API reference: C, C++
The softmax primitive performs softmax along a particular axis on data with arbitrary dimensions. All other axes are treated as independent (batch).
In general form, the operation is defined by the following formulas:
Forward
\[ dst(\overline{ou}, c, \overline{in}) = \frac {e^{src(\overline{ou}, c, \overline{in}) - \nu(\overline{ou}, \overline{in})}} { \sum\limits_{ic} e^{src(\overline{ou}, ic, \overline{in}) - \nu(\overline{ou}, \overline{in})} }, \]
where
- \(c\) dimension is called a softmax axis,
- \(\overline{ou}\) is the outermost indices (to the left from softmax axis),
- \(\overline{in}\) is the innermost indices (to the right from softmax axis), and
\(\nu\) is used to produce more accurate results and defined as:
\[ \nu(\overline{ou}, \overline{in}) = \max\limits_{ic} src(\overline{ou}, ic, \overline{in}) \]
Difference Between <a href="#dnnl_forward_training">Forward Training</a> and <a href="#dnnl_forward_inference">Forward Inference</a>
There is no difference between the dnnl_forward_training and dnnl_forward_inference propagation kinds.
Backward
The backward propagation computes \(diff\_src(ou, c, in)\), based on \(diff\_dst(ou, c, in)\) and \(dst(ou, c, in)\).
Implementation Details
General Notes
- Both forward and backward propagation support in-place operations, meaning that
src
can be used as input and output for forward propagation, and diff_dst
can be used as input and output for backward propagation. In case of in-place operation, the original data will be overwritten.
Post-ops and Attributes
The softmax primitive doesn't support any post-ops or attributes.
Data Type Support
The softmax primitive supports the following combinations of data types:
Propagation | Source / Destination |
forward / backward | f32 |
forward | f16 |
Data Representation
Source, Destination, and Their Gradients
The softmax primitive works with arbitrary data tensors. There is no special meaning associated with any logical dimensions. However, the softmax axis is typically referred to as channels (hence in formulas we use \(c\)).
Implementation Limitations
- No primitive specific limitations. Refer to Data Types for limitations related to data types support.
Performance Tips
- Use in-place operations whenever possible.
- Currently the softmax primitive is optimized for the cases where the dimension of the softmax axis is physically dense. For instance:
- Optimized: 2D case, tensor \(A \times B\), softmax axis 1 (B), format tag dnnl_ab
- Optimized: 4D case, tensor \(A \times B \times C \times D\), softmax axis 3 (D), format tag dnnl_abcd
- Optimized: 4D case, tensor \(A \times B \times C \times D\), softmax axis 1 (B), format tag dnnl_abcd, and \(C = D = 1\)
- Non-optimized: 2D case, tensor \(A \times B\), softmax axis 0 (A), format tag dnnl_ab, and \(B \ne 1\)
- Non-optimized: 2D case, tensor \(A \times B\), softmax axis 1 (B), format tag dnnl_ba, and \(A \ne 1\)
- Non-optimized: 4D case, tensor \(A \times B\), softmax axis 2 (C), format tag dnnl_acdb, and and \(D \cdot B \ne 1\)