{
“cells”: [
{

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“# Tutorial 4: Muti-population recurrent network (with BioNet) n”, “n”, “Here we will create a heterogenous yet relatively small network consisting of hundreds of cells recurrently connected. All cells will belong to one of four "cell-types". Two of these cell types will be biophysically detailed cells, i.e. containing a full morphology and somatic and dendritic channels and receptors. The other two will be point-neuron models, which lack a full morphology or channels but still act to provide inhibitory and excitory dynamics.n”, “n”, “As input to drive the simulation, we will also create an external network of "virtual cells" that synapse directly onto our internal cells and provide spike trains stimulusn”, “n”, “Note - scripts and files for running this tutorial can be found in the directory [sources/chapter04/](https://github.com/AllenInstitute/bmtk/tree/develop/docs/tutorial/sources/chapter04)n”, “n”, “requirements:n”, “* bmtkn”, “* NEURON 7.4+”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“## 1. Building the networkn”, “n”, “#### cellsn”, “n”, “This network will loosely resemble the mouse V1 cortical column. Along the center of the column will be a population of 50 biophysically detailed neurons: 40 excitatory Scnn1a cells and 10 inhibitory PV cells.”

]

}, {

“cell_type”: “code”, “execution_count”: 1, “metadata”: {}, “outputs”: [], “source”: [

“import numpy as npn”, “n”, “from bmtk.builder.networks import NetworkBuildern”, “from bmtk.builder.auxi.node_params import positions_columinar, xiter_randomn”, “n”, “net = NetworkBuilder("V1")n”, “net.add_nodes(n”, ” N=80, pop_name=’Scnn1a’,n”, ” positions=positions_columinar(N=80, center=[0, 50.0, 0], max_radius=30.0, height=100.0),n”, ” rotation_angle_yaxis=xiter_random(N=80, min_x=0.0, max_x=2*np.pi),n”, ” rotation_angle_zaxis=xiter_random(N=80, min_x=0.0, max_x=2*np.pi),n”, ” tuning_angle=np.linspace(start=0.0, stop=360.0, num=80, endpoint=False),n”, ” location=’VisL4’,n”, ” ei=’e’,n”, ” model_type=’biophysical’,n”, ” model_template=’ctdb:Biophys1.hoc’,n”, ” model_processing=’aibs_perisomatic’,n”, ” dynamics_params=’472363762_fit.json’,n”, ” morphology=’Scnn1a_473845048_m.swc’n”, “)n”, “n”, “net.add_nodes(n”, ” N=20, pop_name=’PV’,n”, ” positions=positions_columinar(N=20, center=[0, 50.0, 0], max_radius=30.0, height=100.0),n”, ” rotation_angle_yaxis=xiter_random(N=20, min_x=0.0, max_x=2*np.pi),n”, ” rotation_angle_zaxis=xiter_random(N=20, min_x=0.0, max_x=2*np.pi),n”, ” location=’VisL4’,n”, ” ei=’i’,n”, ” model_type=’biophysical’,n”, ” model_template=’ctdb:Biophys1.hoc’,n”, ” model_processing=’aibs_perisomatic’,n”, ” dynamics_params=’472912177_fit.json’,n”, ” morphology=’Pvalb_470522102_m.swc’n”, “)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“To set the position and rotation of each cell, we use the built in function positions_columinar and xiter_random, which returns a list of values given the parameters. A user could set the values themselves using a list (or function that returns a list) of size N. The parameters like location, ei (potential), params_file, etc. are cell-type parameters, and will be used for all N cells of that type.n”, “n”, “The excitory cells are also given a tuning_angle parameter. An instrinsic "tuning angle" is a property found in some cells in the visual cortex. In this model, we will use this property to determine number of strenght of connections between subsets of cells by using custom functions. But in general most models will not have or use a tuning angle, but they may require some other parameter. In general, users can assign whatever custom parameters they want to cells and cell-types and use them as properties for creating connections and running simulations.n”, “n”, “Next we continue to create our point (integrate-and-fire) neurons. Notice they don’t have properities like y/z rotation or morphology, as they wouldn’t apply to point neurons.”

]

}, {

“cell_type”: “code”, “execution_count”: 2, “metadata”: {}, “outputs”: [], “source”: [

“net.add_nodes(n”, ” N=200, pop_name=’LIF_exc’,n”, ” positions=positions_columinar(N=200, center=[0, 50.0, 0], min_radius=30.0, max_radius=60.0, height=100.0),n”, ” tuning_angle=np.linspace(start=0.0, stop=360.0, num=200, endpoint=False),n”, ” location=’VisL4’,n”, ” ei=’e’,n”, ” model_type=’point_process’,n”, ” model_template=’nrn:IntFire1’,n”, ” dynamics_params=’IntFire1_exc_1.json’n”, “)n”, “n”, “net.add_nodes(n”, ” N=100, pop_name=’LIF_inh’,n”, ” positions=positions_columinar(N=100, center=[0, 50.0, 0], min_radius=30.0, max_radius=60.0, height=100.0),n”, ” location=’VisL4’,n”, ” ei=’i’,n”, ” model_type=’point_process’,n”, ” model_template=’nrn:IntFire1’,n”, ” dynamics_params=’IntFire1_inh_1.json’n”, “)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“#### connectionsn”, “n”, “Now we want to create connections between the cells. Depending on the model type, and whether or not the presynpatic "source" cell is excitory or inhibitory, we will have different synpatic model and parameters. Using the source and target filter parameters, we can create different connection types.n”, “n”, “To determine excitory-to-excitory connection matrix we want to use distance and tuning_angle property. To do this we create a customized function "dist_tuning_connector"”

]

}, {

“cell_type”: “code”, “execution_count”: 3, “metadata”: {}, “outputs”: [], “source”: [

“import randomn”, “import mathn”, “n”, “def dist_tuning_connector(source, target, d_weight_min, d_weight_max, d_max, t_weight_min, t_weight_max, nsyn_min,n”, ” nsyn_max):n”, ” if source[‘node_id’] == target[‘node_id’]:n”, ” # Avoid self-connections.n_nodesn”, ” return Nonen”, “n”, ” r = np.linalg.norm(np.array(source[‘positions’]) - np.array(target[‘positions’]))n”, ” if r > d_max:n”, ” dw = 0.0n”, ” else:n”, ” t = r / d_maxn”, ” dw = d_weight_max * (1.0 - t) + d_weight_min * tn”, “n”, ” if dw <= 0:n”, ” # drop the connection if the weight is too lown”, ” return Nonen”, “n”, ” # next create weights by orientation tuning [ aligned, misaligned ] –> [ 1, 0 ], Check that the orientationn”, ” # tuning property exists for both cells; otherwise, ignore the orientation tuning.n”, ” if ‘tuning_angel’ in source and ‘tuning_angle’ in target:n”, “n”, ” # 0-180 is the same as 180-360, so just modulo by 180n”, ” delta_tuning = math.fmod(abs(source[‘tuning_angle’] - target[‘tuning_angle’]), 180.0)n”, “n”, ” # 90-180 needs to be flipped, then normalize to 0-1n”, ” delta_tuning = delta_tuning if delta_tuning < 90.0 else 180.0 - delta_tuningn”, “n”, ” t = delta_tuning / 90.0n”, ” tw = t_weight_max * (1.0 - t) + t_weight_min * tn”, ” else:n”, ” tw = dwn”, “n”, ” # drop the connection if the weight is too lown”, ” if tw <= 0:n”, ” return Nonen”, “n”, ” # filter out nodes by treating the weight as a probability of connectionn”, ” if random.random() > tw:n”, ” return Nonen”, “n”, ” # Add the number of synapses for every connection.n”, ” # It is probably very useful to take this out into a separate function.n”, ” return random.randint(nsyn_min, nsyn_max)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“This first two parameters of this function is "source" and "target" and are required for all custom connector functions. These are node objects which gives a representation of a single source and target cell, with properties that can be accessed like a python dictionary. When The Network Builder is creating the connection matrix, it will call this function for all possible source-target pairs. The user doesn’t call this function directly.n”, “n”, “The remaining parameters are optional. Using these parameters, plus the distance and angles between source and target cells, this function determines the number of connections between each given source and target cell. If there are none you can return either None or 0.n”, “n”, “To create these connections we call add_edges method of the builder. We use the source and target parameter to filter out only excitory-to-excitory connections. We must also take into consideration the model type (biophysical or integrate-and-fire) of the target when setting parameters. We pass in the function throught the connection_rule parameter, and the function parameters (except source and target) through connection_params. (If our dist_tuning_connector function didn’t have any parameters other than source and target, we could just not set connection_params).”

]

}, {

“cell_type”: “code”, “execution_count”: 4, “metadata”: {}, “outputs”: [

{
“data”: {
“text/plain”: [

“<bmtk.builder.connection_map.ConnectionMap at 0x7ff7bc90d828>”

]

}, “execution_count”: 4, “metadata”: {}, “output_type”: “execute_result”

}

], “source”: [

“net.add_edges(n”, ” source={‘ei’: ‘e’}, target={‘pop_name’: ‘Scnn1a’},n”, ” connection_rule=dist_tuning_connector,n”, ” connection_params={‘d_weight_min’: 0.0, ‘d_weight_max’: 0.34, ‘d_max’: 300.0, ‘t_weight_min’: 0.5,n”, ” ‘t_weight_max’: 1.0, ‘nsyn_min’: 3, ‘nsyn_max’: 7},n”, ” syn_weight=6.4e-05,n”, ” weight_function=’gaussianLL’,n”, ” weight_sigma=50.0,n”, ” distance_range=[30.0, 150.0],n”, ” target_sections=[‘basal’, ‘apical’],n”, ” delay=2.0,n”, ” dynamics_params=’AMPA_ExcToExc.json’,n”, ” model_template=’exp2syn’n”, “)n”, “n”, “net.add_edges(n”, ” source={‘ei’: ‘e’}, target={‘pop_name’: ‘LIF_exc’},n”, ” connection_rule=dist_tuning_connector,n”, ” connection_params={‘d_weight_min’: 0.0, ‘d_weight_max’: 0.34, ‘d_max’: 300.0, ‘t_weight_min’: 0.5,n”, ” ‘t_weight_max’: 1.0, ‘nsyn_min’: 3, ‘nsyn_max’: 7},n”, ” syn_weight=0.0019,n”, ” weight_function=’gaussianLL’,n”, ” weight_sigma=50.0,n”, ” delay=2.0,n”, ” dynamics_params=’instanteneousExc.json’,n”, ” model_template=’exp2syn’n”, “)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“Similarly we create the other types of connections. But since either the source, target, or both cells will not have the tuning_angle parameter, we don’t want to use dist_tuning_connector. Instead we can use the built-in distance_connector function which just creates connections determined by distance.”

]

}, {

“cell_type”: “code”, “execution_count”: 5, “metadata”: {}, “outputs”: [

{
“data”: {
“text/plain”: [

“<bmtk.builder.connection_map.ConnectionMap at 0x7ff77de9a7b8>”

]

}, “execution_count”: 5, “metadata”: {}, “output_type”: “execute_result”

}

], “source”: [

“from bmtk.builder.auxi.edge_connectors import distance_connectorn”, “n”, “### Generating I-to-I connectionsn”, “net.add_edges(n”, ” source={‘ei’: ‘i’}, target={‘ei’: ‘i’, ‘model_type’: ‘biophysical’},n”, ” connection_rule=distance_connector,n”, ” connection_params={‘d_weight_min’: 0.0, ‘d_weight_max’: 1.0, ‘d_max’: 160.0, ‘nsyn_min’: 3, ‘nsyn_max’: 7},n”, ” syn_weight=0.0002,n”, ” weight_function=’wmax’,n”, ” distance_range=[0.0, 1e+20],n”, ” target_sections=[‘somatic’, ‘basal’],n”, ” delay=2.0,n”, ” dynamics_params=’GABA_InhToInh.json’,n”, ” model_template=’exp2syn’n”, “)n”, “n”, “net.add_edges(n”, ” source={‘ei’: ‘i’}, target={‘ei’: ‘i’, ‘model_type’: ‘point_process’},n”, ” connection_rule=distance_connector,n”, ” connection_params={‘d_weight_min’: 0.0, ‘d_weight_max’: 1.0, ‘d_max’: 160.0, ‘nsyn_min’: 3, ‘nsyn_max’: 7},n”, ” syn_weight=0.00225,n”, ” weight_function=’wmax’,n”, ” delay=2.0,n”, ” dynamics_params=’instanteneousInh.json’,n”, ” model_template=’exp2syn’n”, “)n”, “n”, “### Generating I-to-E connectionsn”, “net.add_edges(n”, ” source={‘ei’: ‘i’}, target={‘ei’: ‘e’, ‘model_type’: ‘biophysical’},n”, ” connection_rule=distance_connector,n”, ” connection_params={‘d_weight_min’: 0.0, ‘d_weight_max’: 1.0, ‘d_max’: 160.0, ‘nsyn_min’: 3, ‘nsyn_max’: 7},n”, ” syn_weight=0.00018,n”, ” weight_function=’wmax’,n”, ” distance_range=[0.0, 50.0],n”, ” target_sections=[‘somatic’, ‘basal’, ‘apical’],n”, ” delay=2.0,n”, ” dynamics_params=’GABA_InhToExc.json’,n”, ” model_template=’exp2syn’n”, “)n”, “n”, “net.add_edges(n”, ” source={‘ei’: ‘i’}, target={‘ei’: ‘e’, ‘model_type’: ‘point_process’},n”, ” connection_rule=distance_connector,n”, ” connection_params={‘d_weight_min’: 0.0, ‘d_weight_max’: 1.0, ‘d_max’: 160.0, ‘nsyn_min’: 3, ‘nsyn_max’: 7},n”, ” syn_weight=0.009,n”, ” weight_function=’wmax’,n”, ” delay=2.0,n”, ” dynamics_params=’instanteneousInh.json’,n”, ” model_template=’exp2syn’n”, “)n”, “n”, “### Generating E-to-I connectionsn”, “net.add_edges(n”, ” source={‘ei’: ‘e’}, target={‘pop_name’: ‘PV’},n”, ” connection_rule=distance_connector,n”, ” connection_params={‘d_weight_min’: 0.0, ‘d_weight_max’: 0.26, ‘d_max’: 300.0, ‘nsyn_min’: 3, ‘nsyn_max’: 7},n”, ” syn_weight=0.00035,n”, ” weight_function=’wmax’,n”, ” distance_range=[0.0, 1e+20],n”, ” target_sections=[‘somatic’, ‘basal’],n”, ” delay=2.0,n”, ” dynamics_params=’AMPA_ExcToInh.json’,n”, ” model_template=’exp2syn’n”, “)n”, “n”, “net.add_edges(n”, ” source={‘ei’: ‘e’}, target={‘pop_name’: ‘LIF_inh’},n”, ” connection_rule=distance_connector,n”, ” connection_params={‘d_weight_min’: 0.0, ‘d_weight_max’: 0.26, ‘d_max’: 300.0, ‘nsyn_min’: 3, ‘nsyn_max’: 7},n”, ” syn_weight=0.0043,n”, ” weight_function=’wmax’,n”, ” delay=2.0,n”, ” dynamics_params=’instanteneousExc.json’,n”, ” model_template=’exp2syn’n”, “)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“Finally we build the network (this may take a bit of time since it’s essentially iterating over all 400x400 possible connection combinations), and save the nodes and edges.”

]

}, {

“cell_type”: “code”, “execution_count”: 6, “metadata”: {}, “outputs”: [], “source”: [

“net.build()n”, “net.save_nodes(output_dir=’sim_ch04/network’)n”, “net.save_edges(output_dir=’sim_ch04/network’)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“### Building external networkn”, “n”, “Next we want to create an external network consisting of virtual cells that form a feedforward network onto our V1, which will provide input during the simulation. We will call this LGN, since the LGN is the primary input the layer 4 cells of the V1 (if we wanted to we could also create multiple external networks and run simulations on any number of them). n”, “n”, “First we build our LGN nodes. Then we must import the V1 network nodes, and create connections between LGN –> V1.”

]

}, {

“cell_type”: “code”, “execution_count”: 7, “metadata”: {}, “outputs”: [], “source”: [

“from bmtk.builder.networks import NetworkBuildern”, “n”, “lgn = NetworkBuilder(‘LGN’)n”, “lgn.add_nodes(n”, ” N=500,n”, ” pop_name=’tON’,n”, ” potential=’exc’,n”, ” model_type=’virtual’n”, “)n”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“As before, we will use a customized function to determine the number of connections between each source and target pair, however this time our connection_rule is a bit differentn”, “n”, “In the previous example, our connection_rule function’s first two arguments were the presynaptic and postsynaptic cells, which allowed us to choose how many synaptic connections between the pairs existed based on individual properties:n”, “`python\n", "def connection_fnc(source, target, ...):\n", "    source['param'] # presynaptic cell params\n", "    target['param'] # postsynaptic cell params\n", "    ...\n", "    return nsyns # number of connections between pair\n", "`n”, “n”, “But for our LGN –> V1 connection, we do things a bit differently. We want to make sure that for every source cell, there are a limited number of presynaptic targets. This is a not really possible with a function that iterates on a one-to-one basis. So instead we have a connector function who’s first parameter is a list of all N source cell, and the second parameter is a single target cell. We return an array of integers, size N; which each index representing the number of synaptics between sources and the target. n”, “n”, “To tell the builder to use this schema, we must set iterator=’all_to_one’ in the add_edges method. (By default this is set to ‘one_to_one’. You can also use ‘one_to_all’ iterator which will pass in a single source and all possible targets).”

]

}, {

“cell_type”: “code”, “execution_count”: 8, “metadata”: {}, “outputs”: [], “source”: [

“def select_source_cells(sources, target, nsources_min=10, nsources_max=30, nsyns_min=3, nsyns_max=12):n”, ” total_sources = len(sources)n”, ” nsources = np.random.randint(nsources_min, nsources_max)n”, ” selected_sources = np.random.choice(total_sources, nsources, replace=False)n”, ” syns = np.zeros(total_sources)n”, ” syns[selected_sources] = np.random.randint(nsyns_min, nsyns_max, size=nsources)n”, ” return synsn”, “n”, “lgn.add_edges(n”, ” source=lgn.nodes(), target=net.nodes(pop_name=’Scnn1a’),n”, ” iterator=’all_to_one’,n”, ” connection_rule=select_source_cells,n”, ” connection_params={‘nsources_min’: 10, ‘nsources_max’: 25},n”, ” syn_weight=4e-03,n”, ” weight_function=’wmax’,n”, ” distance_range=[0.0, 150.0],n”, ” target_sections=[‘basal’, ‘apical’],n”, ” delay=2.0,n”, ” dynamics_params=’AMPA_ExcToExc.json’,n”, ” model_template=’exp2syn’n”, “)n”, “n”, “lgn.add_edges(n”, ” source=lgn.nodes(), target=net.nodes(pop_name=’PV1’),n”, ” connection_rule=select_source_cells,n”, ” connection_params={‘nsources_min’: 15, ‘nsources_max’: 30},n”, ” iterator=’all_to_one’,n”, ” syn_weight=0.001,n”, ” weight_function=’wmax’,n”, ” distance_range=[0.0, 1.0e+20],n”, ” target_sections=[‘somatic’, ‘basal’],n”, ” delay=2.0,n”, ” dynamics_params=’AMPA_ExcToInh.json’,n”, ” model_template=’exp2syn’n”, “)n”, “n”, “lgn.add_edges(n”, ” source=lgn.nodes(), target=net.nodes(pop_name=’LIF_exc’),n”, ” connection_rule=select_source_cells,n”, ” connection_params={‘nsources_min’: 10, ‘nsources_max’: 25},n”, ” iterator=’all_to_one’,n”, ” syn_weight= 0.045,n”, ” weight_function=’wmax’,n”, ” delay=2.0,n”, ” dynamics_params=’instanteneousExc.json’,n”, ” model_template=’exp2syn’n”, “)n”, “n”, “lgn.add_edges(n”, ” source=lgn.nodes(), target=net.nodes(pop_name=’LIF_inh’),n”, ” connection_rule=select_source_cells,n”, ” connection_params={‘nsources_min’: 15, ‘nsources_max’: 30},n”, ” iterator=’all_to_one’,n”, ” syn_weight=0.02,n”, ” weight_function=’wmax’,n”, ” delay=2.0,n”, ” dynamics_params=’instanteneousExc.json’,n”, ” model_template=’exp2syn’n”, “)n”, “n”, “lgn.build()n”, “lgn.save_nodes(output_dir=’sim_ch04/network’)n”, “lgn.save_edges(output_dir=’sim_ch04/network’)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“## 2. Setting up BioNetn”, “n”, “#### file structure.n”, “n”, “Before running a simulation, we will need to create the runtime environment, including parameter files, run-script and configuration files. You can copy the files from an existing simuatlion, execute the following command:n”, “n”, “`bash\n", "$ python -m bmtk.utils.sim_setup  \\\n", "   --report-vars v                \\\n", "   --report-nodes 10,80           \\\n", "   --network sim_ch04/network     \\\n", "   --dt 0.1                       \\\n", "   --tstop 3000.0                 \\  \n", "   --include-examples             \\\n", "   --compile-mechanisms           \\ \n", "   bionet sim_ch04\n", "`n”, “n”, “$ python -m bmtk.utils.sim_setup –report-vars v –report-nodes 0,80,100,300 –network sim_ch04/network –dt 0.1 –tstop 3000.0 –include-examples –compile-mechanisms bionet sim_ch04n”, “n”, “or run it directly in python”

]

}, {

“cell_type”: “code”, “execution_count”: 9, “metadata”: {}, “outputs”: [], “source”: [

“from bmtk.utils.sim_setup import build_env_bionetn”, “n”, “build_env_bionet(n”, ” base_dir=’sim_ch04’,n”, ” config_file=’config.json’,n”, ” network_dir=’sim_ch04/network’,n”, ” tstop=3000.0, dt=0.1,n”, ” report_vars=[‘v’], # Record membrane potential (default soma)n”, ” include_examples=True, # Copies components filesn”, ” compile_mechanisms=True # Will try to compile NEURON mechanismsn”, “)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“This will fill out the sim_ch04 with all the files we need to get started to run the simulation. Of interest includesn”, “n”, “* circuit_config.json - A configuration file that contains the location of the network files we created above. Plus location of neuron and synpatic models, templates, morphologies and mechanisms required to build our instantiate individual cell models.n”, “n”, “n”, “* simulation_config.json - contains information about the simulation. Including initial conditions and run-time configuration (_run_ and _conditions_). In the _inputs_ section we define what external sources we will use to drive the network (in this case a current clamp). And in the _reports_ section we define the variables (soma membrane potential and calcium) that will be recorded during the simulation n”, “n”, “n”, “* run_bionent.py - A script for running our simulation. Usually this file doesn’t need to be modified.n”, “n”, “n”, “* components/biophysical_neuron_models/ - The parameter file for the cells we’re modeling. Originally [downloaded from the Allen Cell Types Database](http://celltypes.brain-map.org/neuronal_model/download/482934212). These files were automatically copies over when we used the _include-examples_ directive. If using a differrent or extended set of cell models place them heren”, “n”, “n”, “* components/biophysical_neuron_models/ - The morphology file for our cells. Originally [downloaded from the Allen Cell Types Database](http://celltypes.brain-map.org/neuronal_model/download/482934212) and copied over using the _include_examples_.n”, “n”, “n”, “* components/point_neuron_models/ - The parameter file for our LIF_exc and LIF_inh cells.n”, “n”, “n”, “* components/synaptic_models/ - Parameter files used to create different types of synapses.n”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“#### lgn inputn”, “n”, “We need to provide our LGN external network cells with spike-trains so they can activate our recurrent network. Previously we showed how to do this by generating csv files. We can also use NWB files, which are a common format for saving electrophysiological data in neuroscience.n”, “n”, “We can use any NWB file generated experimentally or computationally, but for this example we will use a preexsting one. First download the file:n”, “`bash\n", " $ wget https://github.com/AllenInstitute/bmtk/blob/develop/docs/examples/spikes_inputs/lgn_spikes.h5?raw=true -O lgn_spikes.h5\n", "`n”, “or copy from [here](https://github.com/AllenInstitute/bmtk/tree/develop/docs/examples/spikes_inputs/lgn_spikes.nwb).n”, “n”, “n”, “Then we must edit the simulation_config.json file to tell the simulator to find the nwb file and which network to associate it with.n”, “n”, “`json\n", "{\n", "  \"inputs\": {\n", "    \"LGN_spikes\": {\n", "      \"input_type\": \"spikes\",\n", "      \"module\": \"sonata\",\n", "      \"input_file\": \"$BASE_DIR/lgn_spikes.h5\",\n", "      \"node_set\": \"LGN\"\n", "    }\n", "  }\n", "}\n", "`n”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“## 3. Running the simulationn”, “n”, “n”, “We are close to running our simulation, however unlike in previous chapters we need a little more programming before we can begin. n”, “n”, “For most of the connections we added the parameter weight_function=’wmax’. This is a built-in function that tells the simulator when creating a connection between two cells, just use the ‘weight_max’ value assigned to that given edge-type. n”, “n”, “However, when creating excitatory-to-excitatory connections we used weight_function=’gaussianLL’. This is because we want to use the tuning_angle parameter, when avaiable, to determine the synaptic strength between two connections. First we create the function which takes in target, source and connection properties (which are just the edge-type and properties set in the add_edges method). Then we must register the function with the BioNet simulator:”

]

}, {

“cell_type”: “code”, “execution_count”: 10, “metadata”: {}, “outputs”: [], “source”: [

“import mathn”, “from bmtk.simulator.bionet.pyfunction_cache import add_weight_functionn”, “n”, “def gaussianLL(edge_props, source, target):n”, ” src_tuning = source[‘tuning_angle’]n”, ” tar_tuning = target[‘tuning_angle’]n”, ” w0 = edge_props["syn_weight"]n”, ” sigma = edge_props["weight_sigma"]n”, “n”, ” delta_tuning = abs(abs(abs(180.0 - abs(float(tar_tuning) - float(src_tuning)) % 360.0) - 90.0) - 90.0)n”, ” return w0 * math.exp(-(delta_tuning / sigma) ** 2)n”, “n”, “add_weight_function(gaussianLL)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“The weights will be adjusted before each simulation, and the function can be changed between different runs.. Simply opening the edge_types.csv file with a text editor and altering the weight_function column allows users to take an existing network and readjust weights on-the-fly.n”, “n”, “Finally we are ready to run the simulation. Note that because this is a 400 cell simulation, this may be computationally intensive for some older computers and may take anywhere between a few minutes to half-an-hour to complete.”

]

}, {

“cell_type”: “code”, “execution_count”: 11, “metadata”: {}, “outputs”: [

{

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2022-02-18 08:13:26,256 [INFO] Created log filen”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2022-02-18 08:13:26,386 [INFO] Building cells.n”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2022-02-18 08:13:34,215 [INFO] Building recurrent connectionsn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils:Building recurrent connectionsn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2022-02-18 08:14:57,315 [INFO] Building virtual cell stimulations for LGN_spikesn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils:Building virtual cell stimulations for LGN_spikesn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2022-02-18 08:15:31,294 [INFO] Running simulation for 3000.000 ms with the time step 0.100 msn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils:Running simulation for 3000.000 ms with the time step 0.100 msn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2022-02-18 08:15:31,296 [INFO] Starting timestep: 0 at t_sim: 0.000 msn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils:Starting timestep: 0 at t_sim: 0.000 msn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2022-02-18 08:15:31,298 [INFO] Block save every 5000 stepsn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils:Block save every 5000 stepsn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2022-02-18 08:16:05,859 [INFO] step:5000 t_sim:500.00 msn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils: step:5000 t_sim:500.00 msn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2022-02-18 08:16:41,807 [INFO] step:10000 t_sim:1000.00 msn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils: step:10000 t_sim:1000.00 msn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2022-02-18 08:17:19,343 [INFO] step:15000 t_sim:1500.00 msn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils: step:15000 t_sim:1500.00 msn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2022-02-18 08:17:59,416 [INFO] step:20000 t_sim:2000.00 msn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils: step:20000 t_sim:2000.00 msn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2022-02-18 08:18:40,657 [INFO] step:25000 t_sim:2500.00 msn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils: step:25000 t_sim:2500.00 msn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2022-02-18 08:19:26,193 [INFO] step:30000 t_sim:3000.00 msn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils: step:30000 t_sim:3000.00 msn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2022-02-18 08:19:26,250 [INFO] Simulation completed in 3.0 minutes, 54.96 seconds n”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils:Simulation completed in 3.0 minutes, 54.96 seconds n”

]

}

], “source”: [

“from bmtk.simulator import bionetn”, “n”, “n”, “conf = bionet.Config.from_json(‘sim_ch04/config.json’)n”, “conf.build_env()n”, “net = bionet.BioNetwork.from_config(conf)n”, “sim = bionet.BioSimulator.from_config(conf, network=net)n”, “sim.run()”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“## 4. Analyzing resultsn”, “n”, “Results of the simulation, as specified in the config, are saved into the output directory. Using the analyzer functions, we can do things like plot the raster plot”

]

}, {

“cell_type”: “code”, “execution_count”: 12, “metadata”: {}, “outputs”: [

{
“data”: {

“image/png”: “iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOx9fXxU1Zn/97kzk5mYIcGEEAQUQgV5UaEVjUjUVgRFbe3W12prW6ju1u7StW+iqxVbV7G2dcu2bBcLrXarrbXbX1tFRbHFQpX1pb5BBJRAFYS8IAkTMpN5Ob8/zj13zr1z7tvMnRBkvp/PJDP3nvd77nnOeV6JMYYKKqigggoqKBbaoW5ABRVUUEEFhzcqhKSCCiqooIKSUCEkFVRQQQUVlIQKIamgggoqqKAkVAhJBRVUUEEFJaFCSCqooIIKKigJFUJSQQVDCET0ZyL64qFuRwUV+EGFkFRwxICIniCibyuuX0xEe4goTEQfI6I/EVEPEe1wKW88ETEiWm25/j9EtCTY1ldQwdBFhZBUcCThfgCfISKyXP8sgF8yxjIA+gCsAvANH+W2ENEZAbWxggoOO1QISQVHEv4fgAYAZ4oLRHQ0gIsAPAAAjLH/Y4z9AsB2H+V+F8C/290komuJ6C0i2kdEfyCi0dK9uUT0pn4C+hEAsuRdQERtRPQ+ET1JROP060RE9xJRBxH1EtHrRHSijzZXUEFgqBCSCo4YMMb6ATwM4Brp8uUA3mSMvVpC0csBTCKic603iOgcAHfp9RwDYCeAX+n3RgD4XwC3ABgB4G0As6W8FwO4GcCnADQC+AuAh/Tb8wCcBWASgDq9/O4S+lBBBUWjQkgqONJwP4BLiSim/75Gv1YK+sFPJHco7l0NYBVj7GXGWArATQBmEdF4ABcA2MQYe4QxlgbwHwD2SHn/CcBdjLE2ne12J4AZ+qkkDWAYgMkASE/zXon9qKCColAhJBUcUWCMrQfQBeCTRPQhAKcBeDCAon8KoImIPm65Phr8FCLqT4CfHMbo996R7jH5N4BxAH5IRPuJaD+AfeCsrzGMsWcA/AjAjwF0ENEKIqoNoB8VVOAbFUJSwZGIB8BPIp8B8CRjbG+pBTLGBgDcDuA7MMs5doMTBAAAEdWAy2l2AXgPwLHSPZJ/gxOVf2SMDZc+1Yyxv+p1LmOMnQJgKjiLy4+CQAUVBIYKIangSMQDAM4FcC0sbC0i0nS2V4T/pBgRVXks9xcAYgDOl649BOALRDSDiKLg7KmNjLEdAB4DMI2IPkVEYQCLAIyS8v4EwE1ENE1vWx0RXaZ/P5WIWogoAq5plgSQ8z4EFVQQHCqEpIIjDvoi/lcANQD+YLl9FrjMYzWA4/TvazyWmwXwLQD10rWnAdwK4LfgJ5APAbhSv9cF4DIAS8HZXRMBbJDy/g7A3QB+RUS9AN4AMF+/XQvgPgDvg7POugHc46WdFVQQNKgS2KqCCiqooIJSUDmRVFBBBRVUUBIGhZAQUYiI/kZEj+q/m4loo26k9WvBgyaiqP77Lf3++MFoXwUVVFBBBcVjsE4kXwHQJv2+G8C9jLHjwXm8C/XrCwG8r1+/V09XQQUVVFDBEEbZCQkRjQVwIbievVBxPAfAI3qS+wF8Uv9+MfJaNI8AmKPwi1RBBRVUUMEQQngQ6vgPAN8Et8IFuA79ft1SFwDeBTfOgv7/HQBgjGWIqEdP3yUXSETXAbgOAGpqak6ZPHlyWTtwWKCvE0h0APGR/Lf4XtPoPZ9Iq7omY187kOwBYnVAfbO3MotJUyoGo46hiMOh30OtjcW+P17KGwr9Awra9NJLL3UxxgJpXFkJCRFdBKCDMfYSEX00qHIZYysArACAmTNnshdffDGoog8/PLcceH45kAKQrALqhgGpA/x7DMDiF/NpTr8emHW9Of+9JwI9+3m+G/RxXDrOnN+K2+sBVgMQA26z3H9uObDmFoBVmcu0QlWvUzuLgaqOQwVV36zXgup/0P0O+rlY58jpC4Irv9i2ymMGFDd+ct3r7nZ+h0qBXA/g3F857fPLTf0iop2FGYpDuVlbswF8Qo/r8CtwltYPAQzXDbAAYCy4lS/0/8cCgH6/DhVHdHk8t5xP+OeW57+vuxvo0b1qxIZzIpJJmfOJNOvuzpezdBz/jDoZqDs2PymfW85PG6o6BUackP9vvf/8coBlAQrly1SVdfr15npV7bTLa9cuK0adzNsx6mT7NEHCqU3PL+d9e17x7J5fXpimlLqD7ncp7bIrT54jTuX7fe7FtlWej9a56WWulVK3XMdDV7nXJepZc0vhHHJqk+qdCwhlJSSMsZsYY2MZY+PBjbCeYYxdDeBPAC7Vk30OwO/173/Qf0O//wyrGLrkIU8K8R3gk+PsG4HoMCC5HwhH89fsyknu5589rwE3vJHfzTy/HADjL/nZN6pfjoED+f/W+2KyzrujcIckp511vbleP31X/VZh5wa+YO3cYJ8mSDi1SX6Jrc9OvNh+X3R5gZPr3vMa7/ee14LpV9ALkHWO2JUvTi5+nnuxbZXno3VuqjYBqoVervvsG53fQbmP8qZi6xPu8/r06/n7ybL8t1N/T78+v8EE/L1zPnCo7EhuBPBVInoLXAayUr++EkCDfv2rABYfovYNTah2TWffmJ8cqmtA4aQWkys2vHACennJ5clpPdE4EQi3l9zp5bPm9bNgZJLedpSlwukkII+L3XMqhbg67ahLhd92+S1P/AbUp1sQn2t2J9mg22olFqpNgGqh91u3TCgBXsek8/Pvlt18nXU9fz9Vc0iVVmwwgzpRKnDYW7Yf8TISK7zwiIPged97In8B6o7NLwKllF8OGYIhPzrAXyRVW73UvWM93ylOOh/4tIOjYDEmseH5a2ff6O05APZ8b7t+lzrO1nr8lun1+Tx0lfv4GXKTbP45qZ6fWMylOtLpNN7d+AckQzVApAaoGeFtLOzQuxvIZQDS+Cc6jH8AoK8LSPcDkWrnenreBViO568b65wGAKqP5nWkDgD9+wEwQAsDtaML86UO5NnPsTr+X/4t2qoj1r8HY/96MyKnfNb0XIjoJcbYTJfR8IQKIfmgwWmBt6ahEN/ZAMEs/H7a4KXd1mteylUtlKNO5mweu/651d27O8/Tv22f+5iIhQ/w9hzqdIe/qu9O/XZ6Bnb37Oq0G3M/z9munbfX24+fdczEnLQjmOJEINXR3t6OYekuNNSEQETA6A+rx9uKRAfXZKppzGtryddzWd7uUBXQNI3f27sJyA6Yr6nKeu+1fJ+PsZFVqdKI8gGgdoy5XQJympDuT1T+LbWLMYbu7m4cOHAAzc1mDcsgCUnFRcpQh1dBn4DT0V+UNepkAMQn8bq7/Qk7BeyO8c/pi0JsOK/HqwBRZpepWAryb1GuSgAr90XwnXducD7+q1hSct2Tzuf3J52vzm/FuNn2rENrn1XsKFW/5bGxE9YLqGQLbnVa74sxXnu7vQKEV3ajavzslEUsu2kAaragVEcymURDfT0nItE6+/EG+IK/d1N+4c8OAL27+KKe6DCnrYrzhVlW361pLLwG5Mvq68znFf/lOsX3bj2SM4WAYaPy10lfkqN1aiIi2kAh/qlpLPwt9ZP2taMhswfJng51WQGhciIZ6pDZJdFhpbE35B2j2AHGhueF6kGcLlQ7XiEYdCvDa11OO2GZ9bHu7nwfFztoOhZzgipnOW5lA85zwnriLIZ9KcoAAWDuY1hs+XIfvD4vC9ra2jBlyhRvieUTRU0jJyICYjdvd+pwgvVEIpcBFH63q9N6vVhYymt7Zx+mtMwxJQnyRBJasmRJEOUcMqxYsWLJddddd6ibUT7sWA90v8UFxqleoGtrnh/9yBeAt58B+jry193QtTW/m9u3HfjQOcD8pTzvsafmy92xHnj6NqBqGNC/j++yT7rEW5tFHWNP5d/HzebtH3UyLxPgdQH5+gCutrxvu7e6RB2iHPFbaN0ceyoQivLrY0/N1/vuC/n6RF5VecVgx/p8+xN78/XY1ekX1nFtvQG47Ge8/F9eCqz/D+CdF/h8CceAOd/yR0TkZyHqGN/Kn13rDea2y2mL7ZPch2NP5e3PJHnbW29Q12GdnwC6aAQaSWclVtW415tJ5Rd8CgGpBL/OcsDAQbP6PBEw0Ae8v8O5/KoaXp64n0oA2RQ/kVQfna+zqoZ/D0W4HKYqDhx1dD59OMZPJSJtKcjo9YOhq5/Q2P5709it2NCV/drNt91bWiUclRPJUIexM4R5h+l2UpGhOrXY7Z7l3azg33o5TRRbpxvPPgiUUocfgb9XmUcx8FIvUPzzksvxMqfKcfqy9tFpvkj9bDvjh5hybH3xu3jraUCG9UThtXy3U431fjGnIAE7WY90r+29Pkz50wLT2E3/SWLg1T3ZqL/K1KjISIY6ZFXdSefnddkFX3+YQqvDCtmAyU7+ICDKPWoE/z/ihOJUSVVGkEJ2ouLJ2/Hs/cqIVJD5/lb5jSxzcDMkVP221qNSi3ayk/DaNy/1ijlSrOqvaCfgbMtg9yzl+8U8M6vcTTVuYn7K8zI6jF/LZQvlHF4gZAwgABr/Hq3ji3q4mperkD/IdcXj8YIyl/zgPnzvp78BAHz+859Hc3MzZsyYgRkzZmDZql/zdOHqfBtUshdFXQWwymdUcqDUgfx46nOks6/0ENMClRPJ4YRi5Q8q1Ur5nmoXWMrOFtDdrEj87mJ3sKXsfJ12uIC3E4NfFWQ/7fWTNmg3JaXU5dbuoE8rLlpbbW1tmFKfK35HL6A6FXi8Fo/HkUgkTMUtWbIE8XgcX//61/H5z38eF110ES699NLCMmoagQN7+PVho8ynCi8nFSf5TE1j/kQy4zRTtorW1pEK1e7d6w40Oky9g1RZpseGcx6um9aRE2TjQrcdrBP8GNep3LWorO7dtKRk2BnP2S3mftrrJ62q3iBOa17rkuHWbj/98gIvbj7sdvR+oCrD67VS6urr5Js2lgX6OrFmzRrMmjULH/nIR3DZP92ERDKDnd1JTJw4EV1dXcjlcjjzzDOxZg2PAH33j3+Gk869EtNnz8XixYvzJ6xcltfVNE2tDRckGGOH9eeUU05hReGvP2bsB9P4/8MZ1n6I3w9+On/9ruMYu62W/7fmves4/pHzLzmap//BtGDaaFe/W1/srsnX5X7+YJq53T86nf/+0enFtVtVh/W+dfxKhZ95aR3XoOe0U3kPfprPkwc/7T2P3fMVY/ij0/2XyRjbvHmzv34d2Mt+unoDO+Pfn2A/Xb2Bsa63GdvzBmMH9vorR0JNTU1BHbd97UvsnjtuY+zAXva5yy9m48cdy6ZPn86mT5/OXnv+T7zOrrcZ2/0qY7v+xtjuV1ln+2Z25plnskQiwRhjbOnSpez2229njDF23333sUsvvZR997vfZddddx1jjLHVq1ezWbNmsb6+PsYYY93d3bz+3a8ytutl/p8xtvlvGwvGEMCLLKB1+Mg9kQTtiG4woHLsZsfD3/KYe/+Ez63oMLNfIatbisHAc8uBJ28ulKvY2UOIfsq+iay71a4t5v+iTL9yCbuxlH2WqWw5/JwW3GxDvCDoOe1U3tYn+DzZ+kT+mtPzsitPHsPOzYVlekHqgLscQUZfJ1a93ItdvRmserkXSPWYZQyAvWwi0cFtTlR2J5Y6wLLAQEL/nsM9t9yAV155Ba+88gpOGt+oyy56dKPHCHDMyXj+hZewedPrmD2rBTNmzMD9P1uFnW++AiQ68MUvfhG9vb34yU9+gu9973sAgKeffhpf+MIXcNRRRwEA6uvr7ceojOvdkUtIgj5+lxvySyovnkL4WDUsb2xIIT2TTgzGzTazmVQeeMX1Kl1wGY7yl1sW0MttsS6STgvnuNm8zHGz82mF92GZDQWLvE4QNeElVuXhVigFjDq5kCWjMoTzutgKdhykuGpWH1qykNvaPrd67NhwgPd5qfKhZjXYlOvx42FW7p+8oRBljDiBj02oqtA3lsrzs137RB3hGKBFeJmTzjfPETfimjpQSAjskOgAclks+PAwjKkNY8FHarlg3SqsP7Anb6zYvd0svJbYULYQ7KWqeJ4FlsvkDRFlAT+FuNB97yawg/sw98wWvPLUr/HKK69g87r/xcrv3Qr0deLgwYN49913eTcs8pgCAicMIkMR3vZQlbsPrxJw5BKSoB3RlQvixV17e/6kIMtFhIfbzs15K27h0C1WV+jhV17g5DEQ17u28PLCsbzAfd3dzrIHu2sCVm+0qp28sLYPxwqdSwr+rlyHKPNgl9rT7XN6mnl3mP07ed1AiDYCMIjJzg3mcZh1PVckWLyzcGzd6rGT37g54ZNhJ7/Z81q+bLke1SnOrXyrwz9RxsAB7kMq01/YBzsjSFX7xBjWNAK5NC/z0w+a50gmld8sqDYs0WHeZRY6IVh4ynBsuPk8LJx/BtAwAdBCeeKQ6Mh71gXMJxaVFbkK8ZH8E42bheepnvx9LQSA5U8u2QGcfsrJ2PDiq3hrDycUfTgKW3fsBmoaceONN+Lqq6/Gt7/9bVx77bUAgLlz5+JnP/sZDnb+HWBZ7Nu3j7cz08/rySR527MDZXXeeOQSksMF4sXNJPnvcJS/aHaLTSaZf2HFjlV2VWIn9LYK78++MU+QAHuhtTW/3U5U3g1Zd/KATggYfznlhVGe/PLpS/TDTtnAjrB53UCcfr2+Y2ScIMvjYCWsqjHwIrCWx0S4/xDq3V5gdwp0UyrwoyLs5AbFes+pz3YnYbvxkOdIOJrfLKiea3QYFyjbuRSRIQu5ZfaVVfhtlzc+kmtWaSHTrYMHD2Ls2LHG5wc/+EH+pokFJp1wZUKkO29sPOY4/PyBX+LTX/xnnHzyyZg192K82ZXFupfa8MILLxjEpKqqCj/7rx/i/A8fi0+cdw5mzr8aM+Z+Gt/77//Ju00JVeXVmIVdUJm4MBX136EOwSbp6+K7DKFOK65XDeOnCNL4jk7lXsJJpdeLWqmbx1i3tstqm+KEYXWkaKdmK6cTLjSE2w6nfvjtl5PX3xEnAAd2562uAUdvtK4wnmknL7NYFWk/HphV4+nUXj/qxnZp5TqFTMWrE0v5uQqZmTipWupqa2vDlGMb7I3y7GCnWtu9nZ8conX8RGEt16/xoJMjRicHkTKsKr6Jjrx7Fw/taGtrw5T9fzKNXUX990iC2OXN+ZaZH25lRVXVmO/LcNqJqqISWne6KhaYl+OxitUDqNkr1t2syKsKSiUCd8n9sLbLy8nDjUUn2GddW3QWS5ITQXHSO90yHl5lEMYp0xLJ0u+O0Sm9nRKGV7aWHxmPXVq5TifZiVN/rAohds/VapSnglWAbqfGO5DI/4+PLDzt+FX/ldlh1naI8oeNci7T2j+5n17bEbQyhoQKITlcYGf1K7Oi3BbO8a3qAEIAj2fgJAMRKNZOwspuG3GCWUnAjj0D5Nsi8s65rbCvKsGwn/aprsljLLPiVN5oR52cV4bYstreY65cxwkXmIm/X7mdNb1KGUEoCHhha8mE0M1yXdbOspsT1jqdHEjanWqsZdux87ws7tbFWCzigFpDi2XN1wQBALyz0kQ9sgxGb0fLWedyS/eTT8SM08/CjLlX4PV2G2Nza//EbztX8yqtswpryx4feNZWEHDzlius3kuJT1Jsm9ws6P2wWIq1qHaqw2v9cn9CVWY25GChVL9lXp9JEN6Fndru00O0Z++/dj6prKwqO7ZRUP6wAHtL9FI8/sqwlKkaowprqwJ/cBKYArpWlB6fxKrNVe42uQl+/bSl2B2X0wnMKztAnAAmnV/IhhwsOAnC/eR3eyZu2lmltj2IdCqo2FRA4W4/PpLv9IO0aJfrtrYjCEt5K8pRpgMqhORwgfVIb3fEV9loCOxYz/MAZplHcn9eM8nuBS3WwE6VXt7lO2mg+Sm3FF9UTouT1U7HzsmjrOJcLkLs5xmINgD+84xv9ZZOdXpTzdGHrrKfk3KZXrTWVHX7NUi0QkVg7IiOV8gBrNzaVmpdTmUCvP7UgeDKVqBCSA4X2AlPVQJOq42GVdAqq68K2QLgvAj7FdQFscv3U67quteF12nhlwXuKtsMgTLynw24jZub8kBQ9XjNJ887Ow8AMlSKHzLsnqcfg8RS4EWgb02rspoX8OLZt1QIw0oR071MqBCSwwVW4an826qjLwTDwn5EuDQXLAvAbBDmxVApSI0it7KcTh2pA1wF1ypUt9P48WrF7lSf1V5FVddgsgPdWE6nX5/vk+zOPqh6nPJZbUFUygrFwu55+jFI9ArViUKwi3QrdEcCYLXjULXNjTANBqEJCOFD3YAKPOC55XkVSmFdnTqQZ6XIlsKCnfH8cp5WWGfLAsyHruLlVQ3j7AZhy+D0kgvVS69wSi+r+Mq/BcSCseaWwvTJ/ZyAZpJ5QijbGsgYdTLQuzvPlrI7cckL1CwLIRL2IrJ1vLXNdjYaxbDb3OxhZA0t2b5iluW+HOyqVFfudvY21vqB/LwUc9GrDcqok3V1aDK70pHrFc/T6qomOgxo8hhqV4ad8F0Wtgv7j77OPPtJCLL7Oo18JjfyerlLfvhzxOubuBv5q6/Eur+sR93w4YAWxoIFC7BowZVmAbye94KLL8WD96/E8MhAQT0CH/3oR/G9730PM2fONOUt6E9VnJ+KhP2TNK7HxCkwXlrlRHI44Pnlea0qoNAnk3UHKRZGOY0Mwa7pbDPbRwxGnAsvvqhOvz6vOaRiH1mFwSp2ntxPmS2lgpv6qtsu2s5GIwi2kh8WZjFtL7YNwjjUykL1Yi+iqmvLat2tBzO70pHrtbraKRV2JwIRG0SGH6G7KHegL38tk8Q9t3zF8KG1aNEi27yrf/FDTkT8CsxV/RE2McIzBmCMa2MNNXkr2B0VQnI4QNaSkR31iR2fnY2JnW2JuG/sUsjsSK9ckBcGp4Vu1vV59ywq9pFVQC+z81Q2IcJmxbqTtZZrHSc/7lRUBK4UzSm7MmSWlRO7yK3tTvIjtzaYQIXp/GhzqeaiXb1By6FcF2rdnUm0zp8gXpQrx1wPxwAtbK5LLPy9u0xGkuNbLkJXv4YdXQcx5aOX4tob/g3Tpk3DvHnz0N/fb2T/zW9+g9NOOw2TJk3CX/7yF3McEid2mD6OQUZIPOTxREr9FB2P5HCBW4wOOWaG39gYcjlyLA9VjJMg4m74iTcSJKxxSgYD5epXUH0ptRynOVFM373MDZtylfFIDux1jjHi1MYDe3kcj92veo5RUhCPhDF22223sXvuuYcxxtjnPvc5Nn78+Hw8ktde42Xvepl/9rxh5Bs3bhzr7Oxk7e3tLBQKsb89/QhjXW+zyz5+HvvF8u8ztucNdnbrGeyrX/0qY4yxxx57jM2ZM4dn3vOGuTx9HDa/8GwlHskRC6sFsYDY2a+722xN7UUzRoZQuVx3N/flJXa3VpaCio1RDFS7ZCf2jx91Vz87bGse4dLE6trEr8qzjFIF/XbwsitXqeFa1W9L3d07KWkUo0HnNjfs3gU7CG0lFZvKro2A5Co+x9lovbv9CbwdBOT33HNPPh7JSSep7VUSHUA2DSQ4e6r5uDGYMWUCkOrBKSedgB3tbxvefD/1qU8BiQ6cclwNvw6obWKapvE8lXgkRyjseM5iEQDy98PR/H2hNeNmyyECKSX3c/60kJPYLjIUHFvB2hdVuX5kDE5p7dg8VtlGEDIOL/1StcHOo7DXvqjKlPth3Qh49dTrBKsmoYBfDTovXoyLkb84we75CHaTERuH+Yt10rvLnyqyzCbr3q4L+RlwsBsAEK2K6Ak1hEIaMtkM/xmqQjQaBfo6EUIWmYEBZ/ct0WFlVU+vEJKhDJnnDBS+bCJg1bw7uP8pwWtO7ufRBtfebq+XL+4NJAp57dZFZtxs8FghOrEqZaduhdOC5mfXXIo8QshQ5CBZhqpxdXHBgOR+ORmJypsCoalW6riq1HC9qN/KmwsvbbEKv0V+0Ybnl+dPeSJgmiqmiB2RUfk08yp/EU4Qq+LqE4LdvCtwv64IemUHlSPFVILXn06q88hISbYeuSznEpC+REeH5dsSrePE6uA+Xo9WxdM4EbDosLKqp1fUf4cyVOqc4mVTqXbOuj6vzgtW6F1WhriXy+RjFdhNMhErRKjcivqt6rJBw4/KsTWtF9VbkefeEwuDZO15TVI17i+tr+JEIL7L5Yg2CNaN7KamWAiPBbJKuJfyRJ7YcLPWnF1eQSys2oLyHOndnT9JqNTVZYv2INXP4yNtVXU95ZPhoYyDBw9i7EfmcpYYafjq177Ob+gBq0xaUwJWdd1onURMspxQCF+ImX49SBby2m397/N8IzXuFHIQXaJYUSEkQx1iQZR3dONb7V+8s2/kp41MCmicwiPZyRo/It8JF3BWTqjK/FKrFmAhRxHfgbzuv8o+o1h3JV7yebVpkFlGKnsHuSzZyFPYgQA8XyYJhIfZ99WufXJZo07OE36xI7f2QbaVKYb9YK1X9vrrFSrCoJo7drY7sp2HmKNye8T/nRsKT8Be7U3cxt+6OItAVU4LrMr+Qr5mV4ZIE65G7r3X1bFQ9DQ/X7mi8N6BPZy4CjlOph+oHYMdr6wHUj0YEa3DGy9uMOr++te/bpT559/db7RnxIgR2LHz787jV2ZUvP8OdSwdZx/MyQ52nlStXn8Fgerawtk7Awc4O0TsxN3YCHaBiMTO2m8ALS8eYFVpZOM7cV0YXYIZ0eccx0NVnxh7EYxL1Vcr0RAETPagC5jbJ3779VLsBKvnXtFmv8RchpVYyGMh5gmg9irt9fnJYyhiz1gJviqfBJNnWydPul69/9pds+aXA1YBhXXa1Sfw3mtm+zDxXQsF5w1Yb0Pbe32YMuM0062K998jEVrYOW611U2Km4GdWPBEYCxhtAeojQFVsBOqqoSiboJr2R2J0y5aVaeQAciuUwT/XhARkc6tLC+CX2ufZCG9bFMi5BRWm4+g7SHk9qnc4BQLWUgPFBJFq9zFS7+saeQxDMLA0sk2xE6TS5VHdU0I4g/s4UQkXO3sBsXFBUrLJz6PGfM+jRnnXYUZ516OGXOvxOtt2+zDARcDw+dXeZ02Vk4kQx1ixyZ2gHY7Wr+xOFSsEJmtUwxrSi7XL7ur2IhPiPUAACAASURBVFgidmVYT1yTzjezBL2cimRWj512k/VEIqcLok/FwisryCmdimVYipdlp/rdTiQO8ByPRD4BHGNjnOoEr2FxRVpBsIaNUrPM5FOKn9NSEW0u94mkIiMZ6pCFsVb+teyUUd7Nu/lr8rp4eIGqXcXITORF22mBdirLuvDbsUfcBMjr7ubjuWO9c9/dePtehMhWBLVQu/kzs25Q7GRk5VSmsJuX5cKwUWZZhxvryQohiLcGqVJByD8oZC5bFTJX1K9qgxcZzxBAWU8kRBQD8CyAKDjReoQxdhsRNQP4FYAGAC8B+CxjbICIogAeAHAKgG4AVzDGdjjV8YE/kahgXQSsEe3EgincwwvWRLgaqBlhPt1YF19Z3mAX4U9e6IUzScHGUclGVDITa1nyYiJHbLTmk+UWZ9/ofCJQtdcpnYBV3iDGbs63vC2sXgi3HQEWrB43WYwdYZDvOZ2IxL1wNV/YJp3PXc+4naLksZl0vr/2WCE/y8U7C397hKcTiZVoyI4ZnU4oboJ4OwK0+1UAOQAaMHp6Pp98ShFEJcjIiFbop7C2v3dhyulzTbcOJxlJCsA5jLHpAGYAOJ+ITgdwN4B7GWPHA3gfwEI9/UIA7+vX79XTHdlQ8ezFYgMU+niSZQ1AnogAXANJJhKpA3mbgbW3A7fXAxlJeGgHkWfLarWwUJyUHroqTxRAakNJawwKWcbiFqlPJaOwjplsEb31CftFTx5jWd5gjF2/992yLA9y807w/HLzdydZzJbH7OUea7+tP8dv5685yRXEvXDUbAviJos4/fo8gZXb89BVfP48dFVh/7xCqMhaVWWtHgjcjG1VUJ0EBFhOLYeQDQx7d+VdygtZi5PRIZH5v6hTbEx0ba+yq+yKgwLLldWPXlkJie7SRXc/iYj+YQDOAfCIfv1+AJ/Uv1+s/4Z+fw6R/CSOQKheSPGyC6eMshNDISCNDuP3hRA6Npyr/Ip8wr0FwK9lUnyS9+l+3CjkHio2HC10JjnvjrydgDitUIhHYBQsFKdFRjY8U0VPHDeblzdudqGAWWXPIAgTYK9AYF34xYL+6QeBxqk8jRbxzqKSDQLX3e3snUAWvo86Wb2LF4s3YG/ZrVqEnYw9xT3x3GRVXNmQ0rpYz7qePxtre8Sz3vpEYf/sIOoeN1uyf4LZ5Tmg3jD4JVRWh4biN4W40Z+KMFh/iyBV4nlKBCAUCmHGiZNx4tTJuOyyy3AwVIuPXfaPeHJjW15gHq7Gf6z8Nb60+A7dtqQ/+MiIVsjLpx+WtU+UXUZCRCFw9tXxAH4M4G0A+xljuq0/3gUwRv8+BsA7AMAYyxBRDzj7q6vY+leub8eyp7cBBCyaMxELW5sL7q9a344Frc0F9/yk81qONS0Ax3zPN12B8T33Y13441i29Bk9z3x092zBZ578Pv7e3o1Nx30Gq9a3Y9roWlzRMwpns11Y1zMKO7LzsXDx9aZ6l23Zhise/yO+rO1DLDwMUV2wuePHn8SxnevwXmQctPQB/A+7CG9tOw0b16xBKpNFNBTCzQ1/wpndD+ON7PGYpu3AH8MXo7cni6uf+D7uZxfggdw9WPDkE/hKuAfRcDUyuRwOshger/8c9vQksTD2ON5ougLPbu3C1exR/LJnDsY1HIUzkw/j5wcvwK+XrMGic+cDp87HsjXb0PfH1cjmGCY1xbGnJ4Urcn/EN+lxhCmH3Vs2Ykn6q9iUmoxp6VpsSvViQbaZH20ldt3z7d0Y33M/ko0nYsSBN7Gyby7i69uxcXs31rZ1YM6UkVggjfH8J+9ALfqQWnsnzlk3GU/ifcQBzoqYdT1Wrm9H4s/LsDD8OOJnL8LK7HzFs5yPhdHlBnsxETsGKzPzEc/OB/RnP230adiUmozPrnsUF/X/Hpty43Fuz+MIIYfEumX4dXY+lq3dBjBg0bnzMW1iN8ZvvR87Jn4Op88yP9NV69vxy8aPYnzXs8Yp6roHXsRTm/ciGtFw1sRGbNrda8wx+d43zpuPhTfwfq3S55eYh4l1yxBPvme0R/Rz4/bTMHbgKiwMP45fgs+Tq2kmWtkLWE8z8db6dixsvR4rs/w5plY/jmgohJYJ9djYvg9gQMuEemzaPRnTRv8c395yJUaBb2qy0PDCcV/EJv29TWWzWBCag+tjT6Jr2GTEOt/AjqYrcHpzAxLrlmFl31yckcwY44FEB7IHOtDF6tBfVY9kOouGeBSNw0aaTiWdRx2PbsQQi4QQTXWjAT3Yn6vFvvd6EYuEkExnMbbqaByV7QTf+2rQonGwVA8IQIYR3joQQwPjhr3VsSheWfMQ0gjjskV3YMmPf4mzL74av3j4f3HeaZOM5v3qsT9jyb99E2mEkaMoons3ATWN6GR16DjACenIYTE0DuNeJDoPpNCdSOl9iBq/R2q9GJZ9HwdCR6MjV4uGOE9vLSNRNQI1qeCc/Nph0LS2iGg4gN8BuBXAz3X2FYjoWACPM8ZOJKI3AJzPGHtXv/c2gBbGWJelrOsAXAcAxx133Ck7dxbyUwUB6U2ljdNdXXUE8WjY9LLMXvoMdu3vV96TF/xV69uxa38/xgyvxobF55jqWbW+HYlkBj3JNEJEuPnCKdi4vdv2RRZ1hogQj4bRk0wb5a40FppabNrdi+6+FJLpvAprLKwhnWVYV/UvGEtdeJeNQGtqmXF/fXSR6fq8qU3YuH2fYYbSk0wbaXaxEbi8+j5MG12LtW0dyLrMBWvZqmvit2B/vMtG4MzUMjB9/BPJjGs9YY2QyRWmEWVnmIY7M1djVXa+6X4soiEaDhkL1cbt+9CTTBeUE4toxpgSAbWxCHr6ebpXotdiOPWhBzWYnrwPC0KPY0H4cWwYcTmu+Je7MP32NXgs9yWMpS4kYsdges8PkGWMb/wYX3JCRPjlSS/hxL//Eisz8/FfyXlIZnKIhTWkMjnIPZP7FKYcMkzDXdmrsTKT75s8HgQgGtYQjYTQ0lxvPLe6WMR4xi0T6rFms3rxmDe1yXRPzNdlT29DTzINAnDLRfwUtvuJ7+MLocfxs+x83J+7QPlM7FAXiyCVySKZybmmXRB6HIvC/wsAWJb5FB6kC5HOMtM8CREhEiKjvFhYM77/9BPHoOm4D2FYLIyxA9sRRgYDLIw32bH6mBE0DWhADxqpFz3acLybjhv3GNT90oiQ09ugEYEIOJr1YAR60IU6dLFa4/ppE0fj/a3Powt1WP7AI9jWtgn//I1bcMnHTsG7Lz6BSFUEL/z9IC6+5Eo88fxrICJMpndQRRlkEMZbNA4DWX1O6n+jEQ2pdM5oX0gjMAbkGDPyWvsp0laFNEw+phZvvteL2tx+dP99KzasW417es7F8SNrkEhlsfGOy97JJLqP8/pMnTCo6r9E9C0A/QBuBDBKP3XMArCEMXYeET2pf3+OiMIA9gBoZA6NVAnbV65vx52PtdkuWDIxuO6BF7G2rQMMDDnGX9qm2lgB8RC/49EQ3urow5wpI7HimpkmQtSb5ERLXqgA/hJkGTPKES8twOtjDMbDTaQy6OlPG3nsIBa4VZn5pgXV7joAaATkmHMaJ6jyiWs/z87HTzPzjd+dNSeg6eAW/DTN0xKAqGVc/IAAfKHIdjtBjImA09jUVXOCsyD0OBaGH8eq7HzTgm9KG9Png0v9or5NufGYpu0oum92xNcL5EUZ4G0HoCTCfkCUZ9GXE/d94hg0HTcBADCCek0LvRucCIlXaEQ4bdIYPL/lXWQyGXztumsw+6NzcPk1C/HVz1+Cf7rqYpxx3idx949WYv++ffjard8paOtAtAG9PsbbrZ+xSAipdA4hjZDJ5bD379tx7R/eM6XZveqfBwY62qMFmYtAubW2GgGkGWP7iagawBpwAfrnAPyWMfYrIvoJgNcYY8uJ6MsATmKM/RMRXQngU4yxy53qEIREPj3IC7UVYgcmTh3Tl6xRpq2LRZDKZpFK5zCpKY5EKosFrc0mAhUiMgjAgtZm3PPEm8odWFgj1FSFsejciQZxUrVL7CzjsTCmja7FU5v3ljjFi4d1cSkGJzTFsWVvwj2hB1SFCAPZw8PmicAX0SLXdQMa8UWqWAJRLIh4H+Rqixl/K5H2C6/5ZULiFY///WE8/s7DmH/s5Zh/nOMS4wkfHteAiZP5Se7Dp83C12+9A5GqKjz2u4fx7NNP4u4fr8Tl552JJff8J6aePKMgv6bLMnJlWo9lQqIfXPHez7+SS+15KxRE+eWWkRwD4H5dTqIBeJgx9igRbQbwKyK6A8DfAKzU068E8AsiegvAPgBXeq1ILNB3PLrZWHzrqvWdlc62iIU1nDWpEavWtwMAJya6LEp1MhC75617E2B6HXOmjDTYCVnG8FZHH96+6wIAwLK125DM5IyyiIBMjiGTY0ikOB9XdSJpqo0ZrCyZtTb99jXo6U8HtjDVVIXQN5D1lLZUIgLwcQsKhwsRAfhLGsR6kGPlW1icwBgKNjBi/MUi5AWlztdy0s/H33kY3cm9nJgEQEiisWo8/ORfCq5/bN4FuOf2f0Pb66+iv79fSUQA/pxDGnkf3BJgVEEUmLJVubW2XmOMfZgxdjJj7ETG2Lf169sZY6cxxo5njF3GGJdYMcaS+u/j9fvbvda1oLUZISJjkEgXri+aMxEhndpHIyE81bYXu/b3c0EmeJoxw6tx0wVT8PZdF+DJG87GhsXnYNGciYLGIKQRQkSYNroWK66ZibfvugDzpjYhRIQ5U/IaF6KsmmgYWcZMO8ksY1i1vh0LW5sRj+Xpd000jA2Lz0HLhIaCPrU01yNEhLlTm4p+qWSVt4Npb0TEL8IaIRbRTHUBnJU1Zng1TmiKm65rHvXwilHXi0XK7/WHCMbz9wJr/wW8joO17nAxGT3Crei5U5vKWj/g77l7aUosUrjpnn/s5WiINWH+sZcXNc+84qiaOE6ddSZu+/o/Y/7FlzimzZaRclZHtMJ3I8DqDntfW12JFKYvWYNla7eZFnXGgIdf+DuWPb0NkTDx0wmTdor6/4WtzYb8Y6V+UhHXJ+kLQCbHTx+bdvdi5fp2zF76DFomNODmC6cY1wBe3679/agKEcYMrzYmuUZ8gdu9vx/XPfAiFrQ2oy4WQV11BIvmTASQP1Gtktrw7NZOZBnDM29a9NvBT1deXoAR8SrTmPiF3aIhX83mGKLhkKkuABgWDSORypjYWzVVIYMoqoquCuUvFjPPnWQw8vMgvS2AuS9OC1NjvApEnA35zJv2ygnW8kT/rWPJFNfcQIAtqyuI9d1pLdMI2Lh9n+8Fj7Po7O8JVpqAU+mN8SrEwpqntAJJaQMl6pl/3OVYNvsRzD/uctcyCASNCCGNDBaUtTwnzL/4EmzZ/IYrISkWXtqgmjPZxL53gmrDYe8ipSsxAOhsok27ew2BKADTApZK5xCNaAhrhGyOYVRdFLN1dUexiN/5WJuRftnabUY5AF885LTfeXSzIVT/zqObsXF7t1FfZ2IAO5ZeiObFjwHgC3g6w0V6a9s60DKhAfGYWUNs2uha7OlJYtrovOAspWtxqCaBob0S0TWBbN6GzoQHA0MH2C1azPJdHiunumXWmqrocrKwRH3iv2gLU6RRQfQn40KR7cqTx1LIxNzKssKpfV7X97pYpChBeo6pBfAqWYasLBJEmwU6EwOmnbVf2lnM7GJgYAxQbd1Eec9vedc2/znnX4hX33m/iJq9wUuf0llWtKKLFxz2J5IR8SrUxSKIRTQkkhm0NNcb98RJAOCDnUznkMnxBX1rR8KQqUwbXWtM/FW60F5eGMNaXkAv7AUA8+53bVuHsbsU/8UOfUS8CnOmjDRYYTLhEqeZTbt7jVOPwNwpTZ7GIBo+vB/jULQ4ddvdF8WW0v/XVIVM7M3Bhh/tIC9QEQM3Fe9SIL93brWEteDejRxjh0Rm5QQCFf3+aEfVeltgvJQVVEGHCiPiUby6ZB4aaqLoSab5qURXX6wKqdVNYxEt7zkAnAgcP7LGkIMsaG1GXXXEeEBNtdzSdvbSZwrKkmUl50zmxOKcyZzFJnawnYkBPLu1E8KCYEFrMwj8ZVv29DasXN+O7kQKRDCdSFomNJiO8Sok07my7jQGA1aW2FCA2065GHa2yNI3kFWe4GQIRZFyYGgthcUjrMsunVBmcc4hBytBeZllBg4G1Y7DnpAILGhtNuw0Fp3Lhd5RhZAN4GwmIM+bFdpX4kSwsLUZr942D7dcNNVkQyJkGIJ4zJvaZAjfV1wzU3mqEEjq7Ke1bR1Y2NqMWrFQEJePiPtyXqEFpif7wKJU9tsHEakyKUYMFgZjARcakU4QRn7lgFVecriBwlVHBVXWYS8jERCyBmFLsmHxObjugRcLLHzF6UGo2oo8svqtXKbstkQYJArXGiuu4Y4zZWt0AEYZwo6iMV6F9w+mkckxHD+yBgDX8JJdawg3LuL3yvXt6JV2rUHsIv2obgKlGbmpIBYXa5F+21WqfcJgw2//AH8L4FC0sRmM5xP0/FTByWCxGDZXrW6oOhQQ5InkA0NIALPm08LWZmN3L1vYHj+ypsBeY2FrM1aub8em3b3YuL3b5PtKNnTcsPgcfOim1cgyhqfa9mL67Wv4CkFc2LynJ4k5U0Zi2dpthp8ggAuQm2pj2LW/H4lU4U5TJlhCKyyRzBjTV6iXW43EgPxJxYudid9pHzQ/2K59/ttVclNKgtXrgFC6sHo0ECimuX76mM4xT4sqAbql89AiOsWi3P0IaxoyuWBPNH0DGfdEg4TKicQGggW1QCcA3X0p/vIQGdoxQrNq2dptJoIhiNCenqQhu1ilyy6SmRw/MQCIhAi5LEOIyGToCHAWmcpnVU9/2lACME4gulbYsrXbCk49wuWKWLDE+6J6bRhg0lQLEk7vqVCDdXqZD7eTg1dYn69MPA5Fnxlz1ySrq46gL5U5JESkmBPZYIMAREIaMrm8QD1oIgKUz1ZEiNz9SEwqMhIFrN53lz29Dcl0znZYU+mscXpZub4diVQGdbEI5kwZiTHDq5HK8vtCRpHKZnmZmRxqoxHURPM0WJZjHD+yBkScuMiC8rVtHaZTjsG2sjRQyHpamuvhlQXb25/2ZO9RLFRluBER4INJRNxQFSr9lVKNt5vShRtSmWzZiIhs+6PCJBuDzKEEBr5B8HsIFz2/b9n38A9zZuHSubNx+Xln4rW/BRds7+WNf8UV88/GR8aPwFOP/V6ZJupgiEtQzymKxIYF08IP0IlEZmtt3N5t6LtbDbjE7igaCaEhHsW00bWG/6wQEVomNGDFNTMx/fY1BWyK3lTa+D93SlOBd97a6ggSqSy3G8kyzJkyEhvb96GnP40sY7jj0c0AuDxEsKoWnTvRVIdgc81e+oznF5/B3thwUlMcO/cdLEmzS1W0k1Gcm1FbVVhDJusuKC0XyrVDDqpPmsJhp5vLGrdxL6dmn5t85q2OPtPvoXpSLea0wAC8+tL/4dm1a/Dr1X9GVTSK9/d1Iz0QnALJ6LFj8YMfrcDy/7zXNk3SQTnDrlekaYH42QI+QCcSsZOfNrrWJGCvjUVMu/VoROMEo7keC1qbTayoLGOGbYdwd3JCU5zvvrP53QpjwLPbOk3u5AEuQBesqyxjvB3MbMuybO02Y3tQWx2xjV0iqwF7gUqeEdYIW/YmBlU92E2TJcfy9jx+4FRqLKzhVt31uRcIIh40SiUiYpra2WA4WcEPxYVZoL7GrMpcNch2T+XWrers2Ivh9fWoinJHukfXN2DkqGPwxisv45pPzsNl81px1UVz0Jc4gN8//CBuuPaz+NJnLsXHzzwF9/77t4xyTj9hLP7z7u/gsnmt+Mwn5qK7k3u0GDXmOIz90GRoFtdYB/sSuPbKi3HF/LNxybln4E9PrnZta7m06T4whGShLgy3qt72JNPmF5zBUNFdtb6dx5JAfrEX8hFR3s7ugwV+s4D8Di8a4kRd2K7ILk5E/WDSZGZ5n1zCPYoKKhViJ/g5NZQT5arTsVQC7nnizeDKO0RwGzq7sRWuXoYquvrMu/PBtnsq97M+46yPYe/uXfj4WTPx7zd/DS8+twHpgQF888sL8M0lS/GbNeux4qHfIRqrBgBs2fw6vrt8JR55agOe/OPvsGc3t4rvP9iHkz4yE79Zsx6ntMzCbx98QOpDYS+qojHce98v8OvH1+GnD/8R3//OLbDz5i6ulmtJ+ECwtmT5SDzKXyq743Mmx121d/fxyGYiIJBJWE35cp1YCrOXPoNRdVEkUhm0TKg32GvWuqOREL5x/mSTDMctyuK00bVKd/OlYDDUJQ8FDneDzFLh1aPzoXr+Q8wYHACg/fZX0H77a+QuuQK5Szw7GVfiqJo4Hlr9Z7z8f8/hhb/+Bd/88gJ88V++hsaRTThxxkcAAPFhkqHx7LMxrLYOADBh4gnY/e47GDV6LCJVVTj7XB7hcspJM/D8X/7sWC9jDMvu/g5e3vhXaJqGjj3vobuzAyNGFhqsK08iAT6XDwQhEQu47B/L7n3J5BhS2azpRJHK5F9EwfaavmSNSd/b6oI9FtGwa3+/oVq8sX0fFs2ZqPTR1dJcX6Diqwqvq3LcGCQGexEZqrzwIxUfxE1EsdB++2tQxx6dmJRGSAAes/3UWa04dVYrJk6eil/d/1PbtJGqvCcHLRRCVjcTCIcjIJ01HAqFkM04qwqv/t1v8H53Nx5a/WdEIhHMn3UyUqmUMq3y0QfI5vpAsLYWtDYjFtFMC3hjvAohIjQq3G+YdrCU/y2CXm3a3YseS3Q7mYjUxSL4xnmTMWZ4teGiIZXJchfxkjZXLKwpLd1lgrFyfTumL1mD6bevwbTRtUY42mmja22fs5/nfyhtb8t2jC4To7dcY+XW3FiEy3jmTQ3M9VEFLshdcgXYyFHIXXJFSeUQCDve3oad7W8b17Zseh0Tjp+Ezo69eOOVlwEAfYkDyLgQBr9IHOhF/YgRiEQi+L+//gW73w3Mma9vfCAIycLWZsPtCcD9X1WFQ8gyhoEMM2JlWONC1MW4G/e66gjqYhGTY0anRVywsRa0NqOmihMOISsRQv9bL5qKb5w/2XCxIkNWDLjzsTb0JNPo6ed+wkQM9027e3HLRVOVKsCq9dlusQoNcWdDXpsniEdddQRhSd1UtVEoFk50r5R6jqmrVl4XfYqGQ1jY2oyN7fuKrmMwEMRUGszp6OTOMHfJlcg8+LuSTyMMDAf7+nDrDV/CP5xzOi6dOxtvb9uC679+M77741VY+q0bcdm8VvzjVZ/CQCpZVB1vvPIy5p46DWse+z2+s/gG/MOcWQCAC/7hMmx+7RVccu4Z+OMjv0Lz8ZNK6kspGNSY7eWACLUru0Opq44glc4ilc0hGtZMJw5ZI2be1KYCK3cB2e3JxvZ9SKWziEZCBeyrWFgzrttpYInylq3dxoXtusqvUDsmcA2uluZ6bNy+DyAY5cn9slNbjYU1DGRzgxLW1G9aK2Q+vbUcwT5U9dPOKvvWi6birtVtxnUR1jiVzWIg4z4mKvciYoEPghUU1gjhEBlzUPRN7ntYI9REw6YTtd0YgIBJI+OGbzjoZamiGqogs2i9ykw04sRwb2/SNr1clpdInEINPB9XvLixrqkK4T/OH+k71K5f2L17RGQr4PZeNi/drRTS6/PrcUIjwp6db+OL1pjtK7/cP9C5IxDr9g+EjAQAVlwz01j8hTU6wE8K0XDIsOUIa5yYREMaNm7fh55k2nCpIsMqEBdlAzDNKFGPsF+xI0yya3pRjrBdESeh2UufQU8yjTHDq438z27rNMqwmz5BhMX18x67pSVwNWs3Ibi1HJHezoJftdgIYpwvk39PORijylDZQPixJ3CySRHW5Cq359Y4JVbPBHZjAMbtMuZMGWlsMPw8O3mB9+rqPcfgqvghnk2IyJPwnzGgoSaKXfv7kcmxojdDXhUNrNB8Lsh2KZ2ICIEwLBZ29K2Vt0j31gY/RMvVqSQPgR4IPhCsLQGhsit7/W2ZUI9Xb5tnuOUOhwgaiC++BBPrSfi5kiMlimvLnt5myDUWnTvRUPcFeACqXfv7sWbzXpOwXC5PuKavi0WwQGefjRlebRARwOzBWOR1W4zdWAWyamhQXAW3chjsNamcdp7Hj6zBmOHVBeU71WddDEXwpVL2iAzOL7Yso5HTNcarTEGXEsnSXZKonm+WMTxlcUZaDLyGClbBbt55JU4hjbC3N8/qSWeLd4fuBX489XpN65ZK03go7dqYfUgAZuMI3m+UEbJEJiHwecp98Jlr0HT3RofERQoRfYWIaoljJRG9TETzgmpIEBCL76jaqHHt2a2d+NBNq5ER0QazzJjsfakMEskMNm7vxuylz+CeJ97k2l+6Xy0ABgHpG8gY8UoWtjbj1SXzDHfyk0bG884TIfnT0vMa5Vks4RKpjBGPBMgTQtn3lxvc1il5x+b2onrlX5frhd+yN4F4NFRQvp/6BoMFn2XMtJEQ6EwMIJNlBqEpNbgTIThHlyqoiJy88XCaD6W6ULe6gM965c1JEE3gEQydM+d0FrL827FsDzPJrbnZHEPHgWRRjhr9klUicx4G7kE6m+NjI9/LMT7eWlW1P6tnB/hhbS1gjP2QiM4DcDSAzwL4BYA1QTWmVAjZhZhgISKksjzOh1hQ5cmbyTH0JNN4qm2vWded8qws4cFX5JM1sET8kUQqa7BymN4OUQ7A/XTJLBhxYhHsjDse3Yxla7eZ5CwLWptxx6ObB9Vwbihoh8rhkb3AyucfjC4wxp9pSGePyHUGqWLLAFuPwkFCHkPTxsOhK+VQJfZbomjfzv1pNDT0InxUraE+W0r5QXq9Zix4L9pWqNh04hpjDJmDvdi5X8FeIwqMI+WHkIgndAGAXzDGNpHTUzsU0MeSMc6fXjRnIjZu7y6ISWJFNKQhLZ1UWprzxoV1sQjSmfw94bpk5fp2JJIZI8RvRuK1C6++qUzWGDSRn/QyWiY0DJdZkAAAIABJREFUYNnabejtTxsxz2VZzcLW5gKbFD8olz8pFcIa8Z1PGetojFcpA2AdKiM7L4L8IBAkEbGbEzddMAXf0f3AyfArBI9FNKVsSg7jUA7858b38S8Axg3vKjhJhDQgl/MWZuFwhPDKITuolZ8zA8PO/Wn850ZFzPgAx8Oz1hYR/QzAGADNAKYDCAH4M2PslOCa4x/jJ5/Exnz+h1y7avs+9KbSxqSdN7UJLRMacM+TbyKVzikFwLGIhm+cNxkPv/B3YzcsR0UU5QonkLGIhoYabs1u0rKRXhbrwioE/OJ+LKIhneFOHVsmNBhBrayaX6rAXDKE5gsweNbdsbAWiHDfDzTirIZyxgEXGEwCDOSjdB7KQFBBPdPGeBW6+wYK+lJOYu+mITZmeHXBuxokBsPoNkgtQhnv3f+vSL23LZDDgJ+jzUIAiwGcyhg7CKAKwBeCaEQp6EoMYNf+fqxt60BPMo3aaJ53/VTbXtzx6GaDWqfSuQLOZ0NNFAtbm00eSrsT3Dp0w+JzuPdeSesimeaCdas1/NwpTYbwMpMrZHeINTBEhFQ6Z8QuAYB4LGz43ZKF/W52BUKoPZguQlI+Q5cGMUsFT3cwMNibVs76GJy65IVIo/yzCWpj0JkoJCLWeoOGm9bWrv396EuVL5jUYDy7TI4N2vwvFq6EhIg+QkQfATBDvzRB/z0OQ0B9eES8CmOGVxtxRFom1BsGiNGQZloYGAr99k8bXYuV69sRCeeXvGQmp1T1BfjubczwauM6Abj5wilomdCAeEw9HGJHIdLO1S2Ys4zhrtVthkDecPXy9DbMXvqMiVgpcQjmlt/5PNQNIo9U5PzLtl0xVB91uYJJDSb8vneD/Sy8nEi+r39+DOB5ACsA3Adgo37tkGJEPIoNi8/BimtmGm7hk+kcRg+vxjfOn1ywI46GzarTz27rxKr17UimczwgVUQzVHQBbjwou5M/a1Ijdx+vFxyNaIaWld3xuSYaxpjh1bjloqlY2NqMlgkNxj1jt0Z59V8Q30kNuOwUvc6tcrkU8YKh4N/pUC9wddWRQ/oMioWfJsci2pCVQUxqihd4tThUIATrjcEO1mehCj7GctnA+H2uhIQx9jHG2McAvAfgFMbYTF0u8mEAu4JqSKlYub7dpBm1e38/Nm7vxi1SnAqNYBKAA5zdJQTojHEDxleXzDMJvRforC/Zb5ZwiSK7RpH18kNEmDe1iduvMH7yEb61ZKeMYY2MNABnpwk386oX0y0anQpDYTEXCEo9w8/C7LX7biUS+SfKGqGoELflIDwEf8TBa5PDGhnz91ASTLu69/SksNWiDSjsygYTpA+TSmmk3FAZ3hIdmsBWJzDGXhc/GGNvAJgSVEOKRVcixQ0G124zLMWFwHRtWwcWtjYbYUpFUCWhVhkiwlzdTYoBy1yUCRSBG5mt1I0SxwyvNtydLGxtxs0XTjH57VpxzUzDd9batg7s2t+POx9rQzwaMrQtbrpgipFmlcWeRPViuEWjGyyQbszpd92YO6XJccG2u2cdi8FUPyXwhYfpspqwRkrfbSrkWHFtLQdPnEFNHEpd/DM5ZshZDoWHabE5yeSYySAU0AkGFT7bluZ6X+GLVc/a77jJclS/sPbLDrLsyxUBqv/6Keg1IvopEX1U/9wH4LWgGlIshLAdDIaluIgRffzIGp7IMrIE4KyJjRhVF0PLhAZudR6LGCrDMkTwK4BPRnnBB2AYM67UVXdfvW2ecaIRKsJ11TwWPBFfILZ2JLjwP5PDsqe3YdroWqVzx3Mmj/Q0Btb5HNbyXo+rQn5tZL0hRIQFrc2+2RlPbd7ryJIrZhmKRTRfJx2vO3ONuEystjpiGLkylvdrtacn5fkF9wuZjsQimmH8Wg6UuviXQohKPcDkGJeFClgVTxLJDFqa600GpLGIhk27e5HMmJVvnPqhsm9yGzdrcS0TGnDzhVMwZni17zGLhkJKI1i5GKH9dyi2mn7Uf2MAvgTgLP3SswD+izFWnEvLgCDUf+PRkOGD6Jk3O5DJ8Z3jW3degOlL1qAnmTZU9WRHenXVEbx6GzfQV8UJOe/edQWTSA6GJRxB1sUiiMfCJqt2oYocIsKcKSONRTQW1gxDSbnMUXVRow8ibnwxaouDpaI7VOKNDLbKrsrRY7nxQQ1KFgS8jI3VsFPYJXlxMBk07GyinFDqu6Z6R4JU//3AeP/90E2rlewA4ThPtuMA8gMbC2toiEcNu5Fd+/sxZni1EY/drlxRxqSmOBKprKGrXlcdMYwMVRBExck+JESEt++6AJNveXzQbTaGKioLaQUVBIv3fv6vSO0ZJDsSInpY//86Eb1m/QTRiCAwZ0qeDSSOe5p+apDtOAC+O5k7tQljhlcjGgkZjhZlp4mqckNEBQ77EqmsSUAOy9FSqCKL/CJwlgphjQxCA8DkfHIw4HTarotFMGZ4ddlYOSrIfOmaqnBRLJRYRPPFPhkMjZrBAgFlZYnZIazRYamldqgglHIG890CgGxiX2CRsLy0/Cv6/4sAfFzxOaQQwvad3XmDQrFxFY7l5CktLNOFbASMn1oEO0s4TQQ4q2vT7l7M04nOzRdOQY0UAZGQd5ki8rZMqDfua8R5tiGNTJ5+RURHIbAVAvqbLpiCt++6AC0TGgqcT9qhMV4VmAzEacM/qo635ayJjcYioRWhxSRAgKOwMxbWsHNf3jnpqLpo0ScSp2xWHvNARp04iHUxFtEQC2sFC4ZMvIJ6lgRg7tQmrLhmZl5WKKGUxV527Ki+H8aHGgvrlOsuBk6yLVV/3Nopl+sHwkRAPE8Zzo4uC681xquwaXcvRtVGbQ2LYxENJzTFC/rfGK8qOqpmLKwh27evo6jMCgTG2iKi5xhjswIpzAfiY09gIz7zg8L2wJlvXlcdQTwaNlhZgrUly0dmL33G8LcFcEd9YPpJgXHBeyzM/XQJuYbIY21L+9ILTdeE/EO4VpHZaaIMayCuoYLBlkl8kBELa0hlvMVOKbb8wWaPzpvaZFKqGAzHkyr4mafFvGuCbS42OCc0xX07HfVSr9P41VVHipOjRjS8de9n3skkuo/znVmBIM9SsQDL8gxh2X5CU9zQ86+rjqBW0hNX7YBS6ayJlSXHURcQ2ly9qTR6kmnujiSTQzwaRsuEeoSIxzWR3Z0saG02NIhEtZMUqoOpNBfwhYiMsLty7BJhrT+YONRu5IPAUGOouLUnmcn5sv4Pa+RrFxoUEbFrYSysFbxfm3b3mrTo/BKRE5riSg2lgja5DJvXcW2MV9l6pXCCYJsLWG1VrBBq5KJZYY1w/Mgaw2RBwHrScRq/Aw5BswTCOkdEPgkn0zmE4vXHumb2iCAJScH6QkTHEtGfiGgzEW0ioq/o1+uJ6Cki2qb/P1q/TkS0jIje0mUwH3GrVFi2P3nD2Wi/60K8decFePW2eTwWu67Se/RRfFLK8yoaCZlYWSr5CAD0JtMmZ4vC6l24kBf2KGLRX9jajFsunIoxw6sNh4pb9iZw3QMvWgaH/wuHCBsWn4NNu3sNQibateKamSbDKdUL5uVd8aovL7OAgl6QG+NVSl69FzaHkw2mzNJojFeZJqFgB/hlpajYT1Zo5E233wvRzeSYZyKeyTE83ZYPvSzskewgghsVw02S89RaDPgEuyWZyRWwHKeNri1Zmy+RyhhzRsWiIgBRH3YgIo8K3X0Drrv6EJHrGLoRNqb/kUMsC0NnebjSGYZxDUcpy7Ne8jLOmRxDPBqyid0cDMrtKysD4GuMsZeJaBiAl4joKQCfB7CWMbaUiBaDO4O8EcB8ABP1TwuA/9L/u0JW3QW4/UcqkzXtyMSgh4gK7EWsoXVFGWLsZTVh+b4qrK4oa/rta4zdhDixCETDISTTOaQyOeMUIrcf4KrH8gTf05sqCNvpZSIVsysN+tTRmRjAvKlNBdpqXuQeTpq2mVw+YJFVpVLY6/iWrXh4wRi4bn9QLJscK2SN2LlfF91x69UJTXHs6U2hx0GL0AqZHSQPm3WhTaZztmyctW0dtlp2BPcwzKJc8TxV6rlMb4OVfSXXa63fbgy8TA8vbC8v5ZgcwNq8l1nGbMe22PdSVR7L5QLTew6SkBS8foyx98Bdq4AxdoCI2sBd0V8M4KN6svsB/BmckFwM4AHGBTfPE9FwIjpGL8cRgjV152NtiMfCpokvdLBFA+dMGVmw+MsQRElYoEcjGkbVRtG8+DFEdbfzCyWCBaDA/fvatg4cP7IGqUwWqXTOOLGIslua67G2rQNZxnDnY224+cIphoxEpJMffiyilc0VthM04koLdouxV/12jeAaF6ZY2FXvheWtar9qkaup4kSjviaCzsSAEdxKzCmnqryqLu/pSZl+e2XZ2/lk29qR8L3yBLGByDJmy+oQBCAoWNtrN8511REcSKYDtXsaKirpQc7BYuHrbEhE44joXP17tX7KEPisS97x4P65NgJokojDHgCC6TsGgKyS9q5+zVrWdUT0IhG92NnZCSCvPSVCdorBJQDDdNfyTP88u7XTNja7WOh37e/H1r0Jw/28+J5M5z0DW+UqK9e3Y/rta7Bm815uwb43gYaaKG65aCpWXDPTlOfZrZ1GVLMsYybZjEgnQ375rBpPsUghnzooWF18CPcg8n2v5djhUGiKiiq9tr9vIIubL5yCKt3pZ4gI0XDINb474P1E1OOB362CbTjeQ2TlDAwNQ1UrgtZbGQpEBPDOPrWuEXQoXKQQ0bUAHgHw3/qlsQD+n7iv+96yyxsH8FsA/8oYMxlR6KcPX0+EMbZCdx45s7GxEQCwcTuP3UEAV8HVx6y2OoKWCfWmxS+ZyRnu2gUBkeOrJ1IZxMJ5F/QMZvfzgmhNG12LEBHi0ZBRhnxqiEY0pQB/zPBqJCVNHSF3kYmZSGddZMVvWZCYUvCpZXhVg/SCTI4phZjCBkZ2KumVuB2K97GYKldZFSEUhQRtC2A3hMUSX6dsokxVmlKcHLo11dqXoPcVsYiGVCZret/8+NkKCmGNTHZlbnPFzziENHcZTsEaEWCEWz+j+WUAswH0AgBjbBsAV7UiIoqAE5FfMsb+V7+8l4iO0e8fA0AIEHYBkDUJxsKrh2F9SKIRDWvbOozdR28yjWfe7DAcNZq0Fyh/QgDBcOHe0582BXCKRTTu60Z/mYRBoRC4v9XRZ5QhHo2og5CPeTJ76TMAUCDQFzHd73nyzQKBu/XZC186Mt/YzeDsYMAuIFTxHbJ68B3ZdYgdIampCh1S7apiX59EMoON27sBwAh4Zi1Kxbbxe1oURBnIR8AUENeL3V3bZQtrZCt7CWvkyabJT52y/ZN1OgW9r0hnmCkUdsuE+kE39gX4M/vGeZMNLc5x9UcpiYmYLn7GIZNjrhsyjWCrvFAq/BCSFGPMkGYSURgufdVjuq8E0MYYk409/gDgc/r3zwH4vXT9Gl1763QAPV7kIyvXtyOVzvIFgpkFY0xizaTSOSxobcY3zpuMuuoIUpksuhMp1FVH0NLMDQlbmusxZni18cLGwhqi4RB6kmmkMlmTqq6QoYg4Jql0FlFd4yelRy5k4ARHZoNZ3ciLiIkiJkp3ImWw3eQlyG4BdDtiy3dLZSMR1GqVqhbYCRP7Bvju0GtTgp74xS7CPck01mzei137+42Tp1e2gh9kcszQtLISJtmBaCmwasI5tTGTsxf+AsUZGHYmBgaN7ZZlzNS/p9r2Bi5v9DICWcZwx2ObjbHcsjeh3HiU64QuIo2Ww7eYH0KyjohuBlBNRHMB/AbAH13yzAaXnZxDRK/onwsALAUwl4i2AThX/w0AqwFsB/AWePCs690a1ZVI4c7H2jiriHG1XrsdOgNw52NtAIB4NGzYhYDBUL/dtLsXGxafY1iwC+NDgGvpyKq6b3X0GVpBoiyhiWUco3WreVm9WLDGoOedpAfNioU1MGaO0CjPKdnLabEodZKK/gaBozwSiMF2qjcU4GWHWQqC9Dk5VGQFXsFY8OwzryMwBO2LA4GflWkxgE4ArwP4R/BF/xanDIyx9YwxYoydzBiboX9WM8a6GWNzGGMTGWPnMsb26ekZY+zLjLEPMcZOYoy96FQ+wN3Ii12aCLBjdQlByLuhyDKGZWu3mRbzVDZbYEcifGeJk4rgs06/fQ0G9BC49TXctYks2K+rjphOM6/eNs9QBxZaWVZV4J37DmJUXQxnTWo03KWIdsj+pgayhTHni8FgCLe97FKLIRAfBBdOxbryqCA4WE/pgzWtBsuflqcAeIwFpj532Hv/HT/5JEafXKrcERCA2likQBtGuHyXXZmIWCRWtWAndyUEYLTO6tq0u9ewKZl86+PGkfVWPbwuYA6SFSJCJEymo21dLIJXl5hd2sejId9uF4YCrPr9HyTEIhrAircat6oc27nJkFVWy+mynwiojRa+J0GUe6iXF6J8nA6VCuxgzFMxvqPqor7f5WLb5yXf7p8tyg7sfTsQExAv3n+VXn+HivffEfFogdWtAAMKNLbqYhEsOncid39SnT9N9PSnC1RuAZi0dERaWXNKZocJgiHC7wJmNV4RJEt4AT5rYqPZo7DUUCFTKYaICKvjwYbcjWgROy/rHsrt9GGEKZZ+B7WzdKpbsC+LhZUg1Neo56+saaQFp2BTgGhIQ8uE+sB3yyoiQjDvysvtJVhWgVax4EohIlaHn05t6Emmi3qXi22fl3w0yFpbwuvvE/rnav3zODh765BDuEMRLkzkyblpd6+xqMUimrHjF0aBtdVcFVDIMmSsXN+OZWu38ShrExpwy0VTUReLGAtBJsdMbCgBQbxiEc10TxClmy/kEYqFQWJNNGy4PhFCdmsMeAHrFfm3YN85WR37gZVwynWoYHgO0FmMYjfoBXoWZXmAesHJMYZeSWiayTHHF0jVFlUfrXWrYL3t1M8Qcf9YdsRdtsiXXb4k0/ngZ36j8cUimsmvkyqNQDKTw1MlGIv6sWNiMBtQBiFfcVPlLfZU5NQlWcsN8O7Xyyu8sKZUY14Xi3jWSmQBsqNcCQljbCdjbCeAuYyxbzLGXtc/NwKY55Z/MLCwtRnxGBeeg8zqqYlkxqT6B+R3+2vbOtDTn0ZDPGrIMqzpevq5w0ZDSG9x7haPhQvybdrdCwagoSZquifLSQSLC+CaYsIaX5xgNm7vRg4MsbCGWy+aamu9Kv/2EnXNTVVYvivKll8YL3WIGN5+DOLc1hPVguMlrKgcX12VVtXHoJFlDBu378NbHX2uaTM55ri42j09YXRrlJNliEfDpkXUqY8M9hbnbmukmx2TFcWMtbDBUMKhfX5isVgX5hyDrfNIa3/99D9EVGCXI9cdi3CP4m5Q1dk3kHHsc111BCfoyj0snTzgudEu8HOWJSKaLf04w2f+sqArkcL0JWvQ3ZfiD11fXEj/9CTTJvVfYexXVx1BJETKk4iALJAX1ucir1ig5DTCsn1vbxIEIB4NYfqSNZh++xpc98CLJst5mSe+cfu+AmG/sIURE8rvTlvA+nK4+Qzy+jrEIpqtkLgYdoUqi5u9iZdaxCml3HImt3HrG8gUFRLAOpZ2ssC+gYzpWibHsGt/v227/Dwi19OZ5X5YMo7zIvP1AruFmlBIAGXvupEQeWZ5qupwkhs5EjcHCNdJdnVb+2P3Pqku221EZBb+lr0JZBkDRWLDChIWCT8x208BsApAnd6u9wEsYIy9HFRjioEcj0R44d24fZ8RL90KIYAH+CSR44BYIccWEXINa6wS+boqFolcL0NeRrNqfTu6+1JIpnNGsC1ZaL9xezee2rwXoQB95AyWb6BDFX8iKBQb4wHgzzcoobVXYXVQzzWsEbIu7EEvIP1PkIJ2P0JnlSLLoYRVmWKoxBkaVGG7AGPsJcbYdADTAQh13kNKRAAej0TwBbOMYdPuXsRj+SN9WCNTzAQGfZdBULqNlyHikcQiGuKxMDZu7za5MBETYtX/b+/cg+Oo7nz//XX3TI/QeCRk2cIyENtY2LIh4VKAcy8u1itjQwhbyd5KNtlKgXNhi9pAynnUcq+TJZvkJpU4ofJyhWwuuXhxUlt5QHJvErIbCDYs185GsUkg+AHIWLCJXzIWlpBsjeZx7h+nT8/pnp53j+bh36dKpZ6entPn9OvX5/fU7BpBU9aujkjO+Exw09bblomuWAS2ZbqqNhW0+ODt1yDREQn1wW+F9XpYANW6X5Wo0wgngEqZOJcq+ca+IB4NTM8epudToWeN/w21lmtEbynIxuS3iZVzBQmE761VSXMquLcQK/rinmNYb5fyrO9gBFWsrEcX5rLccSW5trqI6KsAdgLYSURfIaKu+nWtPHrjNp7/zEZsGOxz815NzaRdg5PS16ubjciZFawfcFO3PxTgraVUUJtvHMD8ThsT51Lug37bzhFse3IEEcurGrtz7VI8/+mNnpsvI6Su+oaBBVjc3eGmr1f2l3jMcmNW1g8u9Aq3Mu6eoGulLB9yhH/xKoNjsQfbX10bSkG2iqn0psoKFCwgZRnkZgCu1wSv2DkM8+WilJE4zyZW4jBWWx+nmheMoPxf5ez/xETScwyzovyaPZWg1F5qT0Tymnrt9Nm8bWs9ozErv+xvqeuEDCO0AKZKVFs/BrAfMu07ICPW3yaE+K9hdaYarrnmGrFv3768eI+YZSCZycI2vaVGF8SjmM0IN727QE4lpseCeMrsOvPqNct6cODYJKZm0u6bp4pJidsmDo9NY/3gQk+ZUaV28MeI3P/4i0imstjgPKx2Hhpzy/UqHto9is89djC0Y9WIsqt+glQU1ZQoZYIxKdyodT/lqJjmUoU6m85WLMyDYnLK6XM1sTz68bIMQqdtBapNK1HdhcXxhz+K5ImRUN4nKxEkzwkhriq1bq5RguSh3aPY9uSIW1c9mZFeQ3pAUjHUiVQ2D0DOGqaSaUycS+W8N0h6WT3z8ikpqKx8e4C64PQLR9lB7li7VGYJ1gSRrg7RAxgBWdskrDoe1dzgBIRqpwnqkxDlFQ5iGCY8jj/8EZE8cTiUqVgljZwjorXqg+PBFWxZbhBTyTRmUlmkMsLV0Sr1g56+OQjb+V6lUFF2DAhnCk1S/z1xLoXh0XHYEdPdh/LiUqhHYqedU1spO8j23aMe9YDf20YPYFQFsorFblRCNcJAVPk7P4VUS2kna3A90L2Hmpm56GK56k6dVjh2xdD7r2e9bdS4FsSjebE9DaVBaeQ/BOABInqViF4F8E3InFtNwbYnR6RLG6QxyyTCir64q6csZAA2HJvJvTetdL25lCTYvnsUEzMpxB2BoEimMp556NRM2lVfLe7uwIbBPtceogukWMSQwY1Lezw2HECqnfzG/18dkgWyisVuFNP9qxxCc2l009H13pZZnatkLWTqkPiwVDRzofoxxSjWxbxiRAHblJOra7YCfZe6Nqs9dmG5fxei3E31/i9f2OnGlxl6NokKMKi2e+nNmTSS6UxeoK3/vii2j2aRQX4qcf06BODLAC4D0A1gAsC7ATQ8TQoATz2Sw2PTyAiBqWTOV7uwHzq5tgsgV7wIkF5YKrIdyLmFJtNZ3HD5AtdeMpNKwSTCmmU9GB4dx/CRcWy+ccBTjlepr2ZSWQyPjrtPj5hlYH7c9tSaB6Th3iRCusTberHZgh6BXw216rpPTCRdleFcuWLqdqAw3Fh741GPIFeHwzIInVELIPliofYZVD8mTIKaK5T8slq9e7HrLhYxMM+2ir7cVHPN5NVcQnDfTSIQVb4P9UxQ/askUFHvo9+vrRK7SZB9MijuQ4hgu6FBwLxY9a7p9aQSG8kvAZwB8DsA7pUrhPhKfbpWHktWXim6/vorshZIxMR0Mu2emKAHob6OCNgw2Ic1y+Z7BMj23aNY3Z/A8Og4Js+lZPxHR8TzwCDI6otRU3rwrOiLYyqZceNI1PdrlvZg+Mi4xw6i92Hjqj7XwK47DKwfXFi3GudzSSOMiEz98Dts1CuZpEmErCgd0+K/vjqjZqBgbbXrsNBLXKHxlYMq0KeeRcd3fBTJ4+EY2yuZkVwshLg5jJ2GyetTs4AjoW3L9Bz8dFbkXUAZTZU0P267QuTomXP4wi8OIW5bmJhJ4cTEjPsGYxJ5hAicNvU3g8Nj0/jkOwexbeeIK3wmzqUChYGewkVVWwTkDEilTvGnmq+WufKgKUQr3bxMafxv1fW6tMq1m/m3OpvKBAbEttp1WOieraU2j23Vr1xBJUrrXxPRlXXrSZX0OgYs103Xh346LIOwYZW0X9iRnPFbDy5UgYrrBxe6usuIRW7byhdc3xUBWD+40I0juU/LjaXvm0gKsA2r+lzjv55i5c61S/HJdw7m7b8W6ilE6m17UQbiWvdSaTfL3X6uTE9B+4lFjLL3r85TI/TrysBcL/zHQIh8NSoFbNcIYlZxh596omo1edRiIdYjqWRGshbAB4loFEASzmxRCPHWsDpTDb1xG/s+7a3hoeI8iBx9bzanG33t9DROTMxg+cJOxG3LjRsBcvYR9fltn31CVj5MZd2iVcqArtcW6e/uwJpl83H91l157an4EsskpFMCdsSUGYktEzOprDsjUZmGIeCxr6gxnZycqfvMopLpv0qnUU8qMRAXQ++mGqNfJaOrDJTrtvT4y6lX1ENAfS53+DJTbPWGf8NR8/gpt710VpSV9qUeaqo3zuZy3fmPnyJqUkXnWu9nsf4uiEcRtcyCNX2qTWdT7XFKprOwG5Q+KJ0VuKjL9oxXZNLJsNqv5JX3HQAGIDP+/gVy6eUbzkO7R3H91l0AgD1bhrD5Rulym7DzU4yohGWHx6Y9NURUZl5PJl/hXYzblmd7NXtQEfKue6/Ga+Nn3Wl6V0cEk+dS0o4ivCla9EzD254cccel7DVzIUQu90UXF3uLK5WyPUw2rOqryjgahOqzQeTJ7OpXGWQct2Th+201Y+60rZoe0EHFmEo9jPzeZclUaZVIPbyw9b7bESNip8ZIAAAgAElEQVTv+MUiRsUvDIWOpX+GfGpqFqv7E4FChAi4qMuuaL+l9l+KQk4ndSw148GffZrMSEdYbVeSa+u1oL+wOlItL554E9ueHPE8xF2XWyo8nQ/Kd+Nn843eOier+xNuri39Ia/+K8GgZitHz5xD0rlwkqmsJzMxCJ7Zyx1rl7oXVDKTwfVbd+H+x1/E0TPnStaKIBQep18YSG8jr640FjFw362rPF5uQHD0r59yXE/9bpNqqZJCVOsHFxb8rpw2/F1PZ4UMXi3A5X3xorVfKopR8R3HrlgEn7p1VeDx9K8Kesj4n2NB3cj6XoJ020Yp91KlUuyMmq4KVo/BqFalmUxl864X/4NV/77S2Jd0Vnjy6gEo7LAivBmhC6WLL4b/MJTbX1UrJmYZRRNzBvUp6Nj71ez+dYD0AotY3rUikwotDjCUzI+NJJXJehIwKhWRMngXykQ7lcy4wkBl29XTlKjvAHmx26bpFqL6wi8OIWISZtJZHNNSde/ZMuRReQHygaRcDyeTMkI+mclg4lxu5qH6cN87V7nR9EfPnPOoAopNp+2I4QosP/7fpLMCGe3t2zIItmVi+MhpTCXTKEZn1MKaZT2em7Mc458Q8LiTXqCpkYIeiv51Txw8WbwCXckeBB+7Ym/1r5yaLlr7pZCqSqmQiOBmPfCrT/w1bYr1s5xZQqUvyIVmt2qtmiFMz0rDtQBw1jlf82IR1x0eyD3YypkxC5S+XtT3RAisyVFKrVRuCiB/E9WouPxtlDOzcu2eArj35pUYPnI6UNgt8Lmd67/NcxcOWPb35LXxs26mcfe6J5r7XFvNSvziFeIbP/glAG9KE0Uhr6WNq/pcweB3NfzUrauwbecIJs6lXF25Py21/iahUqFclMivyaxcedW+Fnd3uH2MRQyk0lKF0tURcW02aiyz6UxZhaT8xCIG0pniBZKY+mAQELVKH/9Ge9Mx4VBKsNXLPToMjj5415nU+NELw2ir4YWpamXlRfNwp2ajcFOaOATdrCv64hg+Mu7OGjJCeFQI254ccUW60pVDwI2WV9Hr+j5UwRh9H8oTbPjIOCJWrhDW5vUD0h8/lXWj8ZXtRLexVCNEAKlCCDLO1ot6eW81gaNNxWQFkEqXFuJzLUQMmjtdfDNR/xTx9W2/nhjRC7pDayushhqNqjC4ZlkP4rZVNC31VDKT95QS0AQQwTXY6+7CKlp+z5YhPHj7NdjoGIGVcNH3OZXMuMZ4kFN/GzJu5M61Sz3TdmWENIk8hvtqESjvAi/3JivlhhyG91ZQV1r1Hi1mz2kUWQHYZuHz2Ap1Yqqh0Q/6oP1Xk/esLoTYjbYQJLqt48CxSRw9cw5TyUzezaFiOVb3J7BmaQ9MIrdAkUmEZDrjcfFV7d2xdqmbfFHPhbVm2Xxc1BXDX117KfZsGcLjH/szfOrWVejqyOmR9TxbXbGIa8fR3w5ty8Ti7g630qIqkFXoAV7L+dd/e+NgX1mziVIeQmHcq6qNMGc3nVEzNG+vSnjyUP0yEtQymtlM4fMYVCMjiEblbauFMO4X9cIYBkG2lKA+hnWo5+KUtYUg0V1v9drnfne3dFZmBT5wbBIHjk0iIwSilon+rg5ZACuV9bj46u0q92AAntrrujpKrUumM9KNd+eIm2crlRZufMj23aOuasMkwub1A3muyHHbKvgA31Cg4FI56JdwM6ZgCVPlMz2bwfrBhXMuTOr5FlxL03n5rLTDkiwiZHRUtohWEie1HDNVhiJiUV1r5gT1MazraC5mZW0hSHThod7ot+8eRU9nzlaiospVRUP11j81k8bq/gS6YhFPtUN/uwq/0FJt3PXdffj8Ywdx9Mw5VwAk0xm3WmNeSV5nf3odeP+Y9Aeg/lYxfGTcfTsKcuet5K2x2ge3Pj1vtpdUffzKE68a905FUEbfUll5qz0mnVHTdQ0NG7/7csLOpTS/IFK+A0858TT6+Ctx8w4DVV67XIqdq6yoPOloqXNfTt/KefeJWUbFJSY8122IAqbl3X8BeGYQ6r/uPgsACTuCzTfKVPDbnhxx76qJGVlfJB7zRrmrdoePnMYXfnEIw0dO48Hbr3GFlBIukzMpCCFTvqvzolxYVVS8ZchsqkfPnMNd393nJmn0z2TU/tXn5Qs73bcg3XY+MZNyYyDSWYG0z6WyWKLKSjCJPH3QUdPzrljEcRtuHouGPtaMENj14pjnBqr0eKhId/Ub4QYD5fC3lhXShXN8OlVRvZVkOltTPqVi6L1IZ4XH5TXsfeqHN4xZZpBbeCGCMuoWQ8/oHEZfSzVR1j5KbGKQdHWena7MIaczamF6ViW2DS9FSsu7/6oKiW/77BOu//7lC2XshoDX11/WdLfyyuSqlCqLuztc9ZXisk/8iyd5o14OV2XrBYpfhPpNYBLhlS/e4v52cbcMLlXLe7YMedqtlUr8/P3oLtKFaFZXYzd3GsMwHtTz6Ng/bc7MnnwllMlEW6i2gFwKCCFyaVD0Nw1Avp0mMxk3Wh2QKiTloXVHgIpJj4DXs/I+tHsUp6eTbvu6sPEb5S7vi7vTXaVuW92fgEmE1f2JPBWaX61ViHLUJ5W+nek8cfBkyYfxTCrbdEIEyM8eW2/1W7nNN5sasByqUaHMJa1wTGMRo6ixXrlnh+HRVejRoQrdmQHFtGqlLVRbAGBHzMCoVgLcuumAVB3ce9NKV/31+ccOIuF4agFylrG6P+F6a6m0ISp4ULl2bt896upNhZB/er13Pbr9tdNnQc57wPh0Cg/tHnXf9A8cm8SDt1+Tp1IDgM89drDomFs1EKoR1PtYlNt8K56TZDqLmSpjmgoRFLldLc12TIPuvZlUtqixXm0fRqLSQu9+UVPWklEvl2QYoUW2t4UgeWj3qCcQUY9stx3Jq1RPQgD3P/6i+71wttej4o9NnIMQkNl4IVVgekZeQM4olPpp+cJOnJhIuq+l23ePet6IZ9JZV020fGGnK2RU3EjQeLbvHg2sklYI/eJttmjbSnXPtRTvaXbCfIDOFZVeKvp1W+haa7VjUAnlXOqNyGxQbvqYamgL1ZZysVX10JXXS1dHRFYEO5fynDRlBAfgpodX8R6ADNxa3N3h5u8PykGlF6Q6MZlEPCZnPao0b1dHziPGMggP3n4NXvniLZhKZlwho2qYKFQW4207R9xYGH8th0ITX/2a1JeDPLjCun7LVSn0JWIV1aQ4O5uZc/fSuYiPWNEXx5szxfOZVYvq/lyrefy7i0UMTCUz2OgE8s6rwVuulSl1GqoRIrGIEe51GmI9krYwtn/o64943vL1vFiF3uotg2CZBNs0XW+u+3/5ImbSMrHZvTetBJBTUSnV1vKFnZhKZjw1DpS+MZnKwnTeNPRaKKo9VZ9E/c4yCH2JmKtK8+fg6umM1Pzm1gwqrq5YBG8mUw3vh04lXkAKzo9VGZVce+VuW8ksvVqqmTVWcz01muMPfxTJE+GU2m0LQbJv3768rLulIMiaFCqRIgCPp1RXRwTPf3oj7vruvkDPJZW0kUi6FgdlD1UXl6reqLzK/F1U62IRA/M7bdeLjKmesAWoutta+25pfViYV49fQIYpSOqq2iKi7UQ0RkT7tXU9RPQrIhpx/l/orCci2kZEh4noD0R0dSX7UoWmSqGSKdoRw2OnUEGCLs61+szLp9zEioB8QEmVmTx0Kj6lqyPiqQXQ1RHB5c6+1izr8ajNdI8JQi4Hkm2ansJcKwJqYrQT9Rxb2M8aO2LAbAX3oDpSSK0yl0ellYWIZVDDUswYBLzun2WF2JV620geBnCzb90WADuFEAMAdjqfgVwFxgEAdwH4x3J3oldIVIkU/QFoBCmRD49No6czgmQ6i5hluJHld65dijXLetwIeKXuUgYqdflmBTA1k8YNly9wk0SquiJKcGxY1YfN6wfcOiQHjk26RbLsiIkbBha4Lnp2xIAdMV2Dvh6c+Jb5nYEnuxLXvVLXSjnXkt8lUb8XYhEDG6tM2dIMj4Ribq36OGdSWVhznGyvnhHh/jQn5eynVB0TRSxiFHVfr6goWAmaOaOxX2hUK0TCGKKK0PcQ4g1YV0EihHgGwLhv9bsA7HCWdwB4t7b+u0LyGwDdRLSonP3oaUvWLJuPeMzK1YkmeQMkOqS9ISMETk3NQghZOEc3du88NJa3PqZ5falZhxIOe7YM4cCxSUzMpNw08hkhMDw67lGzre5PyPxZjkFe7cckWVRq4lwK8ZjlSYe/becInjh4MtCVL5UWZV+Upa6VUt/7S6Eu7u5A1EnxQABuGFjgxtaEharKF0TYWWpfLxIZ7H9u2pZZkdNArdSrnDEBuO/WVYEFkcLghoEF+OQ7B91z2BXzpnxJZ6uvX++nnHireqSbKQe/4FWut5VStxeuFpqRBNEnhDjuLJ8AoF5nFwP4o7bdn5x1eRDRXUS0j4j2nTp1yhPQp2qfA/Ii2zDY53pgKRbEo26Uuo5K8Kevv/emlVjc3YFP3DKI5z+9EffduioveLArllNrmUSA8AbEKQ8v1c/1gwvdbL/+rMJqG72/lhNApB6wGSHQaVtY3N2Bjav60NUR8QRZAvIaWdEXDyxxWwl6jqFYxMCeLUOwLel+nuiIuMkva0GfFcQsaScKalGmY6nOLbjQ2G3TyHvQxKzcGzUhl6Nt8/oBbF4/UFberlKCngDPTC5o83LPV8l9aV8TZNJPve5NzDJCVaOqUgnqXtl84wDsCnJ5VUJn1MqdK20AKpcdIGPM9HujnJcwdTwqmUToqu1CwquYerDQS1LM8s76TSJX8xK0/7JpJa8tIloC4DEhxBXO5zNCiG7t+zeEEBcS0WMAtgohdjvrdwL4H0KIfcXaV8Z2hSq1CwFP7Ic/n1XY6O0DcOu4q8DGSvdZqL/FxlHqN6v7ExgeHUcylYEdMbFmaQ+eGTmFZCqLy/viODGZRDKdgW2aWLOsB8Oj44AA1izr8Yyj2FhX9ycwfGQcIGDN0tzvABmXo7dfSZt6O+q7Z14+hWQmi8sXxjGVzLjj0/tc6LeqjyoQ1X++1LpC506/zvRjFXTNFTomQePWr11Pf7X2S/W32PErdT+o9XHbxMtjU7BNA2+ZfwEOj03nlaH2t1/seg/6zfDouPd6OzKOZCb/+gg6DqW+149TOcfnmZFTshStZeDem1eW1X99HJX0KegcB50b//EMyslX8HpxjiUgZ9L+e3H77lEMf/69f0xPnb407+KugkYIkpcArBNCHHdUV08LIVYQ0f9ylr/v365Y+35BwjAMw5SGiJ4VQlwTRluNUG39DMAmZ3kTgJ9q6293vLfeDmCilBBhGIZhGk+93X+/D+DfAawgoj8R0Z0AtgLYQEQjAG50PgPAvwA4AuAwgO8AuLuefWtXvnfwe9j46EZ87+D3Gt0VhmHOE9omIJGRbHx0I45PH8eizkV44j1PNLo7DMM0Ka2u2mLqyG2rbsOizkW4bdVtRbfjmQvDMGHBM5LzFJ65MMz5TZgzkrZIIz++YwfGvvo1iNlZRJcvR+o//gMimQQsC2SaINvGBddei7N798r1gLtu5tBBGJ1xzB4+DBgGjM5Od/38TZvQs2kTxnfswOkdOzyfTz3wLWTPngUyGcSHZFXFqV27QNEoOteu9bRL0SgWfvxjeW0BwOkdOxAbXIWze/e67UWXL0f65Elkp6cBx4UvSwQSAoIAw5H9Zm8vxKwMqFtwjzQpnXrgWwCAC669FtN79kDMzACmCaOzEwvuuRs9zn4HewYxdnYMgz2l08owDMMUo+VnJG9duFD8sGd+uI1qmRXJtuXDuthxUoFBxbaxLCkU6nS8ybZdIVlsG7VdMpOEAJC2CH3XD7lCh2wbkUsv9QhWXQAxDNMehDkjaXlBckVHh3jkLUtqa8QwgGyNQZ6WBaTrU2tCR6CGzAZBqYcBwDTdmU8QVv8iDOzaVe1eGYZpQtjYrkG2PTf76ewsvkEpIWKEc6jLESLU2QmYJqIDA7D6FyG+fr38PzQEI5FwZyZk2zASCcTXrQPFYvK3to3owIAUOqYJI5Fw1XAMwzBBtPyM5MpEQvyoPzAlV3NRSLVVaJZQK75ZFtm2a7sRsylkXn89911nJ8T0dO53QiA+NIRLHvimaw8SyaTHrqTsOmJ2FhSNuuovv/0ounw5stNTrjA69cC3PKpCsm1WnTFMA2DVlkZdbCTtSgkVln/bwQP7MTI0hPSx4571yGTy2lLqr7ztte8BFPyOVWcMM7ewaksjO1XfspvtAtk24uvWwepfBLO31/udrrYzDIAI8XXrAADzN21y1WFKDWb1L0J83Tq5PhbzqL/U9rAsgMhVr83ftCnXVizmUa2x6oxhWpuWn5FcEesQjyxZ0uhuNC1GIgEAHtWU3w16wT13Y/q3ezH19NOILluW5z6tttPdooGc67JSdanvpn+713WFVm7PDMM0F6za0gjFayssolFgtnChpIKE4TVWgDy34AD1ltW/COmTY6XVXs5vPWoqn6rL3xarrRimOeGARJ161NqsxJagU40QAYBsFmZvr8cAHhZ5sSUB40qfHMsdx2JCzVmfPn5CHiMg5yjg/E+Pncq1ZZrITk3jj/d82DNrcQ31ySRA5DHWMwzTerT+jOSCC8Qjl74l/Ibr5U11nlBs1lJoVsQzF4aZO3hGolOvh3292iUCIpG82YvZ24vMmTNzEtRYM6YJikQKHiOy7aJ2lKAZCRvcGaZ1aQNB0ugOVIgQgSowMTsbrhAxDFA0CopGXQM7AI/BXBnFYRggy8qLE9Ef+npesUse+GbZ3WB1FcO0P60vSOpgImkE2cnJkBvMAkJAJJM4u3evJ2BwevdunNz6JcSHhjB46GC4+2UY5ryj9W0kzeS11cyYJuLr1mHq6ac99gkjkYDV1yeTNDp2ofjQEDqvu9aTmbichJBsMGeY1oHdfzXqFkdiGKBIpOQDtBLM3l5k3nhDftCNzUGeUrW6BAc5C5TrjWaasPoWeg3lZcAGc4ZpHdjYXglVel9RJIKVzz+HQ6uvqM4V2Ed8/XoAyJsRAAjuX41xJRSN5qe/F0JGmy9fjtkjR9x+eHJtOdtlTo/LKPRoVLolE0nhpryuAO9yNgujM46RoSFvXi1f/Rc1uylmj/ELb/9sp1B9GP13+v4AFLQTAQisD6PXo1H7VLVedDXh2Ne+DpFMujnFjM44ZkdGAMhzXok9iWFaldafkdRLtUWEwUMHcWhwVTgeXIVqlhDJoMGZmdr3ETa6ECaCMW+etOVoy0Yigeybb9Y9GaVeS8UVTrEYKBqt3r6kz7Yc7zGPEHPGueCeu3F6xw43T1ipvGJ6+4MH9lfXN4apM5xrS6ceAYkAosuX46Xr1uTeuIPQU8NbVvFthcj/3jBgzJuHzuuv96R7VyndG44mCDzp+p31KlYkUGCE/IIiZmeRnZz0POhFMlmbk4I+MxTCrTapr8tOTrozFiORyMsrRrGYJ6dYdGDA/bnKV8Yw7U7rz0jqFZBYx7QlQag37gX33I03Hv2xqx5pZJ886OostUqPxi9S2KtQ1L7Z24vM6dPyg6N2UzMAID8GJahUsl8VJjIZT7niYqo118lAK7EcpApjJwKmHWFju0bdBEmjqDY9S6Mp1u8C3+WllmdVEMPMGaza0glDtUVUNxVZIMWqJTajEDEMqdryqeY86ee1Y2j29noqLrop523bTSGvVES6eohVQQzTmrT8jOTK7m7xo4sWFd6gBXNmUSxWkfE9OjAQrAoLqz+O2s01qquYlF27vMdWO9ZGIoELrr0W07t3Q8zOVhwRzzBMfWHVlgYHJDaIat2qbZtrlDBME8CqLQ1j3rzwG41Gy9t3IiG9dEyz7N+0DcXUc0UQySROfvl+jAwNYXzHjpA7xTBMI2j5gMTopZfCMMzQclW5ahzH+6cYSnWDMrZtO2oZbyaD9LHjOLn1S+6qsa9+jVVgDNOitLxq66qlS8X37SaJu2BKo0fIgz23GKZRsGpLw41DYGrC7O2VD3nLkn8KpcIyzZzXlpNy3kgk3CDK+Pr1+YGUyhPOsmAkEuj7xBYMHjqIvv9+rye4b/6mTdIrjD23GKYlaYsZyQ+6unNeTk3opZWXy2qusSwYF1zgBtllp6bc8r5idtaT+2p6zx43d1T65EkAHJDHMO0Iz0h8ePIjNZkQAdBYIQIA6TSyk5NuXRLroj4AQOaNN9y0I9nJSUw9/bQUyEJgdmQE2clJN0UIwzBMIVpekKRPnqxeeMxlEGK5KPVSHdDzRln9izyBgkYigfi6dZ7cUf7cUgzDMEG0vNcWsjXMQJpw9hIa0ai3pK9hwIjH3dTorKpiGCYsmk6QENHNAL4BwATwv4UQW4v/YC56NYcIEU7tdn8m22w2sKaHv/aGvr6c+h2qDkhQ/Q//b9zEi06dFL0miV5DnqJRLPz4x9z2AbiJHP11RwC4KeAL1Tvx1xXRa5kUWscwTPk0lbGdiEwALwPYAOBPAPYC+GshRMHC4m2XtLGeOLVPVC13tQ5C5NfY0BMtOsu6q26e2662XaHfBCZv1LZLnxwr6BYcuD8//va1tlXlRjW+UusYpt1pZ2P7dQAOCyGOCCFmAfwAwLuK/qIZ7RzNihAQMzOBzgnpY8dxaOVg7kGtP5Cd5fSx4+73+rLrMpzJ5NyFA34TGMSYyQBEchu9lnxnHOmxU7nNTo/D6IznfmeaUihq9iTzwgvzbD5W/yKPjUfZh0qtYximfJptRvIeADcLIf7G+XwbgDVCiA/7trsLwF0AYAFXrLBjdl5jBRAQ2elsdjJumN2FthlLp/8IAAss65KwxZRA+2nj0hCzJiga5riCjpO+Lg0x+1Iy+cIK277SAkXV9weTM8+G2A2GaWfeIoRYEEZDTWcjKQchxIMAHmx0PxiGYZjmU20dBXCJ9vliZx3DMAzTpDSbINkLYICIlhJRFMD7AfyswX1iGIZhitBUqi0hRJqIPgzgcUj33+1CiAMN7hbDMAxThKYytjMMwzCtR7OpthiGYZgWgwUJwzAMUxMsSBiGYZiaYEHCMAzD1AQLEoZhGKYmWJAwDMMwNcGChGEYhqkJFiQMwzBMTbAgYRiGYWqCBQnDMAxTEyxIGIZhmJpgQcIwDMPUBAsShmEYpiZYkDAMwzA10VT1SKqht7dXLFmypNHdYBiGaSmeffbZ18/rmu06S5Yswb59+xrdjbqyZMsvPJ9f3frOBvWEYZh2gYheC6utlhck5yO6YGGhwjBMo2FB0kaUO3PhGQ7DMGHCgqTF8QsFhmGYuYYFSRtTjQqM1WYMw1QKCxKGZzUMw9QECxKmIGxLYeYCngW3Pm0tSPgCbQyFjnsxwcTnqjbmUug36lzN5X75eqyMthYkrUzY6qYw2purm6tcgeMn7D6VO94w+tQMD65m6MP5QDvO9M8bQdKOJ6+RlCuYim3XjMKy2a6Laq/bamaF9aRa1/R6Uu99NZuzSz3He94IEoYph3rebK08Kwy7jVZy8JhLgTOX+w2TthMk9XzLreatopLfMcE0ww0VxswgbMKYFc5VH+Zyv80wA/PTDNdwPWk7QcIwc0G7PJzb8QHXLjOhVuK8FSRhG0ir2Y5nKgzDtAMtL0heODoxZ28Z/DbDMAyTT8sLklamWfS3DMMwtcAVEhmGYZia4BlJAM3oicIwDNOs8IyEYRiGqQkWJAzDMExNsCBhGIZhaoIFCcMwDFMTLEgYhmGYmmBBwjAMw9QECSEa3YeaIKI3AbzU6H7UkV4Arze6E3WkncfXzmMDeHytzgohxLwwGmqHOJKXhBDXNLoT9YKI9vH4WpN2HhvA42t1iGhfWG2xaothGIapCRYkDMMwTE20gyB5sNEdqDM8vtalnccG8PhandDG1/LGdoZhGKaxtMOMhGEYhmkgLEgYhmGYmmhpQUJENxPRS0R0mIi2NLo/1UBErxLRC0T0nHLHI6IeIvoVEY04/y901hMRbXPG+wciurqxvc+HiLYT0RgR7dfWVTweItrkbD9CRJsaMZYgCozvM0R01DmHzxHRLdp3n3DG9xIR3aStb7prl4guIaKniOggER0goo8469vi/BUZX7ucvxgR/ZaInnfG91ln/VIiGnb6+kMiijrrbefzYef7JVpbgeMuiBCiJf8AmABeAbAMQBTA8wBWNbpfVYzjVQC9vnVfBrDFWd4C4EvO8i0A/hUAAXg7gOFG9z9gPDcAuBrA/mrHA6AHwBHn/4XO8oWNHluR8X0GwN8FbLvKuS5tAEud69Vs1msXwCIAVzvL8wC87IyhLc5fkfG1y/kjAHFnOQJg2DkvPwLwfmf9twF8yFm+G8C3neX3A/hhsXEX23crz0iuA3BYCHFECDEL4AcA3tXgPoXFuwDscJZ3AHi3tv67QvIbAN1EtKgRHSyEEOIZAOO+1ZWO5yYAvxJCjAsh3gDwKwA317/3pSkwvkK8C8APhBBJIcQogMOQ121TXrtCiONCiN85y28COARgMdrk/BUZXyFa7fwJIcSU8zHi/AkAQwAeddb7z586r48CWE9EhMLjLkgrC5LFAP6off4Til8UzYoA8AQRPUtEdznr+oQQx53lEwD6nOVWHXOl42nFcX7YUe9sV6oftPD4HDXHf4J8q2278+cbH9Am54+ITCJ6DsAYpAB/BcAZIUTa2UTvqzsO5/sJAPNRxfhaWZC0C2uFEFcDeAeAe4joBv1LIeeabeOj3W7jcfhHAJcBuArAcQBfaWx3aoOI4gB+DOCjQohJ/bt2OH8B42ub8yeEyAghrgJwMeQsYuVc7LeVBclRAJdony921rUUQoijzv8xAP8H8uSfVCor5/+Ys3mrjrnS8bTUOIUQJ50bOAvgO8ipAVpufEQUgXzI/rMQ4ifO6rY5f0Hja6fzpxBCnAHwFID/DKlyVHkV9b6643C+7wJwGlWMr5UFyV4AA45HQhTSWPSzBvepIoiok4jmqWUAGwHshxyH8nTZBDv2E1YAAAShSURBVOCnzvLPANzueMu8HcCEpnJoZiodz+MANhLRhY6aYaOzrinx2an+EvIcAnJ873e8Y5YCGADwWzTptevoxx8CcEgI8VXtq7Y4f4XG10bnbwERdTvLHQA2QNqBngLwHmcz//lT5/U9AHY5M85C4y5Moz0NavmD9Bp5GVIP+PeN7k8V/V8G6R3xPIADagyQesqdAEYAPAmgR+S8Mh5wxvsCgGsaPYaAMX0fUj2QgtSt3lnNeADcAWnkOwzgvzV6XCXG9z2n/39wbsJF2vZ/74zvJQDvaOZrF8BaSLXVHwA85/zd0i7nr8j42uX8vRXA751x7AfwD876ZZCC4DCARwDYzvqY8/mw8/2yUuMu9McpUhiGYZiaaGXVFsMwDNMEsCBhGIZhaoIFCcMwDFMTLEgYhmGYmmBBwjAMw9QECxKm5SCibiK6W/vcT0SPFvtNjfu7Ss8I20iIqIOI/o2IzBrbuZKIHg6pW8x5DgsSphXphsxcCgAQQhwTQrynyPa1chVk3EAzcAeAnwghMrU0IoR4AcDFRHRpON1izmdYkDCtyFYAlzm1I+4noiXk1Achog8S0f8lWTfjVSL6MBF9nIh+T0S/IaIeZ7vLiOiXTrLM/0dEK5317yWi/U5Nh2ecyOX/CeB9zv7eR0TXEdG/O23+mohWVLjvp4noG057+4noOmf9n1GuJsbvVdYDHx+AE5lMROuc2clPiegIEW0log+QrEnxAhFdFjQmra2fQ0ZlM0xtNDoak//4r9I/AEvgrQfifgbwQchI3XkAFkBmNP1b57uvQSbqA2Sk9oCzvAYyPQQgI5wXO8vdWpvf1PaXAGA5yzcC+HGF+34awHec5Ru0vv8cwPXOclztQ9tvFMAJ7fM6AGcg62zYkPmQPut89xEAXy80Jmf5egA/b/T55L/W/1OJvBimnXhKyHoTbxLRBOQDGpAP1LeSzP76XwA8ItMvAZAPYgDYA+BhIvoRgJ8gmC4AO4hoADLlRqTcfWvbfR+Q9U2IKOHkSNoD4KtE9M+Q6qs/+fbbCyk4dPYKJ98aEb0C4Altf39eYkxjAPoLjJFhyoZVW0w7ktSWs9rnLAAL8ro/I4S4SvsbBAAhxN8CuA8y++mzRDQ/oP3PQQqMKwD8BWTOonL3rfDnJhJCiK0A/gZAB4A9St2mcc63r7L2V2RMMadNhqkJFiRMK/ImpPqoKoSsQTFKRO8F3Nrjb3OWLxNCDAsh/gHAKciHr39/Xcil1f5gld14n7O/tZBZcyecfb8ghPgSZIZZjyARstqgSUR+YVKUAmMCgMuRy3TLMFXDgoRpOYQQpyHf2PcT0f1VNvMBAHcSkcq8rEql3u8YqvcD+DVkZuanAKxSxnbIGuZfJKLfA1Wrh2ec338bMoMwAHzUGdMfILML/2vA756AzGJbCUFjAqTq6xeVd51hvHD2X4aZY4joaQB/J4TYV8VvrwbwMSHEbTX2wQbwb5AVOtOltmeYYvCMhGFaCCHE7wA8VWtAIoBLAWxhIcKEAc9IGIZhmJrgGQnDMAxTEyxIGIZhmJpgQcIwDMPUBAsShmEYpiZYkDAMwzA18f8BlFa3yZUmOT8AAAAASUVORK5CYII=n”, “text/plain”: [

“<Figure size 432x288 with 2 Axes>”

]

}, “metadata”: {

“needs_background”: “light”

}, “output_type”: “display_data”

}, {

“data”: {

“image/png”: “iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOx9fXxU1Zn/97kzk5mYIcGEEAQUQgV5UaEVjUjUVgRFbe3W12prW6ju1u7StW+iqxVbV7G2dcu2bBcLrXarrbXbX1tFRbHFQpX1pb5BBJRAFYS8IAkTMpN5Ob8/zj13zr1z7tvMnRBkvp/PJDP3nvd77nnOeV6JMYYKKqigggoqKBbaoW5ABRVUUEEFhzcqhKSCCiqooIKSUCEkFVRQQQUVlIQKIamgggoqqKAkVAhJBRVUUEEFJaFCSCqooIIKKigJFUJSQQVDCET0ZyL64qFuRwUV+EGFkFRwxICIniCibyuuX0xEe4goTEQfI6I/EVEPEe1wKW88ETEiWm25/j9EtCTY1ldQwdBFhZBUcCThfgCfISKyXP8sgF8yxjIA+gCsAvANH+W2ENEZAbWxggoOO1QISQVHEv4fgAYAZ4oLRHQ0gIsAPAAAjLH/Y4z9AsB2H+V+F8C/290komuJ6C0i2kdEfyCi0dK9uUT0pn4C+hEAsuRdQERtRPQ+ET1JROP060RE9xJRBxH1EtHrRHSijzZXUEFgqBCSCo4YMMb6ATwM4Brp8uUA3mSMvVpC0csBTCKic603iOgcAHfp9RwDYCeAX+n3RgD4XwC3ABgB4G0As6W8FwO4GcCnADQC+AuAh/Tb8wCcBWASgDq9/O4S+lBBBUWjQkgqONJwP4BLiSim/75Gv1YK+sFPJHco7l0NYBVj7GXGWArATQBmEdF4ABcA2MQYe4QxlgbwHwD2SHn/CcBdjLE2ne12J4AZ+qkkDWAYgMkASE/zXon9qKCColAhJBUcUWCMrQfQBeCTRPQhAKcBeDCAon8KoImIPm65Phr8FCLqT4CfHMbo996R7jH5N4BxAH5IRPuJaD+AfeCsrzGMsWcA/AjAjwF0ENEKIqoNoB8VVOAbFUJSwZGIB8BPIp8B8CRjbG+pBTLGBgDcDuA7MMs5doMTBAAAEdWAy2l2AXgPwLHSPZJ/gxOVf2SMDZc+1Yyxv+p1LmOMnQJgKjiLy4+CQAUVBIYKIangSMQDAM4FcC0sbC0i0nS2V4T/pBgRVXks9xcAYgDOl649BOALRDSDiKLg7KmNjLEdAB4DMI2IPkVEYQCLAIyS8v4EwE1ENE1vWx0RXaZ/P5WIWogoAq5plgSQ8z4EFVQQHCqEpIIjDvoi/lcANQD+YLl9FrjMYzWA4/TvazyWmwXwLQD10rWnAdwK4LfgJ5APAbhSv9cF4DIAS8HZXRMBbJDy/g7A3QB+RUS9AN4AMF+/XQvgPgDvg7POugHc46WdFVQQNKgS2KqCCiqooIJSUDmRVFBBBRVUUBIGhZAQUYiI/kZEj+q/m4loo26k9WvBgyaiqP77Lf3++MFoXwUVVFBBBcVjsE4kXwHQJv2+G8C9jLHjwXm8C/XrCwG8r1+/V09XQQUVVFDBEEbZCQkRjQVwIbievVBxPAfAI3qS+wF8Uv9+MfJaNI8AmKPwi1RBBRVUUMEQQngQ6vgPAN8Et8IFuA79ft1SFwDeBTfOgv7/HQBgjGWIqEdP3yUXSETXAbgOAGpqak6ZPHlyWTtwWKCvE0h0APGR/Lf4XtPoPZ9Iq7omY187kOwBYnVAfbO3MotJUyoGo46hiMOh30OtjcW+P17KGwr9Awra9NJLL3UxxgJpXFkJCRFdBKCDMfYSEX00qHIZYysArACAmTNnshdffDGoog8/PLcceH45kAKQrALqhgGpA/x7DMDiF/NpTr8emHW9Of+9JwI9+3m+G/RxXDrOnN+K2+sBVgMQA26z3H9uObDmFoBVmcu0QlWvUzuLgaqOQwVV36zXgup/0P0O+rlY58jpC4Irv9i2ymMGFDd+ct3r7nZ+h0qBXA/g3F857fPLTf0iop2FGYpDuVlbswF8Qo/r8CtwltYPAQzXDbAAYCy4lS/0/8cCgH6/DhVHdHk8t5xP+OeW57+vuxvo0b1qxIZzIpJJmfOJNOvuzpezdBz/jDoZqDs2PymfW85PG6o6BUackP9vvf/8coBlAQrly1SVdfr15npV7bTLa9cuK0adzNsx6mT7NEHCqU3PL+d9e17x7J5fXpimlLqD7ncp7bIrT54jTuX7fe7FtlWej9a56WWulVK3XMdDV7nXJepZc0vhHHJqk+qdCwhlJSSMsZsYY2MZY+PBjbCeYYxdDeBPAC7Vk30OwO/173/Qf0O//wyrGLrkIU8K8R3gk+PsG4HoMCC5HwhH89fsyknu5589rwE3vJHfzTy/HADjL/nZN6pfjoED+f/W+2KyzrujcIckp511vbleP31X/VZh5wa+YO3cYJ8mSDi1SX6Jrc9OvNh+X3R5gZPr3vMa7/ee14LpV9ALkHWO2JUvTi5+nnuxbZXno3VuqjYBqoVervvsG53fQbmP8qZi6xPu8/r06/n7ybL8t1N/T78+v8EE/L1zPnCo7EhuBPBVInoLXAayUr++EkCDfv2rABYfovYNTah2TWffmJ8cqmtA4aQWkys2vHACennJ5clpPdE4EQi3l9zp5bPm9bNgZJLedpSlwukkII+L3XMqhbg67ahLhd92+S1P/AbUp1sQn2t2J9mg22olFqpNgGqh91u3TCgBXsek8/Pvlt18nXU9fz9Vc0iVVmwwgzpRKnDYW7Yf8TISK7zwiIPged97In8B6o7NLwKllF8OGYIhPzrAXyRVW73UvWM93ylOOh/4tIOjYDEmseH5a2ff6O05APZ8b7t+lzrO1nr8lun1+Tx0lfv4GXKTbP45qZ6fWMylOtLpNN7d+AckQzVApAaoGeFtLOzQuxvIZQDS+Cc6jH8AoK8LSPcDkWrnenreBViO568b65wGAKqP5nWkDgD9+wEwQAsDtaML86UO5NnPsTr+X/4t2qoj1r8HY/96MyKnfNb0XIjoJcbYTJfR8IQKIfmgwWmBt6ahEN/ZAMEs/H7a4KXd1mteylUtlKNO5mweu/651d27O8/Tv22f+5iIhQ/w9hzqdIe/qu9O/XZ6Bnb37Oq0G3M/z9munbfX24+fdczEnLQjmOJEINXR3t6OYekuNNSEQETA6A+rx9uKRAfXZKppzGtryddzWd7uUBXQNI3f27sJyA6Yr6nKeu+1fJ+PsZFVqdKI8gGgdoy5XQJympDuT1T+LbWLMYbu7m4cOHAAzc1mDcsgCUnFRcpQh1dBn4DT0V+UNepkAMQn8bq7/Qk7BeyO8c/pi0JsOK/HqwBRZpepWAryb1GuSgAr90XwnXducD7+q1hSct2Tzuf3J52vzm/FuNn2rENrn1XsKFW/5bGxE9YLqGQLbnVa74sxXnu7vQKEV3ajavzslEUsu2kAaragVEcymURDfT0nItE6+/EG+IK/d1N+4c8OAL27+KKe6DCnrYrzhVlW361pLLwG5Mvq68znFf/lOsX3bj2SM4WAYaPy10lfkqN1aiIi2kAh/qlpLPwt9ZP2taMhswfJng51WQGhciIZ6pDZJdFhpbE35B2j2AHGhueF6kGcLlQ7XiEYdCvDa11OO2GZ9bHu7nwfFztoOhZzgipnOW5lA85zwnriLIZ9KcoAAWDuY1hs+XIfvD4vC9ra2jBlyhRvieUTRU0jJyICYjdvd+pwgvVEIpcBFH63q9N6vVhYymt7Zx+mtMwxJQnyRBJasmRJEOUcMqxYsWLJddddd6ibUT7sWA90v8UFxqleoGtrnh/9yBeAt58B+jry193QtTW/m9u3HfjQOcD8pTzvsafmy92xHnj6NqBqGNC/j++yT7rEW5tFHWNP5d/HzebtH3UyLxPgdQH5+gCutrxvu7e6RB2iHPFbaN0ceyoQivLrY0/N1/vuC/n6RF5VecVgx/p8+xN78/XY1ekX1nFtvQG47Ge8/F9eCqz/D+CdF/h8CceAOd/yR0TkZyHqGN/Kn13rDea2y2mL7ZPch2NP5e3PJHnbW29Q12GdnwC6aAQaSWclVtW415tJ5Rd8CgGpBL/OcsDAQbP6PBEw0Ae8v8O5/KoaXp64n0oA2RQ/kVQfna+zqoZ/D0W4HKYqDhx1dD59OMZPJSJtKcjo9YOhq5/Q2P5709it2NCV/drNt91bWiUclRPJUIexM4R5h+l2UpGhOrXY7Z7l3azg33o5TRRbpxvPPgiUUocfgb9XmUcx8FIvUPzzksvxMqfKcfqy9tFpvkj9bDvjh5hybH3xu3jraUCG9UThtXy3U431fjGnIAE7WY90r+29Pkz50wLT2E3/SWLg1T3ZqL/K1KjISIY6ZFXdSefnddkFX3+YQqvDCtmAyU7+ICDKPWoE/z/ihOJUSVVGkEJ2ouLJ2/Hs/cqIVJD5/lb5jSxzcDMkVP221qNSi3ayk/DaNy/1ijlSrOqvaCfgbMtg9yzl+8U8M6vcTTVuYn7K8zI6jF/LZQvlHF4gZAwgABr/Hq3ji3q4mperkD/IdcXj8YIyl/zgPnzvp78BAHz+859Hc3MzZsyYgRkzZmDZql/zdOHqfBtUshdFXQWwymdUcqDUgfx46nOks6/0ENMClRPJ4YRi5Q8q1Ur5nmoXWMrOFtDdrEj87mJ3sKXsfJ12uIC3E4NfFWQ/7fWTNmg3JaXU5dbuoE8rLlpbbW1tmFKfK35HL6A6FXi8Fo/HkUgkTMUtWbIE8XgcX//61/H5z38eF110ES699NLCMmoagQN7+PVho8ynCi8nFSf5TE1j/kQy4zRTtorW1pEK1e7d6w40Oky9g1RZpseGcx6um9aRE2TjQrcdrBP8GNep3LWorO7dtKRk2BnP2S3mftrrJ62q3iBOa17rkuHWbj/98gIvbj7sdvR+oCrD67VS6urr5Js2lgX6OrFmzRrMmjULH/nIR3DZP92ERDKDnd1JTJw4EV1dXcjlcjjzzDOxZg2PAH33j3+Gk869EtNnz8XixYvzJ6xcltfVNE2tDRckGGOH9eeUU05hReGvP2bsB9P4/8MZ1n6I3w9+On/9ruMYu62W/7fmves4/pHzLzmap//BtGDaaFe/W1/srsnX5X7+YJq53T86nf/+0enFtVtVh/W+dfxKhZ95aR3XoOe0U3kPfprPkwc/7T2P3fMVY/ij0/2XyRjbvHmzv34d2Mt+unoDO+Pfn2A/Xb2Bsa63GdvzBmMH9vorR0JNTU1BHbd97UvsnjtuY+zAXva5yy9m48cdy6ZPn86mT5/OXnv+T7zOrrcZ2/0qY7v+xtjuV1ln+2Z25plnskQiwRhjbOnSpez2229njDF23333sUsvvZR997vfZddddx1jjLHVq1ezWbNmsb6+PsYYY93d3bz+3a8ytutl/p8xtvlvGwvGEMCLLKB1+Mg9kQTtiG4woHLsZsfD3/KYe/+Ez63oMLNfIatbisHAc8uBJ28ulKvY2UOIfsq+iay71a4t5v+iTL9yCbuxlH2WqWw5/JwW3GxDvCDoOe1U3tYn+DzZ+kT+mtPzsitPHsPOzYVlekHqgLscQUZfJ1a93ItdvRmserkXSPWYZQyAvWwi0cFtTlR2J5Y6wLLAQEL/nsM9t9yAV155Ba+88gpOGt+oyy56dKPHCHDMyXj+hZewedPrmD2rBTNmzMD9P1uFnW++AiQ68MUvfhG9vb34yU9+gu9973sAgKeffhpf+MIXcNRRRwEA6uvr7ceojOvdkUtIgj5+lxvySyovnkL4WDUsb2xIIT2TTgzGzTazmVQeeMX1Kl1wGY7yl1sW0MttsS6STgvnuNm8zHGz82mF92GZDQWLvE4QNeElVuXhVigFjDq5kCWjMoTzutgKdhykuGpWH1qykNvaPrd67NhwgPd5qfKhZjXYlOvx42FW7p+8oRBljDiBj02oqtA3lsrzs137RB3hGKBFeJmTzjfPETfimjpQSAjskOgAclks+PAwjKkNY8FHarlg3SqsP7Anb6zYvd0svJbYULYQ7KWqeJ4FlsvkDRFlAT+FuNB97yawg/sw98wWvPLUr/HKK69g87r/xcrv3Qr0deLgwYN49913eTcs8pgCAicMIkMR3vZQlbsPrxJw5BKSoB3RlQvixV17e/6kIMtFhIfbzs15K27h0C1WV+jhV17g5DEQ17u28PLCsbzAfd3dzrIHu2sCVm+0qp28sLYPxwqdSwr+rlyHKPNgl9rT7XN6mnl3mP07ed1AiDYCMIjJzg3mcZh1PVckWLyzcGzd6rGT37g54ZNhJ7/Z81q+bLke1SnOrXyrwz9RxsAB7kMq01/YBzsjSFX7xBjWNAK5NC/z0w+a50gmld8sqDYs0WHeZRY6IVh4ynBsuPk8LJx/BtAwAdBCeeKQ6Mh71gXMJxaVFbkK8ZH8E42bheepnvx9LQSA5U8u2QGcfsrJ2PDiq3hrDycUfTgKW3fsBmoaceONN+Lqq6/Gt7/9bVx77bUAgLlz5+JnP/sZDnb+HWBZ7Nu3j7cz08/rySR527MDZXXeeOQSksMF4sXNJPnvcJS/aHaLTSaZf2HFjlV2VWIn9LYK78++MU+QAHuhtTW/3U5U3g1Zd/KATggYfznlhVGe/PLpS/TDTtnAjrB53UCcfr2+Y2ScIMvjYCWsqjHwIrCWx0S4/xDq3V5gdwp0UyrwoyLs5AbFes+pz3YnYbvxkOdIOJrfLKiea3QYFyjbuRSRIQu5ZfaVVfhtlzc+kmtWaSHTrYMHD2Ls2LHG5wc/+EH+pokFJp1wZUKkO29sPOY4/PyBX+LTX/xnnHzyyZg192K82ZXFupfa8MILLxjEpKqqCj/7rx/i/A8fi0+cdw5mzr8aM+Z+Gt/77//Ju00JVeXVmIVdUJm4MBX136EOwSbp6+K7DKFOK65XDeOnCNL4jk7lXsJJpdeLWqmbx1i3tstqm+KEYXWkaKdmK6cTLjSE2w6nfvjtl5PX3xEnAAd2562uAUdvtK4wnmknL7NYFWk/HphV4+nUXj/qxnZp5TqFTMWrE0v5uQqZmTipWupqa2vDlGMb7I3y7GCnWtu9nZ8conX8RGEt16/xoJMjRicHkTKsKr6Jjrx7Fw/taGtrw5T9fzKNXUX990iC2OXN+ZaZH25lRVXVmO/LcNqJqqISWne6KhaYl+OxitUDqNkr1t2syKsKSiUCd8n9sLbLy8nDjUUn2GddW3QWS5ITQXHSO90yHl5lEMYp0xLJ0u+O0Sm9nRKGV7aWHxmPXVq5TifZiVN/rAohds/VapSnglWAbqfGO5DI/4+PLDzt+FX/ldlh1naI8oeNci7T2j+5n17bEbQyhoQKITlcYGf1K7Oi3BbO8a3qAEIAj2fgJAMRKNZOwspuG3GCWUnAjj0D5Nsi8s65rbCvKsGwn/aprsljLLPiVN5oR52cV4bYstreY65cxwkXmIm/X7mdNb1KGUEoCHhha8mE0M1yXdbOspsT1jqdHEjanWqsZdux87ws7tbFWCzigFpDi2XN1wQBALyz0kQ9sgxGb0fLWedyS/eTT8SM08/CjLlX4PV2G2Nza//EbztX8yqtswpryx4feNZWEHDzlius3kuJT1Jsm9ws6P2wWIq1qHaqw2v9cn9CVWY25GChVL9lXp9JEN6Fndru00O0Z++/dj6prKwqO7ZRUP6wAHtL9FI8/sqwlKkaowprqwJ/cBKYArpWlB6fxKrNVe42uQl+/bSl2B2X0wnMKztAnAAmnV/IhhwsOAnC/eR3eyZu2lmltj2IdCqo2FRA4W4/PpLv9IO0aJfrtrYjCEt5K8pRpgMqhORwgfVIb3fEV9loCOxYz/MAZplHcn9eM8nuBS3WwE6VXt7lO2mg+Sm3FF9UTouT1U7HzsmjrOJcLkLs5xmINgD+84xv9ZZOdXpTzdGHrrKfk3KZXrTWVHX7NUi0QkVg7IiOV8gBrNzaVmpdTmUCvP7UgeDKVqBCSA4X2AlPVQJOq42GVdAqq68K2QLgvAj7FdQFscv3U67quteF12nhlwXuKtsMgTLynw24jZub8kBQ9XjNJ887Ow8AMlSKHzLsnqcfg8RS4EWgb02rspoX8OLZt1QIw0oR071MqBCSwwVW4an826qjLwTDwn5EuDQXLAvAbBDmxVApSI0it7KcTh2pA1wF1ypUt9P48WrF7lSf1V5FVddgsgPdWE6nX5/vk+zOPqh6nPJZbUFUygrFwu55+jFI9ArViUKwi3QrdEcCYLXjULXNjTANBqEJCOFD3YAKPOC55XkVSmFdnTqQZ6XIlsKCnfH8cp5WWGfLAsyHruLlVQ3j7AZhy+D0kgvVS69wSi+r+Mq/BcSCseaWwvTJ/ZyAZpJ5QijbGsgYdTLQuzvPlrI7cckL1CwLIRL2IrJ1vLXNdjYaxbDb3OxhZA0t2b5iluW+HOyqVFfudvY21vqB/LwUc9GrDcqok3V1aDK70pHrFc/T6qomOgxo8hhqV4ad8F0Wtgv7j77OPPtJCLL7Oo18JjfyerlLfvhzxOubuBv5q6/Eur+sR93w4YAWxoIFC7BowZVmAbye94KLL8WD96/E8MhAQT0CH/3oR/G9730PM2fONOUt6E9VnJ+KhP2TNK7HxCkwXlrlRHI44Pnlea0qoNAnk3UHKRZGOY0Mwa7pbDPbRwxGnAsvvqhOvz6vOaRiH1mFwSp2ntxPmS2lgpv6qtsu2s5GIwi2kh8WZjFtL7YNwjjUykL1Yi+iqmvLat2tBzO70pHrtbraKRV2JwIRG0SGH6G7KHegL38tk8Q9t3zF8KG1aNEi27yrf/FDTkT8CsxV/RE2McIzBmCMa2MNNXkr2B0VQnI4QNaSkR31iR2fnY2JnW2JuG/sUsjsSK9ckBcGp4Vu1vV59ywq9pFVQC+z81Q2IcJmxbqTtZZrHSc/7lRUBK4UzSm7MmSWlRO7yK3tTvIjtzaYQIXp/GhzqeaiXb1By6FcF2rdnUm0zp8gXpQrx1wPxwAtbK5LLPy9u0xGkuNbLkJXv4YdXQcx5aOX4tob/g3Tpk3DvHnz0N/fb2T/zW9+g9NOOw2TJk3CX/7yF3McEid2mD6OQUZIPOTxREr9FB2P5HCBW4wOOWaG39gYcjlyLA9VjJMg4m74iTcSJKxxSgYD5epXUH0ptRynOVFM373MDZtylfFIDux1jjHi1MYDe3kcj92veo5RUhCPhDF22223sXvuuYcxxtjnPvc5Nn78+Hw8ktde42Xvepl/9rxh5Bs3bhzr7Oxk7e3tLBQKsb89/QhjXW+zyz5+HvvF8u8ztucNdnbrGeyrX/0qY4yxxx57jM2ZM4dn3vOGuTx9HDa/8GwlHskRC6sFsYDY2a+722xN7UUzRoZQuVx3N/flJXa3VpaCio1RDFS7ZCf2jx91Vz87bGse4dLE6trEr8qzjFIF/XbwsitXqeFa1W9L3d07KWkUo0HnNjfs3gU7CG0lFZvKro2A5Co+x9lovbv9CbwdBOT33HNPPh7JSSep7VUSHUA2DSQ4e6r5uDGYMWUCkOrBKSedgB3tbxvefD/1qU8BiQ6cclwNvw6obWKapvE8lXgkRyjseM5iEQDy98PR/H2hNeNmyyECKSX3c/60kJPYLjIUHFvB2hdVuX5kDE5p7dg8VtlGEDIOL/1StcHOo7DXvqjKlPth3Qh49dTrBKsmoYBfDTovXoyLkb84we75CHaTERuH+Yt10rvLnyqyzCbr3q4L+RlwsBsAEK2K6Ak1hEIaMtkM/xmqQjQaBfo6EUIWmYEBZ/ct0WFlVU+vEJKhDJnnDBS+bCJg1bw7uP8pwWtO7ufRBtfebq+XL+4NJAp57dZFZtxs8FghOrEqZaduhdOC5mfXXIo8QshQ5CBZhqpxdXHBgOR+ORmJypsCoalW6riq1HC9qN/KmwsvbbEKv0V+0Ybnl+dPeSJgmiqmiB2RUfk08yp/EU4Qq+LqE4LdvCtwv64IemUHlSPFVILXn06q88hISbYeuSznEpC+REeH5dsSrePE6uA+Xo9WxdM4EbDosLKqp1fUf4cyVOqc4mVTqXbOuj6vzgtW6F1WhriXy+RjFdhNMhErRKjcivqt6rJBw4/KsTWtF9VbkefeEwuDZO15TVI17i+tr+JEIL7L5Yg2CNaN7KamWAiPBbJKuJfyRJ7YcLPWnF1eQSys2oLyHOndnT9JqNTVZYv2INXP4yNtVXU95ZPhoYyDBw9i7EfmcpYYafjq177Ob+gBq0xaUwJWdd1onURMspxQCF+ImX49SBby2m397/N8IzXuFHIQXaJYUSEkQx1iQZR3dONb7V+8s2/kp41MCmicwiPZyRo/It8JF3BWTqjK/FKrFmAhRxHfgbzuv8o+o1h3JV7yebVpkFlGKnsHuSzZyFPYgQA8XyYJhIfZ99WufXJZo07OE36xI7f2QbaVKYb9YK1X9vrrFSrCoJo7drY7sp2HmKNye8T/nRsKT8Be7U3cxt+6OItAVU4LrMr+Qr5mV4ZIE65G7r3X1bFQ9DQ/X7mi8N6BPZy4CjlOph+oHYMdr6wHUj0YEa3DGy9uMOr++te/bpT559/db7RnxIgR2LHz787jV2ZUvP8OdSwdZx/MyQ52nlStXn8Fgerawtk7Awc4O0TsxN3YCHaBiMTO2m8ALS8eYFVpZOM7cV0YXYIZ0eccx0NVnxh7EYxL1Vcr0RAETPagC5jbJ3779VLsBKvnXtFmv8RchpVYyGMh5gmg9irt9fnJYyhiz1gJviqfBJNnWydPul69/9pds+aXA1YBhXXa1Sfw3mtm+zDxXQsF5w1Yb0Pbe32YMuM0062K998jEVrYOW611U2Km4GdWPBEYCxhtAeojQFVsBOqqoSiboJr2R2J0y5aVaeQAciuUwT/XhARkc6tLC+CX2ufZCG9bFMi5BRWm4+g7SHk9qnc4BQLWUgPFBJFq9zFS7+saeQxDMLA0sk2xE6TS5VHdU0I4g/s4UQkXO3sBsXFBUrLJz6PGfM+jRnnXYUZ516OGXOvxOtt2+zDARcDw+dXeZ02Vk4kQx1ixyZ2gHY7Wr+xOFSsEJmtUwxrSi7XL7ur2IhPiPUAACAASURBVFgidmVYT1yTzjezBL2cimRWj512k/VEIqcLok/FwisryCmdimVYipdlp/rdTiQO8ByPRD4BHGNjnOoEr2FxRVpBsIaNUrPM5FOKn9NSEW0u94mkIiMZ6pCFsVb+teyUUd7Nu/lr8rp4eIGqXcXITORF22mBdirLuvDbsUfcBMjr7ubjuWO9c9/dePtehMhWBLVQu/kzs25Q7GRk5VSmsJuX5cKwUWZZhxvryQohiLcGqVJByD8oZC5bFTJX1K9qgxcZzxBAWU8kRBQD8CyAKDjReoQxdhsRNQP4FYAGAC8B+CxjbICIogAeAHAKgG4AVzDGdjjV8YE/kahgXQSsEe3EgincwwvWRLgaqBlhPt1YF19Z3mAX4U9e6IUzScHGUclGVDITa1nyYiJHbLTmk+UWZ9/ofCJQtdcpnYBV3iDGbs63vC2sXgi3HQEWrB43WYwdYZDvOZ2IxL1wNV/YJp3PXc+4naLksZl0vr/2WCE/y8U7C397hKcTiZVoyI4ZnU4oboJ4OwK0+1UAOQAaMHp6Pp98ShFEJcjIiFbop7C2v3dhyulzTbcOJxlJCsA5jLHpAGYAOJ+ITgdwN4B7GWPHA3gfwEI9/UIA7+vX79XTHdlQ8ezFYgMU+niSZQ1AnogAXANJJhKpA3mbgbW3A7fXAxlJeGgHkWfLarWwUJyUHroqTxRAakNJawwKWcbiFqlPJaOwjplsEb31CftFTx5jWd5gjF2/992yLA9y807w/HLzdydZzJbH7OUea7+tP8dv5685yRXEvXDUbAviJos4/fo8gZXb89BVfP48dFVh/7xCqMhaVWWtHgjcjG1VUJ0EBFhOLYeQDQx7d+VdygtZi5PRIZH5v6hTbEx0ba+yq+yKgwLLldWPXlkJie7SRXc/iYj+YQDOAfCIfv1+AJ/Uv1+s/4Z+fw6R/CSOQKheSPGyC6eMshNDISCNDuP3hRA6Npyr/Ip8wr0FwK9lUnyS9+l+3CjkHio2HC10JjnvjrydgDitUIhHYBQsFKdFRjY8U0VPHDeblzdudqGAWWXPIAgTYK9AYF34xYL+6QeBxqk8jRbxzqKSDQLX3e3snUAWvo86Wb2LF4s3YG/ZrVqEnYw9xT3x3GRVXNmQ0rpYz7qePxtre8Sz3vpEYf/sIOoeN1uyf4LZ5Tmg3jD4JVRWh4biN4W40Z+KMFh/iyBV4nlKBCAUCmHGiZNx4tTJuOyyy3AwVIuPXfaPeHJjW15gHq7Gf6z8Nb60+A7dtqQ/+MiIVsjLpx+WtU+UXUZCRCFw9tXxAH4M4G0A+xljuq0/3gUwRv8+BsA7AMAYyxBRDzj7q6vY+leub8eyp7cBBCyaMxELW5sL7q9a344Frc0F9/yk81qONS0Ax3zPN12B8T33Y13441i29Bk9z3x092zBZ578Pv7e3o1Nx30Gq9a3Y9roWlzRMwpns11Y1zMKO7LzsXDx9aZ6l23Zhise/yO+rO1DLDwMUV2wuePHn8SxnevwXmQctPQB/A+7CG9tOw0b16xBKpNFNBTCzQ1/wpndD+ON7PGYpu3AH8MXo7cni6uf+D7uZxfggdw9WPDkE/hKuAfRcDUyuRwOshger/8c9vQksTD2ON5ougLPbu3C1exR/LJnDsY1HIUzkw/j5wcvwK+XrMGic+cDp87HsjXb0PfH1cjmGCY1xbGnJ4Urcn/EN+lxhCmH3Vs2Ykn6q9iUmoxp6VpsSvViQbaZH20ldt3z7d0Y33M/ko0nYsSBN7Gyby7i69uxcXs31rZ1YM6UkVggjfH8J+9ALfqQWnsnzlk3GU/ifcQBzoqYdT1Wrm9H4s/LsDD8OOJnL8LK7HzFs5yPhdHlBnsxETsGKzPzEc/OB/RnP230adiUmozPrnsUF/X/Hpty43Fuz+MIIYfEumX4dXY+lq3dBjBg0bnzMW1iN8ZvvR87Jn4Op88yP9NV69vxy8aPYnzXs8Yp6roHXsRTm/ciGtFw1sRGbNrda8wx+d43zpuPhTfwfq3S55eYh4l1yxBPvme0R/Rz4/bTMHbgKiwMP45fgs+Tq2kmWtkLWE8z8db6dixsvR4rs/w5plY/jmgohJYJ9djYvg9gQMuEemzaPRnTRv8c395yJUaBb2qy0PDCcV/EJv29TWWzWBCag+tjT6Jr2GTEOt/AjqYrcHpzAxLrlmFl31yckcwY44FEB7IHOtDF6tBfVY9kOouGeBSNw0aaTiWdRx2PbsQQi4QQTXWjAT3Yn6vFvvd6EYuEkExnMbbqaByV7QTf+2rQonGwVA8IQIYR3joQQwPjhr3VsSheWfMQ0gjjskV3YMmPf4mzL74av3j4f3HeaZOM5v3qsT9jyb99E2mEkaMoons3ATWN6GR16DjACenIYTE0DuNeJDoPpNCdSOl9iBq/R2q9GJZ9HwdCR6MjV4uGOE9vLSNRNQI1qeCc/Nph0LS2iGg4gN8BuBXAz3X2FYjoWACPM8ZOJKI3AJzPGHtXv/c2gBbGWJelrOsAXAcAxx133Ck7dxbyUwUB6U2ljdNdXXUE8WjY9LLMXvoMdu3vV96TF/xV69uxa38/xgyvxobF55jqWbW+HYlkBj3JNEJEuPnCKdi4vdv2RRZ1hogQj4bRk0wb5a40FppabNrdi+6+FJLpvAprLKwhnWVYV/UvGEtdeJeNQGtqmXF/fXSR6fq8qU3YuH2fYYbSk0wbaXaxEbi8+j5MG12LtW0dyLrMBWvZqmvit2B/vMtG4MzUMjB9/BPJjGs9YY2QyRWmEWVnmIY7M1djVXa+6X4soiEaDhkL1cbt+9CTTBeUE4toxpgSAbWxCHr6ebpXotdiOPWhBzWYnrwPC0KPY0H4cWwYcTmu+Je7MP32NXgs9yWMpS4kYsdges8PkGWMb/wYX3JCRPjlSS/hxL//Eisz8/FfyXlIZnKIhTWkMjnIPZP7FKYcMkzDXdmrsTKT75s8HgQgGtYQjYTQ0lxvPLe6WMR4xi0T6rFms3rxmDe1yXRPzNdlT29DTzINAnDLRfwUtvuJ7+MLocfxs+x83J+7QPlM7FAXiyCVySKZybmmXRB6HIvC/wsAWJb5FB6kC5HOMtM8CREhEiKjvFhYM77/9BPHoOm4D2FYLIyxA9sRRgYDLIw32bH6mBE0DWhADxqpFz3acLybjhv3GNT90oiQ09ugEYEIOJr1YAR60IU6dLFa4/ppE0fj/a3Powt1WP7AI9jWtgn//I1bcMnHTsG7Lz6BSFUEL/z9IC6+5Eo88fxrICJMpndQRRlkEMZbNA4DWX1O6n+jEQ2pdM5oX0gjMAbkGDPyWvsp0laFNEw+phZvvteL2tx+dP99KzasW417es7F8SNrkEhlsfGOy97JJLqP8/pMnTCo6r9E9C0A/QBuBDBKP3XMArCEMXYeET2pf3+OiMIA9gBoZA6NVAnbV65vx52PtdkuWDIxuO6BF7G2rQMMDDnGX9qm2lgB8RC/49EQ3urow5wpI7HimpkmQtSb5ERLXqgA/hJkGTPKES8twOtjDMbDTaQy6OlPG3nsIBa4VZn5pgXV7joAaATkmHMaJ6jyiWs/z87HTzPzjd+dNSeg6eAW/DTN0xKAqGVc/IAAfKHIdjtBjImA09jUVXOCsyD0OBaGH8eq7HzTgm9KG9Png0v9or5NufGYpu0oum92xNcL5EUZ4G0HoCTCfkCUZ9GXE/d94hg0HTcBADCCek0LvRucCIlXaEQ4bdIYPL/lXWQyGXztumsw+6NzcPk1C/HVz1+Cf7rqYpxx3idx949WYv++ffjard8paOtAtAG9PsbbrZ+xSAipdA4hjZDJ5bD379tx7R/eM6XZveqfBwY62qMFmYtAubW2GgGkGWP7iagawBpwAfrnAPyWMfYrIvoJgNcYY8uJ6MsATmKM/RMRXQngU4yxy53qEIREPj3IC7UVYgcmTh3Tl6xRpq2LRZDKZpFK5zCpKY5EKosFrc0mAhUiMgjAgtZm3PPEm8odWFgj1FSFsejciQZxUrVL7CzjsTCmja7FU5v3ljjFi4d1cSkGJzTFsWVvwj2hB1SFCAPZw8PmicAX0SLXdQMa8UWqWAJRLIh4H+Rqixl/K5H2C6/5ZULiFY///WE8/s7DmH/s5Zh/nOMS4wkfHteAiZP5Se7Dp83C12+9A5GqKjz2u4fx7NNP4u4fr8Tl552JJff8J6aePKMgv6bLMnJlWo9lQqIfXPHez7+SS+15KxRE+eWWkRwD4H5dTqIBeJgx9igRbQbwKyK6A8DfAKzU068E8AsiegvAPgBXeq1ILNB3PLrZWHzrqvWdlc62iIU1nDWpEavWtwMAJya6LEp1MhC75617E2B6HXOmjDTYCVnG8FZHH96+6wIAwLK125DM5IyyiIBMjiGTY0ikOB9XdSJpqo0ZrCyZtTb99jXo6U8HtjDVVIXQN5D1lLZUIgLwcQsKhwsRAfhLGsR6kGPlW1icwBgKNjBi/MUi5AWlztdy0s/H33kY3cm9nJgEQEiisWo8/ORfCq5/bN4FuOf2f0Pb66+iv79fSUQA/pxDGnkf3BJgVEEUmLJVubW2XmOMfZgxdjJj7ETG2Lf169sZY6cxxo5njF3GGJdYMcaS+u/j9fvbvda1oLUZISJjkEgXri+aMxEhndpHIyE81bYXu/b3c0EmeJoxw6tx0wVT8PZdF+DJG87GhsXnYNGciYLGIKQRQkSYNroWK66ZibfvugDzpjYhRIQ5U/IaF6KsmmgYWcZMO8ksY1i1vh0LW5sRj+Xpd000jA2Lz0HLhIaCPrU01yNEhLlTm4p+qWSVt4Npb0TEL8IaIRbRTHUBnJU1Zng1TmiKm65rHvXwilHXi0XK7/WHCMbz9wJr/wW8joO17nAxGT3Crei5U5vKWj/g77l7aUosUrjpnn/s5WiINWH+sZcXNc+84qiaOE6ddSZu+/o/Y/7FlzimzZaRclZHtMJ3I8DqDntfW12JFKYvWYNla7eZFnXGgIdf+DuWPb0NkTDx0wmTdor6/4WtzYb8Y6V+UhHXJ+kLQCbHTx+bdvdi5fp2zF76DFomNODmC6cY1wBe3679/agKEcYMrzYmuUZ8gdu9vx/XPfAiFrQ2oy4WQV11BIvmTASQP1Gtktrw7NZOZBnDM29a9NvBT1deXoAR8SrTmPiF3aIhX83mGKLhkKkuABgWDSORypjYWzVVIYMoqoquCuUvFjPPnWQw8vMgvS2AuS9OC1NjvApEnA35zJv2ygnW8kT/rWPJFNfcQIAtqyuI9d1pLdMI2Lh9n+8Fj7Po7O8JVpqAU+mN8SrEwpqntAJJaQMl6pl/3OVYNvsRzD/uctcyCASNCCGNDBaUtTwnzL/4EmzZ/IYrISkWXtqgmjPZxL53gmrDYe8ipSsxAOhsok27ew2BKADTApZK5xCNaAhrhGyOYVRdFLN1dUexiN/5WJuRftnabUY5AF885LTfeXSzIVT/zqObsXF7t1FfZ2IAO5ZeiObFjwHgC3g6w0V6a9s60DKhAfGYWUNs2uha7OlJYtrovOAspWtxqCaBob0S0TWBbN6GzoQHA0MH2C1azPJdHiunumXWmqrocrKwRH3iv2gLU6RRQfQn40KR7cqTx1LIxNzKssKpfV7X97pYpChBeo6pBfAqWYasLBJEmwU6EwOmnbVf2lnM7GJgYAxQbd1Eec9vedc2/znnX4hX33m/iJq9wUuf0llWtKKLFxz2J5IR8SrUxSKIRTQkkhm0NNcb98RJAOCDnUznkMnxBX1rR8KQqUwbXWtM/FW60F5eGMNaXkAv7AUA8+53bVuHsbsU/8UOfUS8CnOmjDRYYTLhEqeZTbt7jVOPwNwpTZ7GIBo+vB/jULQ4ddvdF8WW0v/XVIVM7M3Bhh/tIC9QEQM3Fe9SIL93brWEteDejRxjh0Rm5QQCFf3+aEfVeltgvJQVVEGHCiPiUby6ZB4aaqLoSab5qURXX6wKqdVNYxEt7zkAnAgcP7LGkIMsaG1GXXXEeEBNtdzSdvbSZwrKkmUl50zmxOKcyZzFJnawnYkBPLu1E8KCYEFrMwj8ZVv29DasXN+O7kQKRDCdSFomNJiO8Sok07my7jQGA1aW2FCA2065GHa2yNI3kFWe4GQIRZFyYGgthcUjrMsunVBmcc4hBytBeZllBg4G1Y7DnpAILGhtNuw0Fp3Lhd5RhZAN4GwmIM+bFdpX4kSwsLUZr942D7dcNNVkQyJkGIJ4zJvaZAjfV1wzU3mqEEjq7Ke1bR1Y2NqMWrFQEJePiPtyXqEFpif7wKJU9tsHEakyKUYMFgZjARcakU4QRn7lgFVecriBwlVHBVXWYS8jERCyBmFLsmHxObjugRcLLHzF6UGo2oo8svqtXKbstkQYJArXGiuu4Y4zZWt0AEYZwo6iMV6F9w+mkckxHD+yBgDX8JJdawg3LuL3yvXt6JV2rUHsIv2obgKlGbmpIBYXa5F+21WqfcJgw2//AH8L4FC0sRmM5xP0/FTByWCxGDZXrW6oOhQQ5InkA0NIALPm08LWZmN3L1vYHj+ypsBeY2FrM1aub8em3b3YuL3b5PtKNnTcsPgcfOim1cgyhqfa9mL67Wv4CkFc2LynJ4k5U0Zi2dpthp8ggAuQm2pj2LW/H4lU4U5TJlhCKyyRzBjTV6iXW43EgPxJxYudid9pHzQ/2K59/ttVclNKgtXrgFC6sHo0ECimuX76mM4xT4sqAbql89AiOsWi3P0IaxoyuWBPNH0DGfdEg4TKicQGggW1QCcA3X0p/vIQGdoxQrNq2dptJoIhiNCenqQhu1ilyy6SmRw/MQCIhAi5LEOIyGToCHAWmcpnVU9/2lACME4gulbYsrXbCk49wuWKWLDE+6J6bRhg0lQLEk7vqVCDdXqZD7eTg1dYn69MPA5Fnxlz1ySrq46gL5U5JESkmBPZYIMAREIaMrm8QD1oIgKUz1ZEiNz9SEwqMhIFrN53lz29Dcl0znZYU+mscXpZub4diVQGdbEI5kwZiTHDq5HK8vtCRpHKZnmZmRxqoxHURPM0WJZjHD+yBkScuMiC8rVtHaZTjsG2sjRQyHpamuvhlQXb25/2ZO9RLFRluBER4INJRNxQFSr9lVKNt5vShRtSmWzZiIhs+6PCJBuDzKEEBr5B8HsIFz2/b9n38A9zZuHSubNx+Xln4rW/BRds7+WNf8UV88/GR8aPwFOP/V6ZJupgiEtQzymKxIYF08IP0IlEZmtt3N5t6LtbDbjE7igaCaEhHsW00bWG/6wQEVomNGDFNTMx/fY1BWyK3lTa+D93SlOBd97a6ggSqSy3G8kyzJkyEhvb96GnP40sY7jj0c0AuDxEsKoWnTvRVIdgc81e+oznF5/B3thwUlMcO/cdLEmzS1W0k1Gcm1FbVVhDJusuKC0XyrVDDqpPmsJhp5vLGrdxL6dmn5t85q2OPtPvoXpSLea0wAC8+tL/4dm1a/Dr1X9GVTSK9/d1Iz0QnALJ6LFj8YMfrcDy/7zXNk3SQTnDrlekaYH42QI+QCcSsZOfNrrWJGCvjUVMu/VoROMEo7keC1qbTayoLGOGbYdwd3JCU5zvvrP53QpjwLPbOk3u5AEuQBesqyxjvB3MbMuybO02Y3tQWx2xjV0iqwF7gUqeEdYIW/YmBlU92E2TJcfy9jx+4FRqLKzhVt31uRcIIh40SiUiYpra2WA4WcEPxYVZoL7GrMpcNch2T+XWrers2Ivh9fWoinJHukfXN2DkqGPwxisv45pPzsNl81px1UVz0Jc4gN8//CBuuPaz+NJnLsXHzzwF9/77t4xyTj9hLP7z7u/gsnmt+Mwn5qK7k3u0GDXmOIz90GRoFtdYB/sSuPbKi3HF/LNxybln4E9PrnZta7m06T4whGShLgy3qt72JNPmF5zBUNFdtb6dx5JAfrEX8hFR3s7ugwV+s4D8Di8a4kRd2K7ILk5E/WDSZGZ5n1zCPYoKKhViJ/g5NZQT5arTsVQC7nnizeDKO0RwGzq7sRWuXoYquvrMu/PBtnsq97M+46yPYe/uXfj4WTPx7zd/DS8+twHpgQF888sL8M0lS/GbNeux4qHfIRqrBgBs2fw6vrt8JR55agOe/OPvsGc3t4rvP9iHkz4yE79Zsx6ntMzCbx98QOpDYS+qojHce98v8OvH1+GnD/8R3//OLbDz5i6ulmtJ+ECwtmT5SDzKXyq743Mmx121d/fxyGYiIJBJWE35cp1YCrOXPoNRdVEkUhm0TKg32GvWuqOREL5x/mSTDMctyuK00bVKd/OlYDDUJQ8FDneDzFLh1aPzoXr+Q8wYHACg/fZX0H77a+QuuQK5Szw7GVfiqJo4Hlr9Z7z8f8/hhb/+Bd/88gJ88V++hsaRTThxxkcAAPFhkqHx7LMxrLYOADBh4gnY/e47GDV6LCJVVTj7XB7hcspJM/D8X/7sWC9jDMvu/g5e3vhXaJqGjj3vobuzAyNGFhqsK08iAT6XDwQhEQu47B/L7n3J5BhS2azpRJHK5F9EwfaavmSNSd/b6oI9FtGwa3+/oVq8sX0fFs2ZqPTR1dJcX6Diqwqvq3LcGCQGexEZqrzwIxUfxE1EsdB++2tQxx6dmJRGSAAes/3UWa04dVYrJk6eil/d/1PbtJGqvCcHLRRCVjcTCIcjIJ01HAqFkM04qwqv/t1v8H53Nx5a/WdEIhHMn3UyUqmUMq3y0QfI5vpAsLYWtDYjFtFMC3hjvAohIjQq3G+YdrCU/y2CXm3a3YseS3Q7mYjUxSL4xnmTMWZ4teGiIZXJchfxkjZXLKwpLd1lgrFyfTumL1mD6bevwbTRtUY42mmja22fs5/nfyhtb8t2jC4To7dcY+XW3FiEy3jmTQ3M9VEFLshdcgXYyFHIXXJFSeUQCDve3oad7W8b17Zseh0Tjp+Ezo69eOOVlwEAfYkDyLgQBr9IHOhF/YgRiEQi+L+//gW73w3Mma9vfCAIycLWZsPtCcD9X1WFQ8gyhoEMM2JlWONC1MW4G/e66gjqYhGTY0anRVywsRa0NqOmihMOISsRQv9bL5qKb5w/2XCxIkNWDLjzsTb0JNPo6ed+wkQM9027e3HLRVOVKsCq9dlusQoNcWdDXpsniEdddQRhSd1UtVEoFk50r5R6jqmrVl4XfYqGQ1jY2oyN7fuKrmMwEMRUGszp6OTOMHfJlcg8+LuSTyMMDAf7+nDrDV/CP5xzOi6dOxtvb9uC679+M77741VY+q0bcdm8VvzjVZ/CQCpZVB1vvPIy5p46DWse+z2+s/gG/MOcWQCAC/7hMmx+7RVccu4Z+OMjv0Lz8ZNK6kspGNSY7eWACLUru0Opq44glc4ilc0hGtZMJw5ZI2be1KYCK3cB2e3JxvZ9SKWziEZCBeyrWFgzrttpYInylq3dxoXtusqvUDsmcA2uluZ6bNy+DyAY5cn9slNbjYU1DGRzgxLW1G9aK2Q+vbUcwT5U9dPOKvvWi6birtVtxnUR1jiVzWIg4z4mKvciYoEPghUU1gjhEBlzUPRN7ntYI9REw6YTtd0YgIBJI+OGbzjoZamiGqogs2i9ykw04sRwb2/SNr1clpdInEINPB9XvLixrqkK4T/OH+k71K5f2L17RGQr4PZeNi/drRTS6/PrcUIjwp6db+OL1pjtK7/cP9C5IxDr9g+EjAQAVlwz01j8hTU6wE8K0XDIsOUIa5yYREMaNm7fh55k2nCpIsMqEBdlAzDNKFGPsF+xI0yya3pRjrBdESeh2UufQU8yjTHDq438z27rNMqwmz5BhMX18x67pSVwNWs3Ibi1HJHezoJftdgIYpwvk39PORijylDZQPixJ3CySRHW5Cq359Y4JVbPBHZjAMbtMuZMGWlsMPw8O3mB9+rqPcfgqvghnk2IyJPwnzGgoSaKXfv7kcmxojdDXhUNrNB8Lsh2KZ2ICIEwLBZ29K2Vt0j31gY/RMvVqSQPgR4IPhCsLQGhsit7/W2ZUI9Xb5tnuOUOhwgaiC++BBPrSfi5kiMlimvLnt5myDUWnTvRUPcFeACqXfv7sWbzXpOwXC5PuKavi0WwQGefjRlebRARwOzBWOR1W4zdWAWyamhQXAW3chjsNamcdp7Hj6zBmOHVBeU71WddDEXwpVL2iAzOL7Yso5HTNcarTEGXEsnSXZKonm+WMTxlcUZaDLyGClbBbt55JU4hjbC3N8/qSWeLd4fuBX489XpN65ZK03go7dqYfUgAZuMI3m+UEbJEJiHwecp98Jlr0HT3RofERQoRfYWIaoljJRG9TETzgmpIEBCL76jaqHHt2a2d+NBNq5ER0QazzJjsfakMEskMNm7vxuylz+CeJ97k2l+6Xy0ABgHpG8gY8UoWtjbj1SXzDHfyk0bG884TIfnT0vMa5Vks4RKpjBGPBMgTQtn3lxvc1il5x+b2onrlX5frhd+yN4F4NFRQvp/6BoMFn2XMtJEQ6EwMIJNlBqEpNbgTIThHlyqoiJy88XCaD6W6ULe6gM965c1JEE3gEQydM+d0FrL827FsDzPJrbnZHEPHgWRRjhr9klUicx4G7kE6m+NjI9/LMT7eWlW1P6tnB/hhbS1gjP2QiM4DcDSAzwL4BYA1QTWmVAjZhZhgISKksjzOh1hQ5cmbyTH0JNN4qm2vWded8qws4cFX5JM1sET8kUQqa7BymN4OUQ7A/XTJLBhxYhHsjDse3Yxla7eZ5CwLWptxx6ObB9Vwbihoh8rhkb3AyucfjC4wxp9pSGePyHUGqWLLAFuPwkFCHkPTxsOhK+VQJfZbomjfzv1pNDT0InxUraE+W0r5QXq9Zix4L9pWqNh04hpjDJmDvdi5X8FeIwqMI+WHkIgndAGAXzDGNpHTUzsU0MeSMc6fXjRnIjZu7y6ISWJFNKQhLZ1UWprzxoV1sQjSmfw94bpk5fp2JJIZI8RvRuK1C6++qUzWGDSRn/QyWiY0DJdZkAAAIABJREFUYNnabejtTxsxz2VZzcLW5gKbFD8olz8pFcIa8Z1PGetojFcpA2AdKiM7L4L8IBAkEbGbEzddMAXf0f3AyfArBI9FNKVsSg7jUA7858b38S8Axg3vKjhJhDQgl/MWZuFwhPDKITuolZ8zA8PO/Wn850ZFzPgAx8Oz1hYR/QzAGADNAKYDCAH4M2PslOCa4x/jJ5/Exnz+h1y7avs+9KbSxqSdN7UJLRMacM+TbyKVzikFwLGIhm+cNxkPv/B3YzcsR0UU5QonkLGIhoYabs1u0rKRXhbrwioE/OJ+LKIhneFOHVsmNBhBrayaX6rAXDKE5gsweNbdsbAWiHDfDzTirIZyxgEXGEwCDOSjdB7KQFBBPdPGeBW6+wYK+lJOYu+mITZmeHXBuxokBsPoNkgtQhnv3f+vSL23LZDDgJ+jzUIAiwGcyhg7CKAKwBeCaEQp6EoMYNf+fqxt60BPMo3aaJ53/VTbXtzx6GaDWqfSuQLOZ0NNFAtbm00eSrsT3Dp0w+JzuPdeSesimeaCdas1/NwpTYbwMpMrZHeINTBEhFQ6Z8QuAYB4LGz43ZKF/W52BUKoPZguQlI+Q5cGMUsFT3cwMNibVs76GJy65IVIo/yzCWpj0JkoJCLWeoOGm9bWrv396EuVL5jUYDy7TI4N2vwvFq6EhIg+QkQfATBDvzRB/z0OQ0B9eES8CmOGVxtxRFom1BsGiNGQZloYGAr99k8bXYuV69sRCeeXvGQmp1T1BfjubczwauM6Abj5wilomdCAeEw9HGJHIdLO1S2Ys4zhrtVthkDecPXy9DbMXvqMiVgpcQjmlt/5PNQNIo9U5PzLtl0xVB91uYJJDSb8vneD/Sy8nEi+r39+DOB5ACsA3Adgo37tkGJEPIoNi8/BimtmGm7hk+kcRg+vxjfOn1ywI46GzarTz27rxKr17UimczwgVUQzVHQBbjwou5M/a1Ijdx+vFxyNaIaWld3xuSYaxpjh1bjloqlY2NqMlgkNxj1jt0Z59V8Q30kNuOwUvc6tcrkU8YKh4N/pUC9wddWRQ/oMioWfJsci2pCVQUxqihd4tThUIATrjcEO1mehCj7GctnA+H2uhIQx9jHG2McAvAfgFMbYTF0u8mEAu4JqSKlYub7dpBm1e38/Nm7vxi1SnAqNYBKAA5zdJQTojHEDxleXzDMJvRforC/Zb5ZwiSK7RpH18kNEmDe1iduvMH7yEb61ZKeMYY2MNABnpwk386oX0y0anQpDYTEXCEo9w8/C7LX7biUS+SfKGqGoELflIDwEf8TBa5PDGhnz91ASTLu69/SksNWiDSjsygYTpA+TSmmk3FAZ3hIdmsBWJzDGXhc/GGNvAJgSVEOKRVcixQ0G124zLMWFwHRtWwcWtjYbYUpFUCWhVhkiwlzdTYoBy1yUCRSBG5mt1I0SxwyvNtydLGxtxs0XTjH57VpxzUzDd9batg7s2t+POx9rQzwaMrQtbrpgipFmlcWeRPViuEWjGyyQbszpd92YO6XJccG2u2cdi8FUPyXwhYfpspqwRkrfbSrkWHFtLQdPnEFNHEpd/DM5ZshZDoWHabE5yeSYySAU0AkGFT7bluZ6X+GLVc/a77jJclS/sPbLDrLsyxUBqv/6Keg1IvopEX1U/9wH4LWgGlIshLAdDIaluIgRffzIGp7IMrIE4KyJjRhVF0PLhAZudR6LGCrDMkTwK4BPRnnBB2AYM67UVXdfvW2ecaIRKsJ11TwWPBFfILZ2JLjwP5PDsqe3YdroWqVzx3Mmj/Q0Btb5HNbyXo+rQn5tZL0hRIQFrc2+2RlPbd7ryJIrZhmKRTRfJx2vO3ONuEystjpiGLkylvdrtacn5fkF9wuZjsQimmH8Wg6UuviXQohKPcDkGJeFClgVTxLJDFqa600GpLGIhk27e5HMmJVvnPqhsm9yGzdrcS0TGnDzhVMwZni17zGLhkJKI1i5GKH9dyi2mn7Uf2MAvgTgLP3SswD+izFWnEvLgCDUf+PRkOGD6Jk3O5DJ8Z3jW3degOlL1qAnmTZU9WRHenXVEbx6GzfQV8UJOe/edQWTSA6GJRxB1sUiiMfCJqt2oYocIsKcKSONRTQW1gxDSbnMUXVRow8ibnwxaouDpaI7VOKNDLbKrsrRY7nxQQ1KFgS8jI3VsFPYJXlxMBk07GyinFDqu6Z6R4JU//3AeP/90E2rlewA4ThPtuMA8gMbC2toiEcNu5Fd+/sxZni1EY/drlxRxqSmOBKprKGrXlcdMYwMVRBExck+JESEt++6AJNveXzQbTaGKioLaQUVBIv3fv6vSO0ZJDsSInpY//86Eb1m/QTRiCAwZ0qeDSSOe5p+apDtOAC+O5k7tQljhlcjGgkZjhZlp4mqckNEBQ77EqmsSUAOy9FSqCKL/CJwlgphjQxCA8DkfHIw4HTarotFMGZ4ddlYOSrIfOmaqnBRLJRYRPPFPhkMjZrBAgFlZYnZIazRYamldqgglHIG890CgGxiX2CRsLy0/Cv6/4sAfFzxOaQQwvad3XmDQrFxFY7l5CktLNOFbASMn1oEO0s4TQQ4q2vT7l7M04nOzRdOQY0UAZGQd5ki8rZMqDfua8R5tiGNTJ5+RURHIbAVAvqbLpiCt++6AC0TGgqcT9qhMV4VmAzEacM/qo635ayJjcYioRWhxSRAgKOwMxbWsHNf3jnpqLpo0ScSp2xWHvNARp04iHUxFtEQC2sFC4ZMvIJ6lgRg7tQmrLhmZl5WKKGUxV527Ki+H8aHGgvrlOsuBk6yLVV/3Nopl+sHwkRAPE8Zzo4uC681xquwaXcvRtVGbQ2LYxENJzTFC/rfGK8qOqpmLKwh27evo6jMCgTG2iKi5xhjswIpzAfiY09gIz7zg8L2wJlvXlcdQTwaNlhZgrUly0dmL33G8LcFcEd9YPpJgXHBeyzM/XQJuYbIY21L+9ILTdeE/EO4VpHZaaIMayCuoYLBlkl8kBELa0hlvMVOKbb8wWaPzpvaZFKqGAzHkyr4mafFvGuCbS42OCc0xX07HfVSr9P41VVHipOjRjS8de9n3skkuo/znVmBIM9SsQDL8gxh2X5CU9zQ86+rjqBW0hNX7YBS6ayJlSXHURcQ2ly9qTR6kmnujiSTQzwaRsuEeoSIxzWR3Z0saG02NIhEtZMUqoOpNBfwhYiMsLty7BJhrT+YONRu5IPAUGOouLUnmcn5sv4Pa+RrFxoUEbFrYSysFbxfm3b3mrTo/BKRE5riSg2lgja5DJvXcW2MV9l6pXCCYJsLWG1VrBBq5KJZYY1w/Mgaw2RBwHrScRq/Aw5BswTCOkdEPgkn0zmE4vXHumb2iCAJScH6QkTHEtGfiGgzEW0ioq/o1+uJ6Cki2qb/P1q/TkS0jIje0mUwH3GrVFi2P3nD2Wi/60K8decFePW2eTwWu67Se/RRfFLK8yoaCZlYWSr5CAD0JtMmZ4vC6l24kBf2KGLRX9jajFsunIoxw6sNh4pb9iZw3QMvWgaH/wuHCBsWn4NNu3sNQibateKamSbDKdUL5uVd8aovL7OAgl6QG+NVSl69FzaHkw2mzNJojFeZJqFgB/hlpajYT1Zo5E233wvRzeSYZyKeyTE83ZYPvSzskewgghsVw02S89RaDPgEuyWZyRWwHKeNri1Zmy+RyhhzRsWiIgBRH3YgIo8K3X0Drrv6EJHrGLoRNqb/kUMsC0NnebjSGYZxDUcpy7Ne8jLOmRxDPBqyid0cDMrtKysD4GuMsZeJaBiAl4joKQCfB7CWMbaUiBaDO4O8EcB8ABP1TwuA/9L/u0JW3QW4/UcqkzXtyMSgh4gK7EWsoXVFGWLsZTVh+b4qrK4oa/rta4zdhDixCETDISTTOaQyOeMUIrcf4KrH8gTf05sqCNvpZSIVsysN+tTRmRjAvKlNBdpqXuQeTpq2mVw+YJFVpVLY6/iWrXh4wRi4bn9QLJscK2SN2LlfF91x69UJTXHs6U2hx0GL0AqZHSQPm3WhTaZztmyctW0dtlp2BPcwzKJc8TxV6rlMb4OVfSXXa63fbgy8TA8vbC8v5ZgcwNq8l1nGbMe22PdSVR7L5QLTew6SkBS8foyx98Bdq4AxdoCI2sBd0V8M4KN6svsB/BmckFwM4AHGBTfPE9FwIjpGL8cRgjV152NtiMfCpokvdLBFA+dMGVmw+MsQRElYoEcjGkbVRtG8+DFEdbfzCyWCBaDA/fvatg4cP7IGqUwWqXTOOLGIslua67G2rQNZxnDnY224+cIphoxEpJMffiyilc0VthM04koLdouxV/12jeAaF6ZY2FXvheWtar9qkaup4kSjviaCzsSAEdxKzCmnqryqLu/pSZl+e2XZ2/lk29qR8L3yBLGByDJmy+oQBCAoWNtrN8511REcSKYDtXsaKirpQc7BYuHrbEhE44joXP17tX7KEPisS97x4P65NgJokojDHgCC6TsGgKyS9q5+zVrWdUT0IhG92NnZCSCvPSVCdorBJQDDdNfyTP88u7XTNja7WOh37e/H1r0Jw/28+J5M5z0DW+UqK9e3Y/rta7Bm815uwb43gYaaKG65aCpWXDPTlOfZrZ1GVLMsYybZjEgnQ375rBpPsUghnzooWF18CPcg8n2v5djhUGiKiiq9tr9vIIubL5yCKt3pZ4gI0XDINb474P1E1OOB362CbTjeQ2TlDAwNQ1UrgtZbGQpEBPDOPrWuEXQoXKQQ0bUAHgHw3/qlsQD+n7iv+96yyxsH8FsA/8oYMxlR6KcPX0+EMbZCdx45s7GxEQCwcTuP3UEAV8HVx6y2OoKWCfWmxS+ZyRnu2gUBkeOrJ1IZxMJ5F/QMZvfzgmhNG12LEBHi0ZBRhnxqiEY0pQB/zPBqJCVNHSF3kYmZSGddZMVvWZCYUvCpZXhVg/SCTI4phZjCBkZ2KumVuB2K97GYKldZFSEUhQRtC2A3hMUSX6dsokxVmlKcHLo11dqXoPcVsYiGVCZret/8+NkKCmGNTHZlbnPFzziENHcZTsEaEWCEWz+j+WUAswH0AgBjbBsAV7UiIoqAE5FfMsb+V7+8l4iO0e8fA0AIEHYBkDUJxsKrh2F9SKIRDWvbOozdR28yjWfe7DAcNZq0Fyh/QgDBcOHe0582BXCKRTTu60Z/mYRBoRC4v9XRZ5QhHo2og5CPeTJ76TMAUCDQFzHd73nyzQKBu/XZC186Mt/YzeDsYMAuIFTxHbJ68B3ZdYgdIampCh1S7apiX59EMoON27sBwAh4Zi1Kxbbxe1oURBnIR8AUENeL3V3bZQtrZCt7CWvkyabJT52y/ZN1OgW9r0hnmCkUdsuE+kE39gX4M/vGeZMNLc5x9UcpiYmYLn7GIZNjrhsyjWCrvFAq/BCSFGPMkGYSURgufdVjuq8E0MYYk409/gDgc/r3zwH4vXT9Gl1763QAPV7kIyvXtyOVzvIFgpkFY0xizaTSOSxobcY3zpuMuuoIUpksuhMp1FVH0NLMDQlbmusxZni18cLGwhqi4RB6kmmkMlmTqq6QoYg4Jql0FlFd4yelRy5k4ARHZoNZ3ciLiIkiJkp3ImWw3eQlyG4BdDtiy3dLZSMR1GqVqhbYCRP7Bvju0GtTgp74xS7CPck01mzei137+42Tp1e2gh9kcszQtLISJtmBaCmwasI5tTGTsxf+AsUZGHYmBgaN7ZZlzNS/p9r2Bi5v9DICWcZwx2ObjbHcsjeh3HiU64QuIo2Ww7eYH0KyjohuBlBNRHMB/AbAH13yzAaXnZxDRK/onwsALAUwl4i2AThX/w0AqwFsB/AWePCs690a1ZVI4c7H2jiriHG1XrsdOgNw52NtAIB4NGzYhYDBUL/dtLsXGxafY1iwC+NDgGvpyKq6b3X0GVpBoiyhiWUco3WreVm9WLDGoOedpAfNioU1MGaO0CjPKdnLabEodZKK/gaBozwSiMF2qjcU4GWHWQqC9Dk5VGQFXsFY8OwzryMwBO2LA4GflWkxgE4ArwP4R/BF/xanDIyx9YwxYoydzBiboX9WM8a6GWNzGGMTGWPnMsb26ekZY+zLjLEPMcZOYoy96FQ+wN3Ii12aCLBjdQlByLuhyDKGZWu3mRbzVDZbYEcifGeJk4rgs06/fQ0G9BC49TXctYks2K+rjphOM6/eNs9QBxZaWVZV4J37DmJUXQxnTWo03KWIdsj+pgayhTHni8FgCLe97FKLIRAfBBdOxbryqCA4WE/pgzWtBsuflqcAeIwFpj532Hv/HT/5JEafXKrcERCA2likQBtGuHyXXZmIWCRWtWAndyUEYLTO6tq0u9ewKZl86+PGkfVWPbwuYA6SFSJCJEymo21dLIJXl5hd2sejId9uF4YCrPr9HyTEIhrAircat6oc27nJkFVWy+mynwiojRa+J0GUe6iXF6J8nA6VCuxgzFMxvqPqor7f5WLb5yXf7p8tyg7sfTsQExAv3n+VXn+HivffEfFogdWtAAMKNLbqYhEsOncid39SnT9N9PSnC1RuAZi0dERaWXNKZocJgiHC7wJmNV4RJEt4AT5rYqPZo7DUUCFTKYaICKvjwYbcjWgROy/rHsrt9GGEKZZ+B7WzdKpbsC+LhZUg1Neo56+saaQFp2BTgGhIQ8uE+sB3yyoiQjDvysvtJVhWgVax4EohIlaHn05t6Emmi3qXi22fl3w0yFpbwuvvE/rnav3zODh765BDuEMRLkzkyblpd6+xqMUimrHjF0aBtdVcFVDIMmSsXN+OZWu38ShrExpwy0VTUReLGAtBJsdMbCgBQbxiEc10TxClmy/kEYqFQWJNNGy4PhFCdmsMeAHrFfm3YN85WR37gZVwynWoYHgO0FmMYjfoBXoWZXmAesHJMYZeSWiayTHHF0jVFlUfrXWrYL3t1M8Qcf9YdsRdtsiXXb4k0/ngZ36j8cUimsmvkyqNQDKTw1MlGIv6sWNiMBtQBiFfcVPlLfZU5NQlWcsN8O7Xyyu8sKZUY14Xi3jWSmQBsqNcCQljbCdjbCeAuYyxbzLGXtc/NwKY55Z/MLCwtRnxGBeeg8zqqYlkxqT6B+R3+2vbOtDTn0ZDPGrIMqzpevq5w0ZDSG9x7haPhQvybdrdCwagoSZquifLSQSLC+CaYsIaX5xgNm7vRg4MsbCGWy+aamu9Kv/2EnXNTVVYvivKll8YL3WIGN5+DOLc1hPVguMlrKgcX12VVtXHoJFlDBu378NbHX2uaTM55ri42j09YXRrlJNliEfDpkXUqY8M9hbnbmukmx2TFcWMtbDBUMKhfX5isVgX5hyDrfNIa3/99D9EVGCXI9cdi3CP4m5Q1dk3kHHsc111BCfoyj0snTzgudEu8HOWJSKaLf04w2f+sqArkcL0JWvQ3ZfiD11fXEj/9CTTJvVfYexXVx1BJETKk4iALJAX1ucir1ig5DTCsn1vbxIEIB4NYfqSNZh++xpc98CLJst5mSe+cfu+AmG/sIURE8rvTlvA+nK4+Qzy+jrEIpqtkLgYdoUqi5u9iZdaxCml3HImt3HrG8gUFRLAOpZ2ssC+gYzpWibHsGt/v227/Dwi19OZ5X5YMo7zIvP1AruFmlBIAGXvupEQeWZ5qupwkhs5EjcHCNdJdnVb+2P3Pqku221EZBb+lr0JZBkDRWLDChIWCT8x208BsApAnd6u9wEsYIy9HFRjioEcj0R44d24fZ8RL90KIYAH+CSR44BYIccWEXINa6wS+boqFolcL0NeRrNqfTu6+1JIpnNGsC1ZaL9xezee2rwXoQB95AyWb6BDFX8iKBQb4wHgzzcoobVXYXVQzzWsEbIu7EEvIP1PkIJ2P0JnlSLLoYRVmWKoxBkaVGG7AGPsJcbYdADTAQh13kNKRAAej0TwBbOMYdPuXsRj+SN9WCNTzAQGfZdBULqNlyHikcQiGuKxMDZu7za5MBETYtX/b+/cg+Oo7nz//XX3TI/QeCRk2cIyENtY2LIh4VKAcy8u1itjQwhbyd5KNtlKgXNhi9pAynnUcq+TJZvkJpU4ofJyhWwuuXhxUlt5QHJvErIbCDYs185GsUkg+AHIWLCJXzIWlpBsjeZx7h+nT8/pnp53j+bh36dKpZ6entPn9OvX5/fU7BpBU9aujkjO+Exw09bblomuWAS2ZbqqNhW0+ODt1yDREQn1wW+F9XpYANW6X5Wo0wgngEqZOJcq+ca+IB4NTM8epudToWeN/w21lmtEbynIxuS3iZVzBQmE761VSXMquLcQK/rinmNYb5fyrO9gBFWsrEcX5rLccSW5trqI6KsAdgLYSURfIaKu+nWtPHrjNp7/zEZsGOxz815NzaRdg5PS16ubjciZFawfcFO3PxTgraVUUJtvHMD8ThsT51Lug37bzhFse3IEEcurGrtz7VI8/+mNnpsvI6Su+oaBBVjc3eGmr1f2l3jMcmNW1g8u9Aq3Mu6eoGulLB9yhH/xKoNjsQfbX10bSkG2iqn0psoKFCwgZRnkZgCu1wSv2DkM8+WilJE4zyZW4jBWWx+nmheMoPxf5ez/xETScwyzovyaPZWg1F5qT0Tymnrt9Nm8bWs9ozErv+xvqeuEDCO0AKZKVFs/BrAfMu07ICPW3yaE+K9hdaYarrnmGrFv3768eI+YZSCZycI2vaVGF8SjmM0IN727QE4lpseCeMrsOvPqNct6cODYJKZm0u6bp4pJidsmDo9NY/3gQk+ZUaV28MeI3P/4i0imstjgPKx2Hhpzy/UqHto9is89djC0Y9WIsqt+glQU1ZQoZYIxKdyodT/lqJjmUoU6m85WLMyDYnLK6XM1sTz68bIMQqdtBapNK1HdhcXxhz+K5ImRUN4nKxEkzwkhriq1bq5RguSh3aPY9uSIW1c9mZFeQ3pAUjHUiVQ2D0DOGqaSaUycS+W8N0h6WT3z8ikpqKx8e4C64PQLR9lB7li7VGYJ1gSRrg7RAxgBWdskrDoe1dzgBIRqpwnqkxDlFQ5iGCY8jj/8EZE8cTiUqVgljZwjorXqg+PBFWxZbhBTyTRmUlmkMsLV0Sr1g56+OQjb+V6lUFF2DAhnCk1S/z1xLoXh0XHYEdPdh/LiUqhHYqedU1spO8j23aMe9YDf20YPYFQFsorFblRCNcJAVPk7P4VUS2kna3A90L2Hmpm56GK56k6dVjh2xdD7r2e9bdS4FsSjebE9DaVBaeQ/BOABInqViF4F8E3InFtNwbYnR6RLG6QxyyTCir64q6csZAA2HJvJvTetdL25lCTYvnsUEzMpxB2BoEimMp556NRM2lVfLe7uwIbBPtceogukWMSQwY1Lezw2HECqnfzG/18dkgWyisVuFNP9qxxCc2l009H13pZZnatkLWTqkPiwVDRzofoxxSjWxbxiRAHblJOra7YCfZe6Nqs9dmG5fxei3E31/i9f2OnGlxl6NokKMKi2e+nNmTSS6UxeoK3/vii2j2aRQX4qcf06BODLAC4D0A1gAsC7ATQ8TQoATz2Sw2PTyAiBqWTOV7uwHzq5tgsgV7wIkF5YKrIdyLmFJtNZ3HD5AtdeMpNKwSTCmmU9GB4dx/CRcWy+ccBTjlepr2ZSWQyPjrtPj5hlYH7c9tSaB6Th3iRCusTberHZgh6BXw216rpPTCRdleFcuWLqdqAw3Fh741GPIFeHwzIInVELIPliofYZVD8mTIKaK5T8slq9e7HrLhYxMM+2ir7cVHPN5NVcQnDfTSIQVb4P9UxQ/askUFHvo9+vrRK7SZB9MijuQ4hgu6FBwLxY9a7p9aQSG8kvAZwB8DsA7pUrhPhKfbpWHktWXim6/vorshZIxMR0Mu2emKAHob6OCNgw2Ic1y+Z7BMj23aNY3Z/A8Og4Js+lZPxHR8TzwCDI6otRU3rwrOiLYyqZceNI1PdrlvZg+Mi4xw6i92Hjqj7XwK47DKwfXFi3GudzSSOMiEz98Dts1CuZpEmErCgd0+K/vjqjZqBgbbXrsNBLXKHxlYMq0KeeRcd3fBTJ4+EY2yuZkVwshLg5jJ2GyetTs4AjoW3L9Bz8dFbkXUAZTZU0P267QuTomXP4wi8OIW5bmJhJ4cTEjPsGYxJ5hAicNvU3g8Nj0/jkOwexbeeIK3wmzqUChYGewkVVWwTkDEilTvGnmq+WufKgKUQr3bxMafxv1fW6tMq1m/m3OpvKBAbEttp1WOieraU2j23Vr1xBJUrrXxPRlXXrSZX0OgYs103Xh346LIOwYZW0X9iRnPFbDy5UgYrrBxe6usuIRW7byhdc3xUBWD+40I0juU/LjaXvm0gKsA2r+lzjv55i5c61S/HJdw7m7b8W6ilE6m17UQbiWvdSaTfL3X6uTE9B+4lFjLL3r85TI/TrysBcL/zHQIh8NSoFbNcIYlZxh596omo1edRiIdYjqWRGshbAB4loFEASzmxRCPHWsDpTDb1xG/s+7a3hoeI8iBx9bzanG33t9DROTMxg+cJOxG3LjRsBcvYR9fltn31CVj5MZd2iVcqArtcW6e/uwJpl83H91l157an4EsskpFMCdsSUGYktEzOprDsjUZmGIeCxr6gxnZycqfvMopLpv0qnUU8qMRAXQ++mGqNfJaOrDJTrtvT4y6lX1ENAfS53+DJTbPWGf8NR8/gpt710VpSV9qUeaqo3zuZy3fmPnyJqUkXnWu9nsf4uiEcRtcyCNX2qTWdT7XFKprOwG5Q+KJ0VuKjL9oxXZNLJsNqv5JX3HQAGIDP+/gVy6eUbzkO7R3H91l0AgD1bhrD5Rulym7DzU4yohGWHx6Y9NURUZl5PJl/hXYzblmd7NXtQEfKue6/Ga+Nn3Wl6V0cEk+dS0o4ivCla9EzD254cccel7DVzIUQu90UXF3uLK5WyPUw2rOqryjgahOqzQeTJ7OpXGWQct2Th+201Y+60rZoe0EHFmEo9jPzeZclUaZVIPbyw9b7bESNip8ZIAAAgAElEQVTv+MUiRsUvDIWOpX+GfGpqFqv7E4FChAi4qMuuaL+l9l+KQk4ndSw148GffZrMSEdYbVeSa+u1oL+wOlItL554E9ueHPE8xF2XWyo8nQ/Kd+Nn843eOier+xNuri39Ia/+K8GgZitHz5xD0rlwkqmsJzMxCJ7Zyx1rl7oXVDKTwfVbd+H+x1/E0TPnStaKIBQep18YSG8jr640FjFw362rPF5uQHD0r59yXE/9bpNqqZJCVOsHFxb8rpw2/F1PZ4UMXi3A5X3xorVfKopR8R3HrlgEn7p1VeDx9K8Kesj4n2NB3cj6XoJ020Yp91KlUuyMmq4KVo/BqFalmUxl864X/4NV/77S2Jd0Vnjy6gEo7LAivBmhC6WLL4b/MJTbX1UrJmYZRRNzBvUp6Nj71ez+dYD0AotY3rUikwotDjCUzI+NJJXJehIwKhWRMngXykQ7lcy4wkBl29XTlKjvAHmx26bpFqL6wi8OIWISZtJZHNNSde/ZMuRReQHygaRcDyeTMkI+mclg4lxu5qH6cN87V7nR9EfPnPOoAopNp+2I4QosP/7fpLMCGe3t2zIItmVi+MhpTCXTKEZn1MKaZT2em7Mc458Q8LiTXqCpkYIeiv51Txw8WbwCXckeBB+7Ym/1r5yaLlr7pZCqSqmQiOBmPfCrT/w1bYr1s5xZQqUvyIVmt2qtmiFMz0rDtQBw1jlf82IR1x0eyD3YypkxC5S+XtT3RAisyVFKrVRuCiB/E9WouPxtlDOzcu2eArj35pUYPnI6UNgt8Lmd67/NcxcOWPb35LXxs26mcfe6J5r7XFvNSvziFeIbP/glAG9KE0Uhr6WNq/pcweB3NfzUrauwbecIJs6lXF25Py21/iahUqFclMivyaxcedW+Fnd3uH2MRQyk0lKF0tURcW02aiyz6UxZhaT8xCIG0pniBZKY+mAQELVKH/9Ge9Mx4VBKsNXLPToMjj5415nU+NELw2ir4YWpamXlRfNwp2ajcFOaOATdrCv64hg+Mu7OGjJCeFQI254ccUW60pVDwI2WV9Hr+j5UwRh9H8oTbPjIOCJWrhDW5vUD0h8/lXWj8ZXtRLexVCNEAKlCCDLO1ot6eW81gaNNxWQFkEqXFuJzLUQMmjtdfDNR/xTx9W2/nhjRC7pDayushhqNqjC4ZlkP4rZVNC31VDKT95QS0AQQwTXY6+7CKlp+z5YhPHj7NdjoGIGVcNH3OZXMuMZ4kFN/GzJu5M61Sz3TdmWENIk8hvtqESjvAi/3JivlhhyG91ZQV1r1Hi1mz2kUWQHYZuHz2Ap1Yqqh0Q/6oP1Xk/esLoTYjbYQJLqt48CxSRw9cw5TyUzezaFiOVb3J7BmaQ9MIrdAkUmEZDrjcfFV7d2xdqmbfFHPhbVm2Xxc1BXDX117KfZsGcLjH/szfOrWVejqyOmR9TxbXbGIa8fR3w5ty8Ti7g630qIqkFXoAV7L+dd/e+NgX1mziVIeQmHcq6qNMGc3nVEzNG+vSnjyUP0yEtQymtlM4fMYVCMjiEblbauFMO4X9cIYBkG2lKA+hnWo5+KUtYUg0V1v9drnfne3dFZmBT5wbBIHjk0iIwSilon+rg5ZACuV9bj46u0q92AAntrrujpKrUumM9KNd+eIm2crlRZufMj23aOuasMkwub1A3muyHHbKvgA31Cg4FI56JdwM6ZgCVPlMz2bwfrBhXMuTOr5FlxL03n5rLTDkiwiZHRUtohWEie1HDNVhiJiUV1r5gT1MazraC5mZW0hSHThod7ot+8eRU9nzlaiospVRUP11j81k8bq/gS6YhFPtUN/uwq/0FJt3PXdffj8Ywdx9Mw5VwAk0xm3WmNeSV5nf3odeP+Y9Aeg/lYxfGTcfTsKcuet5K2x2ge3Pj1vtpdUffzKE68a905FUEbfUll5qz0mnVHTdQ0NG7/7csLOpTS/IFK+A0858TT6+Ctx8w4DVV67XIqdq6yoPOloqXNfTt/KefeJWUbFJSY8122IAqbl3X8BeGYQ6r/uPgsACTuCzTfKVPDbnhxx76qJGVlfJB7zRrmrdoePnMYXfnEIw0dO48Hbr3GFlBIukzMpCCFTvqvzolxYVVS8ZchsqkfPnMNd393nJmn0z2TU/tXn5Qs73bcg3XY+MZNyYyDSWYG0z6WyWKLKSjCJPH3QUdPzrljEcRtuHouGPtaMENj14pjnBqr0eKhId/Ub4QYD5fC3lhXShXN8OlVRvZVkOltTPqVi6L1IZ4XH5TXsfeqHN4xZZpBbeCGCMuoWQ8/oHEZfSzVR1j5KbGKQdHWena7MIaczamF6ViW2DS9FSsu7/6oKiW/77BOu//7lC2XshoDX11/WdLfyyuSqlCqLuztc9ZXisk/8iyd5o14OV2XrBYpfhPpNYBLhlS/e4v52cbcMLlXLe7YMedqtlUr8/P3oLtKFaFZXYzd3GsMwHtTz6Ng/bc7MnnwllMlEW6i2gFwKCCFyaVD0Nw1Avp0mMxk3Wh2QKiTloXVHgIpJj4DXs/I+tHsUp6eTbvu6sPEb5S7vi7vTXaVuW92fgEmE1f2JPBWaX61ViHLUJ5W+nek8cfBkyYfxTCrbdEIEyM8eW2/1W7nNN5sasByqUaHMJa1wTGMRo6ixXrlnh+HRVejRoQrdmQHFtGqlLVRbAGBHzMCoVgLcuumAVB3ce9NKV/31+ccOIuF4agFylrG6P+F6a6m0ISp4ULl2bt896upNhZB/er13Pbr9tdNnQc57wPh0Cg/tHnXf9A8cm8SDt1+Tp1IDgM89drDomFs1EKoR1PtYlNt8K56TZDqLmSpjmgoRFLldLc12TIPuvZlUtqixXm0fRqLSQu9+UVPWklEvl2QYoUW2t4UgeWj3qCcQUY9stx3Jq1RPQgD3P/6i+71wttej4o9NnIMQkNl4IVVgekZeQM4olPpp+cJOnJhIuq+l23ePet6IZ9JZV020fGGnK2RU3EjQeLbvHg2sklYI/eJttmjbSnXPtRTvaXbCfIDOFZVeKvp1W+haa7VjUAnlXOqNyGxQbvqYamgL1ZZysVX10JXXS1dHRFYEO5fynDRlBAfgpodX8R6ADNxa3N3h5u8PykGlF6Q6MZlEPCZnPao0b1dHziPGMggP3n4NXvniLZhKZlwho2qYKFQW4207R9xYGH8th0ITX/2a1JeDPLjCun7LVSn0JWIV1aQ4O5uZc/fSuYiPWNEXx5szxfOZVYvq/lyrefy7i0UMTCUz2OgE8s6rwVuulSl1GqoRIrGIEe51GmI9krYwtn/o64943vL1vFiF3uotg2CZBNs0XW+u+3/5ImbSMrHZvTetBJBTUSnV1vKFnZhKZjw1DpS+MZnKwnTeNPRaKKo9VZ9E/c4yCH2JmKtK8+fg6umM1Pzm1gwqrq5YBG8mUw3vh04lXkAKzo9VGZVce+VuW8ksvVqqmTVWcz01muMPfxTJE+GU2m0LQbJv3768rLulIMiaFCqRIgCPp1RXRwTPf3oj7vruvkDPJZW0kUi6FgdlD1UXl6reqLzK/F1U62IRA/M7bdeLjKmesAWoutta+25pfViYV49fQIYpSOqq2iKi7UQ0RkT7tXU9RPQrIhpx/l/orCci2kZEh4noD0R0dSX7UoWmSqGSKdoRw2OnUEGCLs61+szLp9zEioB8QEmVmTx0Kj6lqyPiqQXQ1RHB5c6+1izr8ajNdI8JQi4Hkm2ansJcKwJqYrQT9Rxb2M8aO2LAbAX3oDpSSK0yl0ellYWIZVDDUswYBLzun2WF2JV620geBnCzb90WADuFEAMAdjqfgVwFxgEAdwH4x3J3oldIVIkU/QFoBCmRD49No6czgmQ6i5hluJHld65dijXLetwIeKXuUgYqdflmBTA1k8YNly9wk0SquiJKcGxY1YfN6wfcOiQHjk26RbLsiIkbBha4Lnp2xIAdMV2Dvh6c+Jb5nYEnuxLXvVLXSjnXkt8lUb8XYhEDG6tM2dIMj4Ribq36OGdSWVhznGyvnhHh/jQn5eynVB0TRSxiFHVfr6goWAmaOaOxX2hUK0TCGKKK0PcQ4g1YV0EihHgGwLhv9bsA7HCWdwB4t7b+u0LyGwDdRLSonP3oaUvWLJuPeMzK1YkmeQMkOqS9ISMETk3NQghZOEc3du88NJa3PqZ5falZhxIOe7YM4cCxSUzMpNw08hkhMDw67lGzre5PyPxZjkFe7cckWVRq4lwK8ZjlSYe/becInjh4MtCVL5UWZV+Upa6VUt/7S6Eu7u5A1EnxQABuGFjgxtaEharKF0TYWWpfLxIZ7H9u2pZZkdNArdSrnDEBuO/WVYEFkcLghoEF+OQ7B91z2BXzpnxJZ6uvX++nnHireqSbKQe/4FWut5VStxeuFpqRBNEnhDjuLJ8AoF5nFwP4o7bdn5x1eRDRXUS0j4j2nTp1yhPQp2qfA/Ii2zDY53pgKRbEo26Uuo5K8Kevv/emlVjc3YFP3DKI5z+9EffduioveLArllNrmUSA8AbEKQ8v1c/1gwvdbL/+rMJqG72/lhNApB6wGSHQaVtY3N2Bjav60NUR8QRZAvIaWdEXDyxxWwl6jqFYxMCeLUOwLel+nuiIuMkva0GfFcQsaScKalGmY6nOLbjQ2G3TyHvQxKzcGzUhl6Nt8/oBbF4/UFberlKCngDPTC5o83LPV8l9aV8TZNJPve5NzDJCVaOqUgnqXtl84wDsCnJ5VUJn1MqdK20AKpcdIGPM9HujnJcwdTwqmUToqu1CwquYerDQS1LM8s76TSJX8xK0/7JpJa8tIloC4DEhxBXO5zNCiG7t+zeEEBcS0WMAtgohdjvrdwL4H0KIfcXaV8Z2hSq1CwFP7Ic/n1XY6O0DcOu4q8DGSvdZqL/FxlHqN6v7ExgeHUcylYEdMbFmaQ+eGTmFZCqLy/viODGZRDKdgW2aWLOsB8Oj44AA1izr8Yyj2FhX9ycwfGQcIGDN0tzvABmXo7dfSZt6O+q7Z14+hWQmi8sXxjGVzLjj0/tc6LeqjyoQ1X++1LpC506/zvRjFXTNFTomQePWr11Pf7X2S/W32PErdT+o9XHbxMtjU7BNA2+ZfwEOj03nlaH2t1/seg/6zfDouPd6OzKOZCb/+gg6DqW+149TOcfnmZFTshStZeDem1eW1X99HJX0KegcB50b//EMyslX8HpxjiUgZ9L+e3H77lEMf/69f0xPnb407+KugkYIkpcArBNCHHdUV08LIVYQ0f9ylr/v365Y+35BwjAMw5SGiJ4VQlwTRluNUG39DMAmZ3kTgJ9q6293vLfeDmCilBBhGIZhGk+93X+/D+DfAawgoj8R0Z0AtgLYQEQjAG50PgPAvwA4AuAwgO8AuLuefWtXvnfwe9j46EZ87+D3Gt0VhmHOE9omIJGRbHx0I45PH8eizkV44j1PNLo7DMM0Ka2u2mLqyG2rbsOizkW4bdVtRbfjmQvDMGHBM5LzFJ65MMz5TZgzkrZIIz++YwfGvvo1iNlZRJcvR+o//gMimQQsC2SaINvGBddei7N798r1gLtu5tBBGJ1xzB4+DBgGjM5Od/38TZvQs2kTxnfswOkdOzyfTz3wLWTPngUyGcSHZFXFqV27QNEoOteu9bRL0SgWfvxjeW0BwOkdOxAbXIWze/e67UWXL0f65Elkp6cBx4UvSwQSAoIAw5H9Zm8vxKwMqFtwjzQpnXrgWwCAC669FtN79kDMzACmCaOzEwvuuRs9zn4HewYxdnYMgz2l08owDMMUo+VnJG9duFD8sGd+uI1qmRXJtuXDuthxUoFBxbaxLCkU6nS8ybZdIVlsG7VdMpOEAJC2CH3XD7lCh2wbkUsv9QhWXQAxDNMehDkjaXlBckVHh3jkLUtqa8QwgGyNQZ6WBaTrU2tCR6CGzAZBqYcBwDTdmU8QVv8iDOzaVe1eGYZpQtjYrkG2PTf76ewsvkEpIWKEc6jLESLU2QmYJqIDA7D6FyG+fr38PzQEI5FwZyZk2zASCcTXrQPFYvK3to3owIAUOqYJI5Fw1XAMwzBBtPyM5MpEQvyoPzAlV3NRSLVVaJZQK75ZFtm2a7sRsylkXn89911nJ8T0dO53QiA+NIRLHvimaw8SyaTHrqTsOmJ2FhSNuuovv/0ounw5stNTrjA69cC3PKpCsm1WnTFMA2DVlkZdbCTtSgkVln/bwQP7MTI0hPSx4571yGTy2lLqr7ztte8BFPyOVWcMM7ewaksjO1XfspvtAtk24uvWwepfBLO31/udrrYzDIAI8XXrAADzN21y1WFKDWb1L0J83Tq5PhbzqL/U9rAsgMhVr83ftCnXVizmUa2x6oxhWpuWn5FcEesQjyxZ0uhuNC1GIgEAHtWU3w16wT13Y/q3ezH19NOILluW5z6tttPdooGc67JSdanvpn+713WFVm7PDMM0F6za0gjFayssolFgtnChpIKE4TVWgDy34AD1ltW/COmTY6XVXs5vPWoqn6rL3xarrRimOeGARJ161NqsxJagU40QAYBsFmZvr8cAHhZ5sSUB40qfHMsdx2JCzVmfPn5CHiMg5yjg/E+Pncq1ZZrITk3jj/d82DNrcQ31ySRA5DHWMwzTerT+jOSCC8Qjl74l/Ibr5U11nlBs1lJoVsQzF4aZO3hGolOvh3292iUCIpG82YvZ24vMmTNzEtRYM6YJikQKHiOy7aJ2lKAZCRvcGaZ1aQNB0ugOVIgQgSowMTsbrhAxDFA0CopGXQM7AI/BXBnFYRggy8qLE9Ef+npesUse+GbZ3WB1FcO0P60vSOpgImkE2cnJkBvMAkJAJJM4u3evJ2BwevdunNz6JcSHhjB46GC4+2UY5ryj9W0kzeS11cyYJuLr1mHq6ac99gkjkYDV1yeTNDp2ofjQEDqvu9aTmbichJBsMGeY1oHdfzXqFkdiGKBIpOQDtBLM3l5k3nhDftCNzUGeUrW6BAc5C5TrjWaasPoWeg3lZcAGc4ZpHdjYXglVel9RJIKVzz+HQ6uvqM4V2Ed8/XoAyJsRAAjuX41xJRSN5qe/F0JGmy9fjtkjR9x+eHJtOdtlTo/LKPRoVLolE0nhpryuAO9yNgujM46RoSFvXi1f/Rc1uylmj/ELb/9sp1B9GP13+v4AFLQTAQisD6PXo1H7VLVedDXh2Ne+DpFMujnFjM44ZkdGAMhzXok9iWFaldafkdRLtUWEwUMHcWhwVTgeXIVqlhDJoMGZmdr3ETa6ECaCMW+etOVoy0Yigeybb9Y9GaVeS8UVTrEYKBqt3r6kz7Yc7zGPEHPGueCeu3F6xw43T1ipvGJ6+4MH9lfXN4apM5xrS6ceAYkAosuX46Xr1uTeuIPQU8NbVvFthcj/3jBgzJuHzuuv96R7VyndG44mCDzp+p31KlYkUGCE/IIiZmeRnZz0POhFMlmbk4I+MxTCrTapr8tOTrozFiORyMsrRrGYJ6dYdGDA/bnKV8Yw7U7rz0jqFZBYx7QlQag37gX33I03Hv2xqx5pZJ886OostUqPxi9S2KtQ1L7Z24vM6dPyg6N2UzMAID8GJahUsl8VJjIZT7niYqo118lAK7EcpApjJwKmHWFju0bdBEmjqDY9S6Mp1u8C3+WllmdVEMPMGaza0glDtUVUNxVZIMWqJTajEDEMqdryqeY86ee1Y2j29noqLrop523bTSGvVES6eohVQQzTmrT8jOTK7m7xo4sWFd6gBXNmUSxWkfE9OjAQrAoLqz+O2s01qquYlF27vMdWO9ZGIoELrr0W07t3Q8zOVhwRzzBMfWHVlgYHJDaIat2qbZtrlDBME8CqLQ1j3rzwG41Gy9t3IiG9dEyz7N+0DcXUc0UQySROfvl+jAwNYXzHjpA7xTBMI2j5gMTopZfCMMzQclW5ahzH+6cYSnWDMrZtO2oZbyaD9LHjOLn1S+6qsa9+jVVgDNOitLxq66qlS8X37SaJu2BKo0fIgz23GKZRsGpLw41DYGrC7O2VD3nLkn8KpcIyzZzXlpNy3kgk3CDK+Pr1+YGUyhPOsmAkEuj7xBYMHjqIvv9+rye4b/6mTdIrjD23GKYlaYsZyQ+6unNeTk3opZWXy2qusSwYF1zgBtllp6bc8r5idtaT+2p6zx43d1T65EkAHJDHMO0Iz0h8ePIjNZkQAdBYIQIA6TSyk5NuXRLroj4AQOaNN9y0I9nJSUw9/bQUyEJgdmQE2clJN0UIwzBMIVpekKRPnqxeeMxlEGK5KPVSHdDzRln9izyBgkYigfi6dZ7cUf7cUgzDMEG0vNcWsjXMQJpw9hIa0ai3pK9hwIjH3dTorKpiGCYsmk6QENHNAL4BwATwv4UQW4v/YC56NYcIEU7tdn8m22w2sKaHv/aGvr6c+h2qDkhQ/Q//b9zEi06dFL0miV5DnqJRLPz4x9z2AbiJHP11RwC4KeAL1Tvx1xXRa5kUWscwTPk0lbGdiEwALwPYAOBPAPYC+GshRMHC4m2XtLGeOLVPVC13tQ5C5NfY0BMtOsu6q26e2662XaHfBCZv1LZLnxwr6BYcuD8//va1tlXlRjW+UusYpt1pZ2P7dQAOCyGOCCFmAfwAwLuK/qIZ7RzNihAQMzOBzgnpY8dxaOVg7kGtP5Cd5fSx4+73+rLrMpzJ5NyFA34TGMSYyQBEchu9lnxnHOmxU7nNTo/D6IznfmeaUihq9iTzwgvzbD5W/yKPjUfZh0qtYximfJptRvIeADcLIf7G+XwbgDVCiA/7trsLwF0AYAFXrLBjdl5jBRAQ2elsdjJumN2FthlLp/8IAAss65KwxZRA+2nj0hCzJiga5riCjpO+Lg0x+1Iy+cIK277SAkXV9weTM8+G2A2GaWfeIoRYEEZDTWcjKQchxIMAHmx0PxiGYZjmU20dBXCJ9vliZx3DMAzTpDSbINkLYICIlhJRFMD7AfyswX1iGIZhitBUqi0hRJqIPgzgcUj33+1CiAMN7hbDMAxThKYytjMMwzCtR7OpthiGYZgWgwUJwzAMUxMsSBiGYZiaYEHCMAzD1AQLEoZhGKYmWJAwDMMwNcGChGEYhqkJFiQMwzBMTbAgYRiGYWqCBQnDMAxTEyxIGIZhmJpgQcIwDMPUBAsShmEYpiZYkDAMwzA10VT1SKqht7dXLFmypNHdYBiGaSmeffbZ18/rmu06S5Yswb59+xrdjbqyZMsvPJ9f3frOBvWEYZh2gYheC6utlhck5yO6YGGhwjBMo2FB0kaUO3PhGQ7DMGHCgqTF8QsFhmGYuYYFSRtTjQqM1WYMw1QKCxKGZzUMw9QECxKmIGxLYeYCngW3Pm0tSPgCbQyFjnsxwcTnqjbmUug36lzN5X75eqyMthYkrUzY6qYw2purm6tcgeMn7D6VO94w+tQMD65m6MP5QDvO9M8bQdKOJ6+RlCuYim3XjMKy2a6Laq/bamaF9aRa1/R6Uu99NZuzSz3He94IEoYph3rebK08Kwy7jVZy8JhLgTOX+w2TthMk9XzLreatopLfMcE0ww0VxswgbMKYFc5VH+Zyv80wA/PTDNdwPWk7QcIwc0G7PJzb8QHXLjOhVuK8FSRhG0ir2Y5nKgzDtAMtL0heODoxZ28Z/DbDMAyTT8sLklamWfS3DMMwtcAVEhmGYZia4BlJAM3oicIwDNOs8IyEYRiGqQkWJAzDMExNsCBhGIZhaoIFCcMwDFMTLEgYhmGYmmBBwjAMw9QECSEa3YeaIKI3AbzU6H7UkV4Arze6E3WkncfXzmMDeHytzgohxLwwGmqHOJKXhBDXNLoT9YKI9vH4WpN2HhvA42t1iGhfWG2xaothGIapCRYkDMMwTE20gyB5sNEdqDM8vtalnccG8PhandDG1/LGdoZhGKaxtMOMhGEYhmkgLEgYhmGYmmhpQUJENxPRS0R0mIi2NLo/1UBErxLRC0T0nHLHI6IeIvoVEY04/y901hMRbXPG+wciurqxvc+HiLYT0RgR7dfWVTweItrkbD9CRJsaMZYgCozvM0R01DmHzxHRLdp3n3DG9xIR3aStb7prl4guIaKniOggER0goo8469vi/BUZX7ucvxgR/ZaInnfG91ln/VIiGnb6+kMiijrrbefzYef7JVpbgeMuiBCiJf8AmABeAbAMQBTA8wBWNbpfVYzjVQC9vnVfBrDFWd4C4EvO8i0A/hUAAXg7gOFG9z9gPDcAuBrA/mrHA6AHwBHn/4XO8oWNHluR8X0GwN8FbLvKuS5tAEud69Vs1msXwCIAVzvL8wC87IyhLc5fkfG1y/kjAHFnOQJg2DkvPwLwfmf9twF8yFm+G8C3neX3A/hhsXEX23crz0iuA3BYCHFECDEL4AcA3tXgPoXFuwDscJZ3AHi3tv67QvIbAN1EtKgRHSyEEOIZAOO+1ZWO5yYAvxJCjAsh3gDwKwA317/3pSkwvkK8C8APhBBJIcQogMOQ121TXrtCiONCiN85y28COARgMdrk/BUZXyFa7fwJIcSU8zHi/AkAQwAeddb7z586r48CWE9EhMLjLkgrC5LFAP6off4Til8UzYoA8AQRPUtEdznr+oQQx53lEwD6nOVWHXOl42nFcX7YUe9sV6oftPD4HDXHf4J8q2278+cbH9Am54+ITCJ6DsAYpAB/BcAZIUTa2UTvqzsO5/sJAPNRxfhaWZC0C2uFEFcDeAeAe4joBv1LIeeabeOj3W7jcfhHAJcBuArAcQBfaWx3aoOI4gB+DOCjQohJ/bt2OH8B42ub8yeEyAghrgJwMeQsYuVc7LeVBclRAJdony921rUUQoijzv8xAP8H8uSfVCor5/+Ys3mrjrnS8bTUOIUQJ50bOAvgO8ipAVpufEQUgXzI/rMQ4ifO6rY5f0Hja6fzpxBCnAHwFID/DKlyVHkV9b6643C+7wJwGlWMr5UFyV4AA45HQhTSWPSzBvepIoiok4jmqWUAGwHshxyH8nTZBDv2E1YAAAShSURBVOCnzvLPANzueMu8HcCEpnJoZiodz+MANhLRhY6aYaOzrinx2an+EvIcAnJ873e8Y5YCGADwWzTptevoxx8CcEgI8VXtq7Y4f4XG10bnbwERdTvLHQA2QNqBngLwHmcz//lT5/U9AHY5M85C4y5Moz0NavmD9Bp5GVIP+PeN7k8V/V8G6R3xPIADagyQesqdAEYAPAmgR+S8Mh5wxvsCgGsaPYaAMX0fUj2QgtSt3lnNeADcAWnkOwzgvzV6XCXG9z2n/39wbsJF2vZ/74zvJQDvaOZrF8BaSLXVHwA85/zd0i7nr8j42uX8vRXA751x7AfwD876ZZCC4DCARwDYzvqY8/mw8/2yUuMu9McpUhiGYZiaaGXVFsMwDNMEsCBhGIZhaoIFCcMwDFMTLEgYhmGYmmBBwjAMw9QECxKm5SCibiK6W/vcT0SPFvtNjfu7Ss8I20iIqIOI/o2IzBrbuZKIHg6pW8x5DgsSphXphsxcCgAQQhwTQrynyPa1chVk3EAzcAeAnwghMrU0IoR4AcDFRHRpON1izmdYkDCtyFYAlzm1I+4noiXk1Achog8S0f8lWTfjVSL6MBF9nIh+T0S/IaIeZ7vLiOiXTrLM/0dEK5317yWi/U5Nh2ecyOX/CeB9zv7eR0TXEdG/O23+mohWVLjvp4noG057+4noOmf9n1GuJsbvVdYDHx+AE5lMROuc2clPiegIEW0log+QrEnxAhFdFjQmra2fQ0ZlM0xtNDoak//4r9I/AEvgrQfifgbwQchI3XkAFkBmNP1b57uvQSbqA2Sk9oCzvAYyPQQgI5wXO8vdWpvf1PaXAGA5yzcC+HGF+34awHec5Ru0vv8cwPXOclztQ9tvFMAJ7fM6AGcg62zYkPmQPut89xEAXy80Jmf5egA/b/T55L/W/1OJvBimnXhKyHoTbxLRBOQDGpAP1LeSzP76XwA8ItMvAZAPYgDYA+BhIvoRgJ8gmC4AO4hoADLlRqTcfWvbfR+Q9U2IKOHkSNoD4KtE9M+Q6qs/+fbbCyk4dPYKJ98aEb0C4Altf39eYkxjAPoLjJFhyoZVW0w7ktSWs9rnLAAL8ro/I4S4SvsbBAAhxN8CuA8y++mzRDQ/oP3PQQqMKwD8BWTOonL3rfDnJhJCiK0A/gZAB4A9St2mcc63r7L2V2RMMadNhqkJFiRMK/ImpPqoKoSsQTFKRO8F3Nrjb3OWLxNCDAsh/gHAKciHr39/Xcil1f5gld14n7O/tZBZcyecfb8ghPgSZIZZjyARstqgSUR+YVKUAmMCgMuRy3TLMFXDgoRpOYQQpyHf2PcT0f1VNvMBAHcSkcq8rEql3u8YqvcD+DVkZuanAKxSxnbIGuZfJKLfA1Wrh2ec338bMoMwAHzUGdMfILML/2vA756AzGJbCUFjAqTq6xeVd51hvHD2X4aZY4joaQB/J4TYV8VvrwbwMSHEbTX2wQbwb5AVOtOltmeYYvCMhGFaCCHE7wA8VWtAIoBLAWxhIcKEAc9IGIZhmJrgGQnDMAxTEyxIGIZhmJpgQcIwDMPUBAsShmEYpiZYkDAMwzA18f8BlFa3yZUmOT8AAAAASUVORK5CYII=n”, “text/plain”: [

“<Figure size 432x288 with 2 Axes>”

]

}, “execution_count”: 12, “metadata”: {}, “output_type”: “execute_result”

}

], “source”: [

“from bmtk.analyzer.spike_trains import plot_raster, plot_rates_boxplotn”, “n”, “plot_raster(config_file=’sim_ch04/config.json’, group_by=’pop_name’)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“and the rates of each node”

]

}, {

“cell_type”: “code”, “execution_count”: 13, “metadata”: {}, “outputs”: [

{
“data”: {

“image/png”: “iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAajElEQVR4nO3df5yVdZ338dd7BhTEkJmYjDScNFw1VikH1LR2p8wyLbtNTW63XGRhvfWe7GE6mthKbbi2Pqy82VZCwbQ7RklTMG3TNShpUxnSEsXS/BXeKBhjKisCw+f+41zgYZwZzgznOr+u9/PxmMdc1/f6cT5zGN7zPd9zneuriMDMzLKjrtwFmJlZaTn4zcwyxsFvZpYxDn4zs4xx8JuZZYyD38wsYxz8ZiUmaamkfyh3HZZdDn6rKZL+Q9LXe2k/SdILkoZIapW0RNJfJD2zk/M1SwpJd/Vo/7+SZha3erPScPBbrbkB+DtJ6tH+eeCHEbEF2ADMBy4cwHmPkPTBItVoVlYOfqs1twNvBz60rUFSA3AicCNARDwYET8AnhrAef8VmNXXRknTJD0pab2kxZLelbftY5IeT15h/BugHseeJWmVpC5JP5O0X9IuSd+WtFbSK5IekTR+ADWb9crBbzUlIl4HFgJfyGs+DXg8In67C6f+d+BAScf23CDpI8C/JI8zBngWuCnZNhr4MXApMBr4I3B03rEnAZcAJwNNwH1AR7L5OODDwIHAXsn5/7wLP4MZ4OC32nQDcIqkYcn6F5K2XfE6uR7/N3rZdgYwPyJ+ExFvAF8BjpLUDHwSeDQibomIzcB3gBfyjj0b+JeIWJUMQ10OTEh6/ZuBtwEHAUr2WbOLP4eZg99qT0QsA14CPiPpAGASsKAIp74O2FvSp3q0v4tcL3/b479Grme+T7LtT3nbIn8d2A+4WtLLkl4G1pMbCtonIn4O/BvwXWCtpLmSRhbh57CMc/BbrbqRXE//74CfRcSLu3rCiNgEfA34Z3Ycp/9/5AIcAEkjyL3P8DywBnh33jblr5P7I/CPETEq72t4RPxX8pj/JyIOBw4hN+QzkDekzXrl4LdadSNwLDCNHsM8kuqSYaChuVUNk7Rbgef9ATAM+EReWwcwRdIESbuTG655ICKeAe4E3ifpZElDgC8C78w7dg7wFUnvS2rbS9KpyfJESUdIGkruSqSNwNbCnwKz3jn4rSYloftfwAhgcY/NHyY3Zn8XMDZZvrvA83YD/wQ05rX9J/BV4FZyPfwDgNOTbS8BpwJXkBv+GQf8Ku/Y24BvAjdJegVYCRyfbB4JXAt0kRtK+jNwZSF1mvVHnojFzCxb3OM3M8sYB7+ZWcY4+M3MMsbBb2aWMUPKXUAhRo8eHc3NzeUuw8ysqqxYseKliGjq2V4Vwd/c3ExnZ2e5yzAzqyqSnu2t3UM9ZmYZ4+A3M8sYB7+ZWcY4+M3MMsbBb2aWMQ5+M7OMcfCbmWWMg9/MLGNS/QCXpGeAV4FuYEtEtEhqBG4GmoFngNMioivNOnZVbtKk4vGtsM2snErR42+NiAkR0ZKsXwzcGxHjgHuT9YoWEQV9FbqvmVk5lWOo5yTenArvBuAzZajBzCyz0g7+AO6WtELS9KRt74hYkyy/AOzd24GSpkvqlNS5bt26lMs0M8uOtG/SdkxEPC/pHcA9kh7P3xgRIanXsY+ImAvMBWhpafH4iJlZkaTa44+I55Pva4HbgEnAi5LGACTf16ZZg5mZ7Si14Jc0QtLbti0DxwErgcXAmcluZwKL0qrBzMzeKs2hnr2B25JLIYcACyLiPyQtBxZKmgo8C5yWYg1mZtZDasEfEU8Bh/XS/mfgo2k9rpmZ9c+f3DUzyxgHv5lZxjj4zcwyxsFvZpYxDn4zs4xx8JuZZYyD38wsYxz8ZmYZ4+A3M8sYB7+ZWcY4+M3MMsbBb2aWMQ5+M7OMcfCbmWWMg9/MLGMc/GZmGePgNzPLGAe/mVnGOPjNzDLGwW9mljEOfjOzjHHwm5lljIPfzCxjHPxmZhnj4DczyxgHv5lZxjj4zcwyxsFvZpYxDn4zs4xx8JuZZUzqwS+pXtJDkn6SrL9H0gOSnpR0s6Td0q7BzMzeVIoe/3nAqrz1bwLfjoj3Al3A1BLUYGZmiVSDX9K+wAnAdcm6gI8AtyS73AB8Js0azMxsR2n3+L8DtANbk/W3Ay9HxJZkfTWwT28HSpouqVNS57p161Iu08wsO1ILfkknAmsjYsVgjo+IuRHREhEtTU1NRa7OzCy7hqR47qOBT0v6JDAMGAlcDYySNCTp9e8LPJ9iDWZm1kNqPf6I+EpE7BsRzcDpwM8j4gxgCXBKstuZwKK0aihEY2MjkoryBRTtXI2NjeV8WsyshqXZ4+/LRcBNkr4BPATMK0MN23V1dRER5SyhV9v+kJiZFVtJgj8ilgJLk+WngEmleFwzM3srf3LXzCxjHPxmZhnj4DczyxgHv5lZxjj4zcwyxsFvZpYxDn4zs4xx8JuZZYyD38wsYxz8ZmYZ4+A3M8sYB7+ZWcbs9CZtkt5B7t767wJeB1YCnRGxtd8DzcysIvUZ/JJagYuBRnK3T15LbkKVzwAHSLoFuCoiXilFoWZmVhz99fg/CUyLiOd6bpA0BDgR+Bhwa0q1mZlZCvoM/oi4sJ9tW4DbU6nIzMxStdM3dyV1S7pCeVNCSfpNumWZmVlaCrmq59Fkv7slbZsI1vMCmplVqUKCf0tEtAPXAfdJOhyovElqzcysIIXMuSuAiLhZ0qPAAmBsqlWZmVlqCgn+f9i2EBErJX0IOCm9kszMLE39Xcd/ct7yfj02v5ZaRWZmlqr+evyf6rF8R956AD9OpSIzM0tVf9fxT9m2LOmh/HUzM6tehd6kzVfxmJnVCN+d08ysQB0dHYwfP576+nrGjx9PR0dHuUsalP7e3L2DN3v6+0tanL89Ij6dZmGlEpeNhJl7lbuMt4jLRpa7BDPL09HRwYwZM5g3bx7HHHMMy5YtY+rUqQBMnjy5zNUNjCJ6H8WR9Df9HRgRv0ilol60tLREZ2dnKueWRF/PQTlVal1mWTV+/Hhmz55Na2vr9rYlS5bQ1tbGypUry1hZ3yStiIiWt7RXQ7g4+M2s3Orr69m4cSNDhw7d3rZ582aGDRtGd3d3GSvrW1/B3+cYv6Q7JH1K0tBetu0v6euSzip2oWZmlejggw9m2bJlO7QtW7aMgw8+uEwVDV5/b+5OAz4EPC5puaS7JP1c0lPA94AVETG/r4MlDZP0oKTfSnpU0teS9vdIekDSk5JulrRbUX8iM7MUzJgxg6lTp7JkyRI2b97MkiVLmDp1KjNmzCh3aQPW33X8LwDtQLukZmAMuakX/xAR/13Aud8APhIRryWvGpZJ+ilwPvDtiLhJ0hxgKnDNrv0YZmbp2vYGbltbG6tWreLggw9m1qxZVffGLpRojF/SHsAy4H8BdwLvjIgtko4CZkbEx/s73mP8ZmYDN+Ax/iI9aL2kh8nN13sP8Efg5WQGL4DVwD5p1mBmZjtKNfgjojsiJgD7ApOAgwo9VtJ0SZ2SOtetW5dajWZmWTOg4JfUIOnQgT5IRLwMLAGOAkYlk7VD7g/C830cMzciWiKipampaaAPaWZmfShkzt2lkkYm0y7+BrhW0rcKOK5J0qhkeTjwMWAVuT8ApyS7nQksGmzxZmY2cIX0+PeKiFeAk4EbI+II4NgCjhsDLJH0O2A5cE9E/AS4CDhf0pPA24F5gyvdzMwGo5AZuIZIGgOcBhR8wWpE/A54fy/tT5Eb7zczszIopMf/deBnwB8jYrmk/YEn0i3LzMzSstMef0T8CPhR3vpTwGfTLMrMzNJTyJu7B0q6V9LKZP1QSZemX5qZmaWhkKGea4GvAJth+9j96WkWZWZWiWp+IpY8e0TEg5Ly27b0tbOZWS2qpYlYCunxvyTpAJLZuCSdAqxJtSozswoza9Ys5s2bR2trK0OHDqW1tZV58+Yxa9ascpc2YDu9SVtyFc9c4INAF/A0cEZEPJt+eTm+SZuZlVsmJmLJExFxLNAEHBQRxxR4nJlZzcjKRCzb3AoQERsi4tWk7Zb0SjIzqzyZmIhF0kHA+4C9JJ2ct2kkMCztwszMKkktTcTS31U9fwWcCIwCPpXX/iq5aRnNzDJl8uTJVRn0PfU39eIiYJGkoyLi1yWsyczMUlTIdfwPSTqX3LDP9iGeiDgrtarMzCw1hby5+wPgncDHgV+Qmzzl1X6PMDOzilVI8L83Ir4KbIiIG4ATgCPSLcvMzNJSSPBvTr6/LGk8sBfwjvRKMjOzNBUyxj9XUgNwKbAY2BP4aqpVmZlZagq5H/91yeIvgf0BJI1NsygzM0tPv0M9ko6SdIqkdyTrh0paAPyqJNWZmVnR9Rn8kq4E5pObbetOSd8A7gYeAMaVpjwzMyu2/oZ6TgDeHxEbkzH+PwHjI+KZklRmZmap6G+oZ2NEbASIiC7gCYe+mVn166/Hv7+kxXnr78lfj4hPp1eWmZmlpb/gP6nH+lVpFmJmVm49ppjdZZU6mVJ/N2n7RSkLMTMrt0KDutpnyPNMWmZmGePgNzPLGAe/mVnG7PSWDZLuAHoOZv0F6AS+t+2STzMzqw6F3KTtKaAJ6EjWP0fufvwHAtcCn0+ntNIp9jv5xdDQ0FDuEsysRhUS/B+MiIl563dIWh4REyU9mlZhpVLMd+ar/Z1+M8uGQsb498y/G2eyvGeyuqmvgyS9W9ISSY9JelTSeUl7o6R7JD2RfHfX1syshAoJ/i8Dy5IQXwrcB1wgaQRwQz/HbQG+HBGHAEcC50o6BLgYuDcixgH3JutmZlYihdyP/y5J44CDkqbf572h+51+jlsDrEmWX5W0CtiH3CeC/zbZ7QZgKXDRYIo3M7OBK2SMH+BwoDnZ/7BkLPvGQh9EUjPwfnK3dN47+aMA8AKwdx/HTAemA4wd63lfzMyKpZDLOX8AHAA8DHQnzQEUFPyS9gRuBb4UEa/kX0ETESGp13dDI2IuMBegpaXF75iamRVJIT3+FuCQGMTlKpKGkgv9H0bEj5PmFyWNiYg1ksYAawd6XjMzG7xC3txdCbxzoCdWrms/D1gVEd/K27QYODNZPhNYNNBzm5nZ4BXS4x8NPCbpQeCNbY0F3I//aHIf7npE0sNJ2yXAFcBCSVOBZ4HTBly1mZkNWiHBP3MwJ46IZUBfH4n96GDOaWZmu66Qyzl9X34zsxrSZ/BLWhYRx0h6lR1v0iZyF+SMTL06MzMruv5m4Dom+f620pVjZmZp6/eqHkn1kh4vVTFmZpa+foM/IrqB3+ffpM3MzKpbIVf1NACPJpdzbtjWWMDlnGZmVoEKCf6vpl6FmZmVjC/nNDPLGF/OaWaWMf31+M8AX85pZlZr+ruq57ZtC5JuLUEtZmZWAv0Ff/59dvZPuxAzMyuN/oZ6oo9lM7Oq09jYSFdXV9HOlz+p1K5oaGhg/fr1RTlXofoL/sMkvUKu5z88WQa/uWtmVairq4tBzCeVumL9ARmI/u7VU1/KQszMrDQKmYHLzMxqiIPfzCxjHPxmZhnj4DczyxgHv5lZxjj4zcwyxsFvZpYxDn4zs4wpZCIWM7OqF5eNhJl7lbuMt4jLSn8TBAe/mWWCvvZKxd6yIWaW9jE91GNmljEOfqsoHR0djB8/nvr6esaPH09HR0e5SzKrOQ5+qxgdHR2cd955bNiwgYhgw4YNnHfeeQ5/syJz8FvFaG9vp76+nvnz5/PGG28wf/586uvraW9vL3dpZjXFwW8VY/Xq1UyZMoW2tjaGDRtGW1sbU6ZMYfXq1eUuzaympBb8kuZLWitpZV5bo6R7JD2RfG9I6/GtOl1//fXMnj2bjRs3Mnv2bK6//vpyl2RWc9Ls8X8f+ESPtouBeyNiHHBvsm4GwJAhQ9i0adMObZs2bWLIEF91bFZMqf2PiohfSmru0XwS8LfJ8g3AUuCitGqw6tLd3U1dXR1nnXUWzz33HGPHjqWuro7u7u5yl2Y1ohzTHO5MQ0PpBz5K3ZXaOyLWJMsvAHv3taOk6cB0gLFjx5agNCu3Qw45hHHjxvHTn/6UrVu3smbNGo4//nieeOKJcpdmNaCYH96SVJEfBitU2d7cjdyz1uczFxFzI6IlIlqamppKWJmVS2trK4sXL2bUqFFIYtSoUSxevJjW1tZyl2ZWU0od/C9KGgOQfF9b4se3Cnb77bczcuRIhg8fjiSGDx/OyJEjuf3228tdmllNKXXwLwbOTJbPBBaV+PGtgq1evZqFCxfy9NNP093dzdNPP83ChQt9OadZkaU2xi+pg9wbuaMlrQYuA64AFkqaCjwLnJbW4xfTQN4QKmTfah4bNLPql+ZVPZP72PTRtB4zLQ7q4urvj+Nxxx034GP872M2MP7krpVcRPT6tWDBApqammhubgagubmZpqYmFixY0OcxDn2zgXPwW8WYPHkyV199NSNGjABgxIgRXH311Uye3NeLRzMbDFVDj6mlpSU6OzvLXYaVULVfJ221rVp+PyWtiIiWnu3u8ZuZZYyD38wsYxz8ZmYZ4+A3M8sYB7+ZWcY4+M3MMsbBb2aWMQ5+M7OMcfCbmWWMg9/MLGMc/GZmGePgNzPLGAe/mVnGOPjNzDLGwW9F1djYiKRd/gKKch5JNDY2lvlZMassqU29aNnU1dVVcfcpH8icyWZZ4B6/mVnGOPjNzArU1tbGsGHDABg2bBhtbW1lrmhwHPxmZgVoa2tjzpw5XH755QBcfvnlzJkzpyrD33PuWlFV4lyklViTVaZivx9U7t87z7lrZrYTEdHnF8CGDRt2aNuwYUO/x1UqX9VjRRWXjYSZe5W7jB3EZSPLXYLVgN133505c+Zw/vnnb2+bM2cOu+++exmrGhwHvxWVvvZKxfV0JBEzy12FVbtp06ZxwQUX0N7eTnd3N/X19WzdupVzzz233KUNmIPfzKxAEUF3dzfA9u/VyGP8ZmYFuOaaa6irq+Oqq65iw4YNXHXVVdTV1XHNNdeUu7QBc/CbmRWgu7ubSZMmcckllzBixAguueQSJk2aVJU9fw/1WNFV2i0SGhoayl2C1Yj777+f+vp6ALZs2cL9999f5ooGpyw9fkmfkPR7SU9KurgcNVg6+rscbiBfxTzX+vXry/ysWC054YQTWLduHSeccEK5Sxm0kvf4JdUD3wU+BqwGlktaHBGPlboWs0rW2NhIV1dXuct4i4aGhkz/Mb3zzjtpamra3vOvRuUY6pkEPBkRTwFIugk4CXDwZ0ShQ0GF7ldpl48Wy/ovdgOV+BmE6hvTLpYjjzyShx56iO7uboYMGcLEiROrcrinHMG/D/CnvPXVwBE9d5I0HZgOMHbs2NJUZiVRq0FddDP/Uu4KLE9dXR0PPvggV155JWeffTZz5szhwgsvpK6u+q6RqdiKI2JuRLREREtTU1O5yzGzjDvnnHOICNrb2xkxYgTt7e1EBOecc065SxuwcvT4nwfenbe+b9JmZlaxZs+eDcC11167fahn2rRp29urScnvzilpCPAH4KPkAn858D8j4tG+jvHdOc3MBq6vu3OWvMcfEVsk/W/gZ0A9ML+/0Dczs+Iqywe4IuIu4K5yPLaZWdZV7Ju7ZmaWDge/mVnGOPjNzDKmKubclbQOeLbcdRRgNPBSuYuoEX4ui8vPZ3FVy/O5X0S85YNQVRH81UJSZ2+XTtnA+bksLj+fxVXtz6eHeszMMsbBb2aWMQ7+4ppb7gJqiJ/L4vLzWVxV/Xx6jN/MLGPc4zczyxgHv5lZxjj4zWqMpG5JD0taKelHkvaQtETSx3vs9yVJ15SrznKRNEPSo5J+lzxPb5kIahfO/WFJv5G0RdIpxTpvsTn4AUmv9dI2U9IFyfL3JT2d/JI8LOmLpa+yuhTzOZV0l6RRO3m8pZKq9rrqIns9IiZExHhgE3A20AGc3mO/05P2zJB0FHAi8IGIOBQ4lh1nBNxVzwF/Dywo4jmLrix356xSF0bELeUuosYU9JxGxCdLUUyNug84FLgU+Iak3SJik6Rm4F3J9iwZA7wUEW8ARMRLAJImAlcDI4A3yM0X8lng08AewAHAbRHRnuz/WrL/icDrwEkR8WJEPJNs35r/oJL2BBYBDcBQ4NKIWJTqT9oP9/iLTNJxkn6dvNz7kaQ9Je0n6QlJoyXVSbpP0nHJ/hdJekTSbyVdUe76K5GkZ5LnrlnSKknXJi/V75Y0PG/XUyU9KOkPkj5UtoIrRDLp0fHAIxGxHngwWYdcb39hZO+yvruBdye/I/8u6W8k7QbcDJwXEYeRexXwerL/BOBzwF8Dn5O0bfbAEcD9yf6/BKbt5HE3Av8jIj4AtAJXSVJRf7IBcPAX7sq8YYm/7m0HSaPJ9ayOTf6BO4HzI+JZ4JvANcCXgcci4m5JxwMnAUckv0D/WpKfpHLs9DntxTjguxHxPuBlcr2ybYZExCTgS8BlRa61mgyX9DC537/ngHlJe/5wT+aGeQAi4jXgcGA6sI5c4P8jsCYilif7vBIRW5JD7o2Iv0TERuAxYL+kfRPwk2R5BdC8k4cWcLmk3wH/CewD7F2UH2oQPNRTuEKGJY4EDgF+lfwx3w34NUBEXCfpVHLjrROS/Y8Fro+I/072WZ9G4RVsMMNnT0fEw8lyz/9wP+6jPWtej4gJvbQvAr4t6QPAHhGxosR1VYSI6AaWAkslPQKc28/ub+Qtd/NmZm7Oe7WU396XM4Am4PCI2CzpGWDYAEsvGgd/cQm4JyImv2WDtAe5ieUB9gReLWVhNaTnf8ThvWwr5D9i5kTEa5KWAPPJYG8fQNJfAVsj4omkaQKwCviEpIkRsVzS23hzqKdY9gLWJqHfypuvHMrCQz3FdT9wtKT3AkgaIenAZNs3gR8C/wRcm7TdA0xJ/iggqbHE9Vr2dACHkdHgJ9fpukHSY8mwyyHk/k9+Dpgt6bfk/l8OqjcuaaKk1cCpwPckbZtP/IdAS/IK4wvA47v4c+wS94py9kj+sbb51mBOEhHrJP090CFp96T5UkljgInA0RHRLemzkqZExPWSJgCdkjaRm4f4kl34OSpJUZ5TG7iI2LOfbbeTe2WaScnw1gd72fQSuaHafN9PvrYde2Le8p55y7cAtyTLy3nzlX3+474EHDX4yovL9+oxM8sYD/WYmWWMh3oGSdIDwO49mj8fEY+Uo55a4OfUrDQ81GNmljEe6jEzyxgHv5lZxjj4zcwyxsFvZpYx/x/KqO9zbuOluwAAAABJRU5ErkJggg==n”, “text/plain”: [

“<Figure size 432x288 with 1 Axes>”

]

}, “metadata”: {

“needs_background”: “light”

}, “output_type”: “display_data”

}, {

“data”: {

“image/png”: “iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAajElEQVR4nO3df5yVdZ338dd7BhTEkJmYjDScNFw1VikH1LR2p8wyLbtNTW63XGRhvfWe7GE6mthKbbi2Pqy82VZCwbQ7RklTMG3TNShpUxnSEsXS/BXeKBhjKisCw+f+41zgYZwZzgznOr+u9/PxmMdc1/f6cT5zGN7zPd9zneuriMDMzLKjrtwFmJlZaTn4zcwyxsFvZpYxDn4zs4xx8JuZZYyD38wsYxz8ZiUmaamkfyh3HZZdDn6rKZL+Q9LXe2k/SdILkoZIapW0RNJfJD2zk/M1SwpJd/Vo/7+SZha3erPScPBbrbkB+DtJ6tH+eeCHEbEF2ADMBy4cwHmPkPTBItVoVlYOfqs1twNvBz60rUFSA3AicCNARDwYET8AnhrAef8VmNXXRknTJD0pab2kxZLelbftY5IeT15h/BugHseeJWmVpC5JP5O0X9IuSd+WtFbSK5IekTR+ADWb9crBbzUlIl4HFgJfyGs+DXg8In67C6f+d+BAScf23CDpI8C/JI8zBngWuCnZNhr4MXApMBr4I3B03rEnAZcAJwNNwH1AR7L5OODDwIHAXsn5/7wLP4MZ4OC32nQDcIqkYcn6F5K2XfE6uR7/N3rZdgYwPyJ+ExFvAF8BjpLUDHwSeDQibomIzcB3gBfyjj0b+JeIWJUMQ10OTEh6/ZuBtwEHAUr2WbOLP4eZg99qT0QsA14CPiPpAGASsKAIp74O2FvSp3q0v4tcL3/b479Grme+T7LtT3nbIn8d2A+4WtLLkl4G1pMbCtonIn4O/BvwXWCtpLmSRhbh57CMc/BbrbqRXE//74CfRcSLu3rCiNgEfA34Z3Ycp/9/5AIcAEkjyL3P8DywBnh33jblr5P7I/CPETEq72t4RPxX8pj/JyIOBw4hN+QzkDekzXrl4LdadSNwLDCNHsM8kuqSYaChuVUNk7Rbgef9ATAM+EReWwcwRdIESbuTG655ICKeAe4E3ifpZElDgC8C78w7dg7wFUnvS2rbS9KpyfJESUdIGkruSqSNwNbCnwKz3jn4rSYloftfwAhgcY/NHyY3Zn8XMDZZvrvA83YD/wQ05rX9J/BV4FZyPfwDgNOTbS8BpwJXkBv+GQf8Ku/Y24BvAjdJegVYCRyfbB4JXAt0kRtK+jNwZSF1mvVHnojFzCxb3OM3M8sYB7+ZWcY4+M3MMsbBb2aWMUPKXUAhRo8eHc3NzeUuw8ysqqxYseKliGjq2V4Vwd/c3ExnZ2e5yzAzqyqSnu2t3UM9ZmYZ4+A3M8sYB7+ZWcY4+M3MMsbBb2aWMQ5+M7OMcfCbmWWMg9/MLGNS/QCXpGeAV4FuYEtEtEhqBG4GmoFngNMioivNOnZVbtKk4vGtsM2snErR42+NiAkR0ZKsXwzcGxHjgHuT9YoWEQV9FbqvmVk5lWOo5yTenArvBuAzZajBzCyz0g7+AO6WtELS9KRt74hYkyy/AOzd24GSpkvqlNS5bt26lMs0M8uOtG/SdkxEPC/pHcA9kh7P3xgRIanXsY+ImAvMBWhpafH4iJlZkaTa44+I55Pva4HbgEnAi5LGACTf16ZZg5mZ7Si14Jc0QtLbti0DxwErgcXAmcluZwKL0qrBzMzeKs2hnr2B25JLIYcACyLiPyQtBxZKmgo8C5yWYg1mZtZDasEfEU8Bh/XS/mfgo2k9rpmZ9c+f3DUzyxgHv5lZxjj4zcwyxsFvZpYxDn4zs4xx8JuZZYyD38wsYxz8ZmYZ4+A3M8sYB7+ZWcY4+M3MMsbBb2aWMQ5+M7OMcfCbmWWMg9/MLGMc/GZmGePgNzPLGAe/mVnGOPjNzDLGwW9mljEOfjOzjHHwm5lljIPfzCxjHPxmZhnj4DczyxgHv5lZxjj4zcwyxsFvZpYxDn4zs4xx8JuZZUzqwS+pXtJDkn6SrL9H0gOSnpR0s6Td0q7BzMzeVIoe/3nAqrz1bwLfjoj3Al3A1BLUYGZmiVSDX9K+wAnAdcm6gI8AtyS73AB8Js0azMxsR2n3+L8DtANbk/W3Ay9HxJZkfTWwT28HSpouqVNS57p161Iu08wsO1ILfkknAmsjYsVgjo+IuRHREhEtTU1NRa7OzCy7hqR47qOBT0v6JDAMGAlcDYySNCTp9e8LPJ9iDWZm1kNqPf6I+EpE7BsRzcDpwM8j4gxgCXBKstuZwKK0aihEY2MjkoryBRTtXI2NjeV8WsyshqXZ4+/LRcBNkr4BPATMK0MN23V1dRER5SyhV9v+kJiZFVtJgj8ilgJLk+WngEmleFwzM3srf3LXzCxjHPxmZhnj4DczyxgHv5lZxjj4zcwyxsFvZpYxDn4zs4xx8JuZZYyD38wsYxz8ZmYZ4+A3M8sYB7+ZWcbs9CZtkt5B7t767wJeB1YCnRGxtd8DzcysIvUZ/JJagYuBRnK3T15LbkKVzwAHSLoFuCoiXilFoWZmVhz99fg/CUyLiOd6bpA0BDgR+Bhwa0q1mZlZCvoM/oi4sJ9tW4DbU6nIzMxStdM3dyV1S7pCeVNCSfpNumWZmVlaCrmq59Fkv7slbZsI1vMCmplVqUKCf0tEtAPXAfdJOhyovElqzcysIIXMuSuAiLhZ0qPAAmBsqlWZmVlqCgn+f9i2EBErJX0IOCm9kszMLE39Xcd/ct7yfj02v5ZaRWZmlqr+evyf6rF8R956AD9OpSIzM0tVf9fxT9m2LOmh/HUzM6tehd6kzVfxmJnVCN+d08ysQB0dHYwfP576+nrGjx9PR0dHuUsalP7e3L2DN3v6+0tanL89Ij6dZmGlEpeNhJl7lbuMt4jLRpa7BDPL09HRwYwZM5g3bx7HHHMMy5YtY+rUqQBMnjy5zNUNjCJ6H8WR9Df9HRgRv0ilol60tLREZ2dnKueWRF/PQTlVal1mWTV+/Hhmz55Na2vr9rYlS5bQ1tbGypUry1hZ3yStiIiWt7RXQ7g4+M2s3Orr69m4cSNDhw7d3rZ582aGDRtGd3d3GSvrW1/B3+cYv6Q7JH1K0tBetu0v6euSzip2oWZmlejggw9m2bJlO7QtW7aMgw8+uEwVDV5/b+5OAz4EPC5puaS7JP1c0lPA94AVETG/r4MlDZP0oKTfSnpU0teS9vdIekDSk5JulrRbUX8iM7MUzJgxg6lTp7JkyRI2b97MkiVLmDp1KjNmzCh3aQPW33X8LwDtQLukZmAMuakX/xAR/13Aud8APhIRryWvGpZJ+ilwPvDtiLhJ0hxgKnDNrv0YZmbp2vYGbltbG6tWreLggw9m1qxZVffGLpRojF/SHsAy4H8BdwLvjIgtko4CZkbEx/s73mP8ZmYDN+Ax/iI9aL2kh8nN13sP8Efg5WQGL4DVwD5p1mBmZjtKNfgjojsiJgD7ApOAgwo9VtJ0SZ2SOtetW5dajWZmWTOg4JfUIOnQgT5IRLwMLAGOAkYlk7VD7g/C830cMzciWiKipampaaAPaWZmfShkzt2lkkYm0y7+BrhW0rcKOK5J0qhkeTjwMWAVuT8ApyS7nQksGmzxZmY2cIX0+PeKiFeAk4EbI+II4NgCjhsDLJH0O2A5cE9E/AS4CDhf0pPA24F5gyvdzMwGo5AZuIZIGgOcBhR8wWpE/A54fy/tT5Eb7zczszIopMf/deBnwB8jYrmk/YEn0i3LzMzSstMef0T8CPhR3vpTwGfTLMrMzNJTyJu7B0q6V9LKZP1QSZemX5qZmaWhkKGea4GvAJth+9j96WkWZWZWiWp+IpY8e0TEg5Ly27b0tbOZWS2qpYlYCunxvyTpAJLZuCSdAqxJtSozswoza9Ys5s2bR2trK0OHDqW1tZV58+Yxa9ascpc2YDu9SVtyFc9c4INAF/A0cEZEPJt+eTm+SZuZlVsmJmLJExFxLNAEHBQRxxR4nJlZzcjKRCzb3AoQERsi4tWk7Zb0SjIzqzyZmIhF0kHA+4C9JJ2ct2kkMCztwszMKkktTcTS31U9fwWcCIwCPpXX/iq5aRnNzDJl8uTJVRn0PfU39eIiYJGkoyLi1yWsyczMUlTIdfwPSTqX3LDP9iGeiDgrtarMzCw1hby5+wPgncDHgV+Qmzzl1X6PMDOzilVI8L83Ir4KbIiIG4ATgCPSLcvMzNJSSPBvTr6/LGk8sBfwjvRKMjOzNBUyxj9XUgNwKbAY2BP4aqpVmZlZagq5H/91yeIvgf0BJI1NsygzM0tPv0M9ko6SdIqkdyTrh0paAPyqJNWZmVnR9Rn8kq4E5pObbetOSd8A7gYeAMaVpjwzMyu2/oZ6TgDeHxEbkzH+PwHjI+KZklRmZmap6G+oZ2NEbASIiC7gCYe+mVn166/Hv7+kxXnr78lfj4hPp1eWmZmlpb/gP6nH+lVpFmJmVm49ppjdZZU6mVJ/N2n7RSkLMTMrt0KDutpnyPNMWmZmGePgNzPLGAe/mVnG7PSWDZLuAHoOZv0F6AS+t+2STzMzqw6F3KTtKaAJ6EjWP0fufvwHAtcCn0+ntNIp9jv5xdDQ0FDuEsysRhUS/B+MiIl563dIWh4REyU9mlZhpVLMd+ar/Z1+M8uGQsb498y/G2eyvGeyuqmvgyS9W9ISSY9JelTSeUl7o6R7JD2RfHfX1syshAoJ/i8Dy5IQXwrcB1wgaQRwQz/HbQG+HBGHAEcC50o6BLgYuDcixgH3JutmZlYihdyP/y5J44CDkqbf572h+51+jlsDrEmWX5W0CtiH3CeC/zbZ7QZgKXDRYIo3M7OBK2SMH+BwoDnZ/7BkLPvGQh9EUjPwfnK3dN47+aMA8AKwdx/HTAemA4wd63lfzMyKpZDLOX8AHAA8DHQnzQEUFPyS9gRuBb4UEa/kX0ETESGp13dDI2IuMBegpaXF75iamRVJIT3+FuCQGMTlKpKGkgv9H0bEj5PmFyWNiYg1ksYAawd6XjMzG7xC3txdCbxzoCdWrms/D1gVEd/K27QYODNZPhNYNNBzm5nZ4BXS4x8NPCbpQeCNbY0F3I//aHIf7npE0sNJ2yXAFcBCSVOBZ4HTBly1mZkNWiHBP3MwJ46IZUBfH4n96GDOaWZmu66Qyzl9X34zsxrSZ/BLWhYRx0h6lR1v0iZyF+SMTL06MzMruv5m4Dom+f620pVjZmZp6/eqHkn1kh4vVTFmZpa+foM/IrqB3+ffpM3MzKpbIVf1NACPJpdzbtjWWMDlnGZmVoEKCf6vpl6FmZmVjC/nNDPLGF/OaWaWMf31+M8AX85pZlZr+ruq57ZtC5JuLUEtZmZWAv0Ff/59dvZPuxAzMyuN/oZ6oo9lM7Oq09jYSFdXV9HOlz+p1K5oaGhg/fr1RTlXofoL/sMkvUKu5z88WQa/uWtmVairq4tBzCeVumL9ARmI/u7VU1/KQszMrDQKmYHLzMxqiIPfzCxjHPxmZhnj4DczyxgHv5lZxjj4zcwyxsFvZpYxDn4zs4wpZCIWM7OqF5eNhJl7lbuMt4jLSn8TBAe/mWWCvvZKxd6yIWaW9jE91GNmljEOfqsoHR0djB8/nvr6esaPH09HR0e5SzKrOQ5+qxgdHR2cd955bNiwgYhgw4YNnHfeeQ5/syJz8FvFaG9vp76+nvnz5/PGG28wf/586uvraW9vL3dpZjXFwW8VY/Xq1UyZMoW2tjaGDRtGW1sbU6ZMYfXq1eUuzaympBb8kuZLWitpZV5bo6R7JD2RfG9I6/GtOl1//fXMnj2bjRs3Mnv2bK6//vpyl2RWc9Ls8X8f+ESPtouBeyNiHHBvsm4GwJAhQ9i0adMObZs2bWLIEF91bFZMqf2PiohfSmru0XwS8LfJ8g3AUuCitGqw6tLd3U1dXR1nnXUWzz33HGPHjqWuro7u7u5yl2Y1ohzTHO5MQ0PpBz5K3ZXaOyLWJMsvAHv3taOk6cB0gLFjx5agNCu3Qw45hHHjxvHTn/6UrVu3smbNGo4//nieeOKJcpdmNaCYH96SVJEfBitU2d7cjdyz1uczFxFzI6IlIlqamppKWJmVS2trK4sXL2bUqFFIYtSoUSxevJjW1tZyl2ZWU0od/C9KGgOQfF9b4se3Cnb77bczcuRIhg8fjiSGDx/OyJEjuf3228tdmllNKXXwLwbOTJbPBBaV+PGtgq1evZqFCxfy9NNP093dzdNPP83ChQt9OadZkaU2xi+pg9wbuaMlrQYuA64AFkqaCjwLnJbW4xfTQN4QKmTfah4bNLPql+ZVPZP72PTRtB4zLQ7q4urvj+Nxxx034GP872M2MP7krpVcRPT6tWDBApqammhubgagubmZpqYmFixY0OcxDn2zgXPwW8WYPHkyV199NSNGjABgxIgRXH311Uye3NeLRzMbDFVDj6mlpSU6OzvLXYaVULVfJ221rVp+PyWtiIiWnu3u8ZuZZYyD38wsYxz8ZmYZ4+A3M8sYB7+ZWcY4+M3MMsbBb2aWMQ5+M7OMcfCbmWWMg9/MLGMc/GZmGePgNzPLGAe/mVnGOPjNzDLGwW9F1djYiKRd/gKKch5JNDY2lvlZMassqU29aNnU1dVVcfcpH8icyWZZ4B6/mVnGOPjNzArU1tbGsGHDABg2bBhtbW1lrmhwHPxmZgVoa2tjzpw5XH755QBcfvnlzJkzpyrD33PuWlFV4lyklViTVaZivx9U7t87z7lrZrYTEdHnF8CGDRt2aNuwYUO/x1UqX9VjRRWXjYSZe5W7jB3EZSPLXYLVgN133505c+Zw/vnnb2+bM2cOu+++exmrGhwHvxWVvvZKxfV0JBEzy12FVbtp06ZxwQUX0N7eTnd3N/X19WzdupVzzz233KUNmIPfzKxAEUF3dzfA9u/VyGP8ZmYFuOaaa6irq+Oqq65iw4YNXHXVVdTV1XHNNdeUu7QBc/CbmRWgu7ubSZMmcckllzBixAguueQSJk2aVJU9fw/1WNFV2i0SGhoayl2C1Yj777+f+vp6ALZs2cL9999f5ooGpyw9fkmfkPR7SU9KurgcNVg6+rscbiBfxTzX+vXry/ysWC054YQTWLduHSeccEK5Sxm0kvf4JdUD3wU+BqwGlktaHBGPlboWs0rW2NhIV1dXuct4i4aGhkz/Mb3zzjtpamra3vOvRuUY6pkEPBkRTwFIugk4CXDwZ0ShQ0GF7ldpl48Wy/ovdgOV+BmE6hvTLpYjjzyShx56iO7uboYMGcLEiROrcrinHMG/D/CnvPXVwBE9d5I0HZgOMHbs2NJUZiVRq0FddDP/Uu4KLE9dXR0PPvggV155JWeffTZz5szhwgsvpK6u+q6RqdiKI2JuRLREREtTU1O5yzGzjDvnnHOICNrb2xkxYgTt7e1EBOecc065SxuwcvT4nwfenbe+b9JmZlaxZs+eDcC11167fahn2rRp29urScnvzilpCPAH4KPkAn858D8j4tG+jvHdOc3MBq6vu3OWvMcfEVsk/W/gZ0A9ML+/0Dczs+Iqywe4IuIu4K5yPLaZWdZV7Ju7ZmaWDge/mVnGOPjNzDKmKubclbQOeLbcdRRgNPBSuYuoEX4ui8vPZ3FVy/O5X0S85YNQVRH81UJSZ2+XTtnA+bksLj+fxVXtz6eHeszMMsbBb2aWMQ7+4ppb7gJqiJ/L4vLzWVxV/Xx6jN/MLGPc4zczyxgHv5lZxjj4zWqMpG5JD0taKelHkvaQtETSx3vs9yVJ15SrznKRNEPSo5J+lzxPb5kIahfO/WFJv5G0RdIpxTpvsTn4AUmv9dI2U9IFyfL3JT2d/JI8LOmLpa+yuhTzOZV0l6RRO3m8pZKq9rrqIns9IiZExHhgE3A20AGc3mO/05P2zJB0FHAi8IGIOBQ4lh1nBNxVzwF/Dywo4jmLrix356xSF0bELeUuosYU9JxGxCdLUUyNug84FLgU+Iak3SJik6Rm4F3J9iwZA7wUEW8ARMRLAJImAlcDI4A3yM0X8lng08AewAHAbRHRnuz/WrL/icDrwEkR8WJEPJNs35r/oJL2BBYBDcBQ4NKIWJTqT9oP9/iLTNJxkn6dvNz7kaQ9Je0n6QlJoyXVSbpP0nHJ/hdJekTSbyVdUe76K5GkZ5LnrlnSKknXJi/V75Y0PG/XUyU9KOkPkj5UtoIrRDLp0fHAIxGxHngwWYdcb39hZO+yvruBdye/I/8u6W8k7QbcDJwXEYeRexXwerL/BOBzwF8Dn5O0bfbAEcD9yf6/BKbt5HE3Av8jIj4AtAJXSVJRf7IBcPAX7sq8YYm/7m0HSaPJ9ayOTf6BO4HzI+JZ4JvANcCXgcci4m5JxwMnAUckv0D/WpKfpHLs9DntxTjguxHxPuBlcr2ybYZExCTgS8BlRa61mgyX9DC537/ngHlJe/5wT+aGeQAi4jXgcGA6sI5c4P8jsCYilif7vBIRW5JD7o2Iv0TERuAxYL+kfRPwk2R5BdC8k4cWcLmk3wH/CewD7F2UH2oQPNRTuEKGJY4EDgF+lfwx3w34NUBEXCfpVHLjrROS/Y8Fro+I/072WZ9G4RVsMMNnT0fEw8lyz/9wP+6jPWtej4gJvbQvAr4t6QPAHhGxosR1VYSI6AaWAkslPQKc28/ub+Qtd/NmZm7Oe7WU396XM4Am4PCI2CzpGWDYAEsvGgd/cQm4JyImv2WDtAe5ieUB9gReLWVhNaTnf8ThvWwr5D9i5kTEa5KWAPPJYG8fQNJfAVsj4omkaQKwCviEpIkRsVzS23hzqKdY9gLWJqHfypuvHMrCQz3FdT9wtKT3AkgaIenAZNs3gR8C/wRcm7TdA0xJ/iggqbHE9Vr2dACHkdHgJ9fpukHSY8mwyyHk/k9+Dpgt6bfk/l8OqjcuaaKk1cCpwPckbZtP/IdAS/IK4wvA47v4c+wS94py9kj+sbb51mBOEhHrJP090CFp96T5UkljgInA0RHRLemzkqZExPWSJgCdkjaRm4f4kl34OSpJUZ5TG7iI2LOfbbeTe2WaScnw1gd72fQSuaHafN9PvrYde2Le8p55y7cAtyTLy3nzlX3+474EHDX4yovL9+oxM8sYD/WYmWWMh3oGSdIDwO49mj8fEY+Uo55a4OfUrDQ81GNmljEe6jEzyxgHv5lZxjj4zcwyxsFvZpYx/x/KqO9zbuOluwAAAABJRU5ErkJggg==n”, “text/plain”: [

“<Figure size 432x288 with 1 Axes>”

]

}, “execution_count”: 13, “metadata”: {}, “output_type”: “execute_result”

}

], “source”: [

“plot_rates_boxplot(config_file=’sim_ch04/config.json’, group_by=’pop_name’)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“In our config file we used the cell_vars and node_id_selections parameters to save the calcium influx and membrane potential of selected cells. We can also use the analyzer to display these traces:”

]

}, {

“cell_type”: “code”, “execution_count”: 14, “metadata”: {}, “outputs”: [

{
“data”: {

“image/png”: “iVBORw0KGgoAAAANSUhEUgAAAZMAAAEWCAYAAACjYXoKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdeXhbV5n48e+xLVvedydOnNhJmqRZurfpRqGlHSiQrhTaTgtTYIaBH3QGBuhMWYeZKTMwwADD1jJAoUBb6L6lpRvpkqZN2gaaOLbjeJV3WbZl7dv5/SHpWrIlW47kyHHez/PkiXV177lH23nvWe45SmuNEEIIkY6cbGdACCHEsU+CiRBCiLRJMBFCCJE2CSZCCCHSJsFECCFE2iSYCCGESJsEEyEWOaXUy0qp0zKU1neUUp/MRFpCxJJgIkSWKKX+pJT62zn2uQyY1Fq/qZS6TinVpZRS0/bJU0oNK6W2K6XylVL3RfbTSqkLpyX5beCLSqn8zL4acbyTYCIEoMKOyu9hnuf6BHBX5O+HgArgHdP2uRTQwJORxy8BNwKD0xPTWg8ALcDl88y2ELOSYCKOeUqpf1ZK3Tdt2/eVUj+Y47g/KaVuU0q9DLiAtUqpE5VSTyulbEqpVqXUB2P2v1Mp9dPI85NKqZ1KqcaY589TSu1RSk1E/j9vlnPdBVwA/FAp5VBK/TBB/vKBdwI7AbTWHuD3wIen7fph4Hda64DW2qe1/p7W+iUgmOSl/wl432zvjRDzprWWf/LvmP4HNBIuoEsjj3OBAeCcOY77E9ADbAHygHKgF/hI5PFpgBXYHNn/TmASeDtQAHwfeCnyXBUwBnwocuz1kcfVSc5limz721nytwVwTtt2PmAHCiOPywE3cGqC4y3AhQm2Xw28ke3PTf4trX9SMxHHPK11N/AGcFVk0zsBl9Z6dwqH36m1PqC1DhBuLurSWv9Sh6/y3wTuBz4Qs//jWusXtNZe4EvAuUqpVYSv9A9pre+KHHs34eakyxKdS2vtTyFvFYSDV+xrfRkYinmtHwTatNb7UkgvajKSthAZI8FELBW/I1wbAPjryONU9Mb83QicrZQaj/4DbgCWJ9pfa+0AbMCKyL/uaWl3AyuTnCsVY0Bpgu2/Zqqp60ORx/NRCozP8xghZiXBRCwVfwAuVEo1EL5qTzWYxE6b3Qvs1FpXxPwr0VrHDqVdFf1DKVVCuHmrP/KvkXirgb4k50r0eLr28GnUymnb7wIuVkqdC5wD/HaOdKbbBPx5nscIMSsJJmJJ0FqPEO6D+CXQqbU+eATJPAZsUEp9SCllivw7Sym1KWaf9yql3hbpHP93YLfWuhd4InLsX0eG6l4LbI6kmcwQsHaW1+QDnmHa6C2tdRfhEVt3A09rreNGbSmlCpRS5sjDfKWUedpw4ncAO2bJlxDzJsFELCW/Ay4h9VpJHK31JPAu4DrCNY1B4JuEO9tjz/E1ws1bZxAegovWehTYDnwOGAVuAbZrra2znPL7wDVKqbFZRp7dTrgpa7pfEa4JJWriaiXcKb8SeCrydyOAUqqecJB7aJZ8CTFvSmtZHEuIVCil7gQsWusvH+Xzvgx8OjIgIN20vgMc1lr/OP2cCTElL9sZEELMTmt9fgbT+lym0hIilgQTsaQppRxJnnqP1vrFo5oZIZYwaeYSQgiRNumAF0IIkbYl0cxVU1Ojm5qasp0NIYQ4prz++utWrXVtJtJaEsGkqamJvXv3ZjsbQghxTFFKTZ+14YhJM5cQQoi0STARQgiRNgkmQggh0rYk+kyEEMc3v9+PxWLB4/FkOyuLktlspqGhAZPJtGDnkGAihDjmWSwWSktLaWpqIn5OS6G1ZnR0FIvFwpo1axbsPNLMJYQ45nk8HqqrqyWQJKCUorq6esFrbRJMhBBLggSS5I7Ge7MkgkkwGMTlcmU7G0IIcdxaEsHE5/PR0dHB2NhYtrOyIMbGxhgaGsp2NoQQs8jNzeXUU09l69atfOADH8DlcnHRRRfx1FNPxe33ve99j09+8pNJUjl2LYlgEtXX1zf3TkfA5/MRCAQWJO1U9PX1MTIykrXzCyHmVlhYyL59+9i/fz/5+fn89Kc/5frrr+eee+6J2++ee+7h+uuvz1IuF86SCiYAnZ2dtLS00NHRkXZaLpeLvr4+2traaGlpYWJigv7+fpxOZ9x+k5OTuN3ueaV9+PDhhHkMBoMMDAzg8/nwer1LtrYlxFJ2wQUX0N7ezjXXXMPjjz+Oz+cDoKuri/7+fi644IIs5zDzltzQ4GhBHwgEsNvtlJSUkJOTWswMBALk5uYC4Q6rzs5OYqfo7+3tBcBms7F+/XpCoRDBYJDu7vD0Nlu3bsXv9+P3+yksLIzr9PL5fOTl5ZGTk4PL5TKCTygUistfe3s7fr+f0dHRNN6FzPP5fASDQQoLC7OdlUXF6XTidrupqanJdlZExNcfPUBzvz2jaW5eUcbXLtuS0r6BQIAdO3Zw6aWXUlVVxbZt29ixYwdXXHEF99xzDx/84AeX5GCBJRdMYvX09FBZWUl5eTkOh4Pa2lqUUjOCSyAQYGRkxCjAc3Jy2Lx5M7Ot9XLo0KEZ2xwOB11dXQAUFRWhlCIUClFdXY3FYqG4uJi8vDwmJiaMY1paWmhqajIKar/fn9Jr01ozMDBAbW3tgt6IBDA0NGQ0s23dujXpfk6n03jdEK6xdXd3s2nTJiNILzWdnZ0AEkwEbrebU089FQjXTD72sY8BGE1d0WDy85//PJvZXDBLOphAuPM62lRktVopKiqivr4epRRaayYmJhgfH4/rEwmFQthstnmfa3h42Pg7dnSZxWIBmNE8Fj1Xqk1ysbWYyclJbDYbfr+fxsZGBgYGAKivrycQCBAIBDCbzXHHBwIBxsbGqKmpmdeVUSr9NdHAsXz5ciorK40ADeF7AIqLiwkGg+Tk5BivI1EeAoEANpvNCPxCzFeqNYhMi/aZTHfFFVfw2c9+ljfeeAOXy8UZZ5yRhdwtvCUfTKZzuVwcPnx4zv36+/uPKO2FZLVaMZlMFBQUGNs8Hg/BYNCoVdXX19PW1kYoFGLr1q0MDQ3h9/tZvnw5/f392O12Y2TYmjVrKC4uRmtNMBgkLy/8dQiFQmitE9YmtNYJC/lom/Dg4CDDw8OEQiGKioqM5/1+P62trdTW1jIyMkJdXR1aa6qrq8nJyWFsbIyqqiojj0VFRZSUlCR8H6LNkdkKNtGgKMFOpKKkpISLLrqIj370o0uy4z3quAsmxzK73W7cxbp69WogXEjH1ohaWloIhUJAuNodrR2Mj49TXFwcl97g4CDLli1jcnKS0dFRNm7ciN1ux2az4fV6EzZpDQ8PU1paGhcopoue3+v1GtuiwWZ8fNz4PzrIwGQyMTo6Gtf8l6yJUWtNS0sL5eXlrFq1Km77gQMHqKmpYfny5UnzlojFYmF8fHzWJryoQCBAS0sLdXV11NXVzes84vh1/fXXc9VVV80Y2bWUZH00l1IqVyn1plLqscjjNUqpV5VS7Uqpe5VS+dnO42KRbDqE2M762Oa66MCAZNxuN11dXUxOTgLhms/AwIARBCYnJ41BB1EjIyNGs9zIyAh2u522traEeQsGgzO2Te8Tiq1VuVyuuACUSDSvsYEnltVqnfX4RKIBLtn5Yl9HNP92e2Y7eMWxz+FwJH3uyiuvRGvNiSeeeBRzdHQthprJPwIHgbLI428C/6O1vkcp9VPgY8BPspW5xSqVmxin3xuTqM8m1vQfw2zBaHh4OK5GFK15JJOs8J9tkIPX6yUnJ8cYYKC1Tth/o7VOeeDCXFwuFx0dHUZ/k8fjobS0lMbGxoykL8RSldWaiVKqAXgf8H+Rxwp4J3BfZJdfAVdmJ3eL21xX8PMRLdDnk2ZsIJlLb2/vEQ1oOHToEK2trcZjq9Wa8H6egYEB2trajMda65QntYtNHzDy6fF4jDRia2qZfN+FWEqy3cz1PeAWIBR5XA2Ma62jl9QWYGWiA5VSH1dK7VVKyeLvacrUVX0ys80eMFvNZLpkzQjRpq+o0dFR2tvbUxoQMZ/X3t3dbYzME0LEy1owUUptB4a11q8fyfFa6zu01mdqrc/McNbEUZCokz6Z6cFiLtEgMj1QOJ3OhP04Qoj0ZbNmcj5wuVKqC7iHcPPW94EKpVS0L6cBWJgJt0RWRWsr0aASlaimMtdAglSEQiE6OzuNm0qFEJmVtWCitb5Va92gtW4CrgOe01rfADwPXBPZ7W+Ah7OURZEF04NLOmIDU/Tv+c6hJoRITbb7TBL5Z+CflFLthPtQlubcA2LBzHUzYXTmg8U2/5k49t12221s2bKFk08+mVNPPZVXX301Y2m/8MILnH766eTl5XHffffNfcBRthiGBqO1/hPwp8jfHcC2bOZHHBtaW1tZv3590uc9Hg9a6xlNZ+3t7fMalTWfQQLi+PXKK6/w2GOP8cYbb1BQUIDVap1zyPx8rF69mjvvvJNvf/vbGUszkxZjzUSIlPj9/lmDgtVq5fDhwzQ3N8dtX+jhvTabbcHX2xaLz8DAADU1NcZ0RzU1NaxYsYI9e/Zw3nnnccopp7Bt2zYmJye58847ufrqq7n00ktZv349t9xyi5FOSUkJX/rSlzjllFM455xzjHvKmpqaOPnkk2dMVOtwOLj44os5/fTTOemkk3j44ez0DCyKmokQqUh1LqzY0V/zLdRTrYXMtl90XrdUpmcRC2DHv8DgW5lNc/lJ8J7/mnWXd73rXfzbv/0bGzZs4JJLLuHaa6/l3HPP5dprr+Xee+/lrLPOwm63G8s47Nu3jzfffJOCggI2btzIzTffzKpVq3A6nZxzzjncdttt3HLLLfzsZz/jy1/+ctLzms1mHnzwQcrKyrBarZxzzjlcfvnlR33uOKmZiGPayMjIjCHA6XTiyzQp4kiVlJTw+uuvc8cdd1BbW8u1117L7bffTn19PWeddRYAZWVlxoSqF198MeXl5ZjNZjZv3myMWszPz2f79u0AnHHGGXOOQNRa88UvfpGTTz6ZSy65hL6+vqws8y01E3FMy3ThL/0jS8AcNYiFlJuby4UXXsiFF17ISSedxI9+9KOk+8bO/p2bm2sMlzeZTEatInZ7Mr/97W8ZGRnh9ddfx2Qy0dTUlJVmVqmZCLFAMjnMWSx+ra2tcYvm7du3j02bNjEwMMCePXuAcBPsXMFhviYmJqirq8NkMvH8889n5L6sIyE1E3FMOHjw4DG3ZLDVapVp6o8jDoeDm2++mfHxcfLy8jjhhBO44447+MhHPsLNN9+M2+2msLCQZ5555ojS37NnD1dddRVjY2M8+uijfO1rX+PAgQPccMMNXHbZZZx00kmceeaZWZuZWIKJOCakOw1KKm3ImW4akJrJ8eWMM85g165dM7bX1NSwe/fuuG033XQTN910k/H4scceM/6OnYPummuu4Zprwvdwn3XWWQnnhqupqeGVV15JN/tpk2YucVxIZdbi9vb2o5ATIZYmCSZiUZL7NIQ4tkgwEYtSolFai3ktEZlAMvtkJF5yR+O9kWAijhkLve5KOmZbslUsPLPZzOjoqASUBLTWjI6OGquHLhTpgBdCHPMaGhqwWCwJl3UW4WDb0NCwoOeQYCIWpcXcpCUWH5PJxJo1a7KdjeOaBBOxKB2Lw2p7enowmUzZzoYQWSHBRIgMkXm9xPFMOuCFEEKkTYKJEAsklRslhVgqJJgIsUCOxX4fIY6UBBMhhBBpk2AihBAibVkLJkqpVUqp55VSzUqpA0qpf4xsr1JKPa2UOhT5vzJbeRRCCJGabNZMAsDntNabgXOATymlNgP/AjyrtV4PPBt5LIQQYhHLWjDRWg9ord+I/D0JHARWAlcAv4rs9ivgyuzkUAghRKoWRZ+JUqoJOA14FVimtR6IPDUILEtyzMeVUnuVUnuPSiaFEEIklfVgopQqAe4HPqO1jruFWIenAE04DajW+g6t9Zla6zOPQjaFEELMIqvBRCllIhxIfqu1fiCyeUgpVR95vh4Yzlb+hBBCpCabo7kU8HPgoNb6uzFPPQL8TeTvvwEePtp5EyKWrJEhxNyyOdHj+cCHgLeUUvsi274I/Bfwe6XUx4Bu4INZyp8QQogUZS2YaK1fAlSSpy8+mnkRQgiRnqx3wAshhDj2STAR4ghIP4oQ8SSYCCGESJsEEyGEEGmTYCKEECJtEkyEEEKkTYKJEEKItEkwEUIIkTYJJkIIIdImwUQIIUTaJJgIIYRImwQTIeYQCASynQUhFj0JJkIIIdImwUQIIUTaJJgIIYRImwQTIYQQaZNgIoQQIm0STIQQQqRNgokQQoi0STARQgiRNgkmQggh0rZog4lS6lKlVKtSql0p9S/Zzo8QQojkFmUwUUrlAj8C3gNsBq5XSm3Obq6EmKK1znYWhFhUFmUwAbYB7VrrDq21D7gHuCLLeRJCCJHEYg0mK4HemMeWyDaDUurjSqm9Sqm9RzVnQgBKqWxnQYhFZbEGkzlpre/QWp+ptT4z23kRQojj3WINJn3AqpjHDZFtQmTF9D4S6TMRIt5iDSZ7gPVKqTVKqXzgOuCRLOdJCCFEEnnZzkAiWuuAUurTwFNALvALrfWBLGdLCCFEEosymABorZ8Ansh2PoQQQsxtsTZzCSGEOIZIMBFCCJE2CSZCCCHSJsFECCFE2iSYCCGESJsEEyEWUCgUynYWhDgqJJgIkYIjveO9u7s7wzkRYnGSYCLEAnI6ndnOghBHhQQTIYQQaZNgIoQQIm0STIQQQqRNgokQQoi0STARQgiRNgkmQggh0ibBRAghRNokmAghhEibBBMhhBBpk2AixBE40ulVhFiqJJgIkQIJHkLMToKJEEKItGUlmCil/lsp1aKU+otS6kGlVEXMc7cqpdqVUq1KqXdnI39CCCHmJ1s1k6eBrVrrk4E24FYApdRm4DpgC3Ap8GOlVG6W8iiEECJFcwYTpdQ/KaVWZvKkWus/aq0DkYe7gYbI31cA92itvVrrTqAd2JbJcwshRNTIyAgHDx7MdjaWhFRqJqXAH5VSLyqlPq2UWpbhPHwU2BH5eyXQG/OcJbJtBqXUx5VSe5VSezOcHyHEEuVyuYw1ZgKBAENDQwSDQYLBYJZzduybM5horb+utd4CfAqoB3YqpZ6Z6zil1DNKqf0J/l0Rs8+XgADw2/lmXGt9h9b6TK31mfM9Voijze/3L8hCWT6fD4vFkvbywC6Xa14Fqt/vT+t8R8JqteJ2u1Pe3+l04nK54rZ1dHTQ2dlppBfl8/lmHB8KhWQU3zzkzWPfYWAQGAXq5tpZa33JbM8rpW4CtgMX66lPrA9YFbNbQ2SbEMes4eFhbDYbgUCALVu2oJQiGAwyMTFBaWkpQ0ND1NXVkZ+fn/D4QCBAMBjEZDLR3NzMihUrqKqqAmBoaIiJiQlMJhPLlh1Zo4HWmo6ODoqKili7di19fX3Y7XY2bdqUcP/JyUm6u7tZvXo1ZWVlKZ3D4/Fgt9upra1FKTXj+VAohMfjoaioyNgWCAQYGBjA4XCQm5trFPibNm0iNze+K9VqtVJYWEhxcbGxLRo0tm7dmjBPsQHEarXS0BBubY/mr6WlhbKyMpYtW4bT6aSioiJhOrECgQB+v5/CwsI5902Wp2Tfg2SixWei9/VomjOYKKX+H/BBoBb4A/B3WuvmdE6qlLoUuAV4h9Y69tLhEeB3SqnvAiuA9cBr6ZxLiExI5wp1eHjY+DsUChEMBuns7MTv96OUQmuNz+djzZo1wMxCoaWlBYDy8nIgHECqqqpwu91MTEwA4bb/0tJSOjo6WLlyJV6vl2XLlqVUwERrNS6XC601Y2NjAASDwbhCe2BggEAggMPhAMBms5Gfn4/ZbAZmFmqhUAiLxcKyZcvo6OggFApRVVVFXl6esb/L5aKoqIjx8XH6+/tZvnw5NTU1xvsWfX2xtaaDBw9SXl7OqlWrjHQGBweB5IEDwgEtanR0lJycqYYZt9vNgQMHAGhqasLlchEKhRgfH0drzcTEBMXFxZhMprg0fT4fubm5OJ1OcnNzGR4exul0snnz5rj0Y/n9fkKhEENDQ+Tk5BhBzOl00tnZSUNDA6WlpTMCpsfjwWazUV9fH/ceNzc3U1hYSHl5ORUVFQwMDFBfX09eXh7BYBCv10thYaHxXbNarZSXl887aM0llZrJKuAzWut9GTzvD4EC4OnIm7Jba/0JrfUBpdTvgWbCzV+f0lpLY6ZYdEKhUMKmkbmMjY0ZBR9MFcDRwsVqtRq1l+liC1aHw0FfX3ylvbu7G8DY7nQ6cbvdFBcXYzabqa2tZXx8HJ/Ph81mw2QysX79+rgmsmiBCuFCu7GxEaUUNpsNu90edz6Hw0F7e7tRsPf19TE+Pm7kv6Ojw6iRREUD1OTkJFarFZfLhdlsxuv1AjA4OIjb7U5ag4l9L6L7RIMTwKFDhygrK4urMYVCIZRS9Pf3G9sGBgaorKw0HscW3F1dXXHniu1jMZlMBINBoxbV1tZGXl4egUAg7pj+/n6qq6vp6Ohg/fr15Ofn4/F4CIVCdHR0xO1bVlaG0+k0gs/AwAAWi4UNGzYYBb7b7aavrw+Px0N1dTUejwettVGTc7vduN1u47vlcDhYt24dbW1txnlKS0uZnJwEwhckR1qTTUYthTbBLVu26HvvvTfb2RBL2IknnmjUEBZCfn5+XHAym81UV1fjcrmMmkK6SkpKjFpFsvNOl6igTGTDhg1xBVd5ebkR/GJFC8x0+3hi1dbWMjIyMus+0avyWIWFhSn1wUSPzc/Pp7KykqGhISD8WlJ9HVu2bIkL1Knmce3atfT09MR9BuvWrePw4cMpnXcuJ5100uuZ6neWYCJECpIVjkKkYj6B52jKZDCR6VSESIEEEpGOxRhIMk2CiRBCiLRJMBFCCJE2CSZCpCnPbSXXZ597R7EoqODUgAMV8GByyK1smSDBRCxtOhhXeGRa4eh+Tnz8CjY98h42PnY5jS99bkHOk+uzU2T9C4TiR1YV2LtY86f/R/HQHgByUg1qSQbeFI3so7LjIdCaXO94wn1y/E5WvfJlzOOHyJ/sRQW9qb+QWRQPvUbx8Btx28xjLVR0PT7nsYW2Zqra7yfHNznrfhsfu5wtD15Ead9OAJYd+Bkbn/wgOf6YUW46iAp6KR5+AxVK7U7/XO84JkcfJtfg3DtHlPU+S93+2+f8zFTQi8k5ELetePiNlN6XnIAr/J1J8HmrQOqzCaRiPnfAC7GomccP4SteQcg0dRf06le+RFn/i+y/5uXEB4UCoHLC/47Auuf/3vjb5BnFNDjKhsevZnjL3+JYfjZBUwk6Jw+mTX5d3XY3pQO7sG68EfNEO5P15+MtayLPNUzAXAU5kZ+m1ix76yfUtk3NODS+6q8oHXiZ3MDU/b51zT9nJOSn6eUvMLlsG6Prr0OFfHjK1uIvXo4KhW/X0rn5lAzuZvUrX6T37K8zueICcr0TLNv/U7TKobrjIQBWvvHfAPSf+lnsKy+kquNhynv/SIHDgqtqM0W2Zsr7ngfAUXcWXW//HoWj+ykZfp3J5WfjqTwRQgGq2+9jsv58AMotz2JyDmDdeCO+0vANh8v+8uO41wbQfMUfw59hKMCq3V+lwNlHWd9OLGd9hcruHdT/+fsADJzyj0zWn4evuJ51z/0dACv2fdc43mw7SE7QSyi3gAJnH8v//L+YPKMAVHU8grtqMzWH7gGgePh1yvpfYnTd1Zzw3N8aeRna8neMbLopLn957hFqW3+DdcNf4y8K36vR+NLnKBqbGjo+vOmj1LT+hkBhDZYzv4Sr9lRqWn6Dr7ge+6qLAVj96lfDn13Lrzlw5TPkeWys3v0lLNv+FW9Zk5HWqt1fpWzgJbre9h0Kbc2MrbmcNS/cDIC3ZDWBwlpMrkFKB16mtu13xnFBUwm5MUHy4GWPo3PyqD70e3KCXmpbf0MmydBgkTU5AReh3EKI3pymg5hcI1R1PMTQ1r8DlcuJj7wPZ93pWM76Mjq3IGE65b3PsOrVrxmPQzkm+s/4Fxr2/LuxLRpMcgIuTK5hatp+R/+pn2XLQ1Oz/rRfcie1B39Jed9Oxhrfw+DJn2b9UzfQd8YtTK58RySPmmX7b8e29kr8xcvZet/5c75OV9UWJlZdTO3BXxMyFZHv7J+xj6PuLFxVm6lr+ZWxrfvc/6TxlVvnTD+V8xeOtaAW8P7flu2PcOJjlxuPbU3bKbbuo8BhwV9Yi99cS9HY1MQZ0wu66XrO+Q9W7/7yEecnlGsmJ+hJ+NxY43uo7N6R8LlEmi9/kly/k4C5ioLJLk545iNTaa2+FHf1Vla8+e2kxzurT6br7d9jy4PvBMBTvg7zxMz7RIY2f4xlzT8nlJNPTsiH5YxbUWhWvv5fKed1Nn2n/zMm12Dcd0x93S73mcSSYHLsMTn72bjjA/Sd/gXG1l4JOsTW+y8wnu89++t4S1ZzwrNTP9z917wcaX54HUf9ecb2VAp0y1lfYaLhIuMHPV/7r95JZfcT5LmtLGv+OQB9p9/Cyje+BUAwryiupjCXUK6Z/tM/T8Oe/5hzX7+5hrb3/AGtcli2/6fUtt3NyMYb8Rctx1e0jJyAi9WRYDqy4YYZV/qJeEobMU92G4+DphK8pavpP/0WPBXrAahp+TXL998+lY+CKnyljRRb36T94l/iqdxAmeU5Vu/+SsqvO5HDF91OoKASf/EK1j91PQWOqYnD3RXr6Tn3G2zc8QFjW8eFP6Gy82Equ5+MS2f/1TtZ8eZ3qep8OOF5nNUn03nRT8j1jrHp0e0ATC4/B00OZYO74vZtf+f/UTr4ivFZp6L9nf9HwFxNvrOfuub/I89nx1uyivK+PyU9puW9D7Lu+b/H5B5Oug+At6QhXCusPNGoAQXyy8nzTQ1Zt66/Fseys8l39mFyDWNyDzHWtJ38yR7q//x9cqY12fWc/W80vvczEkxiSTBZvHK9Y5T1vcjY2ssp732GyeXnEsoromTwFZpe/gKO2jPoescPqGr/Ayv2fW/WtPZfvZOtD4RrCL7iFfjN1eR5x+MKn2zoP+1z2FdcQPHIPiZWXcKGHR8g3xVu4469wrZHmnvGG9+DveEiACo7HrJtzbsAACAASURBVKZkaI/RZNTxjh+Gm6SUYsWb32ai4Z0Mb/m7qZNpjck9hL9oeVweCiY6yAl6cVdNTc5YYO/EPH6Iyq4n8BUto//MSC0nFAg3o2mNCnrICXoJ5pfOaIoDKLM8T9Hofqwb/5pQrtlofoo2w5lcQ2x84urw61r1V1i2fS28bcf7gXCNperwQ5QOvEjPuf+Fv3g56CCl/S8B4Ck/AX/J1CoTKuhjy4Ph92Zw6yewrbuakKmYXJ+doKl4Ko+RcsvkGqCu+ZcMnfQJAuZqVMBNRc9TBMy1BPLLcFdvRYV8oEPoXLNRCy6zPEex9c8MnPpZAMxjrXgqNlBg7yRgriJYUIEKelm961ZKh16Ne096zvkP7A0XUdr/Eo27/hmA4RP/huGtH5/x/lV0P2nUkMdX/RVDWz/Byr230X/a5/GVrg7nJxRg4xNXY/KMMr763VT0PMXEirdT3v8CEA627uqt4fcgv4zKzkcwuUYY3vKx8Pug1NT/SazY+59UdT0GQOfbf4Cz7gxA7oCfQYLJ4tW08x8oGXmd8VV/RUXv0zjqzmJi5TtYGdMsMLLxxoy3386H5YxbaXj9P43HvqJl5LuG5jxurGk76CB9Z94aVxCbx9qo//P3sJz1ZfzFK1BBL6WDr2Cvf9tUX0isUIDSwd1MLj8n8fOLmdY0vvR5dE4uPed9c9YCLVV1B35Gee+ztF9yJzrPnIFMpifXYyPfNYTJNYi7clM4IMbIc1vD/VyJ+t1CAarb/4C94Z1G/0oiOX4HKhQkWFBOwcRhvGVrKbM8i7v6pFmPS/k1+OyseuXLjK7/IJMr3mZsl2AyjQSTxaW0/0Uad/0LAIGCCvKSjApaCN7ilRQ4w0M997//RQBW7v1GXBv56Lr3Y1/xNpQOEcorxFVzCugg+ZMW6v/yAyxnfolcv5OG1/4Ny7ZwraKs/yWWv/VjJlZeSP9pnwOVS7Cg/Ki9ruPOHFfaIjMkmEwjweTIrH/yOibr38bgKZ9O+ZiKrifwlK3BU7Up3IGekx93NZ1K/8VcNDkowtNPOKtPQukgRbbEqx6EcguwbriB4U1/E64dKIV5rA1/YS1Bc3hW2PzJXlbuvY3xxvcyueJ8AubqtPO4VJnN5rip2pNJdZLEoynR/GllZWWYTCbKy8vxer2UlpbS3t6e0uSV85Wfn099fb2xcFggEIhbfuBoSzRx5HSZDCbHWJ1aZFKBo5eCQ3czeMqnKZjowF9YS07QQ7nlOUbXX5vwmIa9twHQfOXTbH7or3DUnUnX28NDNfNjOnSPVMv7HiaUV8jmh9/FyIYbGDr5/5Hjd7D54XcD0H3ef+FYto0CezfesiZ07sw1GTyVG+Ie+0pX0XnRT9POW7ZVVlZit9uNtT1OOOEELBZLXOE/24SUjY2N5OXl4fF4jGnqKyoqqK6uZmxsjIqKCgoLC42FvMxmM7298f1R5eXl1NXVUVBQgMfjob29Pe75jRs30traGpfnqqoq+vv744JPUVERWmtqa2sZGxvD7XZTU1MTNz1/dD+v1xu36mFswFu5ciUmkwmz2UxeXp6xxonb7SYYDFJSUhKXFoRnOD58+DBKKWPtF7fbjdPpNNItLi6e18qY1dXV1NfXz9g+WzCpr6/HZDLR09Mza9qFhYXk5uYSDAYpLCykpKSE0tJS3G43VqsVj8dDYWEhK1eG+55GRkYoKyszPsvYqfej8vLyOOGEE1J+famQYCIAWP/0h3BXbiSUk0/x6FuEcguYXH4egaKYRTVjbpg78ZH3AVAyvJdCWzM5fheNu25JKw9tl95LoDC8MFLsfSEhUwntl/wSk3OAyRXhEV/TA0Y2pHLlN93KlSsZHh4mJycHk8mEw+GgurqawsJCLBZLwrSrq6spLS2lsLCQ0tJSLBYLBQUFFBQUsG7dOkKhEC6Xi+LiYmMVx/z8fMrKyujr68Pv91NWVkZpaSmAUSDZbDaqqqowmUxxKwNWV0/V3MrLy/H7/YyNjVFSUhK3EqLZbKaqqgqbzQZM1QK2bt2Kz+dDKWUsJrVu3TojSBUUFFBWVmasVxK79khOTk5c4bd27VogvO5Lb28vJSUllJeX09raSm5ubtyaJLFmW+kwJyeH9evXx+0bXUXR4/FgMpnIzc1lYGCA0dHRGcdv3ryZYDDI4OAgPp+PpqamGQtZRa1bt46Ojg6UUjQ2NlJQUIDWesYiW8kopVi7dm3CtV2KiopYvXr1jO2x65RUVVVRVVXF/v37jW1msznjgQSkmeu4sfHxKzG5R4xCuqb1tyx/68cA7H//S2y9/20Jjzt42WNUdD9F/V/+N6P56d32Vewr3kH14fup7HyU/tP+CeeybRk9x0JrbGw0FqSaTXV1NTabjbq6Ompra9FaG/9GRkaoqKjAbDYzOjrKwEB4FFh0jY7KykpWrFhxxEuyLvSSrlpr2tvbKSwsNFYMTFe04DOZTGzcuDHpebXWSVczzIToKoZReXl5VFVVUVc356rl86K1JhgMGot8+f1+Y5niaGBL1+HDh3G73UaNJHoupZQ0c4n5MbmnFg/Kc1uNQAIkDSSAMR4/Xd6SVfSe8+/UtP6WgdP+iWB++GrUuvEGrBtvyMg5jiallHGlPxeTycSmTZuMgk8pZRTuy5dPjQyqrq6mrKwMt9tNaWkpNTU1aRckC70uuFIq7io/E8rKyrDb7bOuuR77Hi6UnJwco+a1bt26I17XfS7TV4uM1lqiyyFnQnQp4pKSkgV73ySYHG+0Br3waytMLj+H0sHdAEw0vJPec8Jj7S1n/+uCn3uxqa6uTvkHbDKZjMIkE1ekx6K6ujry8vLimtuypb6+nuXLly9oDehoyM3NTfni50hJMDnO5AScLN+/sJ3Rgfxyes79RniyQJ89fEPccWyhr6CXGrPZzIoVK7KdDeDo1ICWimM73IqECiY6KO9+KuFzNa2/paIn8XOZECiopOXyJ9C5Beg8M4GiOnTewjQPCCEWD6mZLEHrn/4QAIVjB0HlMHjKPxjP1bX8ekHPfehd2buTfSHV1NRgtVrnfVyqo3aEONZlNZgopT4HfBuo1VpbVbg++X3gvYALuElr/cZsaYjkatr/EP7/UGZGuo1s/BAjJ95IyFRCyeCrFI3up+7gL4DwfEX+wlqCBck7TY9lR9rUsdDt1EIsFlkLJkqpVcC7gNg7dt4DrI/8Oxv4SeT/45oKeln+lx8yvOXvjFFQiVS3/s4IIOmynPUVzOPt1By6Gwh3og9t+VvjbnfH8rNxLDsTk7OfiVWX4Kg/NyPnFUIcm7JZM/kf4BYgdr7oK4Bf6/Dg+N1KqQqlVL3WeiBhCseJ8t5nqD78ALneCQZO+xyhSH8EoQC1LXcxuuFaQnlF1L/1o3mn7S1ZhW3tleR5x6ltvYtQbgH9p3+B8cZLUQ0+yizPMXDaZ42bBeOoXPq2pTf9+LFCOmGFmF1WgolS6gqgT2v952k/0pVA7PwNlsi2GcFEKfVx4OMQviN1KSuwdwJQYXmWCsuzeEtXc+jdd1NueY5lzf9Hnm/cmEp7PvpP+zy2dVcZj60bro+bvFDn5tP2vgfSfwFLQHFx8dw7CXEcW7BgopR6Blie4KkvAV8k3MR1xLTWdwB3QPgO+HTSOtYUTIZbBqPrUydaGzwVY03vjXsss+AmNz2YLIWZI4TIpAULJlrrSxJtV0qdBKwBorWSBuANpdQ2oA9YFbN7Q2TbcS3ZcrU5QR8AheNtR7Tanc6RkUZCiMw46veZaK3f0lrXaa2btNZNhJuyTtdaDwKPAB9WYecAE8d7fwmEp1mfLifgourwfcbjssiqbMn4zTXG3yMbb6T1PfclXsxHZJTUYMTxYrHdZ/IE4WHB7YSHBn9k9t2PD4lqJk07/wGzvSul49suvRdfSQMr3vgWhbaDDJ30yQznUAhxvMt6MInUTqJ/a+BT2cvNUaZDNL34Wazrr5t1aG3pwK4Z24rGDqZ8Gl9JeDbX/tO+YPSziPTI6C4h4kk7RxYVj+yjZHgvq3d/KflOWlMyvDczJ1Qq4WJSYv5Sbb6SoCOOF1mvmRzP1rxwc/iPWQqm4jQCibPmFKwbrj/i44UQIlUSTOYhf7KHugP/R9+2r6Q+EkoHyfVOEDRXzbZT0mdy/Y75ZTIidqVCkXlS4xAinjRzTaNC/qQ1hXXPfZwKy7Ph+zpStGz/HWx67DJKEvR7GDI84sdRe1pG0xNCiLlIMImR6xljywMXUp1kYsRc/yQABSmOogIoHQjXEJpe/kL8EzEBRM1SM5mt1pKIo+5Mes79z3kdI+Y2vY9EhvwKEe+4aeaqbruHnICLkc0fTbqPyT0EQEXPHxndcF3S/aJBJZGqww8SKKjA3nARAFrFrJanNfX7vkv14fgpSpQOpvISUtL19u9nLC2RvkyvFy7EYnXc1Ezq//K/LGv+eYp7h2Ztesr1xfdj1B68k633nQ/Aije/zerdX556MrZtXQdnBJJMOHj5DkY2/DXtF/8i42mLxFLtM4ld21uIpey4CSZxtA7/CwXIn+yZ8XTh+CFWRYbrlnc/xdb7ziffYTGerzl0NxVdjxuPlx34WSTdqRpG0ciblPc8ReH4IWNb8cibSbNU2vcCW+87n6KRffN6KQeueo5gfhlDJ38KT+XGeR0rUifNWkLMbslfNhVMHCZQWGs8PvHR9zG57BxM7hG8ZU1UH76flu2PEDBXA1NXm+V9O+llamGp6UN0G/Z+g/Gm98VtU8GpGwLX7vz0jLwUjb6VNJ81h+6JHPeplEdiDZx8c9J5u4QQ4mha8sFk/dMfJhCz+l+ed5zKnicBKBl5HYBcn31GMInyljRQON5Krt8547lc7zjBggpCKo8cHaDI1jxrXqITMyZSbP3zzP39jlkncJytX0cIIY6mpdvMpUM07QyvfZ7nHZ9j33ATRsFk18znIpMhLn/rxzOe2vTo+8jxO8jR4enfaw/eOetpalvvmj0fEaX94ZpJWf+LM54L5hXR+fYf0H8E65eIIyfNXELMbmnVTLRmxZv/jW3N5fhKVhk1j7msf/pDWNdfbyxRG2eOjtbND797atdQ8prHfDTuuoXW996Pjon1hy+6nXxHH85lZxIwV+OsOyMj5xJCiExYUsEk1ztGVcfDlPXtpO3dCQLDLBIGEogr0OdSPEufyHyt2Xkz+c5+43GgsAZ39daMpS+EEJm0xJq5IrUInaF7N3SQnIAr/XSOQGwgAfAXJVq0Uhwt0swlxOyWVM1kip51GG6qtt7/9gzkRRzrKioq5t5JiOPckqqZRGsjeb6JI1rGVohESktLpWYixByWVDBBh7KdA7EEyQzBQsxtSQWTTM5xlUlDmz+W9LlE67tPd/DyHZnMjhBCZNySCiYlQ69lOwszWM78IiObP0rP2f8247nhTTfRff5/z5lGML9sIbImUqSUWtTNXP39/QwPD2ckLa01gUAgI2mJ48uSCSZNOz/Nyje+le1sANB+8S+Nv6NTrtgb3knX+f9N8xVPGc+pUABn3RkE84qSpmU584sLl1GxJNhstowFk7GxMVpaWvB6vRlJTxw/shZMlFI3K6ValFIHlFLfitl+q1KqXSnVqpR692xpxCrJwOitI2VfcQGuyk3GY0/FCUwuO5uu2FqHUjjqzyNkKpnaFmmWa7nsMZqv+CNt7/7djLTHG9+7YPkWqUlUM9Fa4/F4spSjhWO32wHw+TJzA644fmQlmCilLgKuAE7RWm8Bvh3Zvhm4DtgCXAr8WKnYBUEyz1e4bMY2V1XimwPbL/4lXW/7LgDuiqkZenu3/Sv+mMkkUTl0X/BdHPXnJUxn4OTwJJAqMmBA5xYQMhXjK22k9T33Mbr2SgBa3/vAnHfgi+wZHR3NdhYWzGJu1hOLU7ZqJp8E/ktr7QXQWkfr6FcA92itvVrrTqAd2Japk1rXX0//aZ8zHo9suIG298WvLzKx8iKC+aUJj/dUbsCx/Gz2X/My3ed/09iu88xYT/wwwbxCWt730Jz5iE74mGgdeX9xPQOnfpaDlz2Gv2hmoBOZl5Mz+8/geBrNdTy9VpFZ2bppcQNwgVLqNsADfF5rvQdYCeyO2c8S2ZaW/e9/ifBt8eFCY3L5OVR0P8XIiR8CYKxpO5VdjwEwsfoSAvkVlA6+MmuaAXNN3GN31SYOXvlMSvkZX/1uKjsfZqxpe+IdcvIIFlSmlJZIXyoFaKIr9WBwcY4eTEf0vZCaiZivBQsmSqlngERzgHwpct4q4BzgLOD3Sqm180z/48DHATZv3px0v4kVb480FU0VGP7iFYxs/ojxuO/MW7GtvYLC0QPYV7wDlGL/NS9jHj/ECc/cBEDP2V+fngEAxhrfM59sR86/nLb3Zn7FRXFk5io4kwWbuYLJsmXJa5ahUAitNbm56bXiHmmhb7fbKSkpmVEri77WpRgoRbxMN9MuWDDRWl+S7Dml1CeBB3T4l/CaUioE1AB9wKqYXRsi2xKlfwdwB8CWLVuS/qJ6z/vPlPLrrtqMuyo+KMU2M9lXzXw5qS5ilUmBkCYvJzNNEb96c4xXLW5+fNmKjKR3vJmrwK2trU36XFtbG4FAgK1b05u880iCicfjoaenh4qKChoaGhLuEwrNfQNwc3Mz+fn5nHDCCUa6w8PDNDQ0zNl0mGlaa9xuN0VFyUdGxu4LmW3SC4VCuFwuSkpK5t55kZiYmMhoetnqM3kIuAhAKbUByAeswCPAdUqpAqXUGmA9cEQ3j3S844ccuuRXaWUymF9G63sfYP/VO9NKJ1N29bi48nc9dI/PPtLGH9R4A3MXBn84YKdnwj/nfkud1nrWgiXZfSap3I+RrFDO1L0csemnGlii+yUajRZ9H6I1p7nOHZvG8PAwdrsdl+voT446Pj5OR0eHMRotGZ/Px4EDB7BarRk9f19fH11dXTNGwWmtF22TYSoXDPORrWDyC2CtUmo/cA/wNzrsAPB7oBl4EviU1kd2W7ur9jS8FSeknVF/0TLIWRzzYb7SG/6Rto/OHkw+/kgf77+n92hkaUmY66bEYDCI2+2esX2ugBAIBGhububgwYNp5zGZVIJJomHNyfaPbgsEAkkLXa01IyMjxuPDhw/HHXukhVQgEGB0dHTeQREw7otxOByzHhN9PbH5T6a3t5e+voQNIzNEr/Knfx4HDhxIOY2jLdNBLivBRGvt01rfqLXeqrU+XWv9XMxzt2mt12mtN2qtZR6RGKnWykec0t49H3P9qAYHB+nv70/4XEFB8ulw/P5wrS/aHKa1prm5mbGxMWOf6bWDiYkJJiYm8Hq9WK3WhHkLhUKEQiEmJiZoa2uL2z7d/v37OXDgQFw60f2SpQ1TgXJoaGjGPh6PJ2672+3G4/EYTVtH2t/S09PDwMAA4+NzrIxK+L09cOCA8V5Gz22z2WZtvonWHKKvMxgMMjAwkPC9m5iYiPusYtPw+XwJzxMMBrFarQSDQWw2G0BKryeWzWaju7t71n0mJibo6OggGAwecVDIdDBZHJfcaTK54+/+7T3rq1nKiciGhZ7uZLabE/1+P0VFRbjdbqO5LPbqPlYwGCQUCsUFpvb2dkpKSigsLKSiooLe3nCNMicnh1AoRElJCWazOS6d5uZmgBn9A9HzTk5OkpOTE1cQBgIBTKbwUPRUgklsAIxNw263G+nE8vl8xmACl8tFZWXy0YgTExOMjIywbt06lFJ0dnbi8XiMc4+MjGA2m8nJyeHQoUNAeJBNbD9MtCYyNjZGZWVlXDNlb28v5eXlCc89vRnKZrMxOjpKTk5O3ICJ6QFRa43FYqG2tpb29nZj+/j4OI2Njcbjrq4utNY4HI6U+m9CoRBerxe73U5tba3x2UbP6XQ68fv9VFRUzHiNAAcPHpy172uuc2fSkggmeR4bMNXxNdGY8o3zx5Rox7s/NPUD3z/kYcIb5PzVxUecbjCkyc1Qp342pBtIpgeB+Yj2LSRqOpp+VZusecnhcOBwOOLWTYn+0B0OB2azmaGhIYLBYNzV8PS+iegxia5qDx8+zLp16zCZTLM2c0UL0UQFTX9/P3a7PeEoNb/fbxT2Y2Nj1NXVYTKZGBoawmq1sn79evLz82lvbzeCczSwOp3OuLR8Ph9dXV3k5U0VT83NzZx44onk5eXR2dlpBOroa0hUg3C5XCilKCwsnPEchINjNLjY7XaqqqrIy8ujq6srLk9aa6MmMr25c3JyMu5xND8Oh8MIrvn5+QnPPzg4GNeMOD1Ia63p6uoCwn0y69evT1gTHh8fTxpMHA6HUcNatWpVXJBdEs1c4sgU5IYLfG9w6kvwL08P8Z8vhL+Qf2yf5AP39sw73djgdLxK54eVbB6r6Ve3c813FW0WS3TMyMgINptt1iYkrXXcVXOsQCBg9BPE1j58Ph9er5f9+/czNjY2o2YyPQ3AaL5J9FxUa2ur0beitaanp2fGFDTTg2Os6BV7LIvFgs1mw+l0Gs9FP7dE7113d7fRnxN7ziiHw2HkOxAI0NraSl9f34zgNjAwYNSQEr0vyTrzo68t2dQ004+b/hqmn2u2/qBoYO7p6SEQCDA8PGwE5WigjdZmYo/JpCVRM4llX7E0V0ec8ARx+SM/9Mh3ILYA9Ac1P3nNhv8Ivh++oMa85L4JR0+yH2VswenxeIyrzGQsFsuMbT6fj8HBwZTyEQwGZ22Sm17r0FrH9bn09fUZV9OxBVm0YzwqLy9vRsEXDUqJzhf9e/pVfaJBDVGJgnu0BjfXftF9ExX8sfsrpYz3K7pvov6N2OCZKM1UP5+RkRFcLhcrV66Mq3XF5jlWa2tr3OOBgQGGh4cpLp7ZChG92ICp+dUSBTm/32/UTqVmMofec2ZO9R7VZ/cz4jz2ptcOhDQ33Gfh2Y7wFZMnEGLYEeBX+6a++GPuIMX58R+nwzv1xe8Z93Hjfb1YEgwF9gVmfql+uHuUF7qcM7aL1MUWPHMFEkg8OszpdKY8jDXR1XmsiYkJAoHArDWkaKCJDZCDg4OMjIwY2xLdQ+LxeGYEstjX7/f7ZwTL6VfKR8Lv9+NyuWYUjLHvd+xz0wcizPWeZdLQ0BCTk5O0tLQkfD6VmZqDwWDC4c+JRqclusiZrb8sXUsumCSa7yrq7x/p5yMP9vF8x+zDBxebXT3xbeO/+8sEH32oj/sOTH2pRt1Bygri76Y+aJ2qXj/X6WTcE2JXZHhxMKZpyxVTnfnB7lH29Ll5st3Bt17K7Fj8VHmm3SNjmfCzxzLz3oXeCT9O37GxuubRmPMqUfPTdD6fb9YCNFF/SvRqPRosEtV+EjXlTN9vIWYiDoVCdHR0zLpPbJBONJz4aEjltWe62Wm2c8x3hFkqllQw6Tn3tpT2+86u0bjCdLFLpcC0uQOYpnWid4/7+PIzQww7pp7zRmohnpjaiNOvI8+F+GO7g68/PzU6LhRTuHz12SG2/6abR1vt8Vd4WvN6v9vY1mf38+9/Gp7z6kdrTfto/A/6A/f2cM09vbRZp7Z/4tF+vv6nkRlB5pOP9vPZHQNJ04++nsXwWR+N6UlSKRw7OjqYnJzE4Qsd8fsS+1pGnAGe63Ak/KwzUfNIldaaIUfiVgeXy4Xdbp/xGcxV4xt2BpjwzO9zC2nNjrZJxtzh437y2ii/fGMsrjkxm0ZHR7FYLEmHuqdjSQUTb2lT0ueiH25Ur31x3Pk95Ajw1tDs62I4Uggmh20+nNM6TO58c5x9gx7u+vM4g5EfmicQ4uEWO5MxTWDRYGX3zjzPA812Pny/hd/vt/PGQDift+8Z47Lf9rD9N91844URdvW4+NpzwzzQHK4pfetFK69a3PzuL1Odq38Z9LD9N930xbzvn39qkM/sGOTlnqnmNHcksHWOzbySG498hjZXgJ/uCV+F909G7odwBNj+m27u2jc1qufxNgc/2D3KS92p3ZHtDyYuXF/vd/OdlxPf8xErGEo+80Ciq06HN0jXuI/dvS6jIBxzB+OaJ1PRMebD6gykHLCCIc11v+/l2y+nX/P8n11WvrtrlPF5FrqJdI35+N/do0k/hyiHNxhXm4ZwzftjD/XRMjIVUPdYXDzeOklvby89PT3GzaO3Pj1ofFcB7Ene748+2Mc/PpH4YqV91Mv233Tz5kC438cbCNE+6uXQqI8fvWbjF2+MobXm8TYH9zfPbJZKt5npyUOTbP9NN7453qvpxsfHF6RWAkstmJQ1Jdz+bIeDD90fbq+9Zkt4CdzeRTKNyJefHeLWp4eMGkAidm+IglzFqcun7je4bGN4mvytdeGhgr/fb2fQEeDMFYW8oyl+fPvznU6e7wwX2A+3TPKzvWP87cNTVyY2d4BnDzsSXoUdtvmwuYPc9efEX8BdPS5skUL+5R4X39g5Qojwa7n7rQmahz384o0xvvhM+Ca3vf1uWka8jDgDtEaa4Xb1uBh2BOIK0clIgIstWCa8Ifrsfj78QB+PtU4NydzZFS5IAO7dP/XDjU47Mz3IArw54MYbCGGZ8NMx5qNn3MdVd/ewp8/N/Qcm2P6bbuMC5GvPDfN8p3PWoO4NhPjxazbef09vXEC5becwP3o18YR6t+8d49OPDfAfO0f4wlPhTtwP3W/hk4+GC7BUC5x/eHyAmx6cusv63rcmuPPNmUNlo0Zc4cD1YoIg2z/p52d7bbj8Ibb/ppvv7UoecPxBzf7hcOFtcwfpnfDzi9fH4mo8bw15aI2pZX53l5VnDsc3MwdCmp5xH4+0TvJUu4OvPTeEzTUVXKOvJxBJ94b7LFz3+9649+etwfCFzm6Lyzj/1/80wk/2xDf9tYx4eWvIyy/eCL8/zcMe/voPFl6b1ow6MBkuH6yuxIHmVUs4iPzktXD6t+8d4zM7BrFELpae73Typ1n6HNO9K/4PkSbub79s5ROPzJ6W1jruIm6hLJkxPN6SmeOs7zswwe/3T+DyT33pTl1u5r4Ddr75opVtKwspyFv4eOr2h1AKzAnONRC5sra6gtQVj79CKQAAIABJREFUJ/44JrxBys05/Mcly9BaE9The04aK0xsW1nIhx+Y+jJtrivgg1vL2dk1+x20sX6wO3lb+/QCp6nCRNd4/Bcz+rht1EfbtKlebvlj/B3UP9sb/hGvLp/q29rZ5WJnl4vvXjo1yfS4J0jzsIeqoql+ILs3xP8kKNymDxT4yrND3HRapTFgIfYqtn3Uy30H7LzU4+Jtq4t4KdIfdf1J4fH3r/S6+GN7uLDbP+zhgsapkTNj7iClBYln+Y2dvub99/TyHxfXsbLMxCu94ULnU2dXEwxpbt9r48pNZRTm5RgBHsKFcTR4jXmC3L7HxvOdTn7w3nrqSvKM13HXvnHObijk1PrE907ctW+ce/eHa4QjzgDvPqGU6qJcVpZNvd+2aQVkSGte7HZx7qoifvKajTcHPNSXhvd/psPJZ86LX24h6qq7p4ahT3iCPN/p5LkOJ9tWFbK1Lnzhc+vT4c//sRsbCYQ0z3WE93nV4uKLb6/l9X4P//p8/E3Hfxny8u2Xrdx2yTI+s2OA0Uh+nb4Q564qInp9cdlve1hdbuIfz63GFBk2f98BO/cdsPPYjVM3EsbeRzW9RaLdFv6+7ulzs61h6iJsb//USLPpc7f95DUbj7eFL2ai9369GumL7I9J/4k2R1waTl8Il19TV5Jn1A601rTbfAxMBjhvdRG7e11sXWamwhz+nvmCmpe7nXxn1yh3vb+BysLw9rriXIYcAaM/dVePi/NWz7xJss/u56d7wp/pNy5ZxsnLzTP2yZQlEUx0bgGe8vUztt/55syr6RWlUz+q99/Ty3cuXc6aynzyc+fuIA2GNF99bphrt5bP+aEEQ5orftfDZ8+r5n92jVJdlMuvro4PeLFXVqOuQPJg4glSHinElFLkRbJ66fpw7aTQpIzmodri8H4/2l7Ppx5L3p8wlyKTigvCUR/YWs5/T+uY77DNv2M1OsFkfWmeEVC/8txUofJyj4uHDk6ysWbqhi+7J0hJfi4Q3zY+vXnuzQEPBXlTn/2db45TkKuoLsrjGy9MjXp5KWZgw91vhQvgaCAB6LcH4mqMNneQ1ZH7CrvGfJQV5FBVlBfXtBL14EE7r/fHN19a7H6eaHPQavUlHFU4HLPt0UjNq3PcZwSTjzxgwenXPNo6yQWNRXzo1AojOEO4CTMaSGAqSAOc3VDIJ86qos/uj6thtY96eaR1kuc6nCwvyTOaQ38ac0XvCYR4os3BO9cWG4Xc9P6rCc9UH8w3X7DyrhOKufGUqZswrc6AMbccwCu9biZ9oRmBxEjPG+Kfnhw0AgnAjkMOdhyKr9X0TPj53JODXH5i4gXtIFzLjeZ7MvJdif7co32JLn84/zZ3kF/vGzd+RxC+oPruLivbGoo4f3WREUjCrzsS6CIXLLE144Mx3wt3QPP5pwax2ANGoHu01c7te6Y+v2u2lHHfATtNFSbOWlnInj431UW5xvdoZ5eTzjEfVYW5lEwbufmNF0b46WUraIhcpD3YbGdFaR7feslq3Jf21pAnrtz6393HyBT0R5dGq9RqGFVFuXz67Cp++Gr4x/K5Jwc5rd7Mv188dVevL6gTBpdhZ4A/D3r486An7sonkeiP8n92hT+wUVcQpy8UN3w3trAeTVKdhvAPoKQg+ev75VUNWF0BDgx5uWhNeCaAxoqZd93+1bpinj7spDBPcdXmMi5ZV8JHH0xcRU4USAAqzTOvzNsTBJOfXLaCf3pywAhyieQqqC3KNYJJ7ECD6PxirTEj0sY9QRrK8uif9McFkETBbHdv/D0Mt+9N3uyTTM+Ej7tj+n1iP6NPPx4O1I/d2Mg3X5o5LHN6IOmz+42Lm8NJgm+iAGNzhZuPPvlofIfpi92uGbXG2Oak6V61uHnVEv6sGyumLqg+s2PqHonBJB3YX312mOaR/9/eeYfJVZ0H//feaTt9tszu7Mz2ImlXAguMwJQYMB1kBDZNlmNsx7hgxzV+TD7H7XG+fLExBhIntoE4cQtVwZS4QcCJgws2BhuJJoEkQKy0aCVt0fad8/1xy95p28Vql/N7nn327p27d+57T3nPW845I/xxzxBtFQEuPyrOV36ZO6DoHZlw/PcHhie4fUsfZ7ROrkrx7iL1bN+hCbwGFAszGQLbplnQ1I2tIJsSPl7uG8txte0fnHCUiR0fmVBWfMr6v0Oj5uCvGHZW469eHCzIrOwfnX51ZYCBkSwv95nvd2gsS9BncPuTuRM2t+w1y2/nwTHH2nd7AW55bOo6/MH7pg6q3/pkL5tcCv5n2xc2q3X5xExmqEy8hvDmptxJP493TTb8B54f4JLbXuSV/lxzeDyrchZQfKIrt7P6rxcG2NI9eZ9iAclf7sp1x+x3JQV0TzH/ZWhcEfKVli/iN2hK+LlgZe7o7FtvTXPLRWm+cHo1d29soCFuKpimcj/vODqRYwndemmu1VQR9PDtC819Tt7SEubs1gjvPbac9spJJXVOW+m9GzIxL3de3sA1f1bFSQ0h/uGCWjbkjR4nVO5s/unoHckyOK5IlHlylJr7Hn/WmGvqNyWKp4pPZ4g2Jny8cGDMsVgArv+1OTBwx3Ee7xqa0cKaH7j3FX63u/QkPYC//2WhC++fHt1foEhK4V5N+hMnVpa8btfB2fnPn7JG2I+9MsztW3rZvLXXkWXT0aZ7sHd4gn157+GzDxQuEunmoz/uYjxLQYwPct/xu49JFHx++ZpYzt8HhiZoq/CzfmWU8Sw5iuG3Lw9y8+/3MzyezUmn33lw1LFU3G6t2ZBVcHA467jZSuHuD+z3OZw3v6tUNtp0BGbgVbGx3+vQXGY3T8PyUCaKAmWSVQpD4Oy2CPe/s5E7Lq/ne28zdwAu1jG/cGCUgdEsN/66h6yaDKyB6bK66N9fdILIAPc+058zkr7+Vz1c8/O9DI1luepHu9naXThKzA/muSvYQy+UDtYNjmUJ+WY/T6Eu7iMVMU1mn0ec+MO4q6Heu6mBuzc2EA14+NJbqvnOxRm+9dY0/3pxhkzMx/3vbOSTJ1Xx0RMreVtnjKDP4I7L67nrinr+8k2FHVZD3MenT67CsHzMpzSG+T9vTtJS7ufdxxQu/nfFUQkCHuHq4ysAqIl4neSCM1smlX6izKBv2LTuQj6D719Sl2Mdrqzyc/87G/mrk3P9+3uLKOm3d8a4Z9Pk/97zDlPpXdRhfm9HMsCqqkDRJI31P9iVEyv4guWam02Dno5vX5imI1m4BtM/r6/lunOLbV5qYo9i//XiDGe0Rvh/Z5Xe6XEqTm823/ttl9UX/fyHLmttRVWA8jLTf79tv+mCSZSZ7evVEtb2HZfn3rczWYbXMMvFLj97FA9wyeo4m46Oc+VaU6msrg7w52vL+aZrU7ddB8eIlxk5sSH3897zTD8/eS53JP5S7xjP9sxtrokAnz7FfNY/3/wyQ2OKU1wxi3WZ3JjWJ386aQF+4SEzbX48LzX7QImMOK8BV72xsO2ca/Vt0w3ILlgR5RMnmW11d98Yz7w6kjOAXiiWkZsrtzH3j2TJKmi2RqYhn5GjRD59ShV9IxM8sH2AFw6M8dH/7OKjrs7x8a5hBkezhPxGUbfEo7uH+Mj9r3DduamcAPhdW/voGhjne0/kxmtSES+7+8b45qM9bO0e4cbza/m+65qdB8cK3GA2pjKZud6PxWJFZ8nWWr73fpcSNEQwrEH+G9PFg7r5uJ+lMuShZ3CCzmSAp14dYV0myKnNxRed9HmE+9/ZSFYpHu8apj7mozriZfPGBiayioHRLOe0RYiXefjAugpzobuDY5zaFOYXOw7xoKVw3R3tB9aV8+3fHWDA9oW75trcclGa9/2ocFQfsIJOm46Os6V7BI8hnNIYZlUywI+e7ufE+mBJN18+dn+weWODc+5Pe4ZzBh7ntkX4qeVScMeIPnVyJdc9Ylo7reV+nrfSoTMxH9eek2L9D3KTKBos1+XnTkvy5V8UutbsgH7SsjiPqinjjsvqueyO4vM9rj0nxQ2/2sfnTqvm4R2HuH1LL5UhD586uYpPWZ366c3hnESBfMqDHmqjXic2c3wmyEfeVMm1//uqc27T0XHCftOt0zti1uVTm0LO5zURL5uvaMAQMya4tXvYiY3YSRkbj06QVYqsgjNbzfpVH/fxuVOTfPm/X2X/0ASrq81BQCm6Bkxle8VRcW57spebpnB9fuzESkI+cda9A5w6DvCZP6ty4hM2oxOKWy5K0zucJRXxsvmpPtavjBZ1Je8bnDAtqFVR3nNsOdc9sq9odh2YsdHzVkS5Oc/NFbes8xvPr+WxV4a4ZHWMsQkz7lMT8XLhD81Bz/uPK3ee23bPHg6WiTIBxHyxj70yxKuHxp1KlQgWz7451XJ1HZcOcpWVJpufb/5K/xhtlYGSLqhXBydyAm4AewZyR7PN5T52HBijPu7j2X0jdFuugK3dI04BX7o6xp1b+3h23wjH5nXoWaUYGlMEfQaRSISxsbEpJ6fFYjEaGhrYsmVLwWcNCR8eYcpg5Wy5ZYNp7T2xZ5gvPdzNqiIj6nwMkQLF5TGEy9bkLhsuItxwfi2Ak88PkI5OVtuVleb3HXTFUD58fAUikIr4+MYFtWx+qo91maDj+7bdcxuPznWfVIW8fP/tdSTKDMazcJvl4vq7M2tYXR0o6VPPp7M6wBVHxVlbW0bIa7Dj4KijTG7ekOGan+9hS/cIx6WD3L2xgQPDZiZfvuvBIziZSx85ocI5f0JdiBvOS/FS7xg+j/C1R/YVjTsAhKzByVE1AZ7cO1lvzm2P0JEM8G2r/OqtjjF/aZ1PnlTJpqPj3PyYucVz2CfOJNebNqRJR32c1RZx6vLbrdR792oMZ7VFqAp5WZcJOrGuD6yrcJRJc7kvZxAQtLIe16+MssKlHAwRLj8qt464s/1Oagg5A5aDwxP0DE7wwPMDThq5nV11Yn3IKVsw43a2FfXF06upi3tJRcz3cftlQT7z8z2sXxmlLubjGst1d0pjmImsoiLocdzVK6r8pCI+Upb3973HlpeMp7zHUjArqwJ4DSEZyu2KT6oPOatVDI9n8XuEuzc2MKEUl1iZgz1W+nRrhZ/WCnOgEfAKtVHz/XUkA4xOmJlsxWKdC80yUSaTAfgvPtSNu/ga4qWXVwGojfr4wmlJvvSLV50A6dfPTfHJn+5hd984bZUBJwulvdLPCXVB2isDjnvj4R1mBa2LeXm5b5zHu4YJeoUhq1HecF4tWQX3PNOX4zP/3e4hIn6Do2oCXLomzl1b+/j8Q93ccF6KtsrJBjRsNdyQz6Cpqck5PzAwUHS9J3sZ60wm46wWai9VXuY1uPsdDY4Lai54vd6c5SlsX/G6TJCbN6SdlNKFJu5qDG4LsqXCT3uFn/UuBXneisnjpnK/M8qeyCoeeWmQylDpam+nXvo8prupMuRxUrrPXxHJSfe0yc+s8RqSk8nkzgwCuObNSZ7dN+KkGduxq2Ce9XntOSme2DNcoGQB2ioDTj05uSHEW61RaEWRwdMdl9fjM4Qfb+vn8VeG2frqMB9cV5Fzzaqk37pvbuKGiJCK+shEfcAQpzSGnZGvnRnZ7IpLpSzr94S6IPc928+Fq6JUWe+7Nuqj1iqaWMDDfZsa6B2ZzLSyObEhyH883cfJRVJd8yl3yetO406UeUiUeUhFErRV+Lnh1z2uzwyuXJvgu08cZGWVny+eXs0LB0bZ2j3CcXnuqbDf4BvrTXeaPffFxmMInz8t6SQxXLq6sJxEhK+fm+L6X/fwUu+YY0nnP3+Vq458Y30t6aiP639lWit2e/V5BB/CxqPi3PpkL+8r4vpy8+UzqrFbenmJQfVCskyUCdjhn/xxwHTKBAozn2zz1Z7cZY+grjs35RTsfZsa2HjnywyMZmlK+Ljh/FrefuuL9I1kyUS9nNkaYWg8i8cQPEBbxeR3rKzys61nhOHxLOmoj5DPcJ774z/ZkxMLsFMO82Mm9uquHo8nZ+azvXdDeXk55eXljIyMsG3bNiorK03l4pqJnUqlZrziaTQaZWBggEwmU3IXuHxF0tDQwIEDB4quKDsVwWCwYEVZ2/238ah4zijWawjXW9YLQEVFRck1qk5viXB6S+mkgXzy/e9XH1/J1cdX8jcP7qUx4eOeZ8wR79+eUT3lfaIBD18+oxr7sRNlHk6om76jXFEVyBmZl0LEHI3vHRinJlLYpG235IZVMTasihV8DqYV93/PrHaSNPJZvyrKwzsO8bbOWMF7sdvPG9NlznyMtbXBnHkRpZ47X5EAdCTLuOuK+qLzsvKZbsQd9huc2RrJUyYeLlkdY/3KqKPA35AK8obU1G7eCkspuuNj7vddak+gFVUBvnFBLQ88P8BZrZEcZWIrf7cl12S9z0+fUkV7ZT9ntOS6ja84Ks5FHbGiLnE37vfn7j8+tK6CpnIfqYiX074y5S1mxbJRJnbMxGfAWBbecXSc89qjBQvs1dfX093dndO5uUeO155TQ8hnEPYbvHpoIidI5h7Ri4iTVrjz4BheQ6iOmP7wroFxLs0bTa6tDfKhdRVkYl5+sfMQDz5v+qFXWPMobMsGcGI1MDnhLr/iBAIBYrEY1dXV7Nq1i2w2S11dHdFotOA6e5e6vr4+Z1mPhoYGotFogTJJJBLOhKrW1lZGR0fp7u6mrq7OUWD2RlKNjY2OYikrK8tZ2K+6uppYLEYsZnZeQ0NDvPTSS4yOjhZYN+FwGMMwnI2GUqkUg4ODRbeMtTvGjo4OBgYGCtZ/isViM1rwcDryn9HN355pBrZ//Fw/Y1lIFwn65nNMiUmGxcgfIMwUu2NramrixRdfnPXCgVN1ptVhL9+/pPgGTLZrKZ/5jIbdHWE8Hi/Y96Suro6XX37Z6cDfYM2f8Pl8RReyvOuKev64Z5jjM0GnTwjOIanltsvqweW6sq3LN9VNvruysjICgUDOM3sMceaFffdtGa604qy2MrTdVHHXFABDhLd1Fip/jyGE/eazr1mzpqhLOx8R4S9PqKC53D+jAcpcWBbKRJQCw4tSCkOEDasivMPlD29qanJ2bovH44TDYQYHB3nxRdM1ICLcflk9Aa84M1qTIQ+/3HWI9VZmkZ1tVIyrjjPNTTu3PT891cZO3X3hwBhgKpPOpNkIPntqNdc9so/t+0f5/EPdXHVcOSurAk4GWH4A3jAMGhrMoO+KFSscOYphLxkei8Xo6elBRJxOPhgM4vf76e3txePxkMlkSCQSjI6OEgwGCQaDBVugrl69uuA7Ghsbnf0XotEoyWQy5/NgMEhDQwP79u0jnU4725PW1dWRSCTo7e11lInP56OqqipHmbRbjc12B3g8noLtbAOBQMld9WZCKBRicHCQaDRKOp0u2E8in6+ek+Kp7pFZJUe4KS8vd1yRbgXS1NRUsKlTJBJhYGBgSiVnEwgEaG1tZefOnXNeYr29vX3KzbamIn9gkU8x5dDe3u4MVtxLtFdXV1NdXU0oFCKbzbJ37148Hg+JRIJDhw6RzWb5zsUZQj4DwzAIh8NF154q8xozsganI9+lCaaCcVsr4XCYSCRScuOvypCXr55dwyMvDjqDxvq4j7s3NpRMMS6WVGPviZL/vhOJBIZhFAyqzmlfuFhpMZaFMgFFVrzc80w/IxMqxyduF+yaNWucc16v1+lMnevyKklNxMvOg5OTxYrNV7j2nBQv941xljU566KOGDf9/gAfPr50jn/+vew0yvq4j6+dm+Kif3+RZ/aN8Kmf7uHWS+uc2EyZt/QoaqbLmyeTSfbv3+8oITCtD6UUfr+faNS05CKRmbuCotGos+HOihUr8Hg8TqeQT1lZWcH2oraiisfj+P1+DMMous3pac1h4mUejk2XOdZX/jan7e3tzr1KNeR83K6+5uZm+vv7iUQiOXt2RKNRampqCjrW9soA7VbcophrrhT2/u7JZNJRJul02rGygsFgjtXnZjpFYt/f5/PR1tbmbF3r9XoLnt9WnpFIhGg0SldXl/Me7O1hk8lk0b0ybKqrqxkfH8/puDKZDF1dXU6szm0tJJNJZ/Bi4/4+yFWy9qCkstJsU36/36mfmUyG4eHhnHsFg8EFXciwpqaGvXv3Eo1Gc7boDQQCRCIRenp6HAUTj8cpKyujoqIip/60tLQULJPfWV1GZ/XkYEhE8E1hyEWj0QJlYrf7TCbjDD6qqqpIpVILYp3PlkVRJiKyFvgWUIa5NsbVSqlHxXw7NwLnA4PAu5VSf5j2hkpxcNTglifNCljpyvAo1bFB8UK2Wb8y6izmBtBcXtjBdSQDOWmqb10Z5ey2yLS+XreZ6VYE3jyf6yOu2bbNRWa0zxav11vUqhCRovt6z4T6+sk5A6X2ui5GQ0MD2Ww2R/5SVkVnZydPPfWUExy1Oxh3g121apVzXFdXN6UycXcEsViMeDzO2NhYjsUGUFtbS1dXl2MFpdNphoeHizbUcDjM0NBQgSILBAJkMhmnnjU3N+P3+xkfH895X36/n9bWVkdZRKPRnHul02mee+45WltbGRkZcTaa8vv9BXtl2O/F4/EUuD3t9zM6OorH42FwcJBUKoXX63WUiXsnv2g0OqUyKSsrw+fzOe9k5cqV+Hw+gsGgo0yi0ajzeXW1GV+yFzpsamoq2DkwnU4zMTHB+Ph4wUAp30p2W6eGYRTUodraWseimQvJZNKpb+6kl9bWVufZ7F0og8EgVVWT85xqamqYmJggFAo5yqjYoKOjo4MdO3bkWBduS9Xv9xMKFVpViUTC+d41a9YwNjbmWCv5A63XgsWyTL4KfEkp9RMROd/6+zTgPKDd+jkB+Kb1exoU/eOTla7S5audym8cCoUc32s+biXxiRMrCzJtiiEiBRZES0sLfr8/x3S3RzJ1scLX/9Wza9i2f5Sbf3/AWcDwHy+odczhI41iu+7NhHzLsBjpdJqenh4MwyAQCDAyMkIoFMppWB0dHYhIznOIiNNo7f8zDINMJkN/f78zOq6pqXH+r1jjs0fAdqOtqDBdncWUiT2yDofDzu5/YHaWdgNPJBJOx5n/fbaMbmprax1l4vf7Hes6GAzS1dXFxMQEVVVVBXtTTGWper1eRx6lFNFo1FFq4XDYkdF9vS2fHWdMp9P09fUxMDBANpt1/t+2iMBsW+5ONv/53J6CfEQkx3qeKYZhFHS65eXlGIbBxMSEs39Jc3Ozsy99NpuloqKCeDzOwMDAlIrTrfTselNVVeXImf/e3a7eeDxOf38/Pp8vR5lEIhE8Hg/JZNKxTGtrawmHw3g8Hvbu3Ut1dTV+v5/q6moGBgacupVfVu465T5OJpOMjY0RjUbZu3cvo6OjRRXvfFksZaIAuzeJA3Zr2AB8T5nJ2b8RkYSI1Cqlpp1pc2h8UoG4A3/F9lp2U2w/ZTB9rPduakAorCStra0FPu1SeL1evF4v6XQ6p9HfeXk9xdp8Z3UZHckAm7f28SdrXkAydPjT+o5EKioqnAYTDAYZGRkp6HBLWZ6tra2A2WH29vYSi8UwDCNnZDudezAQCBTt9PJdP9XV1SQSCccSmJiYYHBwkHg87jTqjo6OoorXTmYoJsdUdbetrY2xsTGCwaCTwDBdjKezs7Pgu93WUXNzc8H/+Hw+amtricVi7NixA4/HQ0VFBbFYjD179jjvtbm5OcdKcA8W3J3W4dhxsqqqin379hUooJaWFuedR6NRR5n4fD78fj+dnZ05KwKHw2Gi0ShKKbxeb8EckWLP7vP5SCaTDAwMFHTubmwll0gkiMVizgDWfk/xeNzp6G2XHpDjFrbjR9u3b2d4eHhKr0sgECAUCpFIJHKeK9+yW0gWS5l8HPiZiHwNM6f3JOt8BnCn57xsnStQJiLyfuD9AG+sNRiwLJPL1sSojXodF8V0/n+fz4fP58Pr9RaYn/nzMfx+P9lstqhGd2dBubELvLy8nOHhYYaGhhgeHp7S0hEROpIBx80V9huvybavRzJ2RzUbVxpY6aeJwrWd5oPdedj1xXbd2B2DrfDsESSUVnpNTU3s37+/5OexWKyozHa9dX9fS0vLlAH3uViRIuJ0bu3t7U499Hq9OR1d/qBMREilUuzbt69gALDQpFIpUqnJZWbs9+C2UsLhMKtWrWJiYiLnfea3q2LuJDd2XM5NTU3NtG5it2UJpnVrJ3vYtLW1zSgDr6mpiaGhoSnLU0RoaWmZ9l4LyWFTJiLyIFBsIaHPAmcAn1BKbRaRy4B/Ac6czf2VUjcBNwEcl/ao3dkq4gGDd601M6sqKyuJx+PTWiZgFrTtr8xkMiU3rmlsbHQaRiwWQynlBOXS6XRRZWIXuIiQTpuTn3bt2pUTzCvm9z61Kczz+0f5wLqKghHk65F4PM6hQ4cO68hqphiG4Vg+xYhGo8RisRz/eSnC4XBJ6xiYlbtnuo5wvsx2QFNVVTWjd7DQlHoPtpdgPiyUYizW0RuGMSOF7/V6i8bCFpvDpkyUUiWVg4h8D/iY9eedwC3W8W7AvQpcnXVuSp5Tdfxw6AQqQ5OjJvfv6QgEAhw6ZMYnfD4fzc3N7Nixo9hzO8fFGnmxlMhiDTAUCjnKJBKJ0NjYyNatW3OuOakhlLPZzVQdzusBn89HY+PUy/4fKczV57+caWlpmfdWtZojm8WK6r4CnGodvwXYZh3fC7xLTN4E9M4kXjKCnx0Hx1ldPTdXiNsV5vV6S3bcU/koYeYdvnvkNDw8PKMR35EwItdo5kooFHrdD4iWO4sVM7kKuFFEvMAwVuwD+DFmWvB2zNTg98zmpiusdYVma8q6g4W2H9qd624znQk6UyXmDlS6fb2lSKfTuiFqNJojmkVRJkqp/wXeWOS8Aj481/vaK4jOxZzu6OhgZGTEsT7cvlF76ZLpLAi3EksmkyWVmtvCsS2Ojo4O+vr6isZrZjOJUKPRaBaDZTID3sRenXQuQT+Px5PjfrKtDL/fXzSDoxh2zn4qlZp2HsWqVauciXL295eXlxcAL3SOAAAIOUlEQVRVJvMNGmo0Gs3hZln1UpUhD+l0ekGyWmxlMl2cxI1hGM46WdNRKrOks7OT3t7eHKUy14mBGo1G81qxLJSJz1qGpMxrTDlxaDYEAgGqqqooL596z4CFxjAMZ05KT08PK1eufE2/X6PRaObCslAmdTEfN16YnjL3f7bYk64Wi9raWmpra6e/UKPRaI4AloX/JFjmp6OucsHXmtFoNBrNzFgWysTj8ehJYhqNRrOILAtlotFoNJrFRSsTjUaj0cwbrUw0Go1GM2+0MtFoNBrNvNHKRKPRaDTzRisTjUaj0cwbrUw0Go1GM2+0MtFoNBrNvJHlsPuZiPQDzy72cxxGqoB9i/0QhxEt39JlOcsGy1++lUqpBdkDeFmszQU8q5Q6brEf4nAhIr/X8i1dlrN8y1k2eH3It1D30m4ujUaj0cwbrUw0Go1GM2+WizK5abEf4DCj5VvaLGf5lrNsoOWbMcsiAK/RaDSaxWW5WCYajUajWUS0MtFoNBrNvFnyykREzhWRZ0Vku4hcs9jPMxdEZKeIPCkiT9ipeiJSISIPiMg263e5dV5E5B8sef8kIscu7tMXIiLfEZFuEdniOjdreUTkSuv6bSJy5WLIUowS8n1RRHZbZfiEiJzv+uyvLfmeFZFzXOePyLorIvUi8rCIPCUiW0XkY9b5JV+GU8i2LMpPRMpE5FER+aMl35es880i8lvrWW8XEb91PmD9vd36vMl1r6Jyl0QptWR/AA/wPNAC+IE/Ap2L/VxzkGMnUJV37qvANdbxNcBXrOPzgZ8AArwJ+O1iP38Red4MHAtsmas8QAXwgvW73DouX2zZppDvi8BfFbm206qXAaDZqq+eI7nuArXAsdZxFHjOkmPJl+EUsi2L8rPKIGId+4DfWmVyB3CFdf5bwIes46uBb1nHVwC3TyX3VN+91C2T44HtSqkXlFKjwG3AhkV+poViA/Bd6/i7wEWu899TJr8BEiJSuxgPWAql1P8A+/NOz1aec4AHlFL7lVIHgAeAcw//009PCflKsQG4TSk1opTaAWzHrLdHbN1VSnUppf5gHfcDTwMZlkEZTiFbKZZU+VllMGD96bN+FPAW4C7rfH7Z2WV6F3CGiAil5S7JUlcmGeAl198vM3XFOFJRwM9F5DEReb91rkYp1WUd7wFqrOOlKvNs5VmKcn7EcvN8x3YBscTls9wex2COcJdVGebJBsuk/ETEIyJPAN2YCvx54KBSaty6xP2sjhzW571AJXOQb6krk+XCKUqpY4HzgA+LyJvdHyrT7lw2OdzLTR6LbwKtwFqgC7hucR9n/ohIBNgMfFwp1ef+bKmXYRHZlk35KaUmlFJrgTpMa2LVa/G9S12Z7AbqXX/XWeeWFEqp3dbvbuBuzAqw13ZfWb+7rcuXqsyzlWdJyamU2ms14ixwM5MugSUpn4j4MDvbHyql/sM6vSzKsJhsy638AJRSB4GHgRMxXY/2WozuZ3XksD6PAz3MQb6lrkx+B7RbmQp+zADSvYv8TLNCRMIiErWPgbOBLZhy2NkvVwL3WMf3Au+yMmjeBPS6XA9HMrOV52fA2SJSbrkczrbOHZHkxa0uxixDMOW7wsqaaQbagUc5guuu5TP/F+BppdTXXR8t+TIsJdtyKT8RSYpIwjoOAmdhxoUeBi6xLssvO7tMLwEesqzOUnKXZrGzD+b7g5lJ8hymX/Czi/08c3j+FsysiT8CW20ZMP2W/wVsAx4EKtRktsY/WfI+CRy32DIUkelWTFfBGKav9S/mIg/wXszA33bgPYst1zTyfd96/j9ZDbHWdf1nLfmeBc470usucAqmC+tPwBPWz/nLoQynkG1ZlB9wNPC4JccW4PPW+RZMZbAduBMIWOfLrL+3W5+3TCd3qR+9nIpGo9Fo5s1Sd3NpNBqN5ghAKxONRqPRzButTDQajUYzb7Qy0Wg0Gs280cpEo9FoNPNGKxPN6xoRSYjI1a6/0yJy11T/M4/vukhEPr8A9/maiLxlIZ5Jo1kodGqw5nWNtT7T/UqpNa/Bd/0KuFAptW+e92kEblZKnb0wT6bRzB9tmWhe7/w90GrtYXGtiDSJtU+JiLxbRH4k5t4dO0XkIyLySRF5XER+IyIV1nWtIvJTa6HOX4pIwVpIIrICGLEViYj8m4h807rPCyJymrXA4NMi8m/WNR7rui1i7nfzCQCl1C6gUkRSr80r0mimxzv9JRrNsuYaYI0yF8azLRU3azBXli3DnCX8GaXUMSJyPfAu4AbgJuCDSqltInIC8M+YS367ORn4Q965csx1ky7EnHV9MvA+4HcishZzz4yMbTXZy2RY/MG6fvPcxNZoFhatTDSaqXlYmfte9ItIL3Cfdf5J4Ghr9dmTgDvNZZ8Ac0OhfGqBV/PO3aeUUiLyJLBXKfUkgIhsBZqA/wZaROQfgf8Efu76324gPV/hNJqFQisTjWZqRlzHWdffWcz2Y2DuFbF2mvsMYa7IWuze7vs691ZKHRCRN2BuMvVB4DLMta7AtJSGZiGHRnNY0TETzeudfsztW+eEMvfC2CEil4KzH/obilz6NNA2m3uLSBVgKKU2A3+DuVWwzQomV7bVaBYdrUw0r2uUUj3AI1aQ+9o53mYT8BciYq/8XGz71v8BjhGXL2wGZIBfWLvm/QD4a3D242gDfj/H59VoFhydGqzRvEaIyI2YcZIH53mfi4FjlVKfW5gn02jmj7ZMNJrXjr8DQgtwHy9LeFtZzfJEWyYajUajmTfaMtFoNBrNvNHKRKPRaDTzRisTjUaj0cwbrUw0Go1GM2+0MtFoNBrNvPn/y6UrvhpscboAAAAASUVORK5CYII=n”, “text/plain”: [

“<Figure size 432x288 with 1 Axes>”

]

}, “metadata”: {

“needs_background”: “light”

}, “output_type”: “display_data”

}

], “source”: [

“from bmtk.analyzer.compartment import plot_tracesn”, “n”, “_ = plot_traces(config_file=’sim_ch04/config.json’, group_by=’pop_name’, report_name=’v_report’)”

]

}, {

“cell_type”: “code”, “execution_count”: null, “metadata”: {}, “outputs”: [], “source”: []

}

], “metadata”: {

“anaconda-cloud”: {}, “kernelspec”: {

“display_name”: “Python 3”, “language”: “python”, “name”: “python3”

}, “language_info”: {

“codemirror_mode”: {

“name”: “ipython”, “version”: 3

}, “file_extension”: “.py”, “mimetype”: “text/x-python”, “name”: “python”, “nbconvert_exporter”: “python”, “pygments_lexer”: “ipython3”, “version”: “3.6.10”

}

}, “nbformat”: 4, “nbformat_minor”: 2

}