This is the constructor for the type LocalRing.
i1 : R = QQ[x,y,z,w]; |
i2 : P = ideal"xz-y2,yw-z2,xw-yz"; -- The twisted cubic curve o2 : Ideal of R |
i3 : I = ideal"xz-y2,z(yw-z2)-w(xw-yz)"; o3 : Ideal of R |
i4 : RP = R_P o4 = RP 2 2 o4 : LocalRing, maximal ideal (- y + x*z, - z + y*w, - y*z + x*w) |
i5 : M = RP^1/promote(I, RP) o5 = cokernel | -y2+xz -z3+2yzw-xw2 | 1 o5 : RP-module, quotient of RP |
i6 : length M o6 = 2 |
Note that the ideal $P$ is assumed to be prime. Use isWellDefined(LocalRing) to confirm that a local ring is well defined.
The object localRing is a method function.