PostgreSQL 8.2.10 Documentation

The PostgreSQL Global Development Group

PostgreSQL 8.2.10 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2006 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2006 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-
UNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

Preface xli
1. What 1S POSEZIESQLT ...ccueiiiiiiiiiiieiereet ettt sttt xli
2. A Brief History of POStZreSQLu........ooviiiiiiiieiieiie ittt ettt ete et stesteebeesaaesaneens xlii

2.1. The Berkeley POSTGRES Projectcccueecuieriiiiieiiieiieriieniie ettt sve et sve e xlii
2.2, POSEEIESOS ...ttt ettt ettt st e e be e st e e be e beesabeeabeentes xliii
2.3, POSEEIESQLou. ittt ettt ettt st b e st ebeebeesabeeabeentes xliii
3. COMNVEINTIONS ...ttt ettt ettt ettt et b sttt et e e st e bt sbeesae s bt easenbe e st et e ebeenaesuesnnennesueens xliii
4. Further INfOrmation........cococveriiriiiiniieiencetcest ettt ettt ettt nesee e xliv
5. Bug Reporting GUIAEIINES........eeviiiierienieiiieiterie ettt sttt ettt et ettt sbeebeesbeesaneeaneenne xlv
5.1, TAentifying BUZSoocuieiiiiiiieieeitecee ettt ettt et st xlv
5.2, WAL 10 TEPOT..cuveiiieiiieetieiiteeteette sttt ettt sb et s e bt e st e sat e e bt e bt e satesabe e bt esaeesabeenseenseens xlv
5.3. WHETe 1O TEPOTE DUZSeeuvieiieriiiiiieniteeite ettt ettt ettt sit e st eb e sbeesabeebe et e sabesaneenee xlvii
I. Tutorial 1
1. GENG STATTEA ...cueeieeiieieeiieie ettt ettt et st ae e e sne s enesneae 1
I R 63T 7 1 o) PSRRI 1
1.2. Architectural FUndamentals............ccoccueeeiiiieiiieniieeeie et 1
1.3. Creating @ Databasececveruieuierieeieeiesie ettt ettt et ese et et e eesae et ete e ens 2
1.4, AcCeSSING @ DAtaDASEccveeuieiietieiiiieiere ettt ettt ettt naeene 3
2. The SQL LaNZUAZEooueeuieiieeieie ettt ettt ettt et ettt et sttt esbe e st e e sb e et e steeatenbesseenbenbeans 6
B T § 4 (o7 L1 ot o) LU USSP 6
2.2 CONCEPLS ...eneeeeeieeteettete et ettt et et s bt et e bt e b et e e bt e st e sbeea e et e ebees e bt eaeenbesbeemtesbeestenbeebeeneeneeene 6
2.3. Creating @ NeW TabIecccoiiiiiiiiiiieieeeeeee ettt 6
2.4. Populating a Table With ROWScccoeriiiiiiiiiiieiectee e 7
2.5. QUErYING @ TaADIEooueiiiiiiiiiiiiiee ettt 8
2.6. J0Ins BetWeen Tables.cccoiiiiiriiriiiiiieieneeteestee ettt s 10
2.7. AgEregate FUNCHIONScoeeviiiiiiirieeiteteeteeteste ettt sttt sbe e eaees 12
2.8 UPAALES ...ttt sttt ettt ettt ettt et b ettt e b et bbb bbb et b enees 14
2.9, DIETIONS ...ttt sttt ettt ettt ettt st e e b e eb et ebeetesbe et e b e et b et sbeeneesaeenaen 14
3. AdVANCEA FRATUIES ...cuiiiiiiiiiiiiiiieiteteecee ettt ettt ettt s ettt st et sbe e sbeeneen 16
3.1 INEEOAUCTION 1.ttt ettt sttt ettt bbbt sbeeneesueenees 16
3.2 VIBWS ittt ettt ettt ettt st h ettt e be et bbbttt ebe et saeeneen 16
3.3, FOTEIZN KBYS....iiiiiiiieiieiieete ettt ettt ettt ettt sttt e sat e st e st e ebeesaeesaseensaensee e 16
34, TTANSACHIONS ..c.eevteniiiietieteete sttt ettt ettt et et st e e b e eet et eae e aesaeess e besbn et e sbeeneesaeennen 17
3.5, INhETILANCE ..ottt ettt ettt 19
3.6, CONCIUSION ...ttt sttt ettt ettt e b e et eae e st sae e e b san et e sbeeneesaeennen 21

I1. The SQL Language 22

A SQL SYNEAX 1euttetteriteete ettt ettt e st e sttt et e bt e st e sa bt e bt e sbtesat e e bt e bt e sbt e e bt e bt e nhtesa bt e bt e nbeesateebeenbeena 24

4.1, LeXiCal STIUCIUTC.......cccvieieerieeiieeeiieeeieeesteeesteeetee e tteessaeesaaeessseeessseeessseaasseesnsseessseens 24
4.1.1. Identifiers and Key Words.........ccoceevieriiniiiiiiniiiieieeeereceeeeeste e 24

o A G101 N v 1 PSR 25
4.1.2.1. StriNG CONSLANLS ..veeveeriiieieeniienieeteenteeite et estteste st eseeesaeesateebeesseesaeees 25

4.1.2.2. Dollar-Quoted String CONSLANLSccceerverrieerienierieenieeneesteenieeseeenaeens 26

4.1.2.3. Bit-String CONSLANEScc.eeiuirrieiiriieierie ettt eecesee st eeeenes 27

4.1.2.4. NUMETIC CONSLANTSccoviiiirieeeiieeetieeeeeeeeteeeeteeeeeeeeeaeeeeerveeeeaaeeeeseeeas 28

4.1.2.5. Constants of Other TYPESccceveririererieieniee et 28

iii

1.3, OPCTALOTS ...ueenereeuieeiteniie et et esite st e bt esttesateebeesbtesstesbeesbeesatessbeenseenseesaseenseenseenns 29

4.1.4. SPECTial CharaCerS....ccoveriieriieriierieeitierite st eie et e siteebe et e st e sbeesbeesaeesabeenseenseenes 30
4.1.5. COMMENLS «...oueniiiiiiiieiieieeitetenie ettt ettt ettt ettt ne et et et nesbesanenesueene 30
4.1.6. Lexical PreCedencecocevuereriiiiinieiinieienecrereeeeeere et 31

4.2, Value EXPIESSIONS.....eeitiiiiiiiiiiieeitteeiteete et te et ettt stt e ettt esbte st e sabe e beessaesateenbeesaeesaseen 32
4.2.1. Column REfETENCESccouiiiiiiiiiiiiiteiteec ettt st 33
4.2.2. Positional Parameters........coceevieriiriiienienieiieeieesite ettt st 33
4.2.3. SUDSCIIPES ..ottt sttt et e st 33
4.2.4. Field SEIECHONoevieiiiiiiiiiieiieete ettt ettt sttt st sbee e 34
4.2.5. Operator INVOCAtIONScceevuiriiiiiiieieieieeiee et 34
4.2.6. FUNCHON CallS ..c..eeiiiiiiiiiiiiieieee ettt st 35
4.2.7. Aggregate EXPIeSSIONS.coceeriiriiriiierieniie ettt ettt ettt s ee e e 35
4.2.8. TYPE CASES .ottt ettt et e e sttt sae et e e e b et e et e st ebesaeetenbeeneenteeneenes 36
4.2.9. Scalar SUDQUETIES.....c.ceeruerrirreriereiteiietenententeeeet ettt et ettt s b saesnenneneenesaens 37
4.2.10. Array CONSLIUCLOTS ...uvviutieieenieeritieieentteniteeteesteesteeeteesbeesbeesbeesreesseesaressaeesseenan 37
4.2.11. ROW CONSLIUCLOTS ...ccuveeutieieeteeriieeitentteniteeteestee sttt sreeteesieesbeesseesseesaressneesseenan 38
4.2.12. Expression Evaluation RUlescccoocoviiiiniiiiniiiee e 40

5. Data DEIINITION ...cueetiiieiiitieiteete ettt ettt et b et e st eat et s bt et e bt eat et e sbee e e sbeeneen 41
5.1, TaBIE BASICS ..uveiuientieiieiieiieie ettt sttt et et sttt sb e e eaeen 41
5.2. Default ValUESccueeuiiriieiiiiiniiiterteetteee ettt bbbt eb e e 42
5.3, CONSIIAINES ...ttt sttt ettt ettt et e e sb et e b ebt et e bt eaesbeesbenbesbtenteebeeneesbeeneen 43
5.3.1. Check CONSLIAINEScueeuieiirieiienieeiteieeitete ettt ettt ettt sbeeae 43
5.3.2. NOt-NUIL CONSIAINEScoveeuriieenieieriieienitete sttt ettt sttt sbeene 45
5.3.3. UNIiQUE CONSLIAINES. ..cuveerureiiieieeniieeieerttenieesteesieesteesireeseeseessaesssesseesseesssesssesnses 46
5.3.4. Primary KEYS....ocuieouierieiiiiieeitesite sttt sttt ettt ettt ste e be et e e saaeenes 47
5.3.5. FOT@IN KEYS ..couviiiiiiieiie ittt ettt sttt ettt st e saeeaae s 48

5.4, SYStEIMN COIUMMNSuvieiieiieiieeieeite ettt ste et et e st e st e esbeesaeesabesnbaeseesaeesaseensaenseenas 50
5.5. MOAIfYINg TabBIES......cccuieriiiiiieiieitierte ettt sttt ettt et sieesite st e ebeesaeesaneensaensee e 52
5.5.1. Adding @ COIUMMN....ccc.eiviiiiiiiieie ettt ettt bee s 52
5.5.2. RemMOVING @ COIUMI ...eovuiiiiiiiiieniieiie ettt sttt ettt st sbeesae e enas 53
5.5.3. Adding @ CONSIIAINTcevueiriiiiienierieeieeite sttt ettt ettt et esbeesabesaseennes 53
5.5.4. Removing @ CONSLIAINT ...eoveeruienierieeiteiie sttt ettt et sbeesaee e e 53
5.5.5. Changing a Column’s Default Value.........cccccoeveriiiniiniiiiiiniiieeeeeeeeeeee 54
5.5.6. Changing a Column’s Data TYPEccceveeuimieiienieieienicieecceeeeeee e 54
5.5.7. Renaming @ COIUMNccooiiiiiiiiiiiiniciieteeccreeee e 54
5.5.8. Renaming a Tablecccciiiiiiiiiiiiiiiiiie e 54

5.6 PLIVIIEEES ...viiiiiieiieeeeee et et e s 55
5.7, SCREIMAS ...ttt et ettt et et ettt ettt st nbeenaee e 55
5.7.1. Creating a SChemac.ccooiiiiiiiiiiiieee e 56
5.7.2. The Public SChemacc.cooviiiiiiiiiiiiiiiii e 57
5.7.3. The Schema Search Path..........ccccooiiiiiiiiiiiieeeeeeee 57
5.7.4. Schemas and PriviIEZes.........coceeveueiririiniinieieeeinene sttt 59
5.7.5. The System Catalog SChemacceceruiriirienieieininenctcrceeee e 59
5.7.6. USAZE PALEINISc.veieeniiiieiieicete sttt ettt sttt ettt st sbe e 59
577, POTaDIIEY ..ttt 60

5.8, INHGTILANCE ...ttt ettt et b et ebe e e b enees 60
5.8 CAVRALS ...ttt sttt ettt sb et b e 63

5.9, PArtItIONIIE ...eveeuteteeiietieteete sttt ettt ettt ettt sb et b bt e bt e bt e tesbe et e b e eb s et ebeeneesbeeneen 63

5.0.1. OVEIVIEW ceeeeeieieeee ettt eeete e eeete e e eeetaa e e e ee e e e e eeetbaeeeeeestaaeeeeenstseeeeeetnseeeeennnes 63

5.9.2. Implementing Partitioningccoovueeviieniieniiniieeee ettt 64
5.9.3. Managing Partitionscocueereerienieenieeiie sttt sttt 67
5.9.4. Partitioning and Constraint EXCIUSIONcocuevvieriieriiniiiiiienieeieeeeieeseeeeee 68
5.9.5. CAVEALSeniiieiieieeteteeee ettt ettt ettt e 69

5.10. Other Database ODJECLSc..cccuerririeiirieriniieieereetestt ettt st r e sre e saeeanes 70
5.11. Dependency TracKing.........coccoceririiiinieiiniieieieneeteeteeete e e 70
6. Data Manipulation.........cc.coieiiiriieieniiiieieceeteet ettt et st s 72
6.1. INSEIting DAtaccueiuiiiiiiiiiieieeee e e e 72
6.2. UPdating Data......c..coeioiiiiiiiiiiieieeeeeeee ettt e s 73
6.3. DEleting Data.......cooueiiiiiiiiiiieieeeeteeee ettt sttt st 74
T QUBTIES ..ottt et e et e et e et e e ettt e e eaaeeeeateeeeaeeeeaeeeeeateeeeaeaeeteeeeteeeereeeereeeaneeeaaeeean 75
T 1 OVEIVIEW ..ttt ettt ettt ettt et e e et et e s bess e et e e bt ene e bt eseeneesaeensabeestenteeneeneesaeenean 75
7.2. Table EXPIESSIONS ...c.uveutieuieiirtieiieiteeitete ettt sttt ettt et et eat e bt eatetesae et e beesse e e eseeneesaeeneas 75
7.2.1. The FROM CLAUSE.......couiruieiieiieiesieeitesie ettt ettt ettt et et sae et e b sse e ee b s 76
7.2.1.1. JOIN@d TADIESoeeneieiiiiieiiee et 76

7.2.1.2. Table and Column AIASES.........ccoerierieriieienieiere st 79

7.2.1.3. SUDQUETIES ...ttt sttt s 81

7.2.1.4. Table FUNCHONS ..c..eoviiiriieiiriieiesieeteeet ettt 81

7.2.2. The WHERE ClaUSE......cceeuiriiriirieieieiieiniiteteeeeeteee e et 82
7.2.3. The GROUP BY and HAVING ClaUSES........ccceeueeeriririnieieieieenieetcieeeeeneeneene e 83

7.3 SLECT LISES. c.uitieiiiiieiteieeitetee ettt ettt bttt sttt 85
7.3.1. SeleCt-List TEIMS «..c.eeviriieiiriieiinieeteieeteee ettt 85
7.3.2. Column LabelS ...c..coviriiriiiiiiiiinieeieeeteee ettt 86

733 DISTINCT cviruitiieieieitettet ettt sttt sttt ettt ene e 86

7.4, COMDINING QUETIES....ceveereiieieeieentieeteeteenttesreeteesteesttessteebeessaesssesnbeessaesssesnseesseesseesssen 87
T.5. SOTHING ROWS .neiiiiieieeiiecite ettt ettt ettt ettt e st e st e st e baesabesateebeesanesaseen 87
7.6. LIMIT ANA OFFSET.cuuiiiuieiiiiiiiiiiieteteie ettt sttt sttt s st 88
T VALUES LISES wviiiiiiiiiicicieceeece et 89
8. DALA TYPES . ettt ettt ettt ettt ettt et esh e st e bt e bt e st e e bt e bt sh b e eab e e be e s bt e eabeeateebeenateeateen 91
8L INUMETIC TYPES uvientieiiietieiteete ettt ettt ettt st ettt sttt e bt e sbbe st e enbeesbaesabesnseenbes 92
8L L. INLEZET TYPES . eueieuiiiiiiiieiite ettt ettt ettt st ettt et e st sa e e sbeesatesate s 93

8.1.2. Arbitrary Precision NUMDETScccuevviiiiiiiiiiiiieieeieieccceeteeee et 93
8.1.3. Floating-Point TYPESccerieiiriiriiiiiieieneereieee et 94

814, Serial TYPES...ceuviiieiietieiieieeeetete ettt 95

8.2. MONELATY TYPES ..ceeieiniieiieieieeeeetet ettt ettt et 96
8.3, Character TYPEScceeruiiuieieiieieteeee ettt ettt et et e 96
8.4. BINAry Data TYPESccueruiiiiiiiiiiiieieie ettt ettt et s 98
8.5. DAte/TImeE TYPES....cceeruiiiiiiiiiiiiieiteert ettt sttt st s e 100
8.5.1. Date/Time INPULcocueiiiiiiiiiiiiiieteeteeeeetee ettt 101
LT TN B TR B 1 1< TSSO UR SRR 102

8.0 1.2 TIMES .ttt sttt ettt sttt et e b et et e b enee s 102

8.5.1.3. TIME SEAMPS ...cuviuienieieieieiteeitete ettt ettt sttt et see b 103

8.5 14 INLEIVALS ..ot e e 104

8.5.1.5. Special ValUeScccorieiiriiiiieiieiieie et 105

8.5.2. Date/Time OULPULc.eevueeiiiiiiiieieriteiet ettt ettt et see e b 105
8.5.3. TIME ZIOMES ...ttt ettt sttt ettt et et sbe bt e b eae e 106
8.5.4. INLEINALS.....eeitiiiiiiieiieteee ettt 108

8.6. BOOICAN TYPE ..ottt ettt ettt sttt e st e st e beesabesaneeabees 108

8. 7. GEOMELIIC TYPES .eeuutiiutieiieeitieiterte ettt ettt et et e st eate e bt e s atesabe e bt e sabesabesabeesasesasesnseas 109
BT 1 POINLS ..t 110
8.7.2. LNE SEZMENLS.....c..eiriiiiieiieeieeieeitte sttt ettt et e et e st e sttt ebeesbeesateebeebeesaee 110
8.7.3. BOXES ..ottt 110
874 PathS .ttt st 110
8. 7.5, POLYZOMNS ...ttt 111
8710, CIICIES ..ottt ettt st ettt e 111

8.8. Network Address TYPES.......coveuiruiriirieieieeiieeee ettt et 111
B8 1. ATttt ettt sttt ene 112
882 LA AT ittt sttt eae 112
LIRS T00 T o T i I e SRR 113
8814 MACAAAT wttieiiieeiie ettt ettt ettt e e e st e e st e e e ae e e e bt e e st eeeenbee e nbeeenreenn 113

8.9. Bit StIINE TYPES ..ttt sttt ettt ettt ettt sttt eve bbb e aeeaes 113

BL0. ATTAYS 1ottt et s e st e b et et sat e et e bt e sbeeeateearean 114
8.10.1. Declaration Of Array TYPeS.....cceeeeierieierienieierieeeteeetee et 114
8.10.2. Array Value INPUL......cc.cooiiiiiiiiiiieieie et 115
8.10.3. ACCESSING ATTAYS ..eouvivieiieriieiieieeitetent ettt sttt sttt et see et et b et e sbeeaeenee 116
8.10.4. MOAIfYING ATTAYS...c.eirueeuieriiriieieitieiiesttettente sttt ettt ettt sae e b eaee e 118
8.10.5. Searching i AITAYS......cccuererierieriieientiettente sttt ettt 121
8.10.6. Array Input and OULPUL SYNTAXcecveruirieriiriieienienteieeeete et 121

8.11. COMPOSILE TYPES ..ottt ettt ettt ettt st s beeae e 123
8.11.1. Declaration of COmMPOSIte TYPES....ccuevvirieriirerienieniiieneeeene et 123
8.11.2. Composite Value INPUL.......cc.eeviierierieeiieiierteete ettt see e 124
8.11.3. Accessing CompPOSIte TYPES .eoveerrrerieriiieriienieeieeieesteste et eiee e saeeaeeneeesee 125
8.11.4. Modifying CompoOSIte TYPES.....ceruerrrerriieriierierieeieenieste st erieesieesveeseenaeesens 125
8.11.5. Composite Type Input and Output SYNLaX......ccceevveeriereeriieereeneenieerieenieennns 126

8.12. ODbject IAENUIET TYPES ..veeuveriieriierieiiienieete ettt ettt te sttt e sateste e beesanesasesasees 127

813, PSEUAO-TYPES .. veeeteentteiteeite ettt ettt ettt ettt e st e st e bt e s ate s bt e bt e satesabeenbeesanesasesaseas 128

8.14. XML DOCUMENE SUPPOTL...ceruiiiiieriiiiiieniierieeieeniteste et esbeesteseeenbeesasesasesbeesasesnsesnseas 129

9. FUNCHIONS aNd OPETALOLS ..uveeeieriiiiiieiieniteeieesieestte st eteesteestesabeebeesbtesabesabeesbeesatesasesbeessaesanenns 131

0.1, LOGICAL OPETALOTSeeuveeutieiieeiieeiieniteeite sttt e site st ebeesatesitesbe e bt esbeesabeebeebeesaaesasesaseas 131

9.2, COMPATISON OPETALOTS ..c.uveeriieriieriieriierierteesteesttesateebeesieesttesbeesbeesbeesaseesseesbeesssesasesseas 131

9.3. Mathematical Functions and OPerators...........cecueeverrieereeniersieenieenieenieeseeesieeseeeeeenees 133

9.4. String Functions and OPEIatorscceecueruerienierieieniieiete et eeereeeennesreeanens 136

9.5. Binary String Functions and OPEratorscceeeeueruieeenueneenieneerenieeeeeeeeenneseenens 146

9.6. Bit String Functions and OPeratorsc.coceevueriieieniieieriieeeieseereseeeeee e e enens 148

9.7. Pattern MatChingcccoocoiiiiiiiiiiiiie et e e 149
0. 7.1 LIKE ettt et st 149
9.7.2. SIMILAR TO Regular EXPressionscccovceereeerenerenienienieenenreseneeeeeenennes 150
9.7.3. POSIX Regular EXPressionsc.ccccciiiiiiiiiiiiiinieieneseeiesie e e 151

9.7.3.1. Regular Expression Detailsccoceveeeeieiriniinenieneeenineneseeeeenenne 152
9.7.3.2. Bracket EXPIeSSIONSccecveieuirininieieieteieniesieieeee e 155
9.7.3.3. Regular Expression ESCapes..........coccoveeveieiriniinenicneeinineneseeeeeeeene 156
9.7.3.4. Regular Expression Metasyntax..........coeeveeeenrenrenieneeeeenenuensenseeenenne 158
9.7.3.5. Regular Expression Matching Rulescccocevevieneiininininicniennnenn. 160
9.7.3.6. Limits and Compatibilitycccccceevueririieninienineeienieeeeseecerie e 161
9.7.3.7. Basic Regular EXPressionsc..coeevvereevieninieneneeieneeeeseeeenee e 162

Vi

9.8. Data Type Formatting FUNCHONScccveriiiiriiinienieiieetesie ettt 162

9.9. Date/Time Functions and OPerators...........ceceerierierrieeneenienieenieenieesieesseesieesseseesvens 168
9.9.1. EXTRACT, QAT E_PATE ttttiieririieeeiiitreeeeeeiteeeeeeeireeeeeeeitrreeeeeerereeeeestrseeeesessrreeeens 172
0.0, AT e £ UIIC eeeeeee et e e e e ettt e e e e e e e s e e e e e e et et e ar e aanaesaaaaaaaaaes 176
9.9.3. AT TIME ZONE...ciiioiioiiiiiiiiitiieieiec sttt s 176
9.9.4. Current Date/TImec..cocueeiirieriiiieieieeieieeeetese ettt e 177
9.9.5. Delaying EXECULION.......c..cocueriiiieiiiieieieeieieecctese ettt e 179

9.10. Geometric Functions and OPerators..............cccereeueruierieniineenieneeresieeeeeeeeesneseenens 179

9.11. Network Address Functions and Operators..............cceeceevueeeerueneeieenenieeneeeeeneeseenens 183

9.12. Sequence Manipulation FUNCHONSccooieiiiiiiiiniiiiii e 186

9.13. Conditional EXPreSSIONS.........cceiuiiiiriiiiiiriiiieierieeieie e 188
0. 13 L. CBSE ittt a ettt ettt e h et e bt et ettt eaesaeenten 188
9.13.2. COALESCE ..ttt sttt s ettt st s 189
9. 1330 NULLIF ottt ettt e s 190
9.13.4. GREATEST AN LEAST c..teueruiriereieiieitetietestenteneeneesesiesaessesesseneeseesessessenseneeseeses 190

9.14. Array Functions and OPETatOrscceeveuiruirierienuerereenentiesesreeeneeseeresiessessenseneeneene 190

0.15. Aggregate FUNCHIONS.....c..ccueiiiiiriiieieietetete ettt et e 192

9.16. SubqQUETY EXPIESSIONSeeuviuieiiriiriinieieieieiieitsiestestee ettt sttt s e 195
0,161 EXTSTS ettt sttt sttt et sttt et 196
0102, TN ottt et 196
9.160.3. NOT INuutiuiruiriiieieieteiteie ettt et sttt sttt ettt ebe et ae e seeneenes 197
9.16.4. ANY/SOME ..viuiiiienienienieienie sttt ettt ettt sttt 197
0.10.5. AL ittt et 198
9.16.6. ROW-WiS€ COMPATISON ...c.uviriieriierieeieeiienreeteeteeseesteeseesseesseessseenseessnessnenns 198

9.17. Row and Array COMPATISONSeervverreriiienreenirerreeteeseeneessseesseesseessessseesseessesssesssees 199
D171 IN e e 199
9. 172 NOT INuuiiuiiiiitiieteieteieeie sttt sttt s et 199
9.17.3. ANY/SOME (QITAY) .veeveerrrerreerueenieesresiseesseesssessesseesseessesseessessssessesssesssaesnesns 200
174, ALL (AITAY) tuveervreereerieeniiesieesieenttesteeteesteesstesasessbeessaesasessseesseesssesaseensessseesssesns 200
9.17.5. ROW-WiS€ COMPATISONuveriiiriieriiieieeiieniieeieeteesiteste st esbeesitesateenbeesanesaneens 200

9.18. Set Returning FUNCLIONScccueiuiiriiiiieiiieitestese ettt sttt e 201

9.19. System Information FUNCLIONScccueriiiiiiiiniiniiiiietesie ettt 202

9.20. System Administration FUNCHONSeecuiiriiirieriiiiieeenie ettt 209

10. TYPE COMNVEISION.......eouiiuiiiieiiitieienieetete sttt ettt et s it ese bt e e et st eaesaeeese bt esnesseeneennesaeennens 215

TO L. OVETVIEW ..ttt ettt ettt ettt et ettt st et e bt e st e b et esbtesabeenbeenaee 215

1.2, OPETALOLSovineieniiiieiiesie ettt ettt ettt sae e e b s enesaeesn e aeemeenesaeennens 216

103, FUNCHOMS <.ttt ettt et ettt st e bt st e e et e st e eabeebeenaee 219

10.4. ValUe SOTAZE......ceivuieiiiiiiieieeiieeet ettt ettt et s et ae e 222

10.5. UNION, CASE, and Related CONSIITUCES.uuuveriieiiieeeeeieieieciiirieeeeeeeeeeeeeeeeeeeeesnananenes 222

L1 TNAEXES vttt ettt ettt et et e s bt e e abe st e s bt e s st e sat e e beeebtesate e beesaeenaeeeas 225

T1.1. IEOAUCHION ..ottt ettt ettt et sbe s bt et e b et e st eseenaesreeneans 225

L1220 TIACK TYPES.cuterieniieteeteite ettt ettt ettt sttt et ettt et e sae et enbesbeeneesbe e st e bt eneenaeseeeneans 226

11.3. MulticOlumn INAEXESceuveuiruieiiiieieie ittt sttt et e e s 227

11.4. Combining Multiple INAEXEScoerieriiriiiiniiiieeeeee ettt 228

11.5. UNIQUE INAEXES ...ttt ettt sttt sttt st e e b 229

11.6. Indexes 0n EXPreSSIONSccueeueeieriirieniiiieiesieeteteetcete sttt sttt st 230

11.7. Partial TNAEXEScceevveeiiiiiiieieitietee ettt sttt st s 230

11.8. OPErator ClaASSESc..eeuterteriieienieetenteeitete sttt ettt et e e st e e bt sbt et sbeestestesbeeaesbeennens 233

Vii

11.9. Examining INAeX USAZE.......cccueeuiiriiinieriiiiieieesite ettt sttt et sttt esitesneeneees 234

12, ConCUITENCY CONLIOL.....iiuiiiiiiiiiiiieeitesite ettt ettt ettt et e st e sateesbeesatesateebeesanesaneens 236
12,1, INErOAUCTION ..viiiiiiiiiciiic e s 236

12.2. Transaction ISOLAtiONc.ccoeciiiiiiiiiiiiiiiiiiccce e 236
12.2.1. Read Committed Isolation Level ..o, 237

12.2.2. Serializable Isolation Level...........cccccoirieiiniiiininiincceecceeee e 238

12.2.2.1. Serializable Isolation versus True Serializabilitycccccccevuereennene 239

12.3. EXPHCIt LOCKING ..ottt s 240
12.3.1. Table-Level LOCKS.....ccctiiiiriiiiieniteeiteiteiteete ettt 240

12.3.2. ROW-LEVEl LOCKS ..c..veiiiiiiiiiiiiite ettt 242

12.3.3. DEAAIOCKS. . ..cetiiriieeiieiieeteee ettt sttt st et 242

12.3.4. AdVISOIY LOCKS ..cueiiiiiiieietee ettt 243

12.4. Data Consistency Checks at the Application Level...........coccoiiriiiinieiiniiiieeieeee 244

12.5. Locking and INAEXES........eeueeruiruieiieniieieie ettt 245

13. PerfOrmance TIPScccueeueeueerierierienieeie ettt ettt ettt et e st sat e tesbe et e sbeeseeteeseeeesaeeneens 246
13.1. USING EXPLATN .eeutiitteuierteetteteeteeutenteestentesueestesbeemseseeseentesbeeseensesstensesseensensesseensesseensens 246

13.2. Statistics Used by the Plannercccocooiirieiiiiieninieineeeeeesicee e 251

13.3. Controlling the Planner with Explicit JOIN Clauses.........cccccerereerieneeieneneenieneeens 252

13.4. Populating @ Databasecc.ceeeueruirieniiiiiieniceteieeitete ettt 254
13.4.1. Disable AUtOCOMIMILc.coerueueieiiiriinieietetetee ettt 254

I3.4.2. USE COPY vttt 254

13.4.3. ReMOVE INAEXESceoviiiiiiiiiiciiciiet e 254

13.4.4. Remove Foreign Key CONStraintscocceeveeeevienerreeneneenieneeieneseeneeseenens 255

13.4.5. INCrease maint enanCe WO K I MM auu e ee e et e et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereenaaeeaeas 255

13.4.6. Increase checkpoint _SEQMENTS cuvvreeieeirireeeeeiireeeeeeeireeeeeeetereeeeenrereeeeenans 255

13.4.7. Run ANALYZE Afterwards........cccccevvvininiiniiiiiiininieecccee e 255

13.4.8. Some Notes AboUt PZ_AUMPeevierieriiiiierierie ettt 255

II1. Server Administration 257
14. Installation INSTIUCHIONSc.cociiiiiiiiiiiiiiiiecc e 259
14,1, ShOTt VEISIONviviiiiiiiiiiiiiiii et 259

14.2. REQUITEIMENES ..c.uveeniieiiiieitenite ettt ettt e sttt st e bt e st e st e ebeesbeesabeebeebeesabesabesnbeenaes 259

14.3. Getting The SOUICE.......ooeiiiiiiieiiiee ettt st 261

14.4. If YOu Are UPGrading........cccceeuieiiiriiiieniiiieieneeeeteeeete sttt s 261

14.5. Installation ProCedUIE........cccovviiiiiirieniiiieetete ettt st 262

14.6. Post-InStallation SELUP.........ccceiriiiriiiieiiiieieneeeeee ettt 270
14.6.1. Shared LiDIari€scccovierierieiiiieniteeieeitest ettt sttt 270

14.6.2. Environment Variables...........coceeriiriiiiiiiniinienieeeeeteste et 271

14.7. Supported PLatfOrmscoeeiiiiiieiiieeee ettt et s 271

15. Client-Only Installation 0n WIinAOWS.........cc.oeieiiririenieniieiesieeie ettt 278
16. Operating System ENVITONMENtccoeieiiirieiiniieieieeteie ettt e ee e 280
16.1. The PostgreSQL USEr ACCOUNLcc.eeutertireieiertieiieteettete sttt ie st eiee st et eneeseeeneens 280

16.2. Creating a Database CIUSLETccuevuirieriiiieienieeieeee ettt 280

16.3. Starting the Database SEIVET..........ccccvcieriiiirieiiiieieetee ettt 281
16.3.1. Server Start-up Failuresccccovirieniniiiiiieeneeeeeeeeee e 282

16.3.2. Client Connection Problemsc.ccovevierieieininiincnicieieceeeeseseeeeeeenen 283

16.4. Managing Kernel RESOUICES..........coerieriiriiieniiiieiceieeteseetee sttt 284
16.4.1. Shared Memory and SEmaphoresc.ccecereerienerienenieneneetene e seeeens 284

viii

16.4.2. RESOUICE LLIMILSuvvveeieeiiriieceeciriee et eeetre e eetrre e e eeetae e e e eeanreeeeeeanereeeeenans 290

16.4.3. Linux Memory OVETrCOMMILcccuevcvtrrteeriierieriienieeniesieenieesieesieeesseesseesnenns 291

16.5. Shutting DOWN the SEIVET....c.cciiiiiiiiriiiiieieetee ettt sttt 291
16.6. ENCIYPLION OPLONS.c..eeiutiiiieriieeiiieitesite st eteeit sttt et e sttesteebeesbeesabesaseebeesatesasesaseas 292
16.7. Secure TCP/IP Connections With SSLccccooiviiiiiiiiiiniiiiiccc 293
16.8. Secure TCP/IP Connections with SSH Tunnelscccccoceeceniiiiiniiniininiccneenns 294
17. Server CONfIGUIATIONcceeiieiieiieiieeeieetet ettt ettt et st st ne st ene s ennens 296
17.1. Setting Parametersc..cocvecieriieiiiniiiieie ettt ettt 296
17.2. FALE LLOCAIONS ..ttt ettt ettt ettt ettt sb e sttt e st e ebe e b e nae 297
17.3. Connections and AUthentiCatioN........c...eevueerierierieereeric ettt st 298
17.3.1. Connection SELHNEScccecuirieiiiriiiieiiiieieee ettt 298
17.3.2. Security and AuthentiCation...........cccuerueeeierierierienieetese e 300

17.4. ResoUrce CONSUMPLION........ceiuietieiiriieiieteeetetesteeitenteeteeteseeeneesbesseeneesseeneesseeneensesreeneans 301
1741 IMIBIMOTY ...ttt ettt sttt sttt e beesat e e beesbeesmeeeas 301
17.4.2. Free SPace Map.....cccccovieiiiriiiiieniteeie ettt sttt sttt e 303
17.4.3. Kernel Resource USage......c...covueerieriiiiiiinieniiniieieeetestt et 303
17.4.4. Cost-Based Vacuum Delayccceoeririeiiniiiienieieeeeeseee e 304
17.4.5. Back@round WIIter........cccueruirieniiniiienieeiteieetcete ettt 305

17.5. Write ARead LOZ ..coviiiiiiiiieeee ettt st 306
175,10 SEUNZS ..cvtenteeiieieiteetest ettt ettt ettt st s b et beeate et saeeaesbeennens 306
17.5.2. ChECKPOINLS......cortitieiieieriietieieete sttt ettt sttt sttt ettt e eaesbeeneens 308
17.5.30 ATCRIVINIE .ottt ettt s s 308

17.6. QUETY PIANNINGeooveiiiiiiriiiiiiietecetete ettt sttt ettt s 309
17.6.1. Planner Method Configuration..........c..cocceverernienenienieneenieneneenieneereseeeeenne 309
17.6.2. Planner Cost CONSLANLSccuerieieuiiiriiriiieieieteiteese et 310
17.6.3. Genetic QUETY OPLIMIZETcecveervierieriieiieniienieeieeseesieesreesseesseeseseeseenseesans 311
17.6.4. Other PIanner OPtioNS.......cccueecveerierieriieeniieniesieeieesieeseesreesseesseesssesssessseesens 312

17.7. Error Reporting and LOZZINGccccveviiriiiiiieiieiieeieeiteste ettt et 313
17.7.1. WRETE TO LLOZ oottt ettt sttt st s 313
17.7.2. WHEn TO LOZ oottt st ettt s 314
17.7.3. WHat TO LOZ c..veeiieeiieeiieeeee ettt st ettt 316

17.8. RUN-TIME STALISLICS ...ouveviiiiiiiiiiiiiiiiiicieicice e s 318
17.8.1. Query and Index StatistiCS COIECLOTcceeruerriiirierieriieieertesee et 319
17.8.2. Statistics MONIOTINEcc.eeovieieiiriieieienieteetteeente ettt aesaeenesaeennens 319

17.9. Automatic VaCUUMINGc...ccuiriiiiiiriiiieiiiietenieeteteee ettt et eae e 320
17.10. Client Connection Defaultscccccocuiiiiiriiniiiiiiiiec e 321
17.10.1. Statement BERaVIOTcocueiiiiiriiniiiiieieeeeeetete ettt 321
17.10.2. Locale and FOrmattingcc.coccoeueiiiiiiiiininiiinieececeeeseeeene e 323
17.10.3. Other Defaults.......c.cooiiiiiriiiiiiieeieeieeeeteee ettt 324
17.11. LOCK MaANAQZEIMENLcoveiiiiiiieiteiieniti ettt ettt ettt et st et sbee st e b e e 325
17.12. Version and Platform Compatibilityccoceerierinieniinieieieeieesice e 326
17.12.1. Previous PostgreSQL VErSionsccccecveruerierieneeienenieeesieeiesieeeeeseesieenens 326
17.12.2. Platform and Client Compatibility..........cccoeveereniriienenieereeececee e 327
17.13. PreSet OPtiONS. ..c.ceeuieuierieeeieieeteetesteeite et ete st eat ettt et e sbe et e sbesbeentesbeeasenbeeseentesbeeneans 328
17.14. CUStOMIZEd OPLIONS ...ouveeieniiiieiiiiieiieie ettt ettt ettt ettt sbt e te st esee st sbeenaesbeeneens 329
17.15. DEVElOPEr OPHONS ..c..eeveiieniitieiienieeitete ettt ettt et sttt e sbesbtetesbeestesbesaeetesbeennens 329
17.16. SHOTT OPLIONS ...cutitieiierteriteieet ettt ettt ettt st ettt et et st et esbesbe e besbeestenbesbeenbesbeeneens 331
18. Database Roles and PrivIIEZEScccceoerieriirieiiniiiieieniteteteete ettt 333

18.1. Database ROIESuveeieeiiuiiieiieiiriie et eeeee et eee e e et e e e eeaareeeeenaraeeeeeeaneens 333

18.2. ROIE ALITDULES ..ottt ettt sttt sttt e st b e 334

I8.3. PLIVIIEEES ..eeuvieutieiieeiieeitestteete ettt ettt sttt ettt st e bt e be e st e et e et e e sabesaseeabeas 335

18.4. ROIE MEMDETSHIP ...couveiuiiiiiiiiiiiieitetese ettt sttt et es 336

18.5. FUNCLioNS and TTIZEEI'S ...cevveeruieriiiiieniienitieieerite sttt et ettt et sbe e st sabe e beesatesaneeabees 337

19. Managing Databasescceeierueriiieiienieieniieeeeetere sttt st et ae et s 339
1O 1. OVETVIEW ..ttt ettt ettt ettt sttt b e sttt e bt e st e et e bt e s bt e sabeebeenaee 339

19.2. Creating a Databaseocuieuiiiiiniiiiiiiieeceeceeee et 339

19.3. Template Databasesccccecueeuieiiiriiiienieieeeseereteee ettt e 340

19.4. Database CONfIGUIALIONc..couiiiiriiiiiiiiietesiceieteee ettt 341

19.5. Destroying a Databasecoeeciiriiiiiniiiiiienicieieeeecse et 342

19.6. TabIESPACES ..ottt ettt et s 342

20. Client AURENTICALIONeeueeiiitieieieteiest ettt ettt ettt sttt e st e et et ebesbe e e beese e teeseeaesaeennens 345
20.1. The pg_hba . Conf fIl€ ..uiiiiiiiieieeeeee et e 345

20.2. Authentication MEthOAScooeiuiiiiiieie et 350
20.2.1. Trust aUtheNtICAtION. ..c..eeueeriieiieteetcete ettt ettt sttt s ee e eneens 350

20.2.2. Password authentiCation...........c.ceeeruerierienieniieiene ettt 350

20.2.3. Kerberos authentiCationc.ceeevuerierienieneenieneetenesiteie et see e 351

20.2.4. Ident-based authentiCationc.ccevuerierierieniienieneeienesieee et 352

20.2.4.1. Ident Authentication over TCP/IP.........cccccoccoviiiiiininiininiincneene 352

20.2.4.2. Ident Authentication over Local SOCKetsc.cceoerervenenieencnennns 352

20.2.4.3. TAENt MAPS ..c..tentiriiiiiieeienieeteesit ettt sttt ettt s 353

20.2.5. LDAP authentiCation.........coeeeeruireeienienieienieeteneeteniesitetesteeiee e sieeeesieennens 354

20.2.6. PAM authentiCation..........c.ccoeerierieeieniinienienieeienieniteiesieeee st 354

20.3. Authentication PrODIEIMScccueervierieriieriierieenie st eteesieesteebe e bt esteesreeseenbeesssesssesnseas 354

21, LOCAIZATION ..ottt ettt ettt ettt ettt et ettt st e b sbe et b et aesbeenaesbeennen 356
21.1. LOCALE SUPPOTIT...iiiiiiiiiiieriieeieeitesteete et et e stteseteebeesaeesttesbeebeesbeesabeeseenbeesasesssesnseas 356
2111 OVETVIBW ..oniiiiniiiecteteeett ettt ettt ettt b ettt st saeennens 356

21.1.2. BERAVIOT ..ottt sttt st s 357

21130 PTODICINS «.oniiiiniiiiteieicetctt ettt ettt ettt et st 358

21.2. Character St SUPPOTL......ccueruerriiertierierieenteestesteeteesieesttesteesbeesseesaseesseesbeesssesnsessens 358
21.2.1. Supported CharaCter SELS........couerueerierrierieeieeieerte ettt st beesaee e ens 358

21.2.2. Setting the Character Set............ccovueereriierieeieeiierteete ettt 361

21.2.3. Automatic Character Set Conversion Between Server and Client.................. 362

21.2.4. Further REadingccccoceviiiiiiiiiiiiiiicieieceeseeeee e 364

22. Routine Database Maintenance TasKs..........ccceviiiiiriiiiiiniiniiieenieeeeeesteete et 366
22.1. ROUtINE VACUUIMINEoouvimiiiiiieiieiieiieeeie sttt e n et e s e eanens 366
22.1.1. Recovering diskK SPACE........c.cocuevuiriiiiiniiriiiieieeiese et 366

22.1.2. Updating planner StatiStICS..........coceevueruirieiinieiienieeiesie et 367

22.1.3. Preventing transaction ID wraparound failuresccoceccevieieneniencneeenne 368

22.1.4. The auto-vacuum daBMONcc.cerueerierrieerrenienieenieeete et esieesiee st esreesseesneeens 370

22.2. ROUtINE REINACKINGeeueeniiiiieieitieieeie ettt ettt et s e neeseeennens 371

22.3. Log File MaiNteNanCe......ccueruteietieiieteeiienieeiteiestceeie st etcenee et sbeete st eseeneesneenaesaeeneens 372

23. Backup and RESTOTEceueiiiiiieiiiiieietee ettt ettt sttt et sbe e 373
23.1. SQL DUMP ..ttt sttt ettt et e e bt e b et e st saeenaesbeennans 373
23.1.1. Restoring the dumMpcccooiiieiiiieieeeieeeeesee et 373

23.1.2. Using pg_dumpall.........cccoviriiriiiiienieeieieeieeeseete ettt 374

23.1.3. Handling large databasesccocceverierieriinieniinieieresiteiesiceee e e 375

23.2. File System Level BaCKUP ...cccuoiouiiriiiieiiieiteeee ettt 376

23.3. Continuous Archiving and Point-In-Time Recovery (PITR)c.cccocevvviniiniininnnen. 377
23.3.1. Setting up WAL archiVing..........ccocueeviiiiieniiniieieenteeeeeieeieeste st 378

23.3.2. Making a Base BaCKUDccoueiviiiiiiiiiiienieeeeteteeeet et 379

23.3.3. Recovering using a Continuous Archive Backupccccovieviiiniiiininniennnns 381

23.3.3.1. RECOVETY SEttNESccueeieiieiieieniieieniieeere ettt eanens 383

23.3.4, TIMEINES...c.eeeruiieiieiierite ettt ettt ettt e b e e st e st e beesaeesaeeeas 384

23.3.5. CAVEALS ...ttt sttt sttt ettt ettt st b e sat e st ebeesaeesateea 385

23.4. Warm Standby Servers for High Availabilityc.ccocceviiiinininiiiiiiiecceens 385
2341 PIANNING ..ottt st e 386

23.4.2. IMPIeMENTALION «.....eouviiiiiiiiieiieie ettt st e s 387

23,43, FAILOVET ...ttt ettt sttt sttt et et et e naesaeeneans 388

23.4.4. Record-based Log Shipping........cocceeuereeieriinieieneeiesie ettt 388

23.4.5. Incrementally Updated Backups..........coceeevieeeininiinenicnieieineneseneceeeenene 389

23.5. Migration Between Releasesccccoueeveieirininenieiiieincnececeeeeese e 389

24. High Availability and Load BalancCing.........cccccceceverinienienienieininenenicieieeeeeeesresveseeseeeeneenes 391
25. Monitoring Database ACHVILYcc.ceouerierieriiriieierit ettt sttt este sttt st eate e saeeaesbeeneens 394
25.1. Standard UnixX TOOIScceruiiierieriiiieniieiee ettt s s 394

25.2. The Statistics COIIECTIOT. ..c.coviiririiieieieieitetieesteteeetee ettt s 395
25.2.1. Statistics Collection CONfIGUIALIONc..eeevevirieeiireeienienteienieetenie e e 395

25.2.2. Viewing Collected StatiStiCSc.ceevuerrerieriirieiineeienenitetenteete e sieeneens 395

25.3. VIBWING LOCKS ...ttt sttt et s s 401

25.4. DYNAMIC TTACINE ..cuvenveriieiiniteienieeiteeetee sttt ettt st sttt s sae e ennens 402
25.4.1. Compiling for Dynamic Tracing..........ceccceereerienenienieneenieneneeneneerenieeeeenne 402

25.4.2. Built-in Trace POINESc..coerierieriiriiniieieicniceteseetccseeeese e 402

25.4.3. USING TTace POINLS ...cc.veeiuiieiieiieiiieeieeie ettt ettt st sieesteesbeeaee e 403

25.4.4. Defining Trace POINLS.......ccoocvieiiieiiiiieeieeitesteeee ettt st 404

26. MONItOTING DISK USAZE ...uveeruieriiiiiiiiieniieeitesieesite sttt esteete et e sitesabesbeesbeesatesaseebeessaesanenns 406
26.1. Determining DiSK USQZEcccueriieriierieiiieitestesie ettt sttt ettt et et saseeeees 406

26.2. DisK Full FaIlUIE.......ccueoiiiiiiieieiieieiceiecete ettt ettt s s 407

27. Reliability and the Write-Ahead LOg........cceevieriiiiiiiiiiienieeeeeeeeeee ettt 408
271 REHADIIILY ..ottt sttt ettt st e 408

27.2. Write-Ahead Logging (WAL)cooiiiiiiiiieteeie ettt 409

27.3. WAL CONfIZULALIONeuveiiiiiieieniieieiieeete sttt ettt ene e ene e ennens 409

27.4. WAL INEETNALS ...eoiiieiieiiieitieeieee ettt ettt ettt e sbt e st et be e st e saeeeabees 411

28. REGIESSION TESS ..c..eiuiiuiieiieiieiieie sttt sttt ettt s e ne st enesaeeanens 412
28.1. RUNNING the TESESooviiiieiiiiieieiieeieteeee ettt st s 412

28.2. TeSt EVAIUATION ..couuiieiiiiiiiiieeieeieeit ettt ettt ettt st ettt ebees 413
28.2.1. Error message differences........cccovueereriiiniinieniienieeieeeeeeteeeeee e 414

28.2.2. Locale differenCesc.eeviriieieiieiieieeieetete ettt 414

28.2.3. Date and time differencescoooeeruererieriieieieee ettt 414

28.2.4. Floating-point differencescoeveerieririeriinieiese e 414

28.2.5. Row ordering differences........cccoveerierierieiiiiieieseeerestee e 414

28.2.6. Insufficient stack depthccooiiieiiiiiiiiiiieee e 415

28.2.7. The “TandOom’” LESt.....cccuutriirrieiriierieeieeteesite ettt ettt sttt et saeeebeesaeesaeeeas 415

28.3. Variant CompariSOn Filescccoeoiiiiriiiniiiiieicieieee e e 415

Xi

IV. Client Interfaces 417

29. TIDPQ = C LIDTATY .eeeviieiiiiiieniteeie ettt ettt ettt ettt e st eab et eshaesabe s bt e bt e sabesateenbeessaesaneens 419
29.1. Database Connection Control FUNCtionsccccccviiiiiinininiiiiiiiicccie 419
29.2. Connection Status FUNCHONScccccuiiiiiiiiiiiiiiiiiie e 425
29.3. Command Execution FUNCHONScc.coceriirieriinieiiiieicienccenccreeeeete e 428

29.3.1. Main FUNCHONSoovuiiiiiiieiiiiiie ittt ettt st 428
29.3.2. Retrieving Query Result Informationccccooceeiininieiinininiicceene 435
29.3.3. Retrieving Result Information for Other Commandscccccceeveninennne. 439
29.3.4. Escaping Strings for Inclusion in SQL Commandscccccceceviiieninennen. 439
29.3.5. Escaping Binary Strings for Inclusion in SQL Commands..............cccccoeeee. 440
29.4. Asynchronous Command ProCessing..........cc.ceveverueveirveriniinienienieneeineneseeneeeeeenene 442
29.5. Cancelling QUEries in PrOZIESSccccoerieirinenenieieieenestereeceeeeneeiese e 446
29.6. The Fast-Path INterface..........ccoceiuieiirieiiieiee e 447
29.7. Asynchronous NOHICAtIONcoevuerierierieirinenietceetee ettt s 448
29.8. Functions Associated with the COPY Commandcccceeeeeveneriieninienincene e 449
29.8.1. Functions for Sending COPY Data.........cccueverieniininieniiieienieeeese e 450
29.8.2. Functions for Receiving COPY Data......ccccevuerierienirienenieieniieienic e 450
29.8.3. Obsolete Functions fOr COPYcceciriniirienienieininenierteieeeeeeetee e 451
29.9. Control FUNCLIONSccuevieiiiiiiiiiitiicieieteeettee sttt sttt s e 453
29.10. Miscellaneous FUNCHONSccoevuirieiieieiiiiiineicieieese sttt 454
29.11. NOUICE PrOCESSINGeoueeniiriiiieniieiienieeiteie ettt ettt ettt ettt et saeenaesveesnens 454
29.12. Environment Variablesc.ccocooevieiiiiieiniiiniiieieieine e 455
29.13. The PassWOrd FIleccccoiiiiniiniiiiiiiiiiiecec e 457
29.14. The Connection Service Fileccccccviiiiiininiiiiiiiiicccceccee 457
29.15. LDAP Lookup of Connection Parameters.............cceeveerierrieeneenienieeneenieesvesveeeees 458
29.16. SSL SUPPOTL.cuvieiiieieeiiesite ettt ete et et e satesateebeesaeesseesbeeseesseesaseeseenseesssesssesnsees 458
29.17. Behavior in Threaded Programsccceceevieriiiiieenienienieeiceniee et 459
29.18. Building 1ibpq Programs............cooierieiiiiniinienie ettt ettt sttt e 460
29.19. EXamPIe PrOZIamS.cooiiriiiiiiiiienierie ettt ettt ettt et et esatesaeeenees 461

30. LarZe ODJECLS ..eeuveeuiiiiieiieniitetteite sttt ettt e st st e it e s bt e sabe e beesbtesateesbeesbeesaseenbeesatesatesbeensaenaneea 471
30.1. INErOAUCTIONeiiiiiiiiieiii e s 471
30.2. Implementation FEAtUIEScoc.eeiiiriiiiiiiiieieeie ettt 471
30.3. CHEent INTEIfaCeS.c..evvieeeiiiieieniiciee ettt st s 471

30.3.1. Creating a Large ODBJECtc.cocuevieiiniieieiinieienieeecreeeeeee e 471
30.3.2. Importing a Large ODbJEect........cceeieiiiriiiiiiiiieieneeeeeeeeeee e 472
30.3.3. Exporting a Large ODbjJect........ccccoieiiiiiiieiiiiieienecieeeeeeee e 472
30.3.4. Opening an Existing Large ODJect..........ccccooirvieiiniiiininiiniceeceeeseeee 472
30.3.5. Writing Data to a Large ODJECt......cccueevuieiiirieniiiiienieeieeeeeesee e 473
30.3.6. Reading Data from a Large Objectcccoveeienirieienieeneeerecee e 473
30.3.7. Seeking in @ Large ObJect.......ccovieiiriieieniiieiereeteeeeee e 473
30.3.8. Obtaining the Seek Position of a Large Object.........cccoeveveerernierinierieneneene 474
30.3.9. Closing a Large Object DESCIIPLOTco.eeuevereirinenenieieeeenesiesreieeeneenens 474
30.3.10. Removing a Large ODJECtc..coueeiiriirierieiieierieeteeeee et 474
30.4. Server-Side FUNCHONS.c..iitiiiiiieieeetee ettt sttt s s 474
30.5. EXampPle Programccooccicierieiiiiiiniieienesteie sttt s 475

31. ECPG - Embedded SQL AN C......ooiiiiiieiiee et ettt e et e e e e eavee s 481
311, THE CONCEPL...cnientieiiiieeiteie ettt sttt ettt st e st bt et e bt st e bt sbeenaesbeennens 481
31.2. Connecting to the Database SerVer.........ccccovieriiiriininiininieeseeeeetesee e 481

Xii

31.3. ClOSING @ CONNECTION ...veeueieeiieriiieiienieeieenteesitesiteebeesieesttesbeesbeesseesaseeseebeesssesnsesnsens 482

31.4. Running SQL COmMMANAS........cccueeruierieriiieniienienieeieesieesitesieesieesieesseeseesseesssesnsessens 483
31.5. ChoOSING @ CONNECHON. ...c..eerieriieiierierieenttesite st eteesieesttesteesbeesbeesabeebeebeesasesnsesaseas 484
31.6. USING HOSt Variablesccueeiiiiiiiiieiieiiteieestese ettt sttt s 484
316, 1. OVETVIEW ..ttt ettt ettt ettt ettt st et sat e st e esbeesaaeenbeeseesaee 485
31.6.2. DEClare SECHOMS.eeruieriiirieeieeite ettt ettt et et sttt e e st ebe e b e sae 485
31.6.3. Different types of host variablesc.ccoceoieveninieiininiinieeeeeeee 486
31.6.4. SELECT INTO and FETCH INTO .eerrterrueerreeruiereerieenieenieesaseenseesseesssesnsesnseennns 487

B B O TR 0116 1 1o 110 4SRRI 487

31.7. Dynamic SQL....c.cooiiiiiiiiiieeee et s e 488
31.8. PELYPES LIDIAIY ..o e 489
31.8.1. The NUMETIC LYPEeeeviiniiiiiiieieiiieiee et e 489
31.8.2. The date LYPE......ocueeiiiiiieiiiice e 492
31.8.3. The tiIMESLAMP LYPE....cuveuerrirrirrenieieiieieriertiteieteneetterestesseeeneeresaesressesseneneenens 496
31.8.4. The INterVal LFPE ...cevieueiieiiieiieieet ettt ettt 500
31.8.5. The decimal tYPe.......ccueeieriiriieieeiieiieeieee ettt 500
31.8.6. errno values of pEtypeslib.......cccoieviiriiieriiieereee e 501
31.8.7. Special constants of pgtypeslib.........cccoecieririirieninieiinieeeee e 502

31.9. Informix compatibility MOAE........cccueruiriiriiriiieiieieieee et 502
31.9.1. Additional embedded SQL Statements............cceeeevvereeiuireeciieeerieeeiee e eeaeeenn 502
31.9.2. Additional fUNCLIONS.cueevueeriieriieeieeieeiteste et ettt sre e e seeesbeebeenaeesens 503
31.9.3. Additional CONSLANTS.ccveeveeriieriierreeieerieesteereebeeseesseesreesseesseessseenseenseennns 511
31.10. Using SQL DeSCIiptor ATCaS.......c..ceuerieriireenueriieienieeitentenieeniesieetesiesieentesseeneesieesnens 513
3111, Error Handlingooeeieriiiinienieieeetce ettt sttt s 514
31.11.1. Setting CallbacKScc.eevieriieiieiieeieeieeiee ettt 515

BT 1.2, SQICA ettt ettt st s enbeeaeenaee 516
31.11.3. SQLSTATE VS SQLCODE..c.utrutetertieurentiereeterieestensensretenseeseensesseensesseesensesseenne 517
31.12. PreproCeSSOr QITECTIVES ..cuveeiiriieriierieeieeteesite st et esieesttesbeesaeesbeesaseeseebeesasesnsesnseas 520
31.12.1. INCIUAING fIlES....eiiuiieiieiieiieeieete ettt sttt st e 520
31.12.2. The #define and #undef dir€CtiVescceeveereiiiieenienieeeeeeree e 520
31.12.3. ifdef, ifndef, else, elif and endif dire€Ctivescoooeeuvvvirieieieiiiieiieeeeceinians 521
31.13. Processing Embedded SQL Programs............ccecueevieenienienieineenienieeieeieesee e 522
31.14. Library FUNCHONSoeiuiiiiiiiiiiiieiteeie ettt ettt et sbe e st e e b e saaesaeeeabees 523
B1L IS5, INEETNALS ..ottt sttt et sttt e bt e st et e bt e sabesabeeabeas 523
32. The Information SCREMA...........cceieiiiieiiie et e e r e e s reeeetaeessseeesreeas 526
2 T N 1 T o] 1 T4 T SRR 526
32.2. DAta TYPES ..ottt e 526
32.3. information_schema_catalog NAME ..ieeeeiciieeeeeeiieeeeeeeireeeeeeeirereeeeeerereeeeennns 527
32.4. administrable_role_authorizZationS . eeeeieeeeeee e eeeeerrrerereeeeeeeas 527
32,5, APP LA CA e L OLES aiiiiiiiiiiiieeecitiee e e ettt e e e eectte e e e ettt e e e e e ebae e e e eettaeeeeeebaeeaeeeerbaraaeaannes 527
R =N ol o o <UL o= = OO U TS ETs U UU ST UURR P UPUPURRRUOTURRRRRINt 528
32.7. check_constraint_roOULIiNe_USAGE .iciiiieieeiiiieeeeeecieeeeeeeireeeeeeerareeeeeerrareeeeenens 531
32 8. C i K COMS T T AITIE S tuuetettiteeee et e et e e e et e e e e eee e e e e e eaaeeeeeaeaeeeeeaaaaeeeeneaeeeenanaaaes 531
32.9. COLUMN_AOMAIN_TUSAGE teuririeeiirrireeeiirieeeeeiitreeeeeeertreeeesesreseesaasseseessasasesesssssneessannes 532
32.10. COLUMN_PTivVilEges cirrriiiiiiiiiiieeeeiiiieeeeeiitteeeeesetteeeeessteseeseesseeeeesesaseeesasssaneeesnnnns 532
32,11, COLUMN UL S AT i iiiiiiiieeiiiieeeeeiititeeeeesitteeeeeeettaeeeeesataseeseessaeeeesessaseeeesnssaneessanens 533
32,12, COLUIMIIS tiieutieeiitieeeteeeeiteeeett e e et e e et e e eteeeeteeeeaaeeeetteeeeaseseesseeensseeasseesseseensesenaseeensreaan 534
32.13. conStraint_COLUMN_USATE wiiirrieeeirieeeireeeereeeereeeereeeesseeestseeessseeseseeeesesessseessreaas 538

Xiii

32,14, CONStraint _taAD e USAGE . iiiiiiiiiiriieeeeiireeeeeeiireeeeeeiitereeeeesrreeeeeesareeeeeessereeeeenans 539

32,15, data LY PE PTAVILEUES ttitiirriieeeiiteeeeeeeiteeeeeeeitaeeeeeeeteeeeeeestrreeeeeestareeeeeesereeeenans 540
3. 16, AOmMAIN CONSEIAINES tiitteiteiitieeteeeeeeeeeeeeeeeeeeeeee e eeeeeeeseeeeeeereetereaaaaaaaeseeseeaeeees 541
32.17. AOMaI N UL S AT et iiiitriieeeeiirreeeeeeirreeeeeeireeeeeeeitaeeeeeeereseeeeessseeeeeseetsseeeeeessreeesanans 541
R B e 1) L o = TSRO PSPI 542
32,10, C1EMENt_LYPES tererieeriiieeririeerreeerereeetteesteeesseeessteeessseeasseaassseeasseessaeeansaeeasseeensraens 545
R RS) Y R =Tc I ot B =Y J USSR 547
32,2, Ky COLUMN TS AT cuuteerurreerereerrereeassreeaseeesseeessseeasssessssseeessseesssseesssesssssesesssesesssenes 548
R N T ol 1Ty =S o= SRR 548
32.23. referential CONSTTAINTS wiiiieiiiiieeeeeeeeeeecerrrree e e e e e e e e e e e eeseenasrararereeeeeeeas 551
32.24. r0le_COLUMN__GIANES tireeeeeeiirreeeeeiireeeeeeeireeeeeaiirreeeeeaassseeseaasseseessessssesesessssseeseenses 552
32,25, role rOULINE _GTANT S tiiiiiiiiiiee e ettt e e ettt e e e ettt e e e eeeateeeeseettaeeeeeebaseeeeeesraseeeeennes 553
32.26. £01Ee_t ALl GIANES wuiiiiiuieeeieeeeeeeeeteeeeeteeeeeaeeeeteeeeaeeeeeeeeesaeeeeseeeeeseeeeseseeaeeeanreean 553
3227, rOle_USAGE_GLANES tirtrtirieeieitieeeeeiitteeeeeeiteeeeeeetaeeeeeaereseesaasssaseeesessseeeseaseneesaanses 554
32,28, LOULINE_PIrivVileges ciiiiiiiiiieeeeiiiieeeeeeiteeeeeeettreeeeeetteeeeeeestbeeeeeeesaseaeeeassaneessanes 555
32,20, L OUL ANIE S ceitiiieeeecctiee e e ettt e e ettt e e e e sttte e e e et tbe e e e e eabaeeeeeaataseeeearbaeeeeaanbareeeearranaaeaannes 556
32.30. SCREMAT A ceeitiieieeiiiieeeeecttee e ecette e e e e stee e e e eetbee e e e eebae e e e eeataaeeeeabbaaeeeaabaraeeearbareeeaannes 561
32 3] SO U S uiieiutieeeiteeeetteeeetteeeett e e et e e eete e e eete e e eaee e etteeeeateeeeataeeetaeeeetaaeeteeeeteeentreeaaraaan 562
32,32, SOl _ AT UTES witietiieeiie ettt e et et e et e e et e e et e e e tteeeeaaeeeetaeeeetaeeeetaeeeteeeeateeeeteeeaareaan 563
32.33. sql_implementation_iNFO .iiiiiciieeiieeeeree e et eete et e et e e eaeeeeareaas 564
32.34. SAL_LANGUAGES teeetieeeieeeireeeereeeeteeeeteeeeeteeeseseeeatesesssesesssaeesssseansssessssessesenssseensreeas 565
R G TI=Te AR o Y=o =Ye 1= Y- T U TSP PRRRRRRRRRSRN 565
R TS T=Te A oY= o= TSRO RR PSRRI 566
RGN B=Te AR5 -2 B s SO TSRS PRRRRRRRRRRRRN 566
RYRCH TN-TC ARINCE I BsYe o b ot X s 1 = Y= U STRUOPRPRRRRRRTRRRRIN 567
3.3, LA L COMSETAITIES teeteeeeeeeteteeee e e e e e e e e e e e e et eeaeeeeeeeeeeeeeeeeaaaaaeaeaaeeeaeeaaanees 567
32,40, LAl P T A VI L OGS iiiiiiriiieeiiitreeeeeiiitteeeeeetiteeeeeeeiareeeeeetereeeeestreeeeeerareeeeeetareeeeaaes 568
R R =Y <X =Y OO U SO U SUUP PRSPPI 569
R S ek K o 1% of - S USSP PUURRRRSTRRRRRRN 570
R IR TR 1N o b ok v T =T 1= Y- DUUUU U U UUO TR PUURRRRRRURRRRIN 571
32,44, VieW_COLUMN_USEGE tirrrreeeeeriirreeeeeiiireeeeeeiiiseeeeeeeirssesesseissseessesssssessesissessssssssseeseensns 572
32,45, VieW T OUL MO USAGE ttrriiiiiiiirieeeeeeiieeeeeeeiteeeeeeetaeeeeeeetreeeeeeettreeeeeeetaseeeeeetnseeseeans 573
32,40, VieW LAl e USATC i iiiiiiiieeeeitreeeeeecteeeeeeetteeeeeeettareeeeeetaseeeeeatbreeeeeetareeeeeetareeeaaaes 573
R W 7= TSRO 574
V. Server Programming 575
33.EXtending SQL.......ooiiiiee e e e 577
33.1. How Extensibility WOTKS........ccccocoiiiiiiiiiiiiiecc e 577
33.2. The PostgreSQL TYPe SYSIEM.....cccueiriiriiiiiiiieniiiieereeste ettt 577
33.2.1. BASE TYPES -eeeuveemiiiieeiteiteeee ettt ettt sttt e 577
33.2.2. COMPOSILE TYPES ...eeuviriemieriiriieientieiesttette ettt e sttt ete et see et e sbe e enee b eaeenes 578
33.2.3. DOMAINS ..euvienvieieieeieestiesteeteeeteesteesteeseesteesseessseesseesssesssessseesaesseessseeseensesssns 578
33.2.4. PSEUAO-TYPES -.cenvtienriiiieiieeieeieeiee sttt ettt sttt s 578
33.2.5. POlyMOIPhIiC TYPES ..eeveeuieiiriieieniieiienitet ettt ettt s 578

33.3. User-Defined FUNCHONSoccuiiiiieiieeieeiteteete sttt eve e e sveesaeesaeessneesaeennees 579
33.4. Query Language (SQL) FUNCHONScocueiiiriiiiniiiiiniieieie et 579
33.4.1. SQL Functions on Base TYPescccceeirieririrrenenieiineeieneeeese e 580
33.4.2. SQL Functions on Composite TYPESceveruerrueririenieneeienienienienieeeenieeeeene 581

Xiv

33.4.3. Functions with Output Parameters...........cccevveeveiriieenieniieniieeiienee st 585

33.4.4. SQL Functions as Table SOUICEScc.ccceiieriiieeeirieeeiie e ecreeeereeevee e 586
33.4.5. SQL Functions Returning Setsccecceereerieriirsieenienienieeieenee e eieeniee s 586
33.4.6. Polymorphic SQL FUNCLIONScc.eevieriiiiiiiriienieiieeiieste et 587

33.5. FUNCtion OVErlOadingceeueriiiniiiiieiitiieestesie ettt sttt et et ebees 589
33.6. Function Volatility CateZOTIIiESscc.eeuieueruirierieriiereniieeereeeernesieenesreeeeseeneesnesaeennens 589
33.7. Procedural Language FUnCtionsccccoerieriinieieniieieie et 591
33.8. Internal FUNCHONS ...ccueitiiiiiieieiieeit ettt ettt et sttt et ebees 591
33.9. C-Language FUNCHONS.cccouiiiiiiiiieiee ettt e s 591
33.9.1. Dynamic Loading..........ccccoiiieiiiiiiiiiiiiiii e 592
33.9.2. Base Types in C-Language Functions............cccccoceeieiiininiiniinenciicieneeene 593
33.9.3. Version 0 Calling CONVENTIONSc.cecererrirreriereeriinenieneeeeeeenieseessesseneneenens 596
33.9.4. Version 1 Calling CONVENTIONSccceceruervirierierenerrinienieneeeeeeeniesressesseneneenens 598
33.9.5. WIItING COAE.....coviriiienieiieiiiiniecietetee sttt sttt st enea 601
33.9.6. Compiling and Linking Dynamically-Loaded Functionsc.ccecccveeveuenens 601
33.9.7. Extension Building Infrastructure...........cc.cocceveninieninieienieencceescen 604
33.9.8. Composite-TYPe ATZUMENLSccueeieriirierteriieienieeiteieeteeee e ete e sbeeee e eaeenes 605
33.9.9. Returning Rows (Composite TYPES)ceeerveruerriererieienieeieneeeese e 607
33.9.10. RELUINING SELS.....eetiriieiieriiriieieniieitent ettt sttt sttt ettt et e st s e b e nee 609
33.9.11. Polymorphic Arguments and Return TYpesccceveveevieneniencneenieneneenn 614
33.9.12. Shared Memory and LWLOCKScccoecieririinieninieieneeeneeerceeesceeeene 615
33.10. User-Defined AZEIEZAEscoeeuiriirieniirieieniieienteeitente ettt ete sttt sreeseesreennens 616
33.11. USer-Defined TYPES ...ccceeruerterieriieiiniieteiesitete sttt st sttt et saeesae e eanens 618
33.12. User-Defined OPEratorsS.......c.cecueerierieriiierieeriesieerieeseesressseesseesseesseessessseesssesssesssees 621
33.13. Operator Optimization INformation...........ceeecvereierriieriienieerieeeerte e 622
33.13.1. COMMUTATOR ceveviiiieiiiitiietetete sttt 622
33132 NEGATOR wveviiieiiiiiieicietest ettt 623
33133 RESTRICT ooviiiiiiiiiiiicietet ettt 624
331304, JOTIN ittt 625
33.13.5. HASHES .ouiititiiieiiiteicietce ettt 625
33.13.6. MERGES (SORT1, SORT2, LTCMP, GTCMP) .uuvveeeeeerrreeeeerrreeeeeeirrreeeeesrreeeeennnns 626
33.14. Interfacing Extensions To INAEXES........ceevierieriiiiieinienieeieeieeiee st 627
33.14.1. Index Methods and Operator CIaSSEsceecverrueenienierieiniienee e 627
33.14.2. Index Method Strateiesceveerierriieniienienieeieerteete ettt 628
33.14.3. Index Method Support ROUINEScccouirieieniinieiiniciceceeceeeeee 629
33.14.4. An EXAMDPIEoooviiiiiiiiiiceee e 631
33.14.5. Cross-Data-Type Operator CIassesc.ccoceevverueeiecieneeceeneeieneneeeeseeeenns 633
33.14.6. System Dependencies on Operator Classescceeeeverieeercneecieneneenn. 634
33.14.7. Special Features of Operator Classes............ccccoerveviinieiieniiieeniieeieseeeenns 635

B TIIZEETS ettt ettt ettt ettt ettt sht e st e bt e e bt st e e bt e ebe e sat e e beesbtesat e e bt e bt e sateebeenbeenaeeea 637
34.1. Overview of Trigger BEhavior..........occoeoiiiiiiiiiieieiee e 637
34.2. Visibility of Data Changes.........cc.cecueiieiiiriiieie ettt s 638
34.3. Writing Trigger Functions in Cccccceoieininininienieieenenieceeeeeeese e 639
34.4. A Complete EXAMPIEccoriiiiiiiiiiiiieiee et 641
35. The RUIE SYSTEIMcutitiiiieieiiteieet ettt sttt sb et b et e et st enbesbe et e beeaeenee 646
35.1. The QUETY TIEE.....eeueeuieieiieiteteet ettt ettt et sttt st e e b 646
35.2. Views and the Rule SYSteMcc.eeoiiiiiiiiniiiiiiiieieeee et 648
35.2.1. How SELECT Rules Workccccooiiiiiiiiii 648

XV

35.2.2. View Rules in NON-SELECT StatemMentsceevvvvreeeeerireeeeeeeivreeeeesirneeeeennnns 653

35.2.3. The Power of Views in PostgreSQLcccoovieeviiiiiiinienieiieciceeesieeieeee e 654
35.2.4. UPAAtiNg @ VIBW...couiiiieiiiiiieieeite sttt ettt ettt st e esaee st e enaeesaee 654

35.3. Rules on INSERT, UPDATE, aNd DELETE ...ccccevueruteieniieeereeneenenieenenieseesesseensenmeennens 655
35.3.1. How Update Rules WOTKcccooiiriiiiiiiiiiienieceeteceeteee e 655
35.3.1.1. A First Rule Step by Step....cooceeriiiiiiiiniiiieeeeeeeeeeeeeeeeen 656

35.3.2. Cooperation With VIEWS..........cceiiiiiriiniiniiiieieeciceseeeee e 659

35.4. Rules and PrivilEZesccccocieiiiriiiiiiiiiiiiieeeeneeeeeeee et 666
35.5. Rules and Command STAtUScocverieriiiriienienieeieee ettt ettt sire s nees 667
35.6. Rules Versus TIIZEETSccooieiiiiiiiiiiieiee ettt s s 667
36. Procedural LangUagesc.ccccuiiuiiiiiiiioii e e 671
36.1. Installing Procedural Languagescocceeveerieriiiieiiienieeieeeeieceeeeee e 671
37. PL/pgSQL - SQL Procedural Languagec.ccceveeriiiiienieniiniieieeseeeee et 673
371 OVEIVIEW ..veeuviiiieeiieeieeteestteeteeteesseasssesseessaesssessseansaesseessseassassseesssssssasssesseesssenssennses 673
37.1.1. Advantages of Using PL/PZSQLccoooiiiiiiiiieeeeeeceeee e 674
37.1.2. Supported Argument and Result Data Types........ccceeeveevenernenenieienceene 674

37.2. Tips for Developing in PL/PZSQL.......cociiiiiiiiieieiieee et 675
37.2.1. Handling of Quotation Markscccceecteririrnieninienieneeieneete e 675

37.3. Structure of PL/PZSQL...ccuiiiiiiiiiiieieetee ettt s 677
374, DECIATALIONSuveutiiieiieiieie ettt sttt et ettt e bt et eaesbe et e b e bt et sbeenaesbeennens 678
37.4.1. Aliases for Function Parametersccoceveevenenienenennieneniencneeiesceeenne 679
37.4.2. COPYING TYPES .vevientiiieiienieritetesitetet ettt sttt ettt st 681
3743, ROW TYPES ettt sttt et 682
37.4.4. RECOTA TYPES weeevurieiieiieiiieeieeitesiteste ettt e st e et e et esetesaeesabeenseessaesnseenseenseenans 682
37.4.5. RENAME . ..coiiiuiiiiiiieieteitetiete ettt sttt e sttt s a e eneas 683

3.5 EXPIESSIONS ...eeuvieireeieetiesiteeteeteesttesatesteebeesatesaseenseenseesssesaseenseenseesaseenseenseesssesssesnses 683
37.6. BASIC StAtEIMEIILS ...cuveuveeiieiiriteieniietenieeitente ettt et ettt tee bt saeeaesbeeen e besseetesmeenaesueennens 684
37.6.1. ASSIZNIMENLveeiiieniiiiierite ettt ste ettt e st e st e et e e satesatesabeebeesbeesabeenseenseesans 684
37.6.2. Executing a Query With NO Result..........cccoovieviiiiiieniiniiiiiieeeieeeee 685
37.6.3. Executing a Query with a Single-Row Resultcccccoeceeviiiiniiniiniinncneene, 686
37.6.4. Doing Nothing At Allcooviiiiiiiiiiiieeieeeeteee ettt 687
37.6.5. Executing Dynamic COmMMANAScccceerierierierniienienienieeieesee e eieeseee e 688
37.6.6. Obtaining the Result Status.........coeevveeiiieiiinienieiieeee e 689

37.77. CONLIOL STIUCLUTES......c.veeueeniiriieieniietete ettt ettt et e e s be e enesaeenesaeennens 690
37.7.1. Returning From a FUNCHON........cc.ccciviiiiiiiiiiiiiiicccccceeceeeee 690
37711 RETURN ettt ettt sttt et e sit e et e bt sbtesateebe e bt e satesaseebeesaaesaseenbees 690

37.7.1.2. RETURN NEXT tuteesteesueeriteenseenieesiteeseesseesseessessseesseesmsessessseesssesssesnsens 690

37.7.2. CONAIIONALS ...eenniieniiiiieiteeeeeee ettt st s e e 691
37.7.2.1. TFE—THEN ettt ettt ettt ettt et s et e bt e bt e st e st e ebeesaeesaeeeas 691

37.77.2.2. IF—THEN=ELSE ttsittestterterteerteenteesiteeteeteesbeesasesteesbeesatesaseebeesseesseeens 692

37.77.2.3. IF—THEN=ELSE IF.icttisttrteerreenieerneeeeeteenieensesseenseesmeesaseenseesseenseeens 692

37.77.2.4. IF—THEN-ELSIF—ELSE ttsottesteseerteeieenieenieeneeeteenseesmeesateeseesseesaeeens 693

37.7.2.5. IF—THEN-ELSEIF~ELSE ..eecttttrttetentieienteeieeneesieeneesteeseensesseenaesueeneens 693

37.7.3. SIMPLE LOOPS ...ttt ettt st 693
37731 LOOP ettt ettt ettt sttt st b ettt st 694

377320 EXIT ettt ettt ettt sttt ettt st s be et sb e bt et bt e e sae e 694

37.7.3.3. CONTINUE ..ctiteuiemtetietinteteeeneetteie st sttt et esesne e e et s e b s s nneae e 695

37734 WHILE oottt ettt ettt s 695

xvi

37.7.3.5. FOR (INLEZET VATIANE)....ccuveerieriieriieeieeieenieeeieesieenieesaresseeseesinesasesnseas 695

37.7.4. Looping Through Query Resultsc.cceevieriiiiiienienieiieeeenee e 696
37.7.5. Trapping EITOTSccueiiuiiiiiiiieiiteite ettt sttt st e 697

37,8, CUISOIS.c.eentiiienteieeitete ettt sttt et ae st e b s bt eas et e aeesaesueesaesueesnebeeaeensesneennenueennens 699
37.8.1. Declaring Cursor Variablesccovverieerienieniiiieenteneesieeee st 699
37.8.2. OPening CULSOLSceevuieiiriiriieieniieretieeteteseeereste st st saeeseesne e esnesreeanenne 700
37.8.2.1. OPEN FOR QUEI Y eeurteeeereersrreeasrreesiereessseesssseeesssssessssessseessssessssesessens 700

37.8.2.2. OPEN FOR EXECUTE .eecueruieiererieerereeeeneeseenseseessessesseesesseessesneennens 700

37.8.2.3. Opening a Bound CUISOTcccoecveeiiiiiiniiiiinineereeeeere e 701

37.8.3. USING CUISOTS.....cueiuiiiieiieiiiieeieee ettt sttt sttt s 701
37.8.3. 1. FETCH tutiiieiiiti ettt et s 701

37.8.3.2. CLOSE tutitteieett ettt ettt ettt ettt st ettt et bt et e st estenbe e st et e beenee e 702

37.8.3.3. Returning CUISOLScccueiuieuieriieeieieeieeiesieette et eee et see e eee e eneenes 702

37.9. Errors and MeESSAZES.........ccueiiiiiiiiiiiiiiiieie ettt s 703
37.10. TrigEEr PrOCEAUIESc.eeruiriieieitieiieiteetete ettt ettt sttt et aesbe e 704
37.11. Porting from Oracle PL/SQL.......cccoiiiiiiiiiiiiieeeee e 710
37.11.1. Porting EXamMPIEScccveiiiiiiiiiieieiieitete ettt 710
37.11.2. Other Things to Watch FOr..........ccccooiiiiiiiiiiiieeee 716
37.11.2.1. Implicit Rollback after EXCEPtions..........coceevereerienerieneneenienenens 716

37.11.2.2. EXECUTE suetiieuienteiietesteseee ettt sttt 717

37.11.2.3. Optimizing PL/pgSQL Functions........c.cceccevereevienenieneneeneneenens 717

371130 APPENAIX ..etiiiniiiiieiinieetereet ettt et 717

38. PL/Tcl - Tcl Procedural LanguUage...........ccoeveeienierieniinieienieeteniesitetenieeitesee st 720
38.1. OVEIVIEW ittt ettt ettt sttt ettt e e sbt e e sbe et e bt e bt etesbeeaenbeennens 720
38.2. PL/Tcl Functions and ATZUIMENES..........cecveerieerierieenieenieenieeieesieenieesseesseesseesssessessses 720
38.3. Data Values in PL/TCL......co.cooiiiiiiiiiiiiiieeerectcceteec ettt 722
38.4. Global Data in PL/TCLcoouiiiiriiiiiiiiirieineecrieeteteetete ettt s 722
38.5. Database Access fTom PL/TCL ...c..cocuiiiriiiniiiiniiiicieccccienecreeeeete e e 722
38.6. Trigger Procedures in PL/TCLcooiiviiiiiiiiiieee ettt 724
38.7. Modules and the unknown COMMANd......c..coceereririiniiriieniinienieneereneeeeee et sreeenens 726
38.8. TCl Procedure NAMESc..coceevueruieiiniinieieneeienieetenteeieeeeeieene e esnesieeaeesesaeesnesaeennens 726
39. PL/Perl - Perl Procedural Language............coceevueerieriiiieeniienieeie ettt st siee s 728
39.1. PL/Per]l Functions and ATGUIMENTS.cecueerveerierienrieereeniteeieesieesieeseeeseesieesseesnsesvees 728
39.2. Database Access from PL/PEr]cc.cocoiiiiiiiiiiiiiiecieeneceeeeeee e 731
39.3. Data Values in PL/PETL.........cocoiiiiiiiiiietee ettt 734
39.4. Global Values in PL/PET]coccoiiiiiiiiiiiiiee ettt 734
39.5. Trusted and Untrusted PL/Per]cocooiiiiiiiiiiiiiiceeetc e 735
39.6. PL/PEIT TIIZEETS ...ttt e s s s 736
39.7. Limitations and Missing FEaturesccccoceviiiiiiiiiiiiiiiiceicceeecece e 737
40. PL/Python - Python Procedural Language............cc.ccccoiiiiiiiiiiiniiii e 739
40.1. PL/Python FUNCHONSc..ccvrtiiiniiienieieieiinenentetetetee ettt sttt e ae e enea 739
40.2. Trig@er FUNCHIONSooouiitieiieiietieieeit ettt ettt ettt sbe et be et e b sseeneeseeennens 743
40.3. DAtabDas ACCESSverueerieirieriieniierteete ettt ettt et e sttt esbeesbeesate e bt e b e sareebeebeeneee 743
41. Server Programming INTEIfaceccovuiiiiiiiiiiiiiieiec et 745
41.1. Interface FUNCHONSooueiiiitiitieieit ettt sttt s 745
SPILUCONNECT c.coeiiiiieeeeeeeeeeeeeeee ettt eeeeeeeeesessesessssaanans 745
SPLAINISR ...ttt 747
SPI_PUSH .ttt b 748

xvii

SPI_EXECULC. ...cuuveeeitieeeiiieeeiee ettt e et e eetteeetteeetbeeestbeeesseeessseeeessaeesssseessseeasssasessaeessanns 750

N o B SRS RRU PSP 753
SPI_PIEPATE ...ttt ettt ettt sttt st e be b saee 754
SPI_ZELATZCOUNL ..c.ueiiiieiiiieteeieerit ettt ettt ettt et esat e st ebeesbeesabeenbeeseesaee 756
SPL_getargtyPeid......ccccouieieiirieieniiiieieeeeeet ettt et 757
SPI_iS_CUISOT_PLAN ..utiiiiiiiiiiieiteetee ettt ettt sttt st e 758
SPI_EXECULE_PLAN....iiiiiiiiiiiiiieite ettt ettt sttt st et 759

N o4 I (1) o OO O OSSOSO P TP 761
SPI_CUISOT_OPEIL.c..eiuiieiiieieeieeite ettt ettt et ettt st et e st e st e ebeenaee 762
SPICUISOT_fIN. ..ot e e e e e e e e e e e e e e eeeeeeeseeeeseeseenees 764

SPI CUISOT _fEUCH .. e e e e e e e e e e e e e e eeeeaeeseenees 765

SPI CUISOT_ITIOVE ...t e e e e e e e e e e e e e e e e eeeeeeeeeeeseseesessssanees 766

S CUISOT _CLOSE ...t e e e e et e e e e e e e e e e e e et eeeeeeeseeeesessssanaes 767
SPL_SAVEPIAN ...ttt ettt et st 768

41.2. Interface SUPPOrt FUNCHONSooouiriiiiiiiiiieieni e 769
SPI U NAMIE ...eeeeeiiieeeeeeeeeeeeeeeeee et e e e e e e e e e e e e e e et e e teeeeeeeseeeeaeeneaaaaas 769
SPIL U NUIMDET c.ceiiiiiiieeeeeeeeeeeeee et e e e e e e e et eeeeeeeeaeeseesesessssanaes 770
SPI_ZEVALUEcouveiiiiiiiieiieeetee ettt ettt et ae bt 771
SPI_getbinvalcoueiiiiiiiiiiiieeeeee et 772
SPI_GEIEYPE .ottt ettt bbbttt ettt 773
SPI_EtYPEIA . ..ccueeiiiiiiiieiieieeeet ettt 774
SPI_ZEtrEINAMEc.veeviiniiiieiirieeterteett ettt ettt ettt 775
SPI_ZENSPNAIME. ... veeiieiiiieiieitesite et et enteeste et e bt esstessbeesbeessaesseesaseenseesseesnsesnseenseennns 776

41.3. MemOry ManaQZEMENLcccueevuieriierierieeieeneiesieeteesseessressseesseesseessseessessseesssesssessseessns 777
SPI_PAIlOC ...ttt ettt st ettt sttt s ebeenbeeaeeneee 771
SPI_TEPAIIOC ...ttt et st st enbe et seee 779

N o I o) (T OO OUUOUUSTPTOPRRPRRPT 780
SPI_COPYLUPIE ..ottt ettt et et e st st e beesbeesateenbeebeesaee 781
SPIL_TEIUINTUPIE ...cvviiniieiiieiieiiecite ettt ettt et et st ebe e beeseteenbeeaeesae 782
SPL_MOITYTUPIE ..ottt sttt s e 783
SPI_TEEIUPIE.eeeeieiieeie ettt ettt sttt s e 785
SPI_fretUPLabIe.coouiiiiiiiiiiiieite ettt st e 786
SPI_ATEEPIAN.coueiiiiiiiieieieeee ettt e 787

41.4. Visibility of Data Changes...........cceeuerieeriierieniieiiienieete ettt ettt 788
1.5, EXAMPIES ..ottt ettt ettt st sttt st e 788
VI. Reference 792
L. SQL COMMANGS...ccutiiiiiieiie ettt tte e et e e steeesaaeeesabeesabeesnseeeenseeesnseeesnseesnnsessnnses 794
ABORT ... ettt e e e e e e te e e eaeeeenns 795
ALTER AGGREGATEoo oottt et 797
ALTER CONVERSIONottt ettt e e et e 799
ALTER DATABASE ...t ettt e e e et e e et e e eans 801
ALTER DOMAIN ...ttt ettt et eeta e et e e e eae e e eaaeeeteeeeaneeeeans 803
ALTER FUNCTIONoooiiiiiiiie ettt e et e et e eaee e eveeeeaaeeeeans 806
ALTER GROUP ..ottt ettt et e et e e e e e e teeeeaseeeeans 809
ALTER INDEX ..ottt ettt et ettt e e et e e e te e e e aaaeeeaseeeeaseeenns 811
ALTER LANGUAGEttt ettt e v e e are e e 814

XViii

ALTER OPERATORc.ccoooiiiiiiiiiiiiiicceee et 815

ALTER OPERATOR CLASS......coiiiiiiiiiiiiceee e 817
ALTER ROLEc.ooiiiiiiiiiiiiiie et st 818
ALTER SCHEMA ..ottt s 821
ALTER SEQUENCE........cccooiiiiiiiiiiiiicicici e 822
ALTER TABLEcooiiiiiiiiiiiicc e 825
ALTER TABLESPACEoootiiiiiieiiteene ettt sae st s 834
ALTER TRIGGERccoioiiiiiiiiieet ettt s s 836
ALTER TYPE. ...ttt ettt s 838
ALTER USERoiiiiiiie ettt s 840
ANALYZE ...ttt et st sttt s 841
BEGIN ...ttt s 843
CHECKPOINT ..ot e st s s 845
CLOSE ... et st e s 846
CLUSTER ... e e st s s 848
COMMENT ... e e s s s 851
COMMIT ... e e s 854
COMMIT PREPARED......ccoooiiiiiiiiii e s 856
COPY .ttt st bbb e 857
CREATE AGGREGATEcoocoiiiiiiiiceeeee ettt s e 866
CREATE CAST ...ttt sttt s e 870
CREATE CONSTRAINT TRIGGERcccccoeiiiiiiiiniiiiiiiiineneceeeeeese e 874
CREATE CONVERSIONccocoiiiiiiiiiiiteieeieteseeeeet et s 876
CREATE DATABASE ..ottt s 878
CREATE DOMAIN......ooiiiiiiiiiite ettt s e 881
CREATE FUNCTIONcoiiiiiiiiiiiiniteeeeete ettt s 884
CREATE GROUP. ..ottt s 890
CREATE INDEX.....c.oooiiiiiiiiiiiiiinteeeeee sttt s e 891
CREATE LANGUAGEcccoiiiiiiiiiiiicccee et 896
CREATE OPERATORcciiiiiiiiiiiiiiiiciceccee e e 899
CREATE OPERATOR CLASS ...ttt 903
CREATE ROLE.......c.oooiiiiiiiiiiiiiiieeee e e 906
CREATE RULEccoooiiiiiiiiiiiiiceee e s 911
CREATE SCHEMA ..ottt 914
CREATE SEQUENCEc..oooiiiiitiieiete ettt et s ae st s 917
CREATE TABLE ..ottt et s s s 921
CREATE TABLE AS ...ttt e s s e 933
CREATE TABLESPACEoooiitiiiiie ettt 936
CREATE TRIGGER.......c.c.ooiiiiiiiiee e s s 938
CREATE TYPE ... oot s s 941
CREATE USERot s s 947
CREATE VIEW ..ot s s 948
DEALLOCATE ... e e s 951
DECLARE ... e s s 952
DELETE ... e s 955
DROP AGGREGATE........ccooiiiiiiiiiiii e s 958
DROP CAST ..ttt ettt s st ene e 960
DROP CONVERSION ..ottt sttt st 962

Xix

DROP DATABASE ..ottt s 964

DROP DOMAIN ..ottt s st 965
DROP FUNCTIONcoiiiiiiiiiiiiiiiiiicccis sttt s 967
DROP GROUP ..ottt s 969
DROP INDEX ..ottt s 970
DROP LANGUAGE.........coooiiiiiiiiiiiicci e 972
DROP OPERATOR ..ottt sttt sne st s 974
DROP OPERATOR CLASS ...ttt s s 976
DROP OWNED ..ottt st s s enens 978
DROP ROLEcooiiiiiiieeeeee ettt sttt et s 980
DROP RULE ..ottt st st s 982
DROP SCHEMA ...t sttt s s 984
DROP SEQUENCE ...t 986
DROP TABLE ...ttt s st s 988
DROP TABLESPACEo s s 990
DROP TRIGGERoooiiiiiiiiiiiii e e s 992
DROP TYPE.... ..o e s 994
DROP USER ... e s 996
DROP VIEW ..o e s 997
END Lo e 999
EXECUTE ..ottt sttt st s s 1001
EXPLAIN ..o e 1003
FETCH ...ttt st 1006
GRANT Lottt sttt s s aee 1010
INSERT ..ottt s s 1016
LISTEN ..ottt 1020
LIOAD .. e 1022
LIOCK .t e 1023
MOVE.....ooii e 1026
INOTIFY .ttt 1028
PREPAREc.ooiiiiiii s 1030
PREPARE TRANSACTIONc.coiiiiiiiiiiiiiiicece s 1033
REASSIGN OWNED.......cccoiiiiiiiiiiiiiiice e 1035
REINDEX ..ottt 1037
RELEASE SAVEPOINTc..ooiiiiieetcerteet ettt st 1040
RESET ...ttt et st e n e et st 1042
REVOKE ...ttt st et s e s 1044
ROLLBACK ...ttt et sttt st st ne s e 1048
ROLLBACK PREPAREDc..cociiiiiiiiiiiiitceeee ettt et 1050
ROLLBACK TO SAVEPOINToooiiiiiiiiiiiieet ettt 1051
SAVEPOINT ...ttt e s e 1053
SELECT ... e s s et 1055
SELECT INTO ... e e 1068
ST e e e e e 1070
SET CONSTRAINTS ... s 1073
SET ROLEo e s 1074
SET SESSION AUTHORIZATION........ccooiiiieieiniinenienetereeet sttt 1076
SET TRANSACTION ..ottt sttt sttt s st 1078

XX

START TRANSACTIONccueootimitiiintntetenteteetteteste sttt ettt ae e 1083
TRUNCATEootiitiiiteteeete ettt ettt ettt et st eb et sb e st ae st nesbeeaneneene 1084
UNLISTEN ..ttt ettt sttt st st ettt saeenesbeeanenneene 1086
UPDATE ...ttt st sttt et st beeaneneene 1088
VACUUM .ottt et sttt sa sttt sb e et esaeenenae 1092
VALUES ...ttt ettt ettt et e et et e s b e s et ente st e eneenseeneesesneensenseensensenns 1095

IT. PostgreSQL Client APPLICALIONSccouiruirieriieieiiniieiencerete ettt 1098
CIUSEEIAD ..ttt sttt e st st et e bt e st b e b 1099
CTEALEAD ...ttt et at e et e bt e s a e st e bbbt et e bt e st e b ebe e 1102
CIEALBLATIZ ...ttt ettt et sttt et st e b e e 1105
CTEALEUSET «.eeteeuteenteertteeute et e s bt e eate e bt e bt e sutesute e bt esbteeaeeeabe e bt esstesabe e bt ebeesabeembeenbeesateenseeseens 1108
AIOPAD .ttt st ettt ettt aeere e 1112

161 (070 11 V- OSSOSO UTPRRSRPON 1115
ATOPUSET ...ttt ettt ettt ettt ettt et e bt e bt e e e b e st e te s st e besbe et e ebeese e bt eaeenaeseeenbenbeententeene 1118

O+ nveemeeenreeritee et e st e sttt et et e e s bt e at e et e e bt e e bt ea bt e bt e bt e e h et e bt e bt e e bt e et e e bt e b et sat e e be e beesaneebeebeens 1121
PECOMIIG .ttt ettt b et b sttt e a et s bt et e bt e bt et e bt et she et e nbeententeene 1123
PEQUITID .ttt b ettt st e bt s bt et e bt e bt et e ae et sbe et e beeateteeae 1126
PEAUMPALL ...t ettt st st b et 1135
PE_TESEOTE ..ttt ettt ettt ettt et e st e bt et e sb e e st e b e e bt e bt e bt e besbeembe bt ebte bt ebeenbesbe e benbeebtenteene 1139

PO ettt bbbt ettt s h et b e bt et e bt et bt et e b e eet et ene 1146
TEINAEXAD ..o e 1172
VACUUIMIAD ...ttt s 1175

II1. PostgreSQL Server APPliCAtIONScc.coeeieriirieniireeienieetenieeieete sttt ettt sae e 1178
TEEAD e e 1179
IPCCLBAN ..cuit ittt ettt et e st e st e e bt e s ttesabesabe e aeesseesabeenbeentaesabeebeeneens 1182
PE_CONLIOIAALA ...vveenieiieeieeieesite ettt ettt ettt e st e s abeesbeesbeesabeenbeenseessbesnseeseens 1183
PECL ettt et et sttt e a e e st b e et e e he e bt e sab e e be e baesabeebeebeens 1184
PE_TESEEXIOZ .ttt ettt ettt sat e et e st e st st e bt h e e st e et e e bt e sabeebeeneens 1189
POSEETES c.eentteeiieeuteettesiteete et e s bt e et e et e bt e sabesate e bt esatesabeeabee bt esatesabeenbeebeesabeenbeenbeesabeenbeebeens 1191
POSTIMASTET «..eteeuteentiestte et et et e ettt et e bt e sabesate e bt e satesabe e bt e bt esatesabeesaenstesabeenbeenseesanesnseeseens 1199

VILI. Internals 1200
42. Overview of PostgreSQL INternalsccccooirieiiiniiiiiniiieeieeeneeee e 1202
42.1. The Path of @ QUETY ...c..ccceeiiiiiiiiiiieieeeec et 1202

42.2. How Connections are Establishedccoceeiiiiiiniiniiiiiiiiiccecceeeee 1202

42.3. The Parser SAZEcccovueuiriiiiiieiee ettt s s 1203

2.3, 1. PaTSET.c..eeeieiieeieeeee ettt ettt ettt ettt et 1203

42.3.2. Transformation ProCess..........cceeeueriirieriiiereiieeseet e 1204

42.4. The PostgreSQL Rule SYSTEMceoiiriiiiiiiniiniieieerterie ettt 1204

42.5. Planner/OPtiimiZercc.eeueeueruieieneeeierteeeiete et et et eteste st ete st eseesteeseenaeseeetesbeeneenteene 1205
42.5.1. Generating Possible Plans............cccooooiiiiiiiiiiieieeeeee e 1205

42.6. EXECULOLitieiiiieeteteeit ettt ettt ettt ettt et e bt s ht et e s bt e st e nbe e st entesbeentesbesnneteene 1206

43, SYSEIM CALALOZS ...cuveeeieneeitieieiteeitete ettt ettt ettt e s e bt s bt et e bt eat et sae e bt sbe et e beeaee e ene 1208
43,1, OVEIVIEW ..ottt ettt ettt ettt h e e b ettt it e besbt et e s bt ebte bt e bt enaesbeenbenbeenaenteene 1208

Vi TS ofe JIE-Ye (o bt =Yo F=X o = SN S R S U T R U U U U OO USSP U RS UUUUU USROS 1209
3. 3 DG M ettt et et e e et e e eta e e eteeeeaeseetaeeatteeeaabeeeaateeeateaaans 1210
3, DG _AMOP cuteieeteeeette e et e eeteeee e e et e e et e e et e e eett e e etae e eaaeeeteeeeaeeeetaeeatbaeeaabeeeaareeentraaans 1211

XXi

Vi B T oY H= 11k o b e Yo RUUUU U ORI 1212

Vi B ST oY H=N o o e L= ¥ PR USSR 1212
Vi BB oY HE=N ol o o o L ot = SO U USSR UR SRR PRR 1213
438, PG AUE NI it iiiiiiiee ettt ee et ee ettt e e et e e e enareeeeeetrraaeeeearraaeas 1216
43,0, DG _AUL N MEMDE TS ceiutriieeieiirieeeeeirreeeeeeitreeeeeesitreeeeeeerreeeeestrseeeeessreeeeeestrseeeeenanreeeeas 1217
43.10. PG_AULOVACUUI ..cettrreeeeeirreeeeeeitrreeeeesirreeeeeesisreeeeeeiasreeseesissseeeeesisreseeessisseseeesssseees 1218
G T B B < Te B oY= USRS 1219
T B oTe B =X = SRS 1220
/0 0 I B oo B oTot s = uliar= 1 o} iR 1224
20 U B oTe B eTo) s A= ar = oY o WSS 1226
E T B oTe e oL =Y o Y- =TSRSS 1226
43,16, PG_AEPENA e iutiiieeeeeiiiee e eectte e e eeette e e e e et e e e e e b e e e e e b—eaeeeaa—aaaeeeaaraaaeeanraaaeeearraaaens 1228
Z/0 0 W oTe B e EoYC TR ak o) i o) o WSRO 1229
3. 18, PG ANIAEK teeiieitiiieeeeeititeeeeecite e e e eetre e e e e et e e e e e eaae e e e e e tbaeaeeeataaaaeeaaaraaaeearraaaeeaarraaaeas 1230
TG KO B eTe B B Y s =S ok I = TSRO 1232
43.20. PG_LANGUAGE wureeeeeerrireeeeiireeeeeeitreeeeeaareeeeaesssesaesassssesseasssssssssassssesesesssssesssesssssseens 1233
S I B 'eYe JN = ol 1=Ye) oy 1=) cuN OO SR U U RSP UPRPRRPPU 1234
VR I oY B I =L o =Y o 1= ST TR U U U OSSO U USSR U PO 1235
43,23, PO _NAMESPACE uriieeurieeeteeeetteeeetteeeeteeeetaeeeetteeeeteeeeeseeeesseeeseseesseesssseeasseseesseesnseaeans 1235
432 DG 0P CLAS Suutiiiitieeetieeeteeeeteeeetteeeetteeeetae e et e e eta e e etaeeetaeeeteseetaeeattaeeetbeeenateeearraaans 1236
3.2 DG OPETATOT tiitiieetieeeteeeeteeeetteeeetteeeetteeeetteeeteeeeteeeeteeeeaseseesaeeaataeeeaseeeeabeeerraaans 1236
I Y oY B o T A o= 11| = N o = TSSOSO 1238
Vi B0 IR Yo B o} ot Y TR SRRSO 1239
S T TR oY B o =) B o I ol = SO USRI 1242
43,29, DG SNACPENA werieiiiiiieiee et eere e eeete e e eeraa e e eeraae e e eee b e e e eenaraeeeeearaaeeeaaraaaeas 1243
Vi IR 0 oY B=Y oo L= T o R okl o Yl K o) o UURNUUUN USRS 1244
Vi TR N DR oY B of= Nl =1 i I < U ORI 1245
Vi TR PR o Yo B =1 U =Y -] o T Y1 = WU U USRS 1247
VIS TR 1 TR o Yo B o o Ko o 1% BUNNN RO SRR 1247
i RV T o Yo B w4 o = DU U U USRS R PRSP 1248
43.35. SYSLEM VIBWS ...eeiiiiiieiiieeieeie ettt sttt et sttt et et esat e st eesaeesbtesabeenbeebeesatesseeseens 1254
3. 30, PO CUL SO S tuureeeeeeitrreeeeeiiureeeeeeisrereeeeiseeeeeesisseeeeeessseeseesissseeseesisrsseseestrseeseesasreeeeas 1255
Vi TR WA < Yo Hle 5 oo V) < HUUUUN NSO U RSO UUUROR RS URRRROSRT 1256
Zi S TR T T o Yo B I oL L= 4= Y- TN OO TS RSO R USRS TSRO PRU 1257
Z R I 1O B oTe B o o) = USSR 1257
43.40. pg_prepared_STAteMENT S. i ieeeieeeireeseteeesseeesseeessseeessseeesssesssseesssseenns 1260
43.4]. PG_PTEPATEA_XACES trerererrreeerreeerreeaareeassreeassreessseeesseeessseeessseeessseesssseesssseesssseenns 1261
S I R oTe i ol B I =Y SO URUTS 1262
S IR B oTe o =Y SRS 1263
A3 44, PG _SEEEANIGS tureeeieiitiieeeeeiiteeeeeeitteeeee ettt e e e eeeaaeeeeeeataeeeeeattaeaeeanataeeeeatraaaeeearraaaeas 1263
A3 45, PG S AW ceitiiieeeeeiiee e e eecte e e eett e e e e e ettt e e e e eeaae e e e eeataeeeeeetaaaaeeeaaaraeeeeanraaaeeearraaaeas 1264
G IR Y T oY H=3 o= X o - BT USROS TURUTTN 1265
R B o Yo L =1 N = - DO N TR RSO TR PP UPRPRSPPU 1267
43,48, PG L iMEZONE_ADIDIEVS cirtiiieieeiiiiieeeeittieeeeeiiteeeeeetteeeeesstseeesesasseeeeeasraeeseesssaeeens 1268
43,49, pPg_LiMEZONE_NAMES tiiiircrrieeeeeiiireeeeeiireeeeeeiitreeeeseataeeeeesssseeesassreseesasssaesseesssseeeens 1268
3. 50 PG TS T ittt et et et e et e ete e e et e e e e ae e eetaeeettaeeeateeeeateeeaaraaans 1269
3.] DO VA @IS teeetiieetie e et ettt e et e et e et et e e et et e e eteeeeae s eetaeeeataeeeateeeeaaaeeatraaans 1269
44. Frontend/Backend ProtoCOL...........couiviiiiiiiiniinirieieneest ettt 1271

xxii

4. T. OVEIVIEW vveeeeeeiveieeeeeiteeeeeeeeiteeeeeeeeaeeeeeeeiaaeeeeeesaaeeeeeesaaaeeseeetrseeseenareseseentsseeeeennareeeees 1271

44.1.1. MesSaING OVEIVIEW.......eevueeriieriierieeiteniieeieesieesitesteeteesbeesasessteebeessesssesnne 1271
44.1.2. Extended QUETY OVEIVIEWcevuiirierriieriienieeieenitesteeieenbeesitesteenbeesnesinesnne 1272
44.1.3. Formats and Format Codesc.ceceeririeneririeneneeieniieeenieseereseenenene 1272

44.2. MESSAZE FLOW ...ttt sttt st ettt e ae e 1273
A2 1. SEATE-UP ettt sttt sttt s 1273
44.2.2. SIMPIE QUETY ...ttt st 1275
44.2.3. Extended QUETYcccoeiieiiiiiiieiieieee ettt s 1276
44.2.4. FUNCHION Call......oiiiiiiiiiiiiiiiiieeiieeeetete ettt 1279
44.2.5. COPY OPETAtiONSccueeuieiiriieiiiieiieieeieeee sttt s ne s eneneene 1280
44.2.6. Asynchronous OPErations............ccueeeeruiriereriinienieneeeeste et eeeneene 1281
44.2.7. Cancelling Requests in Progress..........cccoceeveiiriereniesieneeese e 1282
44.2.8. TerMINALION ..c..eeiiieieiieie ettt ettt sttt et ae e tesaesaeeaesbeeneeneeene 1282
44.2.9. SSL Session ENCryption..........cccceveceeirinerienienieieeeineseseseeeeeee e 1283

44.3. MeSSaZE Data TYPES ...eevveermiiriieiiieiteete ettt sttt st st e 1283
44.4. MeSSAZE FOTINALSeeveiiiiriiirieeiteeteete ettt ettt st s e nee s 1284
44.5. Error and Notice Message Fieldsccooiiiiiiiiiriiiieniiieeeeeccee e 1299
44.6. Summary of Changes since Protocol 2.0.........cccooirieniiiinininiinieec e 1300
45. PostgreSQL Coding CONVENLIONScccuerueerierieriienieniieteniteiteniesitestesteeaeestesseeneesieesesbesanensenne 1302
45.1. FOIMATING ...oveiuiiiieiieieiiieteet ettt ettt ettt et b et e st e e it sbe e besbeeanenteene 1302
45.2. Reporting Errors Within the Server..........c.ccoeeeriieniiiinenineeeceneseeeneeeeene 1302
45.3. Error Message Style GUIAE.........coeeierieriiiininiiieetenesiteescetete et 1304
45.3.1. What 205 WHETC.....ccceeruiiiiiiiriiiiiiieiteieeeeercetees ettt 1304
45.3.2. FOIMAINGZ ..c.veeitieiieriieeieeiteeteesiteete et estteeteebeestaessbeenbeebaesasessseenseessnenssennne 1305
45.3.3. QUOtAtiON MATKS......ccviiiiiiieiiieceiiee et et et e eree e et e e reeeseveeeereeeareeeanaaens 1305
45.3.4. USE Of UOLES....uveetieiieiiiieiieetie sttt e stteeteeteesbtesbeebeebeesabessbeenbeessnesasesnne 1305
45.3.5. Grammar and PUNCLUALION.ccuveerueeriierireeieesieentteeteesteenteesreeeeesbeesnesaneenne 1305
45.3.6. UPPer CaSe VS. IOWET CASE ...eeveerureeiiiiieriieeieeieenitesteeteesbeesresteebeesnesaneenne 1306
45.3.77. AVOId PASSIVE VOICE....eeruiieiiiiieriieeieeiteniteete et esttesteeteenbeesatesateebeesinesasesnne 1306
45.3.8. Present VS PASt tBIISE....cuuierueeruieriieeieeriteriteeieeieenttesstesteesbeesasessseebeessnesasesnne 1306
45.3.9. TYPE Of the ODJECT...ccueiiuiiiiiiiieiieeieeterite ettt ettt sttt 1306
45.3.10. Brackets.......ccccoueiiiiiiiiiiiiiiiii s 1307
45.3.11. ASSEMDIING EITOT MESSAZES. ..ccuvverurerrierrierierieenttesteeteesteesseeseesseesssessesnne 1307
45.3.12. REASONS fOI BITOTSeoviiieniiniieiietieieeie ettt et st ne e 1307
45.3.13. FUNCHON NAIMES «...eeuveeiieeieeieesiteeieeitesiteete et esbeesateeateenbeesatesseesbeessnesasesane 1307
45.3.14. Tricky words t0 avoidccccecieriirieiiinieieneeeeieeeeeee e 1308
45.3.15. Proper SPEIliNgcoceeeeiiiiiiiiiiieieieee ettt 1308
45.3.16. LOCAIZAION. ¢...eeeeeeiieiiieeieeieesiteee ettt ettt et ettt e s 1308

46. Native Language SUPPOIT.......c..cocuiiiiiiiiiiieienieiieteeceee ettt sttt e s 1309
46.1. FOr the TransSIatorcooeeeieiiieiiiinierieeieeteecee ettt sttt e 1309
46.1.1. REQUITEIMENLS ...c.eeuvuiiiriiriiriiteieieteitetene ettt ettt et s saeaene 1309
40.1.2. CONCEPLS.....vevinrerreneenreiteieete sttt ettt st sttt et eat st besbe e e e e st e st saesaesaeaene 1309
46.1.3. Creating and maintaining message catalogsccceeeveereerieneneenieneeieniene 1310
46.1.4. Editing the PO fIleSccoiiiiiiiiiieiieee et 1311

46.2. FOr the Programimer.............coieiiiiiiieniiieiesi ettt st 1312
46.2.1. MECHANICS ..ottt sttt b ettt ae st be b eate e eae 1312
46.2.2. Message-writing gUIdelinescceceevireenieninienenieeneetene st 1313

47. Writing A Procedural Language Handlercooovieiiiniiiiiniiiiiinieeeeeeeseeesieeeeiee 1315

XXiil

VIIL

48. Genetic QUETY OPLIIMIZETccvervieriierieriierieenie st eteesieesiteebeesteesttesbeeseesseesasessseebeesssessesnne 1317

48.1. Query Handling as a Complex Optimization Problem............cccccovvuvrveeniiniennennneen. 1317

48.2. GenetiC AIZOTIERINS ..o..eivuiiiiiiiiiiieeteee ettt ettt st aee s 1317

48.3. Genetic Query Optimization (GEQO) in PostgreSQLccccovveiriiiniiniiiniiieeeene 1318
48.3.1. Future Implementation Tasks for PostgreSQL GEQOccccceeviiniennenne 1319

48.4. Further REadingcococieiiiiiiiiiiiiieiiiieeec ettt 1319

49. Index Access Method Interface Definitioncoccceveeriiiiieiiienieiieneeeceeeeeeee e 1320
49.1. Catalog Entries for INAEXEScoccocueriiiiiiiiniiiiiieeeereeeeeeeie e e 1320

49.2. Index Access Method FUNCHONS.cocuiiiiirieniiiiieienie ettt 1321

49.3. INdeX SCANMINGeouviiiiiiiiiieiet ettt ettt et et sa e et esaesaeenesbeeaneneene 1324

49.4. Index Locking Considerations.c.ccouecuiruiriieniieienieieeieseeeeste e e 1325

49.5. Index Uniqueness CheCKS........ccooiiiiiiiiiiiiiiic e 1326

49.6. Index Cost Estimation FUNCHONS.c..coieiiirieiiriieiese et 1327

50. GIST INACKESeeueeteeiieteetieteet ettt ettt st et b e et e b eb et s bt et e sbe s st eeesbeeneenteeneeeesaes 1330
50.1. TREFOAUCTION ...ttt ettt et e sttt et b e e sbeeseeteeaeeeeeaes 1330

50.2. EXEENSIDIIIEY . ..ceuvetieiieiietieie ettt ettt ettt et st b et eae e e 1330

50.3. TMPIEMENEALIONeeieniieiieieeteete ettt ettt ettt et ettt et et sbe e e s b e eseenteeaeeeesees 1330

50.4. EXAMPLES ..eoneiinieiieiieiietiete ettt ettt sttt ettt e b et e sttt esbesbe e besbeeb b et eae et naes 1331

50.5. Crash RECOVETY.....ccuiiiriieiiiieieiteeteee ettt ettt sttt 1332

ST, GIN TIACKES -.veeneenieiiieieeiieteet ettt sttt ettt st e e bt e bt e e sb et sbe et e sbe s bt e b e sbeeat et e ebeeaesaes 1333
51,1 TEPOAUCTION ...ttt ettt ettt st b s et sae e sees 1333

512, EXIENSIDIIIEY ...couvetieiieiieiiete ettt ettt sttt s 1333

51.3. IMPIeMENtAtIONeoutiiiriieiiiteeierieeitet ettt ettt ettt sttt sae e 1334

51.4. GIN tips and trICKS. ..cvieiuiiiieeiiciierteete ettt ettt ettt st e ebeebeesaresaneenee 1334

51.5. LIMIEATIONS ..c.eeeutetieitetieieete ettt ettt et et set et ettt ettt sbeesbesbeean et sbeenaesaee 1334

S51.6. EXAMPIES ...eouviiniieiiiieiieiieeite et ettt st e ettt e sate st s be e it e sabesabaesseesseesabeenseenseesasesnseense 1335

52. Database PhySical STOTAZEcccueeuiiriirieiiieieeite ettt ettt ettt et e st st eebeesaaesanes 1336
52.1. Database File LayOULl.......ccccoeciiiiiiiriinieeieeieeste sttt sttt sine s 1336

522 TOAST ..ottt ettt ettt ettt st ae st b et ae e 1337

52.3. Database Page LayOulcocceeciieiiirieiiieiieniesie ettt sttt 1339

53. BKI Backend INterface..........cocecueriiieniiniiiiiiieiecrccenicctetesteteeie et 1342
53.1. BKI File FOMALcccuiiiiiiiiiiiiieieieeeeienceeestereete ettt st e 1342

53.2. BKT COMMANAScouveuiieiiiiiniieieieeieteeeeteste ettt ettt s ae e 1342

53.3. Structure of the Bootstrap BKI File.........cccccccoceniniiiiniiiiiencenececeeee 1343

53,4 EXAMPLE ...ttt e et 1344

54. How the Planner USEs StatiSTCS.....cevteruirrierrieenieiieeriteiteniteete ettt ettt e st st b esaeesaees 1345
54.1. Row Estimation EXamples.........c..coceoiiiiiiiniiiiniiieecc e 1345
Appendixes 1350
A. POStEreSQL EITOr COAES.....ceouiiiiiiiiiiiiiiiieiteite sttt ettt ettt e b e s 1351
B. Date/Time SUPPOIL ...c.eeuieuieiietieieete ettt ette st sttt e bt est et ebe e eesae et e sbe s st ebesbeeneenteeneeneesaes 1360
B.1. Date/Time Input INterpretationcocueeieriereieiene ettt ettt 1360

B.2. Date/Time Key WOIdS........cciiiiiiiiiieieiteest ettt 1361

B.3. Date/Time Configuration FIlescccccocieiiiiiiiiiiiiieniiieeeee e 1362

B.4. HiStOry Of UNIES ...oueiuiiiiiiieieetieteste ettt ettt sttt et e st st beeeee e 1363

C. SQL KEY WOIAS. ...ttt ettt b ettt et et be ettt sbe et bt et et ebeenaenaee 1365
D. SQL CONOIMANCEccuviiiiiiiiiiieeeiie ettt ee e et e et e e e teeeeateseeaaeeeeasaeeeaseseeaseeesseeens 1386
D.1. Supported FEAtUIESc.eouieiiriiiiiriiiieieeiteest ettt ettt st 1387

XXV

D.2. Unsupported FEAtUIEScccueeiiiriiinieiiieiienitese ettt ettt sttt e e i 1398

E. RelaSE NOLESocuiiuiiiiiiiiciiicieec et 1407
E.1.Release 8.2.10 ..o 1407
E.1.1. Migration to Version 8.2.10......cccccevueriueiriienienieiieeniteeteeie ettt 1407

E 1.2, CRANEES .uveeiieiie ettt ettt sttt st 1407

E.2. REIEASE 8.2.9 ...ttt e 1409
E.2.1. Migration to Version 8.2.9.........ccccociriiiiiniiiiininieineceeseceeeeeeeee e 1409
E.2.2. CRANEES ..ottt 1409
E.3.REIEASE 8.2.8 ...ttt sttt st et 1409
E.3.1. Migration to Version 8.2.8.........ccccoiiiiiiiiiiiiiiiieieeceee et 1409
E.3.20 Chan@Escoviiiiiiiiceee e e 1409

B4 REIEASE 8.2.7 .ottt ettt ettt sttt st e 1411
E.4.1. Migration to Version 8.2.7ccccevirieiinieienieeeie ettt 1411
Ei4.2. CRANEES ..uveeiiiiieieeeee ettt st et 1411

E.5. REIEASE 8.2.0 ...ttt sttt st bttt 1412
E.5.1. Migration to Version 8.2.0........ccceririiriiiiieniieienie et 1413
E.5.2. CRANZES ..ottt sttt ettt 1413

E.0. REIEaSE 8.2.5 ...ttt ettt ettt sttt 1415
E.6.1. Migration to Version 8.2.5.....cccccciriiiiniiiiieniieieeeceeeeteeseee e 1415
EL.0.2. CRANZES ..c..eeiiiiieieiteeteteetee ettt st sttt ettt et 1415
E.7.REIEASE 8.2.4 ...ttt s 1416
E.7.1. Migration to Version 8.2.4........ccccceciriereririeniinienieneetenieeeesie et 1416
E.7.2. CRANZES ..cvveniieiieieiieeeeeteeeteete ettt sttt et 1416

E.8. REIEase 8.2.3 ... e 1417
E.8.1. Migration to Version 8.2.3.......cccciiiiieiieiriienieeieeieesiteeteeieeieesere e esieesaeesnnes 1417
EL.8.2. CRANZES ..uveetieiieeieeiteite ettt sttt ettt ettt s e st e be e s st e sste e baenaaesnnes 1417
E.9.REIEaSe 8.2.2 ... e 1417
E.9.1. Migration to VErsion 8.2.2.......ccccuevieriieiriienieeieeieeniteetesieesieesiteseeeenseesaeesanes 1417
ELO.2. CRANEES ..uveeeieiie ettt ettt ettt et et e e e sanes 1417
E.10. Release 8.2.1 ..o s 1418
E.10.1. Migration to Version 8.2.1ccccevvuiriueiiiienienieeieeniieeeeeie ettt 1418
E.10.2. Chan@ES ...coveeiuiiiiieiieiie ettt ettt et ettt e be e st st e b e saee i 1419
E.TT.RElease 8.2 ..o s 1419
E LT L OVEIVIEW .ouiiiiiiiiieiieieeeeteeieete ettt e et 1419
E.11.2. Migration to Version 8.2.........ccccoirvierieriiieniinieieneeeenie e 1420

E 1130 Changesc.ooueeiiiiieieiieeeeeieeee ettt 1422
E.11.3.1. Performance Improvementsc..coceecueriecieniinieeneneeneneeieiene 1422

E.11.3.2. Server Changesc.ccocvecuieieiiinieiienieiieieseeeie e e 1423

E.11.3.3. Query Changes.........ccccooveoiieiiiiiniiieeieeieeeee e 1425

E.11.3.4. Object Manipulation Changesccecceeuerreerieniieeeneseeneseeieniene 1426

E.11.3.5. Utility Command Changes...........cccceeeeierierieerienienieneseeniesieeeeneeene 1427

E.11.3.6. Date/Time Changes.........ccceeeeriereeienieiieieeieeiesie e ee e eeenee e 1428

E.11.3.7. Other Data Type and Function Changescceccevereeneneriennne 1428

E.11.3.8. PL/PgSQL Server-Side Language Changes............ccccceeeevereniennnne 1429

E.11.3.9. PL/Perl Server-Side Language Changes..........c..cocceveveervenenennennene 1429

E.11.3.10. PL/Python Server-Side Language Changescc.ccoceevereruenienne 1430

E.11.3.11. pSQl Changescocuevueruieieniieiinieeieniesiteiesiceee et 1430

E.11.3.12. pg_dump Changes.........cc.ceceevuerieienenienienieeienieeeenie e sieeieenieeae 1430

XXV

E.11.3.13. lIbPq CRANEES ...eoovveivieiieiieeiieeieeieeeite ettt sttt st 1431

E.11.3.14. cPZ CRanGeSccoueevuiiiiieiieniieeieeitenite ettt ettt ettt st s 1431

E.11.3.15. WINdOWS POTt.....cccoiiiiiiiniiiiiniieiecncieneect e 1431

E.11.3.16. Source Code Changesccoceevueeriienierieenieeniesieeieesiee e eveeieens 1432

E.11.3.17. Contrib Changesccceveeriernieenienie et eieesiee e 1433
E.12.Release 8.1.14 ..ottt et st 1434
E.12.1. Migration to Version 8.1.14c.ccoceiiiiiiiininiiineceeneeeeeeeeeeee e 1434
E.12.2. Changesc.oouieiiiiieieieeieeteeieeet ettt 1434

E 13 Release 8.1.13 ..ottt ettt s e 1435
E.13.1. Migration to Version 8.1.13c.ccociiiiiiiiiiiiiiieeeeceeeeee e 1435
E.13.2. Changesc..ooeeiiiiiiieiieeeeee et 1436

E 14 Release 8.1.12 ..ottt ettt s 1436
E.14.1. Migration to Version 8.1.12......ccccciriiiiririeniieiee et 1436
E.14.2. CRANEZES ...eoveeiieieeieeesteee ettt ettt ettt be et et e e e 1436

E 15 RelEASE 8. 1. 11 ettt sttt et s be et 1438
E.15.1. Migration to Version 8.1.11.....cccooiiiiiiiiiiiiiei e 1438
EL15.2. CRANEZES ..ottt ettt sttt st ee s 1438

E.16. Release 8.1.10 ...ccuoiiiiiiiiiiiiiieicieeeetetrese ettt s s 1440
E.16.1. Migration to Version 8.1.10.......ccccerviiririiieniinieieneetesieeeeesieee e 1440
E.16.2. CHANZES ..ottt sttt ettt 1440
E.17.RElEaSE 8.1.9 ..ot 1441
E.17.1. Migration to Version 8.1.9......cccccoiriiniiiiiiniinieineeenieeeeeseetee e 1441
E.17.2. CHANEZES ..ottt sttt 1441

E.18. Release 8.1.8 ..o 1441
E.18.1. Migration to Version 8.1.8........cccecueriiirriiiniieiieieeniteeie ettt 1441
E.18.2. CHANZES ...eeuvieiiieiiieiieite ettt sttt ettt ettt s e st et e st e sabeebeenanesnnes 1442

E.19. Release 8.1.7 ..o e 1442
E.19.1. Migration to Version 8. 1.7cccccevueriuiriiiinienieeieeniieeieeie ettt 1442
E.19.2. ChanGes ...cocueevuiiiiieiieiie ettt sttt st ettt st e bt et esateebeesaaesaees 1442

E.20. Release 8.1.6ccuoiiiiiiiiiiiiiiicicicecc e 1443
E.20.1. Migration to Version 8.1.6.........ccecueriueriiieniiniiiieenieeieeie ettt 1443
E.20.2. ChAN@ES ...coveeiuiiiiieiieiie ettt ettt ettt ettt e be e st e st e b e saeesaees 1443
E.21.Release 8.1.5 ..o s 1444
E.21.1. Migration to Version 8.1.5......cccccoiriiininiiiiininieine e 1444
E.21.2. ChanEEScvieiieiirieeieieeeeteetete ettt et e 1444

E.22. RelASE 8. 1.4 ..ottt ettt sttt st e 1445
E.22.1. Migration to Version 8.1.4........c.cccooviiiiniiiiiiiieieeceeeeceeeeee e 1445
E.22.2. Changesc.ooieiiiiiiieiieeceeeee et 1445

E.23. Relase 8.1.3 ..ottt ettt st ettt et 1447
E.23.1. Migration to Version 8.1.3.......cccooiriiiiiieienieeiee et 1447
E.23.2. Chan@Es ...cccueeeueiiiiiiieiee ettt ettt ettt et 1447

E.24. RelEaSE 8.1.2 ..ottt sttt et st b et 1448
E.24.1. Migration to Version 8.1.2.......cccoociriiiiriiienieeienie et 1448
E.24.2. Chan@ES ...cooveeiuiiiiieieeiee ettt ettt ettt e 1448
E.25.RelASE 8.1.1 ..ottt sttt et sttt 1449
E.25.1. Migration to Version 8.1.1......ccccooiiiirininiiniinieieeetesee et 1450
E.25.2. ChANEZES ..ottt sttt sttt et 1450

E.26. RElASE 8.1 ..ottt s 1451

XXVi

E.26.2. Migration to VErsion 8.1........ccccevieriiiiiiienieeieniieniteete ettt 1452
E.26.3. Additional Changesccceereerieriierniienienieeieeste ettt st 1455
E.26.3.1. Performance IMprovementsc.cceeuerueenieeneeniennieeneeneeseeeeens 1455

E.26.3.2. Server Changescccccoveereenierniieniienie ittt st 1456

E.26.3.3. QuUery Changes.........ccccecueeuereeniinieienienierenieerete e e e eneneene 1457

E.26.3.4. Object Manipulation Changescccccceveecveniineencnieeneneneennene 1457

E.26.3.5. Utility Command Changes............ccccoceevveeueriecieniineencieeieneeeeiene 1458

E.26.3.6. Data Type and Function Changescc.ccceceeiriieninieenenencienienne 1459

E.26.3.7. Encoding and Locale Changes...........c.ccccceeiecieriniencneeneneeieiene 1461

E.26.3.8. General Server-Side Language Changes...........c.ccccceerieiininicnnne 1461

E.26.3.9. PL/PgSQL Server-Side Language Changes...........c.ccceeeeverenrenrennene 1461

E.26.3.10. PL/Perl Server-Side Language Changes..........ccocceeveeveervenneennnene 1462

E.26.3.11. pSQl Changescccuevueemieiieiieieeieeteie ettt 1462

E.26.3.12. pg_dump Changes...........cceceeruereeieniiieienieeiesie e 1463

E.26.3.13. libpq Changesccceoverieeieniinieienieeteiesicee et 1464

E.26.3.14. Source Code Changescccceeeeeererienieniieienienieenie e sieeeenieeae 1464

E.26.3.15. Contrib Changesc..ccoeeieriineeiienienieienieeienie et 1465

E.27. Release 8.0.18 ..ottt e 1465
E.27.1. Migration to Version 8.0.18........ccccoceeriiriiiininierineeieneeeeeseeeee e 1465
E.27.2. CHANEZES ..ottt ettt sttt sttt et 1466

E.28. Release 8.0.17 ...cuoiiiiiiiiiiiieicceetec et 1466
E.28.1. Migration to Version 8.0.17........ccccoceveririeninieniineeienieneeenieeeeie e 1466
E.28.2. CHANGES ...eevieiiieiieiieiie ettt sttt ettt ettt e st e st e baesstesnteenbaenanesnnes 1467

E.29. Release 8.0.16cc.ccueiiiiiiiiiiiiiciciiecce e e 1467
E.29.1. Migration to Version 8.0.16........cccceevuirriieriiniieiiienieeieeie et 1467
E.29.2. ChanGESs ...cocveevuiiiiieiieiie ettt sttt ettt sttt et ettt et e st esate e beenanesaees 1467

E.30. Release 8.0.15 ..o e 1469
E.30.1. Migration to Version 8.0.15.......ccociriiiiiiniieieeieenieeeeee et 1469
E.30.2. ChanGEs ...cccueevuiiiiieiieiie ettt sttt ettt ettt e be e st e st e b e saeesanes 1469
E.31.Release 8.0.14 ..o e 1470
E.31.1. Migration to Version 8.0.14........coceeiiiiiiiniiiienieeniteeeeie et 1471
E.31.2. ChanGEs ...cccueeeuiiiiieiieiie ettt ettt ettt ettt ettt beesaee s 1471
E.32.Release 8.0.13 ..ottt e 1471
E.32.1. Migration to Version 8.0.13........ccccoceiiiiiiiininiiineceneeeceeeeee e 1471
E.32.2. Changesc.oeueeiiiiiiieiieieeeeieeeee ettt e e 1471

E.33. Release 8.0.12 ...cuoiiiiiiiiiriiiectetee ettt ettt s e 1472
E.33.1. Migration to Version 8.0.12........c..ccccooiiiiiiiiiiiiiiiieeeceeeeeeee e 1472
E.33.2. Changes ...ccc.ceeueerieiiieiieieeeeite ettt ettt ettt et 1472

E.34. Release 8.0.11 c..coueiiiiiiiiiriiieicietei ettt sttt ettt s s 1472
E.34.1. Migration to Version 8.0. 11ccccooiiiiiiiiiinieiee e 1472
E.34.2. Chanes ...cccueeeueiiiieiieiie ettt ettt ettt e 1473

E.35. Release 8.0.10oueiiiiiiieieiiee ettt sttt et ettt 1473
E.35.1. Migration to Version 8.0.10........ccccecieriiiiieninienieeee et 1473
E.35.2. CRANEZES ..ottt ettt sttt ettt et 1473

E.36. Release 8.0.9ooiiiiiiiiiee ettt sttt 1474
E.36.1. Migration to Version 8.0.9.......ccccoceviiriiiiiininieineeeneeeeeeee e 1474
E.36.2. CHANZES ..ottt sttt sttt et et 1474

XXVii

E.37.Release 8.0.8 ..o e 1475
E.37.1. Migration to Version 8.0.8.........ccoceriiiiiiiiniinieeieeriieeteeie et 1475
E.37.2. ChaN@ES ...eoveeiiiiiieieeite ettt ettt ettt et ettt ettt e e e e i 1475

E.38. Release 8.0.7cooiiiiiiiiiiiiiicicic s 1476
E.38.1. Migration to Version 8.0.7.........ccocueriueriiienieniieiieeniteeieeie ettt 1476
E.38.2. ChaNEEScuviieeiiiiieeieieeeeteeeeet ettt e e e 1476

E.39. Relase 8.0.0 ...cueeeuiiiiiiiiieieeiteiteeteee ettt ettt st st 1477
E.39.1. Migration to Version 8.0.6.......c..ccccocueviiriiiininieieieeeneeeeeseeeeee e 1477
E.30.2. Changesc..ooeeiiiiieieieeeeeeeeee et e 1478

E.40. Release 8.0.5 ..couiiiiiieiiieeeee ettt ettt ettt sttt e 1478
E.40.1. Migration to Version 8.0.5.......ccccocioiiiiiiiiiiiiiiiini e 1479
E.40.2. Changescccoeouiiiiiiiiiiicie et e 1479

E.41. Release 8.0.4 ...ttt et st e 1479
E.41.1. Migration to Version 8.0.4........cccocieiiiiiiiieniieiese et 1480
E 412, Chan@ES ...cocveeiuiiiieeieeiee ettt ettt ettt e 1480

E.42. Release 8.0.3 ...ttt ettt sttt et bbbt 1481
E.42.1. Migration to Version 8.0.3.......ccccoiiiiriiiiieniieieie et 1481
E.42.2. CHANEZES ..ottt ettt ettt ettt et 1482

E.43. Release 8.0.2oouiiiiiiiiiiniiiecetee ettt e 1483
E.43.1. Migration to Version 8.0.2.......c.ccoceovieriririeninienienieeeniesteiesieeee e 1483
E.43.2. CHANEZES ...eoviieeierieeiieieeiteeete ettt sttt sttt e 1483

E.44. Release 8.0.1 ..ot 1485
E.44.1. Migration to Version 8.0.1......cccccocervieriririiininiiniinceieneeeeeseeteie e 1485
E.44.2. CRANZES ...eevieiiieiieiieite ettt sttt ettt e aeete e st e s besateebaesasessteenseenanesnnes 1485

E.45. Release 8.0cooiiiiiiiiiiiiiiiccceee e 1486
E45.1. OVEIVIBW ettt 1486
E.45.2. Migration to Version 8.0........ccccevvierrieriiienienieeiieniiesie et eieeste e esaee e 1487
E.45.3. Deprecated FEatUIEScueevuieriierieeiieiieniieeieeie ettt 1488
E.45.4. CHANZES ...eoviiiiieieeiieiie ettt sttt ettt ettt et sttt e st e sate e b e saaesanes 1489

E.45.4.1. Performance IMprovementscccceveerueeneeeneenieenieeneesvesveeaeens 1489
E.45.4.2. Server Changesccceeveerieerieriieeniieneesieeieeniee et sieesivesveeiee s 1490
E.45.4.3. QUErY Changes.........cccueerueeriienieniieieeniesie ettt sttt st 1492
E.45.4.4. Object Manipulation Changesccccceovueeveeneeriennenneeniesseeenaeens 1493
E.45.4.5. Utility Command Changes...........cccccoeevveruerieieniineencneeieneenenene 1494
E.45.4.6. Data Type and Function Changescccceccecveeirieencneenenenceennnne 1495
E.45.4.7. Server-Side Language Changescccceeeecverinieninieeneneniennene 1497
E.45.4.8. pSQL Changescccccoieieiinieienieeeeeeeeeeeee et 1498
E.45.4.9. pg_dump Changes...........cccceceeviirieiieniiieienieieie e 1498
E.45.4.10. libpq Changesc..cocuecuieiriiiniiienieiieieeeeeie e 1499
E.45.4.11. Source Code Changesccccoceeveeriiieiiiniiniiciieecne e 1499
E.45.4.12. Contrib ChangEsccceecueeuieiierieienieeieieeieeee st 1500

E.46. REICASE 7.4.22 ..ottt ettt sttt ettt et st be et eae 1501
E.46.1. Migration to Version 7.4.22........ccccecererieienieienie et 1501
E.46.2. CRANGZESoviiieieiieeiesieeite ettt ettt et st ettt nae s 1501

E.47. ReICASE T.4.21 .ottt sttt et st bttt 1502
E.47.1. Migration to Version 7.4.21cccoceoviiviiiiiiniiieneneeeeeteesieee e 1502
E.47.2. CRANZES ..ottt st et sttt ettt e 1502

E.48. Relase 7.4.20 ...cc.ooueueiiiiiiiiiieicieteitett ettt s s 1502

XXViil

E.49.

E.50.

E.51.

E.52.

E.53.

E.54.

E.55.

E.56.

E.57.

E.58.

E.59.

E.60.

E.61.

E.62.

E.63.

E.o64.

E.48.1. Migration to Version 7.4.20........ccccceevuerrierieniieniieeniieeieeieeiee st sete e siee e 1502

E.48.2. CHANZES ...eeuvieiieiiieiieiie ettt ettt ettt ettt et e st e esaee e 1502
Release 7.4.19 c..ccooiiiiiiiicc s 1503
E.49.1. Migration to Version 7.4.19.......ccoceriiiiiinienieeieeteeeee et 1503
E.49.2. ChAN@ES ...eeviiiiiiiieiieiie ettt et ettt ettt e e s e sanes 1504
REIEASE T 4. 18 ..ottt st 1505
E.50.1. Migration to Version 7.4.18........cccccceviririiininieiineeeenieeeeeneeeeee e 1505
E.50.2. Changesc..ooeeiiiiiiieieeieeeeieeet ettt e 1505
REICASE T4 17 ettt ettt et sttt s et 1505
E.51.1. Migration to Version 7.4. 17ccccccoccviriiiiniiiiieeeeeseeeceeeeeee e 1505
E.51.2. Changesc.oouieiiiiiiieiicee e e 1506
REICASE T4 16 .ttt sttt s 1506
E.52.1. Migration to Version 7.4.10......ccccceevieiirieiieniieiee et 1506
E.52.2. CRANEZES ...eonveeiieieeieeeteee ettt st ettt ettt nee s 1506
REICASE 7.4 15 ettt sttt et st 1507
E.53.1. Migration to Version 7.4.15.....ccccoiriiriiiiinieiee et 1507
E.53.2. CRANEZES ..ottt sttt sttt et 1507
REICASE 7.4 14 ..ttt sttt et st 1507
E.54.1. Migration to Version 7.4. 14cccccoviiriiiiieninienineeenieeeee e 1508
E.54.2. CHANZES ..ottt sttt sttt et st 1508
REICASE T.4.13 .ot e 1508
E.55.1. Migration to Version 7.4.13 . ..cccccoiriiririiieniinieneseetenieeeeeseeteee e 1508
E.55.2. ChANEES ...eonviiieniirieeieieeiteteeteeest ettt st sttt s 1508
REICASE 7 4. 12 .ot e 1509
E.56.1. Migration to Version 7.4.12.......ccccceevuerriienieeiieeiieenieete et eieeste e eieesane e 1510
E.56.2. CHANZES ...eovieiiiiiieiieiie ettt sttt ettt ettt et e st e st ebaesatessteenbeenanesnnes 1510
RElEaSE 7 4. 11 .o e 1510
E.57.1. Migration to Version 7.4. 11ccceceeiiiiiiniinieiieenteeeeieeiee st 1510
E.57.2. CANZES ...eeuviiiiieiiieiieite ettt ettt ettt et ettt e be et e e b e saaesanes 1510
Release 7.4.10 ..o 1511
E.58.1. Migration to Version 7.4.10.......ccoceeiuiriiiniiniienieenieeiesieeieeste e 1511
E.58.2. ChanGES ...ccveeiuiiiiieiieite ettt ettt ettt st ettt e 1511
Release 7.4.9 ..o 1512
E.59.1. Migration to Version 7.4.9.......ccccoevveriniiieninieineeeeneeeereseeeee e 1512
E.59.2. Changesc..coceeiuiiiiieiieieeieeieeee ettt e 1512
REICASE T.4.8 ettt ettt sttt et 1513
E.60.1. Migration to Version 7.4.8ccccocervieriniiieniinieieeeeene e 1513
E.00.2. Changesc..coeeiuiiiiiiiiieieieeeeeee et e 1514
REICASE T4 T ettt ettt sttt 1515
E.61.1. Migration to Version 7.4.7ccceeieiereieeieeieeiesie ettt 1515
E.O1.2. CRANGZES ...eouvieiieieeiteiecieee ettt ettt ettt st sbe et et be et e e e eneeeaes 1516
REICASE T.4.6 ..ttt ettt ettt et st 1516
E.62.1. Migration to Version 7.4.6.......ccccoieviereiieienieeienieeie ettt 1516
E.02.2. CRANGES ..ottt ettt ettt sttt sttt et e 1516
REICASE T.4.5 .ottt ettt ettt 1517
E.63.1. Migration to VErsion 7.4.5......ccccoriiiineiiiienieeieie ettt 1517
E.03.2. CHANZES ..ottt sttt sttt e 1517
REICASE T.4.4 ..ottt e 1518

XXIX

E.64.1. Migration to VErsion 7.4.4......ccccooieeiiriienieeieeitesiteete ettt 1518

E.64.2. ChAN@ES ...coovieeeiiiiieiieiie ettt ettt ettt et be et esate e b e saaesanes 1518

E.05. Release 7.4.3 ..c.coooiiiiiiiiiiicce e 1519
E.65.1. Migration to Version 7.4.3ccccovieriiiriienieeieeieesiteete ettt 1519
E.65.2. ChAN@ES ...coveiiuiiiiieiieite ettt ettt ettt ettt e e e saees 1519

E.06. REICASE 7.4.2 ..ottt et sttt st s 1519
E.66.1. Migration to Version 7.4.2.......ccccocceveviniriieninieiineeeeneeeereseeeeee e 1520
E.06.2. ChanEEsc..ooueeiiiieieiieecteeteeet ettt 1521

E.67. REIEASE T4 1 .ottt ettt sttt st ae e 1522
E.67.1. Migration to Version 7.4.1.......cccocioviiiiiiiiniiiiiieeese e 1522
E.07.2. Chan@esc..ooiiiiiiiiieiieeee e e 1522

E.68. REIEASE T4 ..ottt ettt st ettt e 1523
ELO8. 1. OVEIVIEW ...ueiiiiiiiitieieitiei ettt ettt ettt ettt ettt be et e e e eneeeaes 1523
E.68.2. Migration to VErSion 7.4ccceceririenenieiesieeetesie ettt 1525
E.08.3. CRANGESouviiieieitieieteet ettt ettt ettt st et ee s 1526
E.68.3.1. Server Operation Changesccccevereerieniieieniineeneseeie e 1526

E.68.3.2. Performance IMprovementsccoeeeerueniieienieneene e 1527

E.68.3.3. Server Configuration Changesc..ceceevuerueeienieneeneneenienenieniene 1528

E.68.3.4. QUEry Changes........ccoeeeerierienienieienieniteiesieetente ettt 1530

E.68.3.5. Object Manipulation Changesc..coceeuereeieniereenenieeneneneeniene 1530

E.68.3.6. Utility Command Changes...........ccccevuereerienieeienienieneneeieneneenienne 1531

E.68.3.7. Data Type and Function Changesccccoceecverereencneenienencnenienne 1532

E.68.3.8. Server-Side Language Changesc.ccccevveevenieneeneneenieneneenienne 1534

E.68.3.9. PSQL Changescocerueruienieniriinieeieniesiteienieetete e et 1535

E.68.3.10. pg_dump CRanges.........cccecverieriieeneeniesieenieenieesieesieesieesnesseenseens 1535

E.68.3.11. libPq CRANGES ...ceovveeerieiieiieniieeieeieenite ettt st siee e eve e 1536

E.68.3.12. JDBC Changes.......ccc.eevueerueeriersiieniieniesieenieenieesneesseesseesenessesnseens 1536

E.68.3.13. Miscellaneous Interface Changesccceovveveerieenieeneenvensieeiene 1537

E.68.3.14. Source Code Changescccceevueerieerierieenieeniesieeieesieeseeeveeeeens 1537

E.68.3.15. Contrib Changesccceveeriernieenienie sttt eieesiee e v e 1538

E.69. Release 7.3.21 ...ccooiiiiiiiiiiiiiiiccce s 1539
E.69.1. Migration to Version 7.3.21cccceveeieiriienienienieeniteeteeie ettt 1539
E.69.2. ChANES ...coveiuiiiiieiieiie ettt ettt ettt et ettt et et e st be e e e saees 1539

E.70. Release 7.3.20cueeiiriiiieiiiieierieeeetesteteetee ettt sttt n et st 1540
E.70.1. Migration to Version 7.3.20........ccccoceveririieninieniiniereneeeereseeeeee e 1540
E.70.2. Changesceoeueeiiiiieieieeieesieeeet ettt et e 1540
E.71.RElIEASE 7.3.19 ettt ettt s e 1540
E.71.1. Migration to Version 7.3.19......c.cccociiiiiiiiniiiiiniceeeeeeeeee e 1540
E.71.2. Changesc.oouieiiiiiiieiicee e e 1540
E.72.RElEASE 7.3.18 .ottt ettt ettt s s 1541
E.72.1. Migration to Version 7.3.18......cccocieiiiiririeniieiee et 1541
E.72.2. ChANZES ...eoviiiiiiieeiteiee ettt ettt ettt e e s 1541

E 730 REICASE 7.3.17 ettt ettt sttt ettt be et 1541
E.73.1. Migration to Version 7.3.17cccoceeiiriniiienieeiee et 1541
E.73.2. CRANEZES ..ottt ettt sttt st et ae s 1542

E.74. REICASE 7.3.16 ..ottt s e 1542
E.74.1. Migration to Version 7.3.10.....ccccocervieririiiininienienieeteneeetee e 1542
E.74.2. CRANZES ..ottt sttt sttt et 1542

XXX

E.75.ReIEASE 7.3.15 oottt sttt et st 1542
E.75.1. Migration to Version 7.3.15....ccccoviiriiiiiinieeieeieeiteete ettt 1543
E.75.2. ChAN@ES ...eouviiiiiiieeiteite ettt ettt et ettt et e st e e e e e 1543

E.76. RelEaSE 7.3.14 ..ottt sttt et st 1544
E.76.1. Migration to Version 7.3.14.......ccoouiriiiiiiieniinieeieeiteeeee ettt 1544
E.76.2. ChANEES ..ottt et s e 1544

E.77.REIEASE 7.3.13 .ottt ettt s 1544
E.77.1. Migration to Version 7.3.13ccccccioviiiiiiiiniieieeeeereeeeeseeeeee e 1544
E.77.2. ChaNEES ..o 1545

E.78. RElCASE 7.3.12 .ottt ettt 1545
E.78.1. Migration to Version 7.3.12........ccccoceiiiiiiiniiiiiii e 1545
E.78.2. CHANZES ...ceuveiiiiiieeiieite ettt ettt ettt et 1545

E.79. RelESE T.3. 11 ettt st ettt e 1546
E.79.1. Migration to Version 7.3. 11cccccevirinininenenieieeneneneereeeeerese e 1546
E.79.2. Changesoooiiiiiiiiiiic e s 1546

E.80. ReleaSe 7.3.10 ...eeuiiuieiiiiieieeiiee sttt ettt sttt et st b et 1547
E.80.1. Migration to Version 7.3.10.......ccccerieririiieniinieieeeee et 1547
E.80.2. CHANGZES ...eouviiieniiitieiteiteeieete ettt ettt sttt st et b et st 1548

E.81. RElCASE 7.3.9 ..ottt e 1548
E.81.1. Migration to Version 7.3.9......ccccoviiiiriniiieniieieieneeeeneeteeseee e 1549
E.81.2. CHANEES ..ottt ettt sttt sttt 1549

E.82. RelaSE 7.3.8 ..ot 1549
E.82.1. Migration to Version 7.3.8ccccevirieriririeniinitenieneeteneeeeie et 1549
E.82.2. CHANGZES ...eevieeiieiieiieiie ettt sttt ettt te et e s e e st e et e ebaessaessteenbaenanesnnes 1549

E.83. RElCASE 7.3.7 .t 1550
E.83.1. Migration t0 VErsion 7.3.7cccceevueerierriienieeieeieenitesre et eieeseseseeeeieeninesnnes 1550
E.83.2. CHANZES ...eevieiiiiiieiieiie ettt sttt ettt et ettt st e beesatesateebeenaaesanes 1550

E.84. ReEICASE 7.3.0 ..couiiiiiiiiiieiieieeitetestt ettt sttt et ettt st sttt 1550
E.84.1. Migration to VErsion 7.3.0......ccccevvieriuerriienieeieeieeniieeiesie ettt st 1551
E.84.2. CHANZES ...eovieuiiiiieiieiie ettt ettt ettt ettt et et e st e e e e i 1551

E.85. Release 7.3.5 ..ccuioiiiiiiiiiiiniccc s 1551
E.85.1. Migration to Version 7.3.5.....cccciiriiriieiiiienienieeieeniteete ettt st 1552
E.85.2. ChaNES ...covteiuiiiiieiieiie ettt ettt ettt st ettt e s 1552

E.86. REICASE 7.3.4 ..ottt ettt et st 1552
E.86.1. Migration to Version 7.3.4.......ccccocirvieviniiiininieiieeeeene e 1553
E.86.2. ChaNEESceoouieiiieiieiieeeteetee et 1553

E.87. REIASE 7.3.3 ..ttt ettt ettt st ettt e ae e 1553
E.87.1. Migration to Version 7.3.3.......ccccociiiiiiiiiiiiiiiieeee e 1553
E.87.2. ChanEesc..oeuiiiiiiiiieiieee e e e 1553

E.88. REIEASE 7.3.2 ..ttt ettt sttt st 1555
E.88.1. Migration to Version 7.3.2.......cccooiriererieieniieienie ettt 1556
E.88.2. CRANGES ..ottt ettt ettt sttt ettt e nee e 1556

E.89. REICASE 7.3.1 ..ottt ettt sttt et st be ettt 1557
E.89.1. Migration to Version 7.3.1.....cccccceeieoirinininenieicieeneniesrereneeee e 1557
E.89.2. ChANZESeovirviiiiiieiieiieiieientestetet ettt ettt sttt 1557

E.90. REICASE 7.3 ...ttt ettt ettt st b ettt et sbe e be b et et eae 1558
E.90.1. OVETVIEW ...uviiiiiiiiciieiiieriestetetet ettt sttt 1558
E.90.2. Migration to VErSion 7.3cccceceririeneniiiienieeiteie ettt 1559

XXXI

E9I.

E.92.

E.93.

E.94.

E.95.

E.96.

E.97.

E.98.

E.99.

E.90.3. ChANES ...covieuiiiiieiieiie ettt sttt ettt et ettt e be e st e sate e beenaaesaees 1559

E.90.3.1. Server OPerationcceereerieriieenieenienieenieeniee e esseesieeseeesseeseens 1560
E.90.3.2. PerfOrmancec..coccocveriirieiinieienenieieneeeeteeeeee e 1560
E.90.3.3. PriVIIEEES ... ceruviitieiieriieiieeiteete ettt sttt sttt st s 1560
E.90.3.4. Server Configuration............ccocueevieerienienieenieeniee e 1561
E.90.3.5. QUETIES ...cevteriiieiieiteeite ettt ettt sttt st ettt et eaee s 1561
E.90.3.6. Object Manipulationc..cceeieveenenieienieiieniieeenneseereseeneneene 1562
E.90.3.7. Utility Commands...........cc.ceceecuerierieniriieienieieieeeere e 1563
E.90.3.8. Data Types and FUNCHONSccccecueriirieiiinieiiiieicie e 1564
E.90.3.9. Internationalizationcccceevuerueesieeneeiieenieenee e 1565
E.90.3.10. Server-side Languagesccccceeeruirieiiininieiiiiene e 1566
E.90.3. 11 PGl et 1566
E.90.3.12. TIDPQ teeneentietiee ettt et sttt 1566
E.90.3.13. IDBC ...ttt ettt st 1567
E.90.3.14. Miscellaneous Interfaces...........cceoeverierieniieiienincene e 1567
E.90.3.15. SoUICE COdE......eemuiiiiiiiiiiiiniiiieeeeec et 1567
E.90.3.16. CONLIID ..ottt ettt st 1569
REICASE 7.2.8 ..ottt ettt ettt 1570
E.91.1. Migration to Version 7.2.8cccccviriereriirieniiniienie sttt 1570
ELOT.2. CHANEZES ..ottt sttt sttt 1570
REICASE T.2.7 .ottt sttt et et 1570
E.92.1. Migration to VErsion 7.2.7ccccevirvierenirienienienienieetenie ettt 1571
E.92.2. CHANEZES ...eoviriieniiiieeiteieeitetesteete ettt sttt 1571
REICASE T.2.6 ..ttt sttt et s 1571
E.93.1. Migration t0 VErsion 7.2.6......cccccecueeiuerriienieeieeieenieeieeieenieeseseseseenseesanesnnes 1571
E.03.2. CHANGZES ...eevieeiieiieiieiie ettt sttt ettt sttt et e st e st ebaesatessteenbeenanesnnes 1571
REICASE T.2.5 .ttt ettt st 1572
E.94.1. Migration to VErsion 7.2.5.....cccccevieriiiiniienieeieeieeniiesieeieeieesiteseteesseesinesanes 1572
E.O4.2. CHANZES ...eoovieiiiiiieiiecite ettt ettt ettt et ettt e e st e st e b e saaesanes 1572
REICASE T.2.4 ..ttt sttt st 1573
E.95.1. Migration to VErsion 7.2.4........cccevueeiueriienienieeieeriieete et esite st st e s 1573
E.O5.2. ChANES ...covieviiiiieiieite ettt sttt ettt ettt et st e e e 1573
REIEASE T.2.3 .ottt e 1573
E.96.1. Migration to Version 7.2.3.......ccccocirviereriiieninieieneeeeneeeere e eeeene e 1573
E.96.2. ChanEesc..ooeeiiriieieiieieeieeieeet ettt 1574
REICASE T.2.2 ..ttt sttt sttt st et 1574
E.97.1. Migration to Version 7.2.2.......ccccoceeveriniriienineeiiee et 1574
E.97.2. Changesc..ooieiiiiiiieiieeeeecee e 1574
REICASE T.2.1 .ottt ettt sttt st e 1575
E.98.1. Migration to Version 7.2.1.......cccceeueviririninenieieieeneneeseereeeeeeerese e seenee 1575
E.98.2. Changescoeiiiiiiiiiiiiici e e e 1575
REICASE 7.2 ..ottt ettt ettt ettt naeas 1576
EL99.1. OVEIVIEW ..ottt ettt ettt ettt ettt s be et et e e e 1576
E.99.2. Migration to VEISION 7.2.....c.cccevueieiririinienienieeeieene et 1576
E.99.3. ChaNEEScoverviiiieieieiieiieiertestetetet ettt ettt sttt s 1577
E.99.3.1. Server OPerationcccueeeeeeriereeienieniieienieeteneeeeee e sieeseesbeseneneeene 1577
E.99.3.2. PerfOrmanceccoeeuerienieniinieieniesteiesiceteie et 1578
E.99.3.3. PriVIIEZES. . eoueeiiriieierieeiteieet ettt st 1578

XXXI1

E.99.3.4. Client AUthentiCationecceeveveeeeeeiireeeeeeiieeeeeeeereeeeeeerreeeeeeannes 1578

E.99.3.5. Server Configuration............coecueevueenieenieiieenieenee e 1578

E.99.3.6. QUETIESecuviieiiiieiiieeeiteetee ettt et e e tee e tee s beeesereeesaseeesabaeeneseaennns 1579

E.99.3.7. Schema Manipulationccecueevueeriienieiienniieniee et 1579

E.99.3.8. Utility COMMANAS....c...eovueeriiniiriieniienie et 1580

E.99.3.9. Data Types and FUNCHONSccccecverierieniinieiiiieeeicneeieseeeeiee 1580

E.99.3.10. InternationaliZationccecueevueereenieiieenieeniee sttt 1581

E.99.3.11. PL/PZSQL ...ttt 1582

E.99.3.12. PL/PEIL ..ottt 1582

E.99.3.13. PLITCL ..ottt s s 1582

E.99.3.14. PL/PYRON ..ottt 1582

E.99.3. 05, PGl et 1582

E.99.3.16. TIDPQ +eneentieiieie ettt e 1583

E.99.3.17. IDBC ...ttt ettt ettt 1583

E.99.3.18. ODBC ..ottt st 1584

E.99.3.19. ECPG ...ttt et 1584

E.99.3.20. MiSC. INtIfaCes......ccuerueeriiriieiiniieieiesieieeieeie et 1585

E.99.3.21. Build and Install........c..ccccoeiiiiiniiiiniiieinieeccee e 1585

E.99.3.22. S0UICE CORc..eeuieiiriieiiniieienieetee sttt 1585

E.99.3.23. CONUIID ..cuiniieniiiieieieeteeet ettt st 1586

E.100. REICASE T.1.3 .ottt sttt et bbbt 1586
E.100.1. Migration to Version 7.1.3 . ..cccccociriiriririininienineetenieeeeeseeteee e 1586
E.100.2. CRANZES ...uveveeneiieeiieieeiteesieet ettt st sttt 1586

E 10T, REICASE T.1.2 oottt sttt st st 1587
E.101.1. Migration to Version 7.1.2......ccceceeviirriienieeieeieeseeere ettt 1587
E.TOT.2. CRANEES .eouvieiieeiieeiieiie ettt sttt ettt ettt et e st eseteebaesatesateenbaenaaesanes 1587

E. 102, REICASE 7. 1.1 oottt ettt s st nae e 1587
E.102.1. Migration to Version 7. 1.1 ...ccccoeveriiiiriiiniinieeieeieeieeie ettt 1587
E.102.2. CRANEES .eouvieviieieeiieite ettt sttt ettt et ettt e be e st esate e beesaeesanes 1587
E.103. REIEASE 7.1 .ottt et sttt st s s ne e 1588
E.103.1. Migration to VErsion 7.1ccccevieriieiiienienieeieesteeteete ettt 1589
E.103.2. CRANEES .eouveeiieiiieeiieiie ettt ettt et ettt et st beesaaesaees 1589
E.104. Release 7.0.3 ..ottt ettt et et st 1592
E.104.1. Migration to Version 7.0.3........ccccoceviniriieniniiineeieneeeceneerere e 1593
E.104.2. Changesccooueiuieieiieieieeieeee ettt 1593
E.105. REIEASE 7.0.2 ..ottt ettt ettt sttt et et et enae st e e sbeeneeneene 1594
E.105.1. Migration to Version 7.0.2........ccccoceviriiiininiininieiene e 1594
E.105.2. Changesc.coouiiiiiiiiiicieece et e 1594
E.106. ReIEaSE 7.0.1 ..ottt ettt ettt sttt e nae e tesbeente s ene 1594
E.106.1. Migration to Version 7.0.1........c.ccocoiiiiiiiiiiiiiiccece e 1594
E.106.2. Changescccuiiuiiiiiiiiiiiiice e e 1594
E.1O7. REIEASE 7.0 ..ottt ettt st e 1595
E.107.1. Migration to Version 7.0.........ccccceeieirininenienieinenenienreseeeeeneeresresaeseenne 1596
E.107.2. CRANEZES «.veviviieicieieeteiertestetcet ettt sttt 1596
E.108. REICASE 0.5.3 ...ttt sttt ettt et bbb site et 1602
E.108.1. Migration to Version 6.5.3........ccccoceririiiininienieneeesie et 1603
E.108.2. CRANGESveveenteieeiieieeiteeete ettt st sttt s 1603
E.109. REICASE 0.5.2 ..ottt sttt e st s b et 1603

XXXIi1

E.109.1. Migration to VErsion 6.5.2.......cccceevueiriieniiniieiiieniieeieeie ettt 1603

E.109.2. CRANEES .euveeviiiieeieeiie ettt ettt st st et sate e b e saeesanes 1603
E.110. Release 6.5.1 ...c.oviiiiiiiiiiiiiiiiiciciccc e 1604
E.110.1. Migration to VErsion 6.5.1.......ccoceeiiiiiieniinieiiieniteeieeieeiee e 1604
E.110.2. CRANEES .ecuvtivieiieeieeite ettt ettt ettt ettt e beesaee i 1604
E.TT1.REIEASE 6.5 ..ottt sttt et s 1605
E.111.1. Migration to VErsion 6.5........ccccoirvierieririieniinieiinceeenieeeereseeeeee e 1606
E.111.1.1. Multiversion Concurrency Controlc..cccccevieveenireenienencnennene 1606

E.TT1.2. ChanEsooueeiiiieieieeeceeeee et e 1607

E 1120 REICASE 60.4.2 ..ottt sttt st s 1610
E.112.1. Migration to VErsion 6.4.2........cccceveiiiinieniienieeniieeieeieesieesete et 1610
E.112.2. CRANEES .cueeeiiiiieeiieiie ettt ettt ettt et 1610

E 113, ReICASE 0.4 1 ..ottt ettt sttt e e e et sbeenee e ene 1610
E.113.1. Migration to Version 6.4.1........ccccoceiiriiiiniiieieeee e 1611

E 1132, CRANGES -..uveveenieeieeieieee ettt ettt sttt st nee e 1611
E.TT4. REICASE 0.4 ...ttt ettt ettt et nae et b sete e eae 1611
E.114.1. Migration to VErsion 6.4cccoceeviereririeniinienieeieeee et 1612

E 1142, CRANGES ...uveveenieiieeiieieeiteeet ettt ettt sttt 1612
E.T15.REICASE 6.3.2 ..ottt ettt 1616
E. 1151, CRANGES ..uveieenieiieeiteieeeeeet ettt sttt e 1617
E.116. Release 6.3.1 ..c..oiiiiiiiiiiiiiiicicicetetteseee ettt s s 1617
E.116.1. CRANGES ..cuveieeniiieeiieieeiecteieetet ettt sttt 1618
E.T17.REICASE 6.3 ...ttt e s s 1618
E.117.1. Migration to Version 6.3.......cc.ccocceviereririeninieniineeteneeeeesieetenee e 1620
Eo117.2. CRANEES .oovvieiiieiiieieeiie ettt sttt ettt et ettt et e e snteebeenaaesnnes 1620
E.T18. RelEaSE 6.2.1 ..ttt 1623
E.118.1. Migration from version 6.2 to version 6.2.1........cccccccevervienenencicnenccencnne. 1623

B T18.2. CRANEES .eouvievieiieeiieite ettt ettt ettt ettt bt et esate e esaaesanes 1624
E.T19. REICASE 6.2 ...t e 1624
E.119.1. Migration from version 6.1 to Version 6.2........cc.cecceeeverveneneecicneneennenne 1624
E.119.2. Migration from version 1.x to version 6.2ccccccceveevveneneecicnenceennenne 1624

B 119.3. CRANEES .euviieieiieeiteiie ettt ettt st ettt e beesaee i 1624
E.120. Release 6. 1.1 ..o s 1627
E.120.1. Migration from version 6.1 to version 6.1.1..........ccccooiriiiniinininenne. 1627
E.120.2. Chanesccceoveiiieieiieieeieeieeeee ettt e 1627

E. 121 REIEASE 6.1 ...ttt ettt sttt st e 1627
E.121.1. Migration to Version 6.1cccccccoceviiiiiiniiieiinieeneeeceeeeeee e 1628
E.121.2. Chanesooueeiiiiiiieieeeeee e e e 1628

E 122, REIEASE 6.0 ...conniiiiiiiiiiieeeeieetee ettt ettt sttt e 1630
E.122.1. Migration from version 1.09 to version 6.0.........ccccccovevverenvenevenrenenenennee 1630
E.122.2. Migration from pre-1.09 to version 6.0cccccecevverenenienenenenenenennennes 1630
E.122.3. CRANGES -.uvevieieeieeeteee ettt ettt st et nee s 1631

E. 1230 ReIEaSE 1.09 ..ttt st st e 1633
E 124, Release 1.02ouiiuiiiiiieieeieee ettt sttt e st b ettt 1633
E.124.1. Migration from version 1.02 to version 1.02.1.......ccccooceriiiiniiiininene. 1633
E.124.2. Dump/Reload Procedurec.ccoceveriiiieniinienienceienieeeeeieeeie e 1634
E.124.3. CRANGES ...veoveenieiieeiieieeiteteet ettt sttt ettt s 1634
E.125. Release 1071 ..ottt s 1635

XXXIV

E.125.1. Migration from version 1.0 to version 1.01......cccocooeniriinininciininrenenne 1635

E 1252, CRANEES .eouvieiiiiieeieeiie ettt ettt ettt et ettt beesaee i 1636

E.126. Release 1.0 ..cc.oooiiiiiiiieiiiteiecceeieetcesteetett ettt et st 1637
E.126.1. CRANEES .eouveiiiiiieeieeiie ettt ettt ettt ettt et sat e e b e saeesaees 1637

E.127. Postgres95 Release 0.03.....cc..ooiiiiiiiiiiieieneeeeteste ettt st e 1638
E.127.1. ChANGES ..ottt e e 1638

E.128. Postgres95 Release 0.02........cc.ooiiiiiiiiiiinieieteeeestereeeeete e 1641
E.128.1. ChanEsooueeiiiieieiiieceeeee et e 1641

E.129. Postgres95 Release 0.01 ..o 1642

F. The CVS REPOSILOTYeouviiiiiiiiiieiieee sttt sttt e s s 1643
F.1. Getting The Source Via Anonymous CVS ... 1643

F.2. CVS Tree Organizationcoceeveerieriieeniienienieeieesitesite et esiee sttt eeeesieesite e enaeens 1644

F.3. Getting The Source Via CVSUP....ccoooieiiiiiiiitieese ettt 1645
F.3.1. Preparing A CVSup Client SYSemMcceeueeieriieieiieieeiesieeeeie st 1645

F.3.2. Running a CVSup CIENLc.evuieiiniiiieieitieieieee et 1646

G. DOCUMEIEALION ...ttt ettt ettt ettt e sttt e e s bt e st et e eb e e st e ebe e st enbesbeenbesbeentenseeneeneesaes 1649
G.1. DOCBOOK ...ttt ettt ettt b e ettt et 1649

G.2. TOOL SEES ..ttt ettt ettt ettt ettt et b e st e e b et e bt st esbesbe et e s bt eb e et e eaeenaesaes 1649
G.2.1. Linux RPM Installation..........ccccceeieieinininenciiiiincneiceeeeeeeeesieeenen 1650

G.2.2. FreeBSD Installation.............cocoouevieieiiininiinienicicieencneceeeeeeeeee e 1650

G.2.3. Debian Packagescoceeeeriiniiiiniiiieienieeteieetee et e 1651

G.2.4. Manual Installation from SOUICE.........c.cceviviriiniiiiiiiniicccceee 1651

G.2.4.1. Installing OpenJadec.ccoceeveniriiniiniiiiiniiieeeeeseeeeeeee e 1651

G.2.4.2. Installing the DocBOOK DTD Kitcoocveviiriieiieniienieeieeieesieeieene 1652

G.2.4.3. Installing the DocBook DSSSL Style Sheets.........ccocceeeeenverieniennne 1653

G.2.4.4. Installing JadeTeXccocieriierienieeieeieeete ettt 1653

G.2.5. DeteCtion DY CONTIigUIE..ciiiriiiierieeiieeitenteeteeieesitestesteesbeesateseseenseenasesanes 1653

G.3. Building The DOCUMENTAION ...couveeruierieriieiieniesieeieesitesiee e eieesieesteeteebeesaresne e 1654
G L HTML Lottt sttt sttt 1654

G.3.2. MLANPAZES ..evvieneieenieeiieiie et eieesitesite et e bt esiteeabeeabeesbte s st e sateebeesatesateenbeesaeesanes 1654

G.3.3. Print Output via JAdETEXeevueeriiiriiiieiiieriieeieeie ettt 1655

G.3.4. Print Output via RTF......ccooiiiiiiiiiiieteeee et 1655

G.3.5. Plain TeXt FIIES.....co.cooiiiiriiiiiieieiceeeneceteeeee et 1657

G.3.6. Syntax CRECKc..oouiiiiiiiiiiiiceceeeee e e 1657

G.4. Documentation AUthOTINGcoeecieriirieriinieeeniereereeeeeete e e 1657
G.4.1. EMAcS/PSGML.......couioiiiiiiiiiirieicictete ettt 1657

G.4.2. Other EMAcs MOAES ...c..eeriireiiniiiniieieiieeriteeieee ettt ettt 1658

G5, SEYIE GUIAE ...ttt sttt a ettt st eaee 1659
G.5.1. Reference Pagescoooiiiiiiiiiiiiicicicee e 1659

H. EXternal PrOJECES ...eeoueiiiiiiiiiieeie ettt ettt ettt 1661
H.1. Clent INTerfaces.c.veiuieuieieetieiesie ettt ettt sttt see et sbeenee e ene 1661

H.2. Procedural Languages.........cceeeuerieierienieieetieie sttt sttt et sbe e 1662

H.3. EXEENSIONS ...ttt sttt ettt ettt et e b sat et e bt eatenteeseenaesee e besbeeneenteene 1663
Bibliography 1664
Index 1666

XXXV

List of Tables

4-1. Operator Precedence (AECIEASINE)c..eeuertirieriirienieniietenieeitet ettt sttt et st e e bt e b s e et saeene 31
81 DA TYPES vttt ettt ettt st et b ettt s a et bt et h e bttt e he et bt et e bt bt et bt et naeeneen 91
82, INUIMETIC TYPES. .. euvteutiieeiiriieitenteettet ettt ettt et ettt st e e bt et e bt e bt et ebe et e sbeeate bt ebe et e sbeenaenaeeneen 92
83, IMOMELATY TYPES .eeuvreiiieiiieiieeiieeiterttestte st et et e sateebeebeesbeessbeesseebaesssesnseenseesssesssesnseenssenseesnseenseenseenns 96
8. CNATACTET TYPES .eevreiiieiiieiieeite et et test e st et et e satesabe e bt e sbtesabesabeebaessbeesseenbaesssesssesnseenseensaesnseenseenseenns 97
8-5. SPECIAl CharaCter TYPES ..cuvveeureruiieriieniieiieeitenttesteete et e st e ste e bt esbeesabesabeesbeesseesssesnseessaensaesaseeseenseesns 98
8-6. BINAry Data TYPES ..cuvieiiiiieeiieiiieitenite sttt ettt ettt stt e st e st esbeesabeeabe e beesstesasesnbeesstensaesaseeseenseesns 98
8-7. bytea Literal ESCAPEA OCTELScccuteruiiriiiiieiiesiieeieeitesiteste ettt e st e sate e beesieesatesnbeessaesseesaseeseenseeses 99
8-8. bytea Output ESCAPEA OCLELS. ...ccvuviiieiiiiriieiiieieesite ettt ettt ettt ettt esatesbeebeesateenbeenseesaes 100
8-0. DAtE/TIME TYPES . uteeurietieriiieieeite ettt ettt et et e sb e e st e et e e sbtesabeeabe e beesabeesseenbeesabeenseenbeesaseenseenseenses 100
8-10. DAL INPULeotiiiiiiiiette ettt ettt et e e bt e st e e bt e bt e sabe et e e bt e satesabeenbeesaeesnbeenseenans 102
S-11. TIME TNPUL ..ottt ettt ettt e bt st e bt e bt e sat e et e e bt e satesabeenbeesatesnbeenseenaes 103
8-12. TIME ZONE INPUL ...ttt sttt e b e st e bt e bt e st e e beenbeesateenbeenseenaee 103
8-13. Special Date/Time INPULSc..coeeiiiiiiieiiieiec ettt 105
8-14. Date/Time OULPUL STYLEScccvirmiiiiiieiieiiteeee ettt ettt et s 106
8-15. Date Order CONVENLIONSeeruiiruiieieirieeniteeteesieesiteete et esbtesteete e bt e sabeesbeesbeesasesseebeesateenseenseenaes 106
8-16. GEOMELIIC TYPLS....eeuiiiiiiieiieieeeete ettt ettt 109
8-17. Network Address TYPEScooueiuiiiiiiieicere ettt et s 111
8-18. cidr Type Input EXamPIEscocoiiiiiiiiiiiiiii e 112
8-19. Object IAENtIfIEr TYPES ..c.veevereureiiriirtintetcteeeit ettt ettt ettt ae bbb se e eaeenes 127
8-20. PSEUAO-TYPES ...ttt ettt et sttt e b e sttt et st et e bt e sat e e b e beenaee 128
9-1. COMPATISON OPETALOTS.....c..cuveureueeriririertertenteitettetesteeteteteneeteeresteseessessestesesteesesenseneeneesessesaesensennenene 132
9-2. Mathematical OPETALOTSc..ccueuirriririerieieiieitriteteteteteaeeteere st seetese et re st be st et eueebesbesaessenseneeneene 134
9-3. Mathematical FUNCLIONScccuiiiiiiiiiieie ettt sttt s enee s 134
9-4. TrigonOmMEtric FUNCHOMScc.eiiiitieieiiitietet ettt ettt ettt et et bt et b et e et saeentesbeeneens 136
9-5. SQL String Functions and OPEIAtOrScc.eeveruieieriereerienieniientesieetesteetestesieetesieeseeseesaeeseesaeensens 137
9-6. Other String FUNCHIONSc.oouiiiiiiiiieieiicte ettt sttt sttt et sieentesbeeaeens 138
O-7. BUIIt-IN COMNVEISIONSeuvtiutiiieiietieitente ittt ettt ettt st et be st e e s bt et e s bt eatesbe s bt este s bt este bt sbeenbesbeennens 142
9-8. SQL Binary String Functions and OPETatorsccccreerierierienieneenienieetenienieeniesieestenteseeseesieennens 146
9-9. Other Binary String FUNCHONS ...c..cocueriiiiiiiniiiiiiietee ettt sttt s 147
9-10. Bit SrING OPEIatOrS....c..cecvertieiertieiienienitetenteeitenteettete st etesbestt et sbeestesbeestesbesbeeaesbeestensesmeensesbeennens 148
9-11. Regular Expression Match OPerators...........cccueeieeeriereerienienienieneeienieeeentesieetesieeseeneesmeeneesueennens 151
9-12. Regular EXPreSsion ALOIMIScccueeruieiiieriieriteriieeteeieenteestesteebeesseesssessbeesseesseesnseesseesseesssessesnseessns 153
9-13. Regular EXpression QUANTITIETSeivieriieriieriieeteeieeniie st et e stesete st et e sieesateesaeenseeseteenbeenseenans 154
9-14. Regular EXpression CONSITAINESeevveeriieriieriieeiieeniiestesteeteeseesstesteesseesseesnseesseesseesnsesnsessseesnns 154
9-15. Regular Expression Character-Entry ESCAPEScccvivviiriiiiiiiiiirienieeieetesee et 156
9-16. Regular Expression Class-Shorthand ESCAPEScocuerieriiiniiinieniiiieeeeee et 157
9-17. Regular Expression Constraint ESCAPEScc.uevuerviiiiiieriieniieiierteeie ettt sttt 158
9-18. Regular Expression Back References.covuiviiiiiiiiiiiiiiiiiicteccceeeee et 158
9-19. ARE Embedded-Option LEttersc.cocuieriiriiirieiieeniierteeie ettt sttt sttt e eie e 159
9-20. FOrmatting FUNCLIONScooouiiiiiiiieiiieieeteite ettt ettt ettt ettt et e bt e st ebeebeesaee 162
9-21. Template Patterns for Date/Time FOrmattingc..coccevueriirieiiiniieiinieencnecieeeeeec e 163
9-22. Template Pattern Modifiers for Date/Time FOormatting............ccccecceeuerievienenienieninieencneeneneenens 165
9-23. Template Patterns for Numeric FOrmatting...........ccccccoeevieiiriiiiinieiinieieieceeieeeecrc e 166
9-24. £0_char BXAMPIES ...covviiiiiiiiiieeieeee ettt ettt ettt sttt b e st e 167
9-25. Date/TIMeE OPEIALOLSccveruieiiiiieiieieeieeteeteeeete et e sttt s st e e e s st e e e sesaeeaesaeeseeseeaeeaesaeennens 168

XXXVI

9-26. Date/Time FUNCLIONScoouiiiiiiiieiieiie ettt ettt sttt sat e st st e be e st e sabeesaeesbeesateenbeenseenans 169
9-27. AT TIME ZONE VATTIANES c..oouiriiniirieniinitetentierettettentesueestentesunestesseessesseemeensesueessensesssensesmeensessesnnens 176
0-28. GEOMELIIC OPETALOTS ...uveenrieruiieieeieeriteeteerttesttestesteesbeesstesaseebeesatesasesabeesseesseesaseesseenseesssessesnseesses 180
9-29. GEOMELIIC FUNCHONSeiutiiiiiiiieiiecie ettt ettt sttt sttt e bt e st e ebeenbeesaee 181
9-30. Geometric Type Conversion FUNCHONSccuiviiiiiiiiinienieeieerteee ettt st 182
9-31. cidr and inet OPETALOTSeereeeriieriiieieeitteitteete et et testeeteebe e st e satesbe e bt esaeesabeenbeesbeesateenbeenseenane 184
9-32. cidr and inet FUNCHONSccviiiiiieciie et ertte et e et e e tae e e aeeeeae e sseaesssaeessseeessseeesseannns 184
9-33. Macaddr FUNCHONS ...ccuviieiie ettt ee et e et e ettt e eeteestaeeesebeeessseesnseaessseeeasseeensseaensseennns 185
9-34. SequeNCe FUNCHONScciiuiiiiiieieie ettt ettt sae s e 186
9-35. 2rray OPETALOLSccueiiiiiiieieiietete ettt et e st st e st e e s st e e e s e st eaesaeeneese et enesaeennens 190
0-36. ArTay FUNCHONSccviiiiiiiicieeieeee ettt et s e et e et e e s taeeabeeabe e saesseeesbeesaeseessseenseenseensns 191
9-37. General-Purpose Aggregate FUNCHONS........c.coirvirierieieirinireneieiet ettt 192
9-38. Aggregate Functions fOr StAtiSTICSc..ccueeriririinienieieteinenese ettt ettt ere et s 194
9-39. Series Generating FUNCHOMNS..........cccouirieieiiininieieietee ettt sttt s 201
9-40. Session Information FUNCHONSccviiiiieiiiiiiciecie ettt e e eveesae e seeseveenseenseenes 202
9-41. Access Privilege Inquiry FUNCHONSccoeviiriiriiniiieieieinecccetee sttt 204
9-42. Schema Visibility Inquiry FUNCHONSc.oiuiiiiiiiiieii et 206
9-43. System Catalog Information FUNCHONScccueriiiieriiiiiienierieieecee et 206
9-44. Comment Information FUNCHONScccieiiiiiiieiieiiesie ettt ettt saeeseteeaeeseeees 208
9-45. Configuration Settings FUNCHONScceeviiitiiiiriiiieie ittt 209
9-46. Server Signalling FUNCHIONScc.cocteriiiiiiiiiieietee ettt ettt 209
9-47. Backup Control FUNCHONScoutrteriiriiiiitiiieieeitete sttt ettt sttt sttt et sae st saesaeennens 210
9-48. Database ODbject SiZe FUNCHONScouerueiiiriiriiiieieiereetenesteteet ettt ettt s 211
9-49. Generic File ACCESS FUNCHIONScc.ceiiiiiieiieiiieeieeieertte ettt et ebe e esaesebeesaeesseeseteenseenseenens 212
9-50. AdViISOTY LOCK FUNCHOMNSeieiiiiieiiiieiieiterite ettt ettt ettt sat e b ebeeseseenbeenseenens 213
12-1. SQL Transaction ISOIation LEVELScccuiiieuiiiiiiieeiie ettt et svae e e e e 236
16-1. SYStemM V IPC PATAMELETS. ... eevuveeureetieriieeieeiteritestesteeteestteseteebeesseesasesnseesseesseesasesnseenseesssesnsesses 285
16-2. Configuration parameters affecting PostgreSQL’s shared memory usageocceeeveerveervennennnen. 289
17-1. SHOTE OPHON KEY ..eeuviiiiiieiiiiiieiieeieet ettt st ettt set e e bt e bt esab e sabe e bt e bt e sabeensaenbeesasesasesnbeas 331
21-1. PoSt@reSQL CharacCter SELScocueerueirieriiiieeriee st eteeteesiteete et esbeesteebeesbeesateeseenbeesateenseenseesaes 359
21-2. Client/Server Character Set CONVETSIONSeerueeruieriierriieniieeieeiieenitesteesteesieesressseeseesieesseeseesans 362
25-1. Standard StAtiSHCS VIBWS ..cc.eeruiiriieieiiieiiteeieeitesite ettt st sttt e bt e st e bt et esateebeenbeesatesnbeenseenaee 396
25-2. Statistics ACCESS FUNCLIONSccueiuiiiiiiiiiiiteiieeieee ettt ettt st ettt ebe b e 398
25-3. BUIIt-10 TTACE POINLS.eetiiiiiiiiiiiieriteet ettt ettt ettt st e sbe e bt e st ebeebeesae 402
31-1. Valid input formats for PGTYPESAate_fTOM_ASC wirrerreerierrieerieenieenieeieeenieesitessseesseesiressessseennns 493
31-2. Valid input formats for PGTYPESdate_fIE_GSC woerrerreerierieeieenieenieerieesieesteseeeieesiteeseeseenane 495
31-3. Valid input formats for rde fmEAate ..ottt 495
31-4. Valid input formats for PGTYPESt imeStamp_frOmM_aSC wiirerreereeriieerieenieenteeeeereesireeeeesseenns 496
32-1. information_schema_catalog_name COIUMNS.........ccocouiieiieiiiiieeieeiiiee et 527
32-2. administrable_role_authorizations COIUMNSooooiiiiiiiiiiiiiiiiiiceeeeeee e eeeeeeeeeeeaaaaes 527
32-3. applicable_roles COIUMNSccccccoeiiiiee ettt et e e et e e e e tar e e e e eearaeeeeeeaaaeeeeeensseeeeenn 527
32-4. attributes COIUIMIS ...cciiiiiiiiei ettt eecte e et e e e et e e e eeetbteeeeeestaseeeeeeasaseeeeessaseeseenssreeaann 528
32-5. check_constraint_routine_usage COIUMNS...........cocoviiiiieiiiiee e e 531
32-6. check consStraints COIUITINIScoeiiiieeieeeeee eeeaeaaaaan 532
32-7. column_domain_usage COIUMNScccooiiiiiiiiiiiiie ettt e e e ete e e et e eearee e 532
32-8. column_privileges COIUMISot ctee et eete e ettt e et e et e e eeteeeeeteeeeteeeebeeeeaseeeens 533
32-9. column_udt_usage COIUMIScooiiiiiiiiieiii ettt ettt e et eeete e e et e e eaeeeeteeeeaseeeeaseseens 533
32-10. columns COIUIMNScoouiiiiiieeiiieeeiee et e eete e et e e et e e eteeeetteeeetaeeeetseeetseeeaeeeessseeasseeeaseeeessesennes 534

XXXVID

32-11. constraint_column_usage COIUMNS.......cccoviiiieiiiiieeeeiiieee et eeetre e e eeearreeeeeeaareeeens 539
32-12. constraint_table_usage COIUMISccooiiiiiieiirieeeeeiieeeeeeeireeeeeeeareeeeeetreeeeeestrreeeseearaeeeens 539
32-13. data_type_privileges COIUMISc.cccccoriiiiieiireee et eeetre e e eeeree e e eeetrreeeeeetrreeeeeetrreeeens 540
32-14. domain._ constraints COIUMIIS.oouuuuuueeeee ettt e e e e e e e eeeeeeeeeaeaeeaeeaeseeseeeeeeeeasnnnnns 541
32-15. domain_udt_usage COIUMMScooiiuiieeieiiiiee et ee et e e eeetre e e e eeetareeeeeetreeeeeentnreeeseetnreeeens 541
32-16. AoMaIiNs COIUMMSoiiiiiieiiieeiiieeeiee ettt e eiteeetteesebeeesebeeessseeesseeasseesssseesssseeassseessssaessseeenssessnsses 542
32-17. element _types COIUIMNScccciiiiiiieiiiieeieeeiee et e e eiee et e et eeeebeeetaeesstaeesssaeesssseessseeensseeesses 545
32-18. enabled_ 1015 COIUIMNS ..uuuuviiiiiiiiiie ettt e e e e e e e e e e et e eeeeeeeeeeesesssssssraraereeeeeeeas 548
32-19. key_column_usage COIUMMNSccceiiiireiieeiteeeciieeeee et e et e et e e eereesseaeeessaeesssaeessseeennseeennnes 548
32-20. parameters COIUMMNSccciieiiie ettt ettt ee et e e ste e et e esebeessbeesssaeeansaeesnsaeesnseesanseesnses 549
32-21. referential_constraints COIUMNSccoooviiiiiiiiiiieie e e eeeeee s 551
32-22. role_column_grants COIUIMIS.ccciiiiiieiiiiieececieeeeeeeie e e eeetee e e e ee e e e e e eeataeeeeeearaeeeeeensnaeeeens 552
32-23. role_routine_grants COIUMISccccciieiiiiiei ettt e et eeeerae e e e eearae e e e e beeeeeeas 553
32-24. role_table_grants COIUMNS.........cociiiiiieiiiiie ettt ettt e e et e e eeaae e e e eeaaaeeeeeenaaeeeaeas 554
32-25. role_usage_grants COIUMMNS..........ooiiiiiiuiieeiie ettt e et eete e et e e et e e eaeeeeteeeeaseeeeanes 554
32-26. routine_privileges COIUMMNS. ...ttt eetee e et e et e e eaeeeeaeeeeaaeeeeanas 555
32-27. routines COIUIMMScccuiiiiiieeeiie ettt ettt et e et e e et e e eaeeeetaeeeeaaeeeetaeeeaeeeeaeseeaseeeenseeenasesenes 556
32-28. schemata COIUINISccc.oiiiiieeeiie ettt et e e et e e et e e eeaeeeetaeeeeteeseetaeeeaseeeseseeaseeeenseeeessesesees 562
32-29. sequences COIUMMNScoouiiiiiieeeiee ettt ettt e e et e e ete e e et e e eetaeeetaeeeaeeeeaeeeeseeeeaseeeessesennnes 562
32-30. sql_features COIUMINS.coiiuii it eeie ettt e eete e et e eetr e e etteeeteeeeaeeeeaseeeeaseeeeasesennnes 563
32-31. sql_implementation_info COIUMNS........ccciiiiiiiiiiiii et 564
32-32. 5q1l_1anguages COIUIIScoovviiiiiiiiiieeeeeeeee e eertee e e e eeiteeeeeeeareeeseertareeeeensaseeseesaareeeseesereeeenn 565
32-33. sq1l_packages COIUMMS........cciiiriieiieireieeeeeieeeeeeerteeeeeeetteeeeeesaaeeeseestareeeeeesaseeseesasreeeseessereeeenn 565
32-34. SA1_arts COIUIINS ...occoiiiiiiiiieiieeie ettt ettt eeete e e e eetae e e e eeeaaeeeseetareeeeenaaseeseenasreeeseesareeeenn 566
32-35. SA1_S1ZIiNG COIUMIS ..cccoitiiiiiieiiiiie e eetreee ettt e et e e e eeae e e e eeetaeeeseestareeeeeesaseeseenasreeeseessreeeenn 566
32-36. sql_s5izing_profiles COIUMISccooiiiiiiiiiriiee et eeetee e eeetre e e eear e e e eeetaeeeeeesaareeeseeaareeeenn 567
32-37. table consStraints COIUIMNS ...cooottitiiieeeeee et e e e e e e e e eeeeeeeeeaea e eeaeaaeseeeeeeeeeeeanannnns 567
32-38. table_ privileges COIUMIMS ..ottt e e eeae e e eeetre e e e eertareeeeeeaareeeeenaareeeseesnreeeenn 568
32-39. £AD15 COIUIMNS. ...eeiuiiriiieiietie sttt ettt ettt e st e st e et esbte st e esbeebeesabeesseebeesabeenseenbeesaseenseenseenses 569
32-40. triggers COIUMIS ...uvviiiieiiiieeeeiireee e eecte e e eeere e e eeetr e e e eeaeeeeeesareeeeeetsreeeeeetsseeeeenarreeeseesrreeeens 570
32-41. usage_privileges COIUMIScccccriiie et e et eeeeecte e e eeetreeeeeeetareeeeeetrreeeeenanreeeseearreeeens 571
32-42. view_column_usage COIUMNScooiiiiiiiiiiiieeeceiieeeeeeecreeeeeeetre e e eertrreeeeeetrreeeeentnreeeeeetrreeeens 572
32-43. view_routine_usage COIUIMIS.cccoiiiiieiiiriieeceiireeeeeeireeeeeeetreeeeeeetaeeeeeeetreeeeeenanreeeeeetnaeeeens 573
32-44. view_table_1usage COIUMIScccooiiuiiie et e et eeetre e e eetree e e e eetreeeeeeanreeeeeetnaeeeens 573
32-45. VieWS COIUIMMS....ccccciiiieiieeiieeeeiteeetee ettt e ettt e et e e s beeessseeessseeessseeassseessssaesssseeassseeasseaessseesnsseessses 574
33-1. Equivalent C Types for Built-In SQL TYPESc..ccceeviiriiriiiiieieieeeeseeeeeeeee e 595
33-2. B-LIEE STIALBEIESeouviuieiieiieieieeieete ettt ettt ettt ettt e e st e e s e s e e b e e e e aeeaeeaesae s e neeanenes 628
33-3. Hash STrAtEIESc.coouiiuiiiiiiieieeeeeeeee ettt ettt et s 628
33-4. GiST Two-Dimensional “R-tree” Strateiescccooirviiriiriieiiiiiiienieiieieeeeeese e 629
33-5. GIN AITAY SHEALEZICS ..c.veveveureureutetirtinteteteaeettetestestestestesteueereesesseseseestebesaesaessessenteneeseebessenseneeneenes 629
33-6. B-tree SUPPOIrt FUNCHOMS.cuoiuiiiieiietieieett ettt sttt et be et e e e sbesre et esbeeseenes 630
33-7. Hash SUppOrt FUNCHONScccuiiuiiieiiitieiieeee ettt et s be e 630
33-8. GIST SUPPOIt FUNCLOMNScoiitiiiieiietieieett ettt sttt ettt e b bt e b e 630
33-9. GIN SUppOrt FUNCHONSceeuviiiiiiiiiniiieicieeeteestestcet ettt sttt 631
43-1. SYSEIM CALALOZS ...eeeneiiiiiietieiiete ettt ettt ettt st e e s bt e et et eb e et sbe e st e sbe e bt et e e b e es e e besaeeneeeaes 1208
43-2. pg_aggregate COIUMMNS. ..ottt et e et e e et e e e teeeetteeeeaeeeeaaeeeetseeeesseeeseeas 1209
43-3. PG aM COIUIMIISuiiiiitiie ettt e ettt e et e et e e eete e e eeteeeeteeeebeseeaseeeeasseeasseseessesensseeeesseeensseseseeas 1210
43-4. pg_amop COIUIMNScc.viiieiiiieiee ettt e ettt e et e e e ete e e e bt e eeteeeeteeeeaseeeeaseseesseeeesseeensseeeseeas 1211

XXXVIii

43-5. pg_ampProC COLUITIINSuvviieiiiiiiie e et e ettt e e eeeteeeeeeetreeeeeeeteeeeeeeetreeeeeeesseeeeensareseeeensseeeeennsrees 1212

43-6. pg_attrdef COIUMIS ...vviiiieiiiee ettt ettt eeee e e e eetaeeeeeeeteeeeeeetreeeeeeetsseeeeesiaraeeeeessreeeeennsrees 1212
43-7. pg_attribute COIUMMS.ccocuviiei ittt e e et e eeetee e e e eetreeeeeeearreeeeeeearaeeeeenanseeeeeennrres 1213
43-8. pg_aUuthid COIUIMINSuvviieieiiiiie et c ettt e ettt e e eetreeeeeeeteeeeeeetreeeeeesasseeeeesiaraeeeeessreeeeennnrees 1216
43-9. pg_auth_members COIUIMIINScccoviiiiieiiiie et e ettt e eeetee e e e eetreeeeeeeareeeeeeeareeeeeesareeeeeennrees 1217
43-10. pg_autovacuum COIUINILScooiiiiiiieitiiieeeceieeeeeeeireeeeeeeteeeeeeetreeeeeeeatreeeeeeeareeeeeesnreeeeeennrees 1218
43-11. PG_CASt COIUMINS ..eccuviiieiiiiiiieecieeecite et eeete e ettt e e taeesteeessteeessseeessseaessseeensseeessseeesseesnsseessses 1219
43-12. PG_C1ass COIUIMISuiiiiiiiieiieeciieeeiteeetee e te e ettt e e steeesteeessteeeesaeesaseaessseesanseeessseeesseesssseensees 1221
43-13. pg_constraint COIUMMSc.ccccciiieiiieeciieeiee et et eeiee e et e e st e e sbeeessbeeesnseeesseeesseeesseesneens 1224
43-14. pg_conversion COIUMMSccccccieeriieeeiieeiee et et e site e et e e st e e sbeeessseeeesseeesseeesseeessaesnseens 1226
43-15. pg_database COIUMMS.........ccceeiiiieiiieeciieeiee et ete e tee e et e e e teeesbeeessbeesenseeesseeensseesnssaesnseens 1226
43-16. pg_depend COIUINIIScccoeiiiiie et e ettt e e eeete e e e eetteeeeeeetbeeeeeeetaeeeeeeassseeeeeastaseeeeassreeeeeansrens 1228
43-17. pg_description COIUMISccooiiiiiiiiiciiiee ettt e ettt e e e ettt e e e e etaeeeeeeabaeeeeesasreeeeeenrees 1230
43-18. Pg_index COIUIMNSoiiiiiiiiiie et eeeeee e et e e e e et e e e e eetteeeeeeetbeeeeeessseeeeeasraseeeesnsseneeennssees 1230
43-19. pg_inherits COIUMIS.cccociiiiiieiie ettt e st e e st e et eeabeeesabeesnsaesnneeas 1232
43-20. pg_language COIUMIS...........eiiiiiiiiie ettt e et e e e et e e e e ette e e e e eaaaeeeeesnaraeeeeensseaeeeannnees 1233
43-21. pg_largeobiect COIUIMMNSccceiiiii ittt ettt ete et e e te e e et e e eeaeeeeaaeeeeraeeeeaseeeseeas 1234
43-22. pg_listener COIUMIS.ccoiiiiiiiiiii ettt ettt e et e e et e e e teeeeateeeeaeeeeaaeeeetaeeeesseseseeas 1235
43-23. pg_namespace COIUMMS.cc...oiiiiiiiiii ettt e e et e e e aeeeetteeeeateeeetseeeetseeeesseeeseeas 1235
43-24. pg_0pclass COIUMINScouiiiiiie ettt eete et e et e e et e e ettt e e e teeeeateeeeaaeeeeaseeeesseeensseeenseeas 1236
43-25. pg_operator COIUMNS.ccuiiiiieeeiee ettt e et e e et e e e teeeetteeeeabeeeeaseeeetseeesseeensneas 1236
43-26. pg_pltemplate COIUINIS ..ccvviiiiiiieiieeceiieeee ettt e e et eeete e e e eeateeeeeeeaaeeeeeeeareeeeeenareeeeeansnees 1238
43-27. PG_TOC COIUIMMS ..cooeuvvviieieeieiieeeeieee e e ettt e e eeraee e e e eetaeeeeeeetaeeeeeesssreeseeesssseeeeessarareeeenareeeeennsrees 1239
43-28. PG_reWTITE COIUMIS ..uviiiiiiiiiiee ittt e eee e e eetreeeeeeetteeeeeeeareeeeeesaseeeeenaraeeeeenareeeeeensrees 1242
43-29. pg_shdepend COIUMIMS......cccvviii ittt eeeee e eette e eeetee e e e eetaeeeeeeesareeeeeerareeeeeenareeeeennsrees 1243
43-30. pg_shdescription COIUMMNSccoiiiiiiieiiiiee ettt eeeare e e e eetreeeeeeearaeeeeenareeeeeennnes 1244
43-31. pg_statistic COIUMMS. ...cociiiii ittt ettt eeete e e e eetreeeeeeeatreeeeeeareeeeeesareeeeeensnees 1245
43-32. pg_tablespace COIUINISccooiiiiiiiieiieieeeceeeeeeeeetteeeeeeeteeeeeeetreeeeeeeareeeeeneareeeeeenareeeeennsrnes 1247
43-33, pg_trigger COIUMIMS ...oiiiiiiiiiiei et e ettt e e eeee et e e eetaeeeeeeebeeeeeeetreeeeeeeaareeeeesiaraseeeessreeeeeensrees 1247
43-34, pG_tyPe COIUIMS ...coouvvvieeieieiee ettt e ettt e e eeete e e e eeetaeeeeeeeaeeeeeeeetreeeeeeessreeeeeeiareseeeessreeeeennsrees 1248
43-35. SYSIEIM VIBWS .uvtiruiiiiieiieiiteeieestte sttt et e it e sbtesate e bt ebeesatesabeenbtesstesabesabeebeenatesateensaensaesasesnseeseens 1255
43-36. Pg_cUTLSOTS COIUMIS ...eiiiiiiiiiiee et e e ettt e e eeeteeeeeeeetaeeeeeeeteeeeeeetreeeeeeesseeeeesiareeeeeessreeeeeannrnes 1256
43-37. pG_group COIUIIINSvviiiieiiiiiee et c ettt e eeetee e e e eeetaeeeeeeeteeeeeeeetbeeeeeeesseeeeesenraeeeeessseeeeeennrnes 1257
43-38. pg_indexes COIUIMIMSccoiiiiiei ettt e eeete et e e eetteeeeeeeteeeeeeetreeeeeeeatsaeeeeseareeeeeeasreeeeeennrees 1257
43-39. PG_10CKS COIUITIISviieeeiiieeiieeiiieeiee et ee e te e et e e eeeeesteeessteeessseeessseaesssesensseeessseeesseesnsseensses 1258
43-40. pg_prepared_statements COIUMNSccceeciieeiiieiiieeeiie e sreeesree e e er e e e ereeeereeennneas 1260
43-41. pg_prepared_xacts COIUMIScccieiiieiiieeeiteeceeesiee e et e eteeesreeesbeeesbeeesseeensseeesseesnnnens 1261
T Y e Yo oo 0] 1111013 LSS 1262
G B e Yo o DRI 1] 111513 USRS 1263
43-44, pg_settings COIUMIS.....cccouiiiiiieiiie ettt e et e et e e e e ette e e e e eeataeeeeeenraeeeeeansreeeeeennees 1264
43-45. pg_shadoWw COIUINIScocieiiiiiei ettt e e ettt e e e e et e e e e eetteeeeeeabseeeeeensraeeeeennsseeeeeasrees 1265
43-46. pg_stat s COIUIMISccoiuiiieiie ittt ettt et e ettt e et e e et e e et e e eaeeeeteeeeaaeeeeaeeeeteeeeeseeeeesseeeesnens 1265
43-47. pg_tables COIUMISccc.oiiiiie ettt et eete e e et e e et e e et eeeeaeeeeteeeeateeeeaaeeeeseeeeesseeeesseeeseeas 1267
43-48. pg_timezone_abbrevs COIUMNScccccooiiieiiiieiiee ettt et ae e eeaae e e 1268
43-49. pg_timezone_names COIUMISccciiiiiiiiiiiie ettt et ee e e e et e e et eeeaeeeeaaeeeeaaeeeeaseeereeas 1268
43-50. pg_USeT COIUIMIS ...c.uviiiiiiiiieiiieeciee ettt ettt ettt e ettt e et e e e ete e e eteeeeaeeeeseeeesteseeaaeseesseeeesseeeesseeeseens 1269
43-51. pg_vVieWs COIUIMISooiiiiiiieiie ettt eette ettt e ettt e et e e ete e e eteeeeaeeeeaeeeetseeeeaseseesseeeesseeeesseeeseeas 1269
52-1. CONLENLS OF PGDATA .eeutiiuiitieiteteeteetenteeite st ett e e st e eatestesbtete s bt este b e ebeentesbeestenbesbtenbenbeeneenbesbeensenaes 1336

XXXIX

52-2. OVErall Page LayOULcocueiiiiiieiieeieeiee sttt ettt ettt et et e st et beesaaeeabeebeesaaeenbeenseens 1339

52-3. PageHeaderData LayOUuL...........ccoouiiiiiriieiieiiieieesite ettt sttt et sttt et sate et ebeesateebeeneens 1340
52-4. HeapTupleHeaderData LayOuL.........ccovuiiiiiiiiinieiieeieeieesite sttt sttt et siae s 1341
A-1. POStEreSQL EITOT COAEScuviiiiiiieiiieiieitesite ettt ettt et ettt ettt sbt et st be e b e siteebeebeens 1351
B-1. MOnth NAMES......c.coiiiiiiiiiiiii e s 1361
B-2. Day 0f the WEek INAIMESc..cocviviiriiiiiieieieeieeetetete ettt st ettt 1361
B-3. Date/Time Field MOGIfIETS.ccc.eiriiriiiieiiteiteeieee ettt sttt sttt et e 1362
C-1. SQL KEY WOIAS ...ttt st et st e 1365
H-1. Externally Maintained Client INterfaces...........ccccooieviriiiiiiniiiiiinicecceeeeeeeeee e e 1661
H-2. Externally Maintained Procedural Languages.............ccccoceveriiiiiniiniiienieieneceeeseeeee e 1662

xl

Preface

This book is the official documentation of PostgreSQL. It is being written by the PostgreSQL develop-
ers and other volunteers in parallel to the development of the PostgreSQL software. It describes all the
functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

« Part I is an informal introduction for new users.

« Part IT documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

« Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

« Part IV describes the programming interfaces for PostgreSQL client programs.

« Part V contains information for advanced users about the extensibility capabilities of the server. Topics
are, for instance, user-defined data types and functions.

« Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

« Part VII contains assorted information that may be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2', developed at the University of California at Berkeley Computer Science Department. POST-
GRES pioneered many concepts that only became available in some commercial database systems much
later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

« complex queries

- foreign keys

. triggers

. views

- transactional integrity

« multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

« data types

1. http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/postgres.html

xli

Preface

« functions
 operators
 aggregate functions
« index methods

« procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by everyone free
of charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the POST-
GRES package written at the University of California at Berkeley. With over a decade of development
behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in The design of POSTGRES , and the definition of the initial data model appeared
in The POSTGRES data model . The design of the rule system at that time was described in The design
of the POSTGRES rules system. The rationale and architecture of the storage manager were detailed in
The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first “demoware” system became op-
erational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in The
implementation of POSTGRES , was released to a few external users in June 1989. In response to a critique
of the first rule system (A commentary on the POSTGRES rules system), the rule system was redesigned
(On Rules, Procedures, Caching and Views in Database Systems), and Version 2 was released in June
1990 with the new rule system. Version 3 appeared in 1991 and added support for multiple storage man-
agers, an improved query executor, and a rewritten rule system. For the most part, subsequent releases
until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These in-
clude: a financial data analysis system, a jet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at several universities. Finally, Illustra Information Technologies
(later merged into Informix?, which is now owned by IBM?) picked up the code and commercialized it.
In late 1992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project®.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

xlii

Preface

devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin
Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

+ The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries were
not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with user-defined
SQL functions. Aggregate functions were re-implemented. Support for the GROUP BY query clause was
also added.

« A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

« A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

+ The large-object interface was overhauled. The inversion large objects were the only mechanism for
storing large objects. (The inversion file system was removed.)

+ The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent ver-
sions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continues in all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

xliii

Preface

3. Conventions

This book uses the following typographical conventions to mark certain portions of text: new terms,
foreign phrases, and other important passages are emphasized in ifalics. Everything that represents in-
put or output of the computer, in particular commands, program code, and screen output, is shown in a
monospaced font (example). Within such passages, italics (example) indicate placeholders; you must
insert an actual value instead of the placeholder. On occasion, parts of program code are emphasized in
bold face (example), if they have been added or changed since the preceding example.

The following conventions are used in the synopsis of a command: brackets ([and 1) indicate optional
parts. (In the synopsis of a Tcl command, question marks () are used instead, as is usual in Tcl.) Braces
({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. . .) mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL:

FAQs

The FAQ list contains continuously updated answers to frequently asked questions.
READMEs

README files are available for most contributed packages.
Web Site

The PostgreSQL web site” carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists
The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing sup-
port. As you begin to use PostgreSQL, you will rely on others for help, either through the documen-
tation or through the mailing lists. Consider contributing your knowledge back. Read the mailing
lists and answer questions. If you learn something which is not in the documentation, write it up and
contribute it. If you add features to the code, contribute them.

5. http://www.postgresql.org

xliv

Preface

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer
version to see if the bug happens there. Or we might decide that the bug cannot be fixed before some
major rewrite we might be planning is done. Or perhaps it is simply too hard and there are more important
things on the agenda. If you need help immediately, consider obtaining a commercial support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

+ A program terminates with a fatal signal or an operating system error message that would point to a
problem in the program. (A counterexample might be a “disk full” message, since you have to fix that
yourself.)

« A program produces the wrong output for any given input.
+ A program refuses to accept valid input (as defined in the documentation).

+ A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

« PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not necessarily
a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.
If you are not familiar with the implementation you would probably guess wrong and not help us a bit.

xly

Preface

And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare facts is relatively
straightforward (you can probably copy and paste them from the screen) but all too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

« The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding CREATE
TABLE and INSERT statements, if the output should depend on the data in the tables. We do not have
the time to reverse-engineer your database schema, and if we are supposed to make up our own data we
would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqglrc start-up file.) An
easy start at this file is to use pg_dump to dump out the table declarations and data needed to set the
scene, then add the problem query. You are encouraged to minimize the size of your example, but this
is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files; do not guess that the problem happens for “large files” or “midsize
databases”, etc. since this information is too inexact to be of use.

+ The output you got. Please do not say that it “didn’t work™ or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from the
terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the message.
In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message from the
server log, set the run-time parameter log_error_verbosity to verbose so that all details are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not keep
your server’s log output, this would be a good time to start doing so.

« The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the exact
semantics behind your commands. Especially refrain from merely saying that “This is not what SQL
says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking, nor do we all
know how all the other relational databases out there behave. (If your problem is a program crash, you
can obviously omit this item.)

xlvi

Preface

+ Any command line options and other start-up options, including any relevant environment variables or
configuration files that you changed from the default. Again, please provide exact information. If you
are using a prepackaged distribution that starts the database server at boot time, you should try to find
out how that is done.

« Anything you did at all differently from the installation instructions.

+ The PostgreSQL version. You can run the command SELECT version (); to find out the version of
the server you are connected to. Most executable programs also support a ——version option; at least
postgres —-versionand psql --version should work. If the function or the options do not exist
then your version is more than old enough to warrant an upgrade. If you run a prepackaged version,
such as RPMs, say so, including any subversion the package may have. If you are talking about a CVS
snapshot, mention that, including its date and time.

If your version is older than 8.2.10 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered in
an older release of PostgreSQL has already been fixed. We can only provide limited support for sites
using older releases of PostgreSQL; if you require more than we can provide, consider acquiring a
commercial support contract.

+ Platform information. This includes the kernel name and version, C library, processor, memory infor-
mation, and so on. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly “Debian” contains or that everyone runs on Pentiums. If you have instal-
lation problems then information about the toolchain on your machine (compiler, make, and so on) is
also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article®
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This will
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have time
to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL”, sometimes ‘“Postgres” for short. If you are specifically talking about the backend server,
mention that, do not just say “PostgreSQL crashes”. A crash of a single backend server process is quite
different from crash of the parent “postgres” process; please don’t say “the server crashed” when you
mean a single backend process went down, nor vice versa. Also, client programs such as the interactive
frontend “psql” are completely separate from the backend. Please try to be specific about whether the
problem is on the client or server side.

5.3. Where to report bugs

In general, send bug reports to the bug report mailing list at <pgsql-bugs@postgresgl.org>. You are
requested to use a descriptive subject for your email message, perhaps parts of the error message.

6. http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

xlvii

Preface

Another method is to fill in the bug report web-form available at the project’s web site’. Entering a bug
report this way causes it to be mailed to the <pgsgl-bugs@postgresqgl . org> mailing list.

If your bug report has security implications and you’d prefer that it not become immediately visible
in public archives, don’t send it to pgsgl-bugs. Security issues can be reported privately to
<security@postgresqgl.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsgl-sgl@postgresqgl.org> or
<pgsgl-general@postgresql.org>. These mailing lists are for answering user questions, and their
subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to fix them.

Also, please do not send reports to the developers’ mailing list <pgsgl-hackers@postgresgl.org>.
This list is for discussing the development of PostgreSQL, and it would be nice if we could keep the bug
reports separate. We might choose to take up a discussion about your bug report on pgsgl-hackers, if
the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@postgresqgl .org>. Please be specific about what part of the documentation you are
unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsqgl-ports@postgresqgl.org>, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses are
closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it. (You need
not be subscribed to use the bug-report web form, however.) If you would like to send mail but do not
want to receive list traffic, you can subscribe and set your subscription option to nomail. For more
information send mail t0 <majordomo@postgresql.org> with the single word help in the body of the
message.

7. http://www.postgresql.org/

xlviii

l. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduc-
tion to PostgreSQL, relational database concepts, and the SQL language to those who are new to any one
of these aspects. We only assume some general knowledge about how to use computers. No particular
Unix or programming experience is required. This part is mainly intended to give you some hands-on
experience with important aspects of the PostgreSQL system. It makes no attempt to be a complete or
thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a more
formal knowledge of the SQL language, or Part IV for information about developing applications for
PostgreSQL. Those who set up and manage their own server should also read Part II1.

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your experimen-
tation then you can install it yourself. Doing so is not hard and it can be a good exercise. PostgreSQL can
be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 14 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set things up in the default way, you may have some more work to do. For
example, if the database server machine is a remote machine, you will need to set the PGHOST environment
variable to the name of the database server machine. The environment variable PGPORT may also have to
be set. The bottom line is this: if you try to start an application program and it complains that it cannot
connect to the database, you should consult your site administrator or, if that is you, the documentation
to make sure that your environment is properly set up. If you did not understand the preceding paragraph
then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding how
the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the follow-
ing cooperating processes (programs):

+ A server process, which manages the database files, accepts connections to the database from client
applications, and performs actions on the database on behalf of the clients. The database server program
is called postgres.

« The user’s client (frontend) application that wants to perform database operations. Client applications
can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a web server
that accesses the database to display web pages, or a specialized database maintenance tool. Some client
applications are supplied with the PostgreSQL distribution; most are developed by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files that
can be accessed on a client machine might not be accessible (or might only be accessible using a different
file name) on the database server machine.

Chapter 1. Getting Started

The PostgreSQL server can handle multiple concurrent connections from clients. For that purpose it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original postgres process. Thus, the master server process is
always running, waiting for client connections, whereas client and associated server processes come and
go. (All of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project or
for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:
$ createdb mydb
This should produce as response:

CREATE DATABASE

If so, this step was successful and you can skip over the remainder of this section.

If you see a message similar to

createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or the search path was not set
correctly. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb
The path at your site might be different. Contact your site administrator or check back in the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such file
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again, check
the installation instructions or consult the administrator.

Another response could be this:
createdb: could not connect to database postgres: FATAL: role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a Post-
greSQL user account for you. (PostgreSQL user accounts are distinct from operating system user ac-
counts.) If you are the administrator, see Chapter 18 for help creating accounts. You will need to become

Chapter 1. Getting Started

the operating system user under which PostgreSQL was installed (usually postgres) to create the first
user account. It could also be that you were assigned a PostgreSQL user name that is different from your
operating system user name; in that case you need to use the —U switch or set the PGUSER environment
variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will see
the following:

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases for
you then the site administrator needs to grant you permission to create databases. Consult your site ad-
ministrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes of
this tutorial under the user account that you started the server as. '

You can also create databases with other names. PostgreSQL allows you to create any number of databases
at a given site. Database names must have an alphabetic first character and are limited to 63 characters in
length. A convenient choice is to create a database with the same name as your current user name. Many
tools assume that database name as the default, so it can save you some typing. To create that database,

simply type

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone, so
this should only be done with a great deal of forethought.

More about createdb and dropdb may be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

« Running the PostgreSQL interactive terminal program, called psql, which allows you to interactively
enter, edit, and execute SQL commands.

- Using an existing graphical frontend tool like PgAccess or an office suite with ODBC support to create
and manipulate a database. These possibilities are not covered in this tutorial.

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you
connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same name
as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the same name
as the operating system user that started the server, and it also happens that that user always has permission to create databases.
Instead of logging in as that user you can also specify the —U option everywhere to select a PostgreSQL user name to connect as.

Chapter 1. Getting Started

« Writing a custom application, using one of the several available language bindings. These possibilities
are discussed further in Part I'V.

You probably want to start up psql, to try out the examples in this tutorial. It can be activated for the
mydb database by typing the command:

$ psql mydb

If you leave off the database name then it will default to your user account name. You already discovered
this scheme in the previous section.

In psql, you will be greeted with the following message:

Welcome to psgl 8.2.10, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help with psgl commands
\g or terminate with semicolon to execute query
\g to quit

mydb=>
The last line could also be
mydb=4#

That would mean you are a database superuser, which is most likely the case if you installed PostgreSQL
yourself. Being a superuser means that you are not subject to access controls. For the purposes of this
tutorial that is not of importance.

If you encounter problems starting psqgl then go back to the previous section. The diagnostics of
createdb and psqgl are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that you
can type SQL queries into a work space maintained by psqgl. Try out these commands:

mydb=> SELECT version();

version

PostgreSQL 8.2.10 on i586-pc-linux-gnu, compiled by GCC 2.96
(1 row)

mydb=> SELECT current_date;
date

2002-08-31
(1 row)

mydb=> SELECT 2 + 2;
?column?

Chapter 1. Getting Started

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. Some of these commands were listed in the welcome message. For example,
you can get help on the syntax of various PostgreSQL SQL commands by typing:

mydb=> \h

To get out of psql, type
mydb=> \q

and psgl will quit and return you to your command shell. (For more internal commands, type \? at the
psql prompt.) The full capabilities of psql are documented in psql. If PostgreSQL is installed correctly
you can also type man psql at the operating system shell prompt to see the documentation. In this tutorial
we will not use these features explicitly, but you can use them yourself when you see fit.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books have
been written on SQL, including Understanding the New SQL and A Guide to the SQL Standard. You
should be aware that some PostgreSQL language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described in the
previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/. To use those files, first change to that directory and run make:

$ ed/src/tutorial
S make

This creates the scripts and compiles the C files containing user-defined functions and types. (If you
installed a pre-packaged version of PostgreSQL rather than building from source, look for a directory
named tutorial within the PostgreSQL documentation. The “make” part should already have been
done for you.) Then, to start the tutorial, do the following:

S ed/tutorial
$ psql -s mydb

mydb=> \i basics.sql

The \i command reads in commands from the specified file. The s option puts you in single step mode
which pauses before sending each statement to the server. The commands used in this section are in the
file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for man-
aging data stored in relations. Relation is essentially a mathematical term for fable. The notion of storing
data in tables is so commonplace today that it might seem inherently obvious, but there are a number of
other ways of organizing databases. Files and directories on Unix-like operating systems form an example
of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although they
can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

Chapter 2. The SQL Language

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)

You can enter this into psgl with the line breaks. psgl will recognize that the command is not terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) may be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“--") introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
int is the normal integer type. real is a type for storing single precision floating-point numbers. date
should be self-explanatory. (Yes, the column of type date is also named date. This may be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision, char (N),
varchar (N), date, time, timestamp, and interval, as well as other types of general utility and a
rich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-defined data
types. Consequently, type names are not syntactical key words, except where required to support special
cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, 71994-11-27");

Chapter 2. The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (), as in the example. The date type is actually quite flexible
in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)");

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, 71994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the precipi-
tation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, 'Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter all the commands shown above so you have some data to work with in the following sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually faster
because the copYy command is optimized for this application while allowing less flexibility than INSERT.
An example would be:

COPY weather FROM ’ /home/user/weather.txt’;

where the file name for the source file must be available to the backend server machine, not the client,
since the backend server reads the file directly. You can read more about the CopY command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the part
that lists the tables from which to retrieve the data), and an optional qualification (the part that specifies
any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;
Here = is a shorthand for “all columns”. ! So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

1. While seLECT = is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column
to the table would change the results.

Chapter 2. The SQL Language

city | temp_lo | temp_hi | prcp | date
777777777777777 B mman s T
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward \ 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

city | temp_avg | date
_______________ o
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT x FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:

San Francisco
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
——————————————— B S
Hayward \ 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in either
order. But you’d always get the results shown above if you do

Chapter 2. The SQL Language

SELECT » FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT and
ORDER BY together: 2

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once, or
access the same table in such a way that multiple rows of the table are being processed at the same time.
A query that accesses multiple rows of the same or different tables at one time is called a join query. As
an example, say you wish to list all the weather records together with the location of the associated city.
To do that, we need to compare the city column of each row of the weather table with the name column
of all rows in the cities table, and select the pairs of rows where these values match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner than
actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:
SELECT =*

FROM weather, cities
WHERE city = name;

city | temp_lo | temp_hi | prcp | date | name | location
777777777777777 B R S S e At

San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)

San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(2 rows)

2. Insome database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders the
rows and so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL doesn’t guarantee
that DISTINCT causes the rows to be ordered.

10

Chapter 2. The SQL Language

Observe two things about the result set:

« There is no result row for the city of Hayward. This is because there is no matching entry in the cities
table for Hayward, so the join ignores the unmatched rows in the weather table. We will see shortly how
this can be fixed.

+ There are two columns containing the city name. This is correct because the lists of columns of the
weather and the cities table are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to find out the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found out which table they belong to.
If there were duplicate column names in the two tables you’d need to gualify the column names to show
which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won’t fail
if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT «
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan the weather table and for each row to find the matching cities row(s). If no matching row is
found we want some “empty values” to be substituted for the cities table’s columns. This kind of query
is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— Bt E e sttt
Hayward \ 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

11

Chapter 2. The SQL Language

This query is called a left outer join because the table mentioned on the left of the join operator will have
each of its rows in the output at least once, whereas the table on the right will only have those rows output
that match some row of the left table. When outputting a left-table row for which there is no right-table
match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to find
all the weather records that are in the temperature range of other weather records. So we need to compare
the temp_1lo and temp_hi columns of each weather row to the temp_1lo and temp_hi columns of all
other weather rows. We can do this with the following query:

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather W1, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— Bt T e et e et
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as W1 and w2 to be able to distinguish the left and right side of
the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT =«
FROM weather w, cities c
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to compute
the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with

SELECT max (temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try

12

Chapter 2. The SQL Language

SELECT city FROM weather WHERE temp_lo = max(temp_1lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation; so
obviously it has to be evaluated before aggregate functions are computed.) However, as is often the case
the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather

WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

San Francisco
(1 row)
This is OK because the subquery is an independent computation that computes its own aggregate sepa-
rately from what is happening in the outer query.
Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the

maximum low temperature observed in each city with

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

city | max
,,,,,,,,,,,,,,, b
Hayward | 37
San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching

that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

cilty | max
_________ IS
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_10 values below 40. Finally, if we

only care about cities whose names begin with “s”, we might do

SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE ’'S%'®
GROUP BY city
HAVING max (temp_lo) < 40;

13

Chapter 2. The SQL Language

O The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL’s WHERE and HAVING clauses.
The fundamental difference between WHERE and HAVING is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVING selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVING clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVING clause that doesn’t use aggregates, but it’s seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature readings
are all off by 2 degrees after November 28. You may correct the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > 71994-11-28';

Look at the new state of the data:

SELECT = FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— Bt B s mattt el S
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’'Hayward’;

All weather records belonging to Hayward are removed.

14

SELECT x FROM weather;

city | temp_lo | temp_hi
,,,,,,,,,,,,,,, e

San Francisco | 46 | 50

San Francisco | 41 | 55

(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Chapter 2. The SQL Language

| prcp | date
Fm———— Fmm
| 0.25 | 1994-11-27
| 0 | 1994-11-29

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system

will not request confirmation before doing this!

15

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in Post-
greSQL. We will now discuss some more advanced features of SQL that simplify management and prevent
loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will
be of advantage if you have read that chapter. Some examples from this chapter can also be found in
advanced. sql in the tutorial directory. This file also contains some example data to load, which is not
repeated here. (Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city location
is of particular interest to your application, but you do not want to type the query each time you need it.
You can create a view over the query, which gives a name to the query that you can refer to like an ordinary
table.

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsulate
the details of the structure of your tables, which may change as your application evolves, behind consistent
interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want to
make sure that no one can insert rows in the weather table that do not have a matching entry in the
cities table. This is called maintaining the referential integrity of your data. In simplistic database
systems this would be implemented (if at all) by first looking at the cities table to check if a matching
record exists, and then inserting or rejecting the new weather records. This approach has a number of
problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

16

Chapter 3. Advanced Features

CREATE TABLE cities (
city varchar (80) primary key,
location point

)i

CREATE TABLE weather (
city varchar (80) references cities(city),
temp_1lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:
INSERT INTO weather VALUES (’'Berkeley’, 45, 53, 0.0, ’1994-11-28");

ERROR: 1insert or update on table "weather" violates foreign key constraint "weather_city_f
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of foreign
keys will definitely improve the quality of your database applications, so you are strongly encouraged to
learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is that
it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between the steps
are not visible to other concurrent transactions, and if some failure occurs that prevents the transaction
from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice’s
account to Bob’s account. Simplifying outrageously, the SQL commands for this might look like

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several separate
updates involved to accomplish this rather simple operation. Our bank’s officers will want to be assured
that either all these updates happen, or none of them happen. It would certainly not do for a system failure

17

Chapter 3. Advanced Features

to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long remain a happy
customer if she was debited without Bob being credited. We need a guarantee that if something goes
wrong partway through the operation, none of the steps executed so far will take effect. Grouping the
updates into a transaction gives us this guarantee. A transaction is said to be atomic: from the point of
view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database system,
it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly thereafter. For
example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit to
his account will disappear in a crash just after he walks out the bank door. A transactional database
guarantees that all the updates made by a transaction are logged in permanent storage (i.e., on disk) before
the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it would
not do for it to include the debit from Alice’s branch but not the credit to Bob’s branch, nor vice versa.
So transactions must be all-or-nothing not only in terms of their permanent effect on the database, but
also in terms of their visibility as they happen. The updates made so far by an open transaction are in-
visible to other transactions until the transaction completes, whereupon all the updates become visible
simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with BEGIN
and COMMIT commands. So our banking transaction would actually look like

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

-— etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not is-
sue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful) COMMIT
wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes called a trans-
action block.

Note: Some client libraries issue BEGIN and comMIT commands automatically, so that you may get the
effect of transaction blocks without asking. Check the documentation for the interface you are using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of save-
points. Savepoints allow you to selectively discard parts of the transaction, while committing the rest.
After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with ROLLBACK
TO. All the transaction’s database changes between defining the savepoint and rolling back to it are dis-
carded, but changes earlier than the savepoint are kept.

18

Chapter 3. Advanced Features

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions. When
and if you commit the transaction block, the committed actions become visible as a unit to other sessions,
while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s ac-
count, only to find later that we should have credited Wally’s account. We could do it using savepoints
like this:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;

—-— oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = "Wally’;

COMMIT;

This example is, of course, oversimplified, but there’s a lot of control to be had over a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transaction
block that was put in aborted state by the system due to an error, short of rolling it back completely and
starting again.

3.5. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you’re really clever you might
invent some scheme like this:

CREATE TABLE capitals (

name text,

population real,

altitude int, -— (in ft)
state char (2)

)i

CREATE TABLE non_capitals (
name text,
population real,
altitude int -— (in ft)

19

Chapter 3. Advanced Features

)

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (

name text,
population real,
altitude int -— (in ft)

)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and altitude) from its
parent, cities. The type of the column name is text, a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL, a
table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located at
an altitude over 500 ft.:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
,,,,,,,,,,, b
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude of 500 ft. or higher:

SELECT name, altitude
FROM ONLY cities

WHERE altitude > 500;

name | altitude

20

Chapter 3. Advanced Features

Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the oNLY before cities indicates that the query should be run over only the cities table, and not
tables below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.8 for more detail.

3.6. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site' for links to more
resources.

1. http://www.postgresql.org

21

Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database, and
how to query it. The middle part lists the available data types and functions for use in SQL commands.
The rest treats several aspects that are important for tuning a database for optimal performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full un-
derstanding of the topics without having to refer forward too many times. The chapters are intended to be
self-contained, so that advanced users can read the chapters individually as they choose. The information
in this part is presented in a narrative fashion in topical units. Readers looking for a complete description
of a particular command should look into Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following chapters
which will go into detail about how the SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because there are
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens, ter-
TRL

minated by a semicolon (*;”). The end of the input stream also terminates a command. Which tokens are
valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT % FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’'hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one command
can be on a line, and commands can usefully be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
INSERT also requires a VALUES in order to be complete. The precise syntax rules for each command are
described in Part VI.

4.1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is,
words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of
identifiers. They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names”. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether a token is an identifier or a key word
without knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according

24

Chapter 4. SQL Syntax

to the letter of the SQL standard, so their use may render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 characters of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
length is 63. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant in

src/include/postgres_ext.h

Identifier and key word names are case insensitive. Therefore

UPDATE MY_TABLE SET A = 5;

can equivalently be written as

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.,

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "select" could be used to refer to a column or table named “select”, whereas an
unquoted select would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers F0OO, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "FOO" are different from these three and each other. (The folding of unquoted names to lower
case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the standard. If
you want to write portable applications you are advised to always quote a particular name or never quote
it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL.: strings, bit strings, and numbers. Con-
stants can also be specified with explicit types, which can enable more accurate representation and more
efficient handling by the system. These alternatives are discussed in the following subsections.

25

Chapter 4. SQL Syntax

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (”), for example
"This is a string’. To include a single-quote character within a string constant, write two adjacent
single quotes, e.g. ' Dianne”s horse’. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated and
effectively treated as if the string had been written as one constant. For example:

SELECT '’ foo’
"bar’;

is equivalent to
SELECT ' foobar’;
but

SELECT ' foo’ "bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter E (upper or lower case) just before the opening
single quote, e.g. E’ foo’. (When continuing an escape string constant across lines, write E only before
the first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash
escape sequence, in which the combination of backslash and following character(s) represents a special
byte value. \b is a backspace, \f is a form feed, \n is a newline, \r is a carriage return, \t is a tab.
Also supported are \digits, where digits represents an octal byte value, and \xhexdigits, where
hexdigits represents a hexadecimal byte value. (It is your responsibility that the byte sequences you
create are valid characters in the server character set encoding.) Any other character following a backslash
is taken literally. Thus, to include a backslash character, write two backslashes (\\). Also, a single quote
can be included in an escape string by writing \’, in addition to the normal way of ”.

Caution

If the configuration parameter standard_conforming_strings is off, then
PostgreSQL recognizes backslash escapes in both regular and escape
string constants. This is for backward compatibility with the historical
behavior, in which backslash escapes were always recognized. Although
standard_conforming_strings currently defaults to off, the default will change
to on in a future release for improved standards compliance. Applications are
therefore encouraged to migrate away from using backslash escapes. If you need
to use a backslash escape to represent a special character, write the constant with
an E to be sure it will be handled the same way in future releases.

In addition t0 standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes in
string constants.

The character with the code zero cannot be in a string constant.

26

Chapter 4. SQL Syntax

4.1.2.2. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to un-
derstand when the desired string contains many single quotes or backslashes, since each of those must
be doubled. To allow more readable queries in such situations, PostgreSQL provides another way, called
“dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($),
an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that
makes up the string content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “Dianne’s horse” using dollar quoting:

$$Dianne’s horsess
$SomeTag$Dianne’s horse$SomeTags$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This is
most commonly used in writing function definitions. For example:

Sfunction$
BEGIN
RETURN ($1 ~ $gS[\t\r\n\v\\]1$q$);
END;
Sfunction$

Here, the sequence $gs[\t\r\n\v\\1sqg$ represents a dollar-quoted literal string [\t\r\n\v\\1,
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter $functions$, it is just some more characters within the
constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain a dollar sign. Tags are case sensitive, SO tagString contenttag is correct, but
$TAGS$String contenttag is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when representing
string constants inside other constants, as is often needed in procedural function definitions. With single-
quote syntax, each backslash in the above example would have to be written as four backslashes, which
would be reduced to two backslashes in parsing the original string constant, and then to one when the
inner string constant is re-parsed during function execution.

4.1.2.3. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B/ 1001’ . The only characters allowed within bit-
string constants are 0 and 1.

27

Chapter 4. SQL Syntax

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper or
lower case), e.g., X’ 1FF’. This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string constants.
Dollar quoting cannot be used in a bit-string constant.

4.1.2.4. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits. [digits] [e[+-]1digits]
[digits] .digits[e[+-]digits]
digitse[+-]digits

where digits is one or more decimal digits (O through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.
There may not be any spaces or other characters embedded in the constant. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be type
integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint if its value
fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that contain decimal
points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution algo-
rithms. In most cases the constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force a numeric value to be treated as type real (float4) by writing

REAL ’1.23" —-- string style
1.23::REAL —— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

28

Chapter 4. SQL Syntax

4.1.2.5. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type ' string’
! string’ ::type
CAST ("string’ AS type)

The string constant’s text is passed to the input conversion routine for the type called ¢ ype. The result is
a constant of the indicated type. The explicit type cast may be omitted if there is no ambiguity as to the
type the constant must be (for example, when it is assigned directly to a table column), in which case it is
automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string’)

but not all type names may be used in this way; see Section 4.2.8 for details.

The ::, CAST (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.8. But the form type ’string’ can only be used to
specify the type of a literal constant. Another restriction on type ’string’ is that it does not work for
array types; use : : or CAST () to specify the type of an array constant.

The casT () syntax conforms to SQL. The type ’string’ syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with : : is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following
list:

+-F/<>=~1@# D "&I"?

There are a few restrictions on operator names, however:

+ —-and /x cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

« A multiple-character operator name cannot end in + or —, unless the name also contains at least one of
these characters:

~l@#DP N&I?

For example, @- is an allowed operator name, but »- is not. This restriction allows PostgreSQL to parse
SQL-compliant queries without requiring spaces between tokens.

29

Chapter 4. SQL Syntax

When working with non-SQL-standard operator names, you will usually need to separate adjacent opera-
tors with spaces to avoid ambiguity. For example, if you have defined a left unary operator named @, you
cannot write X+@Y; you must write X« @Y to ensure that PostgreSQL reads it as two operator names not
one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This
section only exists to advise the existence and summarize the purposes of these characters.

« A dollar sign (s) followed by digits is used to represent a positional parameter in the body of a function
definition or a prepared statement. In other contexts the dollar sign may be part of an identifier or a
dollar-quoted string constant.

« Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets ([1) are used to select the elements of an array. See Section 8.10 for more information on
arrays.

« Commas (,) are used in some syntactical constructs to separate the elements of a list.

« The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command, except
within a string constant or quoted identifier.

« The colon (:) is used to select “slices” from arrays. (See Section 8.10.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

+ The asterisk (+) is used in some contexts to denote all the fields of a table row or composite value. It also
has a special meaning when used as the argument of an aggregate function, namely that the aggregate
does not require any explicit parameter.

« The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is an arbitrary sequence of characters beginning with double dashes and extending to the end
of the line, e.g.:

—— This 1is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment =/

*/

30

Chapter 4. SQL Syntax

where the comment begins with /+ and extends to the matching occurrence of «/. These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that may contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced by
whitespace.

4.1.6. Lexical Precedence

Table 4-1 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser. This may lead to non-intuitive behavior; for example the Boolean operators < and
> have a different precedence than the Boolean operators <= and >=. Also, you will sometimes need to
add parentheses when using combinations of binary and unary operators. For instance

SELECT 5 ! - 6;
will be parsed as
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4-1. Operator Precedence (decreasing)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast

[] left array element selection

- right unary minus

~ left exponentiation

x /% left multiplication, division, modulo

+ - left addition, subtraction

Is IS TRUE, IS FALSE, IS

UNKNOWN, IS NULL

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defined
operators

IN set membership

BETWEEN range containment

31

Chapter 4. SQL Syntax

Operator/Element Associativity Description
OVERLAPS time interval overlap
LIKE ILIKE SIMILAR string pattern matching
<> less than, greater than
= right equality, assignment
NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a “+” operator for some custom data
type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in
SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4-1 for “any other” oper-
ator. This is true no matter which specific operator name appears inside OPERATOR () .

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table ex-
pression (which is a table). Value expressions are therefore also called scalar expressions (or even simply
expressions). The expression syntax allows the calculation of values from primitive parts using arithmetic,
logical, set, and other operations.

A value expression is one of the following:

+ A constant or literal value.

+ A column reference.

+ A positional parameter reference, in the body of a function definition or prepared statement.
« A subscripted expression.

A field selection expression.

« An operator invocation.

A function call.

+ An aggregate expression.

- A type cast.

+ A scalar subquery.

« An array constructor.

32

Chapter 4. SQL Syntax

« A row constructor.

« Another value expression in parentheses, useful to group subexpressions and override precedence.

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and are
explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining op-
tions.

4.2.1. Column References

A column can be referenced in the form

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause, or one of the key words NEW or OLD. (NEW and OLD can only appear in
rewrite rules, while other correlation names can be used in any SQL statement.) The correlation name and
separating dot may be omitted if the column name is unique across all the tables being used in the current
query. (See also Chapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL statement.
Parameters are used in SQL function definitions and in prepared queries. Some client libraries also support
specifying data values separately from the SQL command string, in which case parameters are used to
refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as
CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

33

Chapter 4. SQL Syntax

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expression|subscript]
or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|lower_subscript:upper_subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which
must yield an integer value.

In general the array expression must be parenthesized, but the parentheses may be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example,
mytable.arraycolumn[4]

mytable.two_d_column([17] [34]

$1[10:42]

(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.10 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fieldname

In general the row expression must be parenthesized, but the parentheses may be omitted when the
expression to be selected from is just a table reference or positional parameter. For example,

mytable.mycolumn
$1.somecolumn

(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.)

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

34

Chapter 4. SQL Syntax

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND, OR,
and NOT, or is a qualified operator name in the form

OPERATOR (schema. operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function ([expression [, expression ... 1])

For example, the following computes the square root of 2:

sqrt (2)

The list of built-in functions is in Chapter 9. Other functions may be added by the user.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected by a
query. An aggregate function reduces multiple inputs to a single output value, such as the sum or average
of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ... 1)

(
aggregate_name (ALL expression [, ... 1)
aggregate_name (DISTINCT expression [, ... 1)
aggregate_name (*x)

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name), and

expression is any value expression that does not itself contain an aggregate expression.

The first form of aggregate expression invokes the aggregate across all input rows for which the given
expression(s) yield non-null values. (Actually, it is up to the aggregate function whether to ignore null
values or not — but all the standard ones do.) The second form is the same as the first, since ALL is the
default. The third form invokes the aggregate for all distinct non-null values of the expressions found in
the input rows. The last form invokes the aggregate once for each input row regardless of null or non-null
values; since no particular input value is specified, it is generally only useful for the count () aggregate
function.

For example, count («) yields the total number of input rows; count (£1) yields the number of input
rows in which £1 is non-null; count (distinct £1) yields the number of distinct non-null values of
f1.

35

Chapter 4. SQL Syntax

The predefined aggregate functions are described in Section 9.15. Other aggregate functions may be added
by the user.

An aggregate expression may only appear in the result list or HAVING clause of a SELECT command. It is
forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the results
of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.9 and Section 9.16), the aggregate
is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s arguments
contain only outer-level variables: the aggregate then belongs to the nearest such outer level, and is eval-
uated over the rows of that query. The aggregate expression as a whole is then an outer reference for the
subquery it appears in, and acts as a constant over any one evaluation of that subquery. The restriction
about appearing only in the result list or HAVING clause applies with respect to the query level that the
aggregate belongs to.

Note: PostgreSQL currently does not support prsTINCT with more than one input expression.

4.2.8. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The casT syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion. The
cast will succeed only if a suitable type conversion operation has been defined. Notice that this is subtly
different from the use of casts with constants, as shown in Section 4.1.2.5. A cast applied to an unadorned
string literal represents the initial assignment of a type to a literal constant value, and so it will succeed
for any type (if the contents of the string literal are acceptable input syntax for the data type).

An explicit type cast may usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example, double
precision can’t be used this way, but the equivalent £1oat8 can. Also, the names interval, time,
and t imestamp can only be used in this fashion if they are double-quoted, because of syntactic conflicts.
Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably be avoided
in new applications. (The function-like syntax is in fact just a function call. When one of the two standard
cast syntaxes is used to do a run-time conversion, it will internally invoke a registered function to perform

36

Chapter 4. SQL Syntax

the conversion. By convention, these conversion functions have the same name as their output type, and
thus the “function-like syntax” is nothing more than a direct invocation of the underlying conversion
function. Obviously, this is not something that a portable application should rely on.)

4.2.9. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that returns
more than one row or more than one column as a scalar subquery. (But if, during a particular execution,
the subquery returns no rows, there is no error; the scalar result is taken to be null.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of the
subquery. See also Section 9.16 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.10. Array Constructors

An array constructor is an expression that builds an array value from values for its member elements. A
simple array constructor consists of the key word ARRAY, a left square bracket [, one or more expressions
(separated by commas) for the array element values, and finally a right square bracket]. For example,

SELECT ARRAY[1,2,3+4];

The array element type is the common type of the member expressions, determined using the same rules
as for UNION or CASE constructs (see Section 10.5).

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the
key word ARRAY may be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1l,2], ARRAY[3,4]1];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],([3,411;

{{1,2},{3,4}}
(1 row)

37

Chapter 4. SQL Syntax

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(fl int[], £2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],[3,41], ARRAY[[5,6]1,1[7,8]1);

SELECT ARRAY[fl, £2, "{{9,10},{11,12}}’::int[]] FROM arr;
array

{4{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE ’'bytea%’);
?column?

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}
(1 row)

The subquery must return a single column. The resulting one-dimensional array will have an element for
each row in the subquery result, with an element type matching that of the subquery’s output column.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.10.

4.2.11. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) from values
for its member fields. A row constructor consists of the key word RoOW, a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example,

SELECT ROW(1,2.5,"this is a test’);

The key word rRoW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue.«, which will be expanded to a list of the elements
of the row value, just as occurs when the . x syntax is used at the top level of a SELECT list. For example,
if table t has columns f1 and f£2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.fl, t.f2, 42) FROM t;

38

Chapter 4. SQL Syntax

Note: Before PostgreSQL 8.2, the . « syntax was not expanded, so that writing row (t . «, 42) created
a two-field row whose first field was another row value. The new behavior is usually more useful. If you
need the old behavior of nested row values, write the inner row value without . «, for instance row (t,

42).

By default, the value created by a Row expression is of an anonymous record type. If necessary, it can

be

cast to a named composite type — either the row type of a table, or a composite type created with CREATE

TYPE AS. An explicit cast may be needed to avoid ambiguity. For example:

CREATE TABLE mytable(fl int, f2 float, £f3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;

—— No cast needed since only one getfl() exists
SELECT getfl (ROW(1,2.5,"this is a test’));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (fl1 int, f2 text, £f3 numeric);

CREATE FUNCTION getfl (myrowtype) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;

—-— Now we need a cast to indicate which function to call:
SELECT getfl (ROW(1,2.5,’this is a test’));
ERROR: function getfl (record) is not unique

SELECT getfl (ROW(1l,2.5,"this is a test’)::mytable);
getfl

getfl

Row constructors can be used to build composite values to be stored in a composite-type table column,

or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row

values or test a row with IS NULL or IS NOT NULL, for example
SELECT ROW(1,2.5,"this is a test’) = ROW(1l, 3, ’'not the same’);
SELECT ROW (table.*) IS NULL FROM table; —-— detect all-null rows

For more detail see Section 9.17. Row constructors can also be used in connection with subqueries,
discussed in Section 9.16.

as

39

Chapter 4. SQL Syntax

4.2.12. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or function
are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote

SELECT true OR somefunc();

then somefunc () would (probably) not be called at all. The same would be the case if one wrote
SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in
some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses may be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.13) may be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x <> 0 AND y/x > 1.5;
But this is safe:
SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would doubtless be best to sidestep the problem by writing y >
1.5xx instead.)

40

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the tables.
Subsequently, we discuss how tables can be organized into schemas, and how privileges can be assigned
to tables. Finally, we will briefly look at other features that affect the data storage, such as inheritance,
views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The number
and order of the columns is fixed, and each column has a name. The number of rows is variable — it
reflects how much data is stored at a given moment. SQL does not make any guarantees about the order of
the rows in a table. When a table is read, the rows will appear in random order, unless sorting is explicitly
requested. This is covered in Chapter 7. Furthermore, SQL does not assign unique identifiers to rows, so it
is possible to have several completely identical rows in a table. This is a consequence of the mathematical
model that underlies SQL but is usually not desirable. Later in this chapter we will see how to deal with
this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to a
column and assigns semantics to the data stored in the column so that it can be used for computations. For
instance, a column declared to be of a numerical type will not accept arbitrary text strings, and the data
stored in such a column can be used for mathematical computations. By contrast, a column declared to be
of a character string type will accept almost any kind of data but it does not lend itself to mathematical
calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed ex-
planation to Chapter 8. Some of the frequently used data types are integer for whole numbers, numeric
for possibly fractional numbers, text for character strings, date for dates, t ime for time-of-day values,
and timestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)i

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and the
type integer. The table and column names follow the identifier syntax explained in Section 4.1.1.
The type names are usually also identifiers, but there are some exceptions. Note that the column list is
comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let’s look at a more realistic example:

41

Chapter 5. Data Definition

CREATE TABLE products (
product_no integer,
name text,
price numeric

)

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern for the
tables and columns. For instance, there is a choice of using singular or plural nouns for table names,
both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the script
works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS variant to
avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists look into Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience. If
you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of this
chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, those columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know what
that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

42

Chapter 5. Data Definition

The default value may be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is that a t imestamp column may have a default of
now (), so that it gets set to the time of row insertion. Another common example is generating a “serial
number” for each row. In PostgreSQL this is typically done by something like

CREATE TABLE products (
product_no integer DEFAULT nextval (' products_product_no_seq’),

)i

where the nextval () function supplies successive values from a sequence object (see Section 9.12). This
arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

)i

The sERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications, however,
the constraint they provide is too coarse. For example, a column containing a product price should prob-
ably only accept positive values. But there is no standard data type that accepts only positive numbers.
Another issue is that you might want to constrain column data with respect to other columns or rows.
For example, in a table containing product information, there should be only one row for each product
number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that would
violate a constraint, an error is raised. This applies even if the value came from the default value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)

43

Chapter 5. Data Definition

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer to
the constraint when you need to change it. The syntax is:

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed by
the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted price,
and you want to ensure that the discounted price is lower than the regular price.

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed to
refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you should follow it
if you want your table definitions to work with other database systems.) The above example could also be
written as

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)

or even

44

Chapter 5. Data Definition

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)i

It’s a matter of taste.

Names can be assigned to table constraints in just the same way as for column constraints:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-null
constraint described in the next section can be used.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)i

A not-null constraint is always written as a column constraint. A not-null constraint is functionally equiv-
alent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL creating
an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit names to
not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)i

45

Chapter 5. Data Definition

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
may be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.) Some
users, however, like it because it makes it easy to toggle the constraint in a script file. For example, you
could start with

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

)

and then insert the NOT key word where desired.

Tip: In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with respect
to all the rows in the table. The syntax is

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

)
when written as a column constraint, and

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

46

Chapter 5. Data Definition

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)

In general, a unique constraint is violated when there are two or more rows in the table where the values of
all of the columns included in the constraint are equal. However, two null values are not considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases may not follow this rule. So be careful when
developing applications that are intended to be portable.

5.3.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null con-
straint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)i

A primary key indicates that a column or group of columns can be used as a unique identifier for rows in
the table. (This is a direct consequence of the definition of a primary key. Note that a unique constraint
does not, by itself, provide a unique identifier because it does not exclude null values.) This is useful

47

Chapter 5. Data Definition

both for documentation purposes and for client applications. For example, a GUI application that allows
modifying row values probably needs to know the primary key of a table to be able to identify rows
uniquely.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally the same thing, but only one can be identified as the primary key.) Relational
database theory dictates that every table must have a primary key. This rule is not enforced by PostgreSQL,
but it is usually best to follow it.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between two
related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders table
only contains orders of products that actually exist. So we define a foreign key constraint in the orders
table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

Now it is impossible to create orders with product_no entries that do not appear in the products table.

We say that in this situation the orders table is the referencing table and the products table is the referenced
table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

)

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE tl (

48

Chapter 5. Data Definition

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other_ table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can contain more than one foreign key constraint. This is used to implement many-to-many rela-
tionships between tables. Say you have tables about products and orders, but now you want to allow one
order to contain possibly many products (which the structure above did not allow). You could use this
table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)i

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what if
a product is removed after an order is created that references it? SQL allows you to handle that as well.
Intuitively, we have a few options:

+ Disallow deleting a referenced product
+ Delete the orders as well
« Something else?

To illustrate this, let’s implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order_items), we
disallow it. If someone removes an order, the order items are removed as well.

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,

49

Chapter 5. Data Definition

price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of a
referenced row. NO ACTION means that if any referencing rows still exist when the constraint is checked,
an error is raised; this is the default behavior if you do not specify anything. (The essential difference
between these two choices is that NO ACTION allows the check to be deferred until later in the transaction,
whereas RESTRICT does not.) CASCADE specifies that when a referenced row is deleted, row(s) referencing
it should be automatically deleted as well. There are two other options: SET NULL and SET DEFAULT.
These cause the referencing columns to be set to nulls or default values, respectively, when the referenced
row is deleted. Note that these do not excuse you from observing any constraints. For example, if an action
specifies SET DEFAULT but the default value would not satisfy the foreign key, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same.

More information about updating and deleting data is in Chapter 6.

Finally, we should mention that a foreign key must reference columns that either are a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explained in the reference documentation
for CREATE TABLE.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these names
cannot be used as names of user-defined columns. (Note that these restrictions are separate from whether
the name is a key word or not; quoting a name will not allow you to escape these restrictions.) You do not
really need to be concerned about these columns, just know they exist.

oid
The object identifier (object ID) of a row. This column is only present if the table was created using

WITH OIDS, or if the default_with_oids configuration variable was set at the time. This column is of
type oid (same name as the column); see Section 8.12 for more information about the type.

50

Chapter 5. Data Definition

tableoid

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.8), since without it, it’s difficult to tell which individual
table a row came from. The tableoid can be joined against the oid column of pg_class to obtain
the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

Ccmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ctid can be used to
locate the row version very quickly, a row’s ctid will change each time it is updated or moved by
VACUUM FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even better a
user-defined serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are
unique, unless you take steps to ensure that this is the case. If you need to identify the rows in a table,
using a sequence generator is strongly recommended. However, OIDs can be used as well, provided that
a few additional precautions are taken:

+ A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such a unique constraint (or unique index) exists, the system takes care
not to generate an OID matching an already-existing row. (Of course, this is only possible if the table
contains fewer than 2°? (4 billion) rows, and in practice the table size had better be much less than that,
or performance may suffer.)

« OIDs should never be assumed to be unique across tables; use the combination of tableoid and row
OID if you need a database-wide identifier.

« Of course, the tables in question must be created WITH 0IDS. As of PostgreSQL 8.1, WITHOUT OIDS
is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 22 for
details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term (more
than one billion transactions).

51

Chapter 5. Data Definition

Command identifiers are also 32-bit quantities. This creates a hard limit of 2** (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on number of
SQL commands, not number of rows processed.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
change, then you can drop the table and create it again. But this is not a convenient option if the table
is already filled with data, or if the table is referenced by other database objects (for instance a foreign
key constraint). Therefore PostgreSQL provides a family of commands to make modifications to existing
tables. Note that this is conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can

« Add columns,

« Remove columns,

« Add constraints,

« Remove constraints,

» Change default values,

« Change column data types,
« Rename columns,

« Rename tables.

All these actions are performed using the ALTER TABLE command, whose reference page contains details
beyond those given here.

5.5.1. Adding a Column

To add a column, use a command like this:
ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a DEFAULT
clause).

You can also define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMN description text CHECK (description <> ");

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

Tip: Adding a column with a default requires updating each row of the table (to store the new column
value). However, if no default is specified, PostgreSQL is able to avoid the physical update. So if you
intend to fill the column with mostly nondefault values, it's best to add the column with no default,
insert the correct values using uppATE, and then add any desired default as described below.

52

Chapter 5. Data Definition

5.5.2. Removing a Column

To remove a column, use a command like this:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not
silently drop that constraint. You can authorize dropping everything that depends on the column by adding
CASCADE:!

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.11 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can be
added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can be
helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don’t forget that you’ll need to double-quote
it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something else
depends on. An example is that a foreign key constraint depends on a unique or primary key constraint on
the referenced column(s).

53

Chapter 5. Data Definition

This works the same for all constraint types except not-null constraints. To drop a not null constraint use

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column’s Default Value
To set a new default for a column, use a command like this:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn’t affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use
ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn’t been defined, because the default is implicitly the null value.

5.5.6. Changing a Column’s Data Type
To convert a column to a different data type, use a command like this:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a USING clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as any
constraints that involve the column. But these conversions may fail, or may produce surprising results.
It’s often best to drop any constraints on the column before altering its type, and then add back suitably
modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

54

Chapter 5. Data Definition

5.5.8. Renaming a Table
To rename a table:

ALTER TABLE products RENAME TO items;

5.6. Privileges

When you create a database object, you become its owner. By default, only the owner of an object can
do anything with the object. In order to allow other users to use it, privileges must be granted. (However,
users that have the superuser attribute can always access any object.)

There are several different privileges: SELECT, INSERT, UPDATE, DELETE, REFERENCES, TRIGGER,
CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a particular object
vary depending on the object’s type (table, function, etc). For complete information on the different types
of privileges supported by PostgreSQL, refer to the GRANT reference page. The following sections and
chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

Note: To change the owner of a table, index, sequence, or view, use the ALTER TABLE command.
There are corresponding AL.TER commands for other object types.

To assign privileges, the GRANT command is used. For example, if joe is an existing user, and accounts
is an existing table, the privilege to update the table can be granted with

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “user” name PUBLIC can be used to grant a privilege to every user on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 18.

To revoke a privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to revoke
his own ordinary privileges, for example to make a table read-only for himself as well as others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in
turn to others. If the grant option is subsequently revoked then all who received the privilege from that
recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT and
REVOKE reference pages.

55

Chapter 5. Data Definition

5.7. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client connection
to the server can access only the data in a single database, the one specified in the connection request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of user names means that there cannot be different users named, say, joe in two databases in
the same cluster; but the system can be configured to allow joe access to only some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name can
be used in different schemas without conflict; for example, both schemal and myschema may contain
tables named mytable. Unlike databases, schemas are not rigidly separated: a user may access objects in
any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

» To allow many users to use one database without interfering with each other.
« To organize database objects into logical groups to make them more manageable.

« Third-party applications can be put into separate schemas so they cannot collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be nested.

5.7.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write a
database name, it must be the same as the database you are connected to.

56

Chapter 5. Data Definition

So to create a table in the new schema, use

CREATE TABLE myschema.mytable (

)i

To drop a schema if it’s empty (all objects in it have been dropped), use
DROP SCHEMA myschema;

To drop a schema including all contained objects, use

DROP SCHEMA myschema CASCADE;

See Section 5.11 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schemaname AUTHORIZATION username;

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.7.6 for how this can be useful.

Schema names beginning with pg__ are reserved for system purposes and may not be created by users.

5.7.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default, such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains such
a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and

CREATE TABLE public.products (...);

5.7.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into applica-
tions anyway. Therefore tables are often referred to by unqualified names, which consist of just the table
name. The system determines which table is meant by following a search path, which is a list of schemas
to look in. The first matching table in the search path is taken to be the one wanted. If there is no match in
the search path, an error is reported, even if matching table names exist in other schemas in the database.

57

Chapter 5. Data Definition

The first schema named in the search path is called the current schema. Aside from being the first schema
searched, it is also the schema in which new tables will be created if the CREATE TABLE command does
not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser",public

The first element specifies that a schema with the same name as the current user is to be searched. If no
such schema exists, the entry is ignored. The second element refers to the public schema that we have
seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration, any
unqualified access again can only refer to the public schema.

To put our new schema in the path, we use
SET search_path TO myschema,public;

(We omit the Suser here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written
SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing special
about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.19 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision: you
must write

OPERATOR (schema.operator)
This is needed to avoid syntactic ambiguity. An example is

SELECT 3 OPERATOR (pg_catalog.+) 4;

58

Chapter 5. Data Definition

In practice one usually relies on the search path for operators, so as not to have to write anything so ugly
as that.

5.7.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema needs to grant the USAGE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges may need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schema public. This allows all users that are able to connect to a given database to create objects in
its public schema. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.7.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_catalog is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path’s schemas. This ensures that built-in names will always be findable. However,
you may explicitly place pg_catalog at the end of your search path if you prefer to have user-defined
names override built-in names.

In PostgreSQL versions before 7.3, table names beginning with pg_ were reserved. This is no longer true:
you may create such a table name if you wish, in any non-system schema. However, it’s best to continue
to avoid such names, to ensure that you won’t suffer a conflict if some future version defines a system
table named the same as your table. (With the default search path, an unqualified reference to your table
name would be resolved as the system table instead.) System tables will continue to follow the convention
of having names beginning with pg_, so that they will not conflict with unqualified user-table names so
long as users avoid the pg__ prefix.

5.7.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are recom-
mended and are easily supported by the default configuration:

« If you do not create any schemas then all users access the public schema implicitly. This simulates the
situation where schemas are not available at all. This setup is mainly recommended when there is only
a single user or a few cooperating users in a database. This setup also allows smooth transition from the
non-schema-aware world.

59

Chapter 5. Data Definition

« You can create a schema for each user with the same name as that user. Recall that the default search
path starts with Suser, which resolves to the user name. Therefore, if each user has a separate schema,
they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it alto-
gether), so users are truly constrained to their own schemas.

« To install shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow the
other users to access them. Users can then refer to these additional objects by qualifying the names with
a schema name, or they can put the additional schemas into their search path, as they choose.

5.7.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consider
qualified names to really consist of username. tablename. This is how PostgreSQL will effectively behave
if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to the
standard, you should not use (perhaps even remove) the pub1ic schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace sup-
port by allowing (possibly limited) cross-database access. If you need to work with those systems, then
maximum portability would be achieved by not using schemas at all.

5.8. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described
here.)

Let’s start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capitals table so that it
inherits from cities:

CREATE TABLE cities (

name text,
population float,
altitude int —— in feet

)i

60

Chapter 5. Data Definition

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals also
have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located at
an altitude over 500ft:

SELECT name, altitude
FROM cities

WHERE altitude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | altitude
,,,,,,,,,,, [T
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude over 500ft:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953

Here the oNLY keyword indicates that the query should apply only to cities, and not any tables below
cities in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

In some cases you may wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude
7777777777 +77777777777+7777777777

61

Chapter 5. Data Definition

139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities ¢, pg_class p
WHERE c.altitude > 500 and c.tableoid = p.oid;

which returns:

relname | name | altitude
__________ e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in the
inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, altitude, state)
VALUES (’New York’, NULL, NULL, ’NY’);

We might hope that the data would somehow be routed to the capitals table, but this does not happen:
INSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 35). However that does not help for the above case because the cities table
does not contain the column state, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its children.
Other types of constraints (unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table’s definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child’s definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged,
columns must have the same data types, else an error is raised. The merged column will have copies of
all the check constraints coming from any one of the column definitions it came from, and will be marked
not-null if any of them are.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this the
new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of the
parent. Similarly an inheritance link can be removed from a child using the NO INHERIT variant of ALTER
TABLE. Dynamically adding and removing inheritance links like this can be useful when the inheritance
relationship is being used for table partitioning (see Section 5.9).

One convenient way to create a compatible table that will later be made a new child is to use the LIKE
clause in CREATE TABLE. This creates a new table with the same columns as the source table. If there are

62

Chapter 5. Data Definition

any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to LIKE should
be specified, as the new child must have constraints matching the parent to be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns of child tables be
dropped or altered if they are inherited from any parent tables. If you wish to remove a table and all of its
descendants, one easy way is to drop the parent table with the CASCADE option.

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns or constraints on parent tables is only possible when using
the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and rejection
that apply during CREATE TABLE.

5.8.1. Caveats

Table access permissions are not automatically inherited. Therefore, a user attempting to access a parent
table must either have permissions to do the operation on all its child tables as well, or must use the ONLY
notation. When adding a new child table to an existing inheritance hierarchy, be careful to grant all the
needed permissions on it.

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:

« If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would by
default show up in queries from cities. In fact, by default capitals would have no unique constraint
at all, and so could contain multiple rows with the same name. You could add a unique constraint to
capitals, but this would not prevent duplication compared to cities.

« Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint would
not automatically propagate to capitals. In this case you could work around it by manually adding
the same REFERENCES constraint to capitals.

» Specifying that another table’s column REFERENCES cities (name) would allow the other table to
contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable care is
needed in deciding whether inheritance is useful for your problem.

Deprecated: In releases of PostgreSQL prior to 7.1, the default behavior was not to include child
tables in queries. This was found to be error prone and also in violation of the SQL standard. You can
get the pre-7.1 behavior by turning off the sql_inheritance configuration option.

5.9. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement partition-
ing as part of your database design.

63

Chapter 5. Data Definition

5.9.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

+ Query performance can be improved dramatically in certain situations, particularly when most of the
heavily accessed rows of the table are in a single partition or a small number of partitions. The parti-
tioning substitutes for leading columns of indexes, reducing index size and making it more likely that
the heavily-used parts of the indexes fit in memory.

« When queries or updates access a large percentage of a single partition, performance can be improved
by taking advantage of sequential scan of that partition instead of using an index and random access
reads scattered across the whole table.

+ Bulk loads and deletes may be accomplished by adding or removing partitions, if that requirement is
planned into the partitioning design. ALTER TABLE is far faster than a bulk operation. It also entirely
avoids the vAcUUM overhead caused by a bulk DELETE.

+ Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent
the entire data set. You should be familiar with inheritance (see Section 5.8) before attempting to set up
partitioning.

The following forms of partitioning can be implemented in PostgreSQL:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by date
ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

5.9.2. Implementing Partitioning

To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you intend
them to be applied equally to all partitions. There is no point in defining any indexes or unique
constraints on it, either.

64

Chapter 5. Data Definition

2. Create several “child” tables that each inherit from the master table. Normally, these tables will not
add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL tables.
3. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

CHECK (x = 1)
CHECK (county IN ('Oxfordshire’, ’Buckinghamshire’, ’'Warwickshire’))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like this:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)
This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are descrip-
tive only.

4. For each partition, create an index on the key column(s), as well as any other indexes you might want.
(The key index is not strictly necessary, but in most scenarios it is helpful. If you intend the key values
to be unique then you should always create a unique or primary-key constraint for each partition.)

5. Optionally, define a rule or trigger to redirect modifications of the master table to the appropriate
partition.

6. Ensure that the constraint_exclusion configuration parameter is enabled in postgresqgl . conf. With-
out this, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company mea-
sures peak temperatures every day as well as ice cream sales in each region. Conceptually, we want a table
like this:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

)i

We know that most queries will access just the last week’s, month’s or quarter’s data, since the main use
of this table will be to prepare online reports for management. To reduce the amount of old data that needs
to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning of each month
we will remove the oldest month’s data.

In this situation we can use partitioning to help us meet all of our different requirements for the measure-
ments table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.
2. Next we create one partition for each active month:

CREATE TABLE measurement_y2004m02 () INHERITS (measurement);
CREATE TABLE measurement_y2004m03 () INHERITS (measurement);

65

Chapter 5. Data Definition

CREATE TABLE measurement_y2005mll () INHERITS (measurement);
CREATE TABLE measurement_y2005ml2 () INHERITS (measurement);
CREATE TABLE measurement_y2006m0l1 () INHERITS (measurement);

Each of the partitions are complete tables in their own right, but they inherit their definition from the

measurement table.

This solves one of our problems: deleting old data. Each month, all we will need to do is perform a
DROP TABLE on the oldest child table and create a new child table for the new month’s data.
. We must add non-overlapping table constraints, so that our table creation script becomes:

CREATE TABLE measurement_y2004m02 (

CHECK (logdate >= DATE ’'2004-02-01" AND logdate < DATE '2004-03-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2004m03 (

CHECK (logdate >= DATE ’'2004-03-01" AND logdate < DATE ’'2004-04-01")
) INHERITS (measurement);

CREATE TABLE measurement_y2005ml1l (

CHECK (logdate >= DATE ’'2005-11-01’ AND logdate < DATE ’2005-12-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2005ml2 (

CHECK (logdate >= DATE ’'2005-12-01" AND logdate < DATE ’'2006-01-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2006m01 (

CHECK (logdate >= DATE ’2006-01-01" AND logdate < DATE ’2006-02-01")
) INHERITS (measurement);
. We probably need indexes on the key columns too:

CREATE INDEX measurement_y2004m02_logdate ON measurement_y2004m02 (logdate);
CREATE INDEX measurement_y2004m03_logdate ON measurement_y2004m03 (logdate);

CREATE INDEX measurement_y2005mll_logdate ON measurement_y2005mll (logdate);
CREATE INDEX measurement_y2005ml2_logdate ON measurement_y2005ml2 (logdate);
CREATE INDEX measurement_y2006m0l_logdate ON measurement_y2006m0l (logdate);
We choose not to add further indexes at this time.
. If data will be added only to the latest partition, we can set up a very simple rule to insert data. We
must redefine this each month so that it always points to the current partition.

CREATE OR REPLACE RULE measurement_current_partition AS
ON INSERT TO measurement
DO INSTEAD
INSERT INTO measurement_y2006m0l1 VALUES (NEW.city_id,
NEW. logdate,
NEW.peaktemp,
NEW.unitsales);
We might want to insert data and have the server automatically locate the partition into which the row
should be added. We could do this with a more complex set of rules as shown below.

CREATE RULE measurement_insert_y2004m02 AS
ON INSERT TO measurement WHERE
(logdate >= DATE ’2004-02-01" AND logdate < DATE ’2004-03-01")
DO INSTEAD
INSERT INTO measurement_y2004m02 VALUES (NEW.city_id,
NEW. logdate,
NEW.peaktemp,

66

Chapter 5. Data Definition
NEW.unitsales);

CREATE RULE measurement_insert_y2005ml2 AS
ON INSERT TO measurement WHERE
(logdate >= DATE ’2005-12-01" AND logdate < DATE ’2006-01-01")
DO INSTEAD
INSERT INTO measurement_y2005ml2 VALUES (NEW.city_id,
NEW. logdate,
NEW.peaktemp,
NEW.unitsales);
CREATE RULE measurement_insert_y2006m01 AS
ON INSERT TO measurement WHERE
(logdate >= DATE ’'2006-01-01’ AND logdate < DATE ’2006-02-01")
DO INSTEAD
INSERT INTO measurement_y2006m0l1 VALUES (NEW.city_id,
NEW. logdate,
NEW.peaktemp,
NEW.unitsales);
Note that the WHERE clause in each rule exactly matches the CHECK constraint for its partition.

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the above
example we would be creating a new partition each month, so it may be wise to write a script that generates
the required DDL automatically.

Partitioning can also be arranged using a UNION ALL view:

CREATE VIEW measurement AS
SELECT * FROM measurement_y2004m02
UNION ALL SELECT % FROM measurement_y2004m03

UNION ALL SELECT % FROM measurement_y2005mll
UNION ALL SELECT % FROM measurement_y2005ml12
UNION ALL SELECT % FROM measurement_y2006m01;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions of
the data set.

5.9.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions for new
data. One of the most important advantages of partitioning is precisely that it allows this otherwise painful
task to be executed nearly instantaneously by manipulating the partition structure, rather than physically
moving large amounts of data around.

The simplest option for removing old data is simply to drop the partition that is no longer necessary:
DROP TABLE measurement_y2003m02;

This can very quickly delete millions of records because it doesn’t have to individually delete every record.

67

Chapter 5. Data Definition

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement_y2003m02 NO INHERIT measurement;

This allows further operations to be performed on the data before it is dropped. For example, this is often
a useful time to back up the data using copy, pg_dump, or similar tools. It can also be a useful time to
aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the parti-
tioned table just as the original partitions were created above.

CREATE TABLE measurement_y2006m02 (
CHECK (logdate >= DATE ’2006-02-01" AND logdate < DATE ’2006-03-01")
) INHERITS (measurement);

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it a proper partition later. This allows the data to be loaded, checked, and transformed prior to it
appearing in the partitioned table.

CREATE TABLE measurement_y2006m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2006m02 ADD CONSTRAINT y2006m02
CHECK (logdate >= DATE ’'2006-02-01’ AND logdate < DATE ’2006-03-01'");
\copy measurement_y2006m02 from ’'measurement_y2006m02’
—— possibly some other data preparation work
ALTER TABLE measurement_y2006m02 INHERIT measurement;

5.9.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned tables
defined in the fashion described above. As an example:

SET constraint_exclusion = on;
SELECT count () FROM measurement WHERE logdate >= DATE ’2006-01-01'";

Without constraint exclusion, the above query would scan each of the partitions of the measurement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition and try
to prove that the partition need not be scanned because it could not contain any rows meeting the query’s
WHERE clause. When the planner can prove this, it excludes the partition from the query plan.

You can use the EXPLAIN command to show the difference between a plan with

constraint_exclusion on and a plan with it off. A typical default plan for this type of table setup is:

SET constraint_exclusion = off;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’'2006-01-01’";

QUERY PLAN

Aggregate (cost=158.66..158.68 rows=1 width=0)

68

Chapter 5. Data Definition

-> Append (cost=0.00..151.88 rows=2715 width=0)
-> Seqg Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2006-01-01'::date)

-> Seq Scan on measurement_y2004m02 measurement (cost=0.00..30.38 rows=543
Filter: (logdate >= ’2006-01-01’::date)
-> Seq Scan on measurement_y2004m03 measurement (cost=0.00..30.38 rows=543

Filter: (logdate >= ’2006-01-01’::date)

—-> Seqg Scan on measurement_y2005ml2 measurement (cost=0.00..30.38 rows=543
Filter: (logdate >= 7"2006-01-01'"::date)
-> Seq Scan on measurement_y2006m0l measurement (cost=0.00..30.38 rows=543

Filter: (logdate >= 7"2006-01-01'::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point here
is that there is no need to scan the older partitions at all to answer this query. When we enable constraint
exclusion, we get a significantly reduced plan that will deliver the same answer:

SET constraint_exclusion = on;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2006-01-01';
QUERY PLAN

Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)
-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’72006-01-01’::date)

width

width

width

width

-> Seqg Scan on measurement_y2006m0l measurement (cost=0.00..30.38 rows=543 width

Filter: (logdate >= ’72006-01-01’::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes. There-
fore it isn’t necessary to define indexes on the key columns. Whether an index needs to be created for a
given partition depends on whether you expect that queries that scan the partition will generally scan a
large part of the partition or just a small part. An index will be helpful in the latter case but not the former.

5.9.5. Caveats

The following caveats apply to partitioned tables:

+ There is currently no way to verify that all of the CHECK constraints are mutually exclusive. Care is
required by the database designer.

« There is currently no simple way to specify that rows must not be inserted into the master table. A
CHECK (false) constraint on the master table would be inherited by all child tables, so that cannot
be used for this purpose. One possibility is to set up an ON INSERT trigger on the master table that
always raises an error. (Alternatively, such a trigger could be used to redirect the data into the proper
child table, instead of using a set of rules as suggested above.)

The following caveats apply to constraint exclusion:

69

Chapter 5. Data Definition

Constraint exclusion only works when the query’s WHERE clause contains constants. A parameterized
query will not be optimized, since the planner cannot know what partitions the parameter value might
select at run time. For the same reason, “stable” functions such as CURRENT_DATE must be avoided.

Avoid cross-data type comparisons in the CHECK constraints, as the planner will currently fail to prove
such conditions false. For example, the following constraint will work if x is an integer column, but
not if x is a bigint:

CHECK (x = 1)

For a bigint column we must use a constraint like:

CHECK (x = 1l::bigint)

The problem is not limited to the bigint data type — it can occur whenever the default data type of

the constant does not match the data type of the column to which it is being compared. Cross-data type
comparisons in the supplied queries are usually OK, just not in the CHECK conditions.

All constraints on all partitions of the master table are considered for constraint exclusion, so large
numbers of partitions are likely to increase query planning time considerably.

Don’t forget that you still need to run ANALYZE on each partition individually. A command like

ANALYZE measurement;
will only process the master table.

5.10. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they are
not the only objects that exist in a database. Many other kinds of objects can be created to make the use
and management of the data more efficient or convenient. They are not discussed in this chapter, but we
give you a list here so that you are aware of what is possible.

Views
Functions and operators
Data types and domains

Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.11. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you will implicitly create a net of dependencies between the objects. For instance,
a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had

70

Chapter 5. Data Definition

considered in Section 5.3.5, with the orders table depending on it, would result in an error message such
as this:

DROP TABLE products;

NOTICE: constraint orders_product_no_fkey on table orders depends on table products
ERROR: cannot drop table products because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check what DROP ... CASCADE will do, run DROP
without CASCADE and read the NOTICE messages.)

All drop commands in PostgreSQL support specifying CASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE to get
the default behavior, which is to prevent drops of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or CASCADE is required. No database
system actually enforces that rule, but whether the default behavior is RESTRICT or CASCADE varies
across systems.

Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL ver-
sions prior to 7.3 are not maintained or created during the upgrade process. All other dependency
types will be properly created during an upgrade from a pre-7.3 database.

71

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. We also
introduce ways to effect automatic data changes when certain events occur: triggers and rewrite rules. The
chapter after this will finally explain how to extract your long-lost data back out of the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use is
to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more than one
row, but there is no way to insert less than one row at a time. Even if you know only some column values,
a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and a value for
each of the columns of the table. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To avoid
that you can also list the columns explicitly. For example, both of the following commands have the same
effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’'Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns will be
filled with their default values. For example,

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

72

Chapter 6. Data Manipulation

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
(1, "Cheese’, 9.99),
(2, "Bread’, 1.99),
(3, 'Milk’, 2.99);

Tip: When inserting a lot of data at the same time, considering using the COPY command. It is not
as flexible as the INSERT command, but is more efficient. Refer to Section 13.4 for more information
on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update individual
rows, all the rows in a table, or a subset of all rows. Each column can be updated separately; the other
columns are not affected.

To perform an update, you need three pieces of information:

1. The name of the table and column to update,
2. The new value of the column,
3. Which row(s) to update.

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not necessarily possible to directly specify which row to update. Instead, you specify which conditions
a row must meet in order to be updated. Only if you have a primary key in the table (no matter whether
you declared it or not) can you reliably address individual rows, by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This may cause zero, one, or many rows to be updated. It is not an error to attempt an update that does not
match any rows.

Let’s look at that command in detail. First is the key word UPDATE followed by the table name. As usual,
the table name may be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equals sign and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products by
10% you could use:

UPDATE products SET price = price 1.10;

73

Chapter 6. Data Manipulation

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity. Of
course, the WHERE condition does not have to be an equality test. Many other operators are available (see
Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment in

the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to discuss how
to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can only
remove entire rows from a table. In the previous section we explained that SQL does not provide a way
to directly address individual rows. Therefore, removing rows can only be done by specifying conditions
that the rows to be removed have to match. If you have a primary key in the table then you can specify the
exact row. But you can also remove groups of rows matching a condition, or you can remove all rows in
the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use

DELETE FROM products WHERE price = 10;

If you simply write
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

74

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data out of the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

SELECT select_list FROM table expression [sort_specification]

The following sections describe the details of the select list, the table expression, and the sort specification.

A simple kind of query has the form
SELECT » FROM tablel;

Assuming that there is a table called tablel, this command would retrieve all rows and all columns from
tablel. (The method of retrieval depends on the client application. For example, the psql program will
display an ASCII-art table on the screen, while client libraries will offer functions to extract individual
values from the query result.) The select list specification » means all columns that the table expression
happens to provide. A select list can also select a subset of the available columns or make calculations
using the columns. For example, if tablel has columns named a, b, and c (and perhaps others) you can
make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM tablel is a particularly simple kind of table expression: it reads just one table. In general, table
expressions can be complex constructs of base tables, joins, and subqueries. But you can also omit the
table expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could call
a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally fol-
lowed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table on

75

Chapter 7. Queries

disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of succes-
sive transformations performed on the table derived in the FROM clause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of the

query.

7.2.1. The rroM Clause

The FROM Clause derives a table from one or more other tables given in a comma-separated table refer-
ence list.

FROM table_reference [, table reference [, ...]]

A table reference may be a table name (possibly schema-qualified), or a derived table such as a subquery,
a table join, or complex combinations of these. If more than one table reference is listed in the FrROM
clause they are cross-joined (see below) to form the intermediate virtual table that may then be subject to
transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall table
expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table reference
produces rows of not only that table but all of its descendant tables, unless the key word ONLY precedes
the table name. However, the reference produces only the columns that appear in the named table — any
columns added in subtables are ignored.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types

Cross join
Tl CROSS JOIN T2
For each combination of rows from 71 and 72, the derived table will contain a row consisting of

all columns in 71 followed by all columns in T2. If the tables have N and M rows respectively, the
joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM 711, T2.Itis also equivalent to FROM T1 INNER
JOIN T2 ON TRUE (see below).

Qualified joins

T1 { [INNER] | { LEFT | RIGHT FULL } [OUTER

Tl NATURAL [INNER] | { LEFT | RIGHT | FULL [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and FULL
imply an outer join.

76

]] } JOIN T2 ON boolean_expression
Tl { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list
{ }

)

Chapter 7. Queries

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL. The
join condition determines which rows from the two source tables are considered to “match”, as
explained in detail below.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from T1 and 72 match if the ON expression
evaluates to true for them.

USING is a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs
of columns. Furthermore, the output of a JOIN USING has one column for each of the equated pairs
of input columns, followed by all of the other columns from each table. Thus, USING (a, b, c)
is equivalent to ON (tl.a = t2.a AND tl.b = t2.b AND tl.c = t2.c) with the exception
that if oN is used there will be two columns a, b, and c in the result, whereas with USING there will
be only one of each.

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of exactly those
column names that appear in both input tables. As with USING, these columns appear only once in
the output table.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined
table unconditionally has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will unconditionally have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

Joins of all types can be chained together or nested: either or both of 71 and T2 may be joined tables.
Parentheses may be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

To put this together, assume we have tables t 1

77

Chapter 7. Queries

2 | b
3 | ¢
and t2
num | value
77777 +7777777
1 | xxXx
3 1 yyy
5 | zzz

then we get the following results for the various joins:

=> SELECT x FROM tl CROSS JOIN t2;

num | name | num | value
————— o ———
11 a | 1 | xxx
1] a \ 3 1 yyy
1] a | 5 | zzz
2 1 b \ 1 | xxx
21D \ 31 yyy
2 1 Db \ 5 | zzz
3 | c \ 1 | xxx
3] c \ 3 1 yyy
3] ¢ | 5| zzz
(9 rows)

=> SELECT * FROM tl INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o ——
1] a \ 1 | xxx
31 ¢ \ 3 1 yyy
(2 rows)

=> SELECT * FROM tl INNER JOIN t2 USING (num);

num | name | value
_____ e
1] a | xxx
31 ¢ l yyy
(2 rows)

=> SELECT * FROM tl NATURAL INNER JOIN t2;

num | name | value
_____ e
1] a | xxx
31 ¢ | yyy
(2 rows)

=> SELECT % FROM tl LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— ot
1] a \ 1 | xxx
| b \ |

78

Chapter 7. Queries

3 1 c 3 1 yyy

(3 rows)

=> SELECT * FROM tl LEFT JOIN t2 USING (num);

num name value
_____ o
1] a | xxx
2 b \
3 c | yyy
(3 rows)

=> SELECT *x FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num name num | value
————— o —
11 a | 1 | xxx
3 c \ 3 1 yyy
| 5 | zzz
(3 rows)

=> SELECT % FROM tl FULL JOIN t2 ON tl.num = t2.num;

num name num | value
————— ot
11 a \ 1 | xxx
2 |1 b \ |
3 | c \ 3 1 yyy
| | 5 | zzz
(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join. This
can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num AND t2.value = ’'xxx’;
num name num | value
_____ b
1] a | 1 | xxx
2 b \ |
3 c \ |
(3 rows)

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table_reference AS alias

or

79

Chapter 7. Queries
FROM table_reference alias

The As key word is noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT x= FROM some_very_long_table_name s JOIN another_fairly long_name a ON s.id = a.num;

The alias becomes the new name of the table reference for the current query — it is no longer possible to
refer to the table by the original name. Thus

SELECT x= FROM my_table AS m WHERE my_table.a > 5;

is not valid according to the SQL standard. In PostgreSQL this will draw an error if the add_missing_from
configuration variable is of £ (as it is by default). If it is on, an implicit table reference will be added to
the FROM clause, so the query is processed as if it were written as

SELECT * FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;

That will result in a cross join, which is usually not what you want.

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.,

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the alias
b to the second instance of my_table, but the second statement assigns the alias to the result of the join:

SELECT x FROM my_table AS a CROSS JOIN my_table AS b
SELECT % FROM (my_table AS a CROSS JOIN my_table) AS b

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias (columnl [, column2 [, ...]]1)

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JOIN clause, using any of these forms, the alias hides the
original names within the JOIN. For example,

SELECT a.* FROM my_table AS a JOIN your_table AS b ON
is valid SQL, but

SELECT a.x FROM (my_table AS a JOIN your_table AS b ON ...) AS c

80

Chapter 7. Queries

is not valid: the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table alias
name. (See Section 7.2.1.2.) For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which can’t be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (’anne’, ’‘smith’), (’bob’, ’Jjones’), ('’ joe’, ’'blow’))
AS names (first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FROM clause of
a query. Columns returned by table functions may be included in SELECT, JOIN, or WHERE clauses in the
same manner as a table, view, or subquery column.

If a table function returns a base data type, the single result column is named like the function. If the
function returns a composite type, the result columns get the same names as the individual attributes of
the type.

A table function may be aliased in the FROM clause, but it also may be left unaliased. If a function is used
in the FrROM clause with no alias, the function name is used as the resulting table name.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);
CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
SELECT * FROM foo WHERE fooid = $1;
S LANGUAGE SQL;
SELECT = FROM getfoo(l) AS t1;
SELECT * FROM foo
WHERE foosubid IN (select foosubid from getfoo(foo.fooid) =z
where z.fooid = foo.fooid);

CREATE VIEW vw_getfoo AS SELECT » FROM getfoo(l);

SELECT = FROM vw_getfoo;

81

Chapter 7. Queries

In some cases it is useful to define table functions that can return different column sets depending on how
they are invoked. To support this, the table function can be declared as returning the pseudotype record.
When such a function is used in a query, the expected row structure must be specified in the query itself,
so that the system can know how to parse and plan the query. Consider this example:

SELECT =«
FROM dblink (' dbname=mydb’, ’select proname, prosrc from pg_proc’)
AS tl (proname name, prosrc text)
WHERE proname LIKE ’'bytea%’;

The dblink function executes a remote query (see contrib/dblink). It is declared to return record
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what » should expand to.

7.2.2. The wHERE Clause

The syntax of the WHERE Clause is
WHERE search condition

where search_condition is any value expression (see Section 4.2) that returns a value of type

boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(that is, if the result is false or null) it is discarded. The search condition typically references at least some
column of the table generated in the FROM clause; this is not required, but otherwise the WHERE clause will
be fairly useless.

Note: The join condition of an inner join can be written either in the waERE clause or in the Jo1n clause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The Jo1n syntax in the Frowm clause is probably
not as portable to other SQL database management systems. For outer joins there is no choice in any
case: they must be done in the Froum clause. An on/UsING clause of an outer join is not equivalent to
a wHERE condition, because it determines the addition of rows (for unmatched input rows) as well as
the removal of rows from the final result.

82

Chapter 7. Queries

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE cl > 5

SELECT ... FROM fdt WHERE cl IN (1, 2, 3)

SELECT ... FROM fdt WHERE cl IN (SELECT cl FROM t2)

SELECT ... FROM fdt WHERE cl IN (SELECT c¢3 FROM t2 WHERE c2 = fdt.cl + 10)

SELECT ... FROM fdt WHERE cl BETWEEN (SELECT c¢c3 FROM t2 WHERE c2 = fdt.cl + 10) AND 100
SELECT ... FROM fdt WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

£dt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from £dt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced in
the subqueries. Qualifying c1 as £dt . c1 is only necessary if c1 is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds clarity even when it is not needed. This
example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The croupr BY and HAaVING Clauses

After passing the WHERE filter, the derived input table may be subject to grouping, using the GROUP BY
clause, and elimination of group rows using the HAVING clause.

SELECT select_list
FROM
[WHERE ...]

GROUP BY grouping_column_reference [, grouping_column_reference]...

The GROUP BY Clause is used to group together those rows in a table that share the same values in all
the columns listed. The order in which the columns are listed does not matter. The effect is to combine
each set of rows sharing common values into one group row that is representative of all rows in the group.
This is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.
For instance:

=> SELECT * FROM testl;

83

Chapter 7. Queries

(3 rows)

In the second query, we could not have written SELECT = FROM testl GROUP BY x, because there is
no single value for the column y that could be associated with each group. The grouped-by columns can
be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not used in the grouping cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

X | sum

Here sum is an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.15.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a col-
umn. This can also be achieved using the ptsTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales on all
products).

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause since
they are referenced in the query select list. (Depending on how exactly the products table is set up, name
and price may be fully dependent on the product ID, so the additional groupings could theoretically be
unnecessary, but this is not implemented yet.) The column s . units does not have to be in the GROUP BY
list since it is only used in an aggregate expression (sum (. . .)), which represents the sales of a product.
For each product, the query returns a summary row about all sales of the product.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this to
also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

If a table has been grouped using a GROUP BY clause, but then only certain groups are of interest, the
HAVING clause can be used, much like a WHERE clause, to eliminate groups from a grouped table. The
syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

84

Chapter 7. Queries
Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;
X | sum

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c’;
X | sum

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price = s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVING clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an intermediate
virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by the select list. The select list determines which columns of the intermediate
table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is « which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it could
be a list of column names:

SELECT a, b, c FROM

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in the

85

Chapter 7. Queries

select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same as in
the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in

SELECT tbll.a, tbl2.a, tbll.b FROM

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:

SELECT tbll.*, tbl2.a FROM

(See also Section 7.2.2.)

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to the
returned table. The value expression is evaluated once for each result row, with the row’s values substituted
for any column references. But the expressions in the select list do not have to reference any columns in the
table expression of the FROM clause; they could be constant arithmetic expressions as well, for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for further processing. The “further processing” in
this case is an optional sort specification and the client application (e.g., column headers for display). For
example:

SELECT a AS value, b + ¢ AS sum FROM

If no output column name is specified using As, the system assigns a default name. For simple column
references, this is the name of the referenced column. For function calls, this is the name of the function.
For complex expressions, the system will generate a generic name.

Note: The naming of output columns here is different from that done in the From clause (see Section
7.2.1.2). This pipeline will in fact allow you to rename the same column twice, but the name chosen in
the select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table may optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

86

Chapter 7. Queries
SELECT DISTINCT ON (expression [, expression ...]) select_list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON processing
occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueries in
FROM the construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] query2
queryl INTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

queryl and query?2 are queries that can use any of the features discussed up to this point. Set operations
can also be nested and chained, for example

queryl UNION query2 UNION query3
which really says

(queryl UNION query2) UNION query3

UNION effectively appends the result of query2 to the result of query1 (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of query1 and in the result of query2. Duplicate
rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

87

Chapter 7. Queries

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in that
case will depend on the scan and join plan types and the order on disk, but it must not be relied on. A
particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_list
FROM table _expression
ORDER BY sort_expressionl [ASC | DESC] [, sort_expression2 [ASC | DESC] ...]

The sort expression(s) can be any expression that would be valid in the query’s select list. An example is
SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal according
to the earlier values. Each expression may be followed by an optional ASC or DESC keyword to set the sort
direction to ascending or descending. ASC order is the default. Ascending order puts smaller values first,
where “smaller” is defined in terms of the < operator. Similarly, descending order is determined with the
> operator. '

For backwards compatibility with the SQL92 version of the standard, a sort_expression can instead

be the name or number of an output column, as in

SELECT a + b AS sum, c FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone, it’s not
allowed as part of an expression — for example, this is not correct:

SELECT a + b AS sum, c FROM tablel ORDER BY sum + cj; —-— wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. This would only cause confusion if you use AS to rename an output column
to match some other table column’s name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this case
it is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_list

1. Actually, PostgreSQL uses the default B-tree operator class for the expression’s data type to determine the sort ordering for
asc and DEsc. Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a
user-defined data type’s designer could choose to do something different.

88

Chapter 7. Queries

FROM table expression
[ORDER BY sort_expressionl [ASC | DESC] [, sort_expression2 [ASC | DESC]
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query itself
yields less rows). LIMIT ALL is the same as omitting the LIMIT clause.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as omitting
the OFFSET clause. If both OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to
count the LIMIT rows that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query’s rows. You may be asking for the tenth
through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown, unless
you specified ORDER BY.

The query optimizer takes LIMIT into account when generating a query plan, so you are very likely to get
different plans (yielding different row orders) depending on what you give for LIMIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular order
unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET can be inefficient.

7.7. vALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...]1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same number
of elements (i.e., the number of columns in the table), and corresponding entries in each list must have
compatible data types. The actual data type assigned to each column of the result is determined using the
same rules as for UNION (see Section 10.5).

As an example,
VALUES (1, ’'one’), (2, 'two’), (3, ’'three’);
will return a table of two columns and three rows. It’s effectively equivalent to

SELECT 1 AS columnl, ’one’ AS column2
UNION ALL

SELECT 2, 'two’

UNION ALL

SELECT 3, ’three’;

89

-1

Chapter 7. Queries

By default, PostgreSQL assigns the names columnl, column2, etc. to the columns of a VALUES table.
The column names are not specified by the SQL standard and different database systems do it differently,
so it’s usually better to override the default names with a table alias list.

Syntactically, VALUES followed by expression lists is treated as equivalent to
SELECT select_list FROM table_expression

and can appear anywhere a SELECT can. For example, you can use it as an arm of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used as
the data source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

90

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users may add new types to PostgreSQL
using the CREATE TYPE command.

Table 8-1 shows all the built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition, some
internally used or deprecated types are available, but they are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box in the plane

bytea binary data (“byte array”)

character varying [(n) varchar [(n)] variable-length character string

]

character [(n)] char [(n)] fixed-length character string

cidr IPv4 or IPv6 network address

circle circle in the plane

date calendar date (year, month, day)

double precision float$ double precision floating-point
number

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [(p)] time span

line infinite line in the plane

lseg line segment in the plane

macaddr MAC address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

path geometric path in the plane

point geometric point in the plane

polygon closed geometric path in the

plane

91

Chapter 8. Data Types

Name Aliases Description

real float4 single precision floating-point
number

smallint int2 signed two-byte integer

serial seriald autoincrementing four-byte
integer

text variable-length character string

time [(p) 1 [without time of day

time zone]

time [(p)] with time timetz time of day, including time zone

zone

timestamp [(p) 1 [date and time

without time zone]

timestamp [(p)] with timestamptz date and time, including time

time zone

zone

Compatibility: The following types (or spellings thereof) are specified by SQL: bit, bit varying,
boolean, char, character varying, character, varchar, date, double precision, integer,
interval, numeric, decimal, real, smallint, time (With or without time zone), t imestamp (with or

without time zone).

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possibilities for formats, such as the date and time types. Some
of the input and output functions are not invertible. That is, the result of an output function may lose
accuracy when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and selectable-precision decimals. Table 8-2 lists the available types.

Table 8-2. Numeric Types

Name Storage Size Description Range

smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes usual choice for integer |-2147483648 to
+2147483647

bigint 8 bytes large-range integer -9223372036854775808
to
9223372036854775807

92

Chapter 8. Data Types

Name Storage Size Description Range
decimal variable user-specified precision, |no limit
exact
numeric variable user-specified precision, | no limit
exact
real 4 bytes variable-precision, 6 decimal digits
inexact precision
double precision 8 bytes variable-precision, 15 decimal digits
inexact precision
serial 4 bytes autoincrementing 1 to 2147483647
integer
bigserial 8 bytes large autoincrementing |1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a full
set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information. The
following sections describe the types in detail.

8.1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the usual choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint type
should only be used if the integer range is not sufficient, because the latter is definitely faster.

The bigint type may not function correctly on all platforms, since it relies on compiler support for eight-
byte integers. On a machine without such support, bigint acts the same as integer (but still takes up
eight bytes of storage). However, we are not aware of any reasonable platform where this is actually the
case.

SQL only specifies the integer types integer (or int) and smallint. The type bigint, and the type
names int2, int4, and int 8 are extensions, which are shared with various other SQL database systems.

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with up to 1000 digits of precision and perform calculations ex-
actly. It is especially recommended for storing monetary amounts and other quantities where exactness is
required. However, arithmetic on numeric values is very slow compared to the integer types, or to the
floating-point types described in the next section.

In what follows we use these terms: The scale of a numeric is the count of decimal digits in the fractional
part, to the right of the decimal point. The precision of a numeric is the total count of significant digits in
the whole number, that is, the number of digits to both sides of the decimal point. So the number 23.5141
has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

93

Chapter 8. Data Types

Both the maximum precision and the maximum scale of a numeric column can be configured. To declare
a column of type numeric use the syntax

NUMERIC (precision, scale)

The precision must be positive, the scale zero or positive. Alternatively,
NUMERIC (precision)

selects a scale of 0. Specifying

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of this kind will not coerce input values
to any particular scale, whereas numeric columns with a declared scale will coerce input values to that
scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find this a bit
useless. If you’re concerned about portability, always specify the precision and scale explicitly.)

If the scale of a value to be stored is greater than the declared scale of the column, the system will round
the value to the specified number of fractional digits. Then, if the number of digits to the left of the decimal
point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type is
more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each group
of four decimal digits, plus eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning “not-
a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in a SQL
command, you must put quotes around it, for example UPDATE table SET x = ’NaN’. On input, the
string NaN is recognized in a case-insensitive manner.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. In practice,
these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arithmetic (sin-
gle and double precision, respectively), to the extent that the underlying processor, operating system, and
compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and printing back out a value may show slight discrepancies. Managing
these errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed further here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the numeric type
instead.

94

Chapter 8. Data Types

« If you want to do complicated calculations with these types for anything important, especially if you
rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the implementation
carefully.

« Comparing two floating-point values for equality may or may not work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with a
precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding may take
place if the precision of an input number is too high. Numbers too close to zero that are not representable
as distinct from zero will cause an underflow error.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

ELINNTS

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, respec-
tively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values will prob-
ably not work as expected.) When writing these values as constants in a SQL command, you must put
quotes around them, for example UPDATE table SET x = ‘Infinity’. On input, these strings are
recognized in a case-insensitive manner.

PostgreSQL also supports the SQL-standard notations float and float (p) for specifying inexact nu-
meric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float (1) to float (24) as selecting the real type, while float (25) to float (53) select double
precision. Values of p outside the allowed range draw an error. float with no precision specified is
taken to mean double precision.

Note: Prior to PostgreSQL 7.4, the precision in float (p) was taken to mean so many decimal digits.
This has been corrected to match the SQL standard, which specifies that the precision is measured
in binary digits. The assumption that real and double precision have exactly 24 and 53 bits in
the mantissa respectively is correct for IEEE-standard floating point implementations. On non-IEEE
platforms it may be off a little, but for simplicity the same ranges of p are used on all platforms.

8.1.4. Serial Types

The data types serial and bigserial are not true types, but merely a notational convenience for set-
ting up unique identifier columns (similar to the AUTO_INCREMENT property supported by some other
databases). In the current implementation, specifying

CREATE TABLE tablename (
colname SERIAL
)i

is equivalent to specifying:

95

Chapter 8. Data Types

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (
colname integer NOT NULL DEFAULT nextval (' tablename_colname_seq’)

)i
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a sequence
generator. A NOT NULL constraint is applied to ensure that a null value cannot be explicitly inserted, either.
(In most cases you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate
values from being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as
“owned by” the column, so that it will be dropped if the column or table is dropped.

Note: Prior to PostgreSQL 7.3, serial implied unIQuE. This is no longer automatic. If you wish a
serial column to be in a unique constraint or a primary key, it must now be specified, same as with any
other data type.

To insert the next value of the sequence into the serial column, specify that the serial column should
be assigned its default value. This can be done either by excluding the column from the list of columns in
the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work just the same way, except that they create a bigint column. bigserial
should be used if you anticipate the use of more than 2*' identifiers over the lifetime of the table.

The sequence created for a serial column is automatically dropped when the owning column is dropped.
You can drop the sequence without dropping the column, but this will force removal of the column default
expression.

8.2. Monetary Types

Note: The money type is deprecated. Use numeric Or decimal instead, in combination with the
to_char function.

The money type stores a currency amount with a fixed fractional precision; see Table 8-3. Input is ac-
cepted in a variety of formats, including integer and floating-point literals, as well as “typical” currency
formatting, such as 7 $1, 000.00". Output is generally in the latter form but depends on the locale.

Table 8-3. Monetary Types

Name Storage Size Description Range
money 4 bytes currency amount -21474836.48 to
+21474836.47

96

Chapter 8. Data Types

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n), varchar (n) variable-length with limit
character (n), char (n) fixed-length, blank padded
text variable unlimited length

Table 8-4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character (n), where nis a
positive integer. Both of these types can store strings up to n characters in length. An attempt to store a
longer string into a column of these types will result in an error, unless the excess characters are all spaces,
in which case the string will be truncated to the maximum length. (This somewhat bizarre exception is
required by the SQL standard.) If the string to be stored is shorter than the declared length, values of type
character will be space-padded; values of type character varying will simply store the shorter
string.

If one explicitly casts a value to character varying (n) or character (n), then an over-length value
will be truncated to n characters without raising an error. (This too is required by the SQL standard.)

The notations varchar (n) and char (n) are aliases for character varying(n) and character (n),
respectively. character without length specifier is equivalent to character(1l). If character
varying is used without length specifier, the type accepts strings of any size. The latter is a PostgreSQL
extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the type
text is not in the SQL standard, several other SQL database management systems have it as well.

Values of type character are physically padded with spaces to the specified width n, and are stored
and displayed that way. However, the padding spaces are treated as semantically insignificant. Trailing
spaces are disregarded when comparing two values of type character, and they will be removed when
converting a character value to one of the other string types. Note that trailing spaces are semantically
significant in character varying and text values.

The storage requirement for data of these types is 4 bytes plus the actual string, and in case of character
plus the padding. Long strings are compressed by the system automatically, so the physical requirement
on disk may be less. Long values are also stored in background tables so they do not interfere with rapid
access to the shorter column values. In any case, the longest possible character string that can be stored
is about 1 GB. (The maximum value that will be allowed for n in the data type declaration is less than
that. It wouldn’t be very useful to change this because with multibyte character encodings the number of
characters and bytes can be quite different anyway. If you desire to store long strings with no specific upper
limit, use text or character varying without a length specifier, rather than making up an arbitrary
length limit.)

Tip: There are no performance differences between these three types, apart from the increased stor-
age size when using the blank-padded type. While character (n) has performance advantages in
some other database systems, it has no such advantages in PostgreSQL. In most situations text or
character varying should be used instead.

97

Chapter 8. Data Types

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for information
about available operators and functions. The database character set determines the character set used to
store textual values; for more information on character set support, refer to Section 21.2.

Example 8-1. Using the character types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES ('ok’);

SELECT a, char_length(a) FROM testl; —- ©
a | char_length

______ T,

ok | 2

CREATE TABLE test2 (b varchar(5));

INSERT INTO test2 VALUES ('ok’);

INSERT INTO test2 VALUES (’good ")

INSERT INTO test2 VALUES (’too long’);

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES (’too long’::varchar(5)); —-- explicit truncation
SELECT b, char_length(b) FROM test2;
b | char_length
_______ e
ok | 2
good | 5
too 1 | 5

©® The char_length function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8-5. The name type exists
only for storage of identifiers in the internal system catalogs and is not intended for use by the general user.
Its length is currently defined as 64 bytes (63 usable characters plus terminator) but should be referenced
using the constant NAMEDATALEN. The length is set at compile time (and is therefore adjustable for special
uses); the default maximum length may change in a future release. The type "char" (note the quotes) is
different from char (1) in that it only uses one byte of storage. It is internally used in the system catalogs
as a poor-man’s enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-character internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

The bytea data type allows storage of binary strings; see Table 8-6.

98

Chapter 8. Data Types

Table 8-6. Binary Data Types

Name Storage Size Description
bytea 4 bytes plus the actual binary variable-length binary string
string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
by two characteristics: First, binary strings specifically allow storing octets of value zero and other “non-
printable” octets (usually, octets outside the range 32 to 126). Character strings disallow zero octets,
and also disallow any other octet values and sequences of octet values that are invalid according to the
database’s selected character set encoding. Second, operations on binary strings process the actual bytes,
whereas the processing of character strings depends on locale settings. In short, binary strings are ap-
propriate for storing data that the programmer thinks of as “raw bytes”, whereas character strings are
appropriate for storing text.

When entering bytea values, octets of certain values must be escaped (but all octet values can be escaped)
when used as part of a string literal in an SQL statement. In general, to escape an octet, it is converted into
the three-digit octal number equivalent of its decimal octet value, and preceded by two backslashes. Table
8-7 shows the characters that must be escaped, and gives the alternate escape sequences where applicable.

Table 8-7. bytea Literal Escaped Octets

Decimal Octet | Description Escaped Input | Example Output
Value Representation Representation
0 zero octet E’\\000’ SELECT \000

E’\\000’ : :bytea);

39 single quote 77 orE'\\047/ SELECT ¢
E’\"”::bytea;
92 backslash E’\\\\’ or SELECT \\
E’\\134’ E’\\\\’ ::bytea;
0to 31 and 127 to | “non-printable” E’ \\xxx’ (octal SELECT \001
255 octets value) E’\\001’ : :bytea|;

The requirement to escape “non-printable” octets actually varies depending on locale settings. In some
instances you can get away with leaving them unescaped. Note that the result in each of the examples
in Table 8-7 was exactly one octet in length, even though the output representation of the zero octet and
backslash are more than one character.

The reason that you have to write so many backslashes, as shown in Table 8-7, is that an input string
written as a string literal must pass through two parse phases in the PostgreSQL server. The first backslash
of each pair is interpreted as an escape character by the string-literal parser (assuming escape string syntax
is used) and is therefore consumed, leaving the second backslash of the pair. (Dollar-quoted strings can
be used to avoid this level of escaping.) The remaining backslash is then recognized by the bytea input
function as starting either a three digit octal value or escaping another backslash. For example, a string
literal passed to the server as E/ \\ 001’ becomes \ 001 after passing through the escape string parser. The
\001 is then sent to the bytea input function, where it is converted to a single octet with a decimal value

99

Chapter 8. Data Types

of 1. Note that the single-quote character is not treated specially by bytea, so it follows the normal rules
for string literals. (See also Section 4.1.2.1.)

Bytea octets are also escaped in the output. In general, each “non-printable” octet is converted into its
equivalent three-digit octal value and preceded by one backslash. Most “printable” octets are represented
by their standard representation in the client character set. The octet with decimal value 92 (backslash)

has a special alternative output representation. Details are in Table 8-8.

Table 8-8. bytea Output Escaped Octets

E’\\134’ ::bytea|;

’

Decimal Octet |Description Escaped Output | Example Output Result
Value Representation
92 backslash A\ SELECT AN\

0to31 and 127 to
255

“non-printable”
octets

\xxx (octal value)

SELECT
E’\\0OL1’ : :bytega

\001

32t0 126

“printable” octets

client character set
representation

SELECT
E’\\176’ : :bytea

Depending on the front end to PostgreSQL you use, you may have additional work to do in terms of
escaping and unescaping bytea strings. For example, you may also have to escape line feeds and carriage
returns if your interface automatically translates these.

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT. The
input format is different from bytea, but the provided functions and operators are mostly the same.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8-9. The operations available
on these data types are described in Section 9.9.

Table 8-9. Date/Time Types

Name Storage Size |Description |Low Value High Value Resolution
timestamp [|8 bytes both date and | 4713 BC 5874897 AD 1 microsecond /
(G=) NI time 14 digits
without

time zone]

timestamp [|8 bytes both date and | 4713 BC 5874897 AD 1 microsecond /
(p) 1 with time, with time 14 digits

time zone zone

interval [12 bytes time intervals -178000000 178000000 1 microsecond /
(p) 1] years years 14 digits

100

Chapter 8. Data Types

Name Storage Size |Description |Low Value High Value Resolution
date 4 bytes dates only 4713 BC 5874897 AD 1 day

time [(p) 8 bytes times of day 00:00:00 24:00:00 1 microsecond /
] [without only 14 digits

time zone]

time [(p) 12 bytes times of day 00:00:00+1459 |24:00:00-1459 |1 microsecond /
] with time only, with time 14 digits

zone zone

Note: Prior to PostgreSQL 7.3, writing just timestamp was equivalent to timestamp with time
zone. This was changed for SQL compliance.

time, timestamp, and interval accept an optional precision value p which specifies the number of
fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p is from O to 6 for the t imestamp and interval types.

Note: When timestamp values are stored as double precision floating-point numbers (currently the
default), the effective limit of precision may be less than 6. timestamp values are stored as seconds
before or after midnight 2000-01-01. Microsecond precision is achieved for dates within a few years of
2000-01-01, but the precision degrades for dates further away. When t imestamp values are stored as
eight-byte integers (a compile-time option), microsecond precision is available over the full range of
values. However eight-byte integer timestamps have a more limited range of dates than shown above:
from 4713 BC up to 294276 AD. The same compile-time option also determines whether time and
interval values are stored as floating-point or eight-byte integers. In the floating-point case, large
interval values degrade in precision as the size of the interval increases.

For the t ime types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or from
0 to 10 when floating-point storage is used.

The type time with time zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, time, timestamp
without time zone, and timestamp with time zone should provide a complete range of
date/time functionality required by any application.

The types abstime and reltime are lower precision types which are used internally. You are discour-
aged from using these types in new applications and are encouraged to move any old ones over when
appropriate. Any or all of these internal types might disappear in a future release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of month, day, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation, or
YMD to select year-month-day interpretation.

101

Chapter 8. Data Types

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days of
the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings. Refer
to Section 4.1.2.5 for more information. SQL requires the following syntax

type [(p) 1 'value’

where p in the optional precision specification is an integer corresponding to the number of fractional
digits in the seconds field. Precision can be specified for time, timestamp, and interval types. The
allowed values are mentioned above. If no precision is specified in a constant specification, it defaults to
the precision of the literal value.

8.5.1.1. Dates

Table 8-10 shows some possible inputs for the date type.

Table 8-10. Date Input

Example Description

January 8, 1999 unambiguous in any datestyle input mode

1999-01-08 ISO 8601; January 8 in any mode (recommended
format)

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in
DMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian day

January 8, 99 BC year 99 before the Common Era

8.5.1.2. Times

The time-of-day types are time [(p)] without time zone and time [(p)] with time
zone. Writing just t ime is equivalent to time without time zone.

102

Chapter 8. Data Types

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8-11
and Table 8-12.) If a time zone is specified in the input for time without time zone, it is silently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name that
involves a daylight-savings rule, such as America/New_York. In this case specifying the date is required
in order to determine whether standard or daylight-savings time applies. The appropriate time zone offset
is recorded in the time with time zone value.

Table 8-11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12
04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by abbreviation
2003-04-12 04:05:06 America/New_York |time zone specified by full name

Table 8-12. Time Zone Input

Example Description

PST Abbreviation (for Pacific Standard Time)
America/New_York Full time zone name

PST8PDT POSIX-style time zone specification
-8:00 I1SO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form of zulu

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of a concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the time

103

Chapter 8. Data Types

zone, but this is not the preferred ordering.) Thus
1999-01-08 04:05:06
and

1999-01-08 04:05:06 —-8:00

are valid values, which follow the ISO 8601 standard. In addition, the wide-spread format

January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates timestamp without time zone and timestamp with time
zone literals by the presence of a “+” or “-”. Hence, according to the standard,

TIMESTAMP ’'2004-10-19 10:23:54"
isatimestamp without time zone, while
TIMESTAMP ’'2004-10-19 10:23:54+02"

is a timestamp with time zone. PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as t imestamp without time zone.To
ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE ’2004-10-19 10:23:54+02'

In a literal that has been decided to be timestamp without time zone, PostgreSQL will silently
ignore any time zone indication. That is, the resulting value is derived from the date/time fields in the
input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordinated
Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit time zone
specified is converted to UTC using the appropriate offset for that time zone. If no time zone is stated in
the input string, then it is assumed to be in the time zone indicated by the system’s timezone parameter,
and is converted to UTC using the offset for the t imezone zone.

When a timestamp with time =zone value is output, it is always converted from UTC to the current
timezone zone, and displayed as local time in that zone. To see the time in another time zone, either
change timezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between t imestamp without time zone and timestamp with time zone normally
assume that the timestamp without time zone value should be taken or given as timezone local
time. A different zone reference can be specified for the conversion using AT TIME ZONE.

8.5.1.4. Intervals

interval values can be written with the following syntax:

[@Q] quantity unit [quantity unit...] [direction]

104

Chapter 8. Data Types

Where: quantity is a number (possibly signed); unit iS microsecond, millisecond, second,
minute, hour, day, week, month, year, decade, century, millennium, or abbreviations or plurals

of these units; direction can be ago or empty. The at sign (@) is optional noise. The amounts of

different units are implicitly added up with appropriate sign accounting.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For ex-

ample, 71 12:59:10’ isread the sameas 1 day 12 hours 59 min 10 sec’.

The optional subsecond precision p should be between 0 and 6, and defaults to the precision of the input

literal.

Internally interval values are stored as months, days, and seconds. This is done because the number
of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment
is involved. Because intervals are usually created from constant strings or t imestamp subtraction, this
storage method works well in most cases. Functions justify_days and justify_hours are available
for adjusting days and hours that overflow their normal periods.

8.5.1.5. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8-13. The
values infinity and —-infinity are specially represented inside the system and will be displayed the
same way; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon
as they are read.) All of these values need to be written in single quotes when used as constants in SQL

commands.

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description
epoch date, timestamp 1970-01-01 00:0
system time zero
infinity timestamp later than all othe
—infinity timestamp earlier than all ot
now date, time, timestamp current transactic
today date, timestamp midnight today
tomorrow date, timestamp midnight tomorr
yesterday date, timestamp midnight yesterd
allballs time 00:00:00.00 UT(

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LocaLTIMESTAMP. The latter four accept an optional subsecond precision specification. (See Section
9.9.4.) Note however that these are SQL functions and are not recognized as data input strings.

105

Chapter 8. Data Types

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres), tra-
ditional POSTGRES, and German, using the command SET datestyle. The default is the ISO format.
(The SQL standard requires the use of the ISO 8601 format. The name of the “SQL” output format is a
historical accident.) Table 8-14 shows examples of each output style. The output of the date and time
types is of course only the date or time part in accordance with the given examples.

Table 8-14. Date/Time Output Styles

Style Specification Description Example

ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST
POSTGRES original style Wed Dec 17 07:37:16 1997 PST
German regional style 17.12.1997 07:37:16.00 PST

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation of
input values.) Table 8-15 shows an example.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/monthlyear 17/12/1997 15:37:16.00 CET
SQL, MDY monthl/daylyear 12/17/1997 07:37:16.00 PST
Postgres, DMY day/monthlyear Wed 17 Dec 07:37:16 1997 PST

interval output looks like the input format, except that units like century or week are converted to
years and days and ago is converted to an appropriate sign. In ISO mode the output looks like

[quantity unit [...] 1 [days] [hours:minutes:seconds]

The date/time styles can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresqgl.conf configuration file, or the PGDATESTYLE environment variable on
the server or client. The formatting function to_char (see Section 9.8) is also available as a more flexible
way to format the date/time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be prone
to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL currently supports
daylight-savings rules over the time period 1902 through 2038 (corresponding to the full range of conven-
tional Unix system time). Times outside that range are taken to be in “standard time” for the selected time
zone, no matter what part of the year they fall in.

106

Chapter 8. Data Types

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

+ Although the date type does not have an associated time zone, the time type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset may vary
through the year with daylight-saving time boundaries.

 The default time zone is specified as a constant numeric offset from UTC. It is therefore not possible to
adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We recommend not using the type time with time zone (though it is supported
by PostgreSQL for legacy applications and for compliance with the SQL standard). PostgreSQL assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in the
zone specified by the timezone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

« A full time zone name, for example America/New_York. The recognized time zone names are listed
in the pg_timezone_names view (see Section 43.49). PostgreSQL uses the widely-used zic time
zone data for this purpose, so the same names are also recognized by much other software.

« A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which may imply a set of daylight savings transition-
date rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view (see
Section 43.48). You cannot set the configuration parameter timezone using a time zone abbreviation,
but you can use abbreviations in date/time input values and with the AT TIME ZONE operator.

« In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time zone
specifications of the form STDoffset or STDoffsetDST, where STD is a zone abbreviation, of fset
is a numeric offset in hours west from UTC, and DST is an optional daylight-savings zone abbreviation,
assumed to stand for one hour ahead of the given offset. For example, if ESTSEDT were not already a
recognized zone name, it would be accepted and would be functionally equivalent to USA East Coast
time. When a daylight-savings zone name is present, it is assumed to be used according to the same
daylight-savings transition rules used in the zic time zone database’s posixrules entry. In a standard
PostgreSQL installation, posixrules is the same as US/Eastern, so that POSIX-style time zone
specifications follow USA daylight-savings rules. If needed, you can adjust this behavior by replacing
the posixrules file.

There is a conceptual and practical difference between the abbreviations and the full names: abbreviations
always represent a fixed offset from UTC, whereas most of the full names imply a local daylight-savings
time rule and so have two possible UTC offsets.

One should be wary that the POSIX-style time zone feature can lead to silently accepting bogus input,
since there is no check on the reasonableness of the zone abbreviations. For example, SET TIMEZONE TO
FOOBARO will work, leaving the system effectively using a rather peculiar abbreviation for UTC.

In all cases, timezone names are recognized case-insensitively. (This is a change from PostgreSQL ver-
sions prior to 8.2, which were case-sensitive in some contexts and not others.)

107

Chapter 8. Data Types

Neither full names nor abbreviations are hard-wired into the server; they are obtained from configuration
files stored under .../share/timezone/ and .../share/timezonesets/ of the installation direc-
tory (see Section B.3).

The timezone configuration parameter can be set in the file postgresql.conf, or in any of the other
standard ways described in Chapter 17. There are also several special ways to set it:

« If timezone is not specified in postgresgl.conf nor as a server command-line option, the server
attempts to use the value of the Tz environment variable as the default time zone. If Tz is not defined or
is not any of the time zone names known to PostgreSQL, the server attempts to determine the operating
system’s default time zone by checking the behavior of the C library function localtime (). The
default time zone is selected as the closest match among PostgreSQL’s known time zones.

+ The SQL command SET TIME ZzONE sets the time zone for the session. This is an alternative spelling
of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

« The PGTZ environment variable, if set at the client, is used by libpq applications to send a SET TIME
ZONE command to the server upon connection.

8.5.4. Internals

PostgreSQL uses Julian dates for all date/time calculations. They have the nice property of correctly
predicting/calculating any date more recent than 4713 BC to far into the future, using the assumption that
the length of the year is 365.2425 days.

Date conventions before the 19th century make for interesting reading, but are not consistent enough to
warrant coding into a date/time handler.

8.6. Boolean Type

PostgreSQL provides the standard SQL type boolean. boolean can have one of only two states: “true”
or “false”. A third state, “unknown”, is represented by the SQL null value.

Valid literal values for the “true” state are:

TRUE
Itl
"true’
Iyl
Iyesl

14 l 14
For the “false” state, the following values can be used:
FALSE

rEr

"false’

108

"no’
ror

Using the key words TRUE and FALSE is preferred (and SQL-compliant).

Example 8-2. Using the boolean type

CREATE TABLE testl (a boolean, b text);

INSERT INTO testl VALUES (TRUE,

INSERT INTO testl VALUES

SELECT = FROM testl;

——————

b

t | sic est
f | non est

SELECT % FROM testl WHERE a;

a |

————

b

t | sic est

Example 8-2 shows that boolean values are output using the letters t and £.

boolean uses | byte of storage.

8.7. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8-16 shows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other types.

Table 8-16. Geometric Types

(FALSE,

"sic est’);
"non est’);

Chapter 8. Data Types

Name Storage Size Representation Description

point 16 bytes Point on the plane (x,y)

line 32 bytes Infinite line (not fully ((x1,y1),(x2,y2))
implemented)

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to | ((x1,y1),...)
polygon)

path 16+16n bytes Open path [(xL,yD),...]

polygon 40+16n bytes Polygon (similar to (xl,yl),...)
closed path)

circle 24 bytes Circle <(x,y),r> (center and

radius)

A rich set of functions and operators is available to perform various geometric operations such as scaling,

109

Chapter 8. Data Types

translation, rotation, and determining intersections. They are explained in Section 9.10.

8.7.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type point are
specified using the following syntax:

(x, v)
X 5 Y

where x and y are the respective coordinates as floating-point numbers.

8.7.2. Line Segments

Line segments (1seg) are represented by pairs of points. Values of type 1seg are specified using the
following syntax:

((x1, y1) , (x2, y2))
(x1, y1) , (x2, y2)
x1 , yl , x2 , y2

where (x1,y1) and (x2, y2) are the end points of the line segment.

8.7.3. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using the following syntax:

((x>, y1) , (x2, y2))
(x1, y1) , (%2, y2)
x1 , yl , x2 , y2

where (x1,y1) and (x2, y2) are any two opposite corners of the box.

Boxes are output using the first syntax. The corners are reordered on input to store the upper right corner,
then the lower left corner. Other corners of the box can be entered, but the lower left and upper right
corners are determined from the input and stored.

8.7.4. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points in the
list are not considered connected, or closed, where the first and last points are considered connected.

Values of type path are specified using the following syntax:

((x1, y1), ..., (xn, yn))
[(x1, y1) , ..., (xn, yn)]
(Xl 4 yl) 4 ... r (Xn ’ yn)

110

Chapter 8. Data Types
(x1 , yl ;e g xn , yn)
x1 , yl ;oee e g xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([]) indicate
an open path, while parentheses (()) indicate a closed path.

Paths are output using the first syntax.

8.7.5. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons should probably be
considered equivalent to closed paths, but are stored differently and have their own set of support routines.

Values of type polygon are specified using the following syntax:

((x1, y1) , «.. , (xn , yn))
(x1 , y1) , .. , (xn , yn)
(x1 , yl ;e xn , yn)
x1 , yl ;e g xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.7.6. Circles

Circles are represented by a center point and a radius. Values of type circle are specified using the

following syntax:

>
)

< (x , vy r
((x, v),r
(x, vy), r

X y r

’

where (x, y) is the center and r is the radius of the circle.

Circles are output using the first syntax.

8.8. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8-17. It is
preferable to use these types instead of plain text types to store network addresses, because these types
offer input error checking and several specialized operators and functions (see Section 9.11).

111

Chapter 8. Data Types

Name ‘ Storage Size Description
Table 8-17. Network Address Types

Name Storage Size Description

cidr 12 or 24 bytes IPv4 and IPv6 networks

inet 12 or 24 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, including
IPv4 addresses encapsulated or mapped into IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.8.1. inet

The inet type holds an IPv4 or IPv6 host address, and optionally the identity of the subnet it is in, all
in one field. The subnet identity is represented by stating how many bits of the host address represent the
network address (the “netmask”). If the netmask is 32 and the address is IPv4, then the value does not
indicate a subnet, only a single host. In IPv6, the address length is 128 bits, so 128 bits specify a unique
host address. Note that if you want to accept networks only, you should use the cidr type rather than

inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the
number of bits in the netmask. If the /y part is left off, then the netmask is 32 for IPv4 and 128 for IPv6,
so the value represents just a single host. On display, the /y portion is suppressed if the netmask specifies
a single host.

8.8.2. cidr

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networks is address/y where address
is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the netmask. If y is
omitted, it is calculated using assumptions from the older classful network numbering system, except that
it will be at least large enough to include all of the octets written in the input. It is an error to specify a
network address that has bits set to the right of the specified netmask.

Table 8-18 shows some examples.

Table 8-18. cidr Type Input Examples

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

112

Chapter 8. Data Types

cidr Input cidr Output abbrev (cidr)
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16
128.1.2 128.1.2.0/24 128.1.2/24
10.1.2 10.1.2.0/24 10.1.2/24
10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8
10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

2001:418:3:ba::/64

2001:4£8:3:ba::/64

2001:4£8:3:ba::/64

2001:4£8:3:ba:2e0:81ff:fe22:d1f1

12801:418:3:ba:2e0:81ff:fe22:d1f1

12801:4£8:3:ba:2e0:81ff:fe22:d1f1

:offff:1.2.3.0/120

=ffff:1.2.3.0/120

ffff:1.2.3/120

:offff:1.2.3.0/128

=ffff:1.2.3.0/128

=ffff:1.2.3.0/128

8.8.3. inet VS. cidr

The essential difference between inet and cidr data types is that inet accepts values with nonzero bits
to the right of the netmask, whereas cidr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions host, text, and

abbrev.

8.8.4. macaddr

The macaddr type stores MAC addresses, i.e., Ethernet card hardware addresses (although MAC ad-
dresses are used for other purposes as well). Input is accepted in various customary formats, including

08002b:010203"
"08002b-010203"
70800.2b01.0203"
"08-00-2b-01-02-03"
708:00:2b:01:02:03"

which would all specify the same address. Upper and lower case is accepted for the digits a through £.
Output is always in the last of the forms shown.

113

8.9. Bit String Types

Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two SQL

bit types: bit (n) and bit varying (n), where n is a positive integer.

Chapter 8. Data Types

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalent to bit (1), while bit varying without a length
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit (n), it will be truncated or zero-padded on the right
to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to bit

varying (n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.3 for information about the syntax of bit string constants. Bit-logical operators and
string manipulation functions are available; see Section 9.6.

Example 8-3. Using the bit string types

CREATE
INSERT
INSERT
ERROR:

INSERT
SELECT

a

TABLE test (a BIT(3), b BIT VARYING(5));
INTO test VALUES (B’101’, B’'007);

INTO test VALUES (B’"10’, B’101');

bit string length 2 does not match type bit (3)
INTO test VALUES (B’10’::bit(3), B’"101");
* FROM test;

8.10. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Arrays of
any built-in or user-defined base type can be created. (Arrays of composite types or domains are not yet
supported, however.)

8.10.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE

TABLE sal_emp (

name text,

pay_by_qgquarter integer|[],
schedule text[][]

114

Chapter 8. Data Types

As shown, an array data type is named by appending square brackets ([]) to the data type name of the
array elements. The above command will create a table named sal_emp with a column of type text
(name), a one-dimensional array of type integer (pay_by_quarter), which represents the employee’s
salary by quarter, and a two-dimensional array of text (schedule), which represents the employee’s
weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer([3][3]
)

However, the current implementation does not enforce the array size limits — the behavior is the same as
for arrays of unspecified length.

Actually, the current implementation does not enforce the declared number of dimensions either. Arrays
of a particular element type are all considered to be of the same type, regardless of size or number of
dimensions. So, declaring number of dimensions or sizes in CREATE TABLE is simply documentation, it
does not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard, may be used for one-dimensional arrays.
pay_by_quarter could have been defined as:

pay_by_quarter integer ARRAY[4],

This syntax requires an integer constant to denote the array size. As before, however, PostgreSQL does
not enforce the size restriction.

8.10.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and separate
them by commas. (If you know C, this is not unlike the C syntax for initializing structures.) You may put
double quotes around any element value, and must do so if it contains commas or curly braces. (More
details appear below.) Thus, the general format of an array constant is the following:

"{ vall delim val2 delim ... }'

where delimis the delimiter character for the type, as recorded in its pg_t ype entry. Among the standard
data types provided in the PostgreSQL distribution, type box uses a semicolon (;) but all the others use
comma (,). Each va1 is either a constant of the array element type, or a subarray. An example of an array
constant is

"{{1,2,3},{4,5,6},{7,8,9}}’

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or lower-
case variant of NULL will do.) If you want an actual string value “NULL”, you must put double quotes
around it.

115

Chapter 8. Data Types

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.5. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements.

INSERT INTO sal_emp
VALUES (’Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"training", "presentation"}}’);

INSERT INTO sal_emp
VALUES ('Carol’,
{20000, 25000, 25000, 25000}",
"{{"breakfast", "consulting"}, {"meeting", "lunch"}}’);

The result of the previous two inserts looks like this:

SELECT % FROM sal_emp;

name | pay_by_quarter | schedule

,,,,,,, T
Bill | {10000,10000,10000,10000} | {{meeting,lunch}, {training,presentation}}
Carol | {20000,25000,25000,25000} | {{breakfast,consulting}, {meeting, lunch}}
(2 rows)

The ARRAY constructor syntax may also be used:

INSERT INTO sal_emp
VALUES (’Bill’,
ARRAY[10000, 10000, 10000, 100007,
ARRAY [['meeting’, ’'lunch’], [’training’, ’presentation’]]);

INSERT INTO sal_emp
VALUES ('Carol’,
ARRAY [20000, 25000, 25000, 250007,
ARRAY [["breakfast’, ’consulting’], ['meeting’, ’lunch’]1]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals are
single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor syntax
is discussed in more detail in Section 4.2.10.

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error
report, for example:

INSERT INTO sal_emp
VALUES ('Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"meeting"}}’);
ERROR: multidimensional arrays must have array expressions with matching dimensions

116

Chapter 8. Data Types

8.10.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array at
a time. This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_qguarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses the one-
based numbering convention for arrays, that is, an array of n elements starts with array[1] and ends
with array[n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by
writing Iower-bound: upper—bound for one or more array dimensions. For example, this query retrieves
the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting}, {training}}
(1 row)

If any dimension is written as a slice, i.e contains a colon, then all dimensions are treated as slices. If a
dimension is missing, it is assumed to be [1:1]. If a dimension has only a single number (no colon), that
dimension is treated as being from 1 to the number specified. For example, [2] is treated as [1:2], as in
this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = ’'Bill’;
schedule

{{meeting, lunch}, {training, presentation}}
(1 row)

117

Chapter 8. Data Types

An array subscript expression will return null if either the array itself or any of the subscript expressions
are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise an error).
For example, if schedule currently has the dimensions [1:3] [1:2] then referencing schedule[3] [3]
yields NULL. Similarly, an array reference with the wrong number of subscripts yields a null rather than
an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are null.
However, in other corner cases such as selecting an array slice that is completely outside the current array
bounds, a slice expression yields an empty (zero-dimensional) array instead of null. If the requested slice
partially overlaps the array bounds, then it is silently reduced to just the overlapping region.

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims (schedule) FROM sal_emp WHERE name = ’'Carol’;

array_dims

[1:2][1:2]
(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps not so convenient
for programs. Dimensions can also be retrieved with array_upper and array_lower, which return the
upper and lower bound of a specified array dimension, respectively.

SELECT array_upper (schedule, 1) FROM sal_emp WHERE name = ’‘Carol’;

array_upper

8.10.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ' {25000,25000,27000,27000}"
WHERE name = ’'Carol’;

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’'Carol’;

An array may also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = ’'Bill’;

or updated in a slice:

118

Chapter 8. Data Types

UPDATE sal_emp SET pay_by_quarter[1l:2] = 7 {27000,27000}"
WHERE name = ’'Carol’;

A stored array value can be enlarged by assigning to element(s) not already present. Any positions between
those previously present and the newly assigned element(s) will be filled with nulls. For example, if array
myarray currently has 4 elements, it will have six elements after an update that assigns to myarray[6],
and myarray [5] will contain a null. Currently, enlargement in this fashion is only allowed for one-
dimensional arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example one
might assign to myarray[-2:7] to create an array with subscript values running from -2 to 7.

New array values can also be constructed by using the concatenation operator, | |.

SELECT ARRAY[1,2] || ARRAY[3,4];
?column?

{1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2]1,103,411;
?column?

{{5,6},{1,2},1{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed on to the beginning or end of a one-
dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-dimensional
array.

When a single element is pushed on to either the beginning or end of a one-dimensional array, the result
is an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims(1 || "[0:1]={2,3}" ::int[]);
array_dims

[0:2]
(1 row)

SELECT array_dims (ARRAY[1,2] || 3);
array_dims

[1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower bound
subscript of the left-hand operand’s outer dimension. The result is an array comprising every element of
the left-hand operand followed by every element of the right-hand operand. For example:

119

Chapter 8. Data Types

SELECT array_dims (ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

[1:5]
(1 row)

SELECT array_dims (ARRAY[[1,2],[3,4]1] || ARRAY[[5,6],17,81,19,011);
array_dims

[1:5][1:2]
(1 row)

When an N-dimensional array is pushed on to the beginning or end of an N+1-dimensional array, the result
is analogous to the element-array case above. Each N-dimensional sub-array is essentially an element of
the N+1-dimensional array’s outer dimension. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[[3,4]1,[5,611);
array_dims

[1:3][1:2]
(1 row)

An array can also be constructed by using the functions array prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Note that the concatenation operator discussed above is preferred over direct
use of these functions. In fact, the functions exist primarily for use in implementing the concatenation
operator. However, they may be directly useful in the creation of user-defined aggregates. Some
examples:

SELECT array_prepend(l, ARRAY[2,3]);
array_prepend

{1,2,3}
(1 row)

SELECT array_append (ARRAY[1,2], 3);
array_append

{1,2,3}
(1 row)

SELECT array_cat (ARRAY[1,2], ARRAY[3,4]);
array_cat

{1,2,3,4}
(1 row)

SELECT array_cat (ARRAY[[1,2], 3,411, ARRAY[5,61]);
array_cat

120

Chapter 8. Data Types

{{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat (ARRAY[5,6], ARRAY[[1,2],(3,411);
array_cat

{{5,6},{1,2},{3,4}}

8.10.5. Searching in Arrays

To search for a value in an array, you must check each value of the array. This can be done by hand, if you
know the size of the array. For example:

SELECT * FROM sal_emp WHERE pay_by_quarter[1l] = 10000 OR
pay_by_qgquarter[2] = 10000 OR
pay_by_quarter[3] = 10000 OR
pay_by_qguarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
uncertain. An alternative method is described in Section 9.17. The above query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);

In addition, you could find rows where the array had all values equal to 10000 with:

SELECT = FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Tip: Arrays are not sets; searching for specific array elements may be a sign of database misdesign.
Consider using a separate table with a row for each item that would be an array element. This will be
easier to search, and is likely to scale up better to large numbers of elements.

8.10.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/0 conversion rules for the array’s element type, plus decoration that indicates the array structure. The
decoration consists of curly braces ({ and }) around the array value plus delimiter characters between
adjacent items. The delimiter character is usually a comma (,) but can be something else: it is determined
by the typdelim setting for the array’s element type. (Among the standard data types provided in the
PostgreSQL distribution, type box uses a semicolon (;) but all the others use comma.) In a multidimen-
sional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces, and delimiters must
be written between adjacent curly-braced entities of the same level.

121

Chapter 8. Data Types

The array output routine will put double quotes around element values if they are empty strings, contain
curly braces, delimiter characters, double quotes, backslashes, or white space, or match the word NULL.
Double quotes and backslashes embedded in element values will be backslash-escaped. For numeric data
types it is safe to assume that double quotes will never appear, but for textual data types one should be
prepared to cope with either presence or absence of quotes.

By default, the lower bound index value of an array’s dimensions is set to one. To represent arrays with
other lower bounds, the array subscript ranges can be specified explicitly before writing the array contents.
This decoration consists of square brackets ([1) around each array dimension’s lower and upper bounds,
with a colon (:) delimiter character in between. The array dimension decoration is followed by an equal
sign (=). For example:

SELECT f£f1[1][-2][3] AS el, f1[1][-1][5] AS e2
FROM (SELECT ' [1:1]1[-2:-1]1[3:5]1={{{1,2,3},{4,5,6}}}"::int[] AS fl) AS ss;

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL. The
presence of any quotes or backslashes disables this and allows the literal string value “NULL” to be
entered. Also, for backwards compatibility with pre-8.2 versions of PostgreSQL, the array_nulls configu-
ration parameter may be turned of f to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can write double quotes around any individual array
element. You must do so if the element value would otherwise confuse the array-value parser. For exam-
ple, elements containing curly braces, commas (or whatever the delimiter character is), double quotes,
backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and strings matching
the word NULL must be quoted, too. To put a double quote or backslash in a quoted array element value,
use escape string syntax and precede it with a backslash. Alternatively, you can use backslash-escaping to
protect all data characters that would otherwise be taken as array syntax.

You may write whitespace before a left brace or after a right brace. You may also write whitespace be-
fore or after any individual item string. In all of these cases the whitespace will be ignored. However,
whitespace within double-quoted elements, or surrounded on both sides by non-whitespace characters of
an element, is not ignored.

Note: Remember that what you write in an SQL command will first be interpreted as a string literal,
and then as an array. This doubles the number of backslashes you need. For example, to insert a
text array value containing a backslash and a double quote, you'd need to write

INSERT ... VALUES (E’ {"\\\\","\\""}");

The escape string processor removes one level of backslashes, so that what arrives at the array-value
parser looks like {"\\","\""}. In turn, the strings fed to the text data type’s input routine become \
and " respectively. (If we were working with a data type whose input routine also treated backslashes
specially, bytea for example, we might need as many as eight backslashes in the command to get one
backslash into the stored array element.) Dollar quoting (see Section 4.1.2.2) can be used to avoid
the need to double backslashes.

122

Chapter 8. Data Types

Tip: The arraY constructor syntax (see Section 4.2.10) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In array, individual element values are
written the same way they would be written when not members of an array.

8.11. Composite Types

A composite type describes the structure of a row or record; it is in essence just a list of field names and
their data types. PostgreSQL allows values of composite types to be used in many of the same ways that
simple types can be used. For example, a column of a table can be declared to be of a composite type.

8.11.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
r double precision,
i double precision
)i

CREATE TYPE inventory_item AS (

name text,
supplier_id integer,
price numeric

)

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified; no
constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential; without
it, the system will think a quite different kind of CREATE TYPE command is meant, and you’ll get odd
syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item,
count integer

)i
INSERT INTO on_hand VALUES (ROW(’fuzzy dice’, 42, 1.99), 1000);

or functions:

CREATE FUNCTION price_extension (inventory_item, integer) RETURNS numeric
AS ’'SELECT $l.price * $2’ LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

123

Chapter 8. Data Types

Whenever you create a table, a composite type is also automatically created, with the same name as the
table, to represent the table’s row type. For example, had we said

CREATE TABLE inventory_item (

name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

)

then the same inventory_item composite type shown above would come into being as a byproduct, and
could be used just as above. Note however an important restriction of the current implementation: since
no constraints are associated with a composite type, the constraints shown in the table definition do not
apply to values of the composite type outside the table. (A partial workaround is to use domain types as
members of composite types.)

8.11.2. Composite Value Input

To write a composite value as a literal constant, enclose the field values within parentheses and separate
them by commas. You may put double quotes around any field value, and must do so if it contains commas
or parentheses. (More details appear below.) Thus, the general format of a composite constant is the
following:

'(vall , valz , ...)’
An example is
" ("fuzzy dice",42,1.99)'

which would be a valid value of the inventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third field:

" ("fuzzy dice",42,)’
If you want an empty string rather than NULL, write double quotes:
4 ("ll,42,) ’

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Section 4.1.2.5.
The constant is initially treated as a string and passed to the composite-type input conversion routine. An
explicit type specification might be necessary.)

The ROW expression syntax may also be used to construct composite values. In most cases this is consid-
erably simpler to use than the string-literal syntax, since you don’t have to worry about multiple layers of
quoting. We already used this method above:

ROW (' fuzzy dice’, 42, 1.99)
ROW (”, 42, NULL)

124

Chapter 8. Data Types

The ROW keyword is actually optional as long as you have more than one field in the expression, so these
can simplify to

(" fuzzy dice’, 42, 1.99)
(”, 42, NULL)

The rROW expression syntax is discussed in more detail in Section 4.2.11.

8.11.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it’s so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields from
our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a field name, per SQL syntax
rules. You must write it like this:

SELECT (item) .name FROM on_hand WHERE (item) .price > 9.99;
or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item) .name FROM on_hand WHERE (on_hand.item) .price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to select
just one field from the result of a function that returns a composite value, you’d need to write something
like

SELECT (my_func(...)).field FROM

Without the extra parentheses, this will provoke a syntax error.

8.11.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First, insert-
ing or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));
UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omits ROW, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

125

Chapter 8. Data Types

Notice here that we don’t need to (and indeed cannot) put parentheses around the column name appearing
just after SET, but we do need parentheses when referencing the same column in the expression to the
right of the equal sign.

And we can specify subfields as targets for INSERT, too:
INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(l.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have been
filled with null values.

8.11.5. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according to the
I/O conversion rules for the individual field types, plus decoration that indicates the composite structure.
The decoration consists of parentheses ((and)) around the whole value, plus commas (,) between
adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it is considered
part of the field value, and may or may not be significant depending on the input conversion rules for the
field data type. For example, in

r 42y’

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you may write double quotes around any individual
field value. You must do so if the field value would otherwise confuse the composite-value parser. In
particular, fields containing parentheses, commas, double quotes, or backslashes must be double-quoted.
To put a double quote or backslash in a quoted composite field value, precede it with a backslash. (Also,
a pair of double quotes within a double-quoted field value is taken to represent a double quote character,
analogously to the rules for single quotes in SQL literal strings.) Alternatively, you can use backslash-
escaping to protect all data characters that would otherwise be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents a
NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space is
not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be doubled.

Note: Remember that what you write in an SQL command will first be interpreted as a string literal,
and then as a composite. This doubles the number of backslashes you need (assuming escape string
syntax is used). For example, to insert a text field containing a double quote and a backslash in a
composite value, you'd need to write

INSERT ... VALUES (E’ ("\\"\\\\")");

The string-literal processor removes one level of backslashes, so that what arrives at the composite-
value parser looks like ("\"\\"). Inturn, the string fed to the text data type’s input routine becomes
"\. (If we were working with a data type whose input routine also treated backslashes specially, bytea
for example, we might need as many as eight backslashes in the command to get one backslash into
the stored composite field.) Dollar quoting (see Section 4.1.2.2) may be used to avoid the need to
double backslashes.

126

Chapter 8. Data Types

Tip: The row constructor syntax is usually easier to work with than the composite-literal syntax when
writing composite values in SQL commands. In row, individual field values are written the same way
they would be written when not members of a composite.

8.12. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
OIDs are not added to user-created tables, unless WITH 0OIDS is specified when the table is created, or the
default_with_oids configuration variable is enabled. Type oid represents an object identifier. There are
also several alias types for oid: regproc, regprocedure, regoper, regoperator, regclass, and
regtype. Table 8-19 shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide uniqueness in large databases, or even in large individual tables. So, using a
user-created table’s OID column as a primary key is discouraged. OIDs are best used only for references
to system tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and then
manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned confusion
if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for objects.
For example, to examine the pg_attribute rows related to a table mytable, one could write

SELECT * FROM pg_attribute WHERE attrelid = '‘mytable’::regclass;
rather than

SELECT = FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = ’'mytable’);

While that doesn’t look all that bad by itself, it’s still oversimplified. A far more complicated sub-select
would be needed to select the right OID if there are multiple tables named mytable in different schemas.
The regclass input converter handles the table lookup according to the schema path setting, and so it
does the “right thing” automatically. Similarly, casting a table’s OID to regclass is handy for symbolic
display of a numeric OID.

Table 8-19. Object Identifier Types

Name References Description Value Example

oid any numeric object identifier | 564182

127

Chapter 8. Data Types

Name References Description Value Example
regproc Pg_proc function name sum
regprocedure Pg_proc function with argument | sum(int4)
types
regoper pg_operator operator name +
regoperator pg_operator operator with argument | x (integer, integer)
types or — (NONE, integer)
regclass pg_class relation name pPg_type
regtype pPg_type data type name integer

All of the OID alias types accept schema-qualified names, and will display schema-qualified names on
output if the object would not be found in the current search path without being qualified. The regproc
and regoper alias types will only accept input names that are unique (not overloaded), so they are of
limited use; for most uses regprocedure or regoperator is more appropriate. For regoperator,
unary operators are identified by writing NONE for the unused operand.

An additional property of the OID alias types is that if a constant of one of these types appears in a stored
expression (such as a column default expression or view), it creates a dependency on the referenced ob-
ject. For example, if a column has a default expression nextval (‘my_seq’ : :regclass), PostgreSQL
understands that the default expression depends on the sequence my_seq; the system will not let the
sequence be dropped without first removing the default expression.

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is the
data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the system is cid, or command identifier. This is the data type of the system
columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data type
of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that identifies
the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

8.13. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a func-
tion’s argument or result type. Each of the available pseudo-types is useful in situations where a function’s
behavior does not correspond to simply taking or returning a value of a specific SQL data type. Table 8-20
lists the existing pseudo-types.

Table 8-20. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type whatever.

128

Chapter 8. Data Types

Name Description

anyarray Indicates that a function accepts any array data
type (see Section 33.2.5).

anyelement Indicates that a function accepts any data type (see
Section 33.2.5).

cstring Indicates that a function accepts or returns a

null-terminated C string.

internal Indicates that a function accepts or returns a
server-internal data type.

language_handler A procedural language call handler is declared to
return language_handler.

record Identifies a function returning an unspecified row
type.

trigger A trigger function is declared to return trigger.

void Indicates that a function returns no value.

opaque An obsolete type name that formerly served all the

above purposes.

Functions coded in C (whether built-in or dynamically loaded) may be declared to accept or return any of
these pseudo data types. It is up to the function author to ensure that the function will behave safely when
a pseudo-type is used as an argument type.

Functions coded in procedural languages may use pseudo-types only as allowed by their implementation
languages. At present the procedural languages all forbid use of a pseudo-type as argument type, and allow
only void and record as a result type (plus trigger when the function is used as a trigger). Some also
support polymorphic functions using the types anyarray and anyelement.

The internal pseudo-type is used to declare functions that are meant only to be called internally by the
database system, and not by direct invocation in a SQL query. If a function has at least one internal-type
argument then it cannot be called from SQL. To preserve the type safety of this restriction it is important
to follow this coding rule: do not create any function that is declared to return internal unless it has at
least one internal argument.

8.14. XML Document Support

XML (Extensible Markup Language) support is not one capability, but a variety of features supported by
a database system. These capabilities include storage, import/export, validation, indexing, efficiency of
modification, searching, transforming, and XML to SQL mapping. PostgreSQL supports some but not all
of these XML capabilities. Future releases of PostgreSQL will continue to improve XML support. For an
overview of XML use in databases, see http://www.rpbourret.com/xml/XMLAndDatabases.htm.

Storage

PostgreSQL does not have a specialized XML data type. Users should store XML documents in
ordinary TEXT fields. If you need the document split apart into its component parts so each element

129

Chapter 8. Data Types

is stored separately, you must use a middle-ware solution to do that, but once done, the data becomes
relational and has to be processed accordingly.

Import/Export

There is no facility for mapping XML to relational tables. An external tool must be used for this.
One simple way to export XML is to use psql in HTML mode (\pset format html), and convert
the XHTML output to XML using an external tool.

Validation

/contrib/xml12 has a function called xml_is_well_ formed () that can be used in a CHECK con-
straint to enforce that a field contains well-formed XML. It does not support validation against a
specific XML schema. A server-side language with XML capabilities could be used to do schema-
specific XML checks.

Indexing

/contrib/xml2 functions can be used in expression indexes to index specific XML fields. To index
the full contents of XML documents, the full-text indexing tool /contrib/tsearch2 can be used.
Of course, Tsearch2 indexes have no XML awareness so additional /contrib/xm12 checks should
be added to queries.

Modification

If an UPDATE does not modify an XML field, the XML data is shared between the old and new rows.
However, if the UPDATE modifies an XML field, a full modified copy of the XML field must be
created internally.

Searching

XPath searches are implemented using /contrib/xml2. It processes XML text documents and
returns results based on the requested query.

Transforming
/contrib/xml2 supports XSLT (Extensible Stylesheet Language Transformation).
XML to SQL Mapping

This involves converting XML data to and from relational structures. PostgreSQL has no internal
support for such mapping, and relies on external tools to do such conversions.

Missing Features

Missing features include XQuery, SQL/XML syntax (ISO/IEC 9075-14), and an XML data type
optimized for XML storage.

130

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can also
define their own functions and operators, as described in Part V. The psql commands \df and \do can be
used to show the list of all actually available functions and operators, respectively.

If you are concerned about portability then take note that most of the functions and operators described
in this chapter, with the exception of the most trivial arithmetic and comparison operators and some ex-
plicitly marked functions, are not specified by the SQL standard. Some of the extended functionality is
present in other SQL database management systems, and in many cases this functionality is compati-
ble and consistent between the various implementations. This chapter is also not exhaustive; additional
functions appear in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued Boolean logic where the null value represents “unknown”. Observe the following
truth tables:

a b a AND b aORbp
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.12 for more information about the order of evaluation of subex-
pressions.

131

Chapter 9. Functions and Operators

9.2. Comparison Operators

The usual comparison operators are available, shown in Table 9-1.

Table 9-1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<>or!= not equal

Note: The ' = operator is converted to <> in the parser stage. It is not possible to implement != and
<> operators that do different things.

Comparison operators are available for all data types where this makes sense. All comparison operators are
binary operators that return values of type boolean; expressions like 1 < 2 < 3 are not valid (because
there is no < operator to compare a Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available.
a BETWEEN x AND y

is equivalent to

a >= x AND a <=y

Similarly,

a NOT BETWEEN x AND y

is equivalent to

a< x OR a > y

There is no difference between the two respective forms apart from the CPU cycles required to rewrite
the first one into the second one internally. BETWEEN SYMMETRIC is the same as BETWEEN except there
is no requirement that the argument to the left of AND be less than or equal to the argument on the right;
the proper range is automatically determined.

To check whether a value is or is not null, use the constructs

expression IS NULL
expression 1S NOT NULL

or the equivalent, but nonstandard, constructs

expression ISNULL

132

Chapter 9. Functions and Operators

expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.) This behavior conforms to
the SQL standard.

Tip: Some applications may expect that expression = NULL returns true if expression evaluates
to the null value. It is highly recommended that these applications be modified to comply with the
SQL standard. However, if that cannot be done the transform_null_equals configuration variable is
available. If it is enabled, PostgreSQL will convert x = NULL clauses to x 1s NULL. This was the
default behavior in PostgreSQL releases 6.5 through 7.1.

Note: If the expression is row-valued, then 1s NULL is true when the row expression itself is null or
when all the row’s fields are null, while s NoT NULL is true when the row expression itself is non-null
and all the row’s fields are non-null. This definition conforms to the SQL standard, and is a change
from the inconsistent behavior exhibited by PostgreSQL versions prior to 8.2.

The ordinary comparison operators yield null (signifying “unknown’) when either input is null. Another
way to do comparisons is with the IS [NOT] DISTINCT FROM construct:

expression IS DISTINCT FROM expression
expression IS NOT DISTINCT FROM expression

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, when both inputs are
null it will return false, and when just one input is null it will return true. Similarly, IS NOT DISTINCT
FROM is identical to = for non-null inputs, but it returns true when both inputs are null, and false when only
one input is null. Thus, these constructs effectively act as though null were a normal data value, rather
than “unknown”.

Boolean values can also be tested using the constructs

expression 1S TRUE
expression 1S NOT TRUE
expression IS FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null input
is treated as the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are effec-
tively the same as IS NULL and IS NOT NULL, respectively, except that the input expression must be of
Boolean type.

133

Chapter 9. Functions and Operators

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without common mathemat-
ical conventions for all possible permutations (e.g., date/time types) we describe the actual behavior in
subsequent sections.

Table 9-2 shows the available mathematical operators.

Table 9-2. Mathematical Operators

Operator Description Example Result
+ addition 2 + 3 5
- subtraction 2 -3 -1
* multiplication 2 % 3 6
/ division (integer 4 / 2 2
division truncates
results)
B modulo (remainder) 5% 4 1
0 exponentiation 2.0 ~ 3.0 8
|/ square root |/ 25.0 5
|1/ cube root [1/ 27.0 3
! factorial 5 1 120
! factorial (prefix 115 120
operator)
@ absolute value @ -5.0 5
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric
data types. The bitwise operators are also available for the bit string types bit and bit varying, as
shown in Table 9-10.

Table 9-3 shows the available mathematical functions. In the table, dp indicates double precision.
Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions working
with double precision data are mostly implemented on top of the host system’s C library; accuracy
and behavior in boundary cases may therefore vary depending on the host system.

Table 9-3. Mathematical Functions

Function Return Type Description Example Result

134

Chapter 9. Functions and Operators

Function Return Type Description Example Result
abs (x) (same as x) absolute value abs (-17.4) 17.4
cbrt (dp) dp cube root cbrt (27.0) 3

ceil (dp or (same as input) smallest integer not | ceil (-42.8) -42
numeric) less than argument

ceiling (dp or (same as input) smallest integer not | ceiling (-95.3) |-95

numeric)

less than argument
(alias for ceil)

degrees (dp)

dp

radians to degrees

degrees (0.5)

28.647889756541

exp (dp or

numeric)

(same as input)

exponential

exp(1.0)

2.7182818284590

floor (dp or

(same as input)

largest integer not

floor (-42.8)

-43

48

numeric) greater than
argument
1n(dp or (same as input) natural logarithm | 1n(2.0) 0.6931471805599
numeric)
log (dp or (same as input) base 10 logarithm |1og(100.0) 2
numeric)
log (b numeric, numeric logarithm to base b | log (2.0, 64.0) |6.0000000000
X numeric)
mod (y, x) (same as argument | remainder of y/x mod (9, 4) 1
types)
pi() dp “m” constant pi() 3.1415926535897
power (a dp, b dp a raised to the power (9.0, 729
dp) power of b 3.0)
power (a numeric a raised to the power (9.0, 729
numeric, b power of b 3.0)
numeric)
radians (dp) dp degrees to radians | radians (45.0) 0.7853981633974
random () dp random value random ()
between 0.0 and
1.0
round (dp or (same as input) round to nearest round (42.4) 42
numeric) integer
round (v numeric round to s decimal | round (42.4382, |42.44

numeric, s int)

places

2)

135

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

setseed (dp)

int

set seed for
subsequent
random () calls
(value between 0
and 1.0)

setseed (0.54823

)1177314959

numeric, count

int)

in an equidepth
histogram with
count buckets, in
the range b1l to b2

sign(dp or (same as input) sign of the sign(-8.4) -1
numeric) argument (-1, 0,

+1)
sqrt (dp or (same as input) square root sqrt (2.0) 1.4142135623731
numeric)
trunc (dp or (same as input) truncate toward trunc (42.8) 42
numeric) Zero
trunc (v numeric truncate to s trunc (42.4382, [42.43
numeric, s int) decimal places 2)
width_bucket (op |int return the bucket to | width_bucket (5.3%,
numeric, bl which operand 0.024, 10.06,
numeric, b2 would be assigned | 5)

Finally, Table 9-4 shows the available trigonometric functions. All trigonometric functions take arguments

and return values of type double precision.

Table 9-4. Trigonometric Functions

Function Description
acos (x) inverse cosine
asin (x) inverse sine
atan (x) inverse tangent

atan2 (x, y)

inverse tangent of x/y

cos (x) cosine
cot (x) cotangent
sin (x) sine

tan (x) tangent

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of all the types character, character varying, and text. Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of potential

136

Chapter 9. Functions and Operators

effects of the automatic padding when using the character type. Generally, the functions described
here also work on data of non-string types by converting that data to a string representation first. Some
functions also exist natively for the bit-string types.

SQL defines some string functions with a special syntax where certain key words rather than commas are
used to separate the arguments. Details are in Table 9-5. These functions are also implemented using the
regular syntax for function invocation. (See Table 9-6.)

Table 9-5. SQL String Functions and Operators

string

Function Return Type Description Example Result
string || text String "Post’ || PostgreSQL
string concatenation "greSQL’

bit_length (stringlint Number of bitsin |bit_length (’ jose32

char_length (striy
or

character_length

gnt

string)

Number of
characters in string

char_length(’j

olse’)

convert (string
using

conversion_name)

text

Change encoding
using specified
conversion name.
Conversions can be
defined by CREATE
CONVERSTION. Also
there are some
pre-defined
conversion names.
See Table 9-7 for
available
conversion names.

convert (' Postgr]
using
iso_8859_1 to_u

EILtgreSQL’ in
UTFS8 (Unicode,
t&bit) encoding

lower (string)

text

Convert string to
lower case

lower (! TOM’)

tom

octet_length (stri

dgt

Number of bytes in
string

octet_length(’j

oke’)

overlay (string
placing string
from int [for

int])

text

Replace substring

overlay (' Txxxxa
placing "hom’
from 2 for 4)

sThomas

position (substrip

in string)

ant

Location of
specified substring

position (’om’

in ’Thomas’)

substring (string

[from int]

[for int])

text

Extract substring

substring (’ Thom
from 2 for 3)

lasdm

137

Chapter 9. Functions and Operators

Function Return Type Description Example Result
substring (string|text Extract substring substring (! Thomasds
from pattern) matching POSIX | from 7...$")

regular expression.

See Section 9.7 for

more information

on pattern

matching.
substring (string|text Extract substring | substring (’ Thomasia
from pattern matching SQL from
for escape) regular expression. "SH#"o_a#"_ !

See Section 9.7 for | for "#')

more information

on pattern

matching.
trim([leading |text Remove the trim(both ’x’ Tom
| trailing | longest string from ’xTomxx’)
both] containing only the
[characters] characters (a
from string) space by default)

from the

start/end/both ends

of the string
upper (string) text Convert string to | upper (' tom’) TOM

uppercase

Additional string manipulation functions are available and are listed in Table 9-6. Some of them are used
internally to implement the SQL-standard string functions listed in Table 9-5.

Table 9-6. Other String Functions

Function Return Type Description Example Result
ascii (string) int ASCII code of the |ascii("x’) 120
first byte of the
argument
btrim(string text Remove the btrim (' xyxtrimyyseim
text [, longest string "xy”)
characters consisting only of
text]) characters in
characters (a
space by default)
from the start and
end of string
chr (int) text Character with the |chr (65) A

given ASCII code

138

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

convert (string
text,
[src_encoding
name,]
dest_encoding

name)

text

Convert string to
dest_encoding
The original
encoding is
specified by
src_encoding. If
src_encodingis
omitted, database
encoding is
assumed.

convert (
"text_in_utf8’,
"UTF8’,
'LATINL')

text_in_utfs8
represented in ISO
8859-1 encoding

decode (string
text, type

text)

bytea

Decode binary
data from string
previously encoded
with encode.
Parameter type is
same as in

encode.

decode (" MTIzAAE
"baseb6d’)

Fr23\000\001

encode (data
bytea, type

text)

text

Encode binary
data to different
representation.
Supported types
are: base64, hex,
escape. Escape
merely outputs null
bytes as \000 and
doubles
backslashes.

encode (
E’123\\000\\001
"baseo6d’)

MTIzAAE=

’
14

initcap (string)

text

Convert the first
letter of each word
to uppercase and
the rest to
lowercase. Words
are sequences of
alphanumeric
characters
separated by
non-alphanumeric
characters.

initcap(’hi
THOMAS')

Hi Thomas

length (string)

int

Number of
characters in

string

length (’ jose’)

139

Chapter 9. Functions and Operators

Function Return Type Description Example Result
lpad (string text Fill up the string |1pad(’hi’, 5, xyxhi
text, length to length length |’xy’)
int [, fill by prepending the
text]) characters £i11 (a
space by default).
If the stringis
already longer than
length then it is
truncated (on the
right).
ltrim(string text Remove the ltrim(’ zzzytrim/trim
text [, longest string "xyz’)
characters containing only
text]) characters from
characters (a
space by default)
from the start of
string
md5 (string) text Calculates the md5 (’ abc’) 900150983cd24fb
MDS5 hash of d6963f7d28el17f7

string, returning
the result in
hexadecimal

N

pg_client_encodin

qgme

Current client
encoding name

pg_client_encod

iSEI(ASCIT

quote_ident (strip

gext

Return the given
string suitably
quoted to be used
as an identifier in
an SQL statement
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or
would be
case-folded).
Embedded quotes
are properly
doubled.

quote_ident (' Fo
bar’)

o"Foo bar"

140

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

quote_literal (sty

trept

Return the given
string suitably
quoted to be used
as a string literal in
an SQL statement
string. Embedded
single-quotes and
backslashes are

quote_literal (
"O\’Reilly’)

"0"Reilly’

properly doubled.
regexp_replace (st tiaxt Replace substring | regexp_replace (Tomas’,
text, pattern matching POSIX ' [mNla.’,
text, regular expression. |’ M’)
replacement See Section 9.7 for
text [, flags more information
text]) on pattern
matching.
repeat (string text Repeatstringthe repeat (' Pg’, PgPgPgPg
text, number speciﬁed number 4)
int) of times
replace (string |text Replace all replace (abXXefabxXef
text, from occurrences in "abcdefabcdef’,
text, to text) string of fed’, "XX'")
substring from
with substring to
rpad (string text Fill up the string | rpad (' hi’, 5, hixyx
text, length tolength length |’xy’)
int [, f£ill by appending the
text]) characters £fill (a
space by default).
If the stringis
already longer than
length then it is
truncated.
rtrim(string text Remove the rtrim(’trimxxxx/t,rim
text [, longest string "x")
characters containing only
text]) characters from

characters (a
space by default)
from the end of

string

141

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

split_part (string
delimiter

field

text,
text,
int)

text

Split string on
delimiter and
return the given
field (counting
from one)

split_part (" abc
~Q@~T, 2)

~flelef~Q@~ghi’,

strpos (string,

substring)

int

Location of
specified substring
(same as

position (substri
in string), but
note the reversed
argument order)

strpos ("high’,
Iigl)

substr (string,

from [, count])

text

Extract substring
(same as
substring (string
from from for

count))

substr ("alphabe
3, 2)

Bh

to_ascii (string
text [,

encoding text])

text

Convert string
to ASCII from
another encoding
(only supports
conversion from
LATINI, LATINZ,
LATING, and
WIN1250
encodings)

to_ascii ('Karel

'Harel

to_hex (number

int or bigint)

text

Convert number to
its equivalent
hexadecimal
representation

to_hex (21474836

ATHEEEEEE

translate (string
text, from

text, to text)

text

Any character in
string that
matches a
character in the
from set is
replaced by the
corresponding
character in the to

set

translate(’1234

114!, Iaxl)

H753x5

Table 9-7. Built-in Conversions

Conversion Name a

Source Encoding

Destination Encoding

ascii_to_mic

SQL_ASCII

MULE_INTERNAL

142

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
ascii_to_utfs8 SQL_ASCII UTF8
bigb_to_euc_tw BIGS EUC_TW
big5_to_mic BIGS MULE_INTERNAL
big5_to_utfs8 BIG5 UTF8
euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to_utf8 EUC_CN UTF8
euc_Jjp_to_mic EUC_JP MULE_INTERNAL
euc_Jjp_to_sijis EUC_JP SJIS
euc_Jjp_to_utfs8 EUC_JP UTF8
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf8 EUC_KR UTF'8
euc_tw_to_bigh EUC_TW BIGS
euc_tw_to_mic EUC_TW MULE_INTERNAL
euc_tw_to_utf8 EUC_TwW UTF8
gb18030_to_utf8 GB18030 UTF8
gbk_to_utf8 GBK UTF8

iso_8859 _10_to_utf8 LATING UTF8
iso_8859_13_to_utf8 LATIN7 UTF8
iso_8859_ 14 to_utf8 LATINS UTF8
iso_8859_15 to_utf8 LATINY UTF8
iso_8859_16_to_utf8 LATIN1O UTFE8
1is0_8859_1_to_mic LATIN1 MULE_INTERNAL
iso_8859_1_to_utf8 LATINL UTF8
is0_8859_2_to_mic LATIN2 MULE_INTERNAL
is0_8859_2_to_utfs8 LATIN2 UTF8
iso0_8859_2 to_windows_1250LATIN2 WIN1250
i50_8859_3_to_mic LATIN3 MULE_INTERNAL
iso_8859_3_to_utfs LATIN3 UTFE8
iso_8859_ 4 to_mic LATIN4 MULE_INTERNAL
iso_8859_4_to_utfs8 LATIN4 UTF8
iso_8859_5 to_koi8_ r IS0_8859_5 KOIS8
iso_8859_5_to_mic I1S0_8859_5 MULE_INTERNAL
iso_8859_ 5 to_utfs8 I1S0_8859_5 UTFE8
is0_8859_5_to_windows_125]1IS0O_8859_5 WIN1251
is0_8859_5_to_windows_866|IS0O_8859_5 WIN866
iso_8859_6_to_utfs ISO_8859_6 UTF8

143

Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

is0_8859_7_to_utf8 ISO_8859_7 UTF8
is0_8859_8_to_utf8 ISO_8859_8 UTF8
iso_8859_9 to_utfs LATINS UTFE8
johab_to_utfs8 JOHAB UTF8
koi8_r_ to_iso_8859_5 KOIS8 ISO_8859_5
koi8_r_to_mic KOI8 MULE_INTERNAL
koi8_r_to_utf8 KOI8 UTF8
koi8_r_to_windows_1251 KOIS8 WIN1251
koi8_r_to_windows_866 KOIS8 WIN866
mic_to_ascii MULE_INTERNAL SQL_ASCII
mic_to_bigh MULE_INTERNAL BIGS
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_Jjp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859_1 MULE_INTERNAL LATIN1
mic_to_1iso_8859_2 MULE_INTERNAL LATIN2
mic_to_iso_8859_3 MULE_INTERNAL LATIN3
mic_to_iso_8859_4 MULE_INTERNAL LATIN4
mic_to_iso_8859_5 MULE_INTERNAL IS0_8859_5
mic_to_koi8_r MULE_INTERNAL KOIS8
mic_to_sijis MULE_INTERNAL SJIS
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN1251
mic_to_windows_866 MULE_INTERNAL WIN866
sjis_to_euc_jp SJIS EUC_JP
sjis_to_mic SJIS MULE_INTERNAL
sjis_to_utf8 SJIS UTF8
tcvn_to_utf8 WIN1258 UTF8
uhc_to_utf8 UHC UTF8
utf8_to_ascii UTF8 SQL_ASCITI
utf8_to_bigs UTF8 BIGS
utf8_to_euc_cn UTF8 EUC_CN
utf8_to_euc_ijp UTF8 EUC_JP
utf8_to_euc_kr UTF8 EUC_KR
utf8_to_euc_tw UTF8 EUC_TW
utf8_to_gbl8030 UTF8 GB18030

ut £8_to_gbk UTF8 GBK

144

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
utf8_to_iso_8859_1 UTF8 LATIN1
utf8_to_iso_8859_10 UTF8 LATING
utf8_to_iso_8859_13 UTF8 LATIN7
utf8_to_iso_8859_14 UTF8 LATINS
utf8_to_iso_8859_15 UTF8 LATINO
utf8_to_iso_8859_16 UTF8 LATIN1O
utf8_to_iso_8859_2 UTF8 LATIN2
utf8_to_iso_8859_3 UTF8 LATIN3
utf8_to_iso_8859_ 4 UTF8 LATIN4
utf8_to_iso_8859_5 UTF8 ISO_8859_5
utf8_to_iso_8859_6 UTF8 IS0O_8859_6
utf8_to_iso_8859_7 UTF8 IS0O_8859_7
utf8_to_iso_8859_8 UTF8 ISO_8859_8
utf8_to_iso_8859_9 UTFS8 LATINS
ut£8_to_johab UTF8 JOHAB
utf8_to_koi8_r UTF8 KO1IS8
utf8_to_sjis UTF8 SJIS
utf8_to_tcvn UTF8 WIN1258
utf8_to_uhc UTF8 UHC
utf8_to_windows_1250 UTF8 WIN1250
utf8_to_windows_1251 UTF8 WIN1251
utf8_to_windows_1252 UTF8 WIN1252
utf8_to_windows_1253 UTF8 WIN1253
utf8_to_windows_1254 UTF8 WIN1254
utf8_to_windows_1255 UTF8 WIN1255
utf8_to_windows_1256 UTF8 WIN1256
utf8_to_windows_1257 UTF8 WIN1257
utf8_to_windows_866 UTF8 WIN866
utf8_to_windows_874 UTF8 WIN874
windows_1250_to_iso_8859 PWIN1250 LATINZ2
windows_1250_to_mic WIN1250 MULE_INTERNAL
windows_1250_to_utf8 WIN1250 UTF8
windows_1251_to_iso_8859_bWIN1251 I50_8859_5
windows_1251_to_koi8_r WIN1251 KOI8
windows_1251_to_mic WIN1251 MULE_INTERNAL
windows_1251 to_utf8 WIN1251 UTF8

145

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
windows_1251_to_windows_8¢WIN1251 WINB66
windows_1252_to_utf8 WIN1252 UTF8
windows_1256_to_utf8 WIN1256 UTF8
windows_866_to_iso_8859_5|WIN866 IS0_8859_5
windows_866_to_koi8_r WIN866 KOIS8

windows_866_to_mic WINB66 MULE_INTERNAL
windows_866_to_utf8 WIN866 UTFEF8
windows_866_to_windows_12pPWINB66 WIN

windows_874_to_utf8 WIN874 UTF8

Notes:

a. The conversion names follow a standard naming scheme: The official name of the source encoding
with all non-alphanumeric characters replaced by underscores followed by _to_ followed by the
equally processed destination encoding name. Therefore the names might deviate from the customary
encoding names.

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating values of type bytea.

SQL defines some string functions with a special syntax where certain key words rather than commas are
used to separate the arguments. Details are in Table 9-8. Some functions are also implemented using the
regular syntax for function invocation. (See Table 9-9.)

Table 9-8. SQL Binary String Functions and Operators

Function Return Type Description Example Result
string || bytea String E’\\\\Post’ : :byftesPost’ gres\000
string concatenation |

E’\\047gres\\000’ : :bytea

get_bit(string, |int Extract bit from get_bit (E’ Th\\00Domas’ : :bytea,

offset) string 45)

get_byte(string, int Extract byte from |get_byte (E’ Th\\[0D®®mas’ : :bytea,
offset) string 4)

Number of bytes in | octet_length(|5
binary string E’ 50\\000se’ : :bytea)

octet_length (stridqit

146

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

position (substrip

in string)

gant

Location of
specified substring

position (E’\\0O

in

0®»m’ : :bytea

E’Th\\000omas’ :[:bytea)
set_bit(string, |bytea Set bit in string set_bit (E’ Th\\Olow&Iamksy tea,
offset, 45, 0)
newvalue)
set_byte(string,|bytea Set byte in string | set_byte (E’ Th\\[(I\BEESGadbytea,
offset, 4, 64)
newvalue)
substring (string |bytea Extract substring | substring (E’ Th\NDODeGm@ms’ : :bytes
[from int] from 2 for 3)

[for int])
trim([both] bytea Remove the trim(E’\\000" : :[ckdmea

bytes from

string)

longest string
containing only the
bytes in bytes
from the start and
end of string

from
E’\\000Tom\\000

' ::bytea)

Additional binary string manipulation functions are available and are listed in Table 9-9. Some of them
are used internally to implement the SQL-standard string functions listed in Table 9-8.

Table 9-9. Other Binary String Functions

Function Return Type Description Example Result
btrim(string bytea Remove the btrim(E’\\000trfit\iv@00’ : :bytea,
bytea, bytes longest string E’\\000’ : :byteal)
bytea) consisting only of

bytes in bytes

from the start and

end of string
decode (string bytea Decode binary decode (E’ 123\ \0[002A3WI00456
text, type string from 'escape’)
text) string previously

encoded with
encode. Parameter
type is same as in

encode.

147

Chapter 9. Functions and Operators

Function Return Type Description Example Result
encode (string text Encode binary encode (E’ 123\ \0[0023> Gdykea,
bytea, type string to "escape’)
text) ASClII-only
representation.
Supported types
are: base64, hex,
escape.
length (string) int Length of binary |length (E’ jo\\00[0%e’ : :bytea)
string
md5 (string) text Calculates the md5 (E’ Th\\000omaSdla2d3te@y 9aafl
MDS5 hash of b4958c334c82d8b)

=

string, returning
the result in
hexadecimal

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is values
of the types bit and bit varying. Aside from the usual comparison operators, the operators shown in
Table 9-10 can be used. Bit string operands of &, |, and # must be of equal length. When bit shifting, the
original length of the string is preserved, as shown in the examples.

Table 9-10. Bit String Operators

Operator Description Example Result
| concatenation B’10001” || B’011’ [10001011
& bitwise AND B’ 10001’ & 00001
B’ 01101"
bitwise OR B/10001" | 11101
B’ 01101’
bitwise XOR B’ 10001’ # 11100
B/01101
~ bitwise NOT ~ B’10001" 01110
<< bitwise shift left B/10001’ << 3 01000
>> bitwise shift right B’10001’" >> 2 00100

The following SQL-standard functions work on bit strings as well as character strings: length,
bit_length, octet_length, position, substring.

In addition, it is possible to cast integral values to and from type bit. Some examples:

0000101100
100

44::pit (10)
44::pbit (3)

148

Chapter 9. Functions and Operators

cast (-44 as bit (12)) 111111010100
71110’ : :bit (4) : :integer 14

Note that casting to just “bit” means casting to bit (1), and so it will deliver only the least significant bit
of the integer.

Note: Prior to PostgreSQL 8.0, casting an integer to bit (n) would copy the leftmost n bits of the
integer, whereas now it copies the rightmost n bits. Also, casting an integer to a bit string width wider
than the integer itself will sign-extend on the left.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional SQL
LIKE operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style regular
expressions. Additionally, a pattern matching function, substring, is available, using either SIMILAR
TO-style or POSIX-style regular expressions.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined function
in Perl or Tcl.

9.7.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

Every pattern defines a set of strings. The LIKE expression returns true if the string is contained in
the set of strings represented by pattern. (As expected, the NOT LIKE expression returns false if LIKE
returns true, and vice versa. An equivalent expression is NOT (string LIKE pattern).)

If pattern does not contain percent signs or underscore, then the pattern only represents the string itself;
in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for (matches) any
single character; a percent sign (%) matches any string of zero or more characters.

Some examples:

"abc’ LIKE ’abc’ true
"abc’ LIKE "a%’ true
"abc’ LIKE '_b_ ' true
"abc’ LIKE ’c’ false

LIKE pattern matches always cover the entire string. To match a sequence anywhere within a string, the
pattern must therefore start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective character
in pattern must be preceded by the escape character. The default escape character is the backslash but a

149

Chapter 9. Functions and Operators

different one may be selected by using the ESCAPE clause. To match the escape character itself, write two
escape characters.

Note that the backslash already has a special meaning in string literals, so to write a pattern constant that
contains a backslash you must write two backslashes in an SQL statement (assuming escape string syntax
is used). Thus, writing a pattern that actually matches a literal backslash means writing four backslashes in
the statement. You can avoid this by selecting a different escape character with ESCAPE; then a backslash
is not special to LIKE anymore. (But it is still special to the string literal parser, so you still need two of
them.)

It’s also possible to select no escape character by writing ESCAPE ”. This effectively disables the escape
mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs in
the pattern.

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to the
active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LIKE, and ~~* corresponds to ILIKE. There are also !~~ and !~~~
operators that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are PostgreSQL-
specific.

9.7.2. stMILAR TO Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given string.
It is much like LIKE, except that it interprets the pattern using the SQL standard’s definition of a regular
expression. SQL regular expressions are a curious cross between LIKE notation and common regular
expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is unlike
common regular expression practice, wherein the pattern may match any part of the string. Also like
LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and any string,
respectively (these are comparable to . and . » in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

« | denotes alternation (either of two alternatives).

« * denotes repetition of the previous item zero or more times.

+ + denotes repetition of the previous item one or more times.

« Parentheses () may be used to group items into a single logical item.

« A bracket expression [. . .] specifies a character class, just as in POSIX regular expressions.

Notice that bounded repetition (2 and { . . . }) are not provided, though they exist in POSIX. Also, the dot
(.) is not a metacharacter.

As with LIKE, a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified with ESCAPE.

150

Chapter 9. Functions and Operators

Some examples:

"abc’ SIMILAR TO ’"abc’ true
"abc’ SIMILAR TO ’a’ false
"abc’ SIMILAR TO 'S (bld

"(blc)

s’ true
"abc’ SIMILAR TO b ’

)

false

The substring function with three parameters, substring(string from pattern for
escape-character) , provides extraction of a substring that matches an SQL regular expression pattern.
As with SIMILAR TO, the specified pattern must match to the entire data string, else the function fails
and returns null. To indicate the part of the pattern that should be returned on success, the pattern must
contain two occurrences of the escape character followed by a double quote ("). The text matching the
portion of the pattern between these markers is returned.

Some examples:

substring (' foobar’ from ’%$#"o_b#"%’ for ’'#’) oob
substring (' foobar’ from ’"#"o_b#"%’ for "#') NULL

9.7.3. POSIX Regular Expressions

Table 9-11 lists the available operators for pattern matching using POSIX regular expressions.

Table 9-11. Regular Expression Match Operators

Operator Description Example
~ Matches regular expression, case |’ thomas’ ~ ’.xthomas.*’
sensitive
~x Matches regular expression, case |’ thomas’ ~x /.xThomas.x*’
insensitive
I~ Does not match regular "thomas’ !~ ’.xThomas.x’
expression, case sensitive
[Does not match regular "thomas’ !~* ’.+vadim.«’
expression, case insensitive

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and
SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a regular
set). A string is said to match a regular expression if it is a member of the regular set described by the
regular expression. As with LIKE, pattern characters match string characters exactly unless they are special
characters in the regular expression language — but regular expressions use different special characters
than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match anywhere within a string,
unless the regular expression is explicitly anchored to the beginning or end of the string.

151

Chapter 9. Functions and Operators

Some examples:

"abc’ ~ "abc’ true
"abc’ ~ ’""a’ true
rabc” ~ " (b|d)’ true
"abc’ ~ "~ (b|c)’ false

The substring function with two parameters, substring (string from pattern), provides extrac-
tion of a substring that matches a POSIX regular expression pattern. It returns null if there is no match,
otherwise the portion of the text that matched the pattern. But if the pattern contains any parentheses,
the portion of the text that matched the first parenthesized subexpression (the one whose left parenthe-
sis comes first) is returned. You can put parentheses around the whole expression if you want to use
parentheses within it without triggering this exception. If you need parentheses in the pattern before the
subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring (' foobar’ from "o0.b’) oob
substring (’ foobar’ from ’‘o(.)b’) o

The regexp_replace function provides substitution of new text for substrings that match POSIX regular
expression patterns. It has the syntax regexp_replace(source, pattern, replacement [, flags
1). The source string is returned unchanged if there is no match to the pattern. If there is a match,
the source string is returned with the replacement string substituted for the matching substring. The
replacement string can contain \ n, where nis 1 through 9, to indicate that the source substring matching
the n’th parenthesized subexpression of the pattern should be inserted, and it can contain \ & to indicate that
the substring matching the entire pattern should be inserted. Write \\ if you need to put a literal backslash
in the replacement text. (As always, remember to double backslashes written in literal constant strings,
assuming escape string syntax is used.) The flags parameter is an optional text string containing zero
or more single-letter flags that change the function’s behavior. Flag i specifies case-insensitive matching,
while flag g specifies replacement of each matching substring rather than only the first one.

Some examples:

regexp_replace (’ foobarbaz’, 'b..’, 'X’)

fooXbaz
regexp_replace (’ foobarbaz’, ’'b..’, X", 'g’)

fooXX
regexp_replace (' foobarbaz’, 'b(..)’, E’X\\1Y’, ’'g’)

fooXarYXazY

PostgreSQL’s regular expressions are implemented using a package written by Henry Spencer. Much of
the description of regular expressions below is copied verbatim from his manual entry.

152

Chapter 9. Functions and Operators

9.7.3.1. Regular Expression Details

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egrep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become widely
used anyway due to their availability in programming languages such as Perl and Tcl. REs using these
non-POSIX extensions are called advanced REs or AREs in this documentation. AREs are almost an
exact superset of EREs, but BREs have several notational incompatibilities (as well as being much more
limited). We first describe the ARE and ERE forms, noting features that apply only to AREs, and then
describe how BREs differ.

Note: The form of regular expressions accepted by PostgreSQL can be chosen by setting the
regex_flavor run-time parameter. The usual setting is advanced, but one might choose extended for
maximum backwards compatibility with pre-7.4 releases of PostgreSQL.

A regular expression is defined as one or more branches, separated by |. It matches anything that matches
one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the first,
followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches a
match for the atom. With a quantifier, it can match some number of matches of the atom. An arom can
be any of the possibilities shown in Table 9-12. The possible quantifiers and their meanings are shown in
Table 9-13.

A constraint matches an empty string, but matches only when specific conditions are met. A constraint
can be used where an atom could be used, except it may not be followed by a quantifier. The simple
constraints are shown in Table 9-14; some more constraints are described later.

Table 9-12. Regular Expression Atoms

Atom Description

(re) (where re is any regular expression) matches a
match for re, with the match noted for possible
reporting

(?:re) as above, but the match is not noted for reporting
(a “non-capturing” set of parentheses) (AREs
only)

matches any single character

[chars] a bracket expression, matching any one of the
chars (see Section 9.7.3.2 for more detail)

\k (where k is a non-alphanumeric character)
matches that character taken as an ordinary
character, e.g. \\ matches a backslash character

\c where c is alphanumeric (possibly followed by
other characters) is an escape, see Section 9.7.3.3
(AREs only; in EREs and BREs, this matches c)

153

Chapter 9. Functions and Operators

Atom

Description

when followed by a character other than a digit,
matches the left-brace character {; when followed
by a digit, it is the beginning of a bound (see
below)

where x is a single character with no other
significance, matches that character

An RE may not end with \.

Note: Remember that the backslash (\) already has a special meaning in PostgreSQL string literals.
To write a pattern constant that contains a backslash, you must write two backslashes in the statement,

assuming escape string syntax is used.

Table 9-13. Regular Expression Quantifiers

Quantifier Matches

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{m} a sequence of exactly m matches of the atom
{m,} a sequence of m or more matches of the atom

{m, n} a sequence of m through n (inclusive) matches of

the atom; m may not exceed n

*? non-greedy version of «

+? non-greedy version of +

27 non-greedy version of ?

{m}? non-greedy version of {m}

{m, }? non-greedy version of {m, }

{m, n}? non-greedy version of {m, n}

The forms using { . . . } are known as bounds. The numbers m and n within a bound are unsigned decimal

integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their corresponding nor-
mal (greedy) counterparts, but prefer the smallest number rather than the largest number of matches. See

Section 9.7.3.5 for more detail.

Note: A quantifier cannot immediately follow another quantifier. A quantifier cannot begin an expres-

sion or subexpression or follow ~ or |.

154

Chapter 9. Functions and Operators

Table 9-14. Regular Expression Constraints

Constraint Description

8 matches at the beginning of the string

$ matches at the end of the string

(?=re) positive lookahead matches at any point where a

substring matching re begins (AREs only)

(?!re) negative lookahead matches at any point where no
substring matching re begins (AREs only)

Lookahead constraints may not contain back references (see Section 9.7.3.3), and all parentheses within
them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is a list of characters enclosed in []. It normally matches any single character from
the list (but see below). If the list begins with ~, it matches any single character not from the rest of
the list. If two characters in the list are separated by —, this is shorthand for the full range of characters
between those two (inclusive) in the collating sequence, e.g. [0-9] in ASCII matches any decimal digit. It
is illegal for two ranges to share an endpoint, e.g. a—c—e. Ranges are very collating-sequence-dependent,
so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (following a possible ~). To include a literal —,
make it the first or last character, or the second endpoint of a range. To use a literal - as the first endpoint
of a range, enclose itin [. and .] to make it a collating element (see below). With the exception of these
characters, some combinations using [(see next paragraphs), and escapes (AREs only), all other special
characters lose their special significance within a bracket expression. In particular, \ is not special when
following ERE or BRE rules, though it is special (as introducing an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates as
if it were a single character, or a collating-sequence name for either) enclosed in [. and .] stands for the
sequence of characters of that collating element. The sequence is a single element of the bracket expres-
sion’s list. A bracket expression containing a multiple-character collating element can thus match more
than one character, e.g. if the collating sequence includes a ch collating element, thenthe RE [[.ch.]]*c
matches the first five characters of chchcec.

Note: PostgreSQL currently has no multicharacter collating elements. This information describes pos-
sible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there
are no other equivalent collating elements, the treatment is as if the enclosing delimiters were [. and .].)
For example, if o and ~ are the members of an equivalence class, then [[=o=11, [[="=]1, and [o"] are
all synonymous. An equivalence class may not be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list of
all characters belonging to that class. Standard character class names are: alnum, alpha, blank, cntrl,

155

Chapter 9. Functions and Operators

digit, graph, lower, print, punct, space, upper, xdigit. These stand for the character classes
defined in ctype. A locale may provide others. A character class may not be used as an endpoint of a
range.

There are two special cases of bracket expressions: the bracket expressions [[:<:]1]1 and [[:>:]] are
constraints, matching empty strings at the beginning and end of a word respectively. A word is defined as
a sequence of word characters that is neither preceded nor followed by word characters. A word character
is an alnum character (as defined by ctype) or an underscore. This is an extension, compatible with but
not specified by POSIX 1003.2, and should be used with caution in software intended to be portable to
other systems. The constraint escapes described below are usually preferable (they are no more standard,
but are certainly easier to type).

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes come in
several varieties: character entry, class shorthands, constraint escapes, and back references. A \ followed
by an alphanumeric character but not constituting a valid escape is illegal in AREs. In EREs, there are no
escapes: outside a bracket expression, a \ followed by an alphanumeric character merely stands for that
character as an ordinary character, and inside a bracket expression, \ is an ordinary character. (The latter
is the one actual incompatibility between EREs and ARE:s.)

Character-entry escapes exist to make it easier to specify non-printing and otherwise inconvenient char-
acters in REs. They are shown in Table 9-15.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9-16.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written as an
escape. They are shown in Table 9-17.

A back reference (\n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9-18). For example, ([bc]) \1 matches bb or cc but not bc or cb.
The subexpression must entirely precede the back reference in the RE. Subexpressions are numbered in
the order of their leading parentheses. Non-capturing parentheses do not define subexpressions.

Note: Keep in mind that an escape’s leading \ will need to be doubled when entering the pattern as
an SQL string constant. For example:

123" ~ E'M\\d{3}’ true

Table 9-15. Regular Expression Character-Entry Escapes

Escape Description
\a alert (bell) character, as in C
\b backspace, as in C

156

Chapter 9. Functions and Operators

Escape Description

\B synonym for \ to help reduce the need for
backslash doubling

\cX (where X is any character) the character whose
low-order 5 bits are the same as those of x, and
whose other bits are all zero

\e the character whose collating-sequence name is
ESC, or failing that, the character with octal value
033

\f form feed, as in C

\n newline, as in C

\r carriage return, as in C

\t horizontal tab, as in C

\uwxyz (where wxyz is exactly four hexadecimal digits)
the UTF16 (Unicode, 16-bit) character U+wxyz in
the local byte ordering

\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal
digits) reserved for a somewhat-hypothetical
Unicode extension to 32 bits

\v vertical tab, as in C

\xhhh (where hhh is any sequence of hexadecimal
digits) the character whose hexadecimal value is
Oxhhh (a single character no matter how many
hexadecimal digits are used)

\ 0 the character whose value is 0

\xy (where xy is exactly two octal digits, and is not a
back reference) the character whose octal value is
Oxy

\xyz (where xyz is exactly three octal digits, and is not
a back reference) the character whose octal value
is Oxyz

Hexadecimal digits are 0-9, a-f, and A-F. Octal digits are 0-7.

The character-entry escapes are always taken as ordinary characters. For example, \135 is] in ASCII,

but \135 does not terminate a bracket expression.

Table 9-16. Regular Expression Class-Shorthand Escapes

Escape Description

\d [[:digit:]]

\s [[:space:]]

\w [[:alnum:]_] (note underscore is included)
\D [~[:digit:]]

157

Chapter 9. Functions and Operators

Escape Description
\S ["[:space:]]
\W [“[:alnum:]_] (note underscore is included)

Within bracket expressions, \d, \s, and \w lose their outer brackets, and \D, \s, and \w are illegal.
(So, for example, [a—-c\d] is equivalent to [a—-c[:digit:]]. Also, [a-c\D], which is equivalent to

[a—c”[:digit:]1],isillegal.)

Table 9-17. Regular Expression Constraint Escapes

Escape Description
\A matches only at the beginning of the string (see
Section 9.7.3.5 for how this differs from *)
\m matches only at the beginning of a word
\M matches only at the end of a word
\y matches only at the beginning or end of a word
\Y matches only at a point that is not the beginning or
end of a word
\7Z matches only at the end of the string (see Section
9.7.3.5 for how this differs from $)
A word is defined as in the specification of [[:<:]1] and [[:>:]] above. Constraint escapes are illegal

within bracket expressions.

Table 9-18. Regular Expression Back References

Escape Description

\m (where m is a nonzero digit) a back reference to
the m’th subexpression

\mnn (where m is a nonzero digit, and nn is some more

digits, and the decimal value mnn is not greater
than the number of closing capturing parentheses
seen so far) a back reference to the mnn’th

subexpression

Note: There is an inherent historical ambiguity between octal character-entry escapes and back ref-
erences, which is resolved by heuristics, as hinted at above. A leading zero always indicates an octal
escape. A single non-zero digit, not followed by another digit, is always taken as a back reference. A
multidigit sequence not starting with a zero is taken as a back reference if it comes after a suitable
subexpression (i.e. the number is in the legal range for a back reference), and otherwise is taken as

octal.

158

Chapter 9. Functions and Operators

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syntactic
facilities available.

Normally the flavor of RE being used is determined by regex_flavor. However, this can be overridden
by a director prefix. If an RE begins with x««:, the rest of the RE is taken as an ARE regardless of
regex_flavor. If an RE begins with xxx=, the rest of the RE is taken to be a literal string, with all
characters considered ordinary characters.

An ARE may begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously determined
options (including both the RE flavor and case sensitivity). The available option letters are shown in Table
9-19.

Table 9-19. ARE Embedded-Option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator type)

e rest of RE is an ERE

i case-insensitive matching (see Section 9.7.3.5)
(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

p partial newline-sensitive matching (see Section
9.7.3.5)

q rest of RE is a literal (“quoted”) string, all
ordinary characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

W inverse partial newline-sensitive (‘“weird”)

matching (see Section 9.7.3.5)

x expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They may appear only at the start of an
ARE (after the »»* : director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters in
the RE are ignored, as are all characters between a # and the following newline (or the end of the RE).
This permits paragraphing and commenting a complex RE. There are three exceptions to that basic rule:

+ a white-space character or # preceded by \ is retained
« white space or # within a bracket expression is retained

« white space and comments cannot appear within multicharacter symbols, such as (?:

159

Chapter 9. Functions and Operators

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (2#ttt) (where ttt is any text not con-
taining a)) is a comment, completely ignored. Again, this is not allowed between the characters of multi-
character symbols, like (2:. Such comments are more a historical artifact than a useful facility, and their
use is deprecated; use the expanded syntax instead.

None of these metasyntax extensions is available if an initial «+»= director has specified that the user’s
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the one
starting earliest in the string. If the RE could match more than one substring starting at that point, either
the longest possible match or the shortest possible match will be taken, depending on whether the RE is
greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

+ Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

« Adding parentheses around an RE does not change its greediness.

« A quantified atom with a fixed-repetition quantifier ({m} or {m}?) has the same greediness (possibly
none) as the atom itself.

+ A quantified atom with other normal quantifiers (including {m, n} with m equal to n) is greedy (prefers
longest match).

+ A quantified atom with a non-greedy quantifier (including {m, n}? with m equal to n) is non-greedy
(prefers shortest match).

« A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

« An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done in
such a way that the branch, or whole RE, matches the longest or shortest possible substring as a whole.
Once the length of the entire match is determined, the part of it that matches any particular subexpression
is determined on the basis of the greediness attribute of that subexpression, with subexpressions starting
earlier in the RE taking priority over ones starting later.

An example of what this means:
SELECT SUBSTRING (’XY1234Z’, 'Y ([0-91{1,3})");
Result: 123

SELECT SUBSTRING (’/XY1234Z’, "Yx?2([0-9]1{1,3})");
Result: 1

160

Chapter 9. Functions and Operators

In the first case, the RE as a whole is greedy because v+ is greedy. It can match beginning at the v, and it
matches the longest possible string starting there, i.e., Y123. The output is the parenthesized part of that,
or 123. In the second case, the RE as a whole is non-greedy because Y« ? is non-greedy. It can match
beginning at the v, and it matches the shortest possible string starting there, i.e., Y1. The subexpression
[0-91{1, 3} is greedy but it cannot change the decision as to the overall match length; so it is forced to
match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE. The
attributes assigned to the subexpressions only affect how much of that match they are allowed to “eat”
relative to each other.

The quantifiers {1, 1} and {1, 1} 2 can be used to force greediness or non-greediness, respectively, on a
subexpression or a whole RE.

Match lengths are measured in characters, not collating elements. An empty string is considered
longer than no match at all. For example: bbx matches the three middle characters of abbbc;
(week |wee) (night |knights) matches all ten characters of weeknights; when (.) .* is matched
against abc the parenthesized subexpression matches all three characters; and when (ax) » is matched
against bc both the whole RE and the parenthesized subexpression match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside
a bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g. x
becomes [xX]. When it appears inside a bracket expression, all case counterparts of it are added to the
bracket expression, e.g. [x] becomes [xX] and [~x] becomes ["xX].

If newline-sensitive matching is specified, . and bracket expressions using ~ will never match the newline
character (so that matches will never cross newlines unless the RE explicitly arranges it) and ~and $ will
match the empty string after and before a newline respectively, in addition to matching at beginning and
end of string respectively. But the ARE escapes \A and \z continue to match beginning or end of string
only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with newline-
sensitive matching, but not ~ and $.

If inverse partial newline-sensitive matching is specified, this affects ~ and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn’t very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs intended to
be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant implementation
can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is that \ does not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or
has undefined or unspecified effects in POSIX EREs; the ==« syntax of directors likewise is outside the
POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up, and a
few Perl extensions are not present. Incompatibilities of note include \b, \B, the lack of special treatment
for a trailing newline, the addition of complemented bracket expressions to the things affected by newline-

161

Chapter 9. Functions and Operators

sensitive matching, the restrictions on parentheses and back references in lookahead constraints, and the
longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4 releases

of PostgreSQL:

« In AREs, \ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

« In AREs, \ remains a special character within [], so a literal \ within a bracket expression must be

written \\.

While these differences are unlikely to create a problem for most applications, you can avoid them if

necessary by setting regex_flavor to extended.

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. |, +, and ? are ordinary characters and there is no equivalent

for their functionality. The delimiters for bounds are \ { and \}, with { and } by themselves ordinary

characters. The parentheses for nested subexpressions are \ (and \), with (and) by themselves ordinary

characters. ~ is an ordinary character except at the beginning of the RE or the beginning of a parenthe-

sized subexpression, $ is an ordinary character except at the end of the RE or the end of a parenthesized
subexpression, and « is an ordinary character if it appears at the beginning of the RE or the beginning
of a parenthesized subexpression (after a possible leading). Finally, single-digit back references are
available, and \< and \> are synonyms for [[:<:]] and [[:>:]] respectively; no other escapes are

available.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted strings

to specific data types. Table 9-20 lists them. These functions all follow a common calling convention: the
first argument is the value to be formatted and the second argument is a template that defines the output

or input format.

The to_timestamp function can also take a single double precision argument to convert from
Unix epoch to timestamp with time zone. (Integer Unix epochs are implicitly cast to double

precision.)

Table 9-20. Formatting Functions

Function

Return Type

Description

Example

to_char (timestamp,

text)

text

convert time stamp to
string

to_char (current_tim
"HH12:MI:SS’)

162

estamp,

Chapter 9. Functions and Operators

Function

Return Type

Description Example

to_char (interval, text convert interval to string | to_char (interval
text) ’15h 2m 12s’,
"HH24:MI:SS’)
to_char (int, text) text convert integer to string | to_char (125,
79997)
to_char (double text convert real/double to_char(125.8::real
precision, text) precision to string 7999D9")
to_char (numeric, text convert numeric to to_char (-125.8,
text) string 7 999D995”)
to_date (text, text) |date convert string to date to_date (05 Dec 200
DD Mon YYYY')
to_number (text, numeric convert string to to_number ('12,454.8
text) numeric " 99G999D9S”)
to_timestamp (text, timestamp with convert string to time to_timestamp (' 05 De
text) time zone stamp DD Mon YYYY')
to_timestamp (double |timestamp with convert UNIX epochto |to_timestamp (200120
precision) time zone thneSUan

In an output template string (for to_char), there are certain patterns that are recognized and replaced
with appropriately-formatted data from the value to be formatted. Any text that is not a template pattern
is simply copied verbatim. Similarly, in an input template string (for anything but to_char), template
patterns identify the parts of the input data string to be looked at and the values to be found there.

Table 9-21 shows the template patterns available for formatting date and time values.

Table 9-21. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

SS second (00-59)

MS millisecond (000-999)

Us microsecond (000000-999999)
SSss seconds past midnight (0-86399)

AMOrA.M. orPpMoOrPp.M.

meridian indicator (uppercase)

amoOra.m. OrpmoOr p.m.

meridian indicator (lowercase)

Y, YYyYy year (4 and more digits) with comma
YYYY year (4 and more digits)

YYY last 3 digits of year

Yy last 2 digits of year

163

c 2000",

400)

Chapter 9. Functions and Operators

Pattern Description

Y last digit of year

IYYY ISO year (4 and more digits)
IYY last 3 digits of ISO year

1Y last 2 digits of ISO year

I last digits of ISO year

BCorB.C. OrADOrA.D.

era indicator (uppercase)

bcorb.c.oradora.d.

era indicator (lowercase)

MONTH full uppercase month name (blank-padded to 9
chars)

Month full mixed-case month name (blank-padded to 9
chars)

month full lowercase month name (blank-padded to 9
chars)

MON abbreviated uppercase month name (3 chars in
English, localized lengths vary)

Mon abbreviated mixed-case month name (3 chars in
English, localized lengths vary)

mon abbreviated lowercase month name (3 chars in
English, localized lengths vary)

MM month number (01-12)

DAY full uppercase day name (blank-padded to 9 chars)

Day full mixed-case day name (blank-padded to 9
chars)

day full lowercase day name (blank-padded to 9 chars)

DY abbreviated uppercase day name (3 chars in
English, localized lengths vary)

Dy abbreviated mixed-case day name (3 chars in
English, localized lengths vary)

dy abbreviated lowercase day name (3 chars in
English, localized lengths vary)

DDD day of year (001-366)

DD day of month (01-31)
day of week (1-7; Sunday is 1)

W week of month (1-5) (The first week starts on the
first day of the month.)

WW week number of year (1-53) (The first week starts
on the first day of the year.)

W ISO week number of year (The first Thursday of
the new year is in week 1.)

cc century (2 digits) (The twenty-first century starts

on 2001-01-01.)

164

Chapter 9. Functions and Operators

Pattern Description

J Julian Day (days since January 1, 4712 BC)

Q quarter

RM month in Roman numerals (I-XII; [=January)
(uppercase)

rm month in Roman numerals (i-xii; i=January)
(lowercase)

TZ time-zone name (uppercase)

tz time-zone name (lowercase)

Certain modifiers may be applied to any template pattern to alter its behavior. For example, FMMonth is
the Month pattern with the ¥M modifier. Table 9-22 shows the modifier patterns for date/time formatting.

Table 9-22. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example
FM prefix fill mode (suppress padding FMMonth
blanks and zeroes)
TH suffix uppercase ordinal number suffix |DDTH
th suffix lowercase ordinal number suffix |DDth
FX prefix fixed format global option (see |FX Month DD Day

usage notes)

TM prefix translation mode (print localized | TMMonth
day and month names based on

lc_messages)

Sp suffix spell mode (not yet DDSP
implemented)

Usage notes for date/time formatting:

FM suppresses leading zeroes and trailing blanks that would otherwise be added to make the output of a
pattern be fixed-width.

T™ does not include trailing blanks.

to_timestamp and to_date skip multiple blank spaces in the input string if the FX option is not used.
Fx must be specified as the first item in the template. For example to_timestamp (' 2000 JUN’,
’YYYY MON’) is correct, but to_timestamp (/2000 JUN’, 'FXYYYY MON’) returns an error,
because to_timestamp expects one space only.

Ordinary text is allowed in to_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains pattern key words. For
example, in ' "Hello Year "YYYvY’,the vYYY will be replaced by the year data, but the single Y in
Year will not be.

If you want to have a double quote in the output you must precede it with a backslash, for example
E'\\"vYYYY Month\\"’. (Two backslashes are necessary because the backslash already has a special

165

Chapter 9. Functions and Operators

meaning when using the escape string syntax.)

« The vvYy conversion from string to timestamp or date has a restriction if you use a year with
more than 4 digits. You must use some non-digit character or template after YYYy, otherwise the
year is always interpreted as 4 digits. For example (with the year 20000): to_date (' 200001131",
" YYYYMMDD’) will be interpreted as a 4-digit year; instead use a non-digit separator after the year, like
to_date(20000-1131", ’'YYYY-MMDD’) or to_date(’20000Nov31l’, ’YYYYMonDD’).

+ In conversions from string to timestamp or date, the CC field is ignored if there is a YYY, YYYY or
v, YYY field. If cc is used with YY or Y then the year is computed as (CC-1) x100+YY.

« Millisecond (Ms) and microsecond (US) values in a conversion from string to t imestamp are used as
part of the seconds after the decimal point. For example to_timestamp (/12:3’, ’SS:MS’) isnot3
milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds. This means for the format
SS:MS, the input values 12:3, 12:30, and 12:300 specify the same number of milliseconds. To get
three milliseconds, one must use 12 : 003, which the conversion counts as 12 + 0.003 = 12.003 seconds.

Here is a more complex example: to_timestamp(’/15:12:02.020.001230",
"HH:MI:SS.MS.US’) is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microseconds
=2.021230 seconds.

+ to_char’s day of the week numbering (see the D’ formatting pattern) is different from that of the
extract function.

+ to_char (interval) formats HH and HH12 as hours in a single day, while HH24 can output hours
exceeding a single day, e.g. >24.

Table 9-23 shows the template patterns available for formatting numeric values.

Table 9-23. Template Patterns for Numeric Formatting

Pattern Description

9 value with the specified number of digits

0 value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number < 0)
PL plus sign in specified position (if number > 0)
SG plus/minus sign in specified position

RN roman numeral (input between 1 and 3999)
THoOr th ordinal number suffix

\ shift specified number of digits (see notes)

166

Chapter 9. Functions and Operators

Pattern

Description

EEEE

scientific notation (not implemented yet)

Usage notes for numeric formatting:

« A sign formatted using SG, PL, or MI is not anchored to the number; for example, to_char (-12,
759999") produces ’ -12’,but to_char(-12, 'MI9999’) produces '— 12’.The Oracle im-
plementation does not allow the use of MI ahead of 9, but rather requires that 9 precede MI.

+ 9 results in a value with the same number of digits as there are 9s. If a digit is not available it outputs a

space.

« TH does not convert values less than zero and does not convert fractional numbers.

« PL, SG, and TH are PostgreSQL extensions.

« v effectively multiplies the input values by 10" n, where n is the number of digits following V. to_char
does not support the use of v combined with a decimal point. (E.g., 99.9v99 is not allowed.)

Table 9-24 shows some examples of the use of the to_char function.

Table 9-24. to_char Examples

Expression

Result

to_char (current_timestamp,
"Day, DD HH12:MI:SS’)

"Tuesday , 06 05:39:18’

to_char (current_timestamp,
’FMDay, FMDD HH12:MI:SS’)

"Tuesday, 6 05:39:18’

to_char(-0.1, 799.99") "o =.107
to_char(-0.1, "FM9.99") r-.1
to_char (0.1, "0.9") " 0.1’
to_char (12, "9990999.9") ! 0012.0”
to_char (12, ’'FM9990999.9") 0012.7
to_char (485, ’'9997") " 4857
to_char (-485, 7999") " -485"
to_char (485, 9 9 9') "4 8 5/
to_char (1485, ’9,999") " 1,485’
to_char (1485, ’'9G999") "1 485’
to_char(148.5, 7999.999") ' 148.500"
to_char(148.5, 'FM999.999") 7148.57
to_char(148.5, 'FM999.990") 7148.500"
to_char(148.5, "999D999") ' 148,500

to_char(3148.5, ’"9G999D999")

'3 148,500

to_char (-485, 7999S")

"485-7

167

Chapter 9. Functions and Operators

Expression Result

to_char (-485, "999MI’) " 485-"

to_char (485, 7"999MI’) 1485

to_char (485, ’"FM999MI’) 1485’

to_char (485, "PL999") " +485"

to_char (485, 7SG999") " +485"

to_char (=485, ’SG999') " -485"

to_char (-485, ’"9SG99’) "4-85"

to_char (-485, "999PR’) 1 <485>7

to_char (485, ’"L999") DM 485

to_char (485, ’'RN’) ’ CDLXXXV'
to_char (485, "FMRN’) " CDLXXXV'

to_char (5.2, 'FMRN’) v’

to_char (482, ’'999th’) " 482nd’

to_char (485, ’'"Good number:"999') "Good number: 485’
to_char (485.8, "Pre: 485 Post: .800’
""Pre:"999" Post:" .999')

to_char (12, ’"99vV999’) ’ 12000
to_char(12.4, "99v999') 712400
to_char(12.45, 799V9’) ’ 1257

9.9. Date/Time Functions and Operators

Table 9-26 shows the available functions for date/time value processing, with details appearing in the
following subsections. Table 9-25 illustrates the behaviors of the basic arithmetic operators (+, «, etc.).
For formatting functions, refer to Section 9.8. You should be familiar with the background information on
date/time data types from Section 8.5.

All the functions and operators described below that take t ime or t imestamp inputs actually come in two
variants: one that takes time with time zone Or timestamp with time zone, and one that takes
time without time zone or timestamp without time zone. For brevity, these variants are not
shown separately. Also, the + and » operators come in commutative pairs (for example both date + integer
and integer + date); we show only one of each such pair.

Table 9-25. Date/Time Operators

Operator Example Result

+ date "2001-09-28" + date "2001-10-05"
integer 7’

+ date 72001-09-28" + timestamp "2001-09-28
interval 1 hour’ 01:00:00"

168

Chapter 9. Functions and Operators

Operator Example Result
+ date 72001-09-28" + time |timestamp '2001-09-28
703:00” 03:00:00"
+ interval '1 day’ + interval '1 day
interval ’1 hour’ 01:00:00"
+ timestamp "2001-09-28 timestamp "2001-09-29
01:00" + interval ’23 00:00:00"
hours’
+ time ’01:00" + interval time 704:00:00"
"3 hours’
- - interval ’23 hours’ interval "-23:00:00"
- date ’2001-10-01" - date |integer '3’
72001-09-28"
- date "2001-10-01" - date "2001-09-24"
integer 77’
- date 72001-09-28" - timestamp ’2001-09-27
interval ’1 hour’ 23:00:00"
- time ’05:00" - time interval "02:00:00"
703:00"
- time ’05:00" - interval time 703:00:00'
"2 hours’
- timestamp 2001-09-28 timestamp ’2001-09-28
23:00” - interval ’23 00:00:00"
hours’
- interval '1 day’ - interval '1 day
interval ’1 hour’ -01:00:00"
- timestamp ’2001-09-29 interval '1 day
03:00" - timestamp 15:00:00"
72001-09-27 12:00"
* 900 * interval ’1 interval 00:15:00"
second’
* 21 %= interval ’'1 day’ interval ’21 days’
* double precision 3.5’ x |interval "03:30:00’
interval '1 hour’
/ interval ’1 hour’ / interval "00:40:00"
double precision 1.5’
Table 9-26. Date/Time Functions
Function Return Type Description Example Result

169

Chapter 9. Functions and Operators

Function Return Type Description Example Result
age (timestamp, interval Subtract age (timestamp |43 years 9
timestamp) arguments, r2001-04-10", mons 27 days
producing a timestamp
“symbolic” result |’1957-06-13")
that uses years and
months
age (timestamp) interval Subtract from age (timestamp |43 years 8

current_date

71957-06-13")

mons 3 days

clock_timestamp (

timestamp with

time zone

Current date and
time (changes
during statement
execution); see

Section 9.9.4
current_date date Current date; see
Section 9.9.4
current_time time with time |Current time of
zone day; see Section
994
current_timestamg timestamp with |Current date and

time zone

time (start of

current
transaction); see
Section 9.9.4
date_part (text, |double Get subfield date_part (' hour|’20
timestamp) precision (equivalent to timestamp
extract); see 72001-02-16
Section 9.9.1 20:38:40")
date_part (text, |double Get subfield date_part ('month3,
interval) precision (equivalent to interval ’2
extract); see years 3
Section 9.9.1 months’)
date_trunc (text, | timestamp Truncate to date_trunc (' houZ(01-02-16
timestamp) specified precision; | t imestamp 20:00:00
see also Section ’2001-02-16
99.2 20:38:40")
extract (field double Get subfield; see extract (hour 20
from timestamp) |precision Section 9.9.1 from timestamp
72001-02-16
20:38:40")
extract (field double Get subfield; see extract (month |3
from interval) precision Section 9.9.1 from interval

"2 years 3

months’)

170

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

isfinite (timestan

oolean

Test for finite time
stamp (not equal to
infinity)

isfinite (timest
r2001-02-16
21:28:30")

anmue

isfinite (interval

boolean

Test for finite
interval

isfinite (interv

"4 hours’)

alrue

justify_days (intg

drelgrval

Adjust interval so
30-day time
periods are
represented as
months

Justify_days (in
730 days’)

itle mvarlt h

Jjustify_hours (int

dmt=dnval

Adjust interval so
24-hour time
periods are
represented as days

Justify_hours (i
’24 hours’)

Nt edana 1

justify_interval

fimtearwwa)

Adjust interval
using
justify_days
and
justify_hours,
with additional
sign adjustments

Justify_interval
'l mon -1

hour’)

123 ndtasrsral
23:00:00

localtime

time

Current time of
day; see Section
9.9.4

localtimestamp

timestamp

Current date and
time (start of
current
transaction); see
Section 9.9.4

now ()

timestamp with

time zone

Current date and
time (start of
current
transaction); see
Section 9.9.4

statement_timestg

Mo flestamp with

time zone

Current date and
time (start of
current statement);
see Section 9.9.4

171

Chapter 9. Functions and Operators

Function Return Type Description Example Result
timeofday () text Current date and
time (like

clock_timestamp|
but as a text
string); see Section
994

transaction_timegttamme(dtamp with | Current date and
time zone time (start of
current
transaction); see
Section 9.9.4

In addition to these functions, the SQL OVERLAPS operator is supported:

(startl, endl) OVERLAPS (start2, end2)
(startl, lengthl) OVERLAPS (start2, length2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when they
do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a date, time,
or time stamp followed by an interval.

SELECT (DATE ’2001-02-16’, DATE '2001-12-21") OVERLAPS
(DATE "2001-10-30", DATE ’2002-10-30");

Result: true

SELECT (DATE ’2001-02-16’, INTERVAL ’100 days’) OVERLAPS
(DATE "2001-10-30’, DATE ’2002-10-30");

Result: false

When adding an interval value to (or subtracting an interval value from) a timestamp with
time zone value, the days component advances (or decrements) the date of the timestamp with
time zone by the indicated number of days. Across daylight saving time changes (with the session time
zone set to a time zone that recognizes DST), this means interval ’1 day’ does not necessarily
equal interval ’24 hours’. For example, with the session time zone set to CST7CDT, timestamp
with time zone ’2005-04-02 12:00-07’ + interval '1 day’ will produce timestamp
with time zone ’2005-04-03 12:00-06’, while adding interval ’24 hours’ to the same
initial timestamp with time zone produces timestamp with time zone ’2005-04-03
13:00-06", as there is a change in daylight saving time at 2005-04-03 02:00 in time zone CST7CDT.

9.9.1. EXTRACT, date_part

EXTRACT (field FROM source)

The extract function retrieves subfields such as year or hour from date/time values. source must be
a value expression of type timestamp, time, or interval. (Expressions of type date will be cast to
timestamp and can therefore be used as well.) field is an identifier or string that selects what field to
extract from the source value. The extract function returns values of type double precision. The
following are valid field names:

172

Chapter 9. Functions and Operators

century

The century

SELECT EXTRACT (CENTURY FROM TIMESTAMP ’'2000-12-16 12:21:137");
Result: 20
SELECT EXTRACT (CENTURY FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 21

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time. This
definition applies to all Gregorian calendar countries. There is no century number 0, you go from -1
to 1. If you disagree with this, please write your complaint to: Pope, Cathedral Saint-Peter of Roma,
Vatican.

PostgreSQL releases before 8.0 did not follow the conventional numbering of centuries, but just
returned the year field divided by 100.

day
The day (of the month) field (1 - 31)

SELECT EXTRACT (DAY FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 16

decade
The year field divided by 10

SELECT EXTRACT (DECADE FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 200

dow
The day of the week (0 - 6; Sunday is 0) (for t imestamp values only)

SELECT EXTRACT (DOW FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 5

Note that extract’s day of the week numbering is different from that of the t o_char function.
doy
The day of the year (1 - 365/366) (for t imestamp values only)

SELECT EXTRACT (DOY FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 47

epoch

For date and timestamp values, the number of seconds since 1970-01-01 00:00:00-00 (can be
negative); for interval values, the total number of seconds in the interval

SELECT EXTRACT (EPOCH FROM TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-08');
Result: 982384720

SELECT EXTRACT (EPOCH FROM INTERVAL ’5 days 3 hours’);

Result: 442800

Here is how you can convert an epoch value back to a time stamp:

SELECT TIMESTAMP WITH TIME ZONE ’epoch’ + 982384720 % INTERVAL ’1 second’;

173

Chapter 9. Functions and Operators

hour

The hour field (0 - 23)

SELECT EXTRACT (HOUR FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 20

microseconds

The seconds field, including fractional parts, multiplied by 1 000 000. Note that this includes full
seconds.

SELECT EXTRACT (MICROSECONDS FROM TIME "17:12:28.5");
Result: 28500000

millennium
The millennium

SELECT EXTRACT (MILLENNIUM FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 3

Years in the 1900s are in the second millennium. The third millennium starts January 1, 2001.

PostgreSQL releases before 8.0 did not follow the conventional numbering of millennia, but just
returned the year field divided by 1000.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

SELECT EXTRACT (MILLISECONDS FROM TIME ’"17:12:28.5");
Result: 28500

minute
The minutes field (0 - 59)

SELECT EXTRACT (MINUTE FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 38

month

For t imestamp values, the number of the month within the year (1 - 12) ; for interval values the
number of months, modulo 12 (0 - 11)

SELECT EXTRACT (MONTH FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 2

SELECT EXTRACT (MONTH FROM INTERVAL ’'2 years 3 months’);
Result: 3

SELECT EXTRACT (MONTH FROM INTERVAL ’2 years 13 months’);
Result: 1

quarter
The quarter of the year (1 - 4) that the day is in (for t imestamp values only)

SELECT EXTRACT (QUARTER FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 1

174

Chapter 9. Functions and Operators

second

The seconds field, including fractional parts (0 - 59")

SELECT EXTRACT (SECOND FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 40

SELECT EXTRACT (SECOND FROM TIME ’17:12:28.5");

Result: 28.5

timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east
of UTC, negative values to zones west of UTC.

timezone_hour

The hour component of the time zone offset
timezone_minute

The minute component of the time zone offset
week

The number of the week of the year that the day is in. By definition (ISO 8601), the first week of a
year contains January 4 of that year. (The ISO-8601 week starts on Monday.) In other words, the first
Thursday of a year is in week 1 of that year. (for t imestamp values only)

Because of this, it is possible for early January dates to be part of the 52nd or 53rd week of the
previous year. For example, 2005-01-01 is part of the 53rd week of year 2004, and 2006-01-01 is
part of the 52nd week of year 2005.

SELECT EXTRACT (WEEK FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 7

year

The year field. Keep in mind there is no 0 AD, so subtracting BC years from AD years should be done
with care.

SELECT EXTRACT (YEAR FROM TIMESTAMP ’2001-02-16 20:38:407);
Result: 2001

The extract function is primarily intended for computational processing. For formatting date/time val-
ues for display, see Section 9.8.

The date_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract:

date_part (' field’, source)

Note that here the field parameter needs to be a string value, not a name. The valid field names for
date_part are the same as for extract.

SELECT date_part(‘day’, TIMESTAMP ’2001-02-16 20:38:40");
Result: 16

60 if leap seconds are implemented by the operating system

175

Chapter 9. Functions and Operators

SELECT date_part ('hour’, INTERVAL "4 hours 3 minutes’);
Result: 4

9.9.2. date_trunc

The function date_trunc is conceptually similar to the t runc function for numbers.

date_trunc (’ field’, source)

source is a value expression of type timestamp or interval. (Values of type date and time are cast
automatically, to t imestamp or interval respectively.) field selects to which precision to truncate the
input value. The return value is of type timestamp or interval with all fields that are less significant
than the selected one set to zero (or one, for day and month).

Valid values for field are:

microseconds
milliseconds
second
minute

hour

day

week

month
quarter

year

decade
century

millennium

Examples:

SELECT date_trunc(’hour’, TIMESTAMP ’2001-02-16 20:38:40");
Result: 2001-02-16 20:00:00

SELECT date_trunc(’year’, TIMESTAMP ’2001-02-16 20:38:40");
Result: 2001-01-01 00:00:00

9.9.3. AT TIME ZONE

The AT TIME ZONE construct allows conversions of time stamps to different time zones. Table 9-27
shows its variants.

176

Chapter 9. Functions and Operators

Table 9-27. AT TIME ZONE Variants

Expression Return Type Description

timestamp without time zone |timestamp with time zone |Treat given time stamp without
AT TIME ZONE zone time zone as located in the
specified time zone

timestamp with time zone timestamp without time Convert given time stamp with
AT TIME ZONE zone zone time zone to the new time zone
time with time zone AT time with time zone Convatgh@nthnelvﬂhthne
TIME ZONE zone zone to the new time zone

In these expressions, the desired time zone zone can be specified either as a text string (e.g., ' PST’) or
as an interval (e.g., INTERVAL ’-08:00"). In the text case, a time zone name may be specified in any of
the ways described in Section 8.5.3.

Examples (supposing that the local time zone is PST8PDT):

SELECT TIMESTAMP ’'2001-02-16 20:38:40’ AT TIME ZONE ’'MST’;
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-05" AT TIME ZONE ’'MST’;
Result: 2001-02-16 18:38:40

The first example takes a time stamp without time zone and interprets it as MST time (UTC-7), which
is then converted to PST (UTC-8) for display. The second example takes a time stamp specified in EST
(UTC-5) and converts it to local time in MST (UTC-7).

The function timezone (zone, timestamp) is equivalent to the SQL-conforming construct timestamp
AT TIME ZONE zone.

9.9.4. Current Date/Time

PostgreSQL provides a number of functions that return values related to the current date and time. These
SQL-standard functions all return values based on the start time of the current transaction:

CURRENT_DATE

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME (precision)
CURRENT_TIMESTAMP (precision)
LOCALTIME

LOCALTIMESTAMP

LOCALTIME (precision)
LOCALTIMESTAMP (precision)

CURRENT_TIME and CURRENT_TIMESTAMP deliver values with time zone; LOCALTIME and
LOCALTIMESTAMP deliver values without time zone.

177

Chapter 9. Functions and Operators

CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP can optionally be given a
precision parameter, which causes the result to be rounded to that many fractional digits in the seconds
field. Without a precision parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2001-12-23

SELECT CURRENT_TIMESTAMP;
Result: 2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP (2) ;
Result: 2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2001-12-23 14:39:53.662522

Since these functions return the start time of the current transaction, their values do not change during
the transaction. This is considered a feature: the intent is to allow a single transaction to have a consistent
notion of the “current” time, so that multiple modifications within the same transaction bear the same time
stamp.

Note: Other database systems may advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well as the actual
current time at the instant the function is called. The complete list of non-SQL-standard time functions is:

now ()
transaction_timestamp ()
statement_timestamp ()
clock_timestamp ()
timeofday ()

now () is a traditional PostgreSQL equivalent to CURRENT_TIMESTAMP. transaction_timestamp ()
is likewise equivalent to CURRENT_TIMESTAMP, but is named to clearly reflect what it returns.
statement_timestamp () returns the start time of the current statement (more specifically, the
time of receipt of the latest command message from the client). statement_timestamp () and
transaction_timestamp () return the same value during the first command of a transaction, but may
differ during subsequent commands. clock_timestamp () returns the actual current time, and therefore
its value changes even within a single SQL command. timeofday () is a historical PostgreSQL
function. Like clock_timestamp (), it returns the actual current time, but as a formatted text string
rather than a t imestamp with time zone value.

178

Chapter 9. Functions and Operators

All the date/time data types also accept the special literal value now to specify the current date and time
(again, interpreted as the transaction start time). Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now () ;
SELECT TIMESTAMP ’'now’; —-- incorrect for use with DEFAULT

Tip: You do not want to use the third form when specifying a bEFaULT clause while creating a table.
The system will convert now to a timestamp as soon as the constant is parsed, so that when the
default value is needed, the time of the table creation would be used! The first two forms will not
be evaluated until the default value is used, because they are function calls. Thus they will give the
desired behavior of defaulting to the time of row insertion.

9.9.5. Delaying Execution
The following function is available to delay execution of the server process:

pg_sleep (seconds)

pg_sleep makes the current session’s process sleep until seconds seconds have elapsed. seconds is a
value of type double precision, so fractional-second delays can be specified. For example:

SELECT pg_sleep(1l.5);

Note: The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common
value. The sleep delay will be at least as long as specified. It may be longer depending on factors
such as server load.

Warning

Make sure that your session does not hold more locks than necessary when calling
pg_sleep. Otherwise other sessions might have to wait for your sleeping process,
slowing down the entire system.

9.10. Geometric Functions and Operators

The geometric types point, box, 1seg, line, path, polygon, and circle have a large set of native
support functions and operators, shown in Table 9-28, Table 9-29, and Table 9-30.

179

Chapter 9. Functions and Operators

Caution

Note that the “same as” operator, ~=, represents the usual notion of equality for the
point, box, polygon, and circle types. Some of these types also have an = op-
erator, but = compares for equal areas only. The other scalar comparison operators
(<= and so on) likewise compare areas for these types.

Table 9-28. Geometric Operators

Operator Description Example

+ Translation box ' ((0,0),(1,1))" +
point ' (2.0,0)’

- Translation box ' ((0,0),(1,1))" -
point ' (2.0,0)"

* Scaling/rotation box ' ((0,0),(1,1))" =
point " (2.0,0)'

/ Scaling/rotation box ' ((0,0),(2,2))" /
point ' (2.0,0)’

Point or box of intersection (1,1, (-1,1)) "
T((1,1),(-1,-1))’

Number of points in path or # 7((1,0),(0,1),(-1,0))"

polygon

@-@ Length or circumference @-Q@ path 7 ((0,0), (1,0))"

Q@ Center @@ circle ’ ((0,0),10)"

Closest point to first operand on | point ’ (0,0)’ ## lseg

second operand " ((2,0),(0,2))"

<-> Distance between circle 7 ((0,0),1)" <->
circle 7 ((5,0),1)"

&& Overlaps? box ' ((0,0), (1,1))’ &&
box ' ((0,0), (2,2))"

<< Is strictly left of? circle 7 ((0,0),1)" <<
circle ' ((5,0),1)"

>> Is strictly right of? circle 7 ((5,0),1)" >>
circle " ((0,0),1)’

&< Does not extend to the right of? |box 7 ((0,0), (1,1))’ &<
box " ((0,0),(2,2))’

&> Does not extend to the left of? box ' ((0,0), (3,3))" &>
box ' ((0,0), (2,2))"

<< Is strictly below? box ' ((0,0), (3,3)) <<|
box " ((3,4), (5,5))"

| >> Is strictly above? box ' ((3,4),(5,5))" |>>
box ' ((0,0), (3,3))"

180

Chapter 9. Functions and Operators

Operator Description Example

&< | Does not extend above? box ' ((0,0), (1,1))" &<|
box " ((0,0), (2,2))"

| &> Does not extend below? box ' ((0,0), (3,3))" |&>
box ' ((0,0),(2,2))’

<A Is below (allows touching)? circle 7 ((0,0),1)" <»
circle " ((0,5),1)"

>n Is above (allows touching)? circle 7 ((0,5),1)" >~»
circle " ((0,0),1)"

24 Intersects? lseg ' ((-1,0),(1,0))" 2#
box " ((-2,-2),(2,2))"’

?- Is horizontal? ?— lseg ' ((-1,0), (1,0))"

?- Are horizontally aligned? point ' (1,0)’ ?- point
" (0,0)’

2] Is vertical? ?] lseg ' ((-1,0),(1,0))’

2| Are vertically aligned? point ’ (0,1)’ 2| point
' (0,0)"

?2- Is perpendicular? lseg ' ((0,0),(0,1))" 2-
lseg ' ((0,0),(1,0))"

21 Are parallel? lseg 7 ((=1,0),(1,0))"
21| lseg
T((=1,2),(1,2))"

@a> Contains? circle 7 ((0,0),2)" @>
point " (1,1)’

<@ Contained in or on? point 7 (1,1)’ <@ circle

" ((0,0),2)"

Same as?

polygon ’ ((0,0), (1,1))"
~= polygon
" ((1,1),(0,0))"

Note: Before PostgreSQL 8.2, the containment operators @¢> and <@ were respectively called ~ and
@. These names are still available, but are deprecated and will eventually be retired.

Table 9-29. Geometric Functions

Function Return Type Description Example
area (object) double precision area area (box

" ((0,0),(1,1))")
center (object) point center center (box

" ((0,0),(1,2))")

diameter (circle)

double precision

diameter of circle

diameter (circle
" ((0,0),2.0)")

181

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

height (box)

double precision

vertical size of box

height (box
" ((0,0),(1,1))")

isclosed (path) boolean a closed path? isclosed (path
" ((0,0),(1,1),(2,0)
isopen (path) boolean an open path? isopen (path

"1(0,0),(1,1),(2,0)

length (object)

double precision

length

length (path
"((=1,0),(1,0))")

npoints (path) int number of points npoints (path
"[(0,0),(1,1),(2,0)
npoints (polygon) int number of points npoints (polygon
" ((1,1),(0,0))")
pclose (path) path convert path to closed pclose (path
"[(0,0),(1,1),(2,0)
popen (path) path convert path to open popen (path

"((0,0),(1,1),(2,0)

radius (circle)

double precision

radius of circle

radius (circle
" ((0,0),2.0)")

width (box)

double precision

horizontal size of box

width (box
" ((0,0),(1,1))")

Table 9-30. Geometric Type Conversion Functions

Function Return Type Description Example
box (circle) box circle to box box (circle
"((0,0),2.0)")
box (point, point) box points to box box (point ’ (0,0)",
point " (1,1)")
box (polygon) box polygon to box box (polygon
"((0,0),(1,1),(2,0)
circle (box) circle box to circle circle (box
" ((0,0),(1,1))")
circle (point, double|circle center and radius to circle (point
precision) circle "(0,0)", 2.0)
circle (polygon) circle polygon to circle circle (polygon

" ((0,0),(1,1),(2,0)

182

Chapter 9. Functions and Operators

Function Return Type Description Example
lseg (box) lseg box diagonal to line lseqg (box
segment " ((=1,0),(1,0))")
lseg (point, point) lseg points to line segment lseg (point
"(-1,0)", point
"(1,0)")
path (polygon) point polygon to path path (polygon
"((0,0),(1,1),(2,0)
point (double point construct point point (23.4, -44.5)
precision, double
precision)
point (box) point center of box point (box
" ((-1,0),(1,0))")
point (circle) point center of circle point (circle
"((0,0),2.0)")
point (lseg) point center of line segment point (1seg
"((-1,0),(1,0))")
point (polygon) point center of polygon point (polygon
"((0,0),(1,1),(2,0)
polygon (box) polygon box to 4-point polygon |polygon (box
" ((0,0),(1,1))")
polygon (circle) polygon circle to 12-point polygon (circle
polygon ’((0,0),2.0)")
polygon (npts, polygon circle to npt s-point polygon (12, circle
circle) polygon ’((0,0),2.0)")
polygon (path) polygon path to polygon polygon (path

" ((0,0),(1,1),(2,0)

It is possible to access the two component numbers of a point as though it were an array with indices
0 and 1. For example, if t .p is a point column then SELECT p[0] FROM t retrieves the X coordinate

and UPDATE t SET p[1]

= ... changes the Y coordinate. In the same way, a value of type box or

lseg may be treated as an array of two point values.

The area function works for the types box, circle, and path. The area function only
works on the path data type if the points in the path are non-intersecting. For example,

the
won’t
" ((0,

path
work,

" ((0,0), (0,
however,
0),(0,1),(1,1),(1,2),(2,2),(2,1),(1,1),(1,0), (0,0))” ::PATH

the

1), (2,1),(2,2),
following visually

(1,2),(1,0),

(0,0))"::PATH
identical path

will work. If the concept of an intersecting versus non-intersecting path is confusing, draw both of the
above paths side by side on a piece of graph paper.

183

Chapter 9. Functions and Operators

9.11. Network Address Functions and Operators

Table 9-31 shows the operators available for the cidr and inet types. The operators <<, <<=, >>, and
>>= test for subnet inclusion. They consider only the network parts of the two addresses, ignoring any
host part, and determine whether one network part is identical to or a subnet of the other.

Table 9-31. cidr and inet Operators

Operator Description Example

< is less than inet 7192.168.1.5" <
inet 7192.168.1.6'

<= is less than or equal inet 7192.168.1.5" <=
inet 7192.168.1.5'

= equals inet 7192.168.1.5" =
inet 7192.168.1.5’

>= is greater or equal inet 7192.168.1.5" >=
inet 7192.168.1.5'

> is greater than inet 7192.168.1.5" >
inet 7192.168.1.4'

<> is not equal inet 7192.168.1.5" <>
inet 7192.168.1.4'

<< is contained within inet 7192.168.1.5" <<
inet ’192.168.1/24'

<<= is contained within or equals inet 7192.168.1/24" <<=
inet 7192.168.1/24’

>> contains inet 7192.168.1/24" >>
inet 7192.168.1.5'

>>= contains or equals inet 7192.168.1/24" >>=
inet 7192.168.1/24"

~ bitwise NOT ~ inet ’192.168.1.6'

& bitwise AND inet 7192.168.1.6" &
inet ’0.0.0.255

bitwise OR inet ’192.168.1.6" |

inet 70.0.0.255"

+ addition inet ’192.168.1.6' + 25

- subtraction inet ’192.168.1.43" - 36

- subtraction inet 7192.168.1.43" -
inet 7192.168.1.19'

Table 9-32 shows the functions available for use with the cidr and inet types. The host, text, and
abbrev functions are primarily intended to offer alternative display formats.

Table 9-32. cidr and inet Functions

Function

Return Type

Description

Example

Result

184

Chapter 9. Functions and Operators

Function Return Type Description Example Result
abbrev (inet) text abbreviated display | abbrev (inet 10.1.0.0/16
format as text 710.1.0.0/16")
abbrev (cidr) text abbreviated display | abbrev (cidr 10.1/16
format as text 710.1.0.0/16")
broadcast (inet) |inet broadcast address |broadcast (7 192.[116%. 1.6 21U./9)55/2
for network
family (inet) int extract family of | family(’::1") |6
address; 4 for
IPv4, 6 for IPv6
host (inet) text extract IP address | host (1192.168.1.5924Y68.1.5
as text
hostmask (inet) inet construct host hostmask (7 192.1/68..230.29/30")
mask for network
masklen (inet) int extract netmask masklen(’192.16/824 .5/24")
length
netmask (inet) inet construct netmask |netmask (/192.1682.355/2%/255.0
for network
network (inet) cidr extract network network (’192.16[8L92 5/&81/).0/24
part of address
set_masklen (inet | inet set netmask length | set_masklen (’ 19PL9%8L48 5/23/1,6
int) for inet value 16)
set_masklen (cidr, cidr set netmask length | set_masklen (' 192L9%58LA8 00 204/ 1:6 q
int) for cidr value 16)
text (inet) text extract I[P address |text (inet 192.168.1.5/32
and netmask length |7 192.168.1.5")
as text
Any cidr value can be cast to inet implicitly or explicitly; therefore, the functions shown above as
operating on inet also work on cidr values. (Where there are separate functions for inet and cidr, it
is because the behavior should be different for the two cases.) Also, it is permitted to cast an inet value
to cidr. When this is done, any bits to the right of the netmask are silently zeroed to create a valid cidr
value. In addition, you can cast a text value to inet or cidr using normal casting syntax: for example,
inet (expression) Or colname: :cidr.
Table 9-33 shows the functions available for use with the macaddr type. The function trunc (macaddr)
returns a MAC address with the last 3 bytes set to zero. This can be used to associate the remaining prefix
with a manufacturer.
Table 9-33. macaddr Functions
Function Return Type Description Example Result
trunc (macaddr) macaddr setlast 3 bytesto |trunc(macaddr |12:34:56:00:00:

ZEero

712:34:56:78:90

:ab’)

185

idr,

00

Chapter 9. Functions and Operators

The macaddr type also supports the standard relational operators (>, <=, etc.) for lexicographical order-
ing.

9.12. Sequence Manipulation Functions

This section describes PostgreSQL’s functions for operating on sequence objects. Sequence objects
(also called sequence generators or just sequences) are special single-row tables created with CREATE
SEQUENCE. A sequence object is usually used to generate unique identifiers for rows of a table. The
sequence functions, listed in Table 9-34, provide simple, multiuser-safe methods for obtaining successive
sequence values from sequence objects.

Table 9-34. Sequence Functions

Function Return Type Description

currval (regclass) bigint Return value most recently
obtained with nextval for
specified sequence

nextval (regclass) bigint Advance sequence and return
new value

setval (regclass, bigint) bigint Set sequence’s current value

setval (regclass, bigint, bigint Set sequence’s current value and

boolean) is_called flag

The sequence to be operated on by a sequence-function call is specified by a regclass argument, which
is just the OID of the sequence in the pg_class system catalog. You do not have to look up the OID
by hand, however, since the regclass data type’s input converter will do the work for you. Just write
the sequence name enclosed in single quotes, so that it looks like a literal constant. To achieve some
compatibility with the handling of ordinary SQL names, the string will be converted to lowercase unless
it contains double quotes around the sequence name. Thus

nextval (' foo’) operates on sequence foo
nextval (" FOO’) operates on sequence foo
nextval (" "Foo"') operates on sequence Foo

The sequence name can be schema-qualified if necessary:

nextval (‘myschema.foo’) operates on myschema.foo
nextval (! "myschema".foo’) same as above
nextval (' foo’) searches search path for foo

See Section 8.12 for more information about regclass.

Note: Before PostgreSQL 8.1, the arguments of the sequence functions were of type text, not
regclass, and the above-described conversion from a text string to an OID value would happen
at run time during each call. For backwards compatibility, this facility still exists, but internally it is now
handled as an implicit coercion from text to regclass before the function is invoked.

186

Chapter 9. Functions and Operators

When you write the argument of a sequence function as an unadorned literal string, it becomes a
constant of type regclass. Since this is really just an OID, it will track the originally identified sequence
despite later renaming, schema reassignment, etc. This “early binding” behavior is usually desirable
for sequence references in column defaults and views. But sometimes you will want “late binding”
where the sequence reference is resolved at run time. To get late-binding behavior, force the constant
to be stored as a text constant instead of regclass:

nextval (! foo’ : :text) foo 1is looked up at runtime

Note that late binding was the only behavior supported in PostgreSQL releases before 8.1, so you
may need to do this to preserve the semantics of old applications.

Of course, the argument of a sequence function can be an expression as well as a constant. If it is a
text expression then the implicit coercion will result in a run-time lookup.

The available sequence functions are:

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even if
multiple sessions execute nextval concurrently, each will safely receive a distinct sequence value.

currval

Return the value most recently obtained by nextval for this sequence in the current session. (An
error is reported if nextval has never been called for this sequence in this session.) Notice that
because this is returning a session-local value, it gives a predictable answer whether or not other
sessions have executed nextval since the current session did.

lastval

Return the value most recently returned by nextval in the current session. This function is identical
to currval, except that instead of taking the sequence name as an argument it fetches the value of
the last sequence that nextval was used on in the current session. It is an error to call 1astval if
nextval has not yet been called in the current session.

setval

Reset the sequence object’s counter value. The two-parameter form sets the sequence’s last_value
field to the specified value and sets its is_called field to true, meaning that the next nextval
will advance the sequence before returning a value. In the three-parameter form, is_called may
be set either t rue or false. If it’s set to false, the next nextval will return exactly the specified
value, and sequence advancement commences with the following nextval. For example,

SELECT setval ('’ foo’, 42); Next nextval will return 43
SELECT setval ('’ foo’, 42, true); Same as above
SELECT setval (' foo’, 42, false); Next nextval will return 42

The result returned by setval is just the value of its second argument.

If a sequence object has been created with default parameters, nextval calls on it will return successive
values beginning with 1. Other behaviors can be obtained by using special parameters in the CREATE
SEQUENCE command; see its command reference page for more information.

187

Chapter 9. Functions and Operators

Important: To avoid blocking of concurrent transactions that obtain numbers from the same sequence,
anextval operation is never rolled back; that is, once a value has been fetched it is considered used,
even if the transaction that did the nextval later aborts. This means that aborted transactions may
leave unused “holes” in the sequence of assigned values. setval operations are never rolled back,
either.

9.13. Conditional Expressions

This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip: If your needs go beyond the capabilities of these conditional expressions you might want to
consider writing a stored procedure in a more expressive programming language.

9.13.1. case

The SQL CASE expression is a generic conditional expression, similar to if/else statements in other lan-
guages:

CASE WHEN condition THEN result
[WHEN ...]
[ELSE result]

END

CASE clauses can be used wherever an expression is valid. condition is an expression that returns a
boolean result. If the result is true then the value of the CASE expression is the result that follows the
condition. If the result is false any subsequent WHEN clauses are searched in the same manner. If no WHEN
condition is true then the value of the case expression is the result in the ELSE clause. If the ELSE
clause is omitted and no condition matches, the result is null.

An example:

SELECT » FROM test;

SELECT a,
CASE WHEN a=1 THEN ’one’
WHEN a=2 THEN ’two’
ELSE ’other’
END
FROM test;

188

Chapter 9. Functions and Operators

a | case
.

1 | one

2 | two

3 | other

The data types of all the result expressions must be convertible to a single output type. See Section 10.5
for more detail.

The following “simple” CASE expression is a specialized variant of the general form above:

CASE expression
WHEN value THEN result
[WHEN ...]
[ELSE result]

END

The expressionis computed and compared to all the value specifications in the WHEN clauses until one
is found that is equal. If no match is found, the result in the ELSE clause (or a null value) is returned.
This is similar to the switch statement in C.

The example above can be written using the simple CASE syntax:

SELECT a,
CASE a WHEN 1 THEN ’one’
WHEN 2 THEN 'two’
ELSE ’'other’

END
FROM test;
a | case
S
1 | one
2 | two
3 | other

A cASE expression does not evaluate any subexpressions that are not needed to determine the result. For
example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

9.13.2. COALESCE

COALESCE (value [, ...])

189

Chapter 9. Functions and Operators

The coALESCE function returns the first of its arguments that is not null. Null is returned only if all
arguments are null. It is often used to substitute a default value for null values when data is retrieved for
display, for example:

SELECT COALESCE (description, short_description, ’ (none)’)

Like a cASE expression, COALESCE will not evaluate arguments that are not needed to determine the
result; that is, arguments to the right of the first non-null argument are not evaluated. This SQL-standard
function provides capabilities similar to NVL and IFNULL, which are used in some other database systems.

9.13.3. NULLIF
NULLIF (valuel, valueZ2)

The NULLIF function returns a null value if valuel and value2 are equal; otherwise it returns valuel.
This can be used to perform the inverse operation of the COALESCE example given above:

SELECT NULLIF (value, ' (none)’)

If valuelis (none), return a null, otherwise return valuel.

9.13.4. GREATEST and LEAST
GREATEST (value [, ...])

LEAST (value [, ...])

The GREATEST and LEAST functions select the largest or smallest value from a list of any number of
expressions. The expressions must all be convertible to a common data type, which will be the type of the
result (see Section 10.5 for details). NULL values in the list are ignored. The result will be NULL only if
all the expressions evaluate to NULL.

Note that GREATEST and LEAST are not in the SQL standard, but are a common extension.

9.14. Array Functions and Operators

Table 9-35 shows the operators available for array types.

Table 9-35. array Operators

Operator Description Example Result

190

Chapter 9. Functions and Operators

Operator Description Example Result
= equal ARRAY[1.1,2.1,3.1]:tnt[]
= ARRAY[1,2, 3]
<> not equal ARRAY[1,2,3] <> t
ARRAY[1,2,4]
< less than ARRAY[1,2,3] < t
ARRAY[1,2,4]
> greater than ARRAY[1,4,3] > t
ARRAY[1,2,4]
<= less than or equal ARRAY[1,2,3] <= t
ARRAY[1,2,3]
>= greater than or equal ARRAY[1,4,3] >= t
ARRAY[1, 4, 3]
@> contains ARRAY[1,4,3] @> t
ARRAY[3,1]
<@ is contained by ARRAY[2,7] <@ t
ARRAY[1,7,4,2,6]
& & overlap (have elements |ARRAY[1,4,3] && t
in common) ARRAY[2,1]
[| array-to-array ARRAY[1,2,3] || (1,2,3,4,5,6}
concatenation ARRAY[4,5, 6]
| array-to-array ARRAY[1,2,3] || {{1,2,3},1{4,5,6}, 17
concatenation ARRAY[[4,5,61,17,8,911]
| element-to-array 3 || ARRAY[4,5,6] {3,4,5,6}
concatenation
| array-to-element ARRAY [4,5,6] || 7 {4,5,6,7}
concatenation

Array comparisons compare the array contents element-by-element, using the default B-Tree comparison
function for the element data type. In multidimensional arrays the elements are visited in row-major
order (last subscript varies most rapidly). If the contents of two arrays are equal but the dimensionality
is different, the first difference in the dimensionality information determines the sort order. (This is a
change from versions of PostgreSQL prior to 8.2: older versions would claim that two arrays with the

same contents were equal, even if the number of dimensions or subscript ranges were different.)

See Section 8.10 for more details about array operator behavior.

Table 9-36 shows the functions available for use with array types. See Section 8.10 for more discussion

and examples of the use of these functions.

Table 9-36. array Functions

Function

Return Type

Description

Example

Result

191

+8,9}}

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

array_append (anya

anyelement)

anyarray

rray,

append an element
to the end of an
array

array_append (AR
3)

RELY, (2, 2] ,

array_dims (anyary

ay)

representation of
array’s dimensions

anyarray concatenate two array_cat (ARRAY|[{%,2,33,4,5}
array_cat (anyarray, arrays ARRAY[4,5])
anyarray)

text returns a text array_dims (ARRAY[[UI12 R[B:]3]

[4,5,611)

array_lower (anyay

int)

int

ray,

returns lower
bound of the
requested array
dimension

array_lower (' [0
1)

@]1={1,2,3}" ::1in

array_prepend (any

anyarray)

anyarray

element,

append an element
to the beginning of
an array

array_prepend (1
ARRAY[2,31)

A{1,2,3}

array_to_string(a

text)

text

nyarray,

concatenates array
elements using
provided delimiter

array_to_string
2, 31, "~"~")

(ARRAX1~3

array_upper (anyat

int)

int

ray,

returns upper
bound of the
requested array
dimension

array_upper (ARR
1)

MY [1,2,3,4],

string_to_array ({

text)

text[]

ext,

splits string into
array elements
using provided
delimiter

string_to_array|

INANI)

(= yVyyzzY ~zz'

9.15. Aggregate Functions

Aggregate functions compute a single result value from a set of input values. The built-in aggregate func-
tions are listed in Table 9-37 and Table 9-38. The special syntax considerations for aggregate functions
are explained in Section 4.2.7. Consult Section 2.7 for additional introductory information.

Table 9-37. General-Purpose Aggregate Functions

Function

Argument Type

Return Type

Des

cription

192

Chapter 9.

Functions and Operators

Function

Argument Type

Return Type

Description

avg (expression)

smallint, int,
bigint, real, double
precision, numeric,

or interval

numeric for any
integer type argument,
double precision
for a floating-point
argument, otherwise the
same as the argument
data type

the average (arithmetic
mean) of all input values

bit_and (expression)

smallint, int,

bigint,orbit

same as argument data
type

the bitwise AND of all
non-null input values, or
null if none

bit_or (expression)

smallint, int,

bigint,orbit

same as argument data
type

the bitwise OR of all
non-null input values, or
null if none

bool bool true if all input values
bool_and (expression) are true, otherwise false
bool bool true if at least one input
bool_or (expression) value is true, otherwise
false
count (*) bigint number of input rows
count (expression) any bigint number of input rows
for which the value of
expression is not null
every (expression) bool bool equivalent to bool_and

max (expression)

any array, numeric,
string, or date/time type

same as argument type

maximum value of
expression across all
input values

min (expression)

any array, numeric,
string, or date/time type

same as argument type

minimum value of
expression across all
input values

sum (expression)

smallint, int,
bigint, real, double
precision, numeric,

or interval

bigint for smallint
or int arguments,
numeric for bigint
arguments, double
precision for
floating-point
arguments, otherwise
the same as the

argument data type

sum of expression
across all input values

It should be noted that except for count, these functions return a null value when no rows are selected.
In particular, sum of no rows returns null, not zero as one might expect. The coalesce function may be
used to substitute zero for null when necessary.

193

Chapter 9. Functions and Operators

Note: Boolean aggregates bool_and and bool_or correspond to standard SQL aggregates every
and any or some. As for any and some, it seems that there is an ambiguity built into the standard
syntax:

SELECT bl = ANY((SELECT b2 FROM t2 ...)) FROM tl ...;

Here any can be considered both as leading to a subquery or as an aggregate if the select expression
returns 1 row. Thus the standard name cannot be given to these aggregates.

Note: Users accustomed to working with other SQL database management systems may be surprised

by the performance of the count aggregate when it is applied to the entire table. A query like:
SELECT count () FROM sometable;

will be executed by PostgreSQL using a sequential scan of the entire table.

Table 9-38 shows aggregate functions typically used in statistical analysis. (These are separated out merely
to avoid cluttering the listing of more-commonly-used aggregates.) Where the description mentions N, it
means the number of input rows for which all the input expressions are non-null. In all cases, null is
returned if the computation is meaningless, for example when N is zero.

Table 9-38. Aggregate Functions for Statistics

Function Argument Type Return Type Description
corr (Y, X) double precision double precision correlation coefficient
covar_pop (Y, X) double precision double precision population covariance
covar_samp (Y, X) double precision double precision sample covariance
regr_avgx (Y, X) double precision double precision average of the
independent variable
(sum (x) /N)
regr_avgy (Y, X) double precision double precision average of the
dependent variable
(sum (Y) /N)
regr_count (Y, X) double precision bigint number of input rows in
which both expressions
are nonnull
regr_intercept (Y, | double precision double precision |y-intercept of the
X) least-squares-fit linear
equation determined by
the (x, v) pairs
regr_r2(y, X) double precision double precision square of the correlation
coefficient

194

Chapter 9. Functions and Operators

Function

Argument Type

Return Type

Description

regr_slope (Y, X)

double precision

double precision

slope of the
least-squares-fit linear
equation determined by
the (x, v) pairs

regr_sxx (Y, X)

double precision

double precision

sum(xX"2) -

sum (x) ~2/nN (“sum of
squares” of the
independent variable)

regr_sxy (Y, X)

double precision

double precision

sum(X*Y)
x sum(y) /N (“sum of
products” of
independent times
dependent variable)

— sum(X)

regr_syy (Y, X)

double precision

double precision

sum(y~2) -

sum(v) ~2/n (“sum of
squares” of the
dependent variable)

stddev (expression)

smallint, int,
bigint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

historical alias for

stddev_samp

stddev_pop (expressiq

smallint, int,
Migint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

population standard
deviation of the input
values

stddev_samp (expressi

smallint, int,
dri)gint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

sample standard
deviation of the input
values

variance(expression

smallint, int,
bigint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

historical alias for

var_samp

var_pop(expression)

smallint, int,
bigint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

population variance of
the input values (square
of the population
standard deviation)

var_samp(expression

smallint, int,
bigint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

sample variance of the
input values (square of
the sample standard
deviation)

195

Chapter 9. Functions and Operators

9.16. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the ex-
pression forms documented in this section return Boolean (true/false) results.

9.16.1. EXISTS
EXISTS (subquery)

The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is evaluated to
determine whether it returns any rows. If it returns at least one row, the result of EXTSTS is “true”; if the
subquery returns no rows, the result of EXISTs is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery.

The subquery will generally only be executed far enough to determine whether at least one row is returned,
not all the way to completion. It is unwise to write a subquery that has any side effects (such as calling
sequence functions); whether the side effects occur or not may be difficult to predict.

Since the result depends only on whether any rows are returned, and not on the contents of those rows, the
output list of the subquery is normally uninteresting. A common coding convention is to write all EXTSTS
tests in the form EXISTS (SELECT 1 WHERE ...). There are exceptions to this rule however, such as
subqueries that use INTERSECT.

This simple example is like an inner join on col2, but it produces at most one output row for each tabl
row, even if there are multiple matching tab2 rows:

SELECT coll FROM tabl
WHERE EXISTS(SELECT 1 FROM tab2 WHERE col2 = tabl.col2);

9.16.2. IN

expression IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of IN is “true” if any
equal subquery row is found. The result is “false” if no equal row is found (including the special case
where the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the IN construct will be null, not false. This is in accordance with
SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor IN (subquery)

196

Chapter 9. Functions and Operators

The left-hand side of this form of IN is a row constructor, as described in Section 4.2.11. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. The result of 1IN is “true” if any equal subquery row is found. The result is “false” if no
equal row is found (including the special case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is
unknown (null). If all the per-row results are either unequal or null, with at least one null, then the result
of INis null.

9.16.3. NOT IN

expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of NOT IN is “true”
if only unequal subquery rows are found (including the special case where the subquery returns no rows).
The result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the NOT IN construct will be null, not true. This is in accordance
with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.
row_constructor NOT IN (subquery)

The left-hand side of this form of NOT 1IN is a row constructor, as described in Section 4.2.11. The right-
hand side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. The result of NOT 1IN is “true” if only unequal subquery rows are found (including the
special case where the subquery returns no rows). The result is “false” if any equal row is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is
unknown (null). If all the per-row results are either unequal or null, with at least one null, then the result
of NOT 1IN is null.

9.16.4. ANY/SOME

expression operator ANY (subquery)

expression operator SOME (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,

197

Chapter 9. Functions and Operators

which must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result is
“false” if no true result is found (including the special case where the subquery returns no rows).

SOME is a synonym for ANY. IN is equivalent to = ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator’s result,
the result of the ANY construct will be null, not false. This is in accordance with SQL’s normal rules for
Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor operator ANY (subquery)

row_constructor operator SOME (subquery)

The left-hand side of this form of ANY is a row constructor, as described in Section 4.2.11. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. The result of ANY is “true” if the comparison returns true for
any subquery row. The result is “false” if the comparison returns false for every subquery row (including
the special case where the subquery returns no rows). The result is NULL if the comparison does not
return true for any row, and it returns NULL for at least one row.

See Section 9.17.5 for details about the meaning of a row-wise comparison.

9.16.5. ALL

expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ALL is “true” if all rows yield true (including the special
case where the subquery returns no rows). The result is “false” if any false result is found. The result is
NULL if the comparison does not return false for any row, and it returns NULL for at least one row.

NOT 1IN isequivalentto <> ALL.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor operator ALL (subquery)

The left-hand side of this form of ALL is a row constructor, as described in Section 4.2.11. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. The result of ALL is “true” if the comparison returns true for
all subquery rows (including the special case where the subquery returns no rows). The result is “false” if
the comparison returns false for any subquery row. The result is NULL if the comparison does not return
false for any subquery row, and it returns NULL for at least one row.

See Section 9.17.5 for details about the meaning of a row-wise comparison.

198

Chapter 9. Functions and Operators

9.16.6. Row-wise Comparison

row_constructor operator (subquery)

The left-hand side is a row constructor, as described in Section 4.2.11. The right-hand side is a parenthe-
sized subquery, which must return exactly as many columns as there are expressions in the left-hand row.
Furthermore, the subquery cannot return more than one row. (If it returns zero rows, the result is taken to
be null.) The left-hand side is evaluated and compared row-wise to the single subquery result row.

See Section 9.17.5 for details about the meaning of a row-wise comparison.

9.17. Row and Array Comparisons

This section describes several specialized constructs for making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but do
not involve subqueries. The forms involving array subexpressions are PostgreSQL extensions; the rest are
SQL-compliant. All of the expression forms documented in this section return Boolean (true/false) results.

9.17.1. IN

expression IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand ex-
pression’s result is equal to any of the right-hand expressions. This is a shorthand notation for

expression = valuel
OR
expression = valueZ2
OR

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of the IN construct will be null, not false. This is in accordance
with SQL’s normal rules for Boolean combinations of null values.

9.17.2. NOT IN

expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand ex-
pression’s result is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> valuel

AND

expression <> valueZ

199

Chapter 9. Functions and Operators

AND

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of the NOT IN construct will be null, not true as one might
naively expect. This is in accordance with SQL’s normal rules for Boolean combinations of null values.

Tip: x NOT IN y is equivalent to NOT (x IN y) in all cases. However, null values are much more
likely to trip up the novice when working with noT 1N than when working with 1n. It's best to express
your condition positively if possible.

9.17.3. ANY/SOME (array)

expression operator ANY (array expression)

expression operator SOME (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expres-
sion is evaluated and compared to each element of the array using the given operator, which must yield
a Boolean result. The result of ANY is “true” if any true result is obtained. The result is “false” if no true
result is found (including the special case where the array has zero elements).

If the array expression yields a null array, the result of ANY will be null. If the left-hand expression yields
null, the result of ANY is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no true comparison result is
obtained, the result of ANY will be null, not false (again, assuming a strict comparison operator). This is
in accordance with SQL’s normal rules for Boolean combinations of null values.

SOME is a synonym for ANY.

9.17.4. aLL (array)

expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expres-
sion is evaluated and compared to each element of the array using the given operator, which must yield
a Boolean result. The result of ALL is “true” if all comparisons yield true (including the special case where
the array has zero elements). The result is “false” if any false result is found.

If the array expression yields a null array, the result of ALL will be null. If the left-hand expression yields
null, the result of ALL is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no false comparison result is
obtained, the result of ALL will be null, not true (again, assuming a strict comparison operator). This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

200

Chapter 9. Functions and Operators

9.17.5. Row-wise Comparison

row_constructor operator row_constructor

Each side is a row constructor, as described in Section 4.2.11. The two row values must have the same
number of fields. Each side is evaluated and they are compared row-wise. Row comparisons are allowed
when the operatoris =, <>, <, <=, > or >=, or has semantics similar to one of these. (To be specific,
an operator can be a row comparison operator if it is a member of a B-Tree operator class, or is the negator
of the = member of a B-Tree operator class.)

The = and <> cases work slightly differently from the others. Two rows are considered equal if all their
corresponding members are non-null and equal; the rows are unequal if any corresponding members are
non-null and unequal; otherwise the result of the row comparison is unknown (null).

For the <, <=, > and >= cases, the row elements are compared left-to-right, stopping as soon as an
unequal or null pair of elements is found. If either of this pair of elements is null, the result of the row
comparison is unknown (null); otherwise comparison of this pair of elements determines the result. For
example, ROW (1,2, NULL) < ROW(1,3,0) yields true, not null, because the third pair of elements are
not considered.

Note: Prior to PostgreSQL 8.2, the <, <=, > and >= cases were not handled per SQL specification. A
comparison like Row (a, b) < ROW(c,d) wasimplementedasa < ¢ anD b < dwhereas the correct
behavior is equivalenttoa < ¢ OR (a = ¢ AND b < d).

row_constructor IS DISTINCT FROM row_constructor

This construct is similar to a <> row comparison, but it does not yield null for null inputs. Instead, any
null value is considered unequal to (distinct from) any non-null value, and any two nulls are considered
equal (not distinct). Thus the result will always be either true or false, never null.

row_constructor IS NOT DISTINCT FROM row_constructor

This construct is similar to a = row comparison, but it does not yield null for null inputs. Instead, any null
value is considered unequal to (distinct from) any non-null value, and any two nulls are considered equal
(not distinct). Thus the result will always be either true or false, never null.

9.18. Set Returning Functions

This section describes functions that possibly return more than one row. Currently the only functions in
this class are series generating functions, as detailed in Table 9-39.

Table 9-39. Series Generating Functions

Function Argument Type Return Type Description

201

Chapter 9. Functions and Operators

Function Argument Type Return Type Description
generate_series (start],int or bigint setof int or setof Generate a series of
stop) bigint (same as values, from start to
argument type) stop with a step size of
one
generate_series (startl,int or bigint setof int or setof Generate a series of
stop, step) bigint (same as values, from start to
argument type) stop with a step size of
step

When step is positive, zero rows are returned if start is greater than stop. Conversely, when step is
negative, zero rows are returned if start is less than stop. Zero rows are also returned for NULL inputs.
It is an error for step to be zero. Some examples follow:

select x from generate_series(2,4);
generate_series

(3 rows)

select » from generate_series(5,1,-2);
generate_series

(3 rows)

select x from generate_series(4,3);
generate_series

select current_date + s.a as dates from generate_series(0,14,7) as s(a);
dates

2004-02-05
2004-02-12
2004-02-19
(3 rows)

9.19. System Information Functions

Table 9-40 shows several functions that extract session and system information.

202

Table 9-40. Session Information Functions

Chapter 9. Functions and Operators

Name Return Type Description

current_database () name name of current database

current_schema () name name of current schema

current_schemas (boolean) name [] names of schemas in search path
optionally including implicit
schemas

current_user name user name of current execution
context

inet_client_addr () inet address of the remote connection

inet_client_port () int port of the remote connection

inet_server_addr () inet address of the local connection

inet_server_port () int port of the local connection

pg_my_temp_schema () oid OID of session’s temporary
schema, or O if none

pg_is_other_temp_schema (oid)|boolean is schema another session’s
temporary schema?

pg_postmaster_start_time () timestamp with time zone |server start time

session_user name session user name

user name equivalent to current_user

version () text PostgreSQL version information

The session_user is normally the user who initiated the current database connection; but superusers
can change this setting with SET SESSION AUTHORIZATION. The current_user is the user identifier
that is applicable for permission checking. Normally, it is equal to the session user, but it can be changed
with SET ROLE. Tt also changes during the execution of functions with the attribute SECURITY DEFINER.
In Unix parlance, the session user is the “real user” and the current user is the “effective user”.

Note: current_user, session_user, and user have special syntactic status in SQL: they must be
called without trailing parentheses.

current_schema returns the name of the schema that is at the front of the search path (or a null value
if the search path is empty). This is the schema that will be used for any tables or other named objects
that are created without specifying a target schema. current_schemas (boolean) returns an array of
the names of all schemas presently in the search path. The Boolean option determines whether or not
implicitly included system schemas such as pg_catalog are included in the search path returned.

Note: The search path may be altered at run time. The command is:

SET search_path TO schema [, schema, ...]

203

Chapter 9. Functions and Operators

inet_client_addr returns the IP address of the current client, and inet_client_port returns the
port number. inet_server_addr returns the IP address on which the server accepted the current con-
nection, and inet_server_port returns the port number. All these functions return NULL if the current
connection is via a Unix-domain socket.

pg_my_temp_schema returns the OID of the current session’s temporary schema, or O if it has none
(because it has not created any temporary tables). pg_is_other_temp_schema returns true if the given
OID is the OID of any other session’s temporary schema. (This can be useful, for example, to exclude
other sessions’ temporary tables from a catalog display.)

pPg_postmaster_start_time returns the timestamp with time zone when the server started.
version returns a string describing the PostgreSQL server’s version.

Table 9-41 lists functions that allow the user to query object access privileges programmatically. See
Section 5.6 for more information about privileges.

Table 9-41. Access Privilege Inquiry Functions

Name Return Type Description
has_database_privilege (user,|boolean does user have privilege for
database, privilege) database
has_database_privilege (databplseplean does current user have privilege
privilege) for database
has_function_privilege (user,|boolean does user have privilege for
function, privilege) function
has_function_privilege (functfibaplean does current user have privilege
privilege) for function
has_language_privilege (user,|boolean does user have privilege for
language, privilege) language
has_language_privilege (languglheplean does current user have privilege
privilege) for language
has_schema_privilege (user, |boolean does user have privilege for
schema, privilege) schema
has_schema_privilege (schema,|boolean does current user have privilege
privilege) for schema
has_table_privilege (user, boolean does user have privilege for table
table, privilege)

has_table_privilege (table, |boolean does current user have privilege
privilege) for table
has_tablespace_privilege (userhoolean does user have privilege for
tablespace, privilege) tablespace
has_tablespace_privilege (tabllespdesn does current user have privilege
privilege) for tablespace

pg_has_role (user, role, boolean does user have privilege for role
privilege)

204

Chapter 9. Functions and Operators

Name Return Type Description
pg_has_role (role, boolean does current user have privilege
privilege) for role

has_database_privilege checks whether a user can access a database in a particular way. The pos-
sibilities for its arguments are analogous to has_table_privilege. The desired access privilege type
must evaluate to CREATE, CONNECT, TEMPORARY, or TEMP (which is equivalent to TEMPORARY).

has_function_privilege checks whether a user can access a function in a particular way. The possi-
bilities for its arguments are analogous to has_table_privilege. When specifying a function by a text
string rather than by OID, the allowed input is the same as for the regprocedure data type (see Section
8.12). The desired access privilege type must evaluate to EXECUTE. An example is:

SELECT has_function_privilege (' joeuser’, ’'myfunc(int, text)’, ’execute’);

has_language_privilege checks whether a user can access a procedural language in a particular way.
The possibilities for its arguments are analogous to has_table_privilege. The desired access privilege
type must evaluate to USAGE.

has_schema_privilege checks whether a user can access a schema in a particular way. The possibili-
ties for its arguments are analogous to has_table_privilege. The desired access privilege type must
evaluate to CREATE or USAGE.

has_table_privilege checks whether a user can access a table in a particular way. The user can
be specified by name or by OID (pg_authid.oid), or if the argument is omitted current_user
is assumed. The table can be specified by name or by OID. (Thus, there are actually six variants of
has_table_privilege, which can be distinguished by the number and types of their arguments.)
When specifying by name, the name can be schema-qualified if necessary. The desired access privilege
type is specified by a text string, which must evaluate to one of the values SELECT, INSERT, UPDATE,
DELETE, REFERENCES, or TRIGGER. (Case of the string is not significant, however.) An example is:

SELECT has_table_privilege ('myschema.mytable’, ’select’);

has_tablespace_privilege checks whether a user can access a tablespace in a particular way. The
possibilities for its arguments are analogous to has_table_privilege. The desired access privilege
type must evaluate to CREATE.

pg_has_role checks whether a user can access a role in a particular way. The possibilities for its ar-
guments are analogous to has_table_privilege. The desired access privilege type must evaluate to
MEMBER or USAGE. MEMBER denotes direct or indirect membership in the role (that is, the right to do SET
ROLE), while USAGE denotes whether the privileges of the role are immediately available without doing
SET ROLE.

To test whether a user holds a grant option on the privilege, append WITH GRANT OPTION to the privilege
key word; for example UPDATE WITH GRANT OPTION’.

Table 9-42 shows functions that determine whether a certain object is visible in the current schema search
path. A table is said to be visible if its containing schema is in the search path and no table of the same
name appears earlier in the search path. This is equivalent to the statement that the table can be referenced
by name without explicit schema qualification. For example, to list the names of all visible tables:

205

Chapter 9. Functions and Operators

SELECT relname FROM pg_class WHERE pg_table_is_visible (oid);

Table 9-42. Schema Visibility Inquiry Functions

Name Return Type Description
pg_conversion_is_visible (conveeslearmid) is conversion visible in search
path
pg_function_is_visible (functlibaodedn is function visible in search path
pg_operator_is_visible (operaftlooodadn is operator visible in search path
pg_opclass_is_visible (opclaskboodan is operator class visible in search
path
pg_table_is_visible (table_oiddoolean is table visible in search path
pg_type_is_visible (type_oid)|boolean istype(ordonuﬁn)vmﬂﬂein
search path
pg_conversion_is_visible, pg_function_is_visible, pg_operator_is_visible,

pg_opclass_is_visible, pg_table_is_visible, and pg_type_is_visible perform the
visibility check for conversions, functions, operators, operator classes, tables, and types. Note that
pg_table_is_visible can also be used with views, indexes and sequences; pg_type_is_visible
can also be used with domains. For functions and operators, an object in the search path is visible if there
is no object of the same name and argument data type(s) earlier in the path. For operator classes, both
name and associated index access method are considered.

All these functions require object OIDs to identify the object to be checked. If you want to test an
object by name, it is convenient to use the OID alias types (regclass, regtype, regprocedure, Or
regoperator), for example

SELECT pg_type_is_visible ('myschema.widget’ ::regtype);

Note that it would not make much sense to test an unqualified name in this way — if the name can be
recognized at all, it must be visible.

Table 9-43 lists functions that extract information from the system catalogs.

Table 9-43. System Catalog Information Functions

Name Return Type Description

format_type (type_oid, text get SQL name of a data type
typemod)

pg_get_constraintdef (constralinexsid) get definition of a constraint
pPg_get_constraintdef (constralihexsaid, get definition of a constraint
pretty_bool)

206

Chapter 9. Functions and Operators

Name Return Type Description
Pg_get_expr (expr_text, text decompile internal form of an
relation_oid) expression, assuming that any

Vars in it refer to the relation
indicated by the second

parameter
PY_get_expr (expr_text, text decompile internal form of an
relation_oid, pretty_bool) expression, assuming that any

Vars in it refer to the relation
indicated by the second

parameter
pg_get_indexdef (index_oid) text get CREATE INDEX command
for index
pg_get_indexdef (index_oid, text get CREATE INDEX command
column_no, pretty_bool) for index, or definition ofjust

one index column when
column_no iS not zero

pg_get_ruledef (rule_oid) text get CREATE RULE command for
rule
pg_get_ruledef (rule_oid, text get CREATE RULE command for
pretty_bool) rule
pPg_get_serial_sequence (table| hemée, get name of the sequence that a
column_name) serial or bigserial column
uses
pg_get_triggerdef(trigger ¢t get CREATE [CONSTRAINT]
TRIGGER command for trigger
pPg_get_userbyid (roleid) name get role name with given ID
pg_get_viewdef (view_name) text get underlying SELECT
command for view (deprecated)
pg_get_viewdef (view_name, text get underlying SELECT
pretty_bool) command for view (deprecated)
pg_get_viewdef (view_oid) text get underlying SELECT
command for view
pg_get_viewdef (view_oid, text get underlying SELECT
pretty_bool) command for view
pg_tablespace_databases (tablespaod aiid] get the set of database OIDs that

have objects in the tablespace

format_type returns the SQL name of a data type that is identified by its type OID and possibly a type
modifier. Pass NULL for the type modifier if no specific modifier is known.

pg_get_constraintdef,pg_get_indexdef, pg_get_ruledef, and pg_get_triggerdef, respec-
tively reconstruct the creating command for a constraint, index, rule, or trigger. (Note that this is a decom-
piled reconstruction, not the original text of the command.) pg_get_expr decompiles the internal form
of an individual expression, such as the default value for a column. It may be useful when examining the
contents of system catalogs. pg_get_viewdef reconstructs the SELECT query that defines a view. Most

207

Chapter 9. Functions and Operators

of these functions come in two variants, one of which can optionally “pretty-print” the result. The pretty-
printed format is more readable, but the default format is more likely to be interpreted the same way by
future versions of PostgreSQL; avoid using pretty-printed output for dump purposes. Passing false for
the pretty-print parameter yields the same result as the variant that does not have the parameter at all.

pg_get_serial_sequence returns the name of the sequence associated with a column, or NULL if no
sequence is associated with the column. The first input parameter is a table name with optional schema,
and the second parameter is a column name. Because the first parameter is potentially a schema and
table, it is not treated as a double-quoted identifier, meaning it is lowercased by default, while the second
parameter, being just a column name, is treated as double-quoted and has its case preserved. The function
returns a value suitably formatted for passing to the sequence functions (see Section 9.12). This association
can be modified or removed with ALTER SEQUENCE OWNED BY. (The function probably should have
been called pg_get_owned_sequence; its name reflects the fact that it’s typically used with serial or
bigserial columns.)

pg_get_userbyid extracts a role’s name given its OID.

pg_tablespace_databases allows a tablespace to be examined. It returns the set of OIDs of databases
that have objects stored in the tablespace. If this function returns any rows, the tablespace is not empty
and cannot be dropped. To display the specific objects populating the tablespace, you will need to connect
to the databases identified by pg_tablespace_databases and query their pg_class catalogs.

The functions shown in Table 9-44 extract comments previously stored with the COMMENT command.
A null value is returned if no comment could be found matching the specified parameters.

Table 9-44. Comment Information Functions

Name Return Type Description

col_description (table_oid, |text get comment for a table column

column_number)

obj_description (object_oid, |text get comment for a database

catalog_name) object

obj_description (object_oid) |text get comment for a database
object (deprecated)

shobj_description (object_oid,text get comment for a shared

catalog_name) database object

col_description returns the comment for a table column, which is specified by the OID of its table
and its column number. obj_description cannot be used for table columns since columns do not have
OIDs of their own.

The two-parameter form of obj_description returns the comment for a database
object specified by its OID and the name of the containing system catalog. For example,
obij_description (123456, 'pg_class’) would retrieve the comment for a table with OID 123456.
The one-parameter form of obj_description requires only the object OID. It is now deprecated
since there is no guarantee that OIDs are unique across different system catalogs; therefore, the wrong
comment could be returned.

shobj_descriptionisused justlike obj_description only thatitis used for retrieving comments on
shared objects. Some system catalogs are global to all databases within each cluster and their descriptions
are stored globally as well.

208

Chapter 9. Functions and Operators

9.20. System Administration Functions

Table 9-45 shows the functions available to query and alter run-time configuration parameters.

Table 9-45. Configuration Settings Functions

Name Return Type Description

text current value of setting

current_setting (setting_name|

set_config(setting_name, text set parameter and return new

new_value, is_local) value

The function current_setting yields the current value of the setting setting_name. It corresponds
to the SQL command SHOW. An example:

SELECT current_setting(’datestyle’);

current_setting

IS0, MDY
(1 row)

set_config sets the parameter setting_name to new_value. If is_local is true, the new value
will only apply to the current transaction. If you want the new value to apply for the current session, use
false instead. The function corresponds to the SQL command SET. An example:

SELECT set_config(’log_statement_stats’, ’'off’, false);

set_config

off
(1 row)

The functions shown in Table 9-46 send control signals to other server processes. Use of these functions
is restricted to superusers.

Table 9-46. Server Signalling Functions

Name Return Type Description
pg_cancel_backend (pid int) |boolean Cancel a backend’s current query
pg_reload_conf () boolean Cause server processes to reload
their configuration files
pg_rotate_logfile () boolean Rotate server’s log file

Each of these functions returns t rue if successful and false otherwise.

209

Chapter 9. Functions and Operators

pg_cancel_backend sends a query cancel (SIGINT) signal to a backend process identified by
process ID. The process ID of an active backend can be found from the procpid column in the
pg_stat_activity view, or by listing the postgres processes on the server with ps.

pg_reload_conf sends a SIGHUP signal to the server, causing the configuration files to be reloaded by
all server processes.

pg_rotate_logfile signals the log-file manager to switch to a new output file immediately. This works
only when redirect_stderr is used for logging, since otherwise there is no log-file manager subpro-
cess.

The functions shown in Table 9-47 assist in making on-line backups. Use of the first three functions is
restricted to superusers.

Table 9-47. Backup Control Functions

Name Return Type Description
pg_start_backup (label text Set up for performing on-line
text) backup
pg_stop_backup () text Finish performing on-line
backup
pg_switch_xlog () text Force switch to a new transaction
log file
pg_current_xlog_location() |text Get current transaction log write
location
text Get current transaction log insert
pg_current_xlog_insert_locatfon () location
text, integer Convert transaction log location
pg_xlogfile_name_offset (locaftion string to file name and decimal
text) byte offset within file
pg_xlogfile_name (location |text Convert transaction log location
text) string to file name

pg_start_backup accepts a single parameter which is an arbitrary user-defined label for the backup.
(Typically this would be the name under which the backup dump file will be stored.) The function writes
a backup label file into the database cluster’s data directory, and then returns the backup’s starting trans-
action log location as text. The user need not pay any attention to this result value, but it is provided in
case it is of use.

postgres=# select pg_start_backup(’label_goes_here’);
pg_start_backup

0/D4445B8
(1 row)

pg_stop_backup removes the label file created by pg_start_backup, and instead creates a backup his-
tory file in the transaction log archive area. The history file includes the label given to pg_start_backup,

210

Chapter 9. Functions and Operators

the starting and ending transaction log locations for the backup, and the starting and ending times of the
backup. The return value is the backup’s ending transaction log location (which again may be of little
interest). After noting the ending location, the current transaction log insertion point is automatically ad-
vanced to the next transaction log file, so that the ending transaction log file can be archived immediately
to complete the backup.

pg_switch_xlog moves to the next transaction log file, allowing the current file to be archived (assuming
you are using continuous archiving). The result is the ending transaction log location within the just-
completed transaction log file. If there has been no transaction log activity since the last transaction log
switch, pg_switch_xlog does nothing and returns the end location of the previous transaction log file.

pg_current_xlog_location displays the current transaction log write location in the same format
used by the above functions. Similarly pg_current_xlog_insert_location displays the current
transaction log insertion point. The insertion point is the “logical” end of transaction log at any instant,
while the write location is the end of what has actually been written out from the server’s internal buffers.
The write location is the end of what can be examined from outside the server, and is usually what you
want if you are interested in archiving partially-complete transaction log files. The insertion point is made
available primarily for server debugging purposes. These are both read-only operations and do not require
superuser permissions.

You can use pg_xlogfile_name_offset to extract the corresponding transaction log file name and
byte offset from the results of any of the above functions. For example:

postgres=# select * from pg_xlogfile_name_offset (pg_stop_backup());
file_name | file_offset

__________________________ o

00000001000000000000000D | 4039624

(1 row)

Similarly, pg_xlogfile_name extracts just the transaction log file name. When the given transction log
location is exactly at an transaction log file boundary, both these functions return the name of the preceding
transaction log file. This is usually the desired behavior for managing transaction log archiving behavior,
since the preceding file is the last one that currently needs to be archived.

For details about proper usage of these functions, see Section 23.3.

The functions shown in Table 9-48 calculate the actual disk space usage of database objects.

Table 9-48. Database Object Size Functions

Name Return Type Description
pg_column_size(any) int Number of bytes used to store a
particular value (possibly
compressed)
pg_database_size (0id) bigint Disk space used by the database
with the specified OID
pg_database_size (name) bigint Disk space used by the database
with the specified name
pg_relation_size (oid) bigint Disk space used by the table or
index with the specified OID

211

Chapter 9. Functions and Operators

Name Return Type Description

pg_relation_size (text) bigint Disk space used by the table or
index with the specified name.
The table name may be qualified
with a schema name

pg_size_pretty (bigint) text Converts a size in bytes into a
human-readable format with size
units

pg_tablespace_size (oid) bigint Disk Space used by the
tablespace with the specified
OID

pg_tablespace_size (name) bigint Disk Space used by the
tablespace with the specified
name

bigint Total disk space used by the
pg_total_relation_size (oid) table with the speciﬁed OID,
including indexes and toasted
data

bigint Total disk space used by the
pg_total_relation_size (text) table with the specified name,
including indexes and toasted
data. The table name may be
qualified with a schema name

pg_column_size shows the space used to store any individual data value.

pg_database_size and pg_tablespace_size accept the OID or name of a database or tablespace,
and return the total disk space used therein.

pg_relation_size accepts the OID or name of a table, index or toast table, and returns the size in
bytes.

pg_size_pretty can be used to format the result of one of the other functions in a human-readable way,
using kB, MB, GB or TB as appropriate.

pg_total_relation_size accepts the OID or name of a table or toast table, and returns the size in
bytes of the data and all associated indexes and toast tables.

The functions shown in Table 9-49 provide native file access to files on the machine hosting the server.
Only files within the database cluster directory and the 1og_directory may be accessed. Use a relative
path for files within the cluster directory, and a path matching the 1og_directory configuration setting
for log files. Use of these functions is restricted to superusers.

Table 9-49. Generic File Access Functions

Name Return Type Description

pg_ls_dir (dirname text) setof text List the contents of a directory

212

Chapter 9. Functions and Operators

Name Return Type Description

pg_read_file (filename text Return the contents of a text file
text, offset bigint, length

bigint)

pg_stat_file (filename record Return information about a file
text)

[T3EL) 2

pg_1ls_dir returns all the names in the specified directory, except the special entries “.” and “. .”.

pg_read_file returns part of a text file, starting at the given offset, returning at most length bytes
(less if the end of file is reached first). If of fset is negative, it is relative to the end of the file.

pg_stat_file returns a record containing the file size, last accessed time stamp, last modified time
stamp, last file status change time stamp (Unix platforms only), file creation time stamp (Windows only),
and a boolean indicating if it is a directory. Typical usages include:

SELECT » FROM pg_stat_file(’filename’);
SELECT (pg_stat_file(’filename’)) .modification;

The functions shown in Table 9-50 manage advisory locks. For details about proper usage of these func-
tions, see Section 12.3.4.

Table 9-50. Advisory Lock Functions

Name Return Type Description
pg_advisory_lock (key void Obtain exclusive advisory lock
bigint)
pg_advisory_lock (keyl int, |void Obtain exclusive advisory lock
key2 int)

void Obtain shared advisory lock
pg_advisory_lock_shared (key
bigint)

void Obtain shared advisory lock
pg_advisory_lock_shared (keyl
int, key2 int)
pg_try_advisory_lock (key boolean Obtain exclusive advisory lock if
bigint) available
pg_try_advisory_lock (keyl boolean Obtain exclusive advisory lock if
int, key2 int) available

boolean Obtain shared advisory lock if
pg_try_advisory_lock_shared (key available
bigint)

boolean Obtain shared advisory lock if
pg_try_advisory_lock_shared (keyl available

int, key2 int)

213

Chapter 9. Functions and Operators

Name Return Type Description
pg_advisory_unlock (key boolean Release an exclusive advisory
bigint) lock
pg_advisory_unlock (keyl boolean Release an exclusive advisory
int, key2 int) lock

boolean Release a shared advisory lock

pg_advisory_unlock_shared (kely
bigint)

boolean Release a shared advisory lock
pg_advisory_unlock_shared (keyl
int, key2 int)

pg_advisory_unlock_all () void Release all advisory locks held
by the current session

pg_advisory_lock locks an application-defined resource, which may be identified either by a single 64-
bit key value or two 32-bit key values (note that these two key spaces do not overlap). If another session
already holds a lock on the same resource, the function will wait until the resource becomes available.
The lock is exclusive. Multiple lock requests stack, so that if the same resource is locked three times it
must be also unlocked three times to be released for other sessions’ use.

pg_advisory_lock_shared works the same as pg_advisory_lock, except the lock can be shared
with other sessions requesting shared locks. Only would-be exclusive lockers are locked out.

pg_try_advisory_lock is similar to pg_advisory_lock, except the function will not wait for the
lock to become available. It will either obtain the lock immediately and return t rue, or return false if
the lock cannot be acquired now.

pg_try_advisory_lock_shared works the same as pg_try_advisory_lock, except it attempts to
acquire shared rather than exclusive lock.

pg_advisory_unlock will release a previously-acquired exclusive advisory lock. It will return t rue if
the lock is successfully released. If the lock was in fact not held, it will return false, and in addition, an
SQL warning will be raised by the server.

pg_advisory_unlock_shared works the same as pg_advisory_unlock, except to release a shared
advisory lock.

pg_advisory_unlock_all will release all advisory locks held by the current session. (This function is
implicitly invoked at session end, even if the client disconnects ungracefully.)

214

Chapter 10. Type Conversion

SQL statements can, intentionally or not, require mixing of different data types in the same expression.
PostgreSQL has extensive facilities for evaluating mixed-type expressions.

In many cases a user will not need to understand the details of the type conversion mechanism. However,
the implicit conversions done by PostgreSQL can affect the results of a query. When necessary, these
results can be tailored by using explicit type conversion.

This chapter introduces the PostgreSQL type conversion mechanisms and conventions. Refer to the rele-
vant sections in Chapter 8 and Chapter 9 for more information on specific data types and allowed functions
and operators.

10.1. Overview

SQL is a strongly typed language. That is, every data item has an associated data type which determines
its behavior and allowed usage. PostgreSQL has an extensible type system that is much more general
and flexible than other SQL implementations. Hence, most type conversion behavior in PostgreSQL is
governed by general rules rather than by ad hoc heuristics. This allows mixed-type expressions to be
meaningful even with user-defined types.

The PostgreSQL scanner/parser divides lexical elements into only five fundamental categories: integers,
non-integer numbers, strings, identifiers, and key words. Constants of most non-numeric types are first
classified as strings. The SQL language definition allows specifying type names with strings, and this
mechanism can be used in PostgreSQL to start the parser down the correct path. For example, the query

SELECT text ’Origin’ AS "label", point ’ (0,0)’ AS "value";

label | value

________ b
Origin | (0,0)

(1 row)

has two literal constants, of type text and point. If a type is not specified for a string literal, then the
placeholder type unknown is assigned initially, to be resolved in later stages as described below.

There are four fundamental SQL constructs requiring distinct type conversion rules in the PostgreSQL
parser:
Function calls

Much of the PostgreSQL type system is built around a rich set of functions. Functions can have one
or more arguments. Since PostgreSQL permits function overloading, the function name alone does
not uniquely identify the function to be called; the parser must select the right function based on the
data types of the supplied arguments.

Operators

PostgreSQL allows expressions with prefix and postfix unary (one-argument) operators, as well as
binary (two-argument) operators. Like functions, operators can be overloaded, and so the same prob-
lem of selecting the right operator exists.

215

Chapter 10. Type Conversion

Value Storage

SQL INSERT and UPDATE statements place the results of expressions into a table. The expressions
in the statement must be matched up with, and perhaps converted to, the types of the target columns.

UNION, CASE, and related constructs

Since all query results from a unionized SELECT statement must appear in a single set of columns,
the types of the results of each SELECT clause must be matched up and converted to a uniform set.
Similarly, the result expressions of a CASE construct must be converted to a common type so that the
CASE expression as a whole has a known output type. The same holds for ARRAY constructs, and for
the GREATEST and LEAST functions.

The system catalogs store information about which conversions, called casts, between data types are valid,
and how to perform those conversions. Additional casts can be added by the user with the CREATE CAST
command. (This is usually done in conjunction with defining new data types. The set of casts between the
built-in types has been carefully crafted and is best not altered.)

An additional heuristic is provided in the parser to allow better guesses at proper behavior for SQL stan-
dard types. There are several basic type categories defined: boolean, numeric, string, bitstring,
datetime, timespan, geometric, network, and user-defined. Each category, with the exception of
user-defined, has one or more preferred types which are preferentially selected when there is ambiguity.
In the user-defined category, each type is its own preferred type. Ambiguous expressions (those with mul-
tiple candidate parsing solutions) can therefore often be resolved when there are multiple possible built-in
types, but they will raise an error when there are multiple choices for user-defined types.

All type conversion rules are designed with several principles in mind:

« Implicit conversions should never have surprising or unpredictable outcomes.

« User-defined types, of which the parser has no a priori knowledge, should be “higher” in the type
hierarchy. In mixed-type expressions, native types shall always be converted to a user-defined type (of
course, only if conversion is necessary).

» User-defined types are not related. Currently, PostgreSQL does not have information available to it on
relationships between types, other than hardcoded heuristics for built-in types and implicit relationships
based on available functions and casts.

+ There should be no extra overhead from the parser or executor if a query does not need implicit type
conversion. That is, if a query is well formulated and the types already match up, then the query should
proceed without spending extra time in the parser and without introducing unnecessary implicit con-
version calls into the query.

Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines a new function with the correct argument types, the parser should use this new function and will
no longer do the implicit conversion using the old function.

216

Chapter 10. Type Conversion

10.2. Operators

The specific operator to be used in an operator invocation is determined by following the procedure below.
Note that this procedure is indirectly affected by the precedence of the involved operators. See Section
4.1.6 for more information.

Operator Type Resolution

1.

Select the operators to be considered from the pg_operator system catalog. If an unqualified opera-
tor name was used (the usual case), the operators considered are those of the right name and argument
count that are visible in the current search path (see Section 5.7.3). If a qualified operator name was
given, only operators in the specified schema are considered.

a. If the search path finds multiple operators of identical argument types, only the one ap-
pearing earliest in the path is considered. But operators of different argument types are
considered on an equal footing regardless of search path position.

Check for an operator accepting exactly the input argument types. If one exists (there can be only one
exact match in the set of operators considered), use it.

a. If one argument of a binary operator invocation is of the unknown type, then assume it is the
same type as the other argument for this check. Other cases involving unknown will never
find a match at this step.

Look for the best match.

a. Discard candidate operators for which the input types do not match and cannot be converted
(using an implicit conversion) to match. unknown literals are assumed to be convertible to
anything for this purpose. If only one candidate remains, use it; else continue to the next
step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candidates
if none have any exact matches. If only one candidate remains, use it; else continue to the
next step.

c. Run through all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments are unknown, check the type categories accepted at those argument
positions by the remaining candidates. At each position, select the string category if any
candidate accepts that category. (This bias towards string is appropriate since an unknown-
type literal does look like a string.) Otherwise, if all the remaining candidates accept the
same type category, select that category; otherwise fail because the correct choice cannot
be deduced without more clues. Now discard candidates that do not accept the selected
type category. Furthermore, if any candidate accepts a preferred type at a given argument
position, discard candidates that accept non-preferred types for that argument.

e. If only one candidate remains, use it. If no candidate or more than one candidate remains,
then fail.

217

Chapter 10. Type Conversion

Some examples follow.

Example 10-1. Exponentiation Operator Type Resolution

There is only one exponentiation operator defined in the catalog, and it takes arguments of type double
precision. The scanner assigns an initial type of integer to both arguments of this query expression:

SELECT 2 ~ 3 AS "exp";

(1 row)
So the parser does a type conversion on both operands and the query is equivalent to
SELECT CAST (2 AS double precision) »~ CAST (3 AS double precision) AS "exp";

Example 10-2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types as well as for working with complex extension
types. Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:

SELECT text ’"abc’ || ’'def’ AS "text and unknown";

text and unknown

abcdef
(1 row)

In this case the parser looks to see if there is an operator taking text for both arguments. Since there is,
it assumes that the second argument should be interpreted as of type text.

Here is a concatenation on unspecified types:

SELECT "abc’ || 'def’” AS "unspecified";

unspecified

abcdef
(1 row)

In this case there is no initial hint for which type to use, since no types are specified in the query. So, the
parser looks for all candidate operators and finds that there are candidates accepting both string-category
and bit-string-category inputs. Since string category is preferred when available, that category is selected,
and then the preferred type for strings, text, is used as the specific type to resolve the unknown literals
to.

218

Chapter 10. Type Conversion
Example 10-3. Absolute-Value and Negation Operator Type Resolution

The PostgreSQL operator catalog has several entries for the prefix operator @, all of which implement
absolute-value operations for various numeric data types. One of these entries is for type f1oat8, which
is the preferred type in the numeric category. Therefore, PostgreSQL will use that entry when faced with
a non-numeric input:

SELECT @ "-4.5" AS "abs";
abs

4.5
(1 row)
Here the system has performed an implicit conversion from text to £loat8 before applying the chosen

operator. We can verify that f1o0at8 and not some other type was used:
SELECT @ ’'-4.5e500’ AS "abs";

ERROR: "-4.5e500" is out of range for type double precision

On the other hand, the prefix operator ~ (bitwise negation) is defined only for integer data types, not for
float8. So, if we try a similar case with ~, we get:

SELECT ~ 20’ AS "negation";

ERROR: operator is not unique: ~ "unknown"
HINT: Could not choose a best candidate operator. You may need to add explicit
type casts.

This happens because the system can’t decide which of the several possible ~ operators should be pre-
ferred. We can help it out with an explicit cast:
SELECT ~ CAST("20’ AS int8) AS "negation";

negation

-21
(1 row)

10.3. Functions

The specific function to be used in a function invocation is determined according to the following steps.

Function Type Resolution

1. Select the functions to be considered from the pg_proc system catalog. If an unqualified function
name was used, the functions considered are those of the right name and argument count that are
visible in the current search path (see Section 5.7.3). If a qualified function name was given, only
functions in the specified schema are considered.

a. If the search path finds multiple functions of identical argument types, only the one ap-
pearing earliest in the path is considered. But functions of different argument types are
considered on an equal footing regardless of search path position.

219

Chapter 10. Type Conversion

2. Check for a function accepting exactly the input argument types. If one exists (there can be only one
exact match in the set of functions considered), use it. (Cases involving unknown will never find a
match at this step.)

3. Ifnoexact match is found, see whether the function call appears to be a trivial type conversion request.
This happens if the function call has just one argument and the function name is the same as the
(internal) name of some data type. Furthermore, the function argument must be either an unknown-
type literal or a type that is binary-compatible with the named data type. When these conditions are
met, the function argument is converted to the named data type without any actual function call.

4. Look for the best match.

a. Discard candidate functions for which the input types do not match and cannot be converted
(using an implicit conversion) to match. unknown literals are assumed to be convertible to
anything for this purpose. If only one candidate remains, use it; else continue to the next
step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candidates
if none have any exact matches. If only one candidate remains, use it; else continue to the
next step.

c. Run through all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments are unknown, check the type categories accepted at those argument
positions by the remaining candidates. At each position, select the string category if any
candidate accepts that category. (This bias towards string is appropriate since an unknown-
type literal does look like a string.) Otherwise, if all the remaining candidates accept the
same type category, select that category; otherwise fail because the correct choice cannot
be deduced without more clues. Now discard candidates that do not accept the selected
type category. Furthermore, if any candidate accepts a preferred type at a given argument
position, discard candidates that accept non-preferred types for that argument.

e. If only one candidate remains, use it. If no candidate or more than one candidate remains,
then fail.

Note that the “best match” rules are identical for operator and function type resolution. Some examples
follow.

Example 10-4. Rounding Function Argument Type Resolution

There is only one round function with two arguments. (The first is numeric, the second is integer.)
So the following query automatically converts the first argument of type integer to numeric:

SELECT round (4, 4);

220

Chapter 10. Type Conversion

That query is actually transformed by the parser to
SELECT round(CAST (4 AS numeric), 4);

Since numeric constants with decimal points are initially assigned the type numeric, the following query
will require no type conversion and may therefore be slightly more efficient:

SELECT round (4.0, 4);

Example 10-5. Substring Function Type Resolution

There are several substr functions, one of which takes types text and integer. If called with a string
constant of unspecified type, the system chooses the candidate function that accepts an argument of the
preferred category string (namely of type text).

SELECT substr (’71234’, 3);

substr

34
(1 row)

If the string is declared to be of type varchar, as might be the case if it comes from a table, then the
parser will try to convert it to become text:

SELECT substr(varchar 12347, 3);

substr

34
(1 row)
This is transformed by the parser to effectively become
SELECT substr (CAST (varchar ’1234’ AS text), 3);

Note: The parser learns from the pg_cast catalog that text and varchar are binary-compatible,
meaning that one can be passed to a function that accepts the other without doing any physical
conversion. Therefore, no explicit type conversion call is really inserted in this case.

And, if the function is called with an argument of type integer, the parser will try to convert that to
text:

SELECT substr (1234, 3);

substr

34
(1 row)
This actually executes as
SELECT substr (CAST (1234 AS text), 3);

221

Chapter 10. Type Conversion

This automatic transformation can succeed because there is an implicitly invocable cast from integer to
text.

10.4. Value Storage

Values to be inserted into a table are converted to the destination column’s data type according to the
following steps.

Value Storage Type Conversion

1. Check for an exact match with the target.

2. Otherwise, try to convert the expression to the target type. This will succeed if there is a registered
cast between the two types. If the expression is an unknown-type literal, the contents of the literal
string will be fed to the input conversion routine for the target type.

3. Check to see if there is a sizing cast for the target type. A sizing cast is a cast from that type to itself.
If one is found in the pg_cast catalog, apply it to the expression before storing into the destina-
tion column. The implementation function for such a cast always takes an extra parameter of type
integer, which receives the destination column’s declared length (actually, its atttypmod value;
the interpretation of atttypmod varies for different data types). The cast function is responsible for
applying any length-dependent semantics such as size checking or truncation.

Example 10-6. character Storage Type Conversion

For a target column declared as character (20) the following statement ensures that the stored value is
sized correctly:

CREATE TABLE vv (v character(20));
INSERT INTO vv SELECT ’abc’ || ’'def’;
SELECT v, length(v) FROM vv;

abcdef | 20
(1 row)

What has really happened here is that the two unknown literals are resolved to text by default, allowing
the | | operator to be resolved as text concatenation. Then the text result of the operator is converted to
bpchar (“blank-padded char”, the internal name of the character data type) to match the target column
type. (Since the types text and bpchar are binary-compatible, this conversion does not insert any real
function call.) Finally, the sizing function bpchar (bpchar, integer) is found in the system catalog
and applied to the operator’s result and the stored column length. This type-specific function performs the
required length check and addition of padding spaces.

222

Chapter 10. Type Conversion

10.5. uNION, cASE, and Related Constructs

SQL UNION constructs must match up possibly dissimilar types to become a single result set. The resolu-
tion algorithm is applied separately to each output column of a union query. The INTERSECT and EXCEPT
constructs resolve dissimilar types in the same way as UNION. The CASE, ARRAY, VALUES, GREATEST and
LEAST constructs use the identical algorithm to match up their component expressions and select a result
data type.

Type Resolution for UNION, CASE, and Related Constructs

1. If all inputs are of type unknown, resolve as type text (the preferred type of the string category).
Otherwise, ignore the unknown inputs while choosing the result type.

2. If the non-unknown inputs are not all of the same type category, fail.

3. Choose the first non-unknown input type which is a preferred type in that category or allows all the
non-unknown inputs to be implicitly converted to it.

4. Convert all inputs to the selected type.

Some examples follow.
Example 10-7. Type Resolution with Underspecified Types in a Union

SELECT text ’"a’ AS "text" UNION SELECT ’'b’;

(2 rows)
Here, the unknown-type literal ' b’ will be resolved as type text.

Example 10-8. Type Resolution in a Simple Union

SELECT 1.2 AS "numeric" UNION SELECT 1;

numeric

1.2
(2 rows)
The literal 1.2 is of type numeric, and the integer value 1 can be cast implicitly to numeric, so that
type is used.

223

Chapter 10. Type Conversion

Example 10-9. Type Resolution in a Transposed Union

SELECT 1 AS "real" UNION SELECT CAST(’2.2’ AS REAL);

2.2
(2 rows)
Here, since type real cannot be implicitly cast to integer, but integer can be implicitly cast to real,
the union result type is resolved as real.

224

Chapter 11. Indexes

Indexes are a common way to enhance database performance. An index allows the database server to find
and retrieve specific rows much faster than it could do without an index. But indexes also add overhead to
the database system as a whole, so they should be used sensibly.

11.1. Introduction

Suppose we have a table similar to this:

CREATE TABLE testl (
id integer,
content wvarchar

)i
and the application requires a lot of queries of the form

SELECT content FROM testl WHERE id = constant;

With no advance preparation, the system would have to scan the entire test 1 table, row by row, to find all
matching entries. If there are a lot of rows in test1 and only a few rows (perhaps only zero or one) that
would be returned by such a query, then this is clearly an inefficient method. But if the system has been
instructed to maintain an index on the id column, then it can use a more efficient method for locating
matching rows. For instance, it might only have to walk a few levels deep into a search tree.

A similar approach is used in most books of non-fiction: terms and concepts that are frequently looked up
by readers are collected in an alphabetic index at the end of the book. The interested reader can scan the
index relatively quickly and flip to the appropriate page(s), rather than having to read the entire book to
find the material of interest. Just as it is the task of the author to anticipate the items that the readers are
likely to look up, it is the task of the database programmer to foresee which indexes will be of advantage.

The following command would be used to create the index on the id column, as discussed:
CREATE INDEX testl_id_index ON testl (id);

The name test1_id_index can be chosen freely, but you should pick something that enables you to
remember later what the index was for.

To remove an index, use the DROP INDEX command. Indexes can be added to and removed from tables at
any time.

Once an index is created, no further intervention is required: the system will update the index when the
table is modified, and it will use the index in queries when it thinks this would be more efficient than a
sequential table scan. But you may have to run the ANALYZE command regularly to update statistics to
allow the query planner to make educated decisions. See Chapter 13 for information about how to find out
whether an index is used and when and why the planner may choose not to use an index.

Indexes can also benefit UPDATE and DELETE commands with search conditions. Indexes can moreover be
used in join searches. Thus, an index defined on a column that is part of a join condition can significantly
speed up queries with joins.

225

Chapter 11. Indexes

Creating an index on a large table can take a long time. By default, PostgreSQL allows reads (selects) to
occur on the table in parallel with creation of an index, but writes (inserts, updates, deletes) are blocked
until the index build is finished. In production environments this is often unacceptable. It is possible to
allow writes to occur in parallel with index creation, but there are several caveats to be aware of — for
more information see Building Indexes Concurrently.

After an index is created, the system has to keep it synchronized with the table. This adds overhead to data
manipulation operations. Therefore indexes that are seldom or never used in queries should be removed.

11.2. Index Types

PostgreSQL provides several index types: B-tree, Hash, GiST and GIN. Each index type uses a different
algorithm that is best suited to different types of queries. By default, the CREATE INDEX command will
create a B-tree index, which fits the most common situations.

B-trees can handle equality and range queries on data that can be sorted into some ordering. In particular,
the PostgreSQL query planner will consider using a B-tree index whenever an indexed column is involved
in a comparison using one of these operators:

Constructs equivalent to combinations of these operators, such as BETWEEN and IN, can also be imple-
mented with a B-tree index search. (But note that IS NULL is not equivalent to = and is not indexable.)

The optimizer can also use a B-tree index for queries involving the pattern matching operators LIKE
and ~ if the pattern is a constant and is anchored to the beginning of the string — for example, col
LIKE ’foo%’ orcol ~ ’'~foo’,butnotcol LIKE ’%bar’.However, if your server does not use the
C locale you will need to create the index with a special operator class to support indexing of pattern-
matching queries. See Section 11.8 below. It is also possible to use B-tree indexes for ILIKE and ~«, but
only if the pattern starts with non-alphabetic characters, i.e. characters that are not affected by upper/lower
case conversion.

Hash indexes can only handle simple equality comparisons. The query planner will consider using a
hash index whenever an indexed column is involved in a comparison using the = operator. The following
command is used to create a hash index:

CREATE INDEX name ON table USING hash (column);

Note: Testing has shown PostgreSQL'’s hash indexes to perform no better than B-tree indexes, and
the index size and build time for hash indexes is much worse. Furthermore, hash index operations
are not presently WAL-logged, so hash indexes may need to be rebuilt with RE1NDEX after a database
crash. For these reasons, hash index use is presently discouraged.

226

Chapter 11. Indexes

GiST indexes are not a single kind of index, but rather an infrastructure within which many different
indexing strategies can be implemented. Accordingly, the particular operators with which a GiST index
can be used vary depending on the indexing strategy (the operator class). As an example, the standard
distribution of PostgreSQL includes GiST operator classes for several two-dimensional geometric data
types, which support indexed queries using these operators:

<<
&<
&>
>>
<<
&<
| &>
[>>
@>
<@

&&

(See Section 9.10 for the meaning of these operators.) Many other GiST operator classes are available in
the cont rib collection or as separate projects. For more information see Chapter 50.

GIN indexes are inverted indexes which can handle values that contain more than one key, arrays for
example. Like GiST, GIN can support many different user-defined indexing strategies and the particular
operators with which a GIN index can be used vary depending on the indexing strategy. As an example,
the standard distribution of PostgreSQL includes GIN operator classes for one-dimensional arrays, which
support indexed queries using these operators:

<@
@>

&&

(See Section 9.14 for the meaning of these operators.) Other GIN operator classes are available in the
contrib tsearch2 and intarray modules. For more information see Chapter 51.

11.3. Multicolumn Indexes

An index can be defined on more than one column of a table. For example, if you have a table of this
form:

CREATE TABLE test2 (
major int,
minor int,
name varchar

)

(say, you keep your /dev directory in a database...) and you frequently make queries like

227

Chapter 11. Indexes

SELECT name FROM test2 WHERE major = constant AND minor = constant;
then it may be appropriate to define an index on the columns ma jor and minor together, e.g.,

CREATE INDEX test2_mm_idx ON test2 (major, minor);

Currently, only the B-tree and GiST index types support multicolumn indexes. Up to 32 columns may be
specified. (This limit can be altered when building PostgreSQL; see the file pg_config_manual.h.)

A multicolumn B-tree index can be used with query conditions that involve any subset of the index’s
columns, but the index is most efficient when there are constraints on the leading (leftmost) columns.
The exact rule is that equality constraints on leading columns, plus any inequality constraints on the first
column that does not have an equality constraint, will be used to limit the portion of the index that is
scanned. Constraints on columns to the right of these columns are checked in the index, so they save visits
to the table proper, but they do not reduce the portion of the index that has to be scanned. For example,
given an index on (a, b, c) and a query condition WHERE a = 5 AND b >= 42 AND c < 77,the
index would have to be scanned from the first entry with a = 5 and b = 42 up through the last entry with a
= 5. Index entries with ¢ >= 77 would be skipped, but they’d still have to be scanned through. This index
could in principle be used for queries that have constraints on b and/or ¢ with no constraint on a — but
the entire index would have to be scanned, so in most cases the planner would prefer a sequential table
scan over using the index.

A multicolumn GiST index can be used with query conditions that involve any subset of the index’s
columns. Conditions on additional columns restrict the entries returned by the index, but the condition on
the first column is the most important one for determining how much of the index needs to be scanned. A
GiST index will be relatively ineffective if its first column has only a few distinct values, even if there are
many distinct values in additional columns.

Of course, each column must be used with operators appropriate to the index type; clauses that involve
other operators will not be considered.

Multicolumn indexes should be used sparingly. In most situations, an index on a single column is sufficient
and saves space and time. Indexes with more than three columns are unlikely to be helpful unless the usage
of the table is extremely stylized. See also Section 11.4 for some discussion of the merits of different index
setups.

11.4. Combining Multiple Indexes

A single index scan can only use query clauses that use the index’s columns with operators of its operator
class and are joined with AND. For example, given an index on (a, b) a query condition like WHERE a
= 5 AND b = 6 could use the index, but a query like WHERE a = 5 OR b = 6 could not directly use
the index.

Beginning in release 8.1, PostgreSQL has the ability to combine multiple indexes (including multiple
uses of the same index) to handle cases that cannot be implemented by single index scans. The system
can form AND and OR conditions across several index scans. For example, a query like WHERE x = 42
OR x = 47 OR x = 53 OR x = 99 could be broken down into four separate scans of an index on x,
each scan using one of the query clauses. The results of these scans are then ORed together to produce the
result. Another example is that if we have separate indexes on x and y, one possible implementation of

228

Chapter 11. Indexes

a query like WHERE x = 5 AND y = 6 is to use each index with the appropriate query clause and then
AND together the index results to identify the result rows.

To combine multiple indexes, the system scans each needed index and prepares a bitmap in memory
giving the locations of table rows that are reported as matching that index’s conditions. The bitmaps are
then ANDed and ORed together as needed by the query. Finally, the actual table rows are visited and
returned. The table rows are visited in physical order, because that is how the bitmap is laid out; this
means that any ordering of the original indexes is lost, and so a separate sort step will be needed if the
query has an ORDER BY clause. For this reason, and because each additional index scan adds extra time,
the planner will sometimes choose to use a simple index scan even though additional indexes are available
that could have been used as well.

In all but the simplest applications, there are various combinations of indexes that may be useful, and
the database developer must make trade-offs to decide which indexes to provide. Sometimes multicolumn
indexes are best, but sometimes it’s better to create separate indexes and rely on the index-combination
feature. For example, if your workload includes a mix of queries that sometimes involve only column
%, sometimes only column y, and sometimes both columns, you might choose to create two separate
indexes on x and y, relying on index combination to process the queries that use both columns. You
could also create a multicolumn index on (x, y). This index would typically be more efficient than
index combination for queries involving both columns, but as discussed in Section 11.3, it would be
almost useless for queries involving only vy, so it could not be the only index. A combination of the
multicolumn index and a separate index on y would serve reasonably well. For queries involving only
%, the multicolumn index could be used, though it would be larger and hence slower than an index on x
alone. The last alternative is to create all three indexes, but this is probably only reasonable if the table is
searched much more often than it is updated and all three types of query are common. If one of the types
of query is much less common than the others, you’d probably settle for creating just the two indexes that
best match the common types.

11.5. Unique Indexes

Indexes may also be used to enforce uniqueness of a column’s value, or the uniqueness of the combined
values of more than one column.

CREATE UNIQUE INDEX name ON table (column [, ...]);

Currently, only B-tree indexes can be declared unique.

When an index is declared unique, multiple table rows with equal indexed values will not be allowed.
Null values are not considered equal. A multicolumn unique index will only reject cases where all of the
indexed columns are equal in two rows.

PostgreSQL automatically creates a unique index when a unique constraint or a primary key is defined for
a table. The index covers the columns that make up the primary key or unique columns (a multicolumn
index, if appropriate), and is the mechanism that enforces the constraint.

Note: The preferred way to add a unique constraint to a table is ALTER TABLE ... ADD CONSTRAINT.
The use of indexes to enforce unique constraints could be considered an implementation detail that
should not be accessed directly. One should, however, be aware that there’s no need to manually
create indexes on unique columns; doing so would just duplicate the automatically-created index.

229

Chapter 11. Indexes

11.6. Indexes on Expressions

An index column need not be just a column of the underlying table, but can be a function or scalar
expression computed from one or more columns of the table. This feature is useful to obtain fast access
to tables based on the results of computations.

For example, a common way to do case-insensitive comparisons is to use the lower function:

SELECT = FROM testl WHERE lower (coll) = ’'value’;

This query can use an index, if one has been defined on the result of the 1ower (coll) operation:

CREATE INDEX testl_lower_coll_idx ON testl (lower(coll));

If we were to declare this index UNIQUE, it would prevent creation of rows whose col1 values differ only
in case, as well as rows whose col1 values are actually identical. Thus, indexes on expressions can be
used to enforce constraints that are not definable as simple unique constraints.

As another example, if one often does queries like this:
SELECT x= FROM people WHERE (first_name || ’* ' || last_name) = ’John Smith’;
then it might be worth creating an index like this:

CREATE INDEX people_names ON people ((first_name || ' ’ || last_name));

The syntax of the CREATE INDExX command normally requires writing parentheses around index expres-
sions, as shown in the second example. The parentheses may be omitted when the expression is just a
function call, as in the first example.

Index expressions are relatively expensive to maintain, because the derived expression(s) must be com-
puted for each row upon insertion and whenever it is updated. However, the index expressions are not
recomputed during an indexed search, since they are already stored in the index. In both examples above,
the system sees the query as just WHERE indexedcolumn = ’constant’ and so the speed of the search
is equivalent to any other simple index query. Thus, indexes on expressions are useful when retrieval speed
is more important than insertion and update speed.

11.7. Partial Indexes

A partial index is an index built over a subset of a table; the subset is defined by a conditional expression
(called the predicate of the partial index). The index contains entries for only those table rows that satisfy
the predicate. Partial indexes are a specialized feature, but there are several situations in which they are
useful.

230

Chapter 11. Indexes

One major reason for using a partial index is to avoid indexing common values. Since a query searching
for a common value (one that accounts for more than a few percent of all the table rows) will not use
the index anyway, there is no point in keeping those rows in the index at all. This reduces the size of the
index, which will speed up queries that do use the index. It will also speed up many table update operations
because the index does not need to be updated in all cases. Example 11-1 shows a possible application of
this idea.

Example 11-1. Setting up a Partial Index to Exclude Common Values

Suppose you are storing web server access logs in a database. Most accesses originate from the IP address
range of your organization but some are from elsewhere (say, employees on dial-up connections). If your
searches by IP are primarily for outside accesses, you probably do not need to index the IP range that
corresponds to your organization’s subnet.

Assume a table like this:

CREATE TABLE access_log (
url varchar,
client_ip inet,

)i
To create a partial index that suits our example, use a command such as this:

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet ’192.168.100.0" AND client_ip < inet 7192.168.100.255");

A typical query that can use this index would be:

SELECT % FROM access_log WHERE url = ’/index.html’ AND client_ip = inet ’212.78.10.32";

A query that cannot use this index is:
SELECT x= FROM access_log WHERE client_ip = inet 7192.168.100.23’;

Observe that this kind of partial index requires that the common values be predetermined. If the distribu-
tion of values is inherent (due to the nature of the application) and static (not changing over time), this is
not difficult, but if the common values are merely due to the coincidental data load this can require a lot
of maintenance work to change the index definition from time to time.

Another possible use for a partial index is to exclude values from the index that the typical query workload
is not interested in; this is shown in Example 11-2. This results in the same advantages as listed above,
but it prevents the “uninteresting” values from being accessed via that index at all, even if an index scan
might be profitable in that case. Obviously, setting up partial indexes for this kind of scenario will require
a lot of care and experimentation.

Example 11-2. Setting up a Partial Index to Exclude Uninteresting Values

If you have a table that contains both billed and unbilled orders, where the unbilled orders take up a small
fraction of the total table and yet those are the most-accessed rows, you can improve performance by
creating an index on just the unbilled rows. The command to create the index would look like this:

CREATE INDEX orders_unbilled_index ON orders (order_nr)
WHERE billed is not true;

231

Chapter 11. Indexes

A possible query to use this index would be

SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

However, the index can also be used in queries that do not involve order_nr at all, e.g.,
SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

This is not as efficient as a partial index on the amount column would be, since the system has to scan the
entire index. Yet, if there are relatively few unbilled orders, using this partial index just to find the unbilled
orders could be a win.

Note that this query cannot use this index:

SELECT * FROM orders WHERE order_nr = 3501;
The order 3501 may be among the billed or among the unbilled orders.

Example 11-2 also illustrates that the indexed column and the column used in the predicate do not need
to match. PostgreSQL supports partial indexes with arbitrary predicates, so long as only columns of the
table being indexed are involved. However, keep in mind that the predicate must match the conditions
used in the queries that are supposed to benefit from the index. To be precise, a partial index can be
used in a query only if the system can recognize that the WHERE condition of the query mathematically
implies the predicate of the index. PostgreSQL does not have a sophisticated theorem prover that can
recognize mathematically equivalent expressions that are written in different forms. (Not only is such
a general theorem prover extremely difficult to create, it would probably be too slow to be of any real
use.) The system can recognize simple inequality implications, for example “x < 1” implies “x < 27;
otherwise the predicate condition must exactly match part of the query’s WHERE condition or the index
will not be recognized to be usable. Matching takes place at query planning time, not at run time. As a
result, parameterized query clauses will not work with a partial index. For example a prepared query with
a parameter might specify “x < ?”” which will never imply “x < 2” for all possible values of the parameter.

A third possible use for partial indexes does not require the index to be used in queries at all. The idea
here is to create a unique index over a subset of a table, as in Example 11-3. This enforces uniqueness
among the rows that satisfy the index predicate, without constraining those that do not.

Example 11-3. Setting up a Partial Unique Index

Suppose that we have a table describing test outcomes. We wish to ensure that there is only one “success-
ful” entry for a given subject and target combination, but there might be any number of “unsuccessful”
entries. Here is one way to do it:

CREATE TABLE tests (
subject text,
target text,
success boolean,

)

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)

WHERE success;
This is a particularly efficient way of doing it when there are few successful tests and many unsuccessful
ones.

232

Chapter 11. Indexes

Finally, a partial index can also be used to override the system’s query plan choices. It may occur that data
sets with peculiar distributions will cause the system to use an index when it really should not. In that case
the index can be set up so that it is not available for the offending query. Normally, PostgreSQL makes
reasonable choices about index usage (e.g., it avoids them when retrieving common values, so the earlier
example really only saves index size, it is not required to avoid index usage), and grossly incorrect plan
choices are cause for a bug report.

Keep in mind that setting up a partial index indicates that you know at least as much as the query planner
knows, in particular you know when an index might be profitable. Forming this knowledge requires ex-
perience and understanding of how indexes in PostgreSQL work. In most cases, the advantage of a partial
index over a regular index will not be much.

More information about partial indexes can be found in The case for partial indexes , Partial indexing in
POSTGRES: research project, and Generalized Partial Indexes (cached version) .

11.8. Operator Classes

An index definition may specify an operator class for each column of an index.
CREATE INDEX name ON table (column opclass [, ...]);

The operator class identifies the operators to be used by the index for that column. For example, a B-
tree index on the type int4 would use the int4_ops class; this operator class includes comparison
functions for values of type int4. In practice the default operator class for the column’s data type is
usually sufficient. The main point of having operator classes is that for some data types, there could be
more than one meaningful index behavior. For example, we might want to sort a complex-number data
type either by absolute value or by real part. We could do this by defining two operator classes for the data
type and then selecting the proper class when making an index.

There are also some built-in operator classes besides the default ones:

« The operator classes text_pattern_ops, varchar_pattern_ops, bpchar_pattern_ops, and
name_pattern_ops support B-tree indexes on the types text, varchar, char, and name, respec-
tively. The difference from the default operator classes is that the values are compared strictly character
by character rather than according to the locale-specific collation rules. This makes these operator
classes suitable for use by queries involving pattern matching expressions (LIKE or POSIX regular
expressions) when the server does not use the standard “C” locale. As an example, you might index a
varchar column like this:

CREATE INDEX test_index ON test_table (col varchar_pattern_ops);

Note that you should also create an index with the default operator class if you want queries involving
ordinary comparisons to use an index. Such queries cannot use the xxx_pattern_ops operator classes.
It is allowed to create multiple indexes on the same column with different operator classes. If you do
use the C locale, you do not need the xxx_pattern_ops operator classes, because an index with the
default operator class is usable for pattern-matching queries in the C locale.

The following query shows all defined operator classes:

SELECT am.amname AS index_method,

233

Chapter 11. Indexes

opc.opcname AS opclass_name
FROM pg_am am, pg_opclass opc
WHERE opc.opcamid = am.oid
ORDER BY index_method, opclass_name;

It can be extended to show all the operators included in each class:

SELECT am.amname AS index_method,
opc.opcname AS opclass_name,
opr.oid::regoperator AS opclass_operator
FROM pg_am am, pg_opclass opc, pg_amop amop, pg_operator opr
WHERE opc.opcamid = am.oid AND
amop.amopclaid = opc.oid AND
amop.amopopr = opr.oid
ORDER BY index_method, opclass_name, opclass_operator;

11.9. Examining Index Usage

Although indexes in PostgreSQL do not need maintenance and tuning, it is still important to check which
indexes are actually used by the real-life query workload. Examining index usage for an individual query
is done with the EXPLAIN command; its application for this purpose is illustrated in Section 13.1. It is
also possible to gather overall statistics about index usage in a running server, as described in Section
25.2.

It is difficult to formulate a general procedure for determining which indexes to set up. There are a number
of typical cases that have been shown in the examples throughout the previous sections. A good deal of
experimentation will be necessary in most cases. The rest of this section gives some tips for that.

+ Always run ANALYZE first. This command collects statistics about the distribution of the values in the
table. This information is required to guess the number of rows returned by a query, which is needed by
the planner to assign realistic costs to each possible query plan. In absence of any real statistics, some
default values are assumed, which are almost certain to be inaccurate. Examining an application’s index
usage without having run ANALYZE is therefore a lost cause.

» Use real data for experimentation. Using test data for setting up indexes will tell you what indexes you
need for the test data, but that is all.

It is especially fatal to use very small test data sets. While selecting 1000 out of 100000 rows could be
a candidate for an index, selecting 1 out of 100 rows will hardly be, because the 100 rows will probably
fit within a single disk page, and there is no plan that can beat sequentially fetching 1 disk page.

Also be careful when making up test data, which is often unavoidable when the application is not in
production use yet. Values that are very similar, completely random, or inserted in sorted order will
skew the statistics away from the distribution that real data would have.

» When indexes are not used, it can be useful for testing to force their use. There are run-time parameters
that can turn off various plan types (see Section 17.6.1). For instance, turning off sequential scans
(enable_segscan) and nested-loop joins (enable_nestloop), which are the most basic plans, will
force the system to use a different plan. If the system still chooses a sequential scan or nested-loop join

234

Chapter 11. Indexes

then there is probably a more fundamental reason why the index is not used; for example, the query
condition does not match the index. (What kind of query can use what kind of index is explained in the
previous sections.)

If forcing index usage does use the index, then there are two possibilities: Either the system is right
and using the index is indeed not appropriate, or the cost estimates of the query plans are not reflecting
reality. So you should time your query with and without indexes. The EXPLAIN ANALYZE command
can be useful here.

If it turns out that the cost estimates are wrong, there are, again, two possibilities. The total cost is
computed from the per-row costs of each plan node times the selectivity estimate of the plan node.
The costs estimated for the plan nodes can be adjusted via run-time parameters (described in Section
17.6.2). An inaccurate selectivity estimate is due to insufficient statistics. It may be possible to improve
this by tuning the statistics-gathering parameters (see ALTER TABLE).

If you do not succeed in adjusting the costs to be more appropriate, then you may have to resort to
forcing index usage explicitly. You may also want to contact the PostgreSQL developers to examine the
issue.

235

Chapter 12. Concurrency Control

This chapter describes the behavior of the PostgreSQL database system when two or more sessions try
to access the same data at the same time. The goals in that situation are to allow efficient access for
all sessions while maintaining strict data integrity. Every developer of database applications should be
familiar with the topics covered in this chapter.

12.1. Introduction

PostgreSQL provides a rich set of tools for developers to manage concurrent access to data. Internally, data
consistency is maintained by using a multiversion model (Multiversion Concurrency Control, MVCC).
This means that while querying a database each transaction sees a snapshot of data (a database version) as
it was some time ago, regardless of the current state of the underlying data. This protects the transaction
from viewing inconsistent data that could be caused by (other) concurrent transaction updates on the
same data rows, providing transaction isolation for each database session. MVCC, by eschewing explicit
locking methodologies of traditional database systems, minimizes lock contention in order to allow for
reasonable performance in multiuser environments.

The main advantage to using the MVCC model of concurrency control rather than locking is that in
MVCC locks acquired for querying (reading) data do not conflict with locks acquired for writing data,
and so reading never blocks writing and writing never blocks reading.

Table- and row-level locking facilities are also available in PostgreSQL for applications that cannot adapt
easily to MVCC behavior. However, proper use of MVCC will generally provide better performance than
locks. In addition, application-defined advisory locks provide a mechanism for acquiring locks that are
not tied to a single transaction.

12.2. Transaction Isolation

The SQL standard defines four levels of transaction isolation in terms of three phenomena that must be
prevented between concurrent transactions. These undesirable phenomena are:

dirty read
A transaction reads data written by a concurrent uncommitted transaction.
nonrepeatable read

A transaction re-reads data it has previously read and finds that data has been modified by another
transaction (that committed since the initial read).

phantom read

A transaction re-executes a query returning a set of rows that satisfy a search condition and finds that
the set of rows satisfying the condition has changed due to another recently-committed transaction.

The four transaction isolation levels and the corresponding behaviors are described in Table 12-1.

236

Table 12-1. SQL Transaction Isolation Levels

Chapter 12. Concurrency Control

Isolation Level Dirty Read Nonrepeatable Phantom Read
Read

Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

In PostgreSQL, you can request any of the four standard transaction isolation levels. But internally, there
are only two distinct isolation levels, which correspond to the levels Read Committed and Serializable.
When you select the level Read Uncommitted you really get Read Committed, and when you select
Repeatable Read you really get Serializable, so the actual isolation level may be stricter than what you
select. This is permitted by the SQL standard: the four isolation levels only define which phenomena
must not happen, they do not define which phenomena must happen. The reason that PostgreSQL only
provides two isolation levels is that this is the only sensible way to map the standard isolation levels to the
multiversion concurrency control architecture. The behavior of the available isolation levels is detailed in
the following subsections.

To set the transaction isolation level of a transaction, use the command SET TRANSACTION.

12.2.1. Read Committed Isolation Level

Read Committed is the default isolation level in PostgreSQL. When a transaction runs on this isolation
level, a SELECT query sees only data committed before the query began; it never sees either uncommitted
data or changes committed during query execution by concurrent transactions. (However, the SELECT
does see the effects of previous updates executed within its own transaction, even though they are not yet
committed.) In effect, a SELECT query sees a snapshot of the database as of the instant that that query
begins to run. Notice that two successive SELECT commands can see different data, even though they are
within a single transaction, if other transactions commit changes during execution of the first SELECT.

UPDATE, DELETE, SELECT FOR UPDATE, and SELECT FOR SHARE commands behave the same as
SELECT in terms of searching for target rows: they will only find target rows that were committed as of
the command start time. However, such a target row may have already been updated (or deleted or
locked) by another concurrent transaction by the time it is found. In this case, the would-be updater will
wait for the first updating transaction to commit or roll back (if it is still in progress). If the first updater
rolls back, then its effects are negated and the second updater can proceed with updating the originally
found row. If the first updater commits, the second updater will ignore the row if the first updater deleted
it, otherwise it will attempt to apply its operation to the updated version of the row. The search condition
of the command (the WHERE clause) is re-evaluated to see if the updated version of the row still matches
the search condition. If so, the second updater proceeds with its operation, starting from the updated
version of the row. (In the case of SELECT FOR UPDATE and SELECT FOR SHARE, that means it is the
updated version of the row that is locked and returned to the client.)

Because of the above rule, it is possible for an updating command to see an inconsistent snapshot: it
can see the effects of concurrent updating commands that affected the same rows it is trying to update,
but it does not see effects of those commands on other rows in the database. This behavior makes Read
Committed mode unsuitable for commands that involve complex search conditions. However, it is just
right for simpler cases. For example, consider updating bank balances with transactions like

237

Chapter 12. Concurrency Control

BEGIN;

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 12345;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum 7534;
COMMIT;

If two such transactions concurrently try to change the balance of account 12345, we clearly want the
second transaction to start from the updated version of the account’s row. Because each command is
affecting only a predetermined row, letting it see the updated version of the row does not create any
troublesome inconsistency.

Since in Read Committed mode each new command starts with a new snapshot that includes all transac-
tions committed up to that instant, subsequent commands in the same transaction will see the effects of
the committed concurrent transaction in any case. The point at issue here is whether or not within a single
command we see an absolutely consistent view of the database.

The partial transaction isolation provided by Read Committed mode is adequate for many applications,
and this mode is fast and simple to use. However, for applications that do complex queries and updates, it
may be necessary to guarantee a more rigorously consistent view of the database than the Read Committed
mode provides.

12.2.2. Serializable Isolation Level

The level Serializable provides the strictest transaction isolation. This level emulates serial transaction ex-
ecution, as if transactions had been executed one after another, serially, rather than concurrently. However,
applications using this level must be prepared to retry transactions due to serialization failures.

When a transaction is on the serializable level, a SELECT query sees only data committed before the trans-
action began; it never sees either uncommitted data or changes committed during transaction execution by
concurrent transactions. (However, the SELECT does see the effects of previous updates executed within
its own transaction, even though they are not yet committed.) This is different from Read Committed in
that the SELECT sees a snapshot as of the start of the transaction, not as of the start of the current query
within the transaction. Thus, successive SELECT commands within a single transaction always see the
same data.

UPDATE, DELETE, SELECT FOR UPDATE, and SELECT FOR SHARE commands behave the same as
SELECT in terms of searching for target rows: they will only find target rows that were committed as of
the transaction start time. However, such a target row may have already been updated (or deleted or
locked) by another concurrent transaction by the time it is found. In this case, the serializable transaction
will wait for the first updating transaction to commit or roll back (if it is still in progress). If the first
updater rolls back, then its effects are negated and the serializable transaction can proceed with updating
the originally found row. But if the first updater commits (and actually updated or deleted the row, not
just locked it) then the serializable transaction will be rolled back with the message

ERROR: could not serialize access due to concurrent update

because a serializable transaction cannot modify or lock rows changed by other transactions after the
serializable transaction began.

When the application receives this error message, it should abort the current transaction and then retry
the whole transaction from the beginning. The second time through, the transaction sees the previously-

238

Chapter 12. Concurrency Control

committed change as part of its initial view of the database, so there is no logical conflict in using the new
version of the row as the starting point for the new transaction’s update.

Note that only updating transactions may need to be retried; read-only transactions will never have serial-
ization conflicts.

The Serializable mode provides a rigorous guarantee that each transaction sees a wholly consistent view
of the database. However, the application has to be prepared to retry transactions when concurrent up-
dates make it impossible to sustain the illusion of serial execution. Since the cost of redoing complex
transactions may be significant, this mode is recommended only when updating transactions contain logic
sufficiently complex that they may give wrong answers in Read Committed mode. Most commonly, Se-
rializable mode is necessary when a transaction executes several successive commands that must see
identical views of the database.

12.2.2.1. Serializable Isolation versus True Serializability

The intuitive meaning (and mathematical definition) of “serializable” execution is that any two success-
fully committed concurrent transactions will appear to have executed strictly serially, one after the other
— although which one appeared to occur first may not be predictable in advance. It is important to realize
that forbidding the undesirable behaviors listed in Table 12-1 is not sufficient to guarantee true serializ-
ability, and in fact PostgreSQL’s Serializable mode does not guarantee serializable execution in this sense.
As an example, consider a table mytab, initially containing

class | value
_______ b
1] 10

1] 20

2 100

2 200

Suppose that serializable transaction A computes

SELECT SUM(value) FROM mytab WHERE class = 1;

and then inserts the result (30) as the value in a new row with class = 2. Concurrently, serializable
transaction B computes

SELECT SUM(value) FROM mytab WHERE class = 2;

and obtains the result 300, which it inserts in a new row with class = 1. Then both transactions commit.
None of the listed undesirable behaviors have occurred, yet we have a result that could not have occurred
in either order serially. If A had executed before B, B would have computed the sum 330, not 300, and
similarly the other order would have resulted in a different sum computed by A.

To guarantee true mathematical serializability, it is necessary for a database system to enforce predicate
locking, which means that a transaction cannot insert or modify a row that would have matched the WHERE
condition of a query in another concurrent transaction. For example, once transaction A has executed the
query SELECT ... WHERE class = 1, a predicate-locking system would forbid transaction B from
inserting any new row with class 1 until A has committed. ' Such a locking system is complex to im-

1. Essentially, a predicate-locking system prevents phantom reads by restricting what is written, whereas MVCC prevents them
by restricting what is read.

239

Chapter 12. Concurrency Control

plement and extremely expensive in execution, since every session must be aware of the details of every
query executed by every concurrent transaction. And this large expense is mostly wasted, since in prac-
tice most applications do not do the sorts of things that could result in problems. (Certainly the example
above is rather contrived and unlikely to represent real software.) For these reasons, PostgreSQL does not
implement predicate locking.

In those cases where the possibility of nonserializable execution is a real hazard, problems can be pre-
vented by appropriate use of explicit locking. Further discussion appears in the following sections.

12.3. Explicit Locking

PostgreSQL provides various lock modes to control concurrent access to data in tables. These modes can
be used for application-controlled locking in situations where MVCC does not give the desired behav-
ior. Also, most PostgreSQL commands automatically acquire locks of appropriate modes to ensure that
referenced tables are not dropped or modified in incompatible ways while the command executes. (For
example, ALTER TABLE cannot safely be executed concurrently with other operations on the same table,
so it obtains an exclusive lock on the table to enforce that.)

To examine a list of the currently outstanding locks in a database server, use the pg_locks system view.
For more information on monitoring the status of the lock manager subsystem, refer to Chapter 25.

12.3.1. Table-Level Locks

The list below shows the available lock modes and the contexts in which they are used automatically by
PostgreSQL. You can also acquire any of these locks explicitly with the command LOCK. Remember
that all of these lock modes are table-level locks, even if the name contains the word “row’’; the names
of the lock modes are historical. To some extent the names reflect the typical usage of each lock mode
— but the semantics are all the same. The only real difference between one lock mode and another is
the set of lock modes with which each conflicts. Two transactions cannot hold locks of conflicting modes
on the same table at the same time. (However, a transaction never conflicts with itself. For example, it
may acquire ACCESS EXCLUSIVE lock and later acquire ACCESS SHARE lock on the same table.) Non-
conflicting lock modes may be held concurrently by many transactions. Notice in particular that some
lock modes are self-conflicting (for example, an ACCESS EXCLUSIVE lock cannot be held by more than
one transaction at a time) while others are not self-conflicting (for example, an ACCESS SHARE lock can
be held by multiple transactions).

Table-level lock modes
ACCESS SHARE
Conflicts with the ACCESS EXCLUSIVE lock mode only.

The SELECT command acquires a lock of this mode on referenced tables. In general, any query that
only reads a table and does not modify it will acquire this lock mode.

ROW SHARE

Conflicts with the EXCLUSIVE and ACCESS EXCLUSIVE lock modes.

240

Chapter 12. Concurrency Control

The SELECT FOR UPDATE and SELECT FOR SHARE commands acquire a lock of this mode on the
target table(s) (in addition to ACCESS SHARE locks on any other tables that are referenced but not
selected FOR UPDATE/FOR SHARE).

ROW EXCLUSIVE

Conflicts with the SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock
modes.

The commands UPDATE, DELETE, and INSERT acquire this lock mode on the target table (in addition
to ACCESS SHARE locks on any other referenced tables). In general, this lock mode will be acquired
by any command that modifies the data in a table.

SHARE UPDATE EXCLUSIVE

Conflicts with the SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE,
and ACCESS EXCLUSIVE lock modes. This mode protects a table against concurrent schema
changes and VACUUM runs.

Acquired by VACUUM (without FULL), ANALYZE, and CREATE INDEX CONCURRENTLY.
SHARE

Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode protects a table against concurrent
data changes.

Acquired by CREATE INDEX (without CONCURRENTLY).
SHARE ROW EXCLUSIVE

Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW
EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes.

This lock mode is not automatically acquired by any PostgreSQL command.
EXCLUSIVE

Conflicts with the ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE
ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode allows only
concurrent ACCESS SHARE locks, i.e., only reads from the table can proceed in parallel with a
transaction holding this lock mode.

This lock mode is not automatically acquired on user tables by any PostgreSQL command. However
it is acquired on certain system catalogs in some operations.

ACCESS EXCLUSIVE

Conflicts with locks of all modes (ACCESS SHARE, ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE
EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE). This mode
guarantees that the holder is the only transaction accessing the table in any way.

Acquired by the ALTER TABLE, DROP TABLE, TRUNCATE, REINDEX, CLUSTER, and VACUUM FULL
commands. This is also the default lock mode for LOCK TABLE statements that do not specify a mode
explicitly.

Tip: Only an access ExcLUsIVE lock blocks a seLECT (without FOR UPDATE/SHARE) statement.

241

Chapter 12. Concurrency Control

Once acquired, a lock is normally held till end of transaction. But if a lock is acquired after establishing
a savepoint, the lock is released immediately if the savepoint is rolled back to. This is consistent with
the principle that ROLLBACK cancels all effects of the commands since the savepoint. The same holds for
locks acquired within a PL/pgSQL exception block: an error escape from the block releases locks acquired
within it.

12.3.2. Row-Level Locks

In addition to table-level locks, there are row-level locks, which can be exclusive or shared locks. An
exclusive row-level lock on a specific row is automatically acquired when the row is updated or deleted.
The lock is held until the transaction commits or rolls back, in just the same way as for table-level locks.
Row-level locks do not affect data querying; they block writers to the same row only.

To acquire an exclusive row-level lock on a row without actually modifying the row, select the row with
SELECT FOR UPDATE. Note that once the row-level lock is acquired, the transaction may update the row
multiple times without fear of conflicts.

To acquire a shared row-level lock on a row, select the row with SELECT FOR SHARE. A shared lock does
not prevent other transactions from acquiring the same shared lock. However, no transaction is allowed to
update, delete, or exclusively lock a row on which any other transaction holds a shared lock. Any attempt
to do so will block until the shared lock(s) have been released.

PostgreSQL doesn’t remember any information about modified rows in memory, so it has no limit to the
number of rows locked at one time. However, locking a row may cause a disk write; thus, for example,
SELECT FOR UPDATE will modify selected rows to mark them locked, and so will result in disk writes.

In addition to table and row locks, page-level share/exclusive locks are used to control read/write access
to table pages in the shared buffer pool. These locks are released immediately after a row is fetched or
updated. Application developers normally need not be concerned with page-level locks, but we mention
them for completeness.

12.3.3. Deadlocks

The use of explicit locking can increase the likelihood of deadlocks, wherein two (or more) transactions
each hold locks that the other wants. For example, if transaction 1 acquires an exclusive lock on table A
and then tries to acquire an exclusive lock on table B, while transaction 2 has already exclusive-locked
table B and now wants an exclusive lock on table A, then neither one can proceed. PostgreSQL automati-
cally detects deadlock situations and resolves them by aborting one of the transactions involved, allowing
the other(s) to complete. (Exactly which transaction will be aborted is difficult to predict and should not
be relied on.)

Note that deadlocks can also occur as the result of row-level locks (and thus, they can occur even if explicit
locking is not used). Consider the case in which there are two concurrent transactions modifying a table.
The first transaction executes:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 11111;

This acquires a row-level lock on the row with the specified account number. Then, the second transaction
executes:

242

Chapter 12. Concurrency Control

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 22222;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 11111;

The first UPDATE statement successfully acquires a row-level lock on the specified row, so it succeeds in
updating that row. However, the second UPDATE statement finds that the row it is attempting to update has
already been locked, so it waits for the transaction that acquired the lock to complete. Transaction two is
now waiting on transaction one to complete before it continues execution. Now, transaction one executes:

UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 22222;

Transaction one attempts to acquire a row-level lock on the specified row, but it cannot: transaction two
already holds such a lock. So it waits for transaction two to complete. Thus, transaction one is blocked
on transaction two, and transaction two is blocked on transaction one: a deadlock condition. PostgreSQL
will detect this situation and abort one of the transactions.

The best defense against deadlocks is generally to avoid them by being certain that all applications using a
database acquire locks on multiple objects in a consistent order. In the example above, if both transactions
had updated the rows in the same order, no deadlock would have occurred. One should also ensure that the
first lock acquired on an object in a transaction is the highest mode that will be needed for that object. If it
is not feasible to verify this in advance, then deadlocks may be handled on-the-fly by retrying transactions
that are aborted due to deadlock.

So long as no deadlock situation is detected, a transaction seeking either a table-level or row-level lock
will wait indefinitely for conflicting locks to be released. This means it is a bad idea for applications to
hold transactions open for long periods of time (e.g., while waiting for user input).

12.3.4. Advisory Locks

PostgreSQL provides a means for creating locks that have application-defined meanings. These are called
advisory locks, because the system does not enforce their use — it is up to the application to use them
correctly. Advisory locks can be useful for locking strategies that are an awkward fit for the MVCC model.
Once acquired, an advisory lock is held until explicitly released or the session ends. Unlike standard
locks, advisory locks do not honor transaction semantics: a lock acquired during a transaction that is later
rolled back will still be held following the rollback, and likewise an unlock is effective even if the calling
transaction fails later. The same lock can be acquired multiple times by its owning process: for each lock
request there must be a corresponding unlock request before the lock is actually released. (If a session
already holds a given lock, additional requests will always succeed, even if other sessions are awaiting the
lock.) Like all locks in PostgreSQL, a complete list of advisory locks currently held by any session can
be found in the pg_locks system view.

Adpvisory locks are allocated out of a shared memory pool whose size is defined by the configuration vari-
ables max_locks_per_transaction and max_connections. Care must be taken not to exhaust this memory
or the server will not be able to grant any locks at all. This imposes an upper limit on the number of
advisory locks grantable by the server, typically in the tens to hundreds of thousands depending on how
the server is configured.

A common use of advisory locks is to emulate pessimistic locking strategies typical of so called “flat file”
data management systems. While a flag stored in a table could be used for the same purpose, advisory
locks are faster, avoid MVCC bloat, and are automatically cleaned up by the server at the end of the
session. In certain cases using this method, especially in queries involving explicit ordering and LIMIT

243

Chapter 12. Concurrency Control

clauses, care must be taken to control the locks acquired because of the order in which SQL expressions
are evaluated. For example:

SELECT pg_advisory_lock (id) FROM foo WHERE id = 12345; -- ok
SELECT pg_advisory_lock(id) FROM foo WHERE id > 12345 LIMIT 100; -- danger!
SELECT pg_advisory_lock (g.id) FROM

(
SELECT id FROM foo WHERE id > 12345 LIMIT 100;
) q; —— ok

In the above queries, the second form is dangerous because the LIMIT is not guaranteed to be applied
before the locking function is executed. This might cause some locks to be acquired that the application
was not expecting, and hence would fail to release (until it ends the session). From the point of view of
the application, such locks would be dangling, although still viewable in pg_locks.

The functions provided to manipulate advisory locks are described in Table 9-50.

12.4. Data Consistency Checks at the Application Level

Because readers in PostgreSQL do not lock data, regardless of transaction isolation level, data read by
one transaction can be overwritten by another concurrent transaction. In other words, if a row is returned
by SELECT it doesn’t mean that the row is still current at the instant it is returned (i.e., sometime after the
current query began). The row might have been modified or deleted by an already-committed transaction
that committed after this one started. Even if the row is still valid “now”, it could be changed or deleted
before the current transaction does a commit or rollback.

Another way to think about it is that each transaction sees a snapshot of the database contents, and con-
currently executing transactions may very well see different snapshots. So the whole concept of “now”
is somewhat ill-defined anyway. This is not normally a big problem if the client applications are iso-
lated from each other, but if the clients can communicate via channels outside the database then serious
confusion may ensue.

To ensure the current validity of a row and protect it against concurrent updates one must use SELECT
FOR UPDATE, SELECT FOR SHARE, or an appropriate LOCK TABLE statement. (SELECT FOR UPDATE
or SELECT FOR SHARE locks just the returned rows against concurrent updates, while LOCK TABLE locks
the whole table.) This should be taken into account when porting applications to PostgreSQL from other
environments.

Global validity checks require extra thought under MVCC. For example, a banking application might wish
to check that the sum of all credits in one table equals the sum of debits in another table, when both tables
are being actively updated. Comparing the results of two successive SELECT sum(...) commands will
not work reliably under Read Committed mode, since the second query will likely include the results of
transactions not counted by the first. Doing the two sums in a single serializable transaction will give an
accurate picture of the effects of transactions that committed before the serializable transaction started
— but one might legitimately wonder whether the answer is still relevant by the time it is delivered.
If the serializable transaction itself applied some changes before trying to make the consistency check,
the usefulness of the check becomes even more debatable, since now it includes some but not all post-
transaction-start changes. In such cases a careful person might wish to lock all tables needed for the check,

244

Chapter 12. Concurrency Control

in order to get an indisputable picture of current reality. A SHARE mode (or higher) lock guarantees that
there are no uncommitted changes in the locked table, other than those of the current transaction.

Note also that if one is relying on explicit locking to prevent concurrent changes, one should use Read
Committed mode, or in Serializable mode be careful to obtain the lock(s) before performing queries. A
lock obtained by a serializable transaction guarantees that no other transactions modifying the table are
still running, but if the snapshot seen by the transaction predates obtaining the lock, it may predate some
now-committed changes in the table. A serializable transaction’s snapshot is actually frozen at the start of
its first query or data-modification command (SELECT, INSERT, UPDATE, or DELETE), so it’s possible to
obtain locks explicitly before the snapshot is frozen.

12.5. Locking and Indexes

Though PostgreSQL provides nonblocking read/write access to table data, nonblocking read/write access
is not currently offered for every index access method implemented in PostgreSQL. The various index
types are handled as follows:

B-tree and GiST indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released imme-
diately after each index row is fetched or inserted. These index types provide the highest concurrency
without deadlock conditions.

Hash indexes

Share/exclusive hash-bucket-level locks are used for read/write access. Locks are released after the
whole bucket is processed. Bucket-level locks provide better concurrency than index-level ones, but
deadlock is possible since the locks are held longer than one index operation.

GIN indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released im-
mediately after each index row is fetched or inserted. But note that a GIN-indexed value insertion
usually produces several index key insertions per row, so GIN may do substantial work for a single
value’s insertion.

Currently, B-tree indexes offer the best performance for concurrent applications; since they also have more
features than hash indexes, they are the recommended index type for concurrent applications that need to
index scalar data. When dealing with non-scalar data, B-trees are not useful, and GiST or GIN indexes
should be used instead.

245

Chapter 13. Performance Tips

Query performance can be affected by many things. Some of these can be manipulated by the user, while
others are fundamental to the underlying design of the system. This chapter provides some hints about
understanding and tuning PostgreSQL performance.

13.1. Using EXPLAIN

PostgreSQL devises a query plan for each query it is given. Choosing the right plan to match the query
structure and the properties of the data is absolutely critical for good performance, so the system includes
a complex planner that tries to select good plans. You can use the EXPLAIN command to see what query
plan the planner creates for any query. Plan-reading is an art that deserves an extensive tutorial, which this
is not; but here is some basic information.

The structure of a query plan is a tree of plan nodes. Nodes at the bottom level are table scan nodes: they
return raw rows from a table. There are different types of scan nodes for different table access methods:
sequential scans, index scans, and bitmap index scans. If the query requires joining, aggregation, sorting,
or other operations on the raw rows, then there will be additional nodes “atop” the scan nodes to perform
these operations. Again, there is usually more than one possible way to do these operations, so different
node types can appear here too. The output of EXPLAIN has one line for each node in the plan tree,
showing the basic node type plus the cost estimates that the planner made for the execution of that plan
node. The first line (topmost node) has the estimated total execution cost for the plan; it is this number
that the planner seeks to minimize.

Here is a trivial example, just to show what the output looks like. '

EXPLAIN SELECT % FROM tenkl;

QUERY PLAN

Seqg Scan on tenkl (cost=0.00..458.00 rows=10000 width=244)

The numbers that are quoted by EXPLAIN are:

 Estimated start-up cost (Time expended before output scan can start, e.g., time to do the sorting in a
sort node.)

 Estimated total cost (If all rows were to be retrieved, which they may not be: for example, a query with
a LIMIT clause will stop short of paying the total cost of the Limit plan node’s input node.)

- Estimated number of rows output by this plan node (Again, only if executed to completion.)

» Estimated average width (in bytes) of rows output by this plan node

1. Examples in this section are drawn from the regression test database after doing a VACUUM ANALYZE, using 8.2 development
sources. You should be able to get similar results if you try the examples yourself, but your estimated costs and row counts will
probably vary slightly because ANALYZE’s statistics are random samples rather than being exact.

246

Chapter 13. Performance Tips

The costs are measured in arbitrary units determined by the planner’s cost parameters (see Section 17.6.2).
Traditional practice is to measure the costs in units of disk page fetches; that is, seq_page_cost is conven-
tionally set to 1.0 and the other cost parameters are set relative to that. The examples in this section are
run with the default cost parameters.

It’s important to note that the cost of an upper-level node includes the cost of all its child nodes. It’s also
important to realize that the cost only reflects things that the planner cares about. In particular, the cost
does not consider the time spent transmitting result rows to the client, which could be an important factor
in the true elapsed time; but the planner ignores it because it cannot change it by altering the plan. (Every
correct plan will output the same row set, we trust.)

Rows output is a little tricky because it is not the number of rows processed or scanned by the plan node.
It is usually less, reflecting the estimated selectivity of any WHERE-clause conditions that are being applied
at the node. Ideally the top-level rows estimate will approximate the number of rows actually returned,
updated, or deleted by the query.

Returning to our example:

EXPLAIN SELECT % FROM tenkl;

QUERY PLAN

Seq Scan on tenkl (cost=0.00..458.00 rows=10000 width=244)

This is about as straightforward as it gets. If you do
SELECT relpages, reltuples FROM pg_class WHERE relname = 'tenkl’;

you will find out that tenk 1 has 358 disk pages and 10000 rows. So the cost is estimated at 358 page reads,
costing seq_page_cost apiece (1.0 by default), plus 10000 * cpu_tuple_cost which is 0.01 by default.

Now let’s modify the query to add a WHERE condition:

EXPLAIN SELECT * FROM tenkl WHERE uniquel < 7000;

QUERY PLAN

Seqg Scan on tenkl (cost=0.00..483.00 rows=7033 width=244)
Filter: (uniquel < 7000)

Notice that the EXPLAIN output shows the WHERE clause being applied as a “filter” condition; this means
that the plan node checks the condition for each row it scans, and outputs only the ones that pass the
condition. The estimate of output rows has gone down because of the WHERE clause. However, the scan
will still have to visit all 10000 rows, so the cost hasn’t decreased; in fact it has gone up a bit to reflect the
extra CPU time spent checking the WHERE condition.

The actual number of rows this query would select is 7000, but the rows estimate is only approximate.
If you try to duplicate this experiment, you will probably get a slightly different estimate; moreover, it
will change after each ANALYZE command, because the statistics produced by ANALYZE are taken from a
randomized sample of the table.

Now, let’s make the condition more restrictive:

247

Chapter 13. Performance Tips
EXPLAIN SELECT % FROM tenkl WHERE uniquel < 100;

QUERY PLAN

Bitmap Heap Scan on tenkl (cost=2.37..232.35 rows=106 width=244)
Recheck Cond: (uniquel < 100)
-> Bitmap Index Scan on tenkl_uniquel (cost=0.00..2.37 rows=106 width=0)
Index Cond: (uniquel < 100)

Here the planner has decided to use a two-step plan: the bottom plan node visits an index to find the
locations of rows matching the index condition, and then the upper plan node actually fetches those rows
from the table itself. Fetching the rows separately is much more expensive than sequentially reading them,
but because not all the pages of the table have to be visited, this is still cheaper than a sequential scan.
(The reason for using two levels of plan is that the upper plan node sorts the row locations identified by
the index into physical order before reading them, so as to minimize the costs of the separate fetches. The
“bitmap” mentioned in the node names is the mechanism that does the sorting.)

If the wHERE condition is selective enough, the planner may switch to a “simple” index scan plan:

EXPLAIN SELECT % FROM tenkl WHERE uniquel < 3;

QUERY PLAN

Index Scan using tenkl_uniquel on tenkl (cost=0.00..10.00 rows=2 width=244)
Index Cond: (uniquel < 3)

In this case the table rows are fetched in index order, which makes them even more expensive to read, but
there are so few that the extra cost of sorting the row locations is not worth it. You’ll most often see this
plan type for queries that fetch just a single row, and for queries that request an ORDER BY condition that
matches the index order.

Add another condition to the WHERE clause:

EXPLAIN SELECT % FROM tenkl WHERE uniquel < 3 AND stringul = ’xxx’;

QUERY PLAN

Index Scan using tenkl_uniquel on tenkl (cost=0.00..10.01 rows=1 width=244)
Index Cond: (uniquel < 3)
Filter: (stringul = ’xxx’::name)

The added condition stringul = ’xxx’ reduces the output-rows estimate, but not the cost because we
still have to visit the same set of rows. Notice that the stringul clause cannot be applied as an index
condition (since this index is only on the uniquel column). Instead it is applied as a filter on the rows
retrieved by the index. Thus the cost has actually gone up a little bit to reflect this extra checking.

If there are indexes on several columns used in WHERE, the planner might choose to use an AND or OR
combination of the indexes:

EXPLAIN SELECT x FROM tenkl WHERE uniquel < 100 AND unique2 > 9000;

QUERY PLAN

248

Chapter 13. Performance Tips

Bitmap Heap Scan on tenkl (cost=11.27..49.11 rows=11 width=244)
Recheck Cond: ((uniquel < 100) AND (unique2 > 9000))
-> BitmapAnd (cost=11.27..11.27 rows=11 width=0)

-> Bitmap Index Scan on tenkl_uniquel (cost=0.00..2.37 rows=106 width=0)

Index Cond: (uniquel < 100)

-> Bitmap Index Scan on tenkl_unique2 (cost=0.00..8.65 rows=1042 width=0)

Index Cond: (unique2 > 9000)

But this requires visiting both indexes, so it’s not necessarily a win compared to using just one index
and treating the other condition as a filter. If you vary the ranges involved you’ll see the plan change
accordingly.

Let’s try joining two tables, using the columns we have been discussing:

EXPLAIN SELECT » FROM tenkl tl, tenk2 t2 WHERE tl.uniquel < 100 AND tl.unique2

QUERY PLAN

Nested Loop (cost=2.37..553.11 rows=106 width=488)
-> Bitmap Heap Scan on tenkl tl (cost=2.37..232.35 rows=106 width=244)
Recheck Cond: (uniquel < 100)

t2.unique?

-> Bitmap Index Scan on tenkl_uniquel (cost=0.00..2.37 rows=106 width=0)

Index Cond: (uniquel < 100)

-> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.00..3.01 rows=1 width=244)

Index Cond: ("outer".unique2 = t2.unique2)

In this nested-loop join, the outer scan is the same bitmap index scan we saw earlier, and so its cost and
row count are the same because we are applying the WHERE clause uniquel < 100 at that node. The
tl.unique2 = t2.unique?2 clause is not relevant yet, so it doesn’t affect row count of the outer scan.
For the inner scan, the unique2 value of the current outer-scan row is plugged into the inner index scan
to produce an index condition like t2.unique2 = constant. So we get the same inner-scan plan and
costs that we’d get from, say, EXPLAIN SELECT * FROM tenk2 WHERE unique2 = 42.The costs of
the loop node are then set on the basis of the cost of the outer scan, plus one repetition of the inner scan
for each outer row (106 * 3.01, here), plus a little CPU time for join processing.

In this example the join’s output row count is the same as the product of the two scans’ row counts, but
that’s not true in general, because in general you can have WHERE clauses that mention both tables and
so can only be applied at the join point, not to either input scan. For example, if we added WHERE

AND tl.hundred < t2.hundred, that would decrease the output row count of the join node, but not
change either input scan.

One way to look at variant plans is to force the planner to disregard whatever strategy it thought was the
winner, using the enable/disable flags described in Section 17.6.1. (This is a crude tool, but useful. See
also Section 13.3.)

SET enable_nestloop = off;
EXPLAIN SELECT % FROM tenkl tl, tenk2 t2 WHERE tl.uniquel < 100 AND tl.unique2

QUERY PLAN

Hash Join (cost=232.61..741.67 rows=106 width=488)
Hash Cond: ("outer".unique2 = "inner".unique2)

249

t2.unique?

Chapter 13. Performance Tips

-> Seq Scan on tenk2 t2 (cost=0.00..458.00 rows=10000 width=244)
-> Hash (cost=232.35..232.35 rows=106 width=244)
-> Bitmap Heap Scan on tenkl tl (cost=2.37..232.35 rows=106 width=244)
Recheck Cond: (uniquel < 100)
-> Bitmap Index Scan on tenkl_uniquel (cost=0.00..2.37 rows=106 width=0)
Index Cond: (uniquel < 100)

This plan proposes to extract the 100 interesting rows of tenkl using that same old index scan, stash
them into an in-memory hash table, and then do a sequential scan of tenk2, probing into the hash table
for possible matches of t1.unique2 = t2.unique2 at each tenk2 row. The cost to read tenkl and
set up the hash table is entirely start-up cost for the hash join, since we won’t get any rows out until we
can start reading tenk2. The total time estimate for the join also includes a hefty charge for the CPU time
to probe the hash table 10000 times. Note, however, that we are not charging 10000 times 232.35; the
hash table setup is only done once in this plan type.

It is possible to check on the accuracy of the planner’s estimated costs by using EXPLAIN ANALYZE. This
command actually executes the query, and then displays the true run time accumulated within each plan
node along with the same estimated costs that a plain ExPLAIN shows. For example, we might get a result
like this:

EXPLAIN ANALYZE SELECT * FROM tenkl tl, tenk2 t2 WHERE tl.uniquel < 100 AND tl.unique2 = t2

QUERY PLAN

Nested Loop (cost=2.37..553.11 rows=106 width=488) (actual time=1.392..12.700 rows=100 1lo
-> Bitmap Heap Scan on tenkl tl (cost=2.37..232.35 rows=106 width=244) (actual time=0.
Recheck Cond: (uniquel < 100)
-> Bitmap Index Scan on tenkl_uniquel (cost=0.00..2.37 rows=106 width=0) (actual
Index Cond: (uniquel < 100)
-> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.00..3.01 rows=1 width=244) (actu
Index Cond: ("outer".unique2 = t2.unique2)
Total runtime: 14.452 ms

Note that the “actual time” values are in milliseconds of real time, whereas the “cost” estimates are
expressed in arbitrary units; so they are unlikely to match up. The thing to pay attention to is whether the
ratios of actual time and estimated costs are consistent.

In some query plans, it is possible for a subplan node to be executed more than once. For example, the
inner index scan is executed once per outer row in the above nested-loop plan. In such cases, the “loops”
value reports the total number of executions of the node, and the actual time and rows values shown are
averages per-execution. This is done to make the numbers comparable with the way that the cost estimates
are shown. Multiply by the “loops” value to get the total time actually spent in the node.

The Total runtime shown by EXPLAIN ANALYZE includes executor start-up and shut-down time, as
well as time spent processing the result rows. It does not include parsing, rewriting, or planning time. For
a SELECT query, the total run time will normally be just a little larger than the total time reported for the
top-level plan node. For INSERT, UPDATE, and DELETE commands, the total run time may be considerably
larger, because it includes the time spent processing the result rows. In these commands, the time for the
top plan node essentially is the time spent computing the new rows and/or locating the old ones, but it
doesn’t include the time spent applying the changes. Time spent firing triggers, if any, is also outside the
top plan node, and is shown separately for each trigger.

250

Chapter 13. Performance Tips

It is worth noting that EXPLAIN results should not be extrapolated to situations other than the one you are
actually testing; for example, results on a toy-sized table can’t be assumed to apply to large tables. The
planner’s cost estimates are not linear and so it may well choose a different plan for a larger or smaller
table. An extreme example is that on a table that only occupies one disk page, you’ll nearly always get a
sequential scan plan whether indexes are available or not. The planner realizes that it’s going to take one
disk page read to process the table in any case, so there’s no value in expending additional page reads to
look at an index.

13.2. Statistics Used by the Planner

As we saw in the previous section, the query planner needs to estimate the number of rows retrieved by
a query in order to make good choices of query plans. This section provides a quick look at the statistics
that the system uses for these estimates.

One component of the statistics is the total number of entries in each table and index, as well as the number
of disk blocks occupied by each table and index. This information is kept in the table pg_class, in the
columns reltuples and relpages. We can look at it with queries similar to this one:

SELECT relname, relkind, reltuples, relpages FROM pg_class WHERE relname LIKE ’tenkl%’;

relname | relkind | reltuples | relpages
—————————————————————— Bt it
tenkl | r | 10000 | 358
tenkl_ hundred | 1 | 10000 | 30
tenkl_thous_tenthous | i | 10000 | 30
tenkl_uniquel |1 | 10000 | 30
tenkl_unique?2 | i | 10000 | 30

(5 rows)

Here we can see that tenk1 contains 10000 rows, as do its indexes, but the indexes are (unsurprisingly)
much smaller than the table.

For efficiency reasons, reltuples and relpages are not updated on-the-fly, and so they usually contain
somewhat out-of-date values. They are updated by vacuuM, ANALYZE, and a few DDL commands such
as CREATE INDEX. A stand-alone ANALYZE, that is one not part of VACUUM, generates an approximate
reltuples value since it does not read every row of the table. The planner will scale the values it finds
in pg_class to match the current physical table size, thus obtaining a closer approximation.

Most queries retrieve only a fraction of the rows in a table, due to having WHERE clauses that restrict the
rows to be examined. The planner thus needs to make an estimate of the selectivity of WHERE clauses, that
is, the fraction of rows that match each condition in the WHERE clause. The information used for this task
is stored in the pg_statistic system catalog. Entries in pg_statistic are updated by the ANALYZE
and VACUUM ANALYZE commands, and are always approximate even when freshly updated.

Rather than look at pg_statistic directly, it’s better to look at its view pg_stats when examining the
statistics manually. pg_stats is designed to be more easily readable. Furthermore, pg_stats is readable
by all, whereas pg_statistic is only readable by a superuser. (This prevents unprivileged users from
learning something about the contents of other people’s tables from the statistics. The pg_stats view is
restricted to show only rows about tables that the current user can read.) For example, we might do:

251

Chapter 13. Performance Tips

SELECT attname, n_distinct, most_common_vals FROM pg_stats WHERE tablename = ’'road’;

attname | n_distinct |

,,,,,,,,, e
name | -0.467008 | {"I- 580 Ramp", "I- 880

thepath | 20 | {"[(-122.089,37.71), (-122.0886,37.711)1"}

(2 rows)

pg_stats is described in detail in Section 43.46.

The amount of information stored in pg_statistic, in particular the maximum number of entries in
the most_common_vals and histogram bounds arrays for each column, can be set on a column-
by-column basis using the ALTER TABLE SET STATISTICS command, or globally by setting the de-
fault_statistics_target configuration variable. The default limit is presently 10 entries. Raising the limit
may allow more accurate planner estimates to be made, particularly for columns with irregular data distri-
butions, at the price of consuming more space in pg_statistic and slightly more time to compute the
estimates. Conversely, a lower limit may be appropriate for columns with simple data distributions.

13.3. Controlling the Planner with Explicit Join Clauses

It is possible to control the query planner to some extent by using the explicit JOIN syntax. To see why
this matters, we first need some background.

In a simple join query, such as
SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;

the planner is free to join the given tables in any order. For example, it could generate a query plan that
joins A to B, using the WHERE condition a.id = b.id, and then joins C to this joined table, using the
other WHERE condition. Or it could join B to C and then join A to that result. Or it could join A to C and
then join them with B — but that would be inefficient, since the full Cartesian product of A and C would
have to be formed, there being no applicable condition in the WHERE clause to allow optimization of the
join. (All joins in the PostgreSQL executor happen between two input tables, so it’s necessary to build up
the result in one or another of these fashions.) The important point is that these different join possibilities
give semantically equivalent results but may have hugely different execution costs. Therefore, the planner
will explore all of them to try to find the most efficient query plan.

When a query only involves two or three tables, there aren’t many join orders to worry about. But the
number of possible join orders grows exponentially as the number of tables expands. Beyond ten or so
input tables it’s no longer practical to do an exhaustive search of all the possibilities, and even for six
or seven tables planning may take an annoyingly long time. When there are too many input tables, the
PostgreSQL planner will switch from exhaustive search to a genetic probabilistic search through a limited
number of possibilities. (The switch-over threshold is set by the geqo_threshold run-time parameter.) The
genetic search takes less time, but it won’t necessarily find the best possible plan.

When the query involves outer joins, the planner has less freedom than it does for plain (inner) joins. For
example, consider

SELECT % FROM a LEFT JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

252

Chapter 13. Performance Tips

Although this query’s restrictions are superficially similar to the previous example, the semantics are
different because a row must be emitted for each row of A that has no matching row in the join of B and
C. Therefore the planner has no choice of join order here: it must join B to C and then join A to that result.
Accordingly, this query takes less time to plan than the previous query. In other cases, the planner may be
able to determine that more than one join order is safe. For example, given

SELECT * FROM a LEFT JOIN b ON (a.bid = b.id) LEFT JOIN c¢ ON (a.cid = c.id);

it is valid to join A to either B or C first. Currently, only FULL JOIN completely constrains the join order.
Most practical cases involving LEFT JOIN or RIGHT JOIN can be rearranged to some extent.

Explicit inner join syntax (INNER JOIN, CROSS JOIN, or unadorned JOIN) is semantically the same as
listing the input relations in FROM, so it does not constrain the join order.

Even though most kinds of JOIN don’t completely constrain the join order, it is possible to instruct the
PostgreSQL query planner to treat all JOIN clauses as constraining the join order anyway. For example,
these three queries are logically equivalent:

SELECT » FROM a, b, ¢ WHERE a.id = b.id AND b.ref = c.id;
SELECT % FROM a CROSS JOIN b CROSS JOIN c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

But if we tell the planner to honor the JOIN order, the second and third take less time to plan than the first.
This effect is not worth worrying about for only three tables, but it can be a lifesaver with many tables.

To force the planner to follow the join order laid out by explicit JOINS, set the join_collapse_limit run-time
parameter to 1. (Other possible values are discussed below.)

You do not need to constrain the join order completely in order to cut search time, because it’s OK to use
JOIN operators within items of a plain FROM list. For example, consider

SELECT » FROM a CROSS JOIN b, ¢, d, e WHERE ...;

With join_collapse_limit = 1, this forces the planner to join A to B before joining them to other
tables, but doesn’t constrain its choices otherwise. In this example, the number of possible join orders is
reduced by a factor of 5.

Constraining the planner’s search in this way is a useful technique both for reducing planning time and
for directing the planner to a good query plan. If the planner chooses a bad join order by default, you can
force it to choose a better order via JOIN syntax — assuming that you know of a better order, that is.
Experimentation is recommended.

A closely related issue that affects planning time is collapsing of subqueries into their parent query. For
example, consider

SELECT =«
FROM x, vy,

(SELECT = FROM a, b, c WHERE something) AS ss
WHERE somethingelse;

This situation might arise from use of a view that contains a join; the view’s SELECT rule will be inserted
in place of the view reference, yielding a query much like the above. Normally, the planner will try to
collapse the subquery into the parent, yielding

SELECT = FROM x, vy, a, b, c¢ WHERE something AND somethingelse;

253

Chapter 13. Performance Tips

This usually results in a better plan than planning the subquery separately. (For example, the outer WHERE
conditions might be such that joining X to A first eliminates many rows of A, thus avoiding the need
to form the full logical output of the subquery.) But at the same time, we have increased the plan-
ning time; here, we have a five-way join problem replacing two separate three-way join problems. Be-
cause of the exponential growth of the number of possibilities, this makes a big difference. The plan-
ner tries to avoid getting stuck in huge join search problems by not collapsing a subquery if more than
from_collapse_limit FROM items would result in the parent query. You can trade off planning time
against quality of plan by adjusting this run-time parameter up or down.

from_collapse_limit and join_collapse_limit are similarly named because they do almost the same thing:
one controls when the planner will “flatten out” subselects, and the other controls when it will flatten out
explicit joins. Typically you would either set join_collapse_limit equalto from collapse_limit
(so that explicit joins and subselects act similarly) or set join_collapse_limit to 1 (if you want to
control join order with explicit joins). But you might set them differently if you are trying to fine-tune the
trade-off between planning time and run time.

13.4. Populating a Database

One may need to insert a large amount of data when first populating a database. This section contains
some suggestions on how to make this process as efficient as possible.

13.4.1. Disable Autocommit

Turn off autocommit and just do one commit at the end. (In plain SQL, this means issuing BEGIN at the
start and COMMIT at the end. Some client libraries may do this behind your back, in which case you need
to make sure the library does it when you want it done.) If you allow each insertion to be committed
separately, PostgreSQL is doing a lot of work for each row that is added. An additional benefit of doing
all insertions in one transaction is that if the insertion of one row were to fail then the insertion of all rows
inserted up to that point would be rolled back, so you won’t be stuck with partially loaded data.

13.4.2. Use cory

Use COPY to load all the rows in one command, instead of using a series of INSERT commands. The
copY command is optimized for loading large numbers of rows; it is less flexible than INSERT, but incurs
significantly less overhead for large data loads. Since COPY is a single command, there is no need to
disable autocommit if you use this method to populate a table.

If you cannot use COPY, it may help to use PREPARE to create a prepared INSERT statement, and then use
EXECUTE as many times as required. This avoids some of the overhead of repeatedly parsing and planning
INSERT.

Note that loading a large number of rows using COPY is almost always faster than using INSERT, even if
PREPARE is used and multiple insertions are batched into a single transaction.

254

Chapter 13. Performance Tips

13.4.3. Remove Indexes

If you are loading a freshly created table, the fastest way is to create the table, bulk load the table’s data
using COPY, then create any indexes needed for the table. Creating an index on pre-existing data is quicker
than updating it incrementally as each row is loaded.

If you are adding large amounts of data to an existing table, it may be a win to drop the index, load the
table, and then recreate the index. Of course, the database performance for other users may be adversely
affected during the time that the index is missing. One should also think twice before dropping unique
indexes, since the error checking afforded by the unique constraint will be lost while the index is missing.

13.4.4. Remove Foreign Key Constraints

Just as with indexes, a foreign key constraint can be checked “in bulk” more efficiently than row-by-row.
So it may be useful to drop foreign key constraints, load data, and re-create the constraints. Again, there
is a trade-off between data load speed and loss of error checking while the constraint is missing.

13.4.5. Increase maintenance_ work_mem

Temporarily increasing the maintenance_work_mem configuration variable when loading large amounts
of data can lead to improved performance. This will help to speed up CREATE INDEX commands and
ALTER TABLE ADD FOREIGN KEY commands. It won’t do much for copy itself, so this advice is only
useful when you are using one or both of the above techniques.

13.4.6. Increase checkpoint_segments

Temporarily increasing the checkpoint_segments configuration variable can also make large data loads
faster. This is because loading a large amount of data into PostgreSQL will cause checkpoints to occur
more often than the normal checkpoint frequency (specified by the checkpoint_timeout configura-
tion variable). Whenever a checkpoint occurs, all dirty pages must be flushed to disk. By increasing
checkpoint_segments temporarily during bulk data loads, the number of checkpoints that are required
can be reduced.

13.4.7. Run aNaALYZE Afterwards

Whenever you have significantly altered the distribution of data within a table, running ANALYZE is
strongly recommended. This includes bulk loading large amounts of data into the table. Running ANALYZE
(or VACUUM ANALYZE) ensures that the planner has up-to-date statistics about the table. With no statis-
tics or obsolete statistics, the planner may make poor decisions during query planning, leading to poor
performance on any tables with inaccurate or nonexistent statistics.

255

Chapter 13. Performance Tips

13.4.8. Some Notes About pg_dump

Dump scripts generated by pg_dump automatically apply several, but not all, of the above guidelines.
To reload a pg_dump dump as quickly as possible, you need to do a few extra things manually. (Note
that these points apply while restoring a dump, not while creating it. The same points apply when using
pg_restore to load from a pg_dump archive file.)

By default, pg_dump uses copY, and when it is generating a complete schema-and-data dump, it is careful
to load data before creating indexes and foreign keys. So in this case the first several guidelines are
handled automatically. What is left for you to do is to set appropriate (i.e., larger than normal) values for
maintenance_work_mem and checkpoint_segments before loading the dump script, and then to run
ANALYZE afterwards.

A data-only dump will still use copy, but it does not drop or recreate indexes, and it does not normally
touch foreign keys. > So when loading a data-only dump, it is up to you to drop and recreate indexes and
foreign keys if you wish to use those techniques. It’s still useful to increase checkpoint_segments
while loading the data, but don’t bother increasing maintenance_work_mem; rather, you’d do that while
manually recreating indexes and foreign keys afterwards. And don’t forget to ANALYZE when you’re done.

2. You can get the effect of disabling foreign keys by using the --disable-triggers option — but realize that that eliminates,
rather than just postponing, foreign key validation, and so it is possible to insert bad data if you use it.

256

lll. Server Administration

This part covers topics that are of interest to a PostgreSQL database administrator. This includes instal-
lation of the software, set up and configuration of the server, management of users and databases, and
maintenance tasks. Anyone who runs a PostgreSQL server, even for personal use, but especially in pro-
duction, should be familiar with the topics covered in this part.

The information in this part is arranged approximately in the order in which a new user should read it.
But the chapters are self-contained and can be read individually as desired. The information in this part is
presented in a narrative fashion in topical units. Readers looking for a complete description of a particular
command should look into Part VI.

The first few chapters are written so that they can be understood without prerequisite knowledge, so that
new users who need to set up their own server can begin their exploration with this part. The rest of this
part is about tuning and management; that material assumes that the reader is familiar with the general
use of the PostgreSQL database system. Readers are encouraged to look at Part I and Part II for additional
information.

Chapter 14. Installation Instructions

This chapter describes the installation of PostgreSQL from the source code distribution. (If you are in-
stalling a pre-packaged distribution, such as an RPM or Debian package, ignore this chapter and read the
packager’s instructions instead.)

14.1. Short Version

./configure

gmake

su

gmake install

adduser postgres

mkdir /usr/local/pgsqgl/data

chown postgres /usr/local/pgsql/data

su — postgres

/usr/local/pgsgl/bin/initdb -D /usr/local/pgsql/data
/usr/local/pgsgl/bin/postgres -D /usr/local/pgsqgl/data >logfile 2>&1 &
/usr/local/pgsgl/bin/createdb test
/usr/local/pgsqgl/bin/psql test

The long version is the rest of this chapter.

14.2. Requirements

In general, a modern Unix-compatible platform should be able to run PostgreSQL. The platforms that had
received specific testing at the time of release are listed in Section 14.7 below. In the doc subdirectory of
the distribution there are several platform-specific FAQ documents you might wish to consult if you are
having trouble.

The following software packages are required for building PostgreSQL:

+ GNU make is required; other make programs will not work. GNU make is often installed under the
name gmake; this document will always refer to it by that name. (On some systems GNU make is the
default tool with the name make.) To test for GNU make enter

gmake —--version

It is recommended to use version 3.76.1 or later.

+ You need an ISO/ANSI C compiler. Recent versions of GCC are recommendable, but PostgreSQL is
known to build with a wide variety of compilers from different vendors.

- tar is required to unpack the source distribution in the first place, in addition to either gzip or bzip2.

« The GNU Readline library (for simple line editing and command history retrieval) is used by default. If
you don’t want to use it then you must specify the ——without-readline option for configure. As
an alternative, you can often use the BSD-licensed 1ibedit library, originally developed on NetBSD.
The 1ibedit library is GNU Readline-compatible and is used if 1ibreadline is not found, or if

259

Chapter 14. Installation Instructions

-—with-libedit-preferred is used as an option to configure. If you are using a package-based
Linux distribution, be aware that you need both the readline and readline-devel packages, if
those are separate in your distribution.

« The zlib compression library will be used by default. If you don’t want to use it then you must spec-
ify the ——without-z1lib option for configure. Using this option disables support for compressed
archives in pg_dump and pg_restore.

« Additional software is needed to build PostgreSQL on Windows. You can build PostgreSQL for NT-
based versions of Windows (like Windows XP and 2003) using MinGW; see doc/FAQ_MINGW for
details. You can also build PostgreSQL using Cygwin; see doc/FAQ_CYGWIN. A Cygwin-based build
will work on older versions of Windows, but if you have a choice, we recommend the MinGW approach.
While these are the only tool sets recommended for a complete build, it is possible to build just the C
client library (libpq) and the interactive terminal (psql) using other Windows tool sets. For details of
that see Chapter 15.

The following packages are optional. They are not required in the default configuration, but they are
needed when certain build options are enabled, as explained below.

« To build the server programming language PL/Perl you need a full Perl installation, including the
libperl library and the header files. Since PL/Perl will be a shared library, the libperl library
must be a shared library also on most platforms. This appears to be the default in recent Perl versions,
but it was not in earlier versions, and in any case it is the choice of whomever installed Perl at your site.

If you don’t have the shared library but you need one, a message like this will appear during the build
to point out this fact:

**% Cannot build PL/Perl because libperl is not a shared library.

*%x% You might have to rebuild your Perl installation. Refer to

**xx the documentation for details.

(If you don’t follow the on-screen output you will merely notice that the PL/Perl library object,
plperl.so or similar, will not be installed.) If you see this, you will have to rebuild and install Perl
manually to be able to build PL/Perl. During the configuration process for Perl, request a shared
library.

+ To build the PL/Python server programming language, you need a Python installation with the header
files and the distutils module. The distutils module is included by default with Python 1.6 and later;
users of earlier versions of Python will need to install it.

Since PL/Python will be a shared library, the 1ibpython library must be a shared library also on most
platforms. This is not the case in a default Python installation. If after building and installing you have
a file called plpython. so (possibly a different extension), then everything went well. Otherwise you
should have seen a notice like this flying by:

**+ Cannot build PL/Python because libpython is not a shared library.
*%x% You might have to rebuild your Python installation. Refer to
*%x% the documentation for details.

That means you have to rebuild (part of) your Python installation to supply this shared library.

If you have problems, run Python 2.3 or later’s configure using the —~—enable-shared flag. On some
operating systems you don’t have to build a shared library, but you will have to convince the PostgreSQL
build system of this. Consult the Makefile in the src/pl/plpython directory for details.

260

Chapter 14. Installation Instructions

« If you want to build the PL/Tcl procedural language, you of course need a Tcl installation.

« To enable Native Language Support (NLS), that is, the ability to display a program’s messages in a
language other than English, you need an implementation of the Gettext API. Some operating sys-
tems have this built-in (e.g., Linux, NetBSD, Solaris), for other systems you can download an add-on
package from http://developer.postgresql.org/~petere/bsd-gettext/. If you are using the Gettext imple-
mentation in the GNU C library then you will additionally need the GNU Gettext package for some
utility programs. For any of the other implementations you will not need it.

« Kerberos, OpenSSL, OpenLDAP, and/or PAM, if you want to support authentication or encryption
using these services.

If you are building from a CVS tree instead of using a released source package, or if you want to do
development, you also need the following packages:

+ GNU Flex and Bison are needed to build a CVS checkout or if you changed the actual scanner and
parser definition files. If you need them, be sure to get Flex 2.5.4 or later and Bison 1.875 or later. Other
yacc programs can sometimes be used, but doing so requires extra effort and is not recommended. Other
lex programs will definitely not work.

If you need to get a GNU package, you can find it at your local GNU mirror site (see
http://www.gnu.org/order/ftp.html for a list) or at ftp://ftp.gnu.org/gnu/.

Also check that you have sufficient disk space. You will need about 65 MB for the source tree during
compilation and about 15 MB for the installation directory. An empty database cluster takes about 25
MB, databases take about five times the amount of space that a flat text file with the same data would take.
If you are going to run the regression tests you will temporarily need up to an extra 90 MB. Use the df
command to check free disk space.

14.3. Getting The Source

The PostgreSQL 8.2.10 sources can be obtained by anonymous FTP from
ftp://ftp.postgresql.org/pub/source/v8.2.10/postgresql-8.2.10.tar.gz. Other download options can be
found on our website: http://www.postgresql.org/download/. After you have obtained the file, unpack it:

gunzip postgresql-8.2.10.tar.gz
tar xf postgresql-8.2.10.tar

This will create a directory postgresgl-8.2.10 under the current directory with the PostgreSQL
sources. Change into that directory for the rest of the installation procedure.

14.4. If You Are Upgrading

The internal data storage format changes with new releases of PostgreSQL. Therefore, if you are up-
grading an existing installation that does not have a version number “8.2.x”, you must back up and

261

Chapter 14. Installation Instructions

restore your data as shown here. These instructions assume that your existing installation is under the
/usr/local/pgsqgl directory, and that the data area is in /usr/local/pgsgl/data. Substitute your
paths appropriately.

1. Make sure that your database is not updated during or after the backup. This does not affect the
integrity of the backup, but the changed data would of course not be included. If necessary, edit the
permissions in the file /usr/local/pgsgl/data/pg_hba.conf (or equivalent) to disallow access
from everyone except you.

2. To back up your database installation, type:

pg_dumpall > outputfile
If you need to preserve OIDs (such as when using them as foreign keys), then use the —o option when
running pg_dumpall.

To make the backup, you can use the pg_dumpall command from the version you are currently run-
ning. For best results, however, try to use the pg_dumpall command from PostgreSQL 8.2.10, since
this version contains bug fixes and improvements over older versions. While this advice might seem
idiosyncratic since you haven’t installed the new version yet, it is advisable to follow it if you plan to
install the new version in parallel with the old version. In that case you can complete the installation
normally and transfer the data later. This will also decrease the downtime.

3. If you are installing the new version at the same location as the old one then shut down the old server,
at the latest before you install the new files:

pg_ctl stop
On systems that have PostgreSQL started at boot time, there is probably a start-up file that will
accomplish the same thing. For example, on a Red Hat Linux system one might find that

/etc/rc.d/init .d/postgresql stop
works.

4. If you are installing in the same place as the old version then it is also a good idea to move the old
installation out of the way, in case you have trouble and need to revert to it. Use a command like this:

mv /usr/local/pgsql /usr/local/pgsql.old

After you have installed PostgreSQL 8.2.10, create a new database directory and start the new server.
Remember that you must execute these commands while logged in to the special database user account
(which you already have if you are upgrading).

/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data

Finally, restore your data with
/usr/local/pgsql/bin/psql -d postgres —-f outputfile

using the new psql.

Further discussion appears in Section 23.5, which you are encouraged to read in any case.

262

Chapter 14. Installation Instructions

14.5. Installation Procedure

1. Configuration

The first step of the installation procedure is to configure the source tree for your system and choose
the options you would like. This is done by running the configure script. For a default installation
simply enter

./configure

This script will run a number of tests to guess values for various system dependent variables and
detect some quirks of your operating system, and finally will create several files in the build tree to
record what it found. (You can also run configure in a directory outside the source tree if you want
to keep the build directory separate.)

The default configuration will build the server and utilities, as well as all client applications and
interfaces that require only a C compiler. All files will be installed under /usr/local/pgsgl by
default.

You can customize the build and installation process by supplying one or more of the following
command line options to configure:
——prefix=PREFIX

Install all files under the directory PREFIX instead of /usr/local/pgsqgl. The actual files will
be installed into various subdirectories; no files will ever be installed directly into the PREFIX
directory.

If you have special needs, you can also customize the individual subdirectories with the follow-
ing options. However, if you leave these with their defaults, the installation will be relocatable,
meaning you can move the directory after installation. (The man and doc locations are not af-
fected by this.)

For relocatable installs, you might want to use configure’s ——disable-rpath option. Also,
you will need to tell the operating system how to find the shared libraries.

——exec-prefix=EXEC-PREFIX

You can install architecture-dependent files under a different prefix, EXEC-PREF1X, than what
PREFIX was set to. This can be useful to share architecture-independent files between hosts. If
you omit this, then EXEC-PREFIX is set equal to PREFIX and both architecture-dependent and
independent files will be installed under the same tree, which is probably what you want.

—-bindir=DIRECTORY

Specifies the directory for executable programs. The default is Exec-PREFIX/bin, which nor-
mally means /usr/local/pgsgl/bin.

—-—datadir=DIRECTORY

Sets the directory for read-only data files used by the installed programs. The default is
PREFIX/share. Note that this has nothing to do with where your database files will be placed.

—--sysconfdir=DIRECTORY

The directory for various configuration files, PREFIx/etc by default.

263

Chapter 14. Installation Instructions

—--1ibdir=DIRECTORY

The location to install libraries and dynamically loadable modules. The default is
EXEC-PREFIX/1ib.

——includedir=DIRECTORY
The directory for installing C and C++ header files. The default is PREFIX/include.
—-mandir=DIRECTORY

The man pages that come with PostgreSQL will be installed under this directory, in their respec-
tive manx subdirectories. The default is PREF1X/man.

—--with-docdir=DIRECTORY

--without-docdir

Documentation files, except “man” pages, will be installed into this directory. The default is
prREFIX/doc. If the option ——without—-docdir is specified, the documentation will not be
installed by make install. This is intended for packaging scripts that have special methods
for installing documentation.

Note: Care has been taken to make it possible to install PostgreSQL into shared installation
locations (such as /usr/local/include) without interfering with the namespace of the rest of
the system. First, the string “/postgresql” is automatically appended to datadir, sysconfdir,
and docdir, unless the fully expanded directory name already contains the string “postgres”

“

or “pgsql”. For example, if you choose /usr/local as prefix, the documentation will be
installed in /usr/local/doc/postgresql, but if the prefix is /opt/postgres, then it will be
in /opt/postgres/doc. The public C header files of the client interfaces are installed into
includedir and are namespace-clean. The internal header files and the server header files are
installed into private directories under includedir. See the documentation of each interface for
information about how to get at the its header files. Finally, a private subdirectory will also be
created, if appropriate, under 1ibdir for dynamically loadable modules.

——with-includes=DIRECTORIES

DIRECTORIES is a colon-separated list of directories that will be added to the list the com-
piler searches for header files. If you have optional packages (such as GNU Readline) installed
in a non-standard location, you have to use this option and probably also the corresponding
—--with-libraries option.

Example: ~—with-includes=/opt/gnu/include:/usr/sup/include.
——with-libraries=DIRECTORIES

DIRECTORIES is a colon-separated list of directories to search for libraries. You will probably
have to use this option (and the corresponding ——with-includes option) if you have packages
installed in non-standard locations.

Example: ~—with-libraries=/opt/gnu/lib:/usr/sup/lib.

264

Chapter 14. Installation Instructions

——enable-nls [=LANGUAGES]

Enables Native Language Support (NLS), that is, the ability to display a program’s messages in a
language other than English. LANGUAGES is a space-separated list of codes of the languages that
you want supported, for example ——enable-nls=’de fr’. (The intersection between your
list and the set of actually provided translations will be computed automatically.) If you do not
specify a list, then all available translations are installed.

To use this option, you will need an implementation of the Gettext API; see above.
—--with-pgport=NUMBER

Set NUMBER as the default port number for server and clients. The default is 5432. The port can
always be changed later on, but if you specify it here then both server and clients will have the
same default compiled in, which can be very convenient. Usually the only good reason to select
a non-default value is if you intend to run multiple PostgreSQL servers on the same machine.

—--with-perl

Build the PL/Perl server-side language.
——with-python

Build the PL/Python server-side language.
--with-tcl

Build the PL/Tcl server-side language.
——with-tclconfig=DIRECTORY

Tcl installs the file tc1Config.sh, which contains configuration information needed to build
modules interfacing to Tcl. This file is normally found automatically at a well-known location,
but if you want to use a different version of Tcl you can specify the directory in which to look
for it.

—-with-krbb5

Build with support for Kerberos 5 authentication. On many systems, the Kerberos system is
not installed in a location that is searched by default (e.g., /usr/include, /usr/1ib), so you
must use the options ——with-includes and —-with-libraries in addition to this option.
configure will check for the required header files and libraries to make sure that your Kerberos
installation is sufficient before proceeding.

—-—with-krb-srvnam=NAME

The default name of the Kerberos service principal. postgres is the default. There’s usually no
reason to change this.

——with-openssl

Build with support for SSL (encrypted) connections. This requires the OpenSSL package to be
installed. configure will check for the required header files and libraries to make sure that
your OpenSSL installation is sufficient before proceeding.

—--with-pam

Build with PAM (Pluggable Authentication Modules) support.

265

Chapter 14. Installation Instructions

--with-1ldap

Build with LDAP support for authentication and connection parameter lookup (see Section 29.15
and Section 20.2.5 for more information). On Unix, this requires the OpenLDAP package to be
installed. configure will check for the required header files and libraries to make sure that your
OpenLDAP installation is sufficient before proceeding. On Windows, the default WinLDAP
library is used.

-—-without-readline

Prevents use of the Readline library (and libedit as well). This option disables command-line
editing and history in psql, so it is not recommended.

——with-libedit-preferred

Favors the use of the BSD-licensed libedit library rather than GPL-licensed Readline. This op-
tion is significant only if you have both libraries installed; the default in that case is to use
Readline.

--with-bonjour

Build with Bonjour support. This requires Bonjour support in your operating system. Recom-
mended on Mac OS X.

——enable-integer—-datetimes

Use 64-bit integer storage for datetimes and intervals, rather than the default floating-point stor-
age. This reduces the range of representable values but guarantees microsecond precision across
the full range (see Section 8.5 for more information). Note also that the integer datetimes code
is newer than the floating-point code, and we still find bugs in it from time to time.

——disable-spinlocks

Allow the build to succeed even if PostgreSQL has no CPU spinlock support for the platform.
The lack of spinlock support will result in poor performance; therefore, this option should only
be used if the build aborts and informs you that the platform lacks spinlock support. If this option
is required to build PostgreSQL on your platform, please report the problem to the PostgreSQL
developers.

—-—enable-thread-safety

Make the client libraries thread-safe. This allows concurrent threads in libpq and ECPG pro-
grams to safely control their private connection handles. This option requires adequate threading
support in your operating system.

--without-z1lib

Prevents use of the Zlib library. This disables support for compressed archives in pg_dump and
pg_restore. This option is only intended for those rare systems where this library is not available.

—-—enable-debug

Compiles all programs and libraries with debugging symbols. This means that you can run the
programs through a debugger to analyze problems. This enlarges the size of the installed exe-
cutables considerably, and on non-GCC compilers it usually also disables compiler optimization,
causing slowdowns. However, having the symbols available is extremely helpful for dealing with
any problems that may arise. Currently, this option is recommended for production installations

266

Chapter 14. Installation Instructions

only if you use GCC. But you should always have it on if you are doing development work or
running a beta version.

——enable-cassert

Enables assertion checks in the server, which test for many “can’t happen” conditions. This is
invaluable for code development purposes, but the tests slow things down a little. Also, having
the tests turned on won’t necessarily enhance the stability of your server! The assertion checks
are not categorized for severity, and so what might be a relatively harmless bug will still lead
to server restarts if it triggers an assertion failure. Currently, this option is not recommended for
production use, but you should have it on for development work or when running a beta version.

——enable-depend

Enables automatic dependency tracking. With this option, the makefiles are set up so that all
affected object files will be rebuilt when any header file is changed. This is useful if you are
doing development work, but is just wasted overhead if you intend only to compile once and
install. At present, this option will work only if you use GCC.

—-—enable-dtrace

Compiles with support for the dynamic tracing tool DTrace. Operating system support for
DTrace is currently only available in Solaris.

To point to the dtrace program, the environment variable DTRACE can be set. This will often
be necessary because dtrace is typically installed under /usr/sbin, which might not be in
the path. Additional command-line options for the dtrace program can be specified in the
environment variable DTRACEFLAGS.

To include DTrace support in a 64-bit binary, specify DTRACEFLAGS="-64" to configure. For
example, using the GCC compiler:

./configure CC='"gcc -m64’ —--enable-dtrace DTRACEFLAGS=’-64’'
Using Sun’s compiler:

./configure CC=’/opt/SUNWspro/bin/cc —-xtarget=native64’ --enable-dtrace

If you prefer a C compiler different from the one configure picks, you can set the environment
variable cC to the program of your choice. By default, configure will pick gcc if available, else the
platform’s default (usually cc). Similarly, you can override the default compiler flags if needed with
the CFLAGS variable.

You can specify environment variables on the configure command line, for example:

./configure CC=/opt/bin/gcc CFLAGS='-02 -pipe’

Here is a list of the significant variables that can be set in this manner:

cC

C compiler

CFLAGS

options to pass to the C compiler

267

DTRACEFLAGS=

Chapter 14. Installation Instructions

CPP

C preprocessor
CPPFLAGS

options to pass to the C preprocessor
DTRACE

location of the dtrace program
DTRACEFLAGS

options to pass to the dtrace program
LDFLAGS

options to pass to the link editor
LDFLAGS_SL

linker options for shared library linking
MSGEFMT

msgfmt program for native language support
PERL

Full path to the Perl interpreter. This will be used to determine the dependencies for building
PL/Perl.

PYTHON

Full path to the Python interpreter. This will be used to determine the dependencies for building
PL/Python.

TCLSH

Full path to the Tcl interpreter. This wil be used to determine the dependencies for building
PL/Tcl.

YACC

Yacc program (bison -y if using Bison)

Build
To start the build, type

gmake
(Remember to use GNU make.) The build may take anywhere from 5 minutes to half an hour de-
pending on your hardware. The last line displayed should be

All of PostgreSQL is successfully made. Ready to install.
Regression Tests

If you want to test the newly built server before you install it, you can run the regression tests at this
point. The regression tests are a test suite to verify that PostgreSQL runs on your machine in the way
the developers expected it to. Type

gmake check

268

Chapter 14. Installation Instructions

(This won’t work as root; do it as an unprivileged user.) Chapter 28 contains detailed information
about interpreting the test results. You can repeat this test at any later time by issuing the same
command.

Installing The Files

Note: If you are upgrading an existing system and are going to install the new files over the old
ones, be sure to back up your data and shut down the old server before proceeding, as explained
in Section 14.4 above.

To install PostgreSQL enter

gmake install

This will install files into the directories that were specified in step 1. Make sure that you have appro-
priate permissions to write into that area. Normally you need to do this step as root. Alternatively, you
could create the target directories in advance and arrange for appropriate permissions to be granted.

You can use gmake install-strip instead of gmake install to strip the executable files and
libraries as they are installed. This will save some space. If you built with debugging support, stripping
will effectively remove the debugging support, so it should only be done if debugging is no longer
needed. install-strip tries to do a reasonable job saving space, but it does not have perfect
knowledge of how to strip every unneeded byte from an executable file, so if you want to save all the
disk space you possibly can, you will have to do manual work.

The standard installation provides all the header files needed for client application development as
well as for server-side program development, such as custom functions or data types written in C.
(Prior to PostgreSQL 8.0, a separate gmake install-all-headers command was needed for the
latter, but this step has been folded into the standard install.)

Client-only installation: If you want to install only the client applications and interface libraries,
then you can use these commands:

gmake -C src/bin install

gmake -C src/include install

gmake -C src/interfaces install

gmake -C doc install

src/bin has a few binaries for server-only use, but they are small.

Registering eventlog on Windows: To register a Windows eventlog library with the operating system,
issue this command after installation:

regsvr32 pgsql library directory/pgevent.dll

This creates registry entries used by the event viewer.

Uninstallation: To undo the installation use the command gmake uninstall. However, this will not
remove any created directories.

Cleaning: After the installation you can make room by removing the built files from the source tree with

the command gmake clean. This will preserve the files made by the configure program, so that you

can rebuild everything with gmake later on. To reset the source tree to the state in which it was distributed,

use gmake distclean. If you are going to build for several platforms within the same source tree you

269

Chapter 14. Installation Instructions

must do this and re-configure for each build. (Alternatively, use a separate build tree for each platform, so
that the source tree remains unmodified.)

If you perform a build and then discover that your configure options were wrong, or if you change
anything that configure investigates (for example, software upgrades), then it’s a good idea to do gmake
distclean before reconfiguring and rebuilding. Without this, your changes in configuration choices may
not propagate everywhere they need to.

14.6. Post-Installation Setup

14.6.1. Shared Libraries

On some systems that have shared libraries (which most systems do) you need to tell your system how
to find the newly installed shared libraries. The systems on which this is not necessary include BSD/OS,
FreeBSD, HP-UX, IRIX, Linux, NetBSD, OpenBSD, Tru64 UNIX (formerly Digital UNIX), and Solaris.

The method to set the shared library search path varies between platforms, but the most widely usable
method is to set the environment variable LD_LIBRARY_PATH like so: In Bourne shells (sh, ksh, bash,
zsh)

LD_LIBRARY_PATH=/usr/local/pgsqgl/lib
export LD_LIBRARY_PATH

orin csh or tcsh
setenv LD_LIBRARY_PATH /usr/local/pgsqgl/lib

Replace /usr/local/pgsgl/1lib with whatever you set --1ibdir to in step 1. You should put these
commands into a shell start-up file such as /etc/profile or ~/.bash_profile. Some good informa-
tion about the caveats associated with this method can be found at http://www.visi.com/~barr/ldpath.html.

On some systems it might be preferable to set the environment variable LD_RUN_PATH before building.
On Cygwin, put the library directory in the PATH or move the .d11 files into the bin directory.
If in doubt, refer to the manual pages of your system (perhaps 1d. so or r14d). If you later on get a message

like

psgl: error in loading shared libraries
libpg.so0.2.1: cannot open shared object file: No such file or directory

then this step was necessary. Simply take care of it then.

If you are on BSD/OS, Linux, or SunOS 4 and you have root access you can run
/sbin/ldconfig /usr/local/pgsgl/lib

(or equivalent directory) after installation to enable the run-time linker to find the shared libraries faster.
Refer to the manual page of 1dconfig for more information. On FreeBSD, NetBSD, and OpenBSD the
command is

/sbin/ldconfig -m /usr/local/pgsqgl/lib

270

Chapter 14. Installation Instructions

instead. Other systems are not known to have an equivalent command.

14.6.2. Environment Variables

If you installed into /usr/local/pgsql or some other location that is not searched for programs by
default, you should add /usr/local/pgsql/bin (or whatever you set -—-bindir to in step 1) into your
PATH. Strictly speaking, this is not necessary, but it will make the use of PostgreSQL much more conve-
nient.

To do this, add the following to your shell start-up file, such as ~/ .bash_profile (or /etc/profile,
if you want it to affect every user):

PATH=/usr/local/pgsgl/bin:$PATH
export PATH

If you are using csh or tcsh, then use this command:

set path = (/usr/local/pgsgl/bin $path)

To enable your system to find the man documentation, you need to add lines like the following to a shell
start-up file unless you installed into a location that is searched by default.

MANPATH=/usr/local/pgsqgl/man: SMANPATH
export MANPATH

The environment variables PGHOST and PGPORT specify to client applications the host and port of the
database server, overriding the compiled-in defaults. If you are going to run client applications remotely
then it is convenient if every user that plans to use the database sets PGHOST. This is not required, however:
the settings can be communicated via command line options to most client programs.

14.7. Supported Platforms

PostgreSQL has been verified by the developer community to work on the platforms listed below. A
supported platform generally means that PostgreSQL builds and installs according to these instructions
and that the regression tests pass. “Build farm” entries refer to active test machines in the PostgreSQL
Build Farm'. Platform entries that show an older version of PostgreSQL are those that did not receive
explicit testing at the time of release of version 8.2 but that we still expect to work.

Note: If you are having problems with the installation on a supported platform, please write to
<pgsqgl-bugs@postgresqgl.org> Of <pgsgl-ports@postgresqgl.org>, Not to the people listed here.

1.

http://buildfarm.postgresql.org/

271

Chapter 14. Installation Instructions

(013 Processor Version Reported Remarks

AIX PowerPC 8.2.0 Build farm grebe see doc/FAQ_AIX,
(5.3, gcc 4.0.1); particularly if
kookaburra (5.2, cc | using AIX 5.3
6.0); asp (5.2, gcc | ML3
3.3.2)

AIX RS6000 8.0.0 Hans-Jiirgen see doc/FAQ_AIX
Schonig
(<hs@cybertec.at>),
2004-12-06

BSD/OS x86 8.1.0 Bruce Momjian 43.1
(<pgman@candle.pha.pa.us>),
2005-10-26

Debian Alpha 8.2.0 Build farm hare

GNU/Linux (3.1, gcc 3.3.4)

Debian AMD64 8.2.0 Build farm shad

GNU/Linux (4.0, gcc 4.1.2);
kite (3.1, gcc 4.0);
panda (sid, gcc
3.3.5)

Debian ARM 8.2.0 Build farm penguin

GNU/Linux (3.1, gcc 3.3.4)

Debian Athlon XP 8.2.0 Build farm rook

GNU/Linux (3.1, gcc 3.3.5)

Debian IA64 8.2.0 Build farm dugong

GNU/Linux (unstable, icc
9.1.045)

Debian m68k 8.0.0 Noel Kéthe sid

GNU/Linux (<noel@debian.org>),
2004-12-09

Debian MIPS 8.2.0 Build farm otter

GNU/Linux (3.1, gcc 3.3.4)

Debian MIPSEL 8.2.0 Build farm lionfish

GNU/Linux (3.1, gcc 3.3.4);
corgi (3.1, gcc
3.3.4)

Debian PA-RISC 8.2.0 Build farm

GNU/Linux manatee (3.1, gcc
4.0.1); kingfisher
(3.1, gcc 3.3.5)

Debian PowerPC 8.0.0 Noel Kothe sid

GNU/Linux (<noel@debian.org>),

2004-12-15

272

Chapter 14. Installation Instructions

0os

Processor

Version

Reported

Remarks

Debian
GNU/Linux

Sparc

8.1.0

Build farm
dormouse (3.1, gcc
3.2.5; 64-bit)

Debian
GNU/Linux

x86

8.2.0

Build farm
wildebeest (3.1,
gcc 3.3.5)

Fedora Linux

AMDO64

8.2.0

Build farm impala
(FC6, gcc 4.1.1);
bustard (FCS5, gcc
4.1.0); wasp (FC5,
gcc 4.1.0); viper
(FC3, gcc 3.4.4)

Fedora Linux

PowerPC

8.2.0

Build farm sponge
(FC5, gec 4.1.0)

Fedora Linux

x86

8.2.0

Build farm agouti
(FC5, gec 4.1.1);

thrush (FC1, gcc

3.3.2)

FreeBSD

AMD64

8.2.0

Build farm
platypus (6, gcc
3.4.4); dove (6.1,
gcc 3.4.4); ermine
(6.1, gcc 3.4.4)

FreeBSD

x86

8.2.0

Build farm
minnow (6.1, gcc
3.4.4); echidna (6,
gce 3.4.2); herring
(6, Intel cc 7.1)

Gentoo Linux

AMDO64

Build farm caribou
(2.6.9, gcc 3.3.5)

Gentoo Linux

TA64

8.2.0

Build farm stoat
(2.6, gcc 3.3)

Gentoo Linux

PowerPC 64

8.2.0

Build farm cobra
(1.4.16, gcc 3.4.3)

Gentoo Linux

x86

8.2.0

Build farm
mongoose (1.6.14,
icc 9.0.032)

HP-UX

[1A64

8.2.0

Tom Lane

(<tgl@sss.pgh.p
2006-10-23

11.23, gcc and cc;
hsees>),
doc/FAQ_HPUX

HP-UX

PA-RISC

8.2.0

Tom Lane

(<tgl@sss.pgh.p
2006-10-23

10.20 and 11.23,
ngussand cc; see
doc/FAQ_HPUX

273

Chapter 14. Installation Instructions

0os

Processor

Version

Reported

Remarks

IRIX

MIPS

8.1.0

Kenneth Marshall
(<ktm@is.rice.e

2005-11-04

6.5, cc only
du>),

Kubuntu Linux

AMDO64

8.2.0

Build farm rosella
(5.10 “Breezy”,
gcc 4.0)

Mac OS X

PowerPC

8.2.0

Build farm tuna
(10.4.2, gcc 4.0)

Mac OS X

x86

8.2.0

Build farm jackal
(10.4.8, gcc 4.0.1)

Mandriva Linux

x86

8.2.0

Build farm gopher
(Mandriva 2006,
gcc 4.0.1)

NetBSD

mo68k

8.2.0

Build farm osprey
(2.0, gcc 3.3.3)

NetBSD

x86

8.2.0

Build farm gazelle
(3.0, gcc 3.3.3);
canary (1.6, gcc
2.95.3)

OpenBSD

AMD64

8.2.0

Build farm zebra
(4.0, gcc 3.3.5)

OpenBSD

Sparc

8.0.0

Chris Mair

33

(<1ist@1006.0rg»),

2005-01-10

OpenBSD

Sparc64

8.2.0

Build farm
spoonbill (3.9, gcc
3.3.5)

OpenBSD

x86

8.2.0

Build farm emu
(4.0, gcc 3.3.5);

guppy (3.8, gce
3.3.5)

failure on 3.8

minor ecpg test

Red Hat Linux

AMDO64

Tom Lane

(<tgl@sss.pgh.p
2005-10-23

RHEL 4

h.us>),

Red Hat Linux

[1A64

Tom Lane

(<tgl@sss.pgh.p
2005-10-23

RHEL 4
h.us>),

Red Hat Linux

PowerPC

Tom Lane
(<tgl@sss.pgh.p
2005-10-23

RHEL 4
h.us>),

Red Hat Linux

PowerPC 64

Tom Lane

(<tgl@sss.pgh.p
2005-10-23

RHEL 4
h.us>),

274

Chapter 14. Installation Instructions

(013 Processor Version Reported Remarks

Red Hat Linux S/390 8.1.0 Tom Lane RHEL 4
(<tgl@sss.pgh.pa.us>),
2005-10-23

Red Hat Linux S/390x 8.1.0 Tom Lane RHEL 4
(<tgl@sss.pgh.pa.us>),
2005-10-23

Red Hat Linux x86 8.1.0 Tom Lane RHEL 4
(<tgl@sss.pgh.pa.us>),
2005-10-23

Slackware Linux | x86 8.1.0 Sergey Koposov 10.0
(<math@sai.msu.ru>),
2005-10-24

Solaris Sparc 8.2.0 Build farm hyena |see
(Solaris 10, gcc doc/FAQ_Solaris
3.4.3)

Solaris x86 8.2.0 Build farm see
dragonfly (Solaris |doc/FAQ_Solaris
9, gcc 3.2.3); kudu
(Solaris 9, cc 5.3)

SUSE Linux AMD64 8.1.0 Josh Berkus SLES 9.3
(<joshRagliodbs}com>),
2005-10-23

SUSE Linux 1A64 8.0.0 Reinhard Max SLES 9
(<max@suse.de>),
2005-01-03

SUSE Linux PowerPC 8.0.0 Reinhard Max SLES 9
(<max@suse.de>),
2005-01-03

SUSE Linux PowerPC 64 8.0.0 Reinhard Max SLES 9
(<max@suse.de>),
2005-01-03

SUSE Linux S/390 8.0.0 Reinhard Max SLES 9
(<max@suse.de>),
2005-01-03

SUSE Linux S/390x 8.0.0 Reinhard Max SLES 9
(<max@suse.de>),
2005-01-03

SUSE Linux x86 8.0.0 Reinhard Max 9.0, 9.1, 9.2, SLES
(<max@suse.de>),| 9
2005-01-03

Tru64 UNIX Alpha 8.1.0 Honda Shigehiro | 5.0, cc 6.1-011

(<fwif0083@mb.infoweb.ne.jp>),

2005-11-01

275

Chapter 14. Installation Instructions

0os

Processor

Version

Reported

Remarks

Ubuntu Linux

x86

8.2.0

Build farm
caracara (6.06, gcc
4.0.3)

UnixWare

x86

8.2.0

Build farm
warthog (7.1.4, cc
4.2)

see doc/FAQ_SCO

Windows

x86

8.2.0

Build farm yak
(XP SP2, gcc
3.4.2); bandicoot
(Windows 2000
Pro, gcc 3.4.2);
snake (Windows
Server 2003 SP1,
gcc 3.4.2); trout
(Windows Server
2000 SP4, gcc
3.4.2)

see
doc/FAQ_MINGW

Windows with
Cygwin

x86

8.2.0

Build farm eel
(W2K Server SP4,
gcec 3.4.4)

see
doc/FAQ_CYGWIN

Yellow Dog Linux

PowerPC

Build farm carp
(4.0, gcc 3.3.3)

Unsupported Platforms: The following platforms used to work but have not been tested recently. We
include these here to let you know that these platforms could be supported if given some attention.

ocks

(03] Processor Version Reported Remarks

Debian S/390 7.4 Noel Kothe

GNU/Linux (<noel@debian.org>),
2003-10-25

FreeBSD Alpha 7.4 Peter Eisentraut 4.8
(<peter_eRgmx.net>),
2003-10-25

Linux PlayStation 2 8.0.0 Chris Mair requires
(<1ist@1006.0rgp)-disable-spinl
2005-01-09 (works, but very

slow)

NetBSD Alpha 7.2 Thomas Thai 1.5W
(<tom@minnesota}l com>),
2001-11-20

NetBSD arm32 7.4 Patrick Welche 1.6ZE/acorn32
(<prlwl@newn.cam.ac.uk>),
2003-11-12

276

Chapter 14. Installation Instructions

(013 Processor Version Reported Remarks

NetBSD MIPS 7.2.1 Warwick Hunter 1.5.3
(<whunter@agileltv>),
2002-06-13

NetBSD PowerPC 7.2 Bill Studenmund 1.5
(<wrstuden@netbsd.org>),
2001-11-28

NetBSD Sparc 7.4.1 Peter Eisentraut 1.6.1, 32-bit
(<peter_eRgmx.net>),
2003-11-26

NetBSD VAX 7.1 Tom I. Helbekkmo | 1.5
(<tih@kpnQwest .no>),
2001-03-30

SCO OpenServer | x86 7.3.1 Shibashish 5.0.4, gcc; see also
Satpathy doc/FAQ_SCO
(<shib@postmark}net>),
2002-12-11

SunOS 4 Sparc 7.2 Tatsuo Ishii

(<t-ishii@sra.c

2001-12-04

b. p>),

277

Chapter 15. Client-Only Installation on
Windows

Although a complete PostgreSQL installation for Windows can only be built using MinGW or Cygwin,
the C client library (libpq) and the interactive terminal (psql) can be compiled using other Windows tool
sets. Makefiles are included in the source distribution for Microsoft Visual C++ and Borland C++. It
should be possible to compile the libraries manually for other configurations.

Tip: Using MinGW or Cygwin is preferred. If using one of those tool sets, see Chapter 14.

To build everything that you can on Windows using Microsoft Visual C++, change into the src directory
and type the command

nmake /f win32.mak

This assumes that you have Visual C++ in your path.

To build everything using Borland C++, change into the src directory and type the command

make -N -DCFG=Release /f bcc32.mak

The following files will be built:

interfaces\libpg\Release\libpg.dll
The dynamically linkable frontend library
interfaces\libpg\Release\libpgdll.1lib
Import library to link your programs to 1ibpg.dl1l
interfaces\libpg\Release\libpg.1lib

Static version of the frontend library

278

Chapter 15. Client-Only Installation on Windows

bin\pg_config\Release\pg_config.exe
bin\psgl\Release\psqgl.exe
bin\pg_dump\Release\pg_dump.exe
bin\pg_dump\Release\pg_dumpall.exe
bin\pg_dump\Release\pg_restore.exe
bin\scripts\Release\clusterdb.exe
bin\scripts\Release\createdb.exe
bin\scripts\Release\createuser.exe
bin\scripts\Release\createlang.exe
bin\scripts\Release\dropdb.exe
bin\scripts\Release\dropuser.exe
bin\scripts\Release\droplang.exe
bin\scripts\Release\vacuumdb.exe

bin\scripts\Release\reindexdb.exe

The PostgreSQL client applications and utilities.

Normally you do not need to install any of the client files. You should place the 1ibpq. d11 file in the same
directory as your applications .EXE-file. Only if this is for some reason not possible should you install it
in the WINNT\SYSTEM32 directory (or in WINDOWS\SYSTEM on a Windows 95/98/ME system). If this file
is installed using a setup program, it should be installed with version checking using the VERSIONINFO
resource included in the file, to ensure that a newer version of the library is not overwritten.

If you plan to do development using libpq on this machine, you will have to add the src\include and
src\interfaces\1libpg subdirectories of the source tree to the include path in your compiler’s settings.

To use the library, you must add the 1ibpgdl1.1ib file to your project. (In Visual C++, just right-click
on the project and choose to add it.)

Free development tools from Microsoft can be downloaded from
http://msdn.microsoft.com/visualc/vctoolkit2003/. You will also need MSVCRT.1ib from the platform
SDK from http://www.microsoft.com/msdownload/platformsdk/sdkupdate/. You can also download
the .NET framework from http://msdn.microsoft.com/netframework/downloads/updates/default.aspx.
Once installed, the toolkit binaries must be in your path, and you might need to add a
/lib:<libpath> to point to MSVCRT.1lib. Free Borland C++ compiler tools can be downloaded from
http://www.borland.com/products/downloads/download_cbuilder.html#, and require similar setup.

279

Chapter 16. Operating System Environment

This chapter discusses how to set up and run the database server and its interactions with the operating
system.

16.1. The PostgreSQL User Account

As with any other server daemon that is accessible to the outside world, it is advisable to run PostgreSQL
under a separate user account. This user account should only own the data that is managed by the server,
and should not be shared with other daemons. (For example, using the user nobody is a bad idea.) It is
not advisable to install executables owned by this user because compromised systems could then modify
their own binaries.

To add a Unix user account to your system, look for a command useradd or adduser. The user name
postgres is often used, and is assumed throughout this book, but you can use another name if you like.

16.2. Creating a Database Cluster

Before you can do anything, you must initialize a database storage area on disk. We call this a database
cluster. (SQL uses the term catalog cluster.) A database cluster is a collection of databases that is man-
aged by a single instance of a running database server. After initialization, a database cluster will contain
a database named postgres, which is meant as a default database for use by utilities, users and third
party applications. The database server itself does not require the postgres database to exist, but many
external utility programs assume it exists. Another database created within each cluster during initializa-
tion is called templatel. As the name suggests, this will be used as a template for subsequently created
databases; it should not be used for actual work. (See Chapter 19 for information about creating new
databases within a cluster.)

In file system terms, a database cluster will be a single directory under which all data will be stored. We
call this the data directory or data area. It is completely up to you where you choose to store your data.
There is no default, although locations such as /usr/local/pgsqgl/data or /var/lib/pgsqgl/data
are popular. To initialize a database cluster, use the command initdb, which is installed with PostgreSQL.
The desired file system location of your database cluster is indicated by the —D option, for example

$ initdb -D /usr/local/pgsql/data

Note that you must execute this command while logged into the PostgreSQL user account, which is
described in the previous section.

Tip: As an alternative to the -p option, you can set the environment variable pcpaTA.
initdb will attempt to create the directory you specify if it does not already exist. It is likely that it will
not have the permission to do so (if you followed our advice and created an unprivileged account). In that

case you should create the directory yourself (as root) and change the owner to be the PostgreSQL user.
Here is how this might be done:

280

Chapter 16. Operating System Environment

root# mkdir /usr/local/pgsql/data

root# chown postgres /usr/local/pgsgql/data
root# su postgres

postgres$ initdb -D /usr/local/pgsql/data

initdb will refuse to run if the data directory looks like it has already been initialized.

Because the data directory contains all the data stored in the database, it is essential that it be secured from
unauthorized access. initdb therefore revokes access permissions from everyone but the PostgreSQL
user.

However, while the directory contents are secure, the default client authentication setup allows any lo-
cal user to connect to the database and even become the database superuser. If you do not trust other
local users, we recommend you use one of initdb’s —W, ——pwprompt Oor ——pwfile options to assign
a password to the database superuser. Also, specify -A md5 or —-A password so that the default trust
authentication mode is not used; or modify the generated pg_hba . conf file after running initdb, before
you start the server for the first time. (Other reasonable approaches include using ident authentication or
file system permissions to restrict connections. See Chapter 20 for more information.)

initdb also initializes the default locale for the database cluster. Normally, it will just take the locale
settings in the environment and apply them to the initialized database. It is possible to specify a different
locale for the database; more information about that can be found in Section 21.1. The sort order used
within a particular database cluster is set by initdb and cannot be changed later, short of dumping all
data, rerunning initdb, and reloading the data. There is also a performance impact for using locales other
than ¢ or POSIX. Therefore, it is important to make this choice correctly the first time.

initdb also sets the default character set encoding for the database cluster. Normally this should be
chosen to match the locale setting. For details see Section 21.2.

16.3. Starting the Database Server

Before anyone can access the database, you must start the database server. The database server program
is called postgres. The postgres program must know where to find the data it is supposed to use. This
is done with the —-D option. Thus, the simplest way to start the server is:

$ postgres -D /usr/local/pgsql/data

which will leave the server running in the foreground. This must be done while logged into the PostgreSQL
user account. Without -D, the server will try to use the data directory named by the environment variable
PGDATA. If that variable is not provided either, it will fail.

Normally it is better to start postgres in the background. For this, use the usual shell syntax:
$ postgres -D /usr/local/pgsql/data >logfile 2>&l &

It is important to store the server’s stdout and stderr output somewhere, as shown above. It will help for
auditing purposes and to diagnose problems. (See Section 22.3 for a more thorough discussion of log file
handling.)

281

Chapter 16. Operating System Environment

The postgres program also takes a number of other command-line options. For more information, see
the postgres reference page and Chapter 17 below.

This shell syntax can get tedious quickly. Therefore the wrapper program pg_ctl is provided to simplify
some tasks. For example:

pg_ctl start -1 logfile

will start the server in the background and put the output into the named log file. The -D option has the
same meaning here as for postgres. pg_ct1 is also capable of stopping the server.

Normally, you will want to start the database server when the computer boots. Autostart
scripts are operating-system-specific. There are a few distributed with PostgreSQL in the
contrib/start-scripts directory. Installing one will require root privileges.

Different systems have different conventions for starting up daemons at boot time. Many systems have
a file /etc/rc.local or /etc/rc.d/rc.local. Others use rc.d directories. Whatever you do, the
server must be run by the PostgreSQL user account and not by root or any other user. Therefore you
probably should form your commands using su -c ’ ...’ postgres. For example:

su -c 'pg_ctl start -D /usr/local/pgsgl/data -1 serverlog’ postgres

Here are a few more operating-system-specific suggestions. (In each case be sure to use the proper instal-
lation directory and user name where we show generic values.)

« For FreeBSD, look at the file contrib/start-scripts/freebsd in the PostgreSQL source distri-
bution.

+ On OpenBSD, add the following lines to the file /etc/rc.local:

if [-x /usr/local/pgsqgl/bin/pg_ctl -a —-x /usr/local/pgsqgl/bin/postgres]; then
su - —-c ’/usr/local/pgsqgl/bin/pg_ctl start -1 /var/postgresqgl/log -s’ postgres

echo —n ’ postgresql’
fi

+ On Linux systems either add

/usr/local/pgsgl/bin/pg_ctl start -1 logfile -D /usr/local/pgsqgl/data
to /etc/rc.d/rc.local or look at the file contrib/start-scripts/linux in the PostgreSQL
source distribution.

+ On NetBSD, either use the FreeBSD or Linux start scripts, depending on preference.

« On Solaris, create a file called /etc/init.d/postgresqgl that contains the following line:

su - postgres -c "/usr/local/pgsqgl/bin/pg_ctl start -1 logfile -D /usr/local/pgsgl/data"

Then, create a symbolic link to it in /etc/rc3.d as S99postgresqgl.

While the server is running, its PID is stored in the file postmaster.pid in the data directory. This is
used to prevent multiple server instances from running in the same data directory and can also be used for
shutting down the server.

282

Chapter 16. Operating System Environment

16.3.1. Server Start-up Failures

There are several common reasons the server might fail to start. Check the server’s log file, or start it by
hand (without redirecting standard output or standard error) and see what error messages appear. Below
we explain some of the most common error messages in more detail.

LOG: could not bind IPv4 socket: Address already in use
HINT: Is another postmaster already running on port 543272 If not, wait a few seconds and r
FATAL: could not create TCP/IP listen socket

This usually means just what it suggests: you tried to start another server on the same port where one is
already running. However, if the kernel error message is not Address already in use Or some variant
of that, there may be a different problem. For example, trying to start a server on a reserved port number
may draw something like:

$ postgres -p 666

LOG: could not bind IPv4 socket: Permission denied

HINT: Is another postmaster already running on port 666? If not, wait a few seconds and re
FATAL: could not create TCP/IP listen socket

A message like

FATAL: could not create shared memory segment: Invalid argument
DETAIL: Failed system call was shmget (key=5440001, size=4011376640, 03600).

probably means your kernel’s limit on the size of shared memory is smaller than the work area Post-
greSQL is trying to create (4011376640 bytes in this example). Or it could mean that you do not have
System-V-style shared memory support configured into your kernel at all. As a temporary workaround,
you can try starting the server with a smaller-than-normal number of buffers (shared_buffers). You will
eventually want to reconfigure your kernel to increase the allowed shared memory size. You may also
see this message when trying to start multiple servers on the same machine, if their total space requested
exceeds the kernel limit.

An error like

FATAL: could not create semaphores: No space left on device
DETAIL: Failed system call was semget (5440126, 17, 03600).

does not mean you’ve run out of disk space. It means your kernel’s limit on the number of System
V semaphores is smaller than the number PostgreSQL wants to create. As above, you may be able
to work around the problem by starting the server with a reduced number of allowed connections
(max_connections), but you’ll eventually want to increase the kernel limit.

If you get an “illegal system call” error, it is likely that shared memory or semaphores are not supported
in your kernel at all. In that case your only option is to reconfigure the kernel to enable these features.

Details about configuring System V IPC facilities are given in Section 16.4.1.

283

Chapter 16. Operating System Environment

16.3.2. Client Connection Problems

Although the error conditions possible on the client side are quite varied and application-dependent, a few
of them might be directly related to how the server was started up. Conditions other than those shown
below should be documented with the respective client application.

psgl: could not connect to server: Connection refused
Is the server running on host "server.joe.com" and accepting
TCP/IP connections on port 54327

This is the generic “I couldn’t find a server to talk to” failure. It looks like the above when TCP/IP
communication is attempted. A common mistake is to forget to configure the server to allow TCP/IP
connections.

Alternatively, you’ll get this when attempting Unix-domain socket communication to a local server:

psgl: could not connect to server: No such file or directory
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

The last line is useful in verifying that the client is trying to connect to the right place. If there is in fact
no server running there, the kernel error message will typically be either Connection refused or No
such file or directory, asillustrated. (It is important to realize that Connection refused in this
context does not mean that the server got your connection request and rejected it. That case will produce
a different message, as shown in Section 20.3.) Other error messages such as Connection timed out
may indicate more fundamental problems, like lack of network connectivity.

16.4. Managing Kernel Resources

A large PostgreSQL installation can quickly exhaust various operating system resource limits. (On some
systems, the factory defaults are so low that you don’t even need a really “large” installation.) If you have
encountered this kind of problem, keep reading.

16.4.1. Shared Memory and Semaphores

Shared memory and semaphores are collectively referred to as “System V IPC” (together with message
queues, which are not relevant for PostgreSQL). Almost all modern operating systems provide these
features, but not all of them have them turned on or sufficiently sized by default, especially systems with
BSD heritage. (For the Windows port, PostgreSQL provides its own replacement implementation of these
facilities.)

The complete lack of these facilities is usually manifested by an Illegal system call error upon server start.
In that case there’s nothing left to do but to reconfigure your kernel. PostgreSQL won’t work without
them.

When PostgreSQL exceeds one of the various hard IPC limits, the server will refuse to start and should
leave an instructive error message describing the problem encountered and what to do about it. (See also

284

Chapter 16. Operating System Environment

Section 16.3.1.) The relevant kernel parameters are named consistently across different systems; Table
16-1 gives an overview. The methods to set them, however, vary. Suggestions for some platforms are
given below. Be warned that it is often necessary to reboot your machine, and possibly even recompile the
kernel, to change these settings.

Table 16-1. System V IPC parameters

Name Description Reasonable values
SHMMAX Maximum size of shared at least several megabytes (see
memory segment (bytes) text)
SHMMIN Minimum size of shared memory | 1
segment (bytes)
SHMALL Total amount of shared memory | if bytes, same as SHMMAX; if
available (bytes or pages) pages,
ceil (SHMMAX/PAGE_SIZE)
SHMSEG Maximum number of shared only 1 segment is needed, but the
memory segments per process default is much higher
SHMMNI Maximum number of shared like SHMSEG plus room for other
memory segments system-wide | applications
SEMMNI Maximum number of semaphore | at least
identifiers (i.e., sets) ceil (max_connections /
16)
SEMMNS Maximum number of ceil (max_connections /
semaphores system-wide 16) * 17 plus room for other
applications
SEMMSL Maximum number of at least 17

semaphores per set

SEMMAP Number of entries in semaphore | see text
map
SEMVMX Maximum value of semaphore at least 1000 (The default is often
32767, don’t change unless
forced to)

The most important shared memory parameter is SHMMAX, the maximum size, in bytes, of a shared memory
segment. If you get an error message from shmget like Invalid argument, it is likely that this limit has
been exceeded. The size of the required shared memory segment varies depending on several PostgreSQL
configuration parameters, as shown in Table 16-2. You can, as a temporary solution, lower some of those
settings to avoid the failure. As a rough approximation, you can estimate the required segment size as 700
kB plus the variable amounts shown in the table. (Any error message you might get will include the exact
size of the failed allocation request.) While it is possible to get PostgreSQL to run with SHMMAX as small
as 1 MB, you need at least 4 MB for acceptable performance, and desirable settings are in the tens of
megabytes.

Some systems also have a limit on the total amount of shared memory in the system (SHMALL). Make sure
this is large enough for PostgreSQL plus any other applications that are using shared memory segments.
(Caution: sHMALL is measured in pages rather than bytes on many systems.)

285

Chapter 16. Operating System Environment

Less likely to cause problems is the minimum size for shared memory segments (SHMMIN), which should
be at most approximately 500 kB for PostgreSQL (it is usually just 1). The maximum number of segments
system-wide (SHMMNT) or per-process (SHMSEG) are unlikely to cause a problem unless your system has
them set to zero.

PostgreSQL uses one semaphore per allowed connection (max_connections), in sets of 16. Each such
set will also contain a 17th semaphore which contains a “magic number”, to detect collision with
semaphore sets used by other applications. The maximum number of semaphores in the system is set
by sEMMNS, which consequently must be at least as high as max_connections plus one extra for
each 16 allowed connections (see the formula in Table 16-1). The parameter SEMMNI determines the
limit on the number of semaphore sets that can exist on the system at one time. Hence this parameter
must be at least ceil (max_connections / 16). Lowering the number of allowed connections is a
temporary workaround for failures, which are usually confusingly worded No space left on device, from
the function semget.

In some cases it might also be necessary to increase SEMMAP to be at least on the order of SEMMNS. This
parameter defines the size of the semaphore resource map, in which each contiguous block of available
semaphores needs an entry. When a semaphore set is freed it is either added to an existing entry that
is adjacent to the freed block or it is registered under a new map entry. If the map is full, the freed
semaphores get lost (until reboot). Fragmentation of the semaphore space could over time lead to fewer
available semaphores than there should be.

The SEMMSL parameter, which determines how many semaphores can be in a set, must be at least 17 for
PostgreSQL.

Various other settings related to “semaphore undo”, such as SEMMNU and SEMUME, are not of concern for
PostgreSQL.

BSD/OS

Shared Memory. By default, only 4 MB of shared memory is supported. Keep in mind that shared
memory is not pageable; it is locked in RAM. To increase the amount of shared memory supported
by your system, add something like the following to your kernel configuration file:

options "SHMALL=8192"

options "SHMMAX=\ (SHMALL*PAGE_SIZE\)"

SHMALL is measured in 4 kB pages, so a value of 1024 represents 4 MB of shared memory. Therefore
the above increases the maximum shared memory area to 32 MB. For those running 4.3 or later, you
will probably also need to increase KERNEL_VIRTUAL_MB above the default 248. Once all changes
have been made, recompile the kernel, and reboot.

For those running 4.0 and earlier releases, use bpatch to find the sysptsize value in the current
kernel. This is computed dynamically at boot time.

S bpatch -r sysptsize

0x9 = 9

Next, add SYSPTSIZE as a hard-coded value in the kernel configuration file. Increase the value you
found using bpatch. Add 1 for every additional 4 MB of shared memory you desire.

options "SYSPTSIZE=16"
sysptsize cannot be changed by sysct1.

Semaphores. You will probably want to increase the number of semaphores as well; the default
system total of 60 will only allow about 50 PostgreSQL connections. Set the values you want in your
kernel configuration file, e.g.:

286

Chapter 16. Operating System Environment

options "SEMMNI=40"
options "SEMMNS=240"

FreeBSD

The default settings are only suitable for small installations (for example, default sEMMAX is 32 MB).
Changes can be made via the sysctl or loader interfaces. The following parameters can be set
using sysctl:

$ sysctl -w kern.ipc.shmall=32768

$ sysctl -w kern.ipc.shmmax=134217728

$ sysctl -w kern.ipc.semmap=256

To have these settings persist over reboots, modify /etc/sysctl.conf.

The remaining semaphore settings are read-only as far as sysct1 is concerned, but can be changed
before boot using the 1oader prompt:

(loader) set kern.ipc.semmni=256
(loader) set kern.ipc.semmns=512
(loader) set kern.ipc.semmnu=256

Similarly these can be saved between reboots in /boot /loader.conf.

You might also want to configure your kernel to lock shared memory into RAM and prevent
it from being paged out to swap. This can be accomplished using the sysctl setting
kern.ipc.shm_use_phys.

If running in FreeBSD jails by enabling sysctl’s security. jail.sysvipc_allowed, postmasters
running in different jails should be run by different operating system users. This improves security
because it prevents non-root users from interfering with shared memory or semaphores in a different
jail, and it allows the PostgreSQL IPC cleanup code to function properly. (In FreeBSD 6.0 and later
the IPC cleanup code doesn’t properly detect processes in other jails, preventing the running of
postmasters on the same port in different jails.)

FreeBSD versions before 4.0 work like NetBSD and OpenBSD (see below).

NetBSD
OpenBSD

The options sYsvSHM and SYSVSEM need to be enabled when the kernel is compiled. (They are by
default.) The maximum size of shared memory is determined by the option SHMMAXPGS (in pages).
The following shows an example of how to set the various parameters (OpenBSD uses option

instead):

options SYSVSHM
options SHMMAXPGS=4096
options SHMSEG=256
options SYSVSEM
options SEMMNI=256
options SEMMNS=512
options SEMMNU=256
options SEMMAP=256

You might also want to configure your kernel to lock shared memory into RAM and prevent
it from being paged out to swap. This can be accomplished using the sysctl setting
kern.ipc.shm_use_phys.

287

Chapter 16. Operating System Environment

HP-UX

The default settings tend to suffice for normal installations. On HP-UX 10, the factory default for
SEMMNS is 128, which might be too low for larger database sites.

IPC parameters can be set in the System Administration Manager (SAM) under Kernel
Configuration— Configurable Parameters. Hit Create A New Kernel when you’re done.

Linux

The default settings are only suitable for small installations (the default max segment size is 32 MB).
However the remaining defaults are quite generously sized, and usually do not require changes. The
max segment size can be changed via the sysct1 interface. For example, to allow 128 MB, and
explicitly set the maximum total shared memory size to 2097152 pages (the default):

$ sysctl -w kernel.shmmax=134217728
$ sysctl -w kernel.shmall=2097152
In addition these settings can be saved between reboots in /etc/sysctl.conf.

Older distributions may not have the sysct1 program, but equivalent changes can be made by ma-
nipulating the /proc file system:

$ echo 134217728 >/proc/sys/kernel/shmmax
$ echo 2097152 >/proc/sys/kernel/shmall

MacOS X

In OS X 10.2 and earlier, edit the file /System/Library/StartupItems/SystemTuning/SystemTuning
and change the values in the following commands:

sysctl -w kern.sysv.shmmax
sysctl -w kern.sysv.shmmin
sysctl -w kern.sysv.shmmni
sysctl -w kern.sysv.shmseg
sysctl -w kern.sysv.shmall

In OS X 10.3 and later, these commands have been moved to /etc/rc and must be edited there.
Note that /etc/rc is usually overwritten by OS X updates (such as 10.3.6 to 10.3.7) so you should
expect to have to redo your editing after each update.

In OS X 1039 and later, instead of editing /etc/rc you may create a file named
/etc/sysctl.conf, containing variable assignments such as

kern.sysv.shmmax=4194304

kern.sysv.shmmin=1

kern.sysv.shmmni=32

kern.sysv.shmseg=8

kern.sysv.shmall=1024

This method is better than editing /etc/rc because your changes will be preserved across system
updates. Note that all five shared-memory parameters must be set in /etc/sysctl.conf, else the
values will be ignored.

Beware that recent releases of OS X ignore attempts to set SHMMAX to a value that isn’t an exact
multiple of 4096.

SHMALL is measured in 4 kB pages on this platform.

In all OS X versions, you’ll need to reboot to make changes in the shared memory parameters take
effect.

288

Chapter 16. Operating System Environment

SCO OpenServer

In the default configuration, only 512 kB of shared memory per segment is allowed. To increase the
setting, first change to the directory /etc/conf/cf.d. To display the current value of SHMMAX, run

./configure -y SHMMAX
To set a new value for SHMMAX, run

./configure SHMMAX=value
where value is the new value you want to use (in bytes). After setting SHMMAX, rebuild the kernel:

./link_unix

and reboot.
AIX

At least as of version 5.1, it should not be necessary to do any special configuration for such param-
eters as SHMMAX, as it appears this is configured to allow all memory to be used as shared memory.
That is the sort of configuration commonly used for other databases such as DB/2.

It may, however, be necessary to modify the global ulimit information in
/etc/security/limits, as the default hard limits for file sizes (fsize) and numbers of files
(nofiles) may be too low.

Solaris

At least in version 2.6, the default maximum size of a shared memory segments is too low for Post-
greSQL. The relevant settings can be changed in /etc/system, for example:

set shmsys:shminfo_shmmax=0x2000000
set shmsys:shminfo_shmmin=1

set shmsys:shminfo_shmmni=256

set shmsys:shminfo_shmseg=256

set semsys:seminfo_semmap=256

set semsys:seminfo_semmni=512

set semsys:seminfo_semmns=512

set semsys:seminfo_semmsl=32

You need to reboot for the changes to take effect.

See also http://sunsite.uakom.sk/sunworldonline/swol-09-1997/swol-09-insidesolaris.html for infor-
mation on shared memory under Solaris.

UnixWare

On UnixWare 7, the maximum size for shared memory segments is only 512 kB in the default con-
figuration. To display the current value of SHMMAX, run

/etc/conf/bin/idtune —-g SHMMAX
which displays the current, default, minimum, and maximum values. To set a new value for SHMMAX,
run

/etc/conf/bin/idtune SHMMAX value
where value is the new value you want to use (in bytes). After setting SHMMAX, rebuild the kernel:

/etc/conf/bin/idbuild -B
and reboot.

289

Chapter 16. Operating System Environment

Table 16-2. Configuration parameters affecting PostgreSQL’s shared memory usage

Name Approximate multiplier (bytes per
increment)

max_connections 1800 + 270 * max_locks_per_transaction

max_prepared_transactions 700 + 270 * max_locks_per_transaction

shared_buffers 8300 (assuming 8K BLCKSZ)

wal_buffers 8200 (assuming 8K XLOG_BLCKSZ)

max_fsm_relations 70

max_fsm_pages 6

16.4.2. Resource Limits

Unix-like operating systems enforce various kinds of resource limits that might interfere with the op-
eration of your PostgreSQL server. Of particular importance are limits on the number of processes per
user, the number of open files per process, and the amount of memory available to each process. Each
of these have a “hard” and a “soft” limit. The soft limit is what actually counts but it can be changed
by the user up to the hard limit. The hard limit can only be changed by the root user. The system call
setrlimit is responsible for setting these parameters. The shell’s built-in command ulimit (Bourne
shells) or 1imit (csh) is used to control the resource limits from the command line. On BSD-derived sys-
tems the file /etc/login.conf controls the various resource limits set during login. See the operating
system documentation for details. The relevant parameters are maxproc, openfiles, and datasize.
For example:

default:\

:datasize-cur=256M:\
imaxproc—cur=256:\
:openfiles—-cur=256:\

(—cur is the soft limit. Append -max to set the hard limit.)

Kernels can also have system-wide limits on some resources.

* On Linux /proc/sys/fs/file-max determines the maximum number of open files that the kernel
will support. It can be changed by writing a different number into the file or by adding an assignment in
/etc/sysctl.cont. The maximum limit of files per process is fixed at the time the kernel is compiled;
see /usr/src/linux/Documentation/proc.txt for more information.

The PostgreSQL server uses one process per connection so you should provide for at least as many pro-
cesses as allowed connections, in addition to what you need for the rest of your system. This is usually
not a problem but if you run several servers on one machine things might get tight.

The factory default limit on open files is often set to “socially friendly” values that allow many users to
coexist on a machine without using an inappropriate fraction of the system resources. If you run many

290

Chapter 16. Operating System Environment

servers on a machine this is perhaps what you want, but on dedicated servers you may want to raise this
limit.

On the other side of the coin, some systems allow individual processes to open large numbers of files; if
more than a few processes do so then the system-wide limit can easily be exceeded. If you find this happen-
ing, and you do not want to alter the system-wide limit, you can set PostgreSQL’s max_files_per_process
configuration parameter to limit the consumption of open files.

16.4.3. Linux Memory Overcommit

In Linux 2.4 and later, the default virtual memory behavior is not optimal for PostgreSQL. Because of the
way that the kernel implements memory overcommit, the kernel may terminate the PostgreSQL server
(the master server process) if the memory demands of another process cause the system to run out of
virtual memory.

If this happens, you will see a kernel message that looks like this (consult your system documentation and
configuration on where to look for such a message):

Out of Memory: Killed process 12345 (postgres).

This indicates that the postgres process has been terminated due to memory pressure. Although existing
database connections will continue to function normally, no new connections will be accepted. To recover,
PostgreSQL will need to be restarted.

One way to avoid this problem is to run PostgreSQL on a machine where you can be sure that other
processes will not run the machine out of memory.

On Linux 2.6 and later, a better solution is to modify the kernel’s behavior so that it will not “overcommit”
memory. This is done by selecting strict overcommit mode via sysct1:

sysctl —-w vm.overcommit_memory=2

or placing an equivalent entry in /etc/sysctl.conf. You may also wish to modify the
related setting vm.overcommit_ratio. For details see the kernel documentation file

Documentation/vm/overcommit-accounting.

Some vendors’ Linux 2.4 kernels are reported to have early versions of the 2.6 overcommit sysctl
parameter. However, setting vm.overcommit_memory to 2 on a kernel that does not have the relevant
code will make things worse not better. It is recommended that you inspect the actual kernel source code
(see the function vm_enough_memory in the file mm/mmap. c) to verify what is supported in your copy
before you try this in a 2.4 installation. The presence of the overcommit-accounting documentation
file should not be taken as evidence that the feature is there. If in any doubt, consult a kernel expert or
your kernel vendor.

16.5. Shutting Down the Server

There are several ways to shut down the database server. You control the type of shutdown by sending

291

Chapter 16. Operating System Environment

different signals to the master postgres process.

SIGTERM

After receiving SIGTERM, the server disallows new connections, but lets existing sessions end their
work normally. It shuts down only after all of the sessions terminate normally. This is the Smart
Shutdown.

SIGINT

The server disallows new connections and sends all existing server processes SIGTERM, which will
cause them to abort their current transactions and exit promptly. It then waits for the server processes
to exit and finally shuts down. This is the Fast Shutdown.

SIGQUIT

This is the Immediate Shutdown, which will cause the master postgres process to send a SIGQUIT
to all child processes and exit immediately, without properly shutting itself down. The child processes
likewise exit immediately upon receiving SIGQUIT. This will lead to recovery (by replaying the
WAL log) upon next start-up. This is recommended only in emergencies.

The pg_ctl program provides a convenient interface for sending these signals to shut down the server.

Alternatively, you can send the signal directly using kill. The PID of the postgres process can be
found using the ps program, or from the file postmaster.pid in the data directory. For example, to do
a fast shutdown:

$ kill -INT ‘head -1 /usr/local/pgsql/data/postmaster.pid’

Important: It is best not to use SIGKILL to shut down the server. Doing so will prevent the server
from releasing shared memory and semaphores, which may then have to be done manually before a
new server can be started. Furthermore, SIGKILL kills the postgres process without letting it relay
the signal to its subprocesses, so it will be necessary to kill the individual subprocesses by hand as
well.

16.6. Encryption Options

PostgreSQL offers encryption at several levels, and provides flexibility in protecting data from disclosure
due to database server theft, unscrupulous administrators, and insecure networks. Encryption might also
be required to secure sensitive data such as medical records or financial transactions.

Password Storage Encryption

By default, database user passwords are stored as MDS5 hashes, so the administrator cannot deter-
mine the actual password assigned to the user. If MDS5 encryption is used for client authentication,
the unencrypted password is never even temporarily present on the server because the client MD5
encrypts it before being sent across the network.

292

Chapter 16. Operating System Environment

Encryption For Specific Columns

The /contrib function library pgcrypto allows certain fields to be stored encrypted. This is useful
if only some of the data is sensitive. The client supplies the decryption key and the data is decrypted
on the server and then sent to the client.

The decrypted data and the decryption key are present on the server for a brief time while it is being
decrypted and communicated between the client and server. This presents a brief moment where the
data and keys can be intercepted by someone with complete access to the database server, such as
the system administrator.

Data Partition Encryption

On Linux, encryption can be layered on top of a file system mount using a “loopback device”. This
allows an entire file system partition be encrypted on disk, and decrypted by the operating system.
On FreeBSD, the equivalent facility is called GEOM Based Disk Encryption, or gbde.

This mechanism prevents unencrypted data from being read from the drives if the drives or the entire
computer is stolen. This does not protect against attacks while the file system is mounted, because
when mounted, the operating system provides an unencrypted view of the data. However, to mount
the file system, you need some way for the encryption key to be passed to the operating system, and
sometimes the key is stored somewhere on the host that mounts the disk.

Encrypting Passwords Across A Network

The MD5 authentication method double-encrypts the password on the client before sending it to the
server. It first MDS5 encrypts it based on the user name, and then encrypts it based on a random salt
sent by the server when the database connection was made. It is this double-encrypted value that is
sent over the network to the server. Double-encryption not only prevents the password from being
discovered, it also prevents another connection from using the same encrypted password to connect
to the database server at a later time.

Encrypting Data Across A Network

SSL connections encrypt all data sent across the network: the password, the queries, and the data
returned. The pg_hba. conf file allows administrators to specify which hosts can use non-encrypted
connections (host) and which require SSL-encrypted connections (hostssl). Also, clients can
specify that they connect to servers only via SSL. Stunnel or SSH can also be used to encrypt trans-
missions.

SSL Host Authentication

It is possible for both the client and server to provide SSL keys or certificates to each other. It takes
some extra configuration on each side, but this provides stronger verification of identity than the mere
use of passwords. It prevents a computer from pretending to be the server just long enough to read
the password send by the client. It also helps prevent "man in the middle" attacks where a computer
between the client and server pretends to be the server and reads and passes all data between the
client and server.

Client-Side Encryption

If the system administrator cannot be trusted, it is necessary for the client to encrypt the data; this
way, unencrypted data never appears on the database server. Data is encrypted on the client before
being sent to the server, and database results have to be decrypted on the client before being used.

293

Chapter 16. Operating System Environment

16.7. Secure TCP/IP Connections with SSL

PostgreSQL has native support for using SSL connections to encrypt client/server communications for
increased security. This requires that OpenSSL is installed on both client and server systems and that
support in PostgreSQL is enabled at build time (see Chapter 14).

With SSL support compiled in, the PostgreSQL server can be started with SSL enabled by setting the
parameter ssl to on in postgresqgl.conf. When starting in SSL mode, the server will look for the
files server.key and server.crt in the data directory, which must contain the server private key and
certificate, respectively. These files must be set up correctly before an SSL-enabled server can start. If the
private key is protected with a passphrase, the server will prompt for the passphrase and will not start until
it has been entered.

The server will listen for both standard and SSL connections on the same TCP port, and will negotiate
with any connecting client on whether to use SSL. By default, this is at the client’s option; see Section
20.1 about how to set up the server to require use of SSL for some or all connections.

For details on how to create your server private key and certificate, refer to the OpenSSL documentation.
A self-signed certificate can be used for testing, but a certificate signed by a certificate authority (CA)
(either one of the global CAs or a local one) should be used in production so the client can verify the
server’s identity. To create a quick self-signed certificate, use the following OpenSSL command:

openssl req —new —text —-out server.reqg

Fill out the information that openss1 asks for. Make sure that you enter the local host name as “Common
Name”; the challenge password can be left blank. The program will generate a key that is passphrase
protected; it will not accept a passphrase that is less than four characters long. To remove the passphrase
(as you must if you want automatic start-up of the server), run the commands

openssl rsa —-in privkey.pem -out server.key
rm privkey.pem

Enter the old passphrase to unlock the existing key. Now do

openssl req —-x509 -in server.reqg -text -key server.key -out server.crt
chmod og-rwx server.key

to turn the certificate into a self-signed certificate and to copy the key and certificate to where the server
will look for them.

If verification of client certificates is required, place the certificates of the CA(s) you wish to check for
in the file root.crt in the data directory. When present, a client certificate will be requested from the
client during SSL connection startup, and it must have been signed by one of the certificates present in
root.crt. (See Section 29.16 for a description of how to set up client certificates.) Certificate Revocation
List (CRL) entries are also checked if the file root . crl exists.

When the root . crt file is not present, client certificates will not be requested or checked. In this mode,
SSL provides communication security but not authentication.

The files server.key, server.crt, root.crt, and root.crl are only examined during server start;
so you must restart the server to make changes in them take effect.

294

Chapter 16. Operating System Environment

16.8. Secure TCP/IP Connections with SSH Tunnels

One can use SSH to encrypt the network connection between clients and a PostgreSQL server. Done
properly, this provides an adequately secure network connection, even for non-SSL-capable clients.

First make sure that an SSH server is running properly on the same machine as the PostgreSQL server and
that you can log in using ssh as some user. Then you can establish a secure tunnel with a command like
this from the client machine:

ssh -L 3333:foo.com:5432 joe@foo.com

The first number in the —-L argument, 3333, is the port number of your end of the tunnel; it can be chosen
freely. The second number, 5432, is the remote end of the tunnel: the port number your server is using.
The name or IP address between the port numbers is the host with the database server you are going to
connect to. In order to connect to the database server using this tunnel, you connect to port 3333 on the
local machine:

psgl -h localhost -p 3333 postgres

To the database server it will then look as though you are really user joe@foo.com and it will use
whatever authentication procedure was configured for connections from this user and host. Note that the
server will not think the connection is SSL-encrypted, since in fact it is not encrypted between the SSH
server and the PostgreSQL server. This should not pose any extra security risk as long as they are on the
same machine.

In order for the tunnel setup to succeed you must be allowed to connect via ssh as joe@foo.com, just as
if you had attempted to use ssh to set up a terminal session.

Tip: Several other applications exist that can provide secure tunnels using a procedure similar in
concept to the one just described.

295

Chapter 17. Server Configuration

There are many configuration parameters that affect the behavior of the database system. In the first
section of this chapter, we describe how to set configuration parameters. The subsequent sections discuss
each parameter in detail.

17.1. Setting Parameters

All parameter names are case-insensitive. Every parameter takes a value of one of four types: Boolean,
integer, floating point, or string. Boolean values may be written as ON, OFF, TRUE, FALSE, YES, NO, 1, 0
(all case-insensitive) or any unambiguous prefix of these.

Some settings specify a memory or time value. Each of these has an implicit unit, which is either kilo-
bytes, blocks (typically eight kilobytes), milliseconds, seconds, or minutes. Default units can be queried
by referencing pg_settings.unit. For convenience, a different unit can also be specified explicitly.
Valid memory units are kB (kilobytes), MB (megabytes), and GB (gigabytes); valid time units are ms (mil-
liseconds), s (seconds), min (minutes), h (hours), and d (days). Note that the multiplier for memory units
is 1024, not 1000.

One way to set these parameters is to edit the file postgresql . conf, which is normally kept in the data
directory. (initdb installs a default copy there.) An example of what this file might look like is:

This is a comment

log_connections = yes
log_destination = ’syslog’
search_path = ’'"Suser", public’

shared_buffers = 128MB

One parameter is specified per line. The equal sign between name and value is optional. Whitespace is
insignificant and blank lines are ignored. Hash marks (#) introduce comments anywhere. Parameter values
that are not simple identifiers or numbers must be single-quoted. To embed a single quote in a parameter
value, write either two quotes (preferred) or backslash-quote.

In addition to parameter settings, the postgresql . conf file can contain include directives, which specify
another file to read and process as if it were inserted into the configuration file at this point. Include
directives simply look like

include ' filename’

If the file name is not an absolute path, it is taken as relative to the directory containing the referencing
configuration file. Inclusions can be nested.

The configuration file is reread whenever the main server process receives a SIGHUP signal (which is
most easily sent by means of pg_ctl reload). The main server process also propagates this signal to
all currently running server processes so that existing sessions also get the new value. Alternatively, you
can send the signal to a single server process directly. Some parameters can only be set at server start; any
changes to their entries in the configuration file will be ignored until the server is restarted.

A second way to set these configuration parameters is to give them as a command-line option to the
postgres command, such as:

296

Chapter 17. Server Configuration
postgres —-c log_connections=yes -c log_destination=’syslog’

Command-line options override any conflicting settings in postgresgl.conf. Note that this means you
won’t be able to change the value on-the-fly by editing postgresql.conf, so while the command-line
method may be convenient, it can cost you flexibility later.

Occasionally it is useful to give a command line option to one particular session only. The environment
variable PGOPTIONS can be used for this purpose on the client side:

env PGOPTIONS='-c geqo=off’ psqgl

(This works for any libpg-based client application, not just psql.) Note that this won’t work for parameters
that are fixed when the server is started or that must be specified in postgresgl.conf.

Furthermore, it is possible to assign a set of parameter settings to a user or a database. Whenever a session
is started, the default settings for the user and database involved are loaded. The commands ALTER USER
and ALTER DATABASE, respectively, are used to configure these settings. Per-database settings override
anything received from the postgres command-line or the configuration file, and in turn are overridden
by per-user settings; both are overridden by per-session settings.

Some parameters can be changed in individual SQL sessions with the SET command, for example:

SET ENABLE_SEQSCAN TO OFF;

If SET is allowed, it overrides all other sources of values for the parameter. Some parameters cannot be
changed via seT: for example, if they control behavior that cannot be changed without restarting the entire
PostgreSQL server. Also, some parameters can be modified via SET or ALTER by superusers, but not by
ordinary users.

The SHOW command allows inspection of the current values of all parameters.

The virtual table pg_settings (described in Section 43.44) also allows displaying and updating session
run-time parameters. It is equivalent to SHOW and SET, but can be more convenient to use because it can
be joined with other tables, or selected from using any desired selection condition.

17.2. File Locations

In addition to the postgresql. conf file already mentioned, PostgreSQL uses two other manually-edited
configuration files, which control client authentication (their use is discussed in Chapter 20). By default,
all three configuration files are stored in the database cluster’s data directory. The parameters described
in this section allow the configuration files to be placed elsewhere. (Doing so can ease administration. In
particular it is often easier to ensure that the configuration files are properly backed-up when they are kept
separate.)

data_directory (string)
Specifies the directory to use for data storage. This parameter can only be set at server start.
config_file (string)

Specifies the main server configuration file (customarily called postgresqgl . conf). This parameter
can only be set on the postgres command line.

297

Chapter 17. Server Configuration

hba_file (string)

Specifies the configuration file for host-based authentication (customarily called pg_hba.conf).
This parameter can only be set at server start.

ident_file (string)

Specifies the configuration file for ident authentication (customarily called pg_ident .conf). This
parameter can only be set at server start.

external_pid_file (string)

Specifies the name of an additional process-id (PID) file that the server should create for use by
server administration programs. This parameter can only be set at server start.

In a default installation, none of the above parameters are set explicitly. Instead, the data directory is
specified by the -D command-line option or the PGDATA environment variable, and the configuration files
are all found within the data directory.

If you wish to keep the configuration files elsewhere than the data directory, the postgres —-D command-
line option or PGDATA environment variable must point to the directory containing the configuration files,
and the data_directory parameter must be setin postgresqgl . conf (or on the command line) to show
where the data directory is actually located. Notice that data_directory overrides -D and PGDATA for
the location of the data directory, but not for the location of the configuration files.

If you wish, you can specify the configuration file names and locations individually using the parameters
config_file,hba_fileandkmjkat_file.config_fileCanonb/beSpedﬁedonthepostgres
command line, but the others can be set within the main configuration file. If all three parameters plus
data_directory are explicitly set, then it is not necessary to specify -D or PGDATA.

When setting any of these parameters, a relative path will be interpreted with respect to the directory in
which postgres is started.

17.3. Connections and Authentication

17.3.1. Connection Settings

listen_addresses (string)

Specifies the TCP/IP address(es) on which the server is to listen for connections from client applica-
tions. The value takes the form of a comma-separated list of host names and/or numeric IP addresses.
The special entry x corresponds to all available IP interfaces. If the list is empty, the server does not
listen on any IP interface at all, in which case only Unix-domain sockets can be used to connect to
it. The default value is localhost, which allows only local “loopback” connections to be made. This
parameter can only be set at server start.

port (integer)

The TCP port the server listens on; 5432 by default. Note that the same port number is used for all
IP addresses the server listens on. This parameter can only be set at server start.

298

Chapter 17. Server Configuration

max_connections (integer)

Determines the maximum number of concurrent connections to the database server. The default is
typically 100 connections, but may be less if your kernel settings will not support it (as determined
during initdb). This parameter can only be set at server start.

Increasing this parameter may cause PostgreSQL to request more System V shared memory or
semaphores than your operating system’s default configuration allows. See Section 16.4.1 for in-
formation on how to adjust those parameters, if necessary.

superuser_reserved_connections (integer)

Determines the number of connection “slots” that are reserved for connections by PostgreSQL
superusers. At most max_connections connections can ever be active simultaneously.
Whenever the number of active concurrent connections is at least max_connections minus
superuser_reserved_connections, new connections will be accepted only for superusers.

The default value is three connections. The value must be less than the value of max_connections.
This parameter can only be set at server start.

unix_socket_directory (string)

Specifies the directory of the Unix-domain socket on which the server is to listen for connections
from client applications. The default is normally /tmp, but can be changed at build time. This pa-
rameter can only be set at server start.

unix_socket_group (string)

Sets the owning group of the Unix-domain socket. (The owning user of the socket is always the user
that starts the server.) In combination with the parameter unix_socket_permissions this can be
used as an additional access control mechanism for Unix-domain connections. By default this is the
empty string, which selects the default group for the current user. This parameter can only be set at
server start.

unix_socket_permissions (integer)

Sets the access permissions of the Unix-domain socket. Unix-domain sockets use the usual Unix file
system permission set. The parameter value is expected to be a numeric mode specification in the
form accepted by the chmod and umask system calls. (To use the customary octal format the number
must start with a 0 (zero).)

The default permissions are 0777, meaning anyone can connect. Reasonable alternatives are 0770
(only user and group, see also unix_socket_group) and 0700 (only user). (Note that for a Unix-
domain socket, only write permission matters and so there is no point in setting or revoking read or
execute permissions.)

This access control mechanism is independent of the one described in Chapter 20.
This parameter can only be set at server start.
bonjour_name (string)

Specifies the Bonjour broadcast name. The computer name is used if this parameter is set to the
empty string ” (which is the default). This parameter is ignored if the server was not compiled with
Bonjour support. This parameter can only be set at server start.

299

Chapter 17. Server Configuration

tcp_keepalives_idle (integer)

On systems that support the TCP_KEEPIDLE socket option, specifies the number of seconds between
sending keepalives on an otherwise idle connection. A value of zero uses the system default. If
TCP_KEEP IDLE is not supported, this parameter must be zero. This parameter is ignored for connec-
tions made via a Unix-domain socket.

tcp_keepalives_interval (integer)

On systems that support the TCP_KEEPINTVL socket option, specifies how long, in seconds, to
wait for a response to a keepalive before retransmitting. A value of zero uses the system default.
If TCP_KEEPINTVL is not supported, this parameter must be zero. This parameter is ignored for
connections made via a Unix-domain socket.

tcp_keepalives_count (integer)

On systems that support the TCP_KEEPCNT socket option, specifies how many keepalives may be lost
before the connection is considered dead. A value of zero uses the system default. If TCP_KEEPCNT
is not supported, this parameter must be zero. This parameter is ignored for connections made via a
Unix-domain socket.

17.3.2. Security and Authentication

authentication_timeout (integer)

Maximum time to complete client authentication, in seconds. If a would-be client has not completed
the authentication protocol in this much time, the server breaks the connection. This prevents hung
clients from occupying a connection indefinitely. The default is one minute (1m). This parameter can
only be set in the postgresqgl . conf file or on the server command line.

ssl (boolean)

Enables SSL connections. Please read Section 16.7 before using this. The default is of £. This pa-
rameter can only be set at server start.

password_encryption (boolean)

When a password is specified in CREATE USER or ALTER USER without writing either ENCRYPTED
or UNENCRYPTED, this parameter determines whether the password is to be encrypted. The default is
on (encrypt the password).

krb_server_keyfile (string)

Sets the location of the Kerberos server key file. See Section 20.2.3 for details. This parameter can
only be set at server start.

krb_srvname (string)

Sets the Kerberos service name. See Section 20.2.3 for details. This parameter can only be set at
server start.

krb_server_hostname (string)

Sets the host name part of the service principal. This, combined with krb_srvname, is used to
generate the complete service principal, that is krb_srvname/krb_server_hostname@REALM.

300

Chapter 17. Server Configuration

If not set, the default is the server host name. See Section 20.2.3 for details. This parameter can only
be set at server start.

krb_caseins_users (boolean)

Sets whether Kerberos user names should be treated case-insensitively. The default is off (case
sensitive). This parameter can only be set at server start.

db_user_namespace (boolean)

This parameter enables per-database user names. It is off by default. This parameter can only be set
in the postgresgl.conf file or on the server command line.

If this is on, you should create users as username@dbname. When username is passed by a con-
necting client, @ and the database name are appended to the user name and that database-specific user
name is looked up by the server. Note that when you create users with names containing @ within the
SQL environment, you will need to quote the user name.

With this parameter enabled, you can still create ordinary global users. Simply append @ when spec-
ifying the user name in the client. The @ will be stripped off before the user name is looked up by the
server.

Note: This feature is intended as a temporary measure until a complete solution is found. At that
time, this option will be removed.

17.4. Resource Consumption

17.4.1. Memory

shared_buffers (integer)

Sets the amount of memory the database server uses for shared memory buffers. The default is
typically 32 megabytes (32MB), but may be less if your kernel settings will not support it (as de-
termined during initdb). This setting must be at least 128 kilobytes and at least 16 kilobytes times
max_connections. (Non-default values of BLCKSz change the minimum.) However, settings signifi-
cantly higher than the minimum are usually needed for good performance. Several tens of megabytes
are recommended for production installations. This parameter can only be set at server start.

Increasing this parameter may cause PostgreSQL to request more System V shared memory than
your operating system’s default configuration allows. See Section 16.4.1 for information on how to
adjust those parameters, if necessary.

temp_buffers (integer)

Sets the maximum number of temporary buffers used by each database session. These are session-
local buffers used only for access to temporary tables. The default is eight megabytes (8MB). The

301

Chapter 17. Server Configuration

setting can be changed within individual sessions, but only up until the first use of temporary tables
within a session; subsequent attempts to change the value will have no effect on that session.

A session will allocate temporary buffers as needed up to the limit given by temp_buffers. The
cost of setting a large value in sessions that do not actually need a lot of temporary buffers is only a
buffer descriptor, or about 64 bytes, per increment in temp_buf fers. However if a buffer is actually
used an additional 8192 bytes will be consumed for it (or in general, BLCKSZ bytes).

max_prepared_transactions (integer)

Sets the maximum number of transactions that can be in the “prepared” state simultaneously (see
PREPARE TRANSACTION). Setting this parameter to zero disables the prepared-transaction feature.
The default is five transactions. This parameter can only be set at server start.

If you are not using prepared transactions, this parameter may as well be set to zero. If you are
using them, you will probably want max_prepared_transactions to be at least as large as
max_connections, to avoid unwanted failures at the prepare step.

Increasing this parameter may cause PostgreSQL to request more System V shared memory than
your operating system’s default configuration allows. See Section 16.4.1 for information on how to
adjust those parameters, if necessary.

work_mem (integer)

Specifies the amount of memory to be used by internal sort operations and hash tables before switch-
ing to temporary disk files. The value is defaults to one megabyte (1MB). Note that for a complex
query, several sort or hash operations might be running in parallel; each one will be allowed to use
as much memory as this value specifies before it starts to put data into temporary files. Also, several
running sessions could be doing such operations concurrently. So the total memory used could be
many times the value of work_mem; it is necessary to keep this fact in mind when choosing the value.
Sort operations are used for ORDER BY, DISTINCT, and merge joins. Hash tables are used in hash
joins, hash-based aggregation, and hash-based processing of IN subqueries.

maintenance_work_mem (integer)

Specifies the maximum amount of memory to be used in maintenance operations, such as VACUUM,
CREATE INDEX,and ALTER TABLE ADD FOREIGN KEY.Itdefaults to 16 megabytes (16MB). Since
only one of these operations can be executed at a time by a database session, and an installation
normally doesn’t have many of them running concurrently, it’s safe to set this value significantly
larger than work_mem. Larger settings may improve performance for vacuuming and for restoring
database dumps.

max_stack_depth (integer)

Specifies the maximum safe depth of the server’s execution stack. The ideal setting for this parameter
is the actual stack size limit enforced by the kernel (as set by ulimit -s or local equivalent),
less a safety margin of a megabyte or so. The safety margin is needed because the stack depth is
not checked in every routine in the server, but only in key potentially-recursive routines such as
expression evaluation. The default setting is two megabytes (2MB), which is conservatively small and
unlikely to risk crashes. However, it may be too small to allow execution of complex functions. Only
superusers can change this setting.

Setting max_stack_depth higher than the actual kernel limit will mean that a runaway recursive
function can crash an individual backend process. On platforms where PostgreSQL can determine

302

Chapter 17. Server Configuration

the kernel limit, it will not let you set this variable to an unsafe value. However, not all platforms
provide the information, so caution is recommended in selecting a value.

17.4.2. Free Space Map

These parameters control the size of the shared free space map, which tracks the locations of unused space
in the database. An undersized free space map may cause the database to consume increasing amounts
of disk space over time, because free space that is not in the map cannot be re-used; instead PostgreSQL
will request more disk space from the operating system when it needs to store new data. The last few lines
displayed by a database-wide VACUUM VERBOSE command can help in determining if the current settings
are adequate. A NOTICE message is also printed during such an operation if the current settings are too
low.

Increasing these parameters may cause PostgreSQL to request more System V shared memory than your
operating system’s default configuration allows. See Section 16.4.1 for information on how to adjust those
parameters, if necessary.

max_fsm_pages (integer)

Sets the maximum number of disk pages for which free space will be tracked in the shared free-space
map. Six bytes of shared memory are consumed for each page slot. This setting must be at least 16
* max_fsm_relations. The default is chosen by initdb depending on the amount of available
memory, and can range from 20k to 200k pages. This parameter can only be set at server start.

max_fsm_relations (integer)

Sets the maximum number of relations (tables and indexes) for which free space will be tracked in
the shared free-space map. Roughly seventy bytes of shared memory are consumed for each slot. The
default is one thousand relations. This parameter can only be set at server start.

17.4.3. Kernel Resource Usage

max_files_per_process (integer)

Sets the maximum number of simultaneously open files allowed to each server subprocess. The
default is one thousand files. If the kernel is enforcing a safe per-process limit, you don’t need to
worry about this setting. But on some platforms (notably, most BSD systems), the kernel will allow
individual processes to open many more files than the system can really support when a large number
of processes all try to open that many files. If you find yourself seeing “Too many open files” failures,
try reducing this setting. This parameter can only be set at server start.

shared_preload_libraries (string)

This variable specifies one or more shared libraries that are to be preloaded at server start. If more
than one library is to be loaded, separate their names with commas. For example, ’ $1ibdir/mylib’
would cause mylib.so (or on some platforms, mylib.s1) to be preloaded from the installation’s
standard library directory. This parameter can only be set at server start.

PostgreSQL procedural language libraries can be preloaded in this way, typically by using the syntax
’$1libdir/plXXxX’ where XXX is pgsql, perl, tcl, or python

303

Chapter 17. Server Configuration

By preloading a shared library, the library startup time is avoided when the library is first used. How-
ever, the time to start each new server process may increase slightly, even if that process never uses
the library. So this parameter is recommended only for libraries that will be used in most sessions.

Note: On Windows hosts, preloading a library at server start will not reduce the time required to
start each new server process; each server process will re-load all preload libraries. However,
shared_preload_libraries is still useful on Windows hosts because some shared libraries
may need to perform certain operations that only take place at postmaster start (for example, a
shared library may need to reserve lightweight locks or shared memory and you can’t do that
after the postmaster has started).

If a specified library is not found, the server will fail to start.

Every PostgreSQL-supported library has a “magic block” that is checked to guarantee compatibility.
For this reason, non-PostgreSQL libraries cannot be loaded in this way.

17.4.4. Cost-Based Vacuum Delay

During the execution of VACUUM and ANALYZE commands, the system maintains an internal counter
that keeps track of the estimated cost of the various I/O operations that are performed. When the accu-
mulated cost reaches a limit (specified by vacuum_cost_1imit), the process performing the operation
will sleep for a while (specified by vacuum_cost_delay). Then it will reset the counter and continue
execution.

The intent of this feature is to allow administrators to reduce the I/O impact of these commands on con-
current database activity. There are many situations in which it is not very important that maintenance
commands like vACUUM and ANALYZE finish quickly; however, it is usually very important that these
commands do not significantly interfere with the ability of the system to perform other database opera-
tions. Cost-based vacuum delay provides a way for administrators to achieve this.

This feature is disabled by default. To enable it, set the vacuum_cost_delay variable to a nonzero value.

vacuum_cost_delay (integer)

The length of time, in milliseconds, that the process will sleep when the cost limit has been exceeded.
The default value is zero, which disables the cost-based vacuum delay feature. Positive values enable
cost-based vacuuming. Note that on many systems, the effective resolution of sleep delays is 10
milliseconds; setting vacuum_cost_delay to a value that is not a multiple of 10 may have the same
results as setting it to the next higher multiple of 10.

vacuum_cost_page_hit (integer)

The estimated cost for vacuuming a buffer found in the shared buffer cache. It represents the cost to
lock the buffer pool, lookup the shared hash table and scan the content of the page. The default value
is one.

vacuum_cost_page_miss (integer)

The estimated cost for vacuuming a buffer that has to be read from disk. This represents the effort to
lock the buffer pool, lookup the shared hash table, read the desired block in from the disk and scan
its content. The default value is 10.

304

Chapter 17. Server Configuration

vacuum_cost_page_dirty (integer)

The estimated cost charged when vacuum modifies a block that was previously clean. It represents
the extra I/O required to flush the dirty block out to disk again. The default value is 20.

vacuum_cost_limit (integer)

The accumulated cost that will cause the vacuuming process to sleep. The default value is 200.

Note: There are certain operations that hold critical locks and should therefore complete as quickly as
possible. Cost-based vacuum delays do not occur during such operations. Therefore it is possible that
the cost accumulates far higher than the specified limit. To avoid uselessly long delays in such cases,
the actual delay is calculated as vacuum_cost_delay * accumulated_balance/ vacuum_cost_limit
with a maximum of vacuum_cost_delay * 4.

17.4.5. Background Writer

Beginning in PostgreSQL 8.0, there is a separate server process called the background writer, whose
sole function is to issue writes of “dirty”” shared buffers. The intent is that server processes handling user
queries should seldom or never have to wait for a write to occur, because the background writer will do
it. This arrangement also reduces the performance penalty associated with checkpoints. The background
writer will continuously trickle out dirty pages to disk, so that only a few pages will need to be forced out
when checkpoint time arrives, instead of the storm of dirty-buffer writes that formerly occurred at each
checkpoint. However there is a net overall increase in I/O load, because where a repeatedly-dirtied page
might before have been written only once per checkpoint interval, the background writer might write it
several times in the same interval. In most situations a continuous low load is preferable to periodic spikes,
but the parameters discussed in this subsection can be used to tune the behavior for local needs.

bgwriter_delay (integer)

Specifies the delay between activity rounds for the background writer. In each round the writer
issues writes for some number of dirty buffers (controllable by the following parameters). It then
sleeps for bgwriter_delay milliseconds, and repeats. The default value is 200 milliseconds
(200ms). Note that on many systems, the effective resolution of sleep delays is 10 milliseconds;
setting bgwriter_delay to a value that is not a multiple of 10 may have the same results as setting
it to the next higher multiple of 10. This parameter can only be set in the postgresqgl . conf file or
on the server command line.

bgwriter_lru_percent (floating point)

To reduce the probability that server processes will need to issue their own writes, the background
writer tries to write buffers that are likely to be recycled soon. In each round, it examines up to
bgwriter_lru_percent of the buffers that are nearest to being recycled, and writes any that are
dirty. The default value is 1.0 (1% of the total number of shared buffers). This parameter can only be
set in the postgresql.conf file or on the server command line.

bgwriter_lru_maxpages (integer)

In each round, no more than this many buffers will be written as a result of scanning
soon-to-be-recycled buffers. The default value is five buffers. This parameter can only be set in the

305

Chapter 17. Server Configuration

postgresql.conf file or on the server command line.
bgwriter_all_percent (floating point)

To reduce the amount of work that will be needed at checkpoint time, the background writer also
does a circular scan through the entire buffer pool, writing buffers that are found to be dirty. In each
round, it examines up to bgwriter_all_percent of the buffers for this purpose. The default value
is 0.333 (0.333% of the total number of shared buffers). With the default bgwriter_delay setting,
this will allow the entire shared buffer pool to be scanned about once per minute. This parameter can
only be set in the postgresql . conf file or on the server command line.

bgwriter_all_maxpages (integer)

In each round, no more than this many buffers will be written as a result of the scan of the entire
buffer pool. (If this limit is reached, the scan stops, and resumes at the next buffer during the next
round.) The default value is five buffers. This parameter can only be set in the postgresqgl.conf
file or on the server command line.

Smaller values of bgwriter_all_percent and bgwriter_all_maxpages reduce the extra I/O load
caused by the background writer, but leave more work to be done at checkpoint time. To reduce load
spikes at checkpoints, increase these two values. Similarly, smaller values of bgwriter_lru_percent
and bgwriter_lru_maxpages reduce the extra I/O load caused by the background writer, but make it
more likely that server processes will have to issue writes for themselves, delaying interactive queries. To
disable background writing entirely, set both maxpages values and/or both percent values to zero.

17.5. Write Ahead Log

See also Section 27.3 for details on WAL tuning.

17.5.1. Settings

fsync (boolean)

If this parameter is on, the PostgreSQL server will try to make sure that updates are physically written
to disk, by issuing fsync () system calls or various equivalent methods (see wal_sync_method).
This ensures that the database cluster can recover to a consistent state after an operating system or
hardware crash.

However, using fsync results in a performance penalty: when a transaction is committed, Post-
greSQL must wait for the operating system to flush the write-ahead log to disk. When fsync is
disabled, the operating system is allowed to do its best in buffering, ordering, and delaying writes.
This can result in significantly improved performance. However, if the system crashes, the results of
the last few committed transactions may be lost in part or whole. In the worst case, unrecoverable
data corruption may occur. (Crashes of the database software itself are not a risk factor here. Only an
operating-system-level crash creates a risk of corruption.)

Due to the risks involved, there is no universally correct setting for fsync. Some administrators
always disable f£sync, while others only turn it off during initial bulk data loads, where there is a
clear restart point if something goes wrong. Others always leave fsync enabled. The default is to

306

Chapter 17. Server Configuration

enable fsync, for maximum reliability. If you trust your operating system, your hardware, and your
utility company (or your battery backup), you can consider disabling fsync.

This parameter can only be set in the postgresqgl. conf file or on the server command line. If you
turn this parameter off, also consider turning off full_page_writes.

wal_sync_method (string)

Method used for forcing WAL updates out to disk. If £sync is off then this setting is irrelevant, since
updates will not be forced out at all. Possible values are:

+ open_datasync (write WAL files with open () option O_DSYNC)
« fdatasync (call fdatasync () at each commit)

+ fsync_writethrough (call £sync () at each commit, forcing write-through of any disk write
cache)

« fsync (call £sync () at each commit)
+ open_sync (write WAL files with open () option O_SYNC)

Not all of these choices are available on all platforms. The default is the first method in the above
list that is supported by the platform. The open_* options also use 0_DIRECT if available. This
parameter can only be set in the postgresgl . conf file or on the server command line.

full_page_writes (boolean)

When this parameter is on, the PostgreSQL server writes the entire content of each disk page to WAL
during the first modification of that page after a checkpoint. This is needed because a page write that
is in process during an operating system crash might be only partially completed, leading to an on-
disk page that contains a mix of old and new data. The row-level change data normally stored in
WAL will not be enough to completely restore such a page during post-crash recovery. Storing the
full page image guarantees that the page can be correctly restored, but at a price in increasing the
amount of data that must be written to WAL. (Because WAL replay always starts from a checkpoint,
it is sufficient to do this during the first change of each page after a checkpoint. Therefore, one way
to reduce the cost of full-page writes is to increase the checkpoint interval parameters.)

Turning this parameter off speeds normal operation, but might lead to a corrupt database after an
operating system crash or power failure. The risks are similar to turning off fsync, though smaller. It
may be safe to turn off this parameter if you have hardware (such as a battery-backed disk controller)
or file-system software that reduces the risk of partial page writes to an acceptably low level (e.g.,
ReiserFS 4).

Turning off this parameter does not affect use of WAL archiving for point-in-time recovery (PITR)
(see Section 23.3).

This parameter can only be set in the postgresgl.conf file or on the server command line. The
default is on.

wal_buffers (integer)

The amount of memory used in shared memory for WAL data. The default is 64 kilobytes (64kB).
The setting need only be large enough to hold the amount of WAL data generated by one typical
transaction, since the data is written out to disk at every transaction commit. This parameter can only
be set at server start.

307

Chapter 17. Server Configuration

Increasing this parameter may cause PostgreSQL to request more System V shared memory than
your operating system’s default configuration allows. See Section 16.4.1 for information on how to
adjust those parameters, if necessary.

commit_delay (integer)

Time delay between writing a commit record to the WAL buffer and flushing the buffer out to disk,
in microseconds. A nonzero delay can allow multiple transactions to be committed with only one
fsync () system call, if system load is high enough that additional transactions become ready to
commit within the given interval. But the delay is just wasted if no other transactions become ready
to commit. Therefore, the delay is only performed if at least commit_siblings other transactions
are active at the instant that a server process has written its commit record. The default is zero (no
delay).

commit_siblings (integer)

Minimum number of concurrent open transactions to require before performing the commit_delay
delay. A larger value makes it more probable that at least one other transaction will become ready to
commit during the delay interval. The default is five transactions.

17.5.2. Checkpoints

checkpoint_segments (integer)

Maximum distance between automatic WAL checkpoints, in log file segments (each segment is
normally 16 megabytes). The default is three segments. This parameter can only be set in the
postgresql.conf file or on the server command line.

checkpoint_timeout (integer)

Maximum time between automatic WAL checkpoints, in seconds. The default is five minutes (5min).
This parameter can only be set in the postgresqgl . conf file or on the server command line.

checkpoint_warning (integer)

Write a message to the server log if checkpoints caused by the filling of checkpoint segment files
happen closer together than this many seconds (which suggests that checkpoint_segments ought
to be raised). The default is 30 seconds (30s). Zero disables the warning. This parameter can only
be set in the postgresql . conf file or on the server command line.

17.5.3. Archiving

archive_command (string)

The shell command to execute to archive a completed segment of the WAL file series. If this is an
empty string (the default), WAL archiving is disabled. Any %p in the string is replaced by the path
name of the file to archive, and any %f is replaced by the file name only. (The path name is relative
to the working directory of the server, i.e., the cluster’s data directory.) Use $% to embed an actual %
character in the command. For more information see Section 23.3.1. This parameter can only be set
in the postgresql.conf file or on the server command line.

308

Chapter 17. Server Configuration

It is important for the command to return a zero exit status if and only if it succeeds. Examples:

archive_command "cp "%p" /mnt/server/archivedir/"S$f"’
archive_command = ’'copy "%p" /mnt/server/archivedir/"$f"’ # Windows

archive_timeout (integer)

The archive_command is only invoked on completed WAL segments. Hence, if your server generates
little WAL traffic (or has slack periods where it does so), there could be a long delay between the
completion of a transaction and its safe recording in archive storage. To put a limit on how old
unarchived data can be, you can set archive_timeout to force the server to switch to a new WAL
segment file periodically. When this parameter is greater than zero, the server will switch to a new
segment file whenever this many seconds have elapsed since the last segment file switch. Note that
archived files that are closed early due to a forced switch are still the same length as completely full
files. Therefore, it is unwise to use a very short archive_timeout — it will bloat your archive
storage. archive_timeout settings of a minute or so are usually reasonable. This parameter can
only be set in the postgresqgl.conf file or on the server command line.

17.6. Query Planning

17.6.1. Planner Method Configuration

These configuration parameters provide a crude method of influencing the query plans chosen by the query
optimizer. If the default plan chosen by the optimizer for a particular query is not optimal, a temporary
solution may be found by using one of these configuration parameters to force the optimizer to choose a
different plan. Turning one of these settings off permanently is seldom a good idea, however. Better ways
to improve the quality of the plans chosen by the optimizer include adjusting the Planner Cost Constants,
running ANALYZE more frequently, increasing the value of the default_statistics_target configuration pa-
rameter, and increasing the amount of statistics collected for specific columns using ALTER TABLE SET
STATISTICS.
enable_bitmapscan (boolean)

Enables or disables the query planner’s use of bitmap-scan plan types. The default is on.
enable_hashagg (boolean)

Enables or disables the query planner’s use of hashed aggregation plan types. The default is on.
enable_hashjoin (boolean)

Enables or disables the query planner’s use of hash-join plan types. The default is on.
enable_indexscan (boolean)

Enables or disables the query planner’s use of index-scan plan types. The default is on.

enable_mergejoin (boolean)

Enables or disables the query planner’s use of merge-join plan types. The default is on.

309

Chapter 17. Server Configuration

enable_nestloop (boolean)

Enables or disables the query planner’s use of nested-loop join plans. It’s not possible to suppress
nested-loop joins entirely, but turning this variable off discourages the planner from using one if there
are other methods available. The default is on.

enable_seqgscan (boolean)

Enables or disables the query planner’s use of sequential scan plan types. It’s not possible to suppress
sequential scans entirely, but turning this variable off discourages the planner from using one if there
are other methods available. The default is on.

enable_sort (boolean)

Enables or disables the query planner’s use of explicit sort steps. It’s not possible to suppress explicit
sorts entirely, but turning this variable off discourages the planner from using one if there are other
methods available. The default is on.

enable_tidscan (boolean)

Enables or disables the query planner’s use of TID scan plan types. The default is on.

17.6.2. Planner Cost Constants

The cost variables described in this section are measured on an arbitrary scale. Only their relative values
matter, hence scaling them all up or down by the same factor will result in no change in the planner’s
choices. Traditionally, these variables have been referenced to sequential page fetches as the unit of cost;
that is, seq_page_cost is conventionally set to 1.0 and the other cost variables are set with reference
to that. But you can use a different scale if you prefer, such as actual execution times in milliseconds on a
particular machine.

Note: Unfortunately, there is no well-defined method for determining ideal values for the cost variables.
They are best treated as averages over the entire mix of queries that a particular installation will get.
This means that changing them on the basis of just a few experiments is very risky.

seq_page_cost (floating point)

Sets the planner’s estimate of the cost of a disk page fetch that is part of a series of sequential fetches.
The default is 1.0.

random_page_cost (floating point)

Sets the planner’s estimate of the cost of a non-sequentially-fetched disk page. The default is 4.0.
Reducing this value relative to seq_page_cost will cause the system to prefer index scans; raising
it will make index scans look relatively more expensive. You can raise or lower both values together
to change the importance of disk I/O costs relative to CPU costs, which are described by the following
parameters.

Tip: Although the system will let you set random_page_cost toless than seq_page_cost, itis not
physically sensible to do so. However, setting them equal makes sense if the database is entirely
cached in RAM, since in that case there is no penalty for touching pages out of sequence. Also,

310

Chapter 17. Server Configuration

in a heavily-cached database you should lower both values relative to the CPU parameters, since
the cost of fetching a page already in RAM is much smaller than it would normally be.

cpu_tuple_cost (floating point)
Sets the planner’s estimate of the cost of processing each row during a query. The default is 0.01.
cpu_index_tuple_cost (floating point)

Sets the planner’s estimate of the cost of processing each index entry during an index scan. The
default is 0.005.

cpu_operator_cost (floating point)

Sets the planner’s estimate of the cost of processing each operator or function executed during a
query. The default is 0.0025.

effective_cache_size (integer)

Sets the planner’s assumption about the effective size of the disk cache that is available to a single
query. This is factored into estimates of the cost of using an index; a higher value makes it more
likely index scans will be used, a lower value makes it more likely sequential scans will be used.
When setting this parameter you should consider both PostgreSQL’s shared buffers and the portion
of the kernel’s disk cache that will be used for PostgreSQL data files. Also, take into account the
expected number of concurrent queries on different tables, since they will have to share the available
space. This parameter has no effect on the size of shared memory allocated by PostgreSQL, nor does
it reserve kernel disk cache; it is used only for estimation purposes. The default is 128 megabytes
(128MB).

17.6.3. Genetic Query Optimizer

geqo (boolean)

Enables or disables genetic query optimization, which is an algorithm that attempts to do query plan-
ning without exhaustive searching. This is on by default. The gego_threshold variable provides a
more granular way to disable GEQO for certain classes of queries.

gego_threshold (integer)

Use genetic query optimization to plan queries with at least this many FROM items involved. (Note
that a FULL OUTER JOIN construct counts as only one FROM item.) The default is 12. For simpler
queries it is usually best to use the deterministic, exhaustive planner, but for queries with many tables
the deterministic planner takes too long.

geqo_effort (integer)

Controls the trade off between planning time and query plan efficiency in GEQO. This variable must
be an integer in the range from 1 to 10. The default value is five. Larger values increase the time spent
doing query planning, but also increase the likelihood that an efficient query plan will be chosen.

geqo_effort doesn’t actually do anything directly; it is only used to compute the default values for
the other variables that influence GEQO behavior (described below). If you prefer, you can set the
other parameters by hand instead.

311

Chapter 17. Server Configuration

geqo_pool_size (integer)

Controls the pool size used by GEQO. The pool size is the number of individuals in the genetic
population. It must be at least two, and useful values are typically 100 to 1000. If it is set to zero (the
default setting) then a suitable default is chosen based on gego_effort and the number of tables in
the query.

gego_generations (integer)

Controls the number of generations used by GEQO. Generations specifies the number of iterations
of the algorithm. It must be at least one, and useful values are in the same range as the pool size. If it
is set to zero (the default setting) then a suitable default is chosen based on geqgo_pool_size.

geqo_selection_bias (floating point)

Controls the selection bias used by GEQO. The selection bias is the selective pressure within the
population. Values can be from 1.50 to 2.00; the latter is the default.

17.6.4. Other Planner Options

default_statistics_target (integer)

Sets the default statistics target for table columns that have not had a column-specific target set via
ALTER TABLE SET STATISTICS. Larger values increase the time needed to do ANALYZE, but may
improve the quality of the planner’s estimates. The default is 10. For more information on the use of
statistics by the PostgreSQL query planner, refer to Section 13.2.

constraint_exclusion (boolean)

Enables or disables the query planner’s use of table constraints to optimize queries. The default is
off.

When this parameter is on, the planner compares query conditions with table CHECK constraints, and
omits scanning tables for which the conditions contradict the constraints. For example:

CREATE TABLE parent (key integer, ...);
CREATE TABLE childl1000 (check (key between 1000 and 1999)) INHERITS (parent);
CREATE TABLE child2000 (check (key between 2000 and 2999)) INHERITS (parent);

SELECT x= FROM parent WHERE key = 2400;
With constraint exclusion enabled, this SELECT will not scan chi1d1000 at all. This can improve
performance when inheritance is used to build partitioned tables.

Currently, constraint_exclusion is disabled by default because it risks incorrect results if query
plans are cached — if a table constraint is changed or dropped, the previously generated plan might
now be wrong, and there is no built-in mechanism to force re-planning. (This deficiency will probably
be addressed in a future PostgreSQL release.) Another reason for keeping it off is that the constraint
checks are relatively expensive, and in many circumstances will yield no savings. It is recommended
to turn this on only if you are actually using partitioned tables designed to take advantage of the
feature.

Refer to Section 5.9 for more information on using constraint exclusion and partitioning.

312

Chapter 17. Server Configuration

from_collapse_limit (integer)

The planner will merge sub-queries into upper queries if the resulting FrROM list would have no more
than this many items. Smaller values reduce planning time but may yield inferior query plans. The
default is eight. It is usually wise to keep this less than geqo_threshold. For more information see
Section 13.3.

join_collapse_limit (integer)

The planner will rewrite explicit JOIN constructs (except FULL JOINSs) into lists of FROM items
whenever a list of no more than this many items would result. Smaller values reduce planning time
but may yield inferior query plans.

By default, this variable is set the same as from_collapse_limit, which is appropriate for most
uses. Setting it to 1 prevents any reordering of explicit JOINs. Thus, the explicit join order specified
in the query will be the actual order in which the relations are joined. The query planner does not
always choose the optimal join order; advanced users may elect to temporarily set this variable to 1,
and then specify the join order they desire explicitly. For more information see Section 13.3.

17.7. Error Reporting and Logging

17.7.1. Where To Log

log_destination (string)

PostgreSQL supports several methods for logging server messages, including stderr and syslog.
On Windows, eventlog is also supported. Set this parameter to a list of desired log destinations
separated by commas. The default is to log to stderr only. This parameter can only be set in the
postgresqgl.conf file or on the server command line.

redirect_stderr (boolean)

This parameter allows messages sent to stderr to be captured and redirected into log files. This
method, in combination with logging to stderr, is often more useful than logging to syslog, since
some types of messages may not appear in syslog output (a common example is dynamic-linker
failure messages). This parameter can only be set at server start.

log_directory (string)

When redirect_stderr is enabled, this parameter determines the directory in which log files will
be created. It may be specified as an absolute path, or relative to the cluster data directory. This
parameter can only be set in the postgresql . conf file or on the server command line.

log_filename (string)

When redirect_stderr is enabled, this parameter sets the file names of the created log files.
The value is treated as a strftime pattern, so %-escapes can be used to specify time-varying file
names. If no %-escapes are present, PostgreSQL will append the epoch of the new log file’s open
time. For example, if 1log_filename were server_log, then the chosen file name would be
server_log.1093827753 for a log starting at Sun Aug 29 19:02:33 2004 MST. This parameter
can only be set in the postgresqgl.conf file or on the server command line.

313

Chapter 17. Server Configuration

log_rotation_age (integer)

When redirect_stderr is enabled, this parameter determines the maximum lifetime of an individ-
ual log file. After this many minutes have elapsed, a new log file will be created. Set to zero to disable
time-based creation of new log files. This parameter can only be set in the postgresgl.conf file
or on the server command line.

log_rotation_size (integer)

When redirect_stderr is enabled, this parameter determines the maximum size of an individual
log file. After this many kilobytes have been emitted into a log file, a new log file will be created.
Set to zero to disable size-based creation of new log files. This parameter can only be set in the
postgresql.conf file or on the server command line.

log_truncate_on_rotation (boolean)

When redirect_stderr is enabled, this parameter will cause PostgreSQL to truncate (overwrite),
rather than append to, any existing log file of the same name. However, truncation will occur only
when a new file is being opened due to time-based rotation, not during server startup or size-based
rotation. When off, pre-existing files will be appended to in all cases. For example, using this set-
ting in combination with a 1og_filename like postgresql-%H.log would result in generating
twenty-four hourly log files and then cyclically overwriting them. This parameter can only be set in
the postgresqgl.conf file or on the server command line.

Example: To keep 7 days of logs, one log file per day named server_log.Mon, server_log.Tue,
etc, and automatically overwrite last week’s log with this week’s log, set log_filename to

server_log.%a, log_truncate_on_rotationtoon,and log_rotation_age to 1440.

Example: To keep 24 hours of logs, one log file per hour, but also rotate sooner if the log file size
exceeds 1GB, set log_filename to server_log.%H$M, log_truncate_on_rotation
to on, log_rotation_age to 60, and log_rotation_size to 1000000. Including %M in
log_filename allows any size-driven rotations that may occur to select a file name different from
the hour’s initial file name.

syslog_facility (string)

When logging to syslog is enabled, this parameter determines the syslog “facility” to be used. You
may choose from LOCALO, LOCALl, LOCAL2, LOCAL3, LOCAL4, LOCALS5, LOCAL6, LOCAL7; the
default is LocaLo. See also the documentation of your system’s syslog daemon. This parameter can
only be set in the postgresgl.conf file or on the server command line.

syslog_ident (string)

When logging to syslog is enabled, this parameter determines the program name used to identify
PostgreSQL messages in syslog logs. The default is postgres. This parameter can only be set in
the postgresqgl.conf file or on the server command line.

17.7.2. When To Log

client_min_messages (string)

Controls which message levels are sent to the client. Valid values are DEBUG5, DEBUG4, DEBUG3,
DEBUG2, DEBUG1, LOG, NOTICE, WARNING, ERROR, FATAL, and PANIC. Each level includes all the

314

Chapter 17. Server Configuration

levels that follow it. The later the level, the fewer messages are sent. The default is NOTICE. Note
that oG has a different rank here than in 1og_min_messages.

log_min_messages (string)

Controls which message levels are written to the server log. Valid values are DEBUGS5, DEBUG4,
DEBUG3, DEBUG2, DEBUG1, INFO, NOTICE, WARNING, ERROR, LOG, FATAL, and PANIC. Each level
includes all the levels that follow it. The later the level, the fewer messages are sent to the log. The
default is NOTICE. Note that LOG has a different rank here than in client_min_messages. Only
superusers can change this setting.

log_error_verbosity (string)

Controls the amount of detail written in the server log for each message that is logged. Valid values
are TERSE, DEFAULT, and VERBOSE, each adding more fields to displayed messages. Only superusers
can change this setting.

log_min_error_statement (string)

Controls whether or not the SQL statement that causes an error condition will be recorded in the
server log. The current SQL statement is included in the log entry for any message of the specified
severity or higher. Valid values are DEBUG5, DEBUG4, DEBUG3, DEBUG2, DEBUG1, INFO, NOTICE,
WARNING, ERROR, FATAL, and PANIC. The default is ERROR, which means statements causing errors,
fatal errors, or panics will be logged. To effectively turn off logging of failing statements, set this
parameter to PANIC. Only superusers can change this setting.

log_min_duration_statement (integer)

Causes the duration of each completed statement to be logged if the statement ran for at least the
specified number of milliseconds. Setting this to zero prints all statement durations. Minus-one (the
default) disables logging statement durations. For example, if you set it to 250ms then all SQL
statements that run 250ms or longer will be logged. Enabling this parameter can be helpful in tracking
down unoptimized queries in your applications. Only superusers can change this setting.

For clients using extended query protocol, durations of the Parse, Bind, and Execute steps are logged
independently.

Note: When using this option together with log_statement, the text of statements that are logged
because of 10g_statement will not be repeated in the duration log message. If you are not using
syslog, it is recommended that you log the PID or session ID using log_line_prefix so that you
can link the statement message to the later duration message using the process ID or session
ID.

silent_mode (boolean)

Runs the server silently. If this parameter is set, the server will automatically run in background
and any controlling terminals are disassociated. The server’s standard output and standard error are
redirected to /dev/null, so any messages sent to them will be lost. Unless syslog logging is selected
or redirect_stderr is enabled, using this parameter is discouraged because it makes it impossible
to see error messages. This parameter can only be set at server start.

Here is a list of the various message severity levels used in these settings:

315

Chapter 17. Server Configuration

DEBUG[1-5]

Provides information for use by developers.
INFO

Provides information implicitly requested by the user, e.g., during VACUUM VERBOSE.
NOTICE

Provides information that may be helpful to users, e.g., truncation of long identifiers and the creation
of indexes as part of primary keys.

WARNING

Provides warnings to the user, e.g., COMMIT outside a transaction block.
ERROR

Reports an error that caused the current command to abort.
LOG

Reports information of interest to administrators, e.g., checkpoint activity.
FATAL

Reports an error that caused the current session to abort.
PANIC

Reports an error that caused all sessions to abort.

17.7.3. What To Log

debug_print_parse (boolean)
debug_print_rewritten (boolean)
debug_print_plan (boolean)
debug_pretty_print (boolean)

These parameters enable various debugging output to be emitted. For each executed
query, they print the resulting parse tree, the query rewriter output, or the execution plan.
debug_pretty_print indents these displays to produce a more readable but much longer output
format. client_min_messages or log_min_messages must be DEBUGL or lower to actually
send this output to the client or the server log, respectively. These parameters are off by default.

log_connections (boolean)

This outputs a line to the server log detailing each successful connection. This is off by default, al-
though it is probably very useful. Some client programs, like psql, attempt to connect twice while
determining if a password is required, so duplicate “connection received” messages do not necessar-
ily indicate a problem. This parameter can only be set in the postgresql . conf file or on the server
command line.

316

log_disconnections (boolean)

Chapter 17. Server Configuration

This outputs a line in the server log similar to 1og_connections but at session termination, and
includes the duration of the session. This is off by default. This parameter can only be set in the
postgresqgl.conf file or on the server command line.

log_duration (boolean)

Causes the duration of every completed statement to be logged. The default is of £. Only superusers

can change this setting.

For clients using extended query protocol, durations of the Parse, Bind, and Execute steps are logged

independently.

Note: The difference between setting this option and setting log_min_duration_statement to zero
is that exceeding 10g_min_duration_statement forces the text of the query to be logged, but
this option doesn’t. Thus, if 1og_duration iS on and 1log_min_duration_statement has a pos-
itive value, all durations are logged but the query text is included only for statements exceeding
the threshold. This behavior can be useful for gathering statistics in high-load installations.

log_line_prefix (string)

This is a print £-style string that is output at the beginning of each log line. The default is an empty
string. Each recognized escape is replaced as outlined below - anything else that looks like an escape
is ignored. Other characters are copied straight to the log line. Some escapes are only recognized by
session processes, and do not apply to background processes such as the main server process. Syslog
produces its own time stamp and process ID information, so you probably do not want to use those
escapes if you are using syslog. This parameter can only be set in the postgresqgl.conf file or on

the server command line.

Escape Effect Session only
$u User name yes
$d Database name yes
$r Remote host name or IP yes
address, and remote port
$h Remote host name or IP yes
address
$p Process ID no
St Time stamp (no milliseconds, |no
no timezone on Windows)
%m Time stamp with milliseconds |no
%i Command tag: This is the yes
command that generated the
log line.

317

Chapter 17. Server Configuration

Escape Effect Session only

Session ID: A unique identifier |yes
for each session. It is 2 4-byte
hexadecimal numbers (without
leading zeros) separated by a
dot. The numbers are the
session start time and the
process ID, so this can also be
used as a space saving way of
printing these items.

o\
Q

%1 Number of the log line for each | no
process, starting at 1

%S Session start time stamp yes

$x Transaction ID yes

%q Does not produce any output, |no

but tells non-session processes
to stop at this point in the
string. Ignored by session
processes.

Literal % no

o\©
o\©

log_statement (string)

Controls which SQL statements are logged. Valid values are none,