We randomly choose an $r \times\ n$ matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00317052, .00158615) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .00901149, .0654819) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.0102469, .022748}, {.00962788, .00777276}, {.00997491, .0121675}, ------------------------------------------------------------------------ {.00941314, .0182121}, {.00981838, .0244905}, {.0117718, .0231551}, ------------------------------------------------------------------------ {.0114988, .015182}, {.0125643, .0139949}, {.00896348, .0100048}, ------------------------------------------------------------------------ {.0116491, .0149811}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .0105528789 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .0162708771 o7 : RR (of precision 53) |
The object testTimeForLLLonSyzygies is a method function with options.