber inserts the IP-number in IOR:s when they are exported. In some cases,
thiswill cause the clients to open two connections instead of one.

» Enable NAT - if thisflag is set, it is possible to use the NAT (Network Address Translation) configuration
parameters (nat _ii op_port,nat _iiop_ssl_port andnat i p_address).

e Local Interceptors - use interceptors for local invocations.

* Light IFR-if the IFR is not explicitly used and this flag is set, Orber will use aminimal IFR to reduce memory
usage and installation time.

» UselPv6 - when this option is activated, Orber will use | Pv6 for inter-ORB communication.

e EXIT Tolerance - servers will survive even though the call-back module caused an EXIT.

* Enable Incoming ACL - activates access control for incoming connections.

« Enable Outgoing ACL - activates access control for outgoing connections.

e UseCurrent Interface in IOR - when set, Orber will add the interface the request came via to exported local
IOR:s.

Invoking the operation orber:info/1/2 will display the currently set flags in areadable way.

1.5.3 Firewall Configuration

Firewalls are used to protect objects from clients in other networks or sub-networks, but also to restrict which hosts
internal objects may connect to (i.e.i nbound pr ot ect i on andout bound pr ot ecti on). A firewall can limit
access based on:

» Transport Level - performs access control decisions based on address information in TCP headers.

e Application Level - understands GIOP messages and the specific transport level inter-ORB Protocol supported
e.g. l10OP.

This section describes how to configure a Transport Level firewall. It must have prior knowledge of
the source to destination mappings, and conceptually has a configuration table containing tuples of the form:
({inhost:inport}, {outhost: outport}).Ifthereareno portrestrictionsitisrather easy to configurethe
firewall. Otherwise, we must consider the following alternatives:

* Incoming Requests - Orber only uses the port-numbers specified by the configuration parametersiiop_port and
iiop_sd_port. Other ORB's may use several ports but it should be possible to change this behavior. Consult the
other ORBs documentation.

14 | Ericsson AB. All Rights Reserved.: orber

1.5 Installing Orber

« Outgoing Requests - Most ORB's, Orber included, ask the OS to supply avacant local port when connecting
to the server-side ORB. It is possible to change this behavior when using Orber (i.e. set the configuration
parameter iiop_out_ports).

Warning:

Usingtheoptioni i op_out _port s may resultinthat Orber runsout of valid ports numbers. For example, other
applications may steal some of the ports or the number of concurrent outgoing connections to other ORBs may
be higher than expected. To reduce, but not eliminate, therisk you should usei i op_connecti on_ti neout .

Firewall configuration example:

"Plain" |10OP

To: Orber-1PNo: (iiop_port) From ORB-1PNo: X

To: ORB-1PNo: Z From Orber-IPNo: (iiop_out_ports | Any Port)
11 0P via SSL

To: Orber-1PNo: (iiop_port) From ORB-1PNo: X

To: Orber-1PNo: (iiop_ssl_port) From ORB-IPNo:Y

To: ORB-1PNo: Z From Orber-IPNo: (iiop_out_ports | Any Port)

If the communication take place viaa TCP Firewall with NAT (Network Address Trandation), we must activate this
behavior and define the external address and/or ports.

Figure 5.1: TCP Firewall With NAT

Using NAT makes it possible to use different host data for different network domains. This way we can share
Internet Protocol address resources or obscure resources. To enable this feature the Enable NAT flag must be set
andnat _iiop_port,nat_iiop_ssl_port andnat _i p_addr ess configured, whichmapstoi i op_port,
iiop_ssl_port andi p_addr ess respectively. Hence, the firewall must be configured to translate the external
to the internal representation correctly. If these NAT parameters are assigned a single port number or |P address,
only those will be used when an IOR is exported to another ORB. When i p_address issetto {rmul ti pl e,

[1 PAddress]}, nat _i p_addr ess should be configured in the same way, so that each NAT IP address can
be trandated to a valid address by the firewall. If objects are supposed to be accessible via different interfaces
and port, see also Interface Configuration, the options{ | ocal , Def aul t NATI PAddr ess, [{| PAddress,

NATI PAddr ess}]} and/or{l ocal , Defaul t NATPort, [{Port, NATPort}]} shalbeused. Thedefault
NAT IP address and port, should be trandated to the value of i p_addr ess_| ocal and the default listen port by
the firewall. If the 1P address and/or port is not found in the list, the default values will be inserted in the IOR. The
firewall must be able to translate these correctly.

If it is necessary to limit the access to an ORB within a secure network, but other applications running on the same
host may not be blocked out, one can use a Application Level firewall or Orber Access Control List (ACL). The latter
makes it possible for the user to define which hosts may communicate, either as server or client, with Orber. This
is achieved by defining the configuration parameter iiop_acl. The Classless Inter Domain Routing (CIDR) Fi | t er

determines which peer interfaces and ports the other ORB may use.

Filter Peer Interface(s) Peer Port(s)

"10.1.1.1" 10.1.11 any

Ericsson AB. All Rights Reserved.: orber | 15

1.5 Installing Orber

"10.1.1.1/8" 10.0.0.0-10.255.255.255 any
"10.1.1.1/8#4001" 10.0.0.0-10.255.255.255 4001
"10.1.1.1/8#4001/5001" 10.0.0.0-10.255.255.255 4001-5001

Table 5.3: Orber ACL Filters

Orber ACL, also allows the user to define which local interface(s) may be used, but will not detect spoof i ng. The
operation orber_acl: match/2/3 makes it easy to verify whether access would be granted or not. For example, if Orber
would be started withthe ACL [{tcp_out, "10.1.1.1/8#4001/5001"}],thenorber_acl: mtch/2
would behave as follows:

erl> orber_acl:match({11,1,1,1}, tcp_out).
fal se

erl > orber_acl:mtch({10,1,1,1}, tcp_out).
true

erl> orber_acl:match({11,1,1, 1}, tcp_out, true).
{false,[],0}

erl > orber_acl:mtch({10,1,1, 1}, tcp_out, true).
{true,[], {4001, 5001}}

Only if the returned boolean is true the extra return values makes a difference. In the example above, {t r ue,
[1.{4001, 5001}} means that Orber may connect to " 10. 1. 1. 1", using any local interface, if the server-
side ORB listens for incoming connect requests on a port within the range 4001-5001. Note, invoking the
or ber _acl : mat ch/ 2/ 3 operation, will not result in a connect attempt by Orber. The reason for this, is that this
function may be used on alive node aswell asin test environment. Hence, if alocal interfaceis currently not available
or no server-side ORB available via the given host/port(s), will not be detected by Orber.

1.5.4 Interface Configuration

In many cases it is sufficient to ssimply configure the underlying OS which local interfaces shall be used for all
applications. But, in some cases it is required, due to, for example, the firewall configuration, that different local
interfaces are used for different applications. Some times, it is even necessary to use a specific interface for asingle
CORBA object. This section describe how one can alter thisin different ways.

The default behavior is that Orber lets the OS configuration decide which interface will be added in IOR:s exported
to another ORB and the local interface used when connecting to another ORB (Orber act as client side ORB).
The latter can be overridden by setting the configuration parametersi i op_ssl i p_address_| ocal and/or
i p_address_| ocal , which will affect I1OP via SSL and |10OP respectively. These parameters can be overridden
by using the Orber generic i nt er f ace Context or defining an ACL (Access Control List). The latter always takes
precedence if alocal interface isincluded (eg. [{tcp_out, "10.0.0.0/8", ["10.0.0.1"]}]). If the
interfaceisexcluded (e.g. [{tcp_out, "10.0.0.0/8"}]), theinterface chosen will, in the following order, be
determined by #' | OP_Servi ceContext' {},i p_address |l ocal/iiop_ssl _ip_address_I|ocal or
the configuration of the underlying system.

Adding the interface context, for generated stubs/skeletons, is done in the following way:

16 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

Ctx = #' |1 OP_ServiceContext' {context_id = ?ORBER GENERI C_CTX_| D,
context_data = {interface, "10.0.0.1"}},
' CosNami ng_Namni ngCont ext' : resol ve(NS, [{context, [Ctx]}], Nane),

It is also possible to add the context to corba:string_to_object/2,
corba:resolve_initial _references/2, corba:resolve_initial _references_renote/3,
corba:list _initial_services_renote/?2, cor ba_obj ect: not _existent/ 2,

corba_object: non_existent/2 and corba_object:is_a/3. The operations exported by
cor ba_obj ect are affected if the supplied IOR is external. The function cor ba: string_to_object/2
might require the interface context if a corbaloc or a corbaloc dtring is
passed (See the INS chapter), while corba:resolve_initial _references renote/3 and
corba:list_initial_services_renote/2 aways connect to another ORB and it might be necessary to
add the context. The remaining cor ba operations are affected if calls are re-directed by setting the or bl ni t Ref
and/or or bDef aul t I ni t Ref configuration parameters. For more information, see the Reference Manual for each
module.

Configuring which interface(s) that shall be used when exporting an IOR to another ORB, is determined
by nat i p_address, setting the flag 16#1000 and i p_address, in that order. Orber listens for
incoming connections either via all interffaces or the interface defined by i p_address. It is aso
possible to add and remove extra listen interfaces by using orber:add |isten_interface/2/3 and
orber:renove_listen_interface/ 1. Inthiscase one should set the 16#1000 flag and, if necessary, set the
configuration parameters{ | ocal , Def aul t NATI PAddr ess, [{| PAddress, NATI PAddress}]} and/
or{l ocal, Defaul tNATPort, [{Port, NATPort}]}.

1.6 OMG IDL to Erlang Mapping
1.6.1 OMG IDL to Erlang Mapping - Overview

The purpose of OMG IDL, Interface Definition Language, mapping is to act as translator between platforms and
languages. An IDL specification is supposed to describe data types, object types etc.

CORBA isindependent of the programming language used to construct clients or implementations. In order to usethe
ORSB, it isnecessary for programmersto know how to access ORB functionality from their programming languages. It
tranglates different IDL constructs to a specific programming language. This chapter describes the mapping of OMG
IDL constructs to the Erlang programming language.

1.6.2 OMG IDL Mapping Elements

A complete language mapping will allow the programmer to have access to all ORB functionality in a way that is
convenient for a specified programming language.

All mapping must define the following elements:

e All OMG IDL basic and constructed types

* Referencesto constants defined in OMG IDL

* Referencesto objects defined in OMG IDL

* Invocations of operations, including passing of parameters and receiving of results

e Exceptions, including what happens when an operation raises an exception and how the exception parameters
are accessed

* Accessto attributes
« Signatures for operations defined by the ORB, such as dynamic invocation interface, the object adapters etc.
e Scopes; OMG IDL has several levels of scopes, which are mapped to Erlang's two scopes.

Ericsson AB. All Rights Reserved.: orber | 17

1.6 OMG IDL to Erlang Mapping

1.6.3 Getting Started

To begin with, we should decide which type of objects (i.e. servers) we need and if two, or more, should export the
same functionality. Let us assume that we want to create a system for DB (database) access for different kind of
users. For example, anyone with a valid password may extract data, but only a few may update the DB. Usually, an
application isdefined withinanodul e, and all global datatypes are defined on the top-level. To begin with we create
amodule and the interfaces we need:

// DB | DL

#i fndef _DB_IDL_

#define _DB_IDL_

/!l A nmodule is sinply a container
nodul e DB {

/1 An interface maps to a CORBA:: Obj ect.
i nterface CommonUser {

b

/1 Inherit the Consuner interface
interface Administrator : CommonUser {

i
interface Access {
i

i ¢

#endi f

Since the Admi ni st r at or should be able to do the same things as the ConmonUser , the previous inherits from
the latter. The Access interface will grant access to the DB. Now we are ready to define the functionality and data
types we need. But, this requires that we know alittle bit more about the OMG IDL.

Note:

The OMG definesaset of reserved caseinsensitive key-words, which may NOT be used asidentifiers (e.g. module
name). For more information, see Reserved Compiler Names and Keywords

1.6.4 Basic OMG IDL Types

The OMG IDL mapping is strongly typed and, even if you have a good knowledge of CORBA types, it is essential
to read carefully the following mapping to Erlang types.

The mapping of basic typesis straightforward. Note that the OMG IDL double type is mapped to an Erlang float which
does not support the full double value range.

OMG IDL type Erlang type Note
float Erlang float
double Erlang float value range hot supported

18 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

short Erlang integer -2715 .. 27M5-1
unsigned short Erlang integer 0..2M6-1

long Erlang integer -2n31 .. 2°31-1
unsigned long Erlang integer 0..2"32-1

long long Erlang integer -2"63 .. 2°63-1
unsigned long long Erlang integer 0..2764-1

char Erlang integer |SO-8859-1

wchar Erlang integer UTF-16 (1SO-10646-1:1993)
boolean Erlang atom true/false

octet Erlang integer

any Erlang record #any{ typecode, value}
long double Not supported

Object Orber object reference Internal Representation
void Erlang atom ok

Table 6.1: OMG IDL basic types

The any value is written as a record with the field typecode which contains the Type Code is a full definition of a
type representation, see also the Type Code table, and the value field itself.

Functions with return type voi d will return the atom ok.

1.6.5 Template OMG IDL Types and Complex Declarators
Constructed types al have native mappings as shown in the table below.

Type IDL code Mapsto Erlang code
. typedef string S; . ok = op(Obj, "Hello
string void op(in S a); Erlang string world"),
. typedef wstring S; . ok = op(Obj, "Hello
wstring void op(in S a)- Erlang list of Integers World"),
typedef sequence <long,
seguence 3>S; Erlang list ok = op(0hj, [1, 2, 3]),
void op(in S a);

Ericsson AB. All Rights Reserved.: orber | 19

1.6 OMG IDL to Erlang Mapping

typedef string §[2]; ok = op(Obj, {"one",
array void op(in S a); Erlang tuple "twa"}),

typedef fixed<3,2> MF = fixed:create(3, 2,
fixed myFixed; Erlang tuple 314),

void op(in myFixed a); ok = op(Obj, MF),

Table 6.2: OMG IDL Template and Complex Declarators

String/WString Data Types

A string consists of al possible 8-bit quantities except null. Most ORB:s uses, including Orber, the character set
Latin-1 (1SO-8859-1). Thewst r i ng type is represented as a list of integers, where each integer represents a wide
character. In this case Orber uses, as most other ORB:s, the UTF-16 (1 SO-10646-1:1993) character set.

When defining aa string or wstring they can be of limited length or null terminated:

[/ Null term nated

typedef string nmyString;

typedef wstring nmyWstring;

/1 Maxi mum | ength 10

typedef string<10> nyStringlo;
typedef wstring<10> nyWstri nglo0;

If we want to define a char/string or wchar/wstring constant, we can use octal (\OOO - one, two or three octal digits),
hexadecimal (\xHH - one or two hexadecimal digits) and unicode \uHHHH - one, two, three or four hexadecimal
digits.) representation as well. For example:

const string SwedensBestSoccer Team = "\101" "\x49" "\ u004B";
const wstring SwedensBest HockeyTeam = L"\ 101\ x49\ u004B";
const char aChar = '\u004B ;

const wchar aWhar L'\ u004C ;

Naturally, wecanuse" Er | ang",L" Rocks"," A" andL' A' aswsell.

Sequence Data Type

A sequence can be defined to be of a maximum length or unbounded, and may contain Basic and Template types
and scoped names:

typedef sequence <short, 1> aShort Sequence;
typedef sequence <l ong> alLongSequence;
typedef sequence <alLongSequence> anEvenLonger Sequence;

Array Data Type

Arrays are multidimensional, fixed-size arrays. The indices is language mapping specific, which is why one should
not pass them as arguments to another ORB.

20 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

typedef long nyMatrix[2][3];

Fixed Data Type

A Fixed Point literal consists of an integer part (decimal digits), decimal point and a fraction part (decimal digits),
followed by a D or d. Either the integer part or the fraction part may be missing; the decimal point may be missing,
but not d/D. The integer part must be a positive integer less than 32. The Fraction part must be a positive integer less
than or equa to the Integer part.

const fixed nyFixedl = 3. 14D;
const fixed nyFi xed2 = . 14D;
const fixed nyFi xed3 = 0. 14D;
const fixed nyFixed4 = 3.D;
const fixed nyFi xed5 = 3D;

It isalso possible to use unary (+-) and binary (+-*/) operators:

const fixed nyFi xed6
const fixed nyFi xed7

3D + 0. 14D,
- 3. 14D;

The Fixed Point examples above are, so called, anonymous definitions. In later CORBA specifications these have
been deprecated as function parameters or return values. Hence, we strongly recommend that you do not use them.
Instead, you should use:

typedef fixed<5, 3> nyFi xed53;

const nyFi xed53 nyFi xed53const ant = 03. 140d;
typedef fixed<3, 2> nyFi xed32;

const nyFi xed32 nyFi xed32constant = 3. 14d;

nyFi xed53 foo(in nyFi xed32 MF); // OK
void bar(in fixed<5,3> M); // Illegal

For more information, see Fixed in Orber's Reference Manual.

Now we continue to work on our IDL specification. To begin with, we want to limit the size of the logon parameters
(Id and password). Since the User | D and Passwor d parameters, only will be used when invoking operations on
the Access interface, we may choose to define them within the scope that interface. To keep it simple our DB will
contain employee information. Hence, as the DB key we choose an integer (Enpl oyeeNo).

// DB |IDL
#i fndef _DB | DL_
#define DB IDL_
nmodul e DB {
typedef unsigned | ong Enpl oyeeNo;

i nterface CommonUser {

Ericsson AB. All Rights Reserved.: orber | 21

1.6 OMG IDL to Erlang Mapping

any | ookup(in Enpl oyeeNo ENo);

b

interface Adnministrator : ComonUser {

voi d del ete(in Enpl oyeeNo ENo) ;

b

interface Access {

typedef string<l10> Userl D,
t ypedef string<l10> Password;

CommonUser | ogon(in UserlD ID,

}s
#endi f

But what should, for example, the| ookup operation return? One option is to use the any data type. But, depending
on what kind of data it encapsulates, this datatype can be rather expensive to use. We might find a solution to our

problems among the Const r uct ed IDL types.

1.6.6 Constructed OMG IDL Types
Constructed types al have native mappings as shown in the table below.

in Password PW;

Type IDL code Mapsto Erlang code
struct myStruct {
long & ok = op(Obj,
struct short b; Erlang record #myStruct'{ a=300,
b b=127}),
void op(in myStruct a);
union myUnion
switch(long) { ok = op(Obj,
union case 1: long a; Erlang record #myUnion'{label=1,
} value=66}),
void op(in myUnion a);
enum myEnum { one,
enum two}; Erlang atom ok = op(Obj, one),
void op(in myEnum a);

Table 6.3: OMG IDL constructed types

Struct Data Type

A struct may have Basic, Template, Scoped Names and Constructed types as members. By using forward

declaration we can define arecursive struct:

22 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

struct nmyStruct; // Forward decl aration
typedef sequence<nyStruct> nyStruct Seq;
struct nmyStruct {

nmyStruct Seq chai n;
b

/| Deprecated definition (anonynmous) not supported by IC
struct nmyStruct {
sequence<nyStruct > chai n;

) ¢

Enum Data Type

The maximum number of identifiers which may defined in an enumeration is 2%2. The order in which the identifiers
are named in the specification of an enumeration defines the relative order of the identifiers.

Union Data Type
A uni on may consist of:

e Identifier
e Switch - may be an integer, char, boolean, enum or scoped name.
« Body - with or without adef aul t case; may appear at most once.

A caselabel must match the defined type of the discriminator, and may only contain a default case if the values given
in the non-default 1abels do not cover the entire range of the union's discriminant type. For example:

Il 1llegal default; all cases covered by

/'l non-default cases.

uni on Bool eanUni on swi t ch(bool ean) {
case TRUE: |ong TrueVal ue;
case FALSE: |ong Fal seVal ue;
default: [ong DefaultVal ue;

iE

Il K

uni on Bool eanUni on2 swi t ch(bool ean) {
case TRUE: |ong TrueVal ue;
default: [ong DefaultVal ue;

}s

It is not necessary to list all possible values of the union discriminator in the body. Hence, the value of a union isthe
value of the discriminator and, in given order, one of the following:

« |If thediscriminator match alabel, explicitly listed in a case statement, the value must be of the same type.

e |If the union contains a default label, the value must match the type of the default label.

* Novaue. Orber then inserts the Erlang atom undef i ned in the value field when receiving aunion from an
external ORB.

The above can be summed up to:

/1 1f the discrimnator equals 1 or 2 the val ue
/Il is along. Gherw se, the atom undefined.

uni on LongUni on switch(long) {

case 1:

case 2: long TrueVal ue;

b

Ericsson AB. All Rights Reserved.: orber | 23

1.6 OMG IDL to Erlang Mapping

/1 1f the discrimnator equals 1 or 2 the val ue
/Il is along. G herw se, a bool ean.

uni on LongUni on2 swi tch(long) {

case 1:

case 2: long TrueVal ue;

defaul t: bool ean Defaul t Val ue;

h

In the same way as structs, unions can be recursive if forward declaration is used (anonymous types is deprecated
and not supported):

/1l Forward decl aration
uni on nyUni on;
typedef sequence<nyUni on>nyUni onSeq;
uni on nyUni on switch (long) {
case 1 : myUni onSeq chai n;
defaul t: bool ean Def aul t Val ue;

Note:

Recursive types (union and struct) require Light IFR. I.e. the IC option {light_ifr, true} is used and that Orber is
configured in such away that Light IFR is activated. Recursive TypeCode is currently not supported, which is
why these cannot be encapsulated in an any datatype.

Warning:

Every field in, for example, a struct must be initiated. Otherwise it will be set to the atom undef i ned,
which Orber cannot encode when communicating via [1OP. In the example above, invoking the operation with
#myStruct'{a=300} will fail (equal to #myStruct'{a=300, b=undefined})

Now we can continue to work on our IDL specification. To begin with, we should determine the return value of the
| ookup operation. Since the any type can be rather expensive we can use ast r uct or auni on instead. If we
intend to return the same information about a employee every time we can use a struct. Let us assume that the DB
contains the name, address, employee number and department.

// DB | DL
#ifndef DB IDL_
#define DB IDL_
nodul e DB {

typedef unsigned | ong Enpl oyeeNo;
enum Departnent {Departnentl, Department2};
struct enpl oyee {

Enpl oyeeNo No;

string Name;
string Address;

24 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

Depart nent Dpt;
}s

typedef enpl oyee Enpl oyeeDat a;
interface CommonUser {
Enpl oyeeDat a | ookup(i n Enpl oyeeNo ENo);
i
interface Adnministrator : ComonUser {
voi d del ete(in Enpl oyeeNo ENo) ;
i
interface Access {

typedef string<l10> Userl D,
t ypedef string<l10> Password;

/1 Since Adm nistrator inherits from CommbnUser
/] the returned Object can be of either type.
CommonUser |ogon(in UserIlD ID, in Password PW;

}s
b
#endi f

We can also define exceptions (i.e. not system exception) thrown by each interface. Since exceptions are thoroughly
described in the chapter System and User Defined Exceptions, we choose not to. Hence, we are now ready to compile
our IDL-file by invoking:

$ erlc DB.idl

or:

$ erl
Erl ang (BEAM emnul ator version 5.1.1 [threads: 0]

Eshell V5.1.1 (abort with *"Q
1> ic:gen('DB").

ok

2> halt().

The next step is to implement our servers. But, to be able to do that, we need to know how we can access data type

definitions. For example, since a struct is mapped to an Erlang record we must include an hrl-file in our callback
module.

Ericsson AB. All Rights Reserved.: orber | 25

1.6 OMG IDL to Erlang Mapping

1.6.7 Scoped Names and Generated Files

Scoped Names
Within a scope al identifiers must be unique. The following kinds of definitions form scopesin the OMG IDL:

* module

* interface
e oOperation
* valuetype
e struct

e union

e exception

For example, since enumerants do not form a scope, the following IDL code is not valid:

modul e MyModul e {
/1 '"two' is not unique
enum MyEnum {one, two};
enum MyQt her Enum {two, three};

But, since Erlang only has two levels of scope, module and function, the OMG IDL scope is mapped as follows:

» Function Scope - used for constants, operations and attributes.
» Erlang Module Scope - the Erlang module scope handles the remaining OMG IDL scopes.

An Erlang module, corresponding to an IDL global name, is derived by converting occurrences of "::" to underscore,
and eliminating the leading "::". Hence, accessing My Enumfrom another module, one use MyModul e: : MyEnum

For example, an operation f 0o defined in interface | , which is defined in module M would be written in IDL as
M:l::fooandas' M |':fooinErlang-fooisthefunctionnameand' M | ' isthe name of the Erlang module.
Applying this knowledge to a stripped version of the DB.idl gives:

// DB IDL

#ifndef DB IDL_

#define DB IDL_

/] ++ topnpbst scope ++

/1 1C generates oe_XX erl and oe_XX hrl.

/Il XX is equal to the nanme of the IDL-file.

/] Tips: create one IDL-file for each top nodul e
/'l and give the file the sane nane (DB.idl).

/'l The oe_XX.erl nodule is used to register data
/1 in the IFR

nmodul e DB {

/] ++ Mbdul e scope ++

/'l To access ' Enpl oyeeNo' from anot her scope, use:
/] DB::Enpl oyeeNo, DB::Access etc.

typedef unsi gned | ong Enpl oyeeNo;

enum Depart ment {Departnentl, Departnent?2};
I/l Definitions of this struct is contained in:

/1 DB.hrl
/'l Access functions exported by:

26 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

/1 DB_enpl oyee. erl
struct enpl oyee {

}s
typedef enpl oyee Enpl oyeeDat a;

/1 1f this interface should inherit an interface
/1 in another nodule (e.g. O herMdul e) use:

/'l interface Access : O herMdul e:: O herlnterface
interface Access {

/] ++ interface scope ++

/] Types within this scope is accessible via:
/] DB::Access::UserlD

/] The Stub/Skeleton for this interface is
/'l placed in the nodul e:

/] DB_Access. erl

typedef string<l10> Userl D,

t ypedef string<l10> Password;

/1 Since Adm nistrator inherits from CommbnUser
/] the returned Object can be of either type.
/'l This operation is exported from

/1 DB_Access. erl
CommonUser |ogon(in UserIlD ID, in Password PW;

}s
b
#endi f

Using underscores in IDL names can lead to ambiguities due to the name mapping described above. It is advisable
to avoid the use of underscores in identifiers. For example, the following definition would generate two structures
namedx_y_ z.

nodul e x {
struct y_z {
b
interface y {

struct z {

}s
}s

Generated Files
Severd files can be generated for each scope.

« An Erlang source codefile (. er |) isgenerated for top level scope as well as the Erlang header file.

e An Erlang header file (. hr |) will be generated for each scope. The header file will contain record definitions
foral struct,uni on and except i on typesin that scope.

Ericsson AB. All Rights Reserved.: orber | 27

1.6 OMG IDL to Erlang Mapping

* Modulesthat contain at least one constant definition, will produce Erlang source codefiles (. er |). That Erlang
filewill contain constant functions for that scope. Modules that contain no constant definitions are considered
empty and no code will be produced for them, but only for their included modul es/interfaces.

« Interfaceswill produce Erlang source codefiles (. er |), this code will contain all operation stub code and
implementation functions.

* Inaddition to the scope-related files, an Erlang source file will be generated for each definition of the types
struct,uni on and except i on (these are the types that will be represented in Erlang as records). Thisfile
will contain specia access functions for that record.

e Thetop level scope will produce two files, one header file (. hr |) and one Erlang sourcefile (. er |). These
filesare named asthe IDL file, prefixed with oe_.

After compiling DB.idl, the following files have been generated:

e oe_DB. hrl andoe_DB. er| for thetop scope level.

 DB. hrl for the module DB.

« DB Access. hrl andDB_Access. erl fortheinterfface DB_Access.

« DB _CommonUser. hrl and DB_ConmonUser . er| for theinterface DB_ConmonUser .

e DB Adnministrator. hrl andDB_Admi ni strator. erl fortheinterface DB_Admi ni strat or.
« DB _enpl oyee. erl for the structure enpl oyee in module DB.

Since the enpl oyee struct is defined in the top level scope, the Erlang record definition is found in
DB. hr . IC aso generates stubs/skeletons (e.g. DB_ConmonUser . er |) and access functions for some datatypes
(e.g. DB_enpl oyee. erl). How the stubs/skeletons are used is thoroughly described in Stubs/Skeletons and
Module_Interface.

1.6.8 Typecode, Identity and Name Access Functions

As mentioned in a previous section, st r uct, uni on and except i on types yield record definitions and access
code for that record. For st ruct, uni on, excepti on, arr ay and sequence types, a specia file is generated
that holds access functions for TypeCode, | dent i t y and Nane. These functions are put in the file corresponding
to the scope where they are defined. For example, the module DB_enpl oyee. er |, representing the enpl oyee
struct, exports the following functions:

e tc/0 - returnsthe type code for the struct.

e id/0 - returnsthe IFR identity of the struct. In this case the returned valueis™ | DL: DB/ enpl oyee: 1. 0",
but if the struct was defined in the scope of ConmonUser , the result would be" | DL: DB/ CommonUser /
enpl oyee: 1. 0" . However, the user usually do not need to know the Id, just which Erlang module contains
the correct Id.

* name/0 - returns the scoped name of the struct. The enpl oyee struct nameis” DB_enpl oyee".

Type codes give a complete description of the type including all its components and structure.are, for example, used
in Any values. Hence, we can encapsulate the enpl oyee struct in an any type by:

%% Er | ang code

Ly

"Adam | van Kendal | ",
"Rasunda, Sol na",
'Departnment1'},

AnEnpl oyee = #' DB_enpl oyee' {' No'
' Nane'
' Addr ess’
' Dpt’

Enpl oyeeTC = ' DB_enpl oyee' :tc(),

Enpl oyeeAny = any: cr eat e(Enpl oyeeTC, AnEnpl oyee),

28 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

For more information, see the Type Code listing.

1.6.9 References to Constants

Constants are generated as Erlang functions, and are accessed by a single function call. The functions are put in the
file corresponding to the scope where they are defined. Thereisno need for an object to be started to access a constant.

Example:

/1 midl
modul e m {
const float pi

1
w

. 14;

interface i {
const float pi = 3.1415;
b

Since the two constants are defined in different scopes, the IDL code above is valid, but not necessarily a good
approach. After compilingm i dl , the constant definitions can be extracted by invoking:

$ erlc midl

$ erlc merl

$ erl

Erl ang (BEAM emul ator version 5.1.1 [threads: 0]

Eshell V5.1.1 (abort with *"Q
1> mpi ().

3.14

2> mi:pi().

3. 1415

3> halt().

1.6.10 References to Objects Defined in OMG IDL

Objects are accessed by object references. An object reference is an opaque Erlang term created and maintained by
the ORB.

Objects are implemented by providing implementations for al operations and attributes of the Object, see operation
implementation.

1.6.11 Exceptions

Exceptions are handled as Erlang catch and throws. Exceptions are trandlated to messages over an 11OP bridge but
converted back to athrow on the receiving side. Object implementations that invoke operations on other objects must
be aware of the possibility of a non-loca return. This includes invocation of ORB and IFR services. See aso the
Exceptions section.

Exception parameters are mapped as an Erlang record and accessed as such.

An abject implementation that raises an exception will use the cor ba: r ai se/ 1 function, passing the exception
record as parameter.

Ericsson AB. All Rights Reserved.: orber | 29

1.6 OMG IDL to Erlang Mapping

1.6.12 Access to Attributes

Attributes are accessed through their access functions. An attribute implicitly definesthe _get and _set operations.
These operations are handled in the same way as hormal operations. The _get operationisdefined asar eadonl y
attribute.

readonly attribute |long RAttri bute;
attribute long RMttri bute;

The RAttri bute requires that you implement, in your call-back module, _get RAttri bute. For the
RWAtL t ri but e itisnecessary toimplement _get RWAttri buteand_set RWAttri bute.

1.6.13 Invocations of Operations

A standard Erlang gen_ser ver behavior isused for object implementation. Thegen_ser ver stateisthen used as
the object internal state. Implementation of the object function is achieved by implementing its methods and attribute
operations.