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Chapter 2

Introduction

2.1 Notations used in this manual

In this manual, the information that you enter is typeset in typewriter font.
User input typically takes one of three forms:

e Commands that you enter on the command line.
For example, to compute the sin of 7 /4, you can type

sin(pi/4)

e Commands requiring a prefix key.
These are indicated by separating the prefix key and the standard key with a
plus +. For example, to exit an Xcas session, you can type the control key
along with the g key, which will be denoted

Ctrl+Q

e Menu commands.
When denoting menu items, submenus are connected using ». For example,
from within Xcas you can choose the File menu, then choose the Open
submenu, and then choose the File item. This will be indicated by

File » Open » File

When describing entering a command, specific values that you enter for argu-
ments are in typewriter font, while argument placeholders that should be replaced
by actual values are in italics. Optional arguments will be enclosed by angle brack-
ets. For example, you can find the derivative of an expression with the di ff com-
mand (see Section 6.19.4 p.267), which takes the form di ff (expr{,x)]) where
expr is an expression and x is a variable or list of variables. If the optional variable
is omitted, then it will default to x. A specific example is diff (x*sin (x), x).

The index uses different typefaces for different parts of the language. The
commands themselves are written with normal characters, command options are
written in italics and values of commands or options are written in t ypewriter
font. For example (as you will see later), you can draw a blue parabola with the
command
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plotfunc (x”2,color = blue)
In the index, you will see
e plotfunc, the command, written in normal text.
e color, the command option, written in italics.

e blue, the value given to the option, written in typewriter font.

2.2 Interfaces for the giac library

The giac library is a C++ mathematics library. It comes with two interfaces you
can use directly; a graphical interface and a command-line interface. All interfaces
can do symbolic and numeric calculations, use giac’s programming language,
and have a built in help function.

The graphical interface is called Xcas, and is the most full-featured interface.
Xcas has additional help features to make it easy to use, plus it has a built-in
spreadsheet, it can do dynamic geometry and it can do turtle graphics. The output
given by this interface is typeset; for example:

Input:

sqrt (1/2)

Output:

V2
2
The command-line interface can be run inside a terminal, and in a graphical
environment can also draw graphs. The output given by this interface is in text
form; for example:

Input:

sqgrt (1/2)
Output:

sqgrt (2) /2

There is also a web version, which can be run through a javascript-enabled
browser (it works best with Firefox), either over the internet or from local files.
Other programs (for example, TeXmacs) have interfaces for the command-line
version. Some of these interfaces, such as the two mentioned here, typeset their
output.

2.2.1 The Xcas interface

How you start Xcas in a graphical environment depends on which operating sys-
tem you are using.

e If you are using Unix, you can usually find an entry for the program in a
menu provided your desktop environment. Otherwise, you can start it from
a terminal by typing
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xcas &

If for some reason Xcas becomes unresponsive, you can open a terminal
and type

killall xcas

This will kill any running Xcas processes. Xcas keeps an automatic backup
files, so when you restart Xcas, you will be asked if you want to resume
where you left off.

e If you are running Windows, you can use the explorer to go to the directory
where Xcas is installed. In that directory is a file called xcas.bat. You
can click on that file to start Xcas.

e If you are running Mac OS, you can use the Finder to go to the xcas_image . dmg
file and double-click it. Then double-click the Xcas disk icon. Finally, you
can double-click the Xcas program to launch Xcas.

When you start Xcas, a window will open with menu entries across the top,
below that will be a bar giving information about the current Xcas configuration,
and below that will be an entry line you can use to enter commands. This interface
will be described in more detail later, but the menu item

HelpwInterface

will bring up an introduction.

2.2.2 The command-line interface: icas giac

In Unix and MacOS you can run giac from a terminal with the command icas
(the command giac also works). There are two ways to use the command-line
interface.

If you just want to evaluate one expression, you can give icas the expression
(in quotes) as a command line argument. For example, to factor the polynomial
x? — 1, you can type

icas ’factor(x"2-1)"
at a command prompt. The result will be
(x—1) * (x+1)

and you will be returned to the operating system command line.

If you want to evaluate several commands, you can enter an interactive giac
session by entering the command icas (or giac) by itself at a command prompt.
You will then be given a prompt specifically for giac commands, which will look
like

0»

You can enter a giac command at this prompt and get the result.
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0>> factor (x72-1)
(x—1) % (x+1)
1>>

After the result, you will be given another prompt for giac commands. You can
exit this interactive session by typing Ctr1+D.

You can also run icas in batch mode; that is, you can have icas run giac
commands stored in a file. This can be done in Windows as well as Unix and Mac
OS. To do this, simply enter

icas filename

at a command prompt, where filename is the name of the file containing the giac
commands.

2.2.3 The Firefox interface

You can run giac without installing it by using a javascript-enabled web browser.
Using Firefox for this is highly recommended; Firefox runs giac several times
faster than Chrome, for example, and Firefox also supports MathML natively.

To run giac through Firefox, you can openthe url ht tps: //www—fourier.
ujf-grenoble.fr/~parisse/giac/xcasen.html. At the top of this
page will be a button which will open a quick tutorial; the tutorial also tells you
how to install the necessary files to run giac through Firefox without being con-
nected to the internet.

2.2.4 The TeXmacs interface

TeXmacs (http://www.texmacs.orq)is asophisticated word processor with
special mathematical features. As well as being designed to nicely typeset math-
ematics, it can be used as a frontend for various mathematics programs, including
giac.

Once you’ve started TeXmacs, you can interactively run giac within TeX-
macs with the menu command Insert»Session»Giac. Once started, you
can enter giac commands as you would in the command-line interface. You can
later re-enter a giac entry line by choosing it with your arrow keys or clicking
on it with a mouse. The TeXmacs interface also has a menu containing giac
commands.

Within TeXmacs, you can combine giac commands and their output with
ordinary text. To enter normal text within a giac session, use the menu item
FocuspInsert Text Field Above.

2.2.5 Checking the version of giac that you are using: version
giac

The version (or giac) command returns the version of giac that is running.
It doesn’t have any arguments, but it does require parentheses.
Input:

version ()


https://www-fourier.ujf-grenoble.fr/~parisse/giac/xcasen.html
https://www-fourier.ujf-grenoble.fr/~parisse/giac/xcasen.html
http://www.texmacs.org
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Output:

"giac 1.6.0, (c) B. Parisse and R. De Graeve, Institut Fourier, Universite de
Grenoble I"
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Chapter 3

The Xcas interface

3.1 The entry levels

The Xcas interface can run several independent calculation sessions, each session
will be contained in a separate tab. Before you understand the Xcas interface, it
would help to be familiar with the components of a session.

Each session can have any number of input levels. Each input level will have
a number to the left of it; the number is used to identify the level. Each level can
have one of the following:

e A command line.
This is the default; you can open a new command line with A1t +N.
You can enter a giac command (or a series of commands separated by semi-
colons) on a command line and send it to be evaluated by hitting enter. The
result will then be displayed, and another command line will appear. You can
also scroll through the command history with Ct r1+Up and Ctr1+Down.

If the output is a number or an expression, then it will appear in blue text in a
small area below the input region; this area will be an expression editor (see
Section 4.3 p.88). There will be a scrollbar and a small M to the right of this
area; the M is a menu which gives you various options.

If the output is a graphic, then it will appear in a graphing area below the
input region. To the right of the graphic will be a control panel which you
can use to manipulate the graphic (see Section 8.2 p.652).

e An expression editor.
See Section 4.3 p.88. You can open an expression editor with A1t +E.

e A two-dimensional geometry screen.
See Section 8.2 p.652. You can open a two-dimensional geometry screen
with A1t +G. This level will have a screen, as well as a control panel, menus
and a command line to control the screen.

o A three-dimensional geometry screen.
See Section 8.2 p.652. You can open a three-dimensional geometry screen
with A1t +H. This level will have a screen, as well as a control panel, menus
and a command line to control the screen.
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e A turtle graphics screen.
You can open a turtle graphics screen with A1t+D. This level will have a
screen, as well as a program editor and command line.

e A spreadsheet.
See Section 4.5 p.92. You can open a spreadsheet with A1t+T. A spread-
sheet can open a graphic screen.

e A program editor.
See Section 12.1.1 p.851. You can open a program editor with A1t +P.

e A comment line.
See Section 4.2 p.88. You can open a comment line with A1t +C.

Levels can be moved up and down in a session, or even moved to a different
session.

The level containing the cursor is the current level. The current level can be
evaluated or re-evaluated by typing enter.

You can select a level (for later operations) by clicking on the number in the
white box to the left of the level. Once selected, the box containing the number
turns black. You can select a range of levels by clicking on the number for the
beginning level, and then holding the shift key while you click on the number for
the ending level.

You can copy the instructions in a range of levels by selecting the range, and
then clicking the middle mouse button on the number of the target level.

3.2 The starting window

When you first start Xcas, you get a largely blank window.
File Edit Cfg Help Toolbox Expression Cmds Prg Graphic Geo Spreadsheet Phys Highschool Turtle |
Unnamed

2|save| Config : exact real RAD 12 xcas 6.2148M | Kbd [ x|
o

The first row will consist of the main menus; you can save and load Xcas sessions,
configure Xcas and its interface and run various commands with entries from these
menus.

The second row will contains tabs; one tab for each session that you are running
in Xcas. Each tab will have the name of its session, or Unnamed if the session
has no name. The first time you start Xcas, there will be only one session, which
will be unnamed.

The third row will contain various buttons.
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o The first button, , opens the help index (The same as the Help» Index
menu entry; see Section 3.3 p.59). If there is a command on the command
line, the help index will open at this command.

e The second button, , saves the session in a file. The first time you
click on it you will be prompted for a file name ending in . xws in which to
save the session. The button will be pink if the session is not saved or if it
has changed since the last change, it will be green once the session is saved.
The name in the title will be the name of the file used to save the session.

e The third button, which in the picture above is

>

’Config: exact real RAD 12 xcas 6.2148M

is a status line indicating the current Xcas configuration (see Section 3.5
p.69). If the session is unsaved, it will begin with Config:; if the session
is saved in a file filename.xws, this button will begin with Config file-
name.xws : . Other information on this status line:

1. exact or approx
This tells you whether Xcas will give you exact values, such as v/2,
when possible or gives you decimal approximations, such as 1.4142135.
(See Section 3.5.4 p.70.)

2. real, cplx or CPLX.
When this shows real (for example), then Xcas will by default only
find real solutions of equations. When this shows cplx, then Xcas
will find complex solutions of equations. When this shows CPLX, then
Xcas will regard variables as complex; for example, it won’t simplify
re (z) (the real part of the variable 2) to z. (See sections 3.5.5 and
3.5.6.)

3. RAD or DEG.
This tells you whether angles, as in trigonometric arguments, are mea-
sured in radians or degrees. (See Section 3.5.3 p.70.)

4. An integer.
This tells you how many significant digits will be used in floating point
calculations. (See Section 3.5.1 p.69.)

5. xcas,python “=x*,python "=xor,maple,mupad,ortig?.
This tells you what syntax Xcas will use. Xcas can be set to emulate
the languages of Python, Maple, MuPAD, or the TI89 series of calcu-
lators. (See Section 3.5.2 p.70.)

6. The last item tells you how much memory Xcas is using.

Clicking on this status line button opens a window where you can configure
the settings shown on this line as well as some other settings; you can also
open the window with the menu item Cfg»CAS Configuration (see
Section 3.5.7 p.72).

e The fourth button, | STOP | (in red), is used to halt a computation which is
running on too long.
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e The fifth button, , toggles an on-screen scientific keyboard at the bot-
tom of the window.

esc

x |y [ [ - 0 o [ 5 [ oo inv |+
z | ¢ || [ == ( [, [ [ i |sqrt | > [ - -

ofr|es|w
- efo
w0

s

ctrl msq

paste abc
Z 4

~ [=[factor]| [ a| sin |a| cos |a| tan *
simpli| prg | lim| In | exp | loglo | 10~ s | /

Along the right hand side of the keyboard are some keys that can be used to
change the keyboard.

— The X key hides the keyboard, just like pressing the button again.

— The cmds key toggles a menu bar at the bottom of the screen which
can be used as an alternate menu or persistent submenu. This bar will
contain buttons home, <<, some menu titles, >>, var, cust and X.

The << and >> buttons scroll through menu items. Clicking on one
of the menu buttons will perform the appropriate action or replace the
menu items by its submenu items. When submenu items appear, there
will also be a BACK button to return to the previous menu. Clicking on
the home button returns the menu buttons to the main menu.

After the menu buttons is a var button. This replaces the menu buttons
by buttons representing the variables that you have defined. After that
is a cust button, which displays commands that you store in a list
variable CST (see section 5.4.10).

The last button, X, closes the menu bar.

— The msg key brings up a message window at the bottom of the win-
dow which will give you helpful messages; for example, if you save a
graphic, it will tell you the name of the file it is saved in and how to
include it in a I&TEX file.

— The abc key toggles the keyboard between the scientific keyboard and
an alphabetic keyboard.

e The fifth button, , closes the current session.

3.3 Getting help

Xcas is an extensive program, but using it is simplified with several different ways
of getting help. The help menu (see section 3.4.4) has several submenus for various
forms of help, some of which are mentioned below.

Tooltips

If you hover the mouse cursor over certain parts of the Xcas window, a temporary
window will appear with information about the part. For example, if you move the
mouse cursor over the status line, you will get a message saying Current CAS
status. Click to modify.

If you type a function name in the Xcas command line, a similar temporary
window will appear with information about the function.



3.3. GETTING HELP 59

HTML help

If you press the F12 key, you will get a window which you can use to search the
html version of the manual. You can also open this window with the menu entry
HelpwFind word in HTML help.

The HTML help window has a search area; if you type a string in that area you
will be given a list of help topics that contain that string. If you choose a topic and
click View, your web browser will show the appropriate page of the manual.

The help index

If you click on the button on the status line you will get the help index. You
can also get the help index with the menu item He1lp»Index.

The help index is a list of the giac function and variable names.

OK ‘ Cancel ‘ Details
Index Related

Synonyms

You can scroll through the help index items and click on the word that you want.
There is also a line in the help index window that you can use to search the index;
you can enter some text and be taken to the part of the index with the words that
begin with that text. The ? button next to this search line will open the HTML help
window.

If you select a function or variable name, a list of related words (names of
functions or variables) and a list of synonymous words will appear in regions to
the right.
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xcas—help-index-plotfunc.png

Below the search line, there will be an area which will have a brief description
of the chosen term as well as how to call it. If the term is a command name, the
calling sequence will be given as the command name with the arguments within
parentheses separated by commas. Any optional arguments will be shown within
brackets. In the above example, the first argument to plot func is an expression,
representing the function to be graphed. There is an optional second argument,
which is either a variable name (which defaults to x) or a vector of variable names
for multivariable functions. Finally, there is an optional third argument which can
be used to specify a color for the graph.

Below the brief description will be some entry fields that you can use to enter
the arguments. If you fill them out and press the enter key, the command with the
arguments filled out will be put on the command line.

Below the entry fields for the arguments will be a list of examples of the com-
mand being used. If you click on one of these examples, it will be put on the
command line.

A more thorough description of the function and its arguments is available with
the Details button at the top of the help index, which will open the relevant part
of the manual in your browser. Alternatively, if you click on the | ? | button next to
the search line, you will be taken to the HTML help window.

You can also open the help index in the following ways:

e You can press the tab key while at the Xcas command line.
If you have entered part of a command name, you will be at the part of the
index with words that begin with the text that you entered.

e You can select a command from one of the menus. If Auto index help
is chosen (see Section 3.5.9 p.76), then the help index will open with the
command chosen.



3.4. THE MENUS 61

findhelp

You can get help from Xcas by using the findhelp function. If you enter
findhelp (function) (or equivalently 2function) at the command input, where
function is the name of a giac function, then some notes on function will appear
in the answer portion and the appropriate page of the manual will appear in your
web browser.

3.4 The menus

The menus provide different ways to work with Xcas and its sessions, as well
as ways of inserting functions and constants into the current session. Selecting a
menu item corresponding to a function or constant brings up the help index (see
section 3.3) with the chosen function or constant selected.

3.4.1 TheFile menu

The File menu contains commands that are used to save sessions, save parts of
sessions, and load previously saved sessions. This menu contains the following
entries:

e New Session
This creates and opens a new session.
The new session will be in a new tab, which will be labeled Unnamed until
you save it (using the menu item Filep Save or the keystroke A1t +S).

e Open
This allows you to open a previously saved session.
There will be a submenu with a list of saved session files in the primary
directory (see Section 5.6.1 p.110) that you can open, as well as a File
item which will open a directory browser you can use to find a session file.
This directory browser can also be opened with A1t -0.

e Import
This allows you to open a session that was created with the Maple CAS,
a TI89 calculator or a Voyage200 calculator. You can execute this session
with the Edit»Execute Session menu entry, but it may be better to
execute the commands one at a time to see if any modifications need to be
done.

e Clone
This creates a copy of the current session in a Firefox interface; either using
theserverathttp://www—fourier.ujf-grenoble.fr/~parisse/
xcasen.html (Online) or alocal copy (Offline).

e Insert
This allows you to insert a previously saved session, a link to a Firefox ses-
sion, or a previously saved figure, spreadsheet or program.

e Save (Alt+S)
This saves the current session.


http://www-fourier.ujf-grenoble.fr/~parisse/xcasen.html
http://www-fourier.ujf-grenoble.fr/~parisse/xcasen.html
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Save as
This saves the current session under a name that you choose.

Save all
This saves all of the sessions.

Export as

This allows you to save the current session in different formats; either in
KhiCas (which is giac ported to run on various calculators) format, stan-
dard Xcas format, Xcas with Python syntax format, Maple format, MuPAD
format or TI89 format.

Kill
This kills the current session.

Print

This allows you to create an image of the session in various ways.

The Preview menu item saves an image of the current session in a file that
you name. The To printer item sends an image of the current session to
the printer. The Preview selected levels item saves the images of
the commands and outputs of the selected levels, each in a separate file.

LaTeX

This has submenu items that render the session in IIEX and give you the
result in various ways. The LaTeX preview menu item displays a com-
piled I&IEX version of the current session. The LaTeX print item saves
a copy of the session in IKIEX form, along with the compiled version in var-
ious formats. The LaTeX print selection does the same as LaTeX
print, but only for the selected levels.

Screen capture
This creates a screenshot that is saved in various formats.

Quit and update Xcas
This quits Xcas after checking for a newer version.

Quit (Ctrl+Q)
This quits Xcas.

3.4.2 The Edit menu

The Edit menu contains commands that are used to execute and undo parts of the
current session. This menu contains the following entries:

e Execute worksheet (Ctrl-F9)

This recalculates each level in the session.

e Execute worksheet with pauses

This recalculates each level in the session, pausing between calculations.

e Execute below

This recalculates the current level and each level below it.
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® Remove answers below
This removes the answers to the current level and the levels below it.

e Undo (Ctrl+2)
This undoes the latest edit done to the levels, including a deletion of a level.
It can be repeated to undo more than one edit.

e Redo (Ctrl+Y)
This redoes the undone editing.

e Paste
This pastes the contents of the system clipboard to the cursor position.

e Del selected levels
This deletes any entry levels that you have selected.

e selection —-> LaTeX (Ctrl+T)
This puts a ISTEX version of the selection (level, part of a level, or answer
selected by clicking and dragging the mouse) on the system clipboard.

e New entry (A1t+N)
This inserts a new entry level above the current one.

e New parameter (Ctrl+P)
This brings up a window in which you can enter a name and conditions for
a new parameter.

e Insert newline
This inserts a newline below the cursor. Note that simply typing return will
evaluate the current entry rather than inserting a newline.

e Merge selected levels
This merges the selected levels into a single level.

3.4.3 The C£g menu

The Cfg menu contains commands that are used to set the behaviour of Xcas.
This menu contains the following entries:

e Cas configuration
This opens a window that allows you to configure how Xcas performs cal-
culations (see Section 3.5.7 p.72). This is the same window you get when
you click on the status line.

e Graph configuration
This opens a window that allows you to configure the default settings for a
graph (see Section 3.5.8 p.75). This includes such things as the initial ranges
of the variables. Each graph also has a cfg button to configure the settings
on a per graph basis.

e General configuration
This opens a window that allows you to configure various non-computational
aspects of Xcas, such as the fonts, the default paper size, and the like (see
Section 3.5.9 p.76).
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e Mode (syntax)
This changes the default syntax (see Section 3.5.2 p.70). By default, Xcas
uses its own syntax, but you can change it to Python syntax, Maple syntax,
MuPAD syntax or TI89 syntax.

e Show
This displays parts of Xcas.

— DispG
This shows the graphics display screen; which has all graphical com-
mands from the session together on one screen.

— keyboard
This shows the on-screen keyboard; the same as clicking on the Kbd
button on the status line (see Section 3.2 p.56, item 3.2).

— bandeau
This shows the menu buttons at the bottom of the window; the same
as clicking on cmds on the on-screen keyboard (see Section 3.2 p.56,
item 3.2).

- msg
This shows the messages window; the same as clicking on msg on the
on-screen keyboard (see Section 3.2 p.56, item 3.2).

e Hide
This hides the same items that you can show with Show.

e Index language
This allows you to choose a language in which to display the help index.

e Colors
This allows you to choose colors for various parts of the display.

e Session font
This allows you to choose a font for the sessions.

e All fonts
This allows you to choose fonts for the session, the main menu and the key-
board.

® browser
This allows you to choose a browser that Xcas will use when needed. If this
is blank, then Xcas will use its own internal browser.

e Save configuration
This saves the configurations that you chose with the C£g menu or chose by
clicking on the status line.

3.4.4 The Help menu

The He 1p menu contains commands that let you get information about Xcas from
various sources. This menu contains the following entries:
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e Index

This brings up the help index (see Section 3.3 p.59).

e Find word in HTML help (F12)
This brings up a page which helps you search for keywords in the html doc-
umentation that came with Xcas (see Section 3.3 p.59). The help will be
displayed in your browser.

e Interface
This brings up a tutorial for the Xcas interface. The tutorial will be dis-
played in your browser.

e Reference card, fiches
This brings up a pdf reference card for Xcas. The card will be displayed in
your browser.

e Manuals
This allows you to choose from a variety of manuals for XCAS, which will
appear in your browser.

— CAS reference
This brings up the manual for Xcas.

— Algorithmes (HTML)
This brings up a manual for the algorithms used by Xcas.

— Algorithmes (PDF)
This brings up a pdf version of the manual for the algorithms used by
Xcas.

— Geometry
This brings up a manual for two-dimensional geometry in Xcas.

— Programmation
This brings up a manual for programming in Xcas.

— Simulation
This brings up a manual for statistics and using the Xcas spreadsheet.

— Turtle
This brings up a manual for using the Turtle drawing screen in
Xcas.

— Exercices
This brings up a page of exercises that you can do with Xcas.

— Amusement
This brings up a page of mathematical amusements that you can work
through with Xcas.

- PARI-GP
This brings up documentation for the GP/PARI functions.

e Internet
The Internet menu contains menu items that take you to various web
pages related to Xcas. Among them are the following entries:
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— Forum
This takes you to the Xcas forum.

— Update help
This installs updated help files (retrieved from the Xcas website).

There are also several menu items that take you to Xcas related pages writ-
ten in French; namely:

— Aide-memoire lycee
This takes you to a paper discussing Xcas and high school.

— Documents pedagogiques lycee
This takes you to a page on the Xcas website with a list of useful links.

— Documents algorithmique
This takes you to a page on the Xcas website with a list of links.

— Site Lycee de G. Connan
This takes you to a page about a free book written by Guillaume Con-
nan teaching algorithms to high school students.

— Site Lycee de L. Briel
This takes you to a website about Xcas for high school students.

— Calcul formel au lycee, par D. Chevallair
This takes you to a pdf file discussing the use of Xcas in high school.

— Site de F. Han
This takes you to a website by Frederic Han about Xcas and a QT
frontent for giac.

— Ressources Capes
This takes you to a website with various external sources.

— Ressources Agregation externe
This takes you to a collection of external resources.

— Ressources Agregation interne

This takes you to a page on the Xcas website.

e Start with CAS
This menu has the following entries:

— Tutorial
This opens up the tutorial.
— Solutions

This opens up the solutions to the exercises in the tutorial.

e Tutoriel algo
This opens up a tutorial on algorithms and programming with Xcas.

e Rebuild help cache
This rebuilds the help index.

e About
This displays a message window with information about Xcas.
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e Examples
This allows you to choose from a variety of example worksheets, which will
then be copied to your current directory and opened.

3.4.5 The Toolbox menu

The Toolbox menu contains commands that are used to insert operators into the
session. This menu includes the following entries:

e New entry (Alt+N)
This inserts a new level.

e New comment (Alt+C)
This inserts a new comment level.

The other entries let you insert mathematical operations into the current level. If
Auto index help is chosen (see Section 3.5.9 p.76), then the help index will
open help index (see Section 3.3 p.59) with the chosen command selected.

3.4.6 The Expression menu

The Expression menu contains commands that are used to transform expres-
sions. The first entry is New expression (which is equivalent to A1t +E),
which inserts a new level and brings up the on-screen keyboard (see Section 3.2
p.56, item 3.2). The rest of the entries can be used to insert various transformations.

3.4.7 The Cmds menu

The Cmds menu contains various giac functions and constants separated into
categories. If Auto index help is chosen (see Section 3.5.9 p.76), then when
you select a function or constant, the help index (see Section 3.3 p.59) opens with
the function or constant selected, which can be used to insert the entry on the com-
mand line. Otherwise, the constant or function will be inserted on the command
line.

3.4.8 The Prg menu

The Prg menu contains commands that are used to write giac programs. The
first entry, Prg»New program (equivalent to A1t +P), inserts a program level
and brings up the program editor (see Section 12.1.1 p.851).The other entries are
useful commands for writing giac programs.

3.49 The Graphic menu

The Graphic menu contains commands that are used to create graphs. The first
entry, GraphicwAttributs (equivalent to A1t +K), brings up a window con-
taining different attributes of the graph (such as line width, color, etc.). The other
entries are commands for creating and manipulating graphs.
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3.4.10 The Geo menu

The Geo menu contains commands that are used to work with two- and three-
dimensional geometric figures. The first two entries, Geo»New figure 2d
(equivalentto A1t +G) and GeowNew figure 3d (equivalenttoAlt+H)create
levels for two- and three-dimensional figures, respectively. (See Section 8.2 p.652.)
The other menu items are for working with the figures.

3.4.11 The Spreadsheet menu

The Spreadsheet menu contains commands that are used to work with spread-
sheets. (See See Section 4.5 p.92.) The first menu item, Spreadsheet®»New
spreadsheet (equivalent to A1t +T), brings up a window where you can set the
size and other attributes of a spreadsheet, after which one will be created. The sub-
menus contain commands for working with spreadsheets. Notice that the spread-
sheet itself will have menus that are the same as these submenus.

3.4.12 The Phys menu

The Phys menu contains submenus with various categories of constants, as well
as functions for converting units.

3.4.13 The Highschool menu

The Highschool menu contains computer algebra commands that are useful
at different levels of highschool. There is also a Program submenu with some
program control functions.

3.4.14 The Turtle menu

The Turtle menu contains the commands that are used to create and control
a Turtle screen. The first menu item, Turt le»New turtle, creates a Turtle
drawing screen. The other menu items contain commands for working with the
screen.

3.5 Configuring Xcas

3.5.1 The number of significant digits: Digits DIGITS

By default, Xcas uses and displays 12 significant digits, but you can set the num-
ber of digits to other positive integers. If you set the number of significant digits to
a number less than 14, then Xcas will use the computer’s floating point hardware,
and so calculations will be done to more significant digits than you asked for, but
only the number of digits that you asked for will be displayed. If you set the num-
ber of significant digits to 14 or higher, then both the computations and the display
will use that number of digits.

You can set the number of significant digits for Xcas by using the CAS config-
uration screen (see Section 3.5.7 p.72). The number of significant digits is stored
in the variable DIGITS or Digits, so you can also set it by giving the variable
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DIGITS anew value, as in DIGITS:= 20. The value will be stored in the con-
figuration file (see Section 3.5.10 p.77), and so can also be set there.

3.5.2 The language mode: xcas_mode

Xcas has its own language which it uses by default, but you can have it use Python
(with the option having the ~ character represent either exponentiation or the ex-
clusive or operator), the language used by Maple, MuPAD or the TI89 calculator.

You can set which language Xcas uses in the CAS configuration screen (see
Section 3.5.7 p.72). You can also set the language with the xcas_mode command.

e The xcas_mode command takes one argument: an integer: 0, 1, 2, 3, 256
or 512.

— xXcas_mode (0)
to use the Xcas language.

— xcas_mode (1)
to use the Maple language.

— Xcas_mode (2)
to use the MuPAD language.

— xcas_mode (3)
to use the TI89 language.

— Xcas_mode (256)
to use the Python language with ~ representing exponentiation.

— xcas_mode (512)
to use the Python language with ~ representing exclusive or.

The language you choose will be stored in the configuration file (see Section 3.5.10
p.77), and so can also be set there.

3.5.3 The units for angles: angle_radian

By default, Xcas assumes that any angles you use (for example, as the argument
to a trigonometric function) are being measured in radians. If you want, you can
have Xcas use degrees.

You can set which angle measure Xcas uses in the CAS configuration screen
(see Section 3.5.7 p.72). Your choice will be stored in the variable angle_radian;
this will be 1 if you measure your angles in radians and 0 if you measure your an-
gles in degrees. You can also change which angle measure you use by setting the
variable angle_radian to the appropriate value. The angle measure you want
to use will be stored in the configuration file (see Section 3.5.10 p.77), and so can
also be set there.

3.5.4 Exact or approximate values: approx_mode

Some numbers, such as 7 and v/2, can’t be written down exactly as decimal num-
bers. When computing with such numbers, by default Xcas leaves them in exact,
symbolic form. If you want, you can have Xcas automatically give you decimal
approximations for these numbers.
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You can set whether or not Xcas gives you exact or approximate values by
using the CAS configuration screen (see Section 3.5.7 p.72). Your choice will be
stored in the variable approx_mode, where a value of 0 means that Xcas will
give you exact answers when possible and a value of 1 means that Xcas will give
you decimal approximations. Your choice will be stored in the configuration file
(see section 3.5.10), and so can also be set there.

3.5.5 Complex numbers: cfactor complex_mode

When factoring polynomials (see Section 6.12.10 p.205), by default Xcas won’t
introduce complex numbers if they aren’t already being used. For example,

factor(x"2 + 2)

simply returns
242

but if an expression already involves complex numbers then Xcas uses them;
factor (i*x"2 + 2%1i)

will return

(v~ iv2) (i - v2)

Xcas can also find complex roots when complex numbers are not present; for
example, the command cfactor (see Section 6.12.10 p.205) will factor over the
complex numbers.

cFactor is a synonym for cfactor.

cfactor (x”2 + 2)

returns

(2 +1v2) (= - iv2)

If you want Xcas to use complex numbers by default, you can turn on complex
mode. In complex mode,

factor (x"2 + 2)

returns

(:g + i\/i) (:c _ i\/i)

You can turn on complex mode from the CAS configuration screen (see Sec-
tion 3.5.7 p.72). This mode is determined by the value of the variable complex_mode;
if this is 1 then complex mode is on, if this is O then complex mode is off. This
option will be stored in the configuration file (see Section 3.5.10 p.77), and so can
also be set there.
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3.5.6 Complex variables: complex variables

By default, new variables are assumed to be real; functions which work with the
real and imaginary parts of variables will assume that a variable is real. For exam-
ple, re returns the real part of its argument and im returns the imaginary part (see
Section 6.10.2 p.194), and so

re(z)
returns
z
and
im(z)
returns
0

If you want variables to be complex by default, you can have Xcas use com-
plex variable mode. You can set this from the CAS configuration screen (see Sec-
tion 3.5.7 p.72). Your choice will be stored in the variable complex_variables,
where a value of 0 means that Xcas will assume that variables are real and and a
value of 1 means that Xcas will assume that variables are complex. Your choice
will be stored in the configuration file (see Section 3.5.10 p.77), and so can also be
set there.

3.5.7 Configuring the computations

You can configure how Xcas computes by using the menuitem Cfg»-Cas configuration
or by clicking on the status line. This will open a window with the following op-
tions:

1. Prog style (default: Xcas)
This has a menu from which you can choose a different language to program
in; you can choose from Xcas, Python ~“==x*x (Python syntax, except
that ~ will be the exponentiation operator as in Xcas rather than the exclu-
sive or operator as in Python), Python “==xor (Python syntax, where ~
is the exclusive or operator), Maple, Mupad and TI89/92.

2. eval (default: 25)
This has an input field where you can type in a positive integer specifying
the maximum number of recursions allowed when evaluating expressions.

3. prog (default: 1)
This has an input field where you can type in a positive integer specifying
the maximum number of recursions allowed when executing programs.

4. recurs (default: 100)
This has an input field where you can type in a positive integer specifying
the maximum number of recursive calls.
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debug (default: 0)

This has an input field where you can type in a 0 or 1. If this is 1, then Xcas
will display intermediate information on the algorithms used by giac. If
this is 0, then no such information is displayed.

. maxiter (default: 20)

This has an input field where you can type in an integer specifying the max-
imum number of iterations to be used in Newton’s method.

. Float format (default: standard)

This has a menu from which you can choose how to display decimal num-
bers. Your choices will be:

e standard In standard notation, a number will be written out com-
pletely without using exponentials; for example, 15000.12 will be
displayed as 15000.12.

e scientific In scientific notation, a number will be written as a
number between 1 and 10 times a power of ten; for example, 15000.12
will be displayed as 1.500012000000e+04 (where the number af-
ter e indicates the power of 10).

e engineer In engineering notation, a number will be written as a
number between 1 and 1000 times a power of ten, where the power of
10 is a multiple of three. For example, 15000.12 will be displayed
as 15.00012e3.

. Digits (default: 12)

This has an input field where you can type in a positive integer which will
indicate the number of significant digits that Xcas will use.

. epsilon (default: 1e-12)

This has an input field where you can type in a floating point number which
will be the value of epsilon used by epsilon2zero, which is a function
that replaces numbers with absolute value less than epsilon by O (see Sec-
tion 6.59.1 p.637).

proba (default: 1e-15)

This has an input field where you can type in a floating point number. If this
number is greater than zero, then in some cases giac can use probabilistic
algorithms and give a result with probability of being false less than this
value. (One such example of a probabilistic algorithm that giac can use
is the algorithm to compute the determinant of a large matrix with integer
coefficients.)

approx (default: unchecked)

This has a checkbox. If the box is checked, then exact numbers such as /2
will be given a floating point approximation. If the box in unchecked, then
exact values will be used when possible. (See Section 3.5.4 p.70.)

autosimplify (default: 1)
This has an input field where you can type in 0, 1 or 2. A value of 0 means
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13.

14.

15.

16.

17.

18.

19.

20.

no automatic simplification will be done, a value of 1 means grouped sim-
plification will be automatic. A value of 2 means that all simplification will
be automatic.

threads (default: 1)
This has an input field where you can enter a positive integer to indicate the
number of threads (for a possible future threaded version).

Integer basis (default: 10)
This has a menu from which you can choose an integer base to work in; your
choices will be 8, 10 and 16.

radian (default: checked)
This has a checkbox. If the box is checked, then angles will be measured in
radians, otherwise they will be measured in degrees.

Complex (default: unchecked)

This has a checkbox. If this box is checked, then giac will work in complex
mode, meaning, for example, that polynomials will be factored with complex
numbers if necessary.

Cmplx_var (default: unchecked)

This has a checkbox. If this box is checked, then variables will by default
be assumed to be complex. For example, the expression re (z) won’t be
simplified, it will return re (z) . If this box is unchecked, then variables by
default will be assumed to be real, and so re (z) will be simplified to z.

increasing power (default: unchecked)

This has a checkbox. If this box is checked, then polynomials will be written
out in increasing powers of the variable; otherwise they will be written in
decreasing powers.

All_trig_sol (default: unchecked)

This has a checkbox. If this box is checked, then Xcas will give the com-
plete solutions of trigonometric equations. For example, the solution of
cos(z) = 0 will be given as [(2n_0m + 7)/2|, where ng can be any integer.
If this box is unchecked, then only the primary solutions of trigonometric
equations will be given. For example, the solutions of cos(x) = 0 will be
the pair [—7/2,7/2].

Sqgrt (default: checked)

This has a checkbox. If this box is checked, then the fact or command will
factor second degree polynomials, even when the roots are not in the field
determined by the coefficients. For example, factor (x"2 - 3) will re-
turn (x — \/§) (a: + \/§) If this box is unchecked, then factor (x"2 -
3) will return 22 — 3.

This page also has buttons for applying the settings, saving the settings for future
sessions, canceling any new settings, and restoring the default settings.
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3.5.8 Configuring the graphics

You can configure each graphics screen by clicking on the c £ g button on the graph-
ics screen’s control panel to the right of the graph. You can also change the default
graphical configuration using the the menu item Cfg»Graph configuration.
You will then be given a window in which you can change the following options:

e X— and X+
These determine the z values for which calculations will be done.

e Y-and Y+
These determine the y values for which calculations will be done.

e Z—and Z+
These determine the z values for which calculations will be done.

e t—andt+
These determine the ¢ values for which calculations will be done; when plot-
ting parametric curves, for example.

o WX- and WX+
These determine the range of = values for the viewing window.

e WY- and WY+
These determine the range of y values for the viewing window.

e TXand TY
These determine the tick ranges on the x- and y-axes.

e class_min
This determines the minimum size of a statistics class.

e class_size
This determines the default size of a statistics class.

e autoscale
When checked, the graphic will be autoscaled.

e ortho
When checked, all axes of the graphic will be scaled equally.

e >W and W>
These are convenient shortcuts to copy the X—, X+, Y- and Y+ values to
WX—, WX+, WY— and WY+, or the other way around.

Note that the viewing window is not the same as the calculation window; if the
calculation window is larger than the visible window, then you can scroll to bring
other parts of the calculation window into view.

This page also has buttons for applying the settings, saving the settings for
future sessions, or canceling any new settings.
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3.5.9 More configuration

You can configure other aspects of Xcas (besides the computational aspects and
graphics) using the the menu item Cfg»-General configuration. You will
then be given a window in which you can change the following options:

e Font
This lets you choose a session font, the same as choosing the menu item
CfgpSession font.

e lLevel
This determines what type of level should be open when you start a new
session.

e browser
This determines what browser Xcas will use when it requires one, for ex-
ample when displaying help. If this is empty, Xcas will use its built-in
browser.

e Auto HTML help
If this box is checked, then whenever you choose a function from a menu,
a help page for that function will appear in your browser. Regardless of
whether this box is checked or not, the help page will also appear in your
browser if you enter ?function from a command box.

e Auto index help If this box is checked, then whenever you choose a
command from a menu, the help index page for that function will appear.
This is the same page you get when you choose the command from the help
index. (See Section 3.3 p.59.)

e Print format
This determines the paper size for printing and saving files. There is also
a button you can use to have the printing done in landscape mode; if this
button is not checked, the printing will be done in portrait.

e Disable Tool tips
If this box is checked, Xcas will stop displaying tool tips (see Section 3.3
p.59).

e rows and columns
These determine the default number of rows and columns for the matrix
editor and spreadsheet (see Section 4.5 p.92).

e PS view
This determines what program is used to preview Postscript files.

e Step by step
If this is checked, then Xcas will not save context information.

® Proxy
This sets a proxy server for updates.
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3.5.10 The configuration file: widget_size cas_setup xcas_mode
xyztrange

When you save changes to your configuration, they are stored in a configuration
file, which will be .xcasrc in your home directory in Unix and xcas.rc in
Windows. This file will have four functions — widget_size, cas_setup,
xcas_mode and xyztrange — which determine the configuration and which
are evaluated when Xcas starts.

The widget_size command sets properties of the opening Xcas window.

e widget_size takes between 1 and 12 arguments. The arguments (in or-
der) are:

— Font size. The first argument is a positive integer specifying the font
size. Optionally, this can be a bracketed list whose first number indi-
cates the font and the second the font size.

— Horizontal and vertical offset. The second and third arguments are hor-
izontal and vertical distances in pixels from the upper left hand corner
of the screen. They specify where the upper left corner of the Xcas
window is when it opens.

— Window size. The fourth and fifth arguments specify the width and
height in pixels of the Xcas window when it opens.

— Keyboard (see Section 3.2 p.56, item 3.2). The sixth argument is either
0 or 1; a 1 indicates that the on-screen keyboard will be open when
Xcas starts, a 0 indicates that the keyboard will be hidden.

— Open browser. The seventh argument is either O or 1; a 1 indicates
that the browser will be automatically opened to display help for the
selected command in the menu or index, a O indicates that the browser
will not be automatically opened.

— Message window (see Section 3.2 p.56, item 3.2). The eighth argument
is either O or 1; a 1 indicates that Xcas will open with the message
window, a 0 indicates that Xcas will open without the message win-
dow.

— The ninth argument is currently not used.

— Browser name. The tenth argument is a string with the name of the
browser to use to read the help pages. A value of "builtin" means
that Xcas will use a small browser built into Xcas.

— Starting level (see Section 3.1 p.55). The eleventh argument indicates
what level Xcas will start at; a 0 means command line, a 1 means
program editor, a 2 means spreadsheet, and a 3 means a 2-d geometry
screen.

— Postscript previewer. The twelfth argument is a string with the name of
a program for postscript previews; for example, "gv".

The cas_setup command determines how computations will be performed.

e cas_setup takes nine arguments. The arguments (in order) are:
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— Approximate mode (see Section 3.5.4 p.70). A 1 means Xcas works in

approximate mode, a 0 means exact mode.

Complex variables (see Section 3.5.5 p.71). A 1 means Xcas works
with complex variables, a 0 means real variables.

Complex mode (see Section 3.5.5 p.71). A 1 means Xcas works with
in complex mode, a 0 means real mode.

Radian (see Section 3.5.3 p.70). A 1 means work in radians, a 0 means
work in degrees.

Display format (see Section 3.5.7 p.72, item 7). A 0 means use the
standard format to display numbers, a 1 means use scientific format, a 2
means use engineering format, and a 3 means use floating hexadecimal
format (which is standardized with a non-zero first digit).

Epsilon (see Section 3.5.7 p.72, item 9). This is the value of epsilon
used by Xcas.

Digits. This is the number of digits to use to display a float.
Tasks. This will be used in the future for parallelism.

Increasing power. This is 0 to display polynomials in increasing power,
1 to display polynomials in decreasing powers.

The xcas_mode command determines what computer language Xcas will
use (see Section 3.5.2 p.70).

e The xcas_mode command takes one argument: an integer: O, 1, 2, 3, 256
or 512.

xcas_mode (0)
to use the Xcas language.

xcas_mode (1)
to use the Maple language.

xcas_mode (2)
to use the MuPAD language.

xcas_mode (3)
to use the TI89 language.

xcas_mode (256)
to use the Python language with ~ representing exponentiation.

xcas_mode (512)
to use the Python language with ~ representing exclusive or.

The xyztrange command sets or returns the values of the graphics configu-

ration.

To set the values:

e xyztrange takes 12 arguments:

— x- and x+, the beginning and the end of the z interval for which calcu-

lations will be done.



78 CHAPTER 3. THE XCAS INTERFACE

— y- and y+, the beginning and the end of the y interval for which calcu-
lations will be done.

— z- and z+, the beginning and the end of the z interval for which calcu-
lations will be done.

— t- and t+, the beginning and the end of the ¢ interval for which calcula-
tions will be done, when plotting parametric curves, for example.

— wx- and wx+, the beginning and the end of the z values for the viewing
window.

— wy- and wy+, the beginning and the end of the y values for the viewing
window.

— show_axes, to determine whether axes are shown or hidden (1 to show,
0 to hide).

— class_min, the minimum size of a statistics class.

— class_size, the default size of a statistics class.

e xyztrange (Xx-Xx+,y-,y+,2-,2+, - t+,Wx-, wx+,wy- wy+,show_axes,class_min,class_size)
sets the parameters to the given values.

Note that the viewing window is not the same as the calculation window; if the
calculation window is larger than the visible window, then you can scroll to bring
other parts of the calculation window into view.

To return the values:
e xyztrange takes no arguments.

e xyztrange () returns a matrix where each row consists of a short descrip-
tion of the first twelve arguments along with their values.

3.6 Printing and saving

3.6.1 Saving a session

Each tab above the status line represents a session, the tab for the active session
will be yellow. The label of each tab will be the name of the file that the session is
saved in; if the session hasn’t been saved the tab will read Unnamed.

You can save your current session by clicking on the Save button on the status
line. If the session contains unsaved changes the Save button will be red; the
button will be green when nothing needs to be saved. The first time that you save a
session you will be prompted for a file name; you should choose a name that ends
in . xws. Subsequent times that you save a session it will be saved in the same file;
to save a session in a different file you can use the menu item FilepSave as.

If you have a session saved in a file and you want to load it in a tab, you can
use the menu item FilewOpen. From there you can choose a specific file from
a list or open a directory browser that you can use to choose a file. The directory
browser can also be opened with A1t -0.
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3.6.2 Saving a spreadsheet

If you have a spreadsheet in one of the levels, you can save it separately from the
rest of the session.

When a spreadsheet is inserted it will have menus next to the level number.
The Table menu has items that let you save the spreadsheet in different formats,
as well as insert previously saved spreadsheets.

You can save a spreadsheet with the TablepSave sheet as text menu
item. If you select that, you will be prompted for a file name; you should choose
a file name that ends in .tab. Once you save a spreadsheet, there will be a
button to the right of the menus which you can use to save any changes you
make. If you want to save the spreadsheet under a different name, you can use
the TablewSave as alternate filename menu entry.

You can save a spreadsheet in other formats. The Tablem»Save as CSV
menu item will save a spreadsheet in a comma-separated values file, and the Tablep Save
as mathml menu item will save the spreadsheet in as a MathML file.

You can use the Table menu to insert previously saved spreadsheets; the menu
item Tablew Insert will bring up a directory browser that you can use to select
a file to enter.

3.6.3 Saving a program

You can open up a program editor (see Section 12.1.1 p.851) with the menu item
PrgwNew programor with A1t-P. If you select this item, you will be prompted
for information to fill out a template for a program and then be left in the program
editor.

At the top of the program editor are menus and buttons, at the far right will be
a Save button that you can press to save the program. The first time you save a
program, you will be prompted for a file name; you should choose a name ending
in .cxx. Once a program is saved, the file name will appear to the right of the
Save button. If you want to save the program under a different name, you can use
the Progp»Save as item from the program editor menu.

To insert a previously saved program, you can use the Prog»Load item from
the program editor menu.

3.6.4 Printing a session

You can print a session with the FilepPrint»To printer menu item.

If you prefer to save the printed form as a file, youcanuse the FilepPrint»Preview
menu item. You will prompted for a file name to save the printed form in; the file
will be a PostScript file, so the name should end in .ps. If you only want to
save certain levels in printable form, you can use the FilepPrint»Preview
selected levels menu item; this file will be encapsulated PostScript, so the
name should end in . eps.

3.7 Translating to other computer languages

Xcas can translate a session, or parts of a session, to other computer languages;
notably I&TEX and MathML.
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3.7.1 Translating an expression to BIEX: latex

The 1atex command translates expressions to IATEX.

e latex takes one argument:
expr, an expression.

e latex (expr) returns the result of evaluating expr written in the IATEX type-
setting language.

Example.
Input:

latex (1+1/2)
Output:
\frac{3}{2}

3.7.2 Translating the entire session to IXTgX

To save your entire document as a complete IATEX file, you can use the menu item
FilepLaTeXpLaTeX preview.

3.7.3 Translating graphical output to IXTgX: graph2tex graph3d2tex

You can see all of your graphic output at once on the DispG screen, which you
can bring up with the command DispG (). (This screen can be cleared with the
command line command erase ().) On the DispG screen there willbe aPrint
menu; the Print»LaTeX print will give you several filesDispG.tex,DispG.dvi,
DispG.ps and DispG.png with the graphics in different formats. To save it
without using the DispG () command you can use the graph2tex command.

The graph2tex command saves all current graphic output to a I&IgX file.

e graph2tex takes one argument:
filename . t ex, the name of a file.

e graph2tex ("filename.tex") saves all graphic output in IIEX form to
the file filename . tex.

Example.
Input:

graph2tex ("myfile.tex")

results in a I&TEX file named myfile.tex with the graphs. To save a three-
dimensional graph, you can use the command graph3d2tex.

To save a single graph as a IATEX file, you can use the M menu to the right of
the graph. Selecting M»-Export Print®Print (with LaTeX) will save
the current graph. You can also save a single graph by selecting that level, then use
the menu item FilepLaTeXpLaTeX print selection. This method will
save the graph in several formats; sessionname . t ex, sessionname . dvi, session-
name .ps and sessionname .png. If the session has not been saved and named,
the files will begin with sessionn for some integer n.
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3.7.4 Translating an expression to MathML: mathml
The mathml command translates expressions to MathML.

e mathml takes one argument:
expr, an expression.

e mathml (expr) returns the result of evaluating expr written in MathML.

Example.
Input:

mathml (1/4 + 1/4)

Output:

<?xml version="1.0" encoding="is0-8859-1"7?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN"
"http://www.w3.0rg/TR/MathML2/dtd/xhtml-mathll-f.dtd" [

<!ENTITY mathml "http://www.w3.o0rg/1998/Math/MathML">

1>

<html xmlns="http://www.w3.0rg/1999/xhtml">

<body>

<math mode="display" xmlns="http://www.w3.0rg/1998/Math/MathML">
<mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac>
</math><br/>

</body> </html>
which is the number 1/2 in MathML form, along with enough information to make
it a complete HTML document.
3.7.5 Translating a spreadsheet to MathML
You can translate an entire spreadsheet to MathML with the spreadsheet menu
command Tablep»Save as mathml.
3.7.6 Indent an XML string: xml_print
The xml_print command formats an XML string.

e xml_print takes one argument:
str, a string, assumed to contain XML.

e xml_print (str) returns a string with the XML code indented for better
readability. The default indentation is two spaces.

Example.
Input:
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xml_print ("<?xml version='1.0"?><root><childl>some
content</childl><child2></child2><child3/></root>")

Output:

<?xml version=’1.0’7?>

<root>
<childl>some content</childl>
<child2></child2>
<child3/>

</root>

3.7.7 Export to presentation or content MathML: export_mathml

You can translate the result of an expression into various types of MathML with
the export_mathml command.

e export_mathml takes one mandatory argument and one optional argu-
ment:
— expr, an expression.
— Optionally, format, which can be content or display, specifying

what output format should be used.

e export_mathml (expr ( format)) returns the result of evaluating expr
written in MathML, with a single math block which will be a semantics
block.

— With no second argument, the semantics block will contain both
presentation and content MathML.

— With a second argument of content, the semantics block will
only contain the content MathML.

— With a second argument of display, the semantics block will
only contain the presentation MathML.

Examples.

e [nput:

xml_print (export_mathml (a+2xb))

Output:
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<math xmlns=’"http://www.w3.0rg/1998/Math/MathML’ >
<semantics>
<mrow xref=’id5’>
<mi xref=’1idl’>a</mi>
<mo>+</mo>
<mrow xref=’'id4’>
<mn xref=’id2’>2</mn>
<mo>&it; </mo>
<mi xref=’1id3’>b</mi>
</mrow>
</mrow>
<annotation-xml encoding=’'MathML-Content’>
<apply id=’id5’>
<plus/>
<ci id=’idl’>a</ci>
<apply id=’id4’>
<times/>
<cn id=’"id2’ type='’integer’>2</cn>
<ci 1d="id3’>b</ci>
</apply>
</apply>
</annotation-xml>
<annotation encoding=’Giac’>a+2*b</annotation>
</semantics>
</math>

o Input:
xml_print (export_mathml (a+2+b,content))

Output:

<math xmlns='http://www.w3.0rg/1998/Math/MathML’ >
<apply id=’"1id5’>
<plus/>
<ci id=’idl’>a</ci>
<apply id="id4’>
<times/>
<cn 1d="id2’ type='integer’>2</cn>
<ci id=’id3’>b</ci>
</apply>
</apply>
</math>

o Input:
xml_print (export_mathml (a+2+b,display))

Output:
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<math xmlns="http://www.w3.0rg/1998/Math/MathML’ >
<mrow>
<mi>a</mi>
<mo>+</mo>
<mrow>
<mn>2</mn>
<mo>&it; </mo>
<mi>b</mi>
</mrow>
</mrow>
</math>

e [nput:

:=export_mathml (1/(x"2+1),display) :;
xml_print (s)

Output:

<math mode=’display’ xmlns='http://www.w3.0rg/1998/Math/MathML
<mfrac>
<mn>1</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
</math>

3.7.8 Translating a Maple file to Xcas: maple2xcas

The maple2xcas command translates a file of Maple commands to the Xcas
language

e maple2xcas takes two arguments:

— Maplefile, the name of the Maple input file.
— XcasFile, the file where you want to save the Xcas commands.
e maple2xcas ("MapleFile", "XcasFile") results in an Xcas file named

XcasFile with the Maple commands in MapleFile translated to the Xcas
language.
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Entry in Xcas

4.1 Suppressing output: nodisp :;

If you enter a command into Xcas, the result will appear in the output box below
the input. If you enter

a:= 2+2

then

will appear in the output box.
The nodisp command is used to evaluate an expression and suppress the
output.

e nodisp takes one argument:
expr, an expression.

e nodisp (expr) evaluates expr but displays Done in place of the result.

Example.
Input:

nodisp(a:= 2+2)
Output:
Done

and a will be set to 4.

An alternate way of suppressing the output is to end the input with : ;.

Example.
Input:
b:= 3+3:;
Output:
Done

and b will be set to 6.

85
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4.2 Entering comments: comment

You can annotate an Xcas session by adding comments. You can enter a comment
on the current line at any time by typing A1t +C. The line will appear in green text
and conclude when you type Enter. Comments are not evaluated and so have no
output. If you have started entering a command when you begin a comment, the
command line with the start of the command will be pushed down so that you can
finish it when you complete the comment.

You can open the browser using a comment line by entering the web address
beginning with the @ sign. If you enter the comment line

The Xcas homepage is at
@www—fourier.ujf-grenoble.fr/~parisse/giac.html

then the browser will open to the Xcas home page.
To add a comment to a program, rather than a session, you can use the comment
command.

e comment takes one argument:
str, a string.

e comment (str) makes str a comment.

Alternatively, any part of a program between // and the end of the line is a com-
ment. So both

bs () := {comment ("Hello"); return "Hi there!";}

and

bs():= { // Hello
return "Hi there!";}

are programs with the comment "Hello".

4.3 Editing expressions

You can enter expressions on the command line, but Xcas also has a built-in ex-
pression editor that you can use to enter expressions in two dimensions, the way
they normally look when typeset. When you have an expression in the editor, you
can also manipulate subexpressions apart from the entire expression.

4.3.1 Entering expressions in the editor: an example

The expression
T+2
2 —4

can be entered on the command line with

(x+2)/(x"2-4)


@www-fourier.ujf-grenoble.fr/~parisse/giac.html
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You also can use the expression editor to enter it visually, as = + 2 on top of 22 — 4.
To do this, you can start the expression editor with the A1t +E keystroke (or the
Expression B New Expression menu command). There will be a small
M on the right side of the expression line, which is a menu with some commands
you can use on the expressions. There will also be a 0 selected on the expression
line and an on-screen keyboard at the bottom (see Section 3.2 p.56, item 3.2). If
you type x + 2, it will overwrite the 0. To make this the top of the fraction,
you can select it with the mouse (you can also make selections with the keyboard,
as will be discussed later) and then type /. This will leave the x + 2 on the
top of a horizontal fraction bar and the cursor on the bottom. To enter x> — 4
on the bottom, begin by typing x. Selecting this x and typing ~2 will put on the
superscript. Finally, selecting the x? and typing — 4 will finish the bottom. If you
then hit Enter, the expression will be evaluated and will appear on the output
line.

4.3.2 Subexpressions

Xcas can operate on expressions in the expression editor or subexpressions of the
expression. To understand subexpressions and how to select them, it helps to know
that Xcas stores expressions as trees.

A tree, in this sense, consists of objects called nodes. A node can be connected
to lower nodes, called the children of the node. Each node (except one) will be
connected to exactly one node above it, called the parent node. One special node,
called the root node, won’t have a parent node. Two nodes with the same parent
nodes are called siblings. Finally, if a node doesn’t have any children, it is called a
leaf. This terminology comes from a visual representation of a tree,

which looks like an upside-down tree; the root is at the top and the leaves are at the
bottom.

Given an expression, the nodes of the corresponding tree are the functions, op-
erators, variables and constants. The children of a function node are its arguments,
the children of an operator node are its operands, and the constants and variables
will be the leaves. For example, the tree for sin(2 * z + y) will look like
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A subexpression of an expression will be a selected node together with the nodes
below it. For example, both 2z and 2 x x +y are subexpressions of sin(2*x +y),
but x 4 y is not.

A subexpression of the contents of the expression editor can be selected with
the mouse; the selection will appear white on a black background. A subexpression
can also be chosen with the keyboard using the arrow keys. Given a selection:

e The up arrow will go to the parent node.
e The down arrow will go to the leftmost child node.
e The right and left arrows will go to the right and left sibling nodes.

e The control key with the right and left arrows will switch the selection with
the corresponding sibling.

e If a constant or variable is selected, the backspace key will delete it. For
other selections, backspace will delete the function or operator, and another
backspace will delete the arguments or operands.

You can use the arrow keys to navigate the tree structure of an expression,
which isn’t always evident by looking at the expression itself. For example, sup-
pose you enter x+y+z in the editor. The two multiplications will be a different

levels; the tree will look like

If you select the entire expression with the up arrow and then go to the M menu to
the right of the line and choose eval, then the expression will look the same but, as
you can check by navigating it with the arrow keys, the tree will look like
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4.3.3 Manipulating subexpressions

If a subexpression is selected in the expression editor, then any menu command
will be applied to that subexpression.
For example, suppose that you enter the expression

(x+1) * (x+2) x (x-1)

in the expression editor. Note that you can use the abilities of the editor to make
this easier. First, enter x+1. Select this with the up arrow, then type * followed by
x+2. Select the x+2 with the up arrow and then type » followed by x—1. Using
the up arrow again will select the x—-1. Select the entire expression with the up
arrow, and then select eval from the M menu. This will put all factors at the same
level. Suppose you want the factors (x+1) « (x+2) to be expanded. You could
select (x+1) % (x+2) with the mouse and do one of the following:

e Select the ExpressionpMischrnormal menu item. You will then have
normal ( (x+1)x (x+2) ) (x—1) in the editor. If you hit enter, the result
(22 + 32 + 2) * (z — 1) will appear in the output window.

e Select the ExpressionpMisckrnormal menu item, so again you have
normal ( (x+1) (x+2))* (x—1) in the editor. Now if you select eval
from the M menu, then the expression in the editor will become the result
(22 4 3z + 2) * (z — 1), which you can continue editing.

e Choose normal from the M menu. This will apply normal to the selection,
and again you will have the result (22 + 3z + 2) * (z — 1) in the editor.

There are also keystroke commands that you can use to operate on subexpres-
sions that you’ve selected. There are the usual Ctr1+% and Ctr1+Y for undoing
and redoing. Some of the others are given in the following table.

Key Action on selection

Ctrl+D differentiate

Ctrl+F factor

Ctrl+L limit

Ctrl+N normalize

Ctrl+p partial fraction

Ctrl+R integrate

Ctrl+s simplify

Ctrl+T copy IKIEX version to clipboard
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4.4 Previous results: ans

The ans command returns the results of previous commands.

e ans takes one optionaly argument:
Optionally, n, an integer (the number of the command beginning with 0).

e ans ({n)) returns the corresponding result; in particular, ans (-1) returns
the previous result.

Example.
If the first command that you enter is:
Input:
2+5
resulting in
Output:
7

then later references to ans (0) will evaluate to 7.

Note that the argument to ans doesn’t correspond to the line number in Xcas.
For one thing, the line numbers begin at 1. What’s more, if you go back and re-
evaluate a previous line, then that will become part of the commands that ans
keeps track of.

If you give ans a negative number, then it counts backwards from the current
input. To get the latest output, for example, you can use ans (-1). With no
argument, ans () will also return the latest output.

Similarly, the quest command returns the previous inputs. Since these will
often be simplified to be the same as the output, quest (n) sometimes has the
same value as ans (n).

You can also use Ctrl plus the arrow keys to scroll through previous inputs.
With the cursor on the command line, Ct r1+uparrow will go backwards in the
list of previous commands and display them on the current line, and Ct r1+downarrow
will go forwards.

4.5 Spreadsheet

4.5.1 Opening a spreadsheet

You can open a spreadsheet (or a matrix editor) with the Spreadsheet»New
Spreadsheet menu item or with the key A1t +T.

When you open a new spreadsheet, you will be given a configuration screen
with the following options:

e Variable This has a input field where you can type in a variable name;
the spreadsheet will be saved as a matrix in this variable.

e Rows and Columns These have input fields where you can type in positive
integers specifying the number of rows and columns in the spreadsheet.
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e Eval This has a checkbox. If the box is checked, then the spreadsheet will
be re-evaluated every time you make a change to it. If it is not checked, it
won’t be re-evaluated when changes are made, but you can still re-evaluate
the spreadsheet with the eval button on the spreadsheet menu bar.

e Distribute This has a checkbox. If it is checked, then entering a matrix
will distribute the contents across an appropriate array of cells. If it is not
checked, then the matrix will be put in one cell.

e Landscape This has a checkbox. If it is checked, then the graphical repre-
sentation of the spreadsheet will be displayed below the spreadsheet. If it is
not checked, then it will be displayed to the right of the spreadsheet.

e Move right This has a checkbox. If it is checked, then the cursor will
move to the cell to the right of the current cell when data is entered. If this
is not checked, the cursor will be moved to the cell below the current cell.

e Spreadsheet This has a checkbox. If it is checked, the spreadsheet will
be formatted as a spreadsheet. If it is not checked, it will be formatted as a
matrix.

e Graph This has a checkbox. If it is checked, the graphical representation of
the spreadsheet will be displayed. If it is not checked, the graphical repre-
sentation will not be displayed.

e Undo history This has an input field where you can type in a postive
integer, specifying how many undo’s can be performed at a time.

The configuration screen can be reopened with the Edit»Configuration»Cfg
window menu attached to the spreadsheet.

4.5.2 The spreadsheet window

When you open a spreadsheet, the input line will become the spreadsheet.

Table Edit Maths [eval [ val [ init [ 2d [ 3-d | Save SpreadsheetName.tab
A0

Sheet config: - Spreadsheet SpreadsheetName R40C10 auto down fill F
B C D

m

HF)OOOCOOOOOOO
N>OOOoOOoOOoOOOOO
w>ooooocoooo0o
AdOOOCOOCOOOOOO

;‘o‘m\lm‘m‘b‘wwu‘o
oc>ooooooooo]
>

o

The top will be a menu bar with Table, Edit and Maths menus as well as
eval,val, init, 2—d and 3-d buttons. To the right will be the name of the file
the spreadsheet will be saved into. Below the menu bar will be two boxes; a box
which displays the active cell (and can be used to choose a cell) and a command
line to enter information into the cell. Below that will be a status line, you can click
on this to return to the configuration screen.
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Chapter 5

CAS building blocks

5.1 Numbers

Xcas works with both real and complex numbers. The real numbers can be inte-
gers, rational numbers, floating point numbers or symbolic constants.

You can enter an integer by simply typing the digits.
Input:

1234321

Output:
1234321

Alternatively, you can enter an integer in binary (base 2) by prefixing the digits (0
through 1) with Ob, in octal (base 8) by prefixing the digits (0 through 7) with 0 or
0o, and in hexadecimal (base 16) by prefixing the digits (0 through 9 and a through
f) with 0x. (See Section 6.4.1 p.130.)

Input:

Oxabl2

Output:
43794

You can enter a rational number as the ratio of two integers.
Input:

123/45

Output:
41

15
The result will be put in lowest terms. If the top is a multiple of the bottom, the

result will be an integer.
Input:

123/3

93
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Output:
41

A floating point number is regarded as an approximation to a real number. You
can enter a floating point number by writing it out with a decimal point.
Input:

123.45

Output:
123.45

You can also enter a floating point number by entering a sequence of digits, with an
optional decimal point, followed by e and then an integer, where the e represents
“times 10 to the following power.”

Input:

1234e3

Output:
1234000.0

Floating point numbers with a large number of digits will be printed with e nota-
tion; you can control how other floats are displayed (see Section 3.5.7 p.72, item
7). An integer or rational number can be converted to a floating point number with
evalf (see Section 6.8.1 p.168).

A complex number is a number of the form a+bi, where a and b are real
numbers. The numbers a and b will be the same type of real number; one type
will be converted to the other type if necessary (an integer can be converted to a
rational number or a floating point number, and a rational number can be converted
to a floating point number).

Input:

3+ 1.11

Output:
34+ 1.1¢

5.2 Symbolic constants: epi infinity inf i euler_gamma

Xcas has the standard constants given by built-in symbols, given in the following
table.

] Symbol Value
e (or %e) the number exp(1)
pi (or $pi) the number 7
infinity unsigned oo
+infinity (or inf) 400
—infinity (or —-inf) | —o0
i(or%i) the complex number ¢
euler_gamma Euler’s constant «; namely,
limy, 00 (X ok—y —In(n))




5.3. SEQUENCES, SETS AND LISTS 95

Since these numbers cannot be written exactly as standard decimal numbers,
they are necessarily left unevaluated in exact results (see Section 3.5.4 p.70).
Input:

2xpi
Output:
2
Input:
2.0xpi
Output:

6.28318530718

You can also use evalf (see Section 6.8.1 p.168), for example, to approximate
one of the real-valued constants to as many decimal places as you want.
Input:

evalf (pi, 50)
Output:
3.1415926535897932384626433832795028841971693993751

5.3 Sequences, sets and lists

5.3.1 Sequences: seq[] ()

A sequence is represented by a sequence of elements separated by commas, without
delimiters or with either parentheses ( ( and ) ) or seq[ and ] as delimiters, as in:
Input:

1,2,3,4
or:
(1,2,3,4)
or:
seqll,2,3,4]
Output:

1,2,3,4

Note that the order of the elements of a sequence is significant. For example,
ifB:=(5,6,3,4) andC:=(3,4,5, 6), then B==C returns false.

(A value can be assigned to a variable with the := operator; see Section 5.4.1
p-100. Also, == is the test for equality; see Section 6.1.2 p.113.)

Note also that the expressions seq[...] and seq(...) are not the same (see
Section 6.39.2 p.446 for information on seq (. ..) ). For example, seq ([0,2]1)=(0,0)
and seq([0,1,1,5]1)=10,0,0,0,0] but
seq[0,2]1=(0,2) and seq[0,1,1,5]=(0,1,1,5)

See Section 6.39 p.445 for operations on sequences.
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5.3.2 Sets: set[]

To define a set of elements, put the elements separated by commas, with delimiters
${and %} or set [ and ].

Input:

set[1,2,3,4]
or:

%{1,2,3,4%}
Output:

[1,2,3,4]

In the Xcas output, the set delimiters are displayed as | and | in order not to
confuse sets with lists (see Section 5.3.3 p.98). For example, [1,2,3 Jlis the set
%{1,2,3%},unlike [1,2,3] (normal brackets) which is the list [1, 2, 3].

Input:

A:=%{1,2,3,4%}

or:
A:=set[1,2,3,4]

Output:

[1,2,3,4]
Input:

B:=%{5,5,6,3,4%}
or:
B:=set[5,5,6,3,4]

Output:

[5,6,3,4]
Remark.

The order in a set is not significant and the elements in a set are all distinct. If you
input B: =%{5,5,6,3,4%} and C:=%{3,4,5, 3, 6%}, then B==C will return
true.

See Section 6.41 p.481 for operations on sets.

5.3.3 Lists: [ ]

A list is delimited by [ and ], its elements must be separated by commas. For
example, [1, 2, 5] is alist of three integers. Lists are also called vectors in Xcas.

Lists can contain lists (for example, a matrix is a list of lists of the same size, see
Section 6.44 p.494). Lists may be used to represent vectors (lists of coordinates),
matrices, or univariate polynomials (lists of coefficients by decreasing order, see
Section 6.27.1 p.346).
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Lists are different from sequences, because sequences are flat: an element of a
sequence cannot be a sequence. Lists are different from sets, because for a list, the
order is important and the same element can be repeated in a list (unlike in a set
where each element is unique). See Section 6.40 p.456 for operations on lists.

In Xcas output:

e list delimiters are displayed as [,],
e matrix delimiters are displayed as [,]
e polynomial delimiters are displayed as [, |

e set delimiters are displayed as [, ].

5.3.4 Accessing elements

The elements of sequences and lists are indexed starting from O in Xcas syntax
mode and from 1 in all other syntax modes (see Section 3.5.2 p.70). To access
an element of a list or a sequence, follow the list with the index between square
brackets.

Examples.
o Input:
L:= [2,5,1,4]
Output:
(2,5,1,4]
o [nput:
L[1]
Output:
)

e To access the last element of a list or sequence, you can put —1 between
square brackets.
Input:

Output:

If you want the indices to start from 1 in Xcas syntax mode, you can enter the
index between double brackets.

Example.
Input:

Output:
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5.4 Variables

5.4.1 Variable names

A variable or function name is a sequence of letters, numbers and underscores that
begins with a letter. If you define your own variable or function, you can’t use the
names of built-in variables or functions or other keywords reserved by Xcas.

5.4.2 Assigning values: :==> = assign sto Store

You can assign a value to a variable with the : = operator. For example, to give the
variable a the value of 4, you can enter

a:= 4

Alternatively, you can use the => operator; when you use this operator, the value
comes before the variable;

4 => a

The function sto (or Store) can also be used; again, the value comes before the
variable (the value is stored into the variable);

sto (4, a)

After any one of these commands, whenever you use the variable a in an expres-
sion, it will be replaced by 4.

You can use sequences or lists to make multiple assignments at the same time.
For example,

(a,b,c):= (1,2,3)

will assign a the value 1, b the value 2 and c the value 3. Note that this can be
used to switch the values of two variables; with a and b as above, the command

(a,b):= (b,a)

will set a equal to b’s original value, namely 2, and will set b equal to a’s original
value, namely 1.

Another way to assign values to variables, useful in Maple mode, is with the
assign command. If you enter

assign(a, 3)
or
assign(a = 3)
then a will have the value 3. You can assign multiple values at once; if you enter
assign([a = 1, b = 2])

then a will have the value 1 and b will have the value 2. This command can be
useful in Maple mode, where solutions of equations are returned as equations. For
example, if you enter (in Maple mode)
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sol:= solve([x + v =1, v = 21,[x,v])
(see Section 6.55.6 p.605) you will get
[z =—-1y=2]
If you then enter
assign(sol)

the variable x will have value —1 and y will have the value 2. This same effect can
be achieved in standard Xcas mode, where

sol:= solve([x + v =1, v = 21,[x,vy])

will return
[[-1,2]]
In this case, the command

[x,y]:= s01[0]

will assign x the value —1 and y the value 2.

5.4.3 Assignment by reference: =<

A list is simply a sequence of values separated by commas and delimited by [ and ]
(see Section 6.39 p.445). Suppose you give the variable a the value [1,1, 3,4, 5],

a:= [1,1,3,4,5]

If you later assign to a the value [1, 2, 3, 4, 5], then a new list is created. It may
be better to just change the second value in the original list by reference. This can
be done with the =< command. Recalling that lists are indexed beginning at O, the
command

all] =< 2
will simply change the value of the second element of the list instead of creating a
new list, and is a more efficient way to change the value of ato [1,2,3,4,5].
5.4.4 Copying lists: copy
If you enter
listl:= [1,2,3]
and then
list2:= 1listl

then 1ist1 and 1ist2 will be equal to the same list, not simply two lists with the
same elements. In particular, if you change (by reference) the value of an element
of 1ist1, then the change will also be reflected in 1ist2. For example, if you
enter
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listl[1l] =< 5

then both 1ist1 and 1ist2 will be equalto [1,5, 3].
The copy command creates a copy of a list (or vector or matrix) which is equal
to the original list, but distinct from it. For example, if you enter

listl:= [1,2,3]
and then
list2:= copy(listl)
then 1istl and 1ist2 will bothbe [1, 2, 3], but now if you enter
listl[1l] =< 5

then 1ist1 willbeequalto [1,5,3] but List2 will stillbe [1, 2, 3].

5.4.5 Incrementing variables: += —= x= /=
You can increase the value of a variable a by 4, for example, with
a:=a + 4

If beforehand a were equal to 4, it would now be equal to 8. A shorthand way of
doing this is with the += operator;

will also increase the value of a by 4.
Similar shorthands exist for subtraction, multiplication and division. If a is
equal to 8 and you enter

then a will be equal to 6. If you follow this with
a *= 3

then a will be equal to 18, and finally

will end with a equal to 2.

5.4.6 Storing and recalling variables and their values: archive unarchive

The archive command stores the values of variables for later use in a file of your
choosing.

e archive takes two arguments:

— filename, a filename in which to store values.

— vars, a variable or list of variables.
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e archive ("filename" , vars) saves the values of vars (or the values of the
variables in the list) in file filename.

For example, if the variable a has the value 2 and the variable bee has the value
"letter" (astring), then entering

archive ("foo", [a,bee])

will create a file named “foo” which contains the values 2 and "letter" in a
format meant to be efficiently read by Xcas.
The unarchive command will read the values from a file created with archive.

e unarchive takes one argument:
filename, the filename.

e unarchive ("filename") returns the value or list of values stored in file-
name.

Example.
With the file “foo” as above:
Input:

unarchive ("foo")

Output:
[2, "letter"]

If you want to reassign these values to a and bee, you can enter

[a,bee] := unarchive ("foo")

5.4.7 Copying variables: CopyVar

The CopyVar command copies the contents of one variable into another, without
evaluating the contents.

e CopyVar takes two arguments:

— fromvar, the name of a variable to copy from.

— tovar, the name of a variable to copy to.

e CopyVar (fromvar, tovar) copies the unevaluated contents of fromvar into

tovar.
Example.
Input:
a:=c
c:=5
CopyVar (a, b)
Output:

then:
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Output:
)

Changing the value if ¢ will also change the output of b, since b contains c.
Input:

Output:
10

5.4.8 Assumptions on variables: about additionally assume
purge supposons and or

If variable is a purely symbolic variable (i.e., it doesn’t have a value or any
assumptions made about it), then

abs (variable)

will return
|variable|

since Xcas doesn’t know what type of value the variable is supposed to represent.

The assume (or supposons) command lets you tell Xcas some properties
of a variable without giving the variable a specific value. The additionally
command can be used to add assumptions to a variable. The about command
will display the current assumptions about a variable, and the purge command
will remove all values and assumptions about a variable.

assume (or supposons) takes one mandatory argument and one optional argu-
ment:

e assumptions, statements about a variable (such as equalities and inequalities,
possibly combined with and and or, and domains).

e Optionally, additionally, which indicates that the assumptions are to
be added to previous assumptions, as opposed to replace them.

assume (assumptions (, additionally)) places the assumptions on the vari-
able. With no second argument, it will remove any previous assumptions.

e additionally takes one argument:
assumptions as above.

e additionally (assumptions) adds the assumptions to a variable without
removing assumptions.

e about takes one argument:
var, the name of a variable.
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e about (var) returns the current assumptions on the variable.

e purge takes one argument:
var, a variable name or a sequence of variable names.

e purge (var) removes any assumptions you have made about the variable
var (or about all the variables in the sequence).

For example, if you enter
assume (variable > 0)
then Xcas will assume that variable is a positive real number, and so
abs (variable)

will be evaluated to
variable

You can put one or more conditions in the assume command by combining
them with and and or. For example, if you want the variable a to be in [2,4) U
(6,00), you can enter

assume((a >= 2 and a < 4) or a > 6)

If a variable has attached assumptions, then making another assumption with
assume will remove the original assumptions. To add extra assumptions, you can
either use the additionally command or give assume a second argument of
additionally. If you assume that b > 0 with

assume (b > 0)
and you want to add the condition that b < 1, you can either enter
assume (b < 1, additionally)
or
additionally(b < 1)

As well as equalities and inequalities, you can make assumptions about the
domain of a variable. If you want n to represent an integer, for example, you can
enter

assume (n, integer)
If you want n to be a positive integer, you can add the condition
additionally(n > 0)

You can also assume a variable is in one of the domains real, integer, complex
or rational (see Section 12.2.5 p.860).

You can check the assumptions on a variable with the about command. For
the above positive integer n,
Input:
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about (n)
Output:
assume [integer, [1ine [0, +infinity]], [0]]

The first element tells you that n is an integer, the second element tells you that n
is between 0 and +infinity, and the third element tells you that the value O is
excluded.

If you assume that a variable is equal to a specific value, such as

assume (c = 2)

then by default the variable ¢ will remain unevaluated in later levels. If you want
an expression involving c to be evaluated, you would need to put the expression
inside the evalf command (see Section 6.8.1 p.168). After the above assumption
on c, if you enter

evalf(c™2 + 3)

then you will get
7.0

Right below the assume (¢ = 2) command line there will be a slider; namely
arrows pointing left and right with the value 2 between them. These can be used
to change the values of c. If you click on the right arrow, the assume (¢ = 2)
command will transform to

assume (c=[2.2,-10.0,10.0,0.01)

and the value between the arrows will be 2.2. Also, any later levels where the
variable c is evaluated will be re-evaluated with the value of ¢ now 2.2. The
outputtoevalf (c”2 + 3 will become

7.84

The -10.0and 10. 0 in the assume line represent the smallest and largest values
that ¢ can become using the sliders. You can set them yourself in the assume
command, as well as the increment that the value will change; if you want c to
start with the value 5 and vary between 2 and 8 in increments of 0. 05, then you
can enter

assume (c = [5,2,8,0.057)

Recall the purge command removes assumptions about a variable.
Input:

purge (a)

then a will no longer have any assumptions made about it.
Input:

purge (a, b)

then a and b will no longer have any assumptions made about them.
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5.4.9 Unassigning variables: VARS purge DelVar del restart
rm a zrm all vars

Xcas has commands that help you keep track of what variables you are using and
resetting them if desired. The VARS command will list all the variables that you
are using, the purge, DelVar and del commands will delete selected variables,
and the rm_a_z and rm_all_vars commands will remove classes of variables.

e VARS takes no arguments.

e VARS () returns a list of the variables that you have assigned values or made
assumptions on.

Example.
Input:
a:=1
anothervar:= 2
then:
VARS ()
Output:

[a, anothervar]

The purge command will clear the values and assumptions you make on vari-
ables (see Section 5.4.8 p.104). For TI compatibility there is also DelVar, and
for Python compatibility there is del.

e The purge command takes one argument:
var, the name of a variable.

e purge (var) clears the variable var of all values and assumptions.

e The DelVar (and del) commands take one argument:
var, the name of a variable.

e Delvar var (or del var) removes the values attached to var. (Note that
they do not take their argument in parentheses.

Example.
To clear the variable a:
Input:
purge (a)
or (for TI compatibility):
Input:
DelVar a

or (for Python compatibility):
Input:
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del a

The rm_all_vars and restart commands clear the values and assump-
tions you have made on all variables you can use.

e rm_all_vars takes no arguments.

e rm_all_vars () removes all the values that you have attached to vari-
ables.

e restart takes no arguments.

e restart removes all the values that you have attached to variables. (Note
that it does not use parentheses.)

The rm_a_ z command clears the values and assumptions on all variables with
single lowercase letter names.

e rm_a_ z takes no arguments.

e rm_a_z () purges all variables whose names are one letter and lowercase.

Example.
If you have variables names A, B, a, b, myvar, then after:
Input:

rm_a_z ()

you will only have the variables named A, B, myvar.

5.4.10 The CST variable

The menu available with the cust button in the bandeau on the onscreen keyboard
(see Section 3.2 p.56, item 3.2) is defined with the CST variable. It is a list where
each list item determines a menu item; a list item is either a builtin command name
or a list itself consisting of a string to be displayed in the menu and the input to be
entered when the item is selected.

For example, to create a custom defined menu with the builtin function di f f,
a user defined function foo, and a menu item to insert the number 22/7, you can:
Input:

CST:= [diff, ["foo", fool, ["My pi approx",22/7]]

Note that if the input to be entered is a variable and the variable has a value
when CST is defined, then CST will contain the value of the variable. For example,
Input:

app:= 22/7
CST:= [diff, ["foo",foo], ["My pi approx", app]]

will be equivalent to the previous definition of CST. However, if the variable does
not have a value when CST is defined, for example:
Input:
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CST:= [diff, ["foo",foo], ["My pi approx",app]]
app:= 22/7

then CST will behave as the previous values to begin with, but in this case if the
variable app is changed, the the result of pressing the My pi approx button
will change also.

Since CST is a list, a function can be added to the cust menu with the
concat command (see Section 6.40.13 p.465);
Input:

CST:= concat (CST, evalc)

will add the evalc command to the cust menu.

5.5 Functions

5.5.1 Defining functions

Similar to how you can assign a value to a variable (see Section 5.4.2 p.100), you
can use the : = and => operators to define a function; both

f(x):= x"2
and
x"2 => f(x)

give the name f to the function which takes a value and returns the square of the
value. In either case, if you then enter:

Input:
£(3)
you will get:
Output:
9

You can define an anonymous function, namely a function without a name,
with the —> operator; the squaring function can be written

X —> x"2
You can use this form of the function to assign it a name; both
fi= x —> x72
and
X => x"2 => f

are alternate ways to define £ as the squaring function.

You can similarly define functions of more than one variable. For example,
to define a function which takes the lengths of the two legs of a right triangle and
returns the hypotenuse, you could enter

hypot (a,b) := sqgrt (a2 + b"2)
or

hypot:= (a,b) -> sgrt(a”2 + b"2)
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5.6 Directories

5.6.1 Working directories: pwd cd

Xcas has a working directory where it stores files that it creates; typically this
is the user’s home directory. The pwd command will tell you what the current
working directory is, and and the cd command lets you change it.

e pwd takes no arguments.

e pwd () returns the name of the current working directory.

Example.
Input:
pwd ()
Output: might be something like:
/home /username

e The cd command takes one argument:
dirname, the name of a directory (a string).

e cd (dirname) changes the working directory to dirname.

Example.
If you enter:
Input:

cd("foo")

or (on a Unix system):
Input:

cd("/home/username/foo")

then the working directory will change to the directory foo, if it exists. After-
wards, any files that you save from Xcas will be in that directory.

To load or read a file, it will need to be in the working directory. Note that if
you have the same file name in different directories, then loading the file name will
load the file in the current directory.

5.6.2 Reading files: read load

Information for Xcas can be stored in a file; this information can be read with the
read or 1oad command, depending on the type of information.

The read command reads a file containing Xcas information, such as a pro-
gram that you saved (see Section 3.6.3 p.80) or simply commands that you typed
into a file with a text editor. The file should have the suffix . cxx.
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e read takes one argument:
filename, the name of a file (a string) containing a saved program (see Sec-
tion 3.6.3 p.80) or other commands.

e read (filename) reads the content of the file.

Example.
If you have a file named my function. cxx,
Input:

read ("myfunction.cxx")

will read in the file, as long as the directory is in the current working directory. If
the file is in a different directory, you can still read it by giving the path to the file,
Input:

read ("/path/to/file/myfunction.cxx")

The 1oad command reads in a saved session (see Section 3.6.1 p.79), which
will end in . xws.

e load takes one argument:
filename, the name of a file (a string) containing a saved session.

e load (filename) loads the session stored in filename.

Example.
If you have a session saved in the file mysession. xws,
Input:

load ("mysession.xws")

loads mysession.xws.

5.6.3 Internal directories: NewFold SetFold GetFold DelFold
VARS

You can create a directory that isn’t actually on your hard drive but is treated like
one by Xcas with the command NewFold.

e NewFold takes one argument: MylIntDir, a variable name (see Section 5.4.1
p-100).

e NewFold (MylntDir) creates a new internal directory named MylntDir. (Note
that quotation marks are not used.)

Internal directories will be listed with the VARS () command (see Section 5.4.9
p.107).
To actually use this directory, you’ll have to use the SetFold command.

e The SetFold command takes one argument:
MylIntDir, the variable name of an internal directory created with NewFold.
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e SetFold (MyIntDir) makes MylntDir the working directory (see Section 5.6.1
p.110).

Finally, you can print out the internal directory that you are in with the GetFold
command.

e GetFold takes no arguments.

e GetFold () returns the name of the current internal directory.

Example.
Input:

GetFold ()

will display the current internal directory.

The DelFold command will delete an internal directory.

e DelFold takes one argument:
MpylntDir, the variable name of an internal directory.

e DelFold (MylntDir) will delete the directory if it is empty.
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The CAS functions

6.1 Booleans

6.1.1 Boolean values: true false

The symbols t rue and false are booleans, and are meant to indicate a statement
is true or false.
These constants have synonyms:

e true is the same as TRUE or 1.
e false isthe same as FALSE or 0.

A function which returns a boolean is called a fest (or a condition or a boolean
Sfunction).

6.1.2 Tests: == 1=>>=<=<

The usual comparison operators between numbers are examples of tests. In Xcas,
they are the infixed operators:

a==b tests the equality between a and b and returns 1 if ¢ is equal to b and
0 otherwise.

Look out !

Note that a=b is not a boolean!!!! This form is used to state that the expres-
sion is an equality, perhaps with the intent to solve it. To fest for equality,
you need to use a==>b, which is a boolean.

a!=breturns 1 if a and b are different and O otherwise.

>=
a>=breturns 1 if a is greater than or equal to b and 0 otherwise.
>
a>b returns 1 if a is strictly greater than b and 0 otherwise.
<=

a<=breturns 1 if a is less than or equal to b and 0 otherwise.

111
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a<breturns 1 if a is strictly less than b and 0 otherwise.

6.1.3 Defining functions with boolean tests: ifte ?: when

You can use boolean tests to define functions not given by a single simple formula.
Notably, you can use the 1fte command or ?: operator to define piecewise-
defined functions.

e ifte takes three arguments:

— condition, a boolean condition.
— true-result, the result to return if condition is true.

— false-result, the result to return if condition is false.

e ifte (condition, true-result, false-result) returns true-result if condition is
true and returns false-result if condition if false.

Example.
You can define your own absolute value function with:
Input:

myabs (x) := ifte(x >= 0, x, —-1%x)

Afterwards, entering:

Input:

myabs (—4)
will return:

4

However, myabs will return an error if it can’t evaluate the condition.
Input:

myabs (x)
Output:

Ifte: Unable to check test Error: Bad Argument Value

The ?: construct behaves similarly to 1 fte, but is structured differently and
doesn’t return an error if the condition can’t be evaluated.

e The ?: construct takes three arguments:

— condition, a boolean condition.
— true-result, the result to return if condition is true.
— false-result, the result to return if condition is false.

e condition?true-result : false-result returns true-result if condition is true and
returns false-result if condition if false.
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Example.
You can define your absolute value function with

myabs (x) := (x >= 0)? x: -1xx
If you enter
myabs (—-4)
you will again get
4

but now if the conditional can’t be evaluated, you won’t get an error.
Input:

myabs (x)

Output:

The when and IFTE commands are prefixed synonyms for the ? : construct.
e when (and IFTE) take three arguments:

— condition, a boolean condition.
— true-result, the result to return if condition is true.

— false-result, the result to return if condition is false.

e when (condition, true-result, false-result) (and IFTE (condition, true-result,
false-result) ) return true-result if condition is true and returns false-result if
condition if false.

(condition) ?  true-result: false-result
when (condition, true-result, false-result)

and
IFTE (condition, true-result, false-result)

all represent the same expression.
If you want to define a function with several pieces, it may be simpler to use
the piecewise function.

e piecewise takes an unspecified (odd) number of arguments:

— condy, returny, conds, returns, . .., condy, return,, an arbitrary number
of pairs of conditions and corresponding return values.

— default, a result to return if none of the conditions are true.
e piecewise (condy, returny, ..., cond,, return,, default) returns returny,

if condj, is the first true condition, or default if none of the conditions are
true.
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Example.

To define
-2 ifer< -2
3x+4 if —2<zx<-1

€Tr) =
/(@) 1 if —1<x<0
z+1 ifz>0
you can enter:
Input:
f(x):= piecewise(x < -2, -2, x < -1, 3xx+4, x < 0, 1,

x + 1)

6.1.4 Boolean operators: or xor and not

Booleans can be combined to form new booleans. For example, with and: the
statement “boolean 1 and boolean 2” is true if both boolean 1 and boolean 2 are
true, otherwise the statement is false.

Xcas has the standard boolean operators, as follows (a and b are two booleans):

or(or ||)
These are infixed operators. (¢ or b) (or (a || b))returns O (or false)
if a and b are both equal to O (or false) and returns 1 (or t rue) otherwise.

xXor
This is an infixed operator. It is the “exclusive or” operator, meaning “one
or the other but not both”. (a xor b) returns 1 if a is equal to 1 and b is
equal to O or if a is equal to O and b is equal to 1, and returns O if a and b are
both equal to 0 or if @ and b are both equal to 1.

and (or &&)
These are infixed operators. (a and b) (or (a && b)) returns 1 (or
true) if a and b are both equal to 1 (or true) and returns O (or false)
otherwise.

not
This is a prefixed operator. not (a) returns 1 (or true) if a is equal to 0
(or false),and 0 (or false)if aisequal to 1 (or true).

Examples.
o Input:
1>=0 or 1<O0
Output:
1
o [nput:

1>=0 xor 1>0
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Output:
0
o Input:
1>=0 and 1>0
Output:
1
o Input:
not (0==0)
Output:
0

6.1.5 Transforming a boolean expression to a list: exp2list
The exp21ist command can transform certain booleans into a list.

e exp2list takes one argument: egseq, a sequence of equalities (or inequal-

ities) connected with ors, suchas (xr = ay) or ...or (x=a,).
e exp2list (egseq) returns the list [a1,...,ay,] of right-hand sides of the
(in)equalities.

The exp21ist command is useful in TI mode for easier processing of the
answer to a solve command.

Examples.
o [nput:
exp2list ((x=2) or (x=0))
Output:
[2,0]
o Input:
exp2list ((x>0) or (x<2))
Output:
[0, 2]
e In TI mode
Input:
exp2list (solve ((x-1)*(x-2)))
Output:

[1,2]



116 CHAPTER 6. THE CAS FUNCTIONS

6.1.6 Transforming a list into a boolean expression: 1ist2exp

The 1ist2exp command is the inverse of exp21 1 st; it takes lists and tranforms
them into boolean expressions. It can do this in two ways.
The first way:

e 1list2exp takes two arguments:

— L, alist of values of the form [a,...,ay,]

— x, a variable name.

e list2exp (L,x) returns the boolean expression ( (r =aj) or ... (x =
an) ).

Examples.

o Input:

list2exp([0,1,2],a)

Output:
a=0Va=1Va=2
o Input:
list2exp (solve (x"2-1=0, x), x)
Output:
r=—-1ve=1
Alternatively:

e 1ist2exp takes two arguments:

— L, a list where each element of L it itself a list of n values of the form
[al, ce ,an].

— vars, alist [z1,. .., x,] of n variable names.
In this case:

e list2exp (L, vars) returns a boolean expression of the form ((z1 = aq)
and ...and (z, = ay) for each list of n values in the first argument,
combined with ors.

Example.
Input:

list2exp([[3,91, [-1,111, [x, v])

Output:
r=3Ny=9Ver=—-1Ay=1
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6.1.7 Evaluating booleans: evalb

The Maple command evalb evaluates a boolean expression (see Section 6.1 p.113).
Since Xcas evaluates booleans automatically, it includes a evallb command only
here for compatibility and is equivalent to eval (see Section 6.12.1 p.200).

e evalb takes one argument:
bool, a boolean expression.

e evalb () bool) returns 1 if bool is true and returns O otherwise.

Examples.
o [nput:
evalb (sgrt (2)>1.41)
or:
sgrt (2)>1.41
Output:
1
e Input:
evalb (sgrt (2)>1.42)
or:
sgrt (2)>1.42
Output:

6.2 Bitwise operators

6.2.1 Basic operators: bitor bitxor bitand

Bitwise operators operate on the base 2 representations of integers, even if they
are not presented in base 2. For example, the bitwise or (see Section 6.1.4 p.116)
operator will take two integers and and return an integer whose base 2 digits are
the logical ors of the corresponding base two digits of the inputs (see Section 6.1.4
p-116). Thus, to find the bitwise or of 6 and 4, look at their base 2 representations,
which are 0b110 (the Ob prefix indicates that it’s in base 2, see Section 5.1 p.95)
and 0b100, respectively. The logical or or their rightmost digits is 0 or 0=0.
The logical or of their next digits is 1 or 0=1, and the logical or of their re-
maining digits is 1 or 1=1. So the bitwise or of 6 and 4 is 0b110, which is
6.

To work with bitwise operators, it isn’t necessary but it may be useful to work
with integers in a base which is a power of 2. The integers can be entered in binary
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(base 2), octal (base 8) or hexadecimal (base 16) (see Section 6.4.1 p.130). To write
an integer in binary, prefix it with Olb; to write an integer in octal, prefix it with 0
or 0o; and to write a integer in hexadecimal (base 16), prefix it with 0x. Integers
may also be output in octal or hexadecimal notation (see Section 3.5.7 p.72, item
14).

There are bitwise versions of the logical operators or, xor and and; they are
all prefixed operators which take two arguments, which are both integers.

e bitor is bitwise logical inclusive or.

Input:
bitor (0x12,0x38)
or:
bitor (18, 56)
Output:
58
because:

18 1is written 0x12 in base 16 or 0b010010 in base 2,
56 is written 0x38 in base 16 or 0b111000 in base 2,
hence bitor (18, 56) is 0111010 in base 2 and so is equal to 58.

e bitxor is bitwise logical exclusive or.

Input:
bitxor (0x12, 0x38)
or:
bitxor (18, 56)
Output:
42
because:

18 is written 0x12 in base 16 and 0b010010 in base 2,
56 is written 0x38 in base 16 and 0b111000 in base 2,
bitxor (18, 56) is written 0b101010 in base 2 and so, is equal to 42.

e bitand is bitwise logical and.
Input:

bitand (0x12, 0x38)

or:
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bitand(18,56)

Output:
16

because:

18 is written 0x12 in base 16 and 0b010010 in base 2,

56 1s written 0x38 in base 16 and 0b111000 in base 2,

bitand (18,56) is written 0b010000 in base 2 and so is equal to 16.

6.2.2 Bitwise Hamming distance: hamdist

The Hamming distance between two integers is the number of differences between
the bits of the two integers. The hamdist operator finds the Hamming distance
between two integers.

e hamdist takes two arguments:
m and n, both integers.

e hamdist (m,n) returns the Hamming distance between m and n.

Example.
Input:
hamdist (0x12, 0x38)
or:
hamdist (18, 56)
Output:
3
because:

18 is written 0x12 in base 16 and 0b010010 in base 2,
56 1s written 0x38 in base 16 and 0b111000 in base 2,
hamdist (18,56) isequal to 1+0+1+0+1+0 and so is equal to 3.

6.3 Strings

6.3.1 Characters and strings: "

Strings are delimited with quotation marks, ". A character is a string of length
one.

Do not confuse " with * (or quote) which is used to prevent evaluation of an
expression (see Section 6.12.4 p.201). For example, "a" returns a string with one
character but * a’ or quote (a) returns the variable a unevaluated.

When a string is entered on a command line, it is evaluated to itself, hence
the output is the same string. You can use + to concatenate two strings or a string
and another object (where the other object will be converted to a string, see Sec-
tion 6.3.12 p.128).

Examples.
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o [nput:
"Hello"
Output:
"Hello"
o [nput:
"Hello"+", how are you?"
Output:
"Hello, how are you?"
o [nput:
"Hello"+ 123
Output:

"Hellol23"

You can refer to a particular character of a string using index notation, like for
lists (see Section 6.40 p.456). Indices begin at 0 in Xcas mode, 1 in other modes.

Example.
Input:
"Hello"[1]
Output:
man

6.3.2 The newline character: \n

A newline can be inserted into a string with \n.

Example.
Input:

Hello\nHow are you?
Output:

Hello
How are you?
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6.3.3 The length of a string: size length

The size command can find the length of a string (as well as the length of lists in
general, see Section 6.39.3 p.450).
length is a synonym for size.

e size takes one argument:
str, a string.

e size (str) returns the length of the string.

Example.
Input:

size("hello")

Output:

6.3.4 The left and right parts of a string: 1left right

The 1left and right commands can find the left and right parts of a string. (See
Section 6.15.3 p.232, Section 6.37.1 p.438, Section 6.38.2 p.441, Section 6.40.6
p.460, Section 6.55.4 p.604 and Section 6.55.5 p.605 for other uses of 1eft and
right.)

e left takes two arguments:

— str, a string.

- n, a non-negative integer.

e left (str,n) returns the first n characters of the string str.

Example.
Input:
left ("hello", 3)
Output:
"hel"

e right takes two arguments:
— str, a string.
— n, a non-negative integer.
e right (str,n) returns the last n characters of the string str.
Example.
Input:
right ("hello", 4)
Output:

"elloll
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6.3.5 First character, middle and end of a string: head mid tail

The head command finds the first character of a string.

e head takes one argument:
str, a string.

e head (str) returns the first character of the string str.

Example.
Input:

head ("Hello")

Output:

"H"

The mid command finds a selected part from the middle of a string.
e mid takes three arguments:

— str, a string.
— p, an integer for the starting index of the result.

- ¢, an integer ¢ for the length of the string.

e mid (str, p, q) returns the part of the string str starting with the character at
index p with length ¢q. (Remember that the first index is 0 in Xcas mode.)

Example.
Input:

mid("Hello", 1, 3)
Output:

"ell"

The tail command removes the first character of a string.

e tail takes one argument:
str, a string.

e tail (str) returns the string str without its first character.
Input:
tail ("Hello")
Output:

"ellO"
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6.3.6 Concatenation of a sequence of words: cumSum

The cumSum command works on strings like it does on expressions by doing par-
tial concatenation (see Section 6.40.26 p.474).

e cumSum takes one argument:
L, a list of strings.

e cumSum (L) returns a list of strings where the element of index k is the
concatenation of the strings in L with indices O to k.

Example.
Input:

cumSum ("Hello, ","is ","that ","you?")
Output:

"Hello, ","Hello, is ","Hello, 1is that ","Hello, 1is
that you?

6.3.7 ASCII code of a character: ord

The ord command finds the ASCII code of a character.

e ord takes one argument:
str, a string (or a list of strings). ord (str) returns the ASCII code of the
first character of str (or the list of the ASCII codes of the first characters of
the elements of the list str).

Example.
Input:
ord ( ngn )

Output:

97
Input:

ord ("abcd")

Output:

97
Input:

ord (["abcd", "cde"])
Output:
[97,99]
Input:
Ord ( ["a" , "b" , "C" , "d"] )

Output:

97, 98, 99, 100]
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6.3.8 ASCII code of a string: asc

The asc command finds the ASCII codes of all the characters in a string.

e asc takes one argument:
str, a string.

e asc (str) returns the list of the ASCII codes of the characters of s.

Examples.
e Input:
asc ("abcd")
Output:
(97,98, 99, 100]
o Input:
asc("am")
Output:
[97]

6.3.9 String defined by the ASCII codes of its characters: char

The char command translates ASCII codes to strings.

e char takes one argument:
¢, an integer representing an ASCII code or a list of ASCII codes.

e char (c) returns the string whose character has ASCII code ¢ or whose
characters have ASCII codes the elements of the list c.

Example.
Input:
char([97,98,99,100])
Output:
"abcd"
Input:
char (97)
Output:
llall

Note that there are 256 ASCII codes, 0 through 255. If asc is given an integer
c not in that range, it will use the integer in that range which equals ¢ modulo 256.
Input:

char (353)

Output:

non

because 353 — 256 = 97.
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6.3.10 Finding a character in a string: inString
The inString command tests to see if a string contains a character.
e inString takes two arguments:

— str, a string.

— ¢, a character.

e inString (str,c) returns the index of its first occurrence of the character
c in the string str, or —1 if ¢ does not occur in str.

Examples.
o Input:
inString ("abcded", "d")
Output:
3
o Input:
inString ("abcd", "e")
Output:

-1

6.3.11 Concatenating objects into a string: cat

The cat command transforms a sequence of objects into a string.

e cat takes one argument:
seq, a sequence of objects.

e cat (seq) returns the concatenation of the string representations of these
objects as a single string.

Examples.
o [nput:
cat ("abcd", 3,"d")
Output:
"abcd3d"
o Input:

c:=5
cat ("abcd",c,"e")
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Output:
"abcdSe"
o [nput:
purge (c)
cat (15, c, 3)
Output:
"15¢3"

6.3.12 Adding an object to a string: +

The ’ +’ command can be used like cat (see Section 6.3.11 p.127), and the +
operator is the infixed version. (See Section 6.16.1 p.235 for other uses of + and
[ .)

e ’+’ takes one argument:
seq, a sequence of objects, at least one of which is a string.

e '+’ (seq) returns the concatenation of the string representations of the ob-
jects in seq.

Warning.
+ is infixed and ’ +’ is prefixed.
Examples.
o [nput:
4’ ("abcd", 3, "d")
or:
"abcd"+3+"d"
Output:
"abcd3d"
o [nput:
c:=5
then:
"abcd"+c+"d"
or:
4’ ("abcd", c, "d")
Output:

"abcd5d"
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6.3.13 Transforming a real number into a string: cat +

The cat command (see Section 6.3.11 p.127) can also be used to transform a real
number into a string, as can + (see Section 6.3.12 p.128).
If cat has a real number as an argument, the result will be a string.

Example.
Input:
cat (123)
Output:
" 1 23 "

Similarly, if you add a real number to an empty string, the result will be a
string.

Example.
Input:
nn + 1 2 3
Output:
" 1 23 "

6.3.14 Transforming a string into a number: expr

The expr command transforms a string representing a valid Xcas statement into
the actual statement.

e expr takes one argument:
str, a string corresponding to an Xcas statement.

e expr (str) evaluates the statement.

Examples.
o Input:
expr ("a:=1")
Output:
1
Then:
Input:
a
Output:
1

In particular, expr can transform a string representing a number into the
number (see Section 5.1 p.95).
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o [nput:
expr ("123")
Output:
123
o [nput:
expr ("0123")
Output:
83
since 0123 represents a base 8 integer (see Section 6.4.1 p.130) and 1-82 +
2-8+3=283.
e [nput:
expr ("0Ox12f")
Output:

303
since 0x12f represents a base 16 number and 1 * 162 + 2 x 16 + 15 = 303.

o [nput:
expr("123.4567")
Output:
123.4567
o [nput:
expr ("123e-5")
Output:

0.00123

6.4 Writing an integer in a different base

6.4.1 Writing an integer in base 2, 8 or 16

Integers are typically entered and displayed in base 10. You can also enter an
integer in base 2 (binary), base 8 (octal) or base 16 (hexadecimal).

You can enter a number in base 2 by prefixing it with Ob; the remaining digits
have to be 0 or 1 since it is binary.

Example.
Input:
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0b101

Output:
5

since 101 in binary is the same as 1 -1 +0-2 + 1 - 22 = 5 in decimal.

You can enter a number in octal by prefixing it with 0 or Oo; the remaining
digits have to be 0 through 7 since it is base 8.

Example.
Input:
0512
Output:
330

since 512 in base 8 is the same as 2 -1 + 1 - 8 + 5 - 82 = 330 in decimal.

You can enter a number in hexademical by prefixing it with 0x; the remaining
digits have to be 0 through 9 or a through £ (where a is 10, bis 11, ..., £ is 15).

Example.
Input:
0x2£f3
Output:
755

since 2f3 in base 16 is the same as 3 - 1 + 15 - 16 + 2 - 162 = 755 in decimal.

You can have Xcas print integers in octal or hexadecimal, as well as the default
decimal. To change the base used for display, you can click on the red CAS status
button and choose from the Integer basis menu (see Section 3.5.7 p.72, item
14). If you have Xcas set to display in hexadecimal, you will get the following:
Input:

15
Output:
Oz F
Input:
0x15
Output:

0zx15
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6.4.2 Writing an integer in an arbitrary base : convert

The convert command does various kinds of conversions depending on the op-
tion given as the second argument (see Section 6.23.26 p.318). convertirisa
synonym for convert.

One thing that convert can do is convert integers to arbitrary bases and back
to the default base, both with the option base.

To convert an integer into the list of its “digits” in base b:

e convert takes three arguments:

— n, an integer.
— base, the symbol verbatim.
— b, a positive integer, the value of the base.
e convert (n,base, b) returns the list of digits of the integer n when writ-

ten in base b. The list of digits will start with the 1s term, then the bs term,
the b? term, etc.

Example.
Input:

convert (123, base, 8)

Output:
[3,7,1]

To check the answer, input 0173 (see Section 6.4.1 p.130) or horner (revlist ([3,7,1]1),8)
(see Section 6.27.19 p.358 and Section 6.40.15 p.466) or convert ([3,7, 1], base, 8).
The result will be 12 3.

The base used for convert can be any integer greater than 1.

Example.
Input:

convert (142, base, 12)

Output:
(10, 11]

To convert the its “digits” in base b into a base 10 integer:
e convert takes three arguments:

— L, a list of integers representing the digits of the integer in base b,
assumed to go in order of increasing significance.

— base, the symbol verbatim.

— b, a positive integer, the value of the base.

e convert (L,base, b) returns the integer which, in base b, has the digits
given in L.

Examples.
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o Input:
convert ([3,7,1],base, 8)
Output:
123
o Input:
convert ([10,11],base, 12)
Output:

142

6.5 Integers (and Gaussian Integers)

Xcas can manage integers with unlimited precision, such as the following (see
Section 6.6.1 p.155):
Input:

factorial (100)
Output:

9332621544394415268169923885626670049071596826438162
1468592963895217599993229915608941463976156518286253
697920827223758251185210916864000000000000000000000000

Gaussian integers are numbers of the form a + ¢b, where a and b are in Z. For
most functions in this section, you can use Gaussian integers in place of integers.
6.5.1 GCD: gcd iged Ged

The gcd command finds the greatest common divisor (GCD) of a set of integers
or polynomials. (See also Section 6.28.5 p.375 for polynomials.) It can be called
with one or two arguments.
iged is a synonym for gcd.

With one argument:

e gcd takes one argument:
seq, a sequence or list of integers or polynomials.

e gcd (seq) returns the GCD of the elements of seq.

Examples.

o Input:
gcd(18,15)

Output:
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o [nput:
gcd(18,15,21,36)
Output:
3
o [nput:
gcd([18,15,21,361)
Output:
3
e Input:
gcd (—=5-12%1,11-10%1)
Output:

3+ 2i

With two arguments:

e gcd takes two arguments:
s and ¢, two lists of the same length containing integers or polynomials (al-
ternatively, a matrix m with two rows whose elements are integers or poly-
nomials).

e gcd(s,t) (or gcd (m)) returns the list whose kth element is the GCD of
the kth elements of s and ¢ (or the kth column of m).

Examples.
o [nput:
gcd([6,10,12]1,[21,5,8])
or:
gcd([[6,10,12]1,[21,5,811)
Output:

(3,5, 4]

e Find the greatest common divisor of 4n + 1 and 5n + 3 when n € N.
Input:

f(n) :=gcd(4*n+1, 5%n+3)

then input:
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essail (n) :={
local j,a,L;

L:=NULL;
for (j:=-n;j<n;j++) {
a:=£(J);

if (a!=1) {
L:=L, [jla];

}

return L;

then input:
essai (20)

Output:
[—16,7],[-9,7],[-2,7],[5,7],[12,7],[19, 7]

From this information, a reasonable conjecture would be that ged(4n +
1,bn+3) =Tifn =Tk — 2 forsome k € Z and ged(4n + 1,5n +3) =1
otherwise.

Since ged(a, b) = ged(a, b — ¢ - a) for integers a,b and ¢; we have ged(4n +
1,5n 4+ 3) = ged(dn + 1,5n + 3 — (dn + 1)) = ged(dn + 1,n + 2) =
ged(dn +1—4(n+2),n+ 2) = ged(—7,n+ 2) = ged(7,n + 2), and so
ged(4dn+1,5n+3) = 7if 7 divides n+2, namely n+2 = Tk orn = 7k —2,
and ged(4n + 1,5n 4+ 3) = 1 otherwise. This proves the conjecture.

The Gcd command is the inert form of gcd; namely, it evaluates to gcd, for
later evaluation.

Examples.
o Input:
Gcd(18,15)
Output:
ged (18, 15)
o [nput:
eval (Gcd (18,15))
Output:

(See Section 6.12.1 p.200.)
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6.5.2 GCD of alist of integers: 1gcd

The 1gcd command also finds the GCD of a list of integers or polynomials.

e 1gcd takes one argument:
L, alist of integers (or polynomials).

e lgcd (L) returns the GCD of all the integers (or polynomials) in the list L.

Example.
Input:
lgcd([18,15,21,36])
Output:
3
Remark.

1gcd does not accept two lists as arguments (even if they have the same size).

6.5.3 The least common multiple: 1cm

The 1cm command finds the least common multiple (LCM) of a set of integers or
polynomials. (See also Section 6.28.8 p.378 for polynomials.)

With one argument:

e 1cm takes one argument:
seq, a sequence or list of integers or polynomials.

e lcm (seq) returns the LCM of the elements of s.

Examples.
o [nput:
lcm(18,15)
Output:
90
o [nput:
lem(=5-12%1,11-10%1i)
Output:
—53 + 8i
o I[nput:
lcm(18,15,21,36)
Output:

1260
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o Input:
lem([18,15,21,36])

Output:
1260

With two arguments:

e 1cm takes two arguments:
s and ¢, two lists of the same length containing integers or polynomials (al-
ternatively, a matrix m with two rows whose elements are integers or poly-
nomials).

e lcm(s,t) (or 1cm (m)) returns the list whose kth element is the LCM of
the kth elements of s and ¢ (or the kth column of m).

Example.
Input:
lem([6,10,12],[21,5,81])
or:
lem([[6,10,12],([21,5,8]1])
Output:

42,10, 24]

6.5.4 Decomposition into prime factors: ifactor

The ifactor command factors an integer into its prime factors. (Note that a
prime factor of a Gaussian integer is only determined up to a factor of +1 or +1.)

e ifactor takes one argument:
n, an integer or a list of integers.

e ifactor (n) returns n in factored form (or a list of the integers in factored

form).
Examples.
o Input:
ifactor (90)
Output:
5-2-3°
o Input:

ifactor (-90)
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Output:
~5-2-3°
o [nput:
ifactor (14423+1i)
Output:
i(2—1)%(5+2i)
o [nput:
ifactor ([36,52])
Output:

[2%.3%,13 - 27]

6.5.5 List of prime factors: ifactors
The i factors command decomposes an integer into prime factors.

e ifactors takes one argument:
n, an integer or a list of integers.

e ifactors (n) decomposes the integer n (or the integers of the list) into
prime factors, given as a list (or a list of lists) in which each prime factor is
followed by its multiplicity.

Examples.

o [nput:

ifactors (90)

Output:
2,1,3,2,5,1]

since 90 = 213251,

o [nput:
ifactors (-90)
Output:
[—1,1,2,1,3,2,5,1]
o [nput:
ifactors (31+22+1)
Output:

[,1,2—1,1,4—1,2]
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o Input:

ifactors ([36,52])

2 2 3 2
2 2 13 1

6.5.6 Matrix of factors: maple_ifactors

Output:

The maple_ifactors command decomposes an integer into prime factors, and
returns the result in Maple syntax.

e maple_ifactors takes one argument:
n, an integer or a list of integers.

e maple_ifactors (n) decomposes the integer n (or the integers of the
list) into prime factors, given as a list following the Maple syntax; namely, a
list starting with +1 or -1 (for the sign), then a matrix with 2 columns whose
rows are the prime factors and their multiplicity (or a list of such lists).

Examples.
o Input:
maple_ifactors (90)
Output:
2 1
1, 3 2
5 1
o Input:
maple_ifactor([36,52])
Output:

2 2
v 53]
2 2
. [13 1]
6.5.7 The divisors of a number: idivis divisors

The idivis command finds the divisors of an (ordinary) integer.
divisors is a synonym for idivis.

e idivis takes one argument:
n, an integer or list of integers.

e idivis (n) returns the list of the divisors of the integer n (or of a list of
such lists).
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Examples.
o [nput:
idivis (36)
Output:
[1,2,3,4,6,9,12,18, 36]
e Input:
idivis ([36,22])
Output:

[[1,2,3,4,6,9,12,18,36],[1,2, 11, 22]]

6.5.8 The integer Euclidean quotient: iquo intDivdiv

The quotient and remainder of ordinary integers a and b are respectively integers ¢
andr, wherea =b*xqg+rand 0 <r < b.

The quotient and remainder of Gaussian integers a and b are respectively Gaus-
sian integers ¢ and r» where r = a — b * ¢ is as small as possible. It can be proven
that 7 can be found so that |r|? < [b[2/2.

The 1iquo command finds the integer quotient of two integers.
intDiv is a synonym for iquo.

e iquo takes two arguments:
a and b, integers.

e iquo (a, b) returns the quotient ¢ of a and b.

Examples.
o [nput:
iquo (148, 5)
Output:
29
o [nput:
iquo (factorial (148), factorial (145)+2 )
Output:
3176375

o Input:

iquo (25+12x1i,5+7*1)
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Output:
3—12i

Herer = a—bxq = —4+iand |—4+i|> = 17 < [5+7xi|?/2 = 74/2 = 37

The div operator is the infixed version of iquo.

Example.
Input:
148 div 5
Output:
29

6.5.9 The integer Euclidean remainder: irem remain smod mods
mod %

The irem command finds the remainder of two integers (see Section 6.5.8 p.140).
remain is a synonym for irem.

e irem takes two arguments:
a and b, integers.

e irem(a,b) returns the remainder r of ¢ divided by b.

Examples.
o Input:
irem (148, 5)
Output:
3
o Input:
irem(factorial (148), factorial (45)+2 )
Output:

111615339728229933018338917803008301992120942047239639312

o Input:
irem (25+12%1i, 5+7%1)

Output:
—4+i
Herer = a—bxq = —4+iand |—4+i|> = 17 < [5+7xi|?/2 = 74/2 = 37

The smod command finds the symmetric remainder of two (ordinary) integers.
mods is a synonym for smod.
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e smod takes two arguments:
a and b, integers.

e smod (a, b) returns the symmetric remainder s of the Euclidean division of
a and b; namely, the value s witha = bx ¢+ s and —b/2 < s < b/2.

Example.
Input:

smod (148, 5)

Output:
-2

The mod operator is an infixed operator which takes an integer to a modular
integer.
% is a synonym for mod.

e mod has two operands: a and b, ordinary integers.

e a mod breturns 7%b in Z/bZ, where r is the remainder of the Euclidean
division of the arguments a and b.

Example.
Input:
148 mod 5
or:
148 $ 5
Output:
(—2) %5

Note that the result -2 % 5 is not an integer (-2) but an element of Z/57 (see
Section 6.34 p.412 for the possible operations in Z/57).

6.5.10 Euclidean quotient and Euclidean remainder of two integers:
iquorem

The iquorem command finds both the quotient and remainder of two integers
(see Section 6.5.8 p.140).

e igquorem takes two arguments:
a and b, integers.

e iquorem/(a,b) returns the list [¢, 7], where ¢ is the quotient and r the
remainder of a divided by b.

Examples.

o Input:
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iquorem (148, 5)

Output:
[29, 3]
o Input:
iquorem (25+12xi, 5+7%1)
Output:

[3—2i, —4 +i]

6.5.11 Test of evenness: even

The even command tests an integer to see if it is even. (A Gaussian integer a + @b
is even exactly when a and b are both even and odd otherwise.)

e cven takes one argument:
n, an integer.

e even (n) returns 1 if n is even and returns O if n is odd.

Examples.

o Input:
even (148)

Output:

o [nput:
even (149)

Output:

o Input:
even (2+4x1)

Output:
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6.5.12 Test of oddness: odd

The odd command tests an integer to see if it is odd.

e odd takes one argument:
n, an integer.

e odd (n) returns 1 if n is odd and returns 0 if n is even.

Examples.
o [nput:
odd (148)
Output:
0
e Input:
odd (149)
Output:
1

6.5.13 Test of pseudo-primality: is_pseudoprime

A pseudo-prime is a number with a large probability of being prime (cf. Rabin’s Al-
gorithm and Miller-Rabin’s Algorithm in the Algorithmic part (menu He lp»-Manuals»Programmin
For numbers less than 104, pseudo-prime and prime are equivalent.

The is_pseudoprime command is a test for a pseudo-prime.

e is_pseudoprime takes one argument:
n, an integer.

e is_pseudoprime (n) returns O, 1 or 2.

— If it returns O, then n is not prime.
— Ifit returns 1, then n is a prime.

— If it returns 2, then n is pseudo-prime (most probably prime).

Examples.

o [nput:

is_pseudoprime (100003)

Output:
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o Input:
is_pseudoprime (9856989898997)
Output:
2
o Input:
is_pseudoprime (14)
Output:
0
o Input:
is_pseudoprime (9856989898997789789)
Output:

6.5.14 Test of primality: is_prime isprime isPrime
The is_prime, isprime and isPrime commands are tests for primality.

e is_prime takes one argument:
n, an integer.

e is_prime (n) returns 1 if n is prime and 0 if n is not prime.

isprime and isPrime are the same as is_prime, except they return t rue or
false.

Examples.
o [nput:
is_prime (100003)
Output:
1
o Input:
isprime (100003)
Output:
true

o [nput:

is_prime (98569898989987)
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Output:
1
o Input:
is_prime (14)
Output:
0
o [nput:
isprime (14)
Output:

false

You can use the command pari ("isprime",n,1) (see Section 6.7.10
p.168) to get a primality certificate (see the documentation PARI/GP with the
menu Helpw»Manuals»PARI-GP) and pari ("isprime",n, 2) to use the
APRCL test.

Examples.
o [nput:
isprime (9856989898997789789)
Output:
true
o [nput:
pari ("isprime", 9856989898997789789,1)

Output:

2 21

19 21

941 2 1

1873 2 1

which are the coefficients giving the proof of primality by the p—1 Selfridge-
Pocklington-Lehmer test.
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6.5.15 The smallest pseudo-prime greater than n: nextprime

The nextprime command finds pseudo-primes larger than a given target.

e nextprime takes one argument:
n, an integer.

e nextprime (n) returns the smallest pseudo-prime (or prime) greater than
n.

Example.
Input:

nextprime (75)

Output:
79

6.5.16 The greatest pseudo-prime less than n: prevprime

The prevprime command finds pseudo-primes less than a given target.

e prevprime takes one argument:
n, an integer greater than 2.

e prevprime (n) returns the largest pseudo-prime (or prime) less than n.

Example.
Input:

prevprime (75)

Output:
73
6.5.17 The nth pseudo-prime number: ithprime

The ithprime command finds pseudo-primes.

e ithprime takes one argument:
n, a positive integer.

e ithprime (n) returns the nth pseudo-prime number.

Examples.
o Input:
ithprime (75)
Output:
379
o [nput:
ithprime (k) $ (k=1..20)
Output:

2,3,5,7,11,13,17,19, 23,29, 31, 37, 41, 43, 47, 53,59, 61, 67, 71
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6.5.18 The number of pseudo-primes less than or equal to n: nprimes

The nprimes command counts the number of pseudo-primes.

e nprimes takes one argument:
n, a non-negative integer.

e nprimes (n) returns the number of pseudo-primes (or primes) less than or

equal to n.
Examples.
o [nput:
nprimes (5)
Output:
3
e [nput:
nprimes (10)
Output:

6.5.19 Bézout’s Identity: iegcd igcdex

Bézout’s Identity states that for any integers a and b, there exist integers « and v
such that ged(a, b) = au + bv. The 1iegcd command computes the coefficients u
and v.

igcdex is a synonym for iegcd.

e iegcd takes two arguments:
a and b, integers.

e iegcd(a,b) returns the list [u,v,d], where au + bv = d and d =

ged(a, b).

Example.
Input:
iegcd (48, 30)

Output:
[2, -3, 6]

In other words:
2-484(-3)-30=6
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6.5.20 Solving au + bv = cin Z: iabcuv

The iabcuv solves a linear Diophantine equation in two variables.

e The iabcuv command takes three arguments:
a, b and c, integers.

e iabcuv (a, b, c¢) returns the list [u, v] where au + bv = c.

Note that ¢ must be a multiple of ged(a, b) for the existence of a solution.

Example.
Input:

iabcuv (48,30,18)
Output:
[67 _9]

6.5.21 Chinese remainders: ichinrem ichrem chrem

The Chinese Remainder Theorem states that if py, po, ..., p, are relatively prime,
then for any integers a1, as, ... a, there is a number ¢ such that ¢ = a; (mod py),
¢ = az (mod p3),...,¢ = a, (mod p,). The ichinrem command will find

this value of c.
ichremis a synonym for ichinrem.

e ichinrem takes one or more arguments:
Each argument is a pair of integers a; and py, either as a list [ax, pg] or as a
modular integer aj, %py.

e ichinrem ([a1,p1], [a2,p2], - - -/ [an, pn]) if possible returns alist [¢, L1,
where L = lem(p1,p2,...,pn) and c satisfies ¢ = ax (mod pg) for k =
1,...,n.

Note that any multiple of L = lcm(p1,p2,...,pn) can be added to ¢ and the
equalities will still be true. If the py are relatively prime, then by the Chinese
remainder theorem a solution ¢ will exist; what’s more, any two solutions will be
congruent modulo the product of the pys.
If all of the arguments are given as modular integers, then the result will also be
given as a modular integer ¢%l.

The chrem command does the same thing as ichinrem, but the input is
given in a different form.

e chrem takes two arguments:
[a1,...,ay] and [p1, ..., py], lists of integers of the same size.

e chrenm([ay,...,ay],[p1,...,pn]) returns [c, L], as for ichinrem.

BE CAREFUL with the order of the parameters, indeed:
chrem([a,b], [p,ql])=ichrem([a,p], [b,q])=ichinrem([a,p], [b,ql)

Examples.
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e Solve:

x=3 (modb)

x=9 (mod 13)
Input:

ichinrem([3,5]1,[9,13])
or:
ichrem([3,51,[9,131])

Output:

[48, 65]
SO x=48 (mod 65)
You can also input:
ichrem (3%5, 9%13)
Output:
(—17) % 65

(note that 48 = —17 (mod 65)).
Recalling that chrem takes its arguments in a different form, you can also

enter:
Input:
chrem([3,91,[5,131)
Output:
[48, 65]
e Solve:
x=3 (mod5)
x=4 (mod7)
x=1 (mod9)
Input:
ichinrem([3,5]1,14,7],101,9])
Output:

298, 315]

hence x=298 (mod 315)
Alternative input:

ichinrem ([3%5,4%7,1%9])
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Output:
(—17) % 315

(note that 298 = —17 (mod 315)).
Again, with the arguments in a different form, you can also enter:

Input:
chrem([3,4,1]1,([5,7,91])
Output:
[298, 315]
Remark.

These three commands, ichinrem, ichrem and chrem, may also be used to
find the coefficients of a polynomial whose equivalence classes are known modulo
several integers by using polynomials with integer coefficients instead of integers
for the ay,.

For example, to find ax + b modulo 315 = 5 x 7 x 9 under the assumptions

a=3 (mod5)
a=4 (mod?7)
a=1 (mod)9)
and
b=1 (mod 5)
(mod 7)
b=3 (mod 9)
Example.
Input:
ichinrem ( (3x+1)%5, (4x+2)%7, (x+3)%9)
Output:

((—17) % 315) = + 156 % 315

hence a=-17 (mod 315) and b=156 (mod 315).
As before, chrem takes the same input in a different format.
Input:

chrem([3x+1,4x+2,x+3]1,[5,7,91)

Output:
[2982 + 156, 315]

(note that 298 = —17 (mod 3)15).
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6.5.22 Solving a? + V? = p in Z: pa2b2

Any prime number congruent to 1 modulo 4 can be written as a sum of two squares.
The pa2b2 command finds such a decomposition.

e pa2b2 takes one argument:
p, a prime number which is congruent to 1 modulo 4.

e pal2b2 (p) returns a list of integers [a, b], where p = a? + v

Example.
Input:
pa2b2 (17)
Output:
[4,1]

indeed 17 = 42 + 12

6.5.23 The Euler indicatrix: euler phi

The Euler phi function (also called the Euler totient function) finds the number
of positive integers less than a given integer and relatively prime. The euler
command computes the Euler phi function.

e culer takes one argument:
n, a non-negative integer.

e culer (n) returns the number of integers larger than 1, less than n and
relatively prime to n.

Example.
Input:
euler (21)
Output:
12

In other words the set of integers less than 21 and coprime with 21, {2,4,5,7,8,10,11,13,15,16, 17,19}
has 12 elements.
The little Fermat theorem states:

If p is a prime number, then for any integer a, a?~! = 1 mod p.
Euler introduced his phi function to generalize the little Fermat theorem:

If o and n are relatively prime, then a®“¢"(®) =1 mod n.

Example.
Input:

powmod (5,12, 21)

(see section Section 6.34.10 p.417)
Output:
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6.5.24 Legendre symbol: legendre_symbol

If n is prime, the Legendre symbol of a is written (%) and defined by:
a 0 ifa=0 modn

(—): 1 ifa # 0 mod n and if a = b> mod n

" —1 ifa # 0 mod n and if a # b? mod n

The Legendre symbol satisfies the following properties.

o If n is prime:
n—1 a
a2z = (7) mod n
n

<§> . (2) = (—1)1%1.(—1)(1%1 if p and ¢ are odd and positive

The legendre_symbol command computes the Legendre symbol.

e legendre_symbol takes two arguments:
a and n, integers.

e legendre_symbol (a, n) returns the Legendre symbol ( )

a
n

Examples.
o Input:
legendre_symbol (26,17)
Output:
1
o [nput:
legendre_symbol (27,17)
Output:
—1
o Input:
legendre_symbol (34,17)
Output:
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6.5.25 Jacobi symbol: jacobi_symbol

The Jacobi symbol is a generalization of the Legendre symbol (£ ) for when n isn’t
prime. Let
n=pi".. .ppt

be the prime factorization of n. The Jacobi symbol of a is defined by:

G -GG

Where the left hand side is the Jacobi symbol and the right hand side contains Leg-
endre symbols. The jacobi_symbol command computes the Jacobi symbol.

e jacobi_symbol takes two arguments:
a and n, integers.

e jacobi_symbol (a,n) returns the Jacobi symbol (%)
Examples.
e [nput:
Jjacobi_symbol (25,12)
Output:
1
o [nput:
jacobi_symbol (35,12)
Output:
-1
e Input:
Jjacobi_symbol (33,12)
Output:

6.5.26 Listing all compositions of an integer into i parts: icomp

A composition of a positive integer n is an ordered set of non-negative integers
which sum to n. For example, three compositions of 4 are

4=143
4=3+1
4=1+1+2

These compositions have two, two and three elements, respectively. The icomp
command finds all compositions of an integer with a given number of elements.
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e icomp accepts two mandatory arguments and one optional argument:

— n, a positive integer.
— k, a positive integer not larger than n.

— Optionally, either zeros=true or zeros=false.

e icomp (n,k(, zeros=bool)) returns the list of all compositions of n into
k parts, where a part can be 0. This is equivalent to the optional argument
with bool equal to t rue. With bool equal to false, icomp (n, k, zeros=false)
returns the list of all compositions of n into k parts, where each part is
nonzero (positive).

Examples.
o [nput:
icomp (4, 2)
Output:
4 0
3 1
2 2
1 3
0 4
o Input:
icomp (6,3, zeros=false)
Output:
(4 1 17
3 21
2 31
1 4 1
3 1 2
2 2 2
1 3 2
2 1 3
1 2 3
L1 1 4 ]

6.6 Combinatorial analysis

6.6.1 Factorial: factorial !

The factorial command computes the factorial of a number.
The postfix operator ! is equivalent.

e factorial takes one argument:
n, an integer.
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e factorial (n) returns n!.

Example.
Input:
factorial (10)
or:
10!
Output:
3628800

The I' function (see Section 6.8.13 p.180) can be used to extend the factorial
function to complex numbers. The I' function is defined for all complex numbers
except for zero and the negative integers, and it satisfies I'(n 4+ 1) = n! for all
non-negative integers n. So the factorial can be extended to all complex numbers
except the negative integers by n! = I'(n + 1).

Examples.
o [nput:
factorial (1/2)
Output:
JT
2
e Input:
factorial (1)
Output:

0.5—-0.21

6.6.2 Binomial coefficients: binomial comb nCr

The comb command computes the binomial coefficients.
nCr is a synonyms for comb.

e comb takes two arguments:
n and p, integers.
n\y —_ (P
e comb (n, p) returns (p) = (5.

Example.
Input:

comb (5, 2)
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Output:
10

Remark.

The binomial command (see Section 9.4.3 p.779) can also compute the binomial
coefficients, but unlike comb and nCr it can take an optional third argument, a real
number a, to compute the binomial distribution. In this case binomial (n, p, a)
returns (g) aP(1—a)™P, the probability of p successes in n independent Bernoulli
trials, where each trial has a probability a of success.

Example.
Input:

binomial (5,2,0.5)
Output:
0.3125
6.6.3 Permutations: perm nPr

The perm command computes numbers of permutations.
nPr is a synonym for perm.

e perm takes two arguments:
n and p, integers.

e perm(n,p) returns P}, the number of permutations of n objects taken p at

a time.
Example.
Input:
perm(5,2)
Output:
20

6.6.4 Wilf-Zeilberger pairs: wz_certificate

The Wilf-Zeilberger certificate R(n, k) is used to prove the identity

Z U(n,k) = Cres(n)
k

for some constant C' (typically 1) whose value can be determined by evaluating
both sides for some value of k. To see how that works, note that the above identity

is equivalent to
Z F(n,k)
k

being constant, where F'(n, k) = U(n, k)/res(n). The Wilf-Zeilberger certificate
is a rational function R(n, k) that make F'(n, k) and G(n, k) = R(n,k)F(n,k) a
Wilf-Zeilberger pair, meaning
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o F(n+1,k) — F(n,k) = G(n,k+ 1) — G(n, k) for integers n > 0, k.
e limy , 1. G(n, k) =0 foreachn > 0.

To see how this helps, adding the first equation from £k = —M to k = N gives
you S (F(n+1,k) = F(n,k)) = Y3y N(G(n, k+1) — G(n, k)). The
right-hand side is a telescoping series, and so the equality can be written

N N
Y Fln+1,k)— > F(nk)=G(n,N+1)—G(n,—M).
k=—M k=—M

Taking the limit as NV, M — oo and using the second condition of Wilf-Zeilberger
pairs, you get
Y F(n+1,k)=> F(n,k)
k k

and so ), F'(n, k) does not depend on n, and so is a constant.
The wz_certificate command computes Wilf-Zeilberger pairs.

e wz_certificate takes four arguments:

— U(n, k), an expression in two variables.
— res(k), an expression in one of the variables.
— n and k, the variables.

e wz_certificate (U(n,k), res(k),n, k) returns the Wilf-Zeilberger
certificate R(n, k) for the identity ZZ":fio U(n, k) = res(n).

Example.
To show
n\ [ 2k 2n
1 k 4n—k: _
() ()= ()
k
Input:
wz_certificate((-1) "k*comb (n, k) *comb (2k, k) *4”" (n-k) ,comb (2n,n), n, k)
Output:
2k —1
2n+1

This means that R(n, k) = (2k — 1)/(2n + 1) is a Wilf-Zeilberger certificate; in
other words F(n, k) = (=1)%(}) (3)4"*/(*") and G(n, k) = R(n,k)F(n, k)
are a Wilf-Zeilberger pair. So ), F'(n, k) is a constant. Since F'(0,0) = 1 and
F(0,k) =0fork >0,) . F(0,k) =1andso ), F(n,k) = 1for all n, showing

st ()G =)
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6.7 Rational numbers

6.7.1 Transform a floating point number into a rational: exact float2rational

Rational numbers can be approximated by floating point numbers, but since float-
ing point numbers are not exact, they can’t typically be converted back to the origi-
nal rational number. However, the f1oat2rational command will try convert
a floating point to a nearby rational number.

exact is a synonym for float2rational.

e float2rational takes one argument:
d, a floating point number.

e float2rational (d) returns arational number g close to d; namely such
that |d — ¢| <epsilon, where epsilon is defined in the cas configura-
tion (C£g menu, see Section 3.5.7 p.72, item 9) or with the cas_setup
command (see Section 3.5.10 p.77).

Examples.

o Input:
float2rational (0.3670520231)

Output (when epsilon=1e-10):

127
346
o Input:
evalf (363/28)
Output:
12.9642857143
o [nput:
float2rational (12.9642857143)
Output:
863
28

o If two representations are mixed, for example:
Input:

1/2+0.7

the rational is converted to a float.
Output:
1.2
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o [nput:
1/2+float2rational (0.7)
Output:
6
5

6.7.2 Integer and fractional part: propfrac propFrac

Rational numbers are often broken up into integer and fractional parts, where the
fractional part has absolute value less than 1; i.e., the absolute value of the top
integer is smaller than that of the bottom integer. Such a fraction is called a proper
fraction. The propfrac command writes a fraction as an integer plus a proper
fraction.

propFrac is a synonym for propfrac.

e propfrac takes one argument:
r, a rational number.

e propfrac (r) returns

q—i—% with 0 <7 <b

a . .
where r = 3 is in lowest terms and and a = bq + r.

(For rational expressions, see Section 6.32.8 p.409.)

Examples.
e [nput:
propfrac (42/15)
Output:
24 %
e [nput:
propfrac(43/12)
Output:
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6.7.3 Numerator of a fraction after simplification: numer getNum

The numer command finds the numerator of a fraction.
getNum is a synonym for numer.

e numer takes one argument:
r, a fraction.

e numer (r) returns the numerator of r after it has been reduced to lowest
terms. (For rational expressions, see Section 6.32.2 p.407 and Section 6.32.1

p-406.)
Examples.
o Input:
numer (42/12)
or:
getNum (42/12)
Output:

7

e To avoid simplification, the argument must be quoted (see Section 6.12.4

p.201).
(For rational fractions see 6.32.1).
Input:

numer (' 42/12")
or:

getNum (’42/12")
Output:

42

6.7.4 Denominator of a fraction after simplification: denom getDenom

The denom command finds the denominator of a fraction.
getDenom is a synonym for denom.

e denom takes one argument:
r a fraction.

e denom (r) returns the denominator of r after it has been reduced to lowest
terms. (For rational expressions see Section 6.32.4 p.408).
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Example.
Input:
denom (42/12)
or:
getDenom (42/12)
Output:

2

To avoid simplification, the argument must be quoted (see Section 6.12.4 p.201).
(For rational expressions see Section 6.32.3 p.407).

Input:
denom (’42/12")
or:
getDenom (' 42/12")
Output:

12

6.7.5 Numerator and denominator of a fraction: £2nd £xnd

The £2nd command finds the numerator and denominator of a fraction.
fxnd is a synonym for £2nd.

e f2nd takes one argument:
r, a fraction.

e £2nd (r) returns the list of the numerator and denominator of r after it has
been reduced to lowest terms. (For rational expressions see Section 6.32.5

p-408).
Example.
Input:
f2nd (42/12)
Output:
[7,2]

6.7.6 Simplifying a pair of integers: simp2

The simp2 command reduces a fraction to lowest terms, where the fraction is
given as a separate numerator and denominator. (See also Section 6.32.6 p.409.)

e simp2 takes one or two arguments:
[a, b], a list of two integers or simply the two integers a, b.



6.7. RATIONAL NUMBERS 161

e simp2 ([a,b]) or simp2 (a, b) returns the integers after they have been
divided by their greatest common divisor; i.e., the corresponding fraction
will be in lowest terms.

Examples.
o Input:
simp2 (18,15)
Output:
[6, 5]
o Input:
simp2([42,12])
Output:

[7,2]

6.7.7 Continued fraction representation of a real: dfc

Any real number a can be written as a continued fraction:

N 1
a = ap
N 1
ai
1
ag + ——
, which is often abbreviated [ag; a1, az, as, ...]|. The df c command writes a real

number as a continued fraction.
e dfc takes one mandatory argument and one optional argument:

— a, areal number.
— Optionally, n an integer or epsilon, a positive real number.

e dfc (a) returns the list of the continued fraction representation of a with
precision epsilon, which is given by Section 3.5.7 p.72, item 9.

e dfc (a, epsilon) returns the list of the continued fraction representation
which approximates a or evalf (a) with the specified precision epsilon.

e dfc (a,n) returns the list of the continued fraction representation of a of
order n.

Remarks.

e The convert command with the option confrac (see Section 6.23.26
p-318) has a similar functionality: in that case the value of epsilon is the
value defined in the cas configuration and the answer may be stored in an
optional third argument.
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o If the last element of the result is a list, the representation is ultimately peri-
odic, and the last element is the period. It means that the real is a root of an
equation of order 2 with integer coefficients. SoIf dfc (a)=[a0,al, a2, [b0,bl]]
then:

a=al+
CL1++
o+ — L
bl g

o if the last element of the result is not an integer, it represents a remainder r
(a=a0+1/...41/an+1/r). Soif dfc (a)=[a0,al, a2, r] then:

1
a:a0+71

Be aware that this remainder has lost most of its accuracy.

Examples.
o [nput:
dfc (sqgrt(2),5)
Output:
1,2, 2]
o I[nput:
dfc(evalf (sgrt(2)),1le-9)
or:
dfc(sqgrt (2),1le-9)
Output:
[1,2,2,2,2,2,2,2,2,2,2,2, 2]

o [nput:

convert (sqgrt (2) ,confrac, ' dev’)
Output (if in the cas configuration epsilon=1e-9):
[1,2,2,2,2,2,2,2,2,2,2,2 2]
and [1,2,2,2,2,2,2,2,2,2,2,2,2] is stored in dev.
e [nput:

dfc(9976/6961,5)
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Output:
43
1,2,3,4,5, —
{ ) ) ) ) ) 7 :|
Input (to verify):
1+1/(2+1/ (3+1/ (4+1/(5+7/43))))
Output:
9976
6961
o Input:

convert (9976/6961, confrac,’1")
Output (if in the cas configuration epsilon=1e-9):
1,2,3,4,5,6,7]

and [1,2,3,4,5,6,7] isstoredin 1.

o [nput:
dfc (pi,5)
Output: 113 355
— T+
3,7,15,1,292, 331027 — 103993
e Input:

dfc(evalf (pi), 5)
Output (if floats are hardware floats, e.g. for Digits=12):
[3,7,15,1,292,1.57581843574]
o Input:

dfc(evalf (pi),1e-9)

or:
dfc (pi, 1le-9)
or (if in the cas configuration epsilon=1e-9):
convert (pi, confrac,’11’)

Output:
[3,7,15,1,292]

and [3,7,15,1,292] isstoredin 11.
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6.7.8 Transforming a continued fraction representation into a real:
dfc2f

The dfc2 £ command transforms a continued fraction into a real number.

e dfc2f takes one argument:
L, a list representing a continued fraction, which can be:
— a list of integers for a rational number.

— alist whose last element is a list for an ultimately periodic representa-
tion, i.e. a quadratic number, that is a root of a second order equation
with integer coefficients.

— alist with a remainder r as last element (¢ = a0+1/...+1/an+1/r).

e dfc2f (L) returns the rational number or the quadratic number whose con-
tinued fraction representation is L.

Examples.
o [nput:
Output:
1
S —— +1
NS
After simplification with normal:
V2
e Input:
dfc2f([1,2,3])
Output:
10
7
o Input:
normal (dfc2f([3,3,6,[3,611]))
Output:
V11
e [nput:

dfc2f([1,2,3,4,5,6,71)
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Output:
9976
6961
Input (to verify):
1+1/(2+1/ (3+1/ (4+1/ (5+1/(6+1/7)))))
Output:
9976
6961
o Input:
dfc2f([1,2,3,4,5,43/7])
Output:
9976
6961
Input (to verify):
1+1/(2+41/(3+1/ (4+1/(5+7/43))))
Output:
9976
6961

6.7.9 The n-th Bernoulli number: bernoulli

The Bernoulli polynomial B, is defined by:

1
By=1, B, (z)=nB,_1(v), / By (z)dz =0
0

The nth Bernoulli number is B,, = B,,(0), and is also given by the formula:

t_ +i°°B<n>tn
el —1 n!

n=0

The bernoulli command computes the Bernoulli numbers.

e bernoulli takes one argument:
n, an integer.

e bernoulli (n) returns the n-th Bernoulli number, B5,,.

Example.
Input:

bernoulli (6)

Output:

165
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6.7.10 Accessing to PARI/GP commands: pari

PARI/GP (https://pari.math.u-bordeaux.fr/)is a computer algebra
system which focuses on number theory. Xcas can use the PARI/GP functions
with the pari command.

The arguments of pari depends on the PARI/GP function it is using.

e pari with astring as first argument (the PARI command name) executes the
corresponding PARI command with the remaining arguments. For example
pari ("weber", 1+1) executes the PARI command weber (1+1).

e pari without any argument exports all PARI/GP functions to Xcas with
the prefix pari_. If the name of a PARI function is not also the name of an
Xcas command, that function will also be exported without the prefix.

For example, after calling pari (), the commands pari_weber (1+i) and
weber (1+1) will execute the PARI command weber (1+1).
The documentation of PARI/GP is available with the menu Help»Manuals.

6.8 Real numbers

6.8.1 Evaluating a real at a given precision: evalf Digits DIGITS

A real number is an exact number and its numeric evaluation at a given precision is
a floating number represented in base 2. The precision of a floating number is the
number of bits of its mantissa, which is at least 53 (hardware float numbers, also
known as double).

Floating numbers are displayed in base 10 with a number of digits controlled
by the user either by assigning the Digits variable or by modifying the Cas
configuration (see Section 3.5.7 p.72, item 8). By default Digits is equal to 12.

The number of digits displayed controls the number of bits of the mantissa; if
Digitsisless than 15, 53 bits are used, if Digits is strictly greater than 15, the
number of bits is a roundoff of Digits times log,(10).

An expression can be coerced into a floating number with the eval f command
(see Section 6.8.1 p.168). The evalf command may have an optional second
argument which will specify the precision to use.

Note that if an expression contains a floating number, evaluation will try to
convert other arguments to floating point numbers in order to coerce the whole
expression to a single floating number.

Examples.
e [nput:
1+1/2
Output:
3
2

o Input:
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1.0+1/2
Output:
1.5
o Input:
exp (pi*sqgrt (20))
Output:

e27r\/5

With evalf, input:

evalf (exp (pi*2*xsgrt (5)))

Output:
1263794.75367
o [nput:
1.17°20
Output:
6.72749994932
o Input:
sgqrt (2) "21
Output:
V2. 210

o [nput (for a result with 30 digits):

Digits:=30

V16,

Input (for the numeric value of e
evalf (exp (pi*sqgrt (163)))

Output:
0.262537412640768743999999999985 x 10°

Note that Digits is now set to 30. If you didn’t want to change the value
of Digits, you could have entered:
Input:

evalf (exp (pixsqgrt (163)),30)
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6.8.2 The standard infixed operators on real numbers: + — x / ~

The +, —, =, /, and ~ operators are the usual infixed operators to do addition,
subtraction, multiplication, division and raising to a power.
Examples.
o [nput:
3+2
Output:
)
e [nput:
3-2
Output:
1
o [nput:
3%2
Output:
6
o Input:
3/2
Output:
3
2
o [nput:
3.2/2.1
Output:
1.52380952381
e [nput:
372
Output:
9
e [nput:

3.272.1
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Output:
11.5031015682

Remark.
You can use the square key or the cube key if your keyboard has one; for example:
32 returns 9.

Remarks on non integral powers.

If  is not an integer, then a® = exp(z In(a)), hence if x is not rational, then a” is
well-defined only for a > 0. If  is rational and a < 0, the principal branch of the
logarithm is used, leading to a complex number. Note the difference between /a
and a= when n is an odd integer.

Example.
To draw the graph of y = V3 — 22
Input:

plotfunc(ifte (x>0, (x"3-x"2)"(1/3),
-(x"2-x"3)"(1/3)),%x,xstep=0.01)

You might also input:
plotimplicit (y " 3=x"3-x"2)

but this is much slower and much less accurate.

6.8.3 Prefixed division on reals: rdiv

The rdiv command is the prefixed form of the usual division operator.

Examples.
o Input:
rdiv (3, 2)
Output:
3
2
o Input:
rdiv(3.2,2.1)
Output:

1.52380952381
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6.8.4 n-throot: root
The root command finds roots of numbers.

e root takes two arguments:
n and a, numbers.

e root (n,a) returns the nth root of a (i.e. /™). If a < 0, the n-th root is a
complex number with argument 27 /n.

Examples.
o [nput:
root (3, 2)
Output:
95
o [nput:
root (3,2.0)
Output:
1.25992104989
o I[nput:
root (3, sqrt (2))
Output:

[\
o=

6.8.5 The exponential integral function: Ei

The exponential integral Ei is defined for non-zero real numbers x by

el
El(:c)—/t ; dt.

=—00

For x > 0, this integral is improper but the principal value exists. This function
satisfies Ei(0) = —o0, Ei(—o0) = 0.
Since (2) )
exp(x 1 T T
=—4+14+=4+—4...
T x i 2! + 3! T
the Ei function can be extended to C — {0} (with a branch cut on the positive real

axis) by

2 583

2.2l +3‘3! o
where v = 0.57721566490. . . is Euler’s constant.
The Ei command takes one or two arguments.

With one argument, the Ei command computes the exponential integral.

Ei(z) =In(z) +v+ 2z +
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e Ei takes one argument:
z, a complex number.

e Ei (z) returns the value of the exponential integral at z.

Examples.
o Input:
Ei(1.0)
Output:
1.89511781636
o Input:
Ei(=-1.0)
Output:
—0.219383934396
o Input:
Ei(l.)-Ei(-1.)
Output:
2.11450175075
o Input:
int ((exp(x)-1)/x,x=-1..1.)
Output:
2.11450175075
e The input:
Input:

evalf (Ei(-1)-sum((-1) "n/n/n!,n=1..100))

approximates the Euler’s constant y
Output:
0.577215664902

Another type of exponential integral is

Ei(x) :/OO expi_t)dt:/f Wdt

which satisfies
Ey(x) = —Ei(—x)
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This can be generalized to

[ exp(—tx)"
E,(x) _/1 — dt

These functions satisfy
Ei(x) = —Ei(z)
Ey(z) =€ * +2Ei(—z) =e ¥ —zx E(z)
and, for n > 2,
En(x) = (e7* — 2B, (x))/(n = 1)
With two arguments, the Ei command computes this version of the exponential
integral.

e Ei takes two arguments:

— z, a complex number.

— n, a positive integer.

e Ei (z,n) returns the value of E,(2).

Examples.
e [nput:
Ei(1.0,1)
Output:
0.219383934396
o [nput:
Ei(3.0,2)
Output:

0.0106419250853

6.8.6 The logarithmic integral function: Li

The logarithmic integral function is defined by
exp(z) q
Li(x) = Ei(In(z :/ ——dt
(1) =EBilm@) = | o
The Li command computes the logarithmic integral.
e Li takes one argument:
z, a complex number.

e Li (z) returns the value of the logarithmic integral Li(z).

Example.
Input:
Li(2.0)

Output:
1.04516378012
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6.8.7 The cosine integral function: Ci
The cosine integral function is defined by

[T cos(t)
Cl(:r)—/ ; dt

“+o00

z -1
:ln(t)-i-’y-l-/ cos(t) 1
t=0 t

dt
and Ci(0) = —o0, Ci(—o0) = ¢ and Ci(+o00) = 0.
The Ci command computes the cosine integral function.

e Ci takes one argument:
z, a complex number.

e Ci (z) returns the value of the cosine integral function Ci(z).

Examples.
o [nput:
Ci(1.0)
Output:
0.337403922901
o Input:
Ci(-1.0)
Output:
0.337403922901 + 3.141592653591
o Input:
Ci(1.0) - Ci(-1.0)
Output:

—3.141592653591

6.8.8 The sine integral function: Si

The sine integral function is defined by

Si(z) = /0 "sin®)

t

and Si(0) = 0,Si(—o0) = —7/2 and Si(+00) = 7/2. Note that Si is an odd
function.
The Si command computes the sine integral function.

e Si command takes one argument:
z, a complex number.
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e Si (z) returns the value of the sine integral function Si(z).

Example.
Input:
Si(1.0)
Output:
0.946083070367

Input:

Si(-1.0)
Output:

—0.946083070367

6.8.9 The Heaviside function: Heaviside

The Heaviside function is the step function

H(x) 0 forxz<O
1‘ =
1 forz>0

The Heaviside command computes the Heaviside function.

e Heaviside takes one argument:
x, a real number.

e Heaviside (z) returns the value of the Heaviside function H ().

Examples.
e Input:
Heaviside (2)
Output:
1
e [nput:
Heaviside (-4)
Output:
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6.8.10 The Dirac distribution: Dirac

The Dirac ¢ distribution is the distributional derivative of the Heaviside function.

This means that
o0
/ d(x)dx =1
—0oQ

/bé(x)dm_ {1 if 0 € [a,b]

1 otherwise

and, in fact,

The defining property of the Dirac distribution is that

| s@sw)ds = f0)

and consequently

as long as c s in [a, b].
The Dirac command represents the Dirac distribution.

Examples.
o [nput:
int (Dirac(x) *sin (x),x,-1,2)
Output:
sin (0)
o Input:
int (Dirac (x-1) *sin(x),x,-1,2)
Output:

sin (1)

If you have Dirac compute a value:

e Dirac it takes one argument:
x, a real number.

e Dirac (x) returns oo if £ = 0, it returns 0 otherwise.
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6.8.11 Error function: erf

The error function erf is defined by:

2 xX
erf(l') = \/7?/0 €_t2dt

where the constant % is chosen so that
erf(+o0) =1, erf(—oc0) = —1
since

+oo
/ e Cdt = ﬁ
0

2

The erf command computes the error function.

e crf takes one argument:
a, a number.

e erf (a) returns the value of erf(a).

Examples.
o [nput:
erf (1)
Output:
erf (1)
o [nput:
erf(1.0)
Output:
0.84270079295
o [nput:
erf(1/(sqrt(2)))*1/2+0.5
Output:
0.841344746069
Remark.

The relation between er f and normal_cdf (see Section 9.4.7 p.786) is:

1_cdf(z) = L + L £( ° )
normal_cdf(z) =5+ jer NG
Indeed, making the change of variable ¢ = u * /2 in
normal_cdf — + — / 7t2/ 2dt
(@) V2T
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gives:

normal_cdf(z) = % + \/1? /oﬂ e~ duy = % + ;erf(\%)
Check:
Input:
normal_cdf (1.0)
Output:

0.841344746069

6.8.12 Complementary error function: erfc

The complementary error function is defined by

2 [T e
erfc(x) = — e Vdt =1 — erf(x)
7

Hence erfc(0) = 1, since

“+00
/ et = ﬁ
0

2
The erfc command computes the complementary error function.

e crfc takes one argument:
a, a number.

e erfc (a) returns the value of the complementary error function erfc(a).

Examples.
o [nput:
erfc (1)
Output:
1 —erf(1)
o Input:
1- erfc(1/(sqrt(2)))=*0.5
Output:
0.841344746069
Remark.
The relation between er fc and normal_cdf (see Section 9.4.7 p.786) is:
l_cdf(m) =1 rerfe(-%)
normal_cdf(z) =1— —erfc(—
_ 5 7
Check:
Input:
normal cdf (1.0)
Output:

0.841344746069
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6.8.13 The I function: Gamma

The Gamma function is defined by
“+oo
F@):/ﬁ e "t if >0
0

If = is a positive integer, I" is computed by applying the recurrence:

[(z+1)=z*D(z), D(1)=1

Hence:

F'n+1)=n!
and the Gamma function is used to generalize the factorial (see Section 6.6.1
p.155).

The Gamma command computes the Gamma function.

e Gamma takes one argument:
a, a number.

e Gamma (a) returns the value I'(a).

Examples.
o [nput:
Gamma (5)
Output:
24
o [nput:
Gamma (0.7)
Output:
1.29805533265
o [nput:
Gamma (-0.3)
Output:

—4.32685110883
Indeed: Gamma (0.7)=-0.3«Gamma (-0.3)

o [nput:
Gamma (-1.3)

Output:
3.32834700679

Indeed Gamma (0.7)=-0.3xGamma (-0.3)=(-0.3) % (-1.3) *xGamma (-1.3)
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6.8.14 The upper incomplete v function: ugamma

The upper incomplete ~y function is defined by
+o0
[(a,b) = / et 1at.
b

The ugamma command computes the upper incomplete ~ function.
e ugamma takes two arguments:

— a, anumber.

— b, a positive real number.

e ugamma (a, b) returns the value of I'(a, b).

Examples.
o Input:
ugamma (3.0,2.0)
Output:
1.35335283237
o Input:
ugamma (=1.3, 2)
Output:

0.0142127568837

6.8.15 The lower incomplete ~ function: igamma

The lower incomplete  function is defined by

b
fy(a,b):/ et 1at.
0

The igamma command computes the lower incomplete ~y function.
e igamma takes two mandatory arguments and one optional argument:

— a, anumber.
— b, a positive real number.

— Optionally, the number 1.

e igamma (a, b) returns y(a,b).

e igamma (a, b, 1) returns a normalized version of the function; namely

7(a,0)/T(a).
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Examples.
o [nput:
igamma (4.0, 3.0)
Output:
2.11660866731
o Input:
igamma (4.0,3.0,1)
Output:

0.352768111218
since I'(4) = 6 and 2.11660866731/6 = 0.352768111218.

6.8.16 The [ function: Beta
The S function is defined by

I'(z) * T(y)

1
Bay) = [ -t = S

This is defined for « and y positive reals (to ensure the convergence of the integral)
and by extension for x and y if they are not negative integers.
Remarkable values:

B(1,1)=1, B(n,1)= % B(n,2) = n(n1+1)

The Beta command computes the 5 function.

e Beta takes two arguments:
a and b, real numbers.

e Beta (a, b) returns the value of the 3(a, b).

Examples.
e [nput:
Beta (5, 2)
Output:
1
30
o Input:

Beta (x,vy)



6.8. REAL NUMBERS 181

Output:
I'(z)T (y)
I'(z+vy)
o Input:
Beta(5.1,2.2)
Output:

0.0242053671402

6.8.17 Derivatives of the DiGamma function: Psi

The DiGamma function is the derivative of the logarithm of the I' function (see
Section 6.8.13 p.180),

This function is used to evaluated sums of rational functions having poles at inte-

gers.
The Psi function computes the DiGamma function and its derivatives.

e Psi takes one mandatory argument and one optional argument:

— a, areal number.

— Optionally, n, a non-negative integer.
e Psi (a) returns the value of the DiGamma function ¢ (a).

e Psi (a,n) returns the nth derivative of the DiGamma function at x = a.

Examples.
e Input:
Psi (3)
Output:
3_
9 Y
o Input:
evalf (Psi(3))
Output:
0.922784335098
o Input:
Psi(3,1)
Output:

o,
| o
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6.8.18 The ( function: Zeta

The ¢ function is defined by
+00 1

((z)=) —
n=1 n

for x > 1, and by its meromorphic continuation for x < 1.
The Zeta command computes the ¢ function.

e Zeta takes one argument:
x, a real number.

e Zeta (x) returns the value of the ¢ function {(x).

Examples.
o [nput:
Zeta (2)
Output:
™
6
o [nput:
Zeta (4)
Output:
m
90

6.8.19 Airy functions: Airy Ai and Airy Bi

The Airy functions of the first and second kind are defined by
o
Ai(z) = (1/m) / cos(t3/3 4 x x t)dt
0
© 3
Bi(z) = (1/77)/ (e7V/3 4 sin(t?/3 + x  t))dt
0
The have the properties that, if f and g are two entire series solutions of
w' —xxw=0

then

2.
S
~—

2.
S
~—

*

= f(@) + AT'(0) * g(z)
Bi(z) = V3(Ai(0)x f(z) — A'(0) * g(x))
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more precisely:

5 = ad & I’(k+%) 23k
) = g?’ ( r'(%) )(Sk)!

I'(k+2) 3k+1
9l@) = ng( 0@ > 3k + 1)!

k=0 3

The Airy_Ai and Airy_Bi commands compute the Airy functions.

e Airy_Ai and Airy_Bi take one argument:
x, a real number.

e Airy_Ai(z) and Airy_Bi (x) return the values of the Airy functions.

Examples.
o Input:
Airy_ Ai (1)
Output:
0.135292416313
e Input:
Adry_Bi (1)
Output:
1.20742359495
o Input:
Airy_Ai(0)
Output:
0.355028053888
o Input:
Airy_Bi (0)
Output:

0.614926627446
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6.9 Permutations

A permutation p of size n is a bijection from [0..n — 1] to [0..n — 1] and is repre-
sented by the list: [p(0),p(1),p(2)...p(n —1)].

For example, the permutation p represented by [1,3,2,0] is the function from
[0,1,2,3] to [0, 1,2, 3] defined by:

p(0) =1, p(1) =3, p(2) =2, p(3) =0

A cycle c of size p, represented by the list [ag, . . . ,ap_l] 0 <ap <n-—1),isthe
permutation such that

c(a;) = ajpq for (i = 0..p — 2), c(ap—1) =ap, c(k) =k otherwise

For example, the cycle c represented by the list [3, 2, 1] is the permutation ¢ defined
by ¢(3) = 2, ¢(2) =1, ¢(1) = 3, ¢(0) = 0 (i.e. the permutation represented by
the list [0, 3, 1, 2]).

6.9.1 Random permutation: randperm shuffle

The randperm command computes a random permutation.
shuffle is asynonym for randperm.

e randperm takes one argument:
n, an integer.

e randperm (n) returns a random permutation of [0..n — 1].

Example.
Input:

randperm(3)

Output (example):
[2,0,1]

6.9.2 Previous and next permutation: prevperm nextperm

The set of n-tuples of an ordered set can be put in lexicographic order, where
the tuple (a1, as, ..., ay,) comes before (by, b, ..., b,) exactly when for some k
(possibly k = 0), a; = b; fori = 1,...,k — 1 and ay, < by. For example, the set
of permutations of size 3 in lexicographic order is

(0,

)

0
0
L,
1
2
2

9

O = O N - DN
T — T

)

9

e i
o N O N =

) )

The prevpermand nextperm commands find the preceding and succeeding
permutation.
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e prevpermn takes one argument:

P, a permutation.

e prevperm (p) returns the previous permutation in lexicographic order, or
undef if there is no previous permutation.

Example.
Input:

prevperm([0,3,1,2])

Output:
[0,2,3,1]

e nextperm takes one argument:
P, a permutation.

e nextperm (p) returns the next permutation in lexicographic order, or unde £
if there is no next permutation.

Example.
Input:

nextperm([0,2,3,1])
Output:
[0,3,1,2]
6.9.3 Decomposing a permuation into a product of disjoint cycles:
permu2cycles

Any permutation can be decomposed as a sequence of cycles which have no ele-
ments in common. For example, the permutation [1, 3, 4, 0, 2] can be written as a
combination of the cycles [0, 1, 3] and [2, 4].

The permu2cycles command decomposes a permutation into a combina-
tion of cycles.

e permu2cycles takes one argument:
P, a permutation.

e permu2cycles (p) returns the decomposition of p as a product of disjoint
cycles. A cycle is represented by a list, a cyclic decomposition is represented
by a list of lists.

Examples.

o Input:

permu2cycles([1,3,4,5,2,0])
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Output:
[[0,1,3,5],[2,4]]

In the answer the cycles of size 1 are omitted, except if n — 1 is a fixed point
of the permutation (this is required to find the value of n from the cycle

decomposition).
o nput:
permu2cycles([0,1,2,4,3,5])
Output:
[[5], (3, 4]}
e [nput:
permu2cycles([0,1,2,3,5,4])
Output:

[[4,5]]

6.9.4 Product of cycles to permutation: cycles2permu

The cycles2permu command is the inverse of perm2cycles; it turns a se-
quence of cycles into a permutation.

e cycles2permu takes one argument:
¢, a list of cycles.

e cycles2permu (c) returns the permutation (of size n chosen as small as
possible) that is the product of the given cycles.

Examples.
e Input:
cycles2permu([[1,3,5],12,41])
Output:
0,3,4,5,2,1]
o [nput:
cyclesZpermu([[2,4]])
Output:
[0,1,4,3,2]
o [nput:
cycles2permu([[5]1,[2,4]1])
Output:

[0,1,4,3,2,5]
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6.9.5 Transforming a cycle into a permutation: cycle2perm

A cycle is a type of permutation, but has a different representation.
The cycle2perm command converts a cycle to the cycle written as a permuta-
tion.

e cycle2perm takes one argument:
¢, acycle c.

e cycle2perm (c) returns the permutation of size n corresponding to the
cycle ¢, where n is chosen as small as possible (see also permu2cycles
and cycles2permu).

Example.
Input:

cycle2perm([1,3,5])
Output:
[07 3’ 2’ 57 47 ]‘}

6.9.6 Transforming a permutation into a matrix: permu2mat

The matrix of a permutation p of size n is the matrix obtained by permuting the
rows of the identity matrix of size n with the permutation p. Multiplying this matrix
by a column vector of size n is the same as permuting the elements of the vector
with the permutation p.

The permu2mat command finds the matrix of a given permutation.

e permuZmat takes one argument:
P, a permutation p.

e permu2mat (p) returns the matrix of the permutation p.

Example.
Input:

permuZmat ([2,0,1])

Output:

O = O
= o O
O O =

6.9.7 Checking for a permutation: is_permu

A permutation can be written as a list, but not every list corresponds to a permuta-
tion. The is_permu is a boolean function which checks to see if a given list is a
permutation.

e is_permu takes one argument:
L, alist.
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e is_permu (L) returns 1 if L is a permutation and returns O if L is not a
permutation.

Examples.

e [nput:
is_permu([2,1,3])

Output:

e [nput:
is_permu([2,1,3,01)

Output:

6.9.8 Checking for a cycle: is_cycle

The is_cycle command is a boolean function which checks to see if a list rep-
resents a cycle.

e is_cycle takes one argument:
L, alist.

e is_cycle (L) returns 1 if L is a cycle and returns O if L is not a cycle.

Examples.
e [nput:
is_cycle([2,1,31)
Output:
1
e Input:
is_cycle([2,1,3,2])
Output:
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6.9.9 Product of two permutations: plop2 clop2 ploc2 cloc2

Permutations are functions, and so can be composed. Since cycles can be rep-
resented differently than other permutations, there are commands for composing
permutations of different types.

Warning.
Composition is done using the standard mathematical notation; that is, the function
given as the second argument is performed first.

The plop2 command composes two permutations.

e plop2 takes two arguments:
p1 and po, permutations.

e plop2 (p1,p2) returns the permutation p; o p2 obtained by composition.

Example.
Input:

plop2([3,4,5,2,0,1],(2,0,1,4,3,5])

Output:
[5,3,4,0,2,1]

The clop2 command composes a cycle and a permutation.
e clop?2 takes two arguments:

- c1,acycle.

— po, a permutation.

e clop2 (c1,p2) returns the permutation ¢; o p obtained by composition.

Example.
Input:

clopz2(([3,4,5],[2,0,1,4,3,5])

Output:
[2,0,1,5,4, 3]

The ploc2 command composes a permutation and a cycle.
e ploc? takes two arguments:

— p1, a permutation.

— co,acycle.

ploc?2 (p1,ce) returns the permutation p; o ¢y obtained by composition.

Example.
Input:

ploc2([3,4,5,2,0,1],[2,0,1])



190 CHAPTER 6. THE CAS FUNCTIONS
Output:
[4,5,3,2,0,1]
The cloc2 command composes two cycles.

e cloc? takes two arguments:
c1 and ca, cycles.

e cloc?2 (c1,ce) returns the permutation ¢; o co obtained by composition.

Example.
Input:

cloc2([3,4,5],[2,0,11)
Output:
[17 27 07 47 57 3]
6.9.10 Signature of a permutation: signature

Every permutation can be decomposed into a product of transpositions (cycles with
only two elements). The number of transpositions is not unique, but for any per-
mutation the number will be either odd or even. The signature of a permutation is
equal to:

o 1 if the permutation is equal to an even product of transpositions,
o -1 if the permutation is equal to an odd product of transpositions.

The signature of a cycle of size k is: (—1)*+1.

The signature command computes the signature of a permutation.

e signature takes one argument:
P, a permutation.

e signature (p) returns the signature of the permutation p.

Example.
Input:

signature([3,4,5,2,0,1])
Output:
-1

6.9.11 Inverse of a permutation: perminv

Every permutation has an inverse, which is also a permutation.
The perminv command computes the inverse of a permutation.

e perminv takes one argument:
P, a permutation.

e perminv (p) returns the permutation that is the inverse of p.
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Example.
Input:
perminv ([1,2,0])
Output:
(2,0,1]
6.9.12 Inverse of a cycle: cycleinv

The inverse of a cycle will be another cycle.
The cycleinv command computes the inverse of a cycle.

e cycleinv takes one argument:
¢, acycle.

e cycleinv (c¢) returns the cycle that is the inverse of c.

Example.
Input:

cycleinv([2,0,1])
Output:
[1,0,2]

6.9.13 Order of a permutation: permuorder

If any permutation p on a finite set [0, . .., n — 1] is repeated often enough, it reach
be the identity permutation. The smallest m such that p™ is the identity is called
the order of p.

The permuorder command computes the order of a permutation.

e permuorder takes one argument:
P, a permutation.

e permuorder (p) returns the order of the permutation p.

Examples.
o Input:
permuorder ([0,2,17)
Output:
2
o Input:
permuorder ([3,2,1,4,017)
Output:
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6.9.14 The group generated by two permutations: groupermu

Given permutations a and b, the group they generate is the set of all possible com-
positions of any number of as and any number of bs.

The groupermu command computes the group generated by two permuta-
tions.

e groupermu takes two arguments:
a and b, permutations.

e groupermu (a, b) returns the group of the permutations generated by a

and b.
Example.
Input:
groupermu((0,2,1,3],([3,1,2,0])
Output:
0 21 3
31 20
01 2 3
3210

6.10 Complex numbers

Note that complex numbers, as well as being numbers, are used to represent points
in the plane (see Section 13.6.2 p.911). Some functions and operators which work
on complex numbers also work on points.

6.10.1 The usual complex operators: + — x / ~

The +, —, », /, ~ operators are the usual operators to perform addition, subtraction,
multiplication, division and for raising to a power.
Input:

(14+2%1) "2

Output:
-3+ 4

6.10.2 The real and imaginary parts of a complex number: re real
im imag

The re (or real) and im (or imag) commands find the real and imaginary parts

of a complex number.

The re command finds the real part of a complex number.
real is a synonym for re.

e re takes one argument:
a, a complex number (or point).
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e re (a) returns the real part of the complex number a (or the projection of
the point a onto the x axis).

Example.
Input:
re(3+4x%1i)
Output:
3

The im command finds the imaginary part of a complex number.
imag is a synonym for im.

e im takes one argument:
a, a complex number (or point).

e im (a) returns the imaginary part of the complex number a (or the projection
of the point a onto the y axis).

Example.
Input:

im(3+4x1)

Output:

6.10.3 Writing a complex number 2 in rectangular form: evalc
The evalc command will ensure that a complex number is in rectangular form.

e cvalc takes one argument:
z, a complex number.

e evalc (z) returns z written as re (z) +ixim(z2).

Example.
Input:

evalc (sqrt (2) xexp (ixpi/4))

Output:
1+1

6.10.4 The modulus and argument of a complex number: abs arg

A complex number z can be written in polar form re?, where r is the modulus and
0 is the argument. The angle € is only determined up to a multiple of 2; there
will be a unique value in the interval (—m, 7], the value in this interval is called the
principal value of the argument.

The abs and arg commands find the modulus and argument of a complex
number.

The abs command finds the modulus of a complex number (see also Sec-
tion 6.16.2 p.242).
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e abs takes one argument:
z, a complex number.

e abs (z) returns the modulus |z|.

Example.
Input:
abs (3+4%*1)
Output:
)

The arg command finds the argument of a complex number.

e arg takes one argument:
z, a complex number.

e arg (z) returns the principal value of the argument of z.

Examples.
o [nput:
arg (3+4«1)
Output:
(5)
arctan ( —
3
e [nput:
arg(3.0+4.0+*1)
Output:

0.927295218002

6.10.5 The normalized complex number: normalize unitVv

The normalize command finds the unit complex number with the same direction
as a given complex number.
unitVis a synonym for normalize.

e normalize takes one argument:
z, a non-zero complex number.

e normalize (z) returns the unit complex number with the same direction
as z, namely z divided by the modulus of z.

Example.
Input:

normalize (3+4+1)

Output:
3+4i

5
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6.10.6 Conjugate of a complex number: conj
The conj command finds the conjugate of a complex number.

e con 7 takes one argument:
z, a complex number.

e conj (z) returns the complex conjugate of z.

Example.
Input:

conj(3+4x1)

Output:
3—4i

6.10.7 Multiplication by the complex conjugate: mult_c_conjugate

The denominator of a complex expression can be made a real number by multiply-
ing the numerator and denominator of the expression by the complex conjugate of
the denominator. The mult_c_conjugate can perform this multiplication.

e mult_c_conjugate takes one argument:
expr, a complex expression.

e mult_c_conjugate (expr) returns the following:

— If expr is a fraction with a complex (non-real) denominator, then this
expression is returned with the numerator and denominator multiplied
by the complex conjugate of the denominator.

— If expr is a fraction with a real denominator (if expr is not a fraction,
it is regarded as a fraction with a denominator of 1), then this expres-
sion is returned with the numerator and denominator multiplied by the
complex conjugate of the numerator.

Examples.
o Input:
mult_c_conjugate ((2+1)/ (2+3%1))
Output:
(2+1)(2-3i)
(2 +3i) (2 —3i)
o Input:
mult_c_conjugate ((2+1)/2)
Output:

(2+1)(2—1)
2(2—1)
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6.10.8 Barycenter of complex numbers: barycenter

The barycenter, or center of mass, of a set of points Ay, Ao, ..., A, with masses
Q1,009,...,0y 1S

Ay + -+ andy,
ap+ -t o
This formula makes sense even if the c; are not positive real numbers, and is still
called the barycenter of the weighted points.
The barycenter command computes the barycenter of a set of weighted
points.

e barycenter takes an unspecified number of arguments:

each argument is a list ; = [A}j, ;| containing a point A; (or the affix of
a point) and a weight «; for the point. The sum of the weights needs to be
non-zero.

These lists can also be given as two columns of a matrix.

e barycenter (I1,ls,...,[,) returns the barycenter of the points A; weighted
by the real coefficients a;. If ) oj = 0, barycenter returns an error.

Warning.

The barycenter command returns a point, not a complex number. To have a com-
plex number in the output, the input must be af fix (barycenter (I1,1l2) ) (see
Section 13.13.1 p.984).

Example.
Input:
affix (barycenter ([1+i,2],[1-1,11))
or:
affix (barycenter ([ [1+1,2],[1-1,1]1]))
Output:
341
3

6.11 Algebraic numbers

6.11.1 Definition

A real algebraic number is a real root of a polynomial with integer coefficients.
A complex algebraic number is a root of a polynomial with coefficients which
are Gaussian integers.

6.11.2 Minimum polynomial of an algebraic number: pmin

The minimal polynomial of an algebraic number is the monic polynomial of small-
est degree with integer coefficents which has the algebraic number as a root.
The pmin command finds the minimum polynomial of an algebraic number.

e pmin takes one mandatory argument and one optional argument:
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— «, an algebraic number.

— Optionally, z, a variable name to use as the variable in the polynomial.

e pmin («) returns the minimal polynomial for a,, where the polynomial is
given as a list of the coefficients (see Section 6.27.1 p.346).
pmin (o, x) returns the minimal polynomial for « as a symbolic expression
with the variable z.

Examples.
o Input:
pmin (sgrt (2) + sqgrt(3))
Output:
]1,0,—10,0,1]
o Input:
pmin (sgrt (2) + sgrt(3),x)
Output:

2t — 1022 + 1

Note that (v/2 4+ v/3)? = 5 + 2v/6 and so ((v/2 + v/3)? — 5)% = 24, which
can be rewritten as (v/2 +v/3)* — 10(v/2 4+ v/3)2 + 1 = 0.

o [nput:
pmin (sgrt (2) + ixsqrt (3))
Output:
[1,0,2,0,25]
o [nput:
pmin (sqgrt (2) + ixsqrt(3),z)
Output:
24227 425
o Input:
pmin (sgrt (2) + 2x1i)
Output:
[1,0,4,0,36]
o Input:
pmin (sgrt (2) + 2xi, z)
Output:

24+ 422 + 36
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6.12 Algebraic expressions

6.12.1 Evaluating an expression: eval

The eval command is used to evaluate an expression. Since Xcas always eval-
uates expressions entered in the command line, eval is mainly used to evaluate a
sub-expression in the expression editor (see Section 4.3 p.88).

Examples.
o [nput:
a:=2
Output:
2
e [nput:
eval (2+3xa)
or:
2+3%*a
Output:
8

6.12.2 Changing the evaluation level: eval_level

When it evaluates expressions, the maximum number of recursions that Xcas will
do it called the evaluation level. This is 25 by default, but you can change the de-
fault level with the eval box in the CAS configuration screen (see section 3.5.7).

The eval_level command will change the evaluation level for the current
session.

e eval_level takes one optional argument:
Optionally n, a positive integer.

e eval level () returns the current evaluation level.

e eval level (n) sets the evaluation level to n.

Example.
Input:

purge (a, b, c)

a:=b+1l; b:=c+l; c:=3;
Input:

eval_level ()
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Output:
25
Input:
a,b,c
Output:
5,4,3
Input:
eval_level (1)
a,b,c
Output:
b+1,c+1,3
Input:
eval_level (2)
a,b,c
Output:
c+2,4,3
Input:
eval_level (3)
a,b,c
Output:
5,4,3
Input:
eval level ()
Output:

6.12.3 Evaluating algebraic expressions: evala

In Maple, evala is used to evaluate an expression with algebraic extensions. In
Xcas, evala is not necessary, it behaves like eval (see Section 6.12.1 p.200),
but it is included for Maple compatibility.

6.12.4 Preventing evaluation: quote hold ’

You can prevent an expression from being evaluated by quoting it, either by pre-
ceding it with ’ or with the quote or hold) command.

Remark.

If ais a variable, then a: =quote (a) (ora:=hold (a))isequivalentto purge (a)
(for the sake of Maple compatibility). It returns the value of this variable (or the
hypothesis done on this variable).

Example.
Input:
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a:=2;quote (2+3~*a)
or:
a:=2;"2+3xa’
Output:
2,24 3a
6.12.5 Forcing evaluation: unquote

unqguote is used for evaluation inside a quoted expression.

For example in an assignment, the variable is automatically quoted (not evaluated)
so that the user does not have to quote it explicitly each time he want to modify its
value. In some circumstances, you might want to evaluate it.

Input:

purge (b) ; a:=b;unquote (a) :=3

The variable b begins as a purely symbolic variable, and the value of a is equal
to the symbolic variable b. In the assignment unquote (a) :=3, the left hand
side unquote (a) is evaluated to b, and so b is assigned the value 3. Since a
evaluates to the same thing as b, a also evaluated to 3.

Input:

a,b
Output:
3,3

6.12.6 Distribution: expand fdistrib

The expand command distributes multiplication across addition.
fdistrib is a synonym for expand.

e expand takes one argument:
expr, an expression.

e expand (expr) returns the expression expr with multiplication distributed
with respect to addition.

Example.
Input:
expand ( (x+1) x (x-2))
or:
fdistrib ((x+1) % (x-2))
Output:

22—z —2
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6.12.7 Canonical form: canonical_ form

The canonical form of a second degree polyomial in a variable z is the form a(x —
c)? +b.

The canonical form command finds the canonical form of a second de-
gree polynomial.

e canonical_form takes one argument:
p, a second degree polynomial.

e canonical_form (p) returns the canonical form of p.

Examples.
o Input:
canonical_form(x"2-6+*x+1)
Output:
(x—3)*—38
o Input:
canonical form(2*t"2+3*t+8)
Output:

o (143 45
4 8

6.12.8 Multiplication by the conjugate quantity: mult_conjugate

The mult_conjugate tries to remove square roots from the bottom of an ex-
pression.

e mult_conjugate takes one argument:
expr, an expression. The denominator or numerator is supposed to contain a
square root.

e mult_conjugate (expr) returns the following:

— If expr is a fraction and the denominator contains a square root, then
this expression is returned with the numerator and denominator multi-
plied by the conjugate of the denominator.

— If expr is a fraction and the numerator, but not the denominator, con-
tains a square root (if expr is not a fraction, it is regarded as a fraction
with a denominator of 1), then this expression is returned with the nu-
merator and denominator multiplied by the conjugate of the numerator.

Examples.

o Input:
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mult_conjugate ((2+sqrt (2))/ (2+sqgrt (3)))

Output: (2 . \@) (2 B \/g)
(2+V3) 2 V3)

e [nput:

mult_conjugate ((2+sqrt (2))/ (sqgrt (2) +sqrt (3)))

Output:
(2+v2) (-v2+V3)
(V2+V3) (V2 +V3)
o [nput:
mult_conjugate ( (2+sqgrt (2))/2)
Output:

(2+v2) (2-v2)
2(2-v2)

6.12.9 Separation of variables: split

The split command tries to factor an expression involving two variables into the
product of two expressions, each of which depends on only one of the variables.

e split takes two arguments:

— expr, an expression depending on two variables x and .
— [z, y], the list of these two variables.
e split (expr, [x,y]) returns a list [factory, factors], if such a list ex-

ists, where expr=factor, -factors, factor; only depends on x and factor, only
depends on y. If such a factorization doesn’t exist, the list [0] is returned.

Examples.
e Input:
split ((x+1)*(y-2), [x,v])
or:
split (xxy—-2*x+y-2, [x,vy])
Output:
[z+1,y— 2]
o [nput:
split ((x"2xy~2-1, [x,v])
Output:

[0]
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6.12.10 Factoring: factor cfactor

The factor and cfactor commands factor expressions over their coefficient
fields or extensions of their fields. (See also Section 6.27.16 p.356.)

e factor takes one mandatory argument and one optional argument:

— expr, an expression or a list of expressions.
— Optionally, «, to specify an extension field.

e factor (expr) returns expr factored over the field of its coefficients, with
the addition of ¢ in complex mode (see Section 3.5.5 p.71). If sqrt is en-
abled in the Cas configuration (see Section 3.5.7 p.72), polynomials of order
2 are factorized in complex mode or in real mode if the discriminant is posi-
tive.

factor (expr, ) returns expr factored over F'[a], where F is the field of
coefficients of expr.

e cfactor factors like factor, except the field includes ¢ whether in real
or complex mode.

Examples.

e Factor z* — 1 over Q.
Input:

factor (x74-1)
Output:
(x—=1)(z+1) (:c2+1)

The coefficients are rationals, hence the factors are polynomials with ratio-
nals coefficients.

e Factor 2* — 1 over Q[i].
This can be done in a number of ways.

— Using cfactor.
Input:

cfactor (x"4-1

— Using factor with adding ¢ to the extension field.
Input:

factor(x~4-1,1)

— Using factor in complex mode.
Input (in complex mode):

factor (x74-1)

In all cases, the result will be:
Output:
(=1 (z+1)(x+1) (x—1)
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e Factor z* + 1 over Q
Input:

factor (x74+1)

Output:
x? +1
Indeed 2% + 1 has no factor with rational coefficients.

e Factor 2% + 1 over Q[i].
Using complex mode:
Input:

cfactor (x74+1)

Output:
(:c2 + i) (:U2 — i)

e Factor z* + 1 over R.
You have to provide the square root required for extending the rationals. In
order to do that with the help of Xcas, first check complex in the cas
configuration:
Input:

solve (x74+1, x)

Output:

1 . 1 . 1 oL L N
5\/5(1—1),—5\/5(1—1),—5\/5(1—1)1,5\/5(1—1)1

The roots depend on v/2, and so will be in Q[v/2]. Putting Xcas back in real
mode, either check the sgrt box in the Cas configuration or:
Input:

factor(x"4+1,sqgrt(2))

Output:

(xQ—\/Zchl) (x2+\/§x+1)

To factor over C, put Xcas back in complex mode or input cfactor (x"4+1, sqrt (2)).

6.12.11 Zeros of an expression: zeros
The zeros command finds the zeros of an expression.
e zeros takes one mandatory argument and one optional argument:

— expr, an expression.

— Optionally, x, a variable name to use (which by default will be x).
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e zeros (expr(,x)) returns a list of values of the variable where the expres-
sion vanishes. The list may be incomplete in exact mode if the expression is
not a polynomial or if intermediate factorizations have irreducible factors of
order strictly greater than 2.

In real mode, (which means the complex box is unchecked in the Cas con-
figuration (see Section 3.5.7 p.72) or with complex_mode : =0), only reals
zeros are returned. With (complex_mode : =1), real and complex zeros are
returned. cZeros behaves like zeros, except that it returns complex zeros
whether in real or complex mode.

Examples.

e Input (in real mode):
zeros (x"2+4)

Output:

Input (in complex mode):
zeros (x"2+4)

Output:
[—2i, 2i]
Input (in real or complex mode):

cZeros (x"2+4)

Output:
[—2i, 2i]

e Input (in real mode):
zeros (1ln(x) "2-2)

Output: [\[ f]
e 2,6_ 2

e Input (in real mode):

zeros (1n(y) "2-2,vy)

Output: [ ]
e*/i, e*‘/i

o Input (in real mode):
zeros (X% (exp (X)) "2-2xx-2x (exp (x)) "2+4)

Output:




206 CHAPTER 6. THE CAS FUNCTIONS

6.12.12 Regrouping expressions: regroup

The regroup command simplifies expressions.

e regroup takes one argument:
expr, an expression.

e regroup (expr) returns expr with some straightforward simplifications.

Example.
Input:
regroup(x + 3 » x + 5 %« 4 / x)
Output:
20
4xr + —
z

6.12.13 Normal form: normal

The normal command takes an expression and considers it to be a rational func-
tion with respect to generalized identifiers (which are either true identifiers or tran-
scendental functions replaced by temporary identifiers) with coefficients in Q or
Q4] or in an algebraic extension (such as Q[/2] and finds its expanded irreducible
representation.

e normal takes one argument:
expr, an expression.

e normal (expr) returns the expanded irreducible representation of expr. (See
also ratnormal, Section 6.12.16 p.211, for pure rational function or simplify,
Section 6.12.14 p.209, if the transcendental functions are not algebraically

independent.)
Examples.
o [nput:
normal ((x—1)* (x+1))
Output:
w2 —1
o Input:
normal ((1l-sin(x))* (1l+sin(x))
Output:
—sin?z +1
Remarks.

e Unlike simplify, normal does not try to find algebraic relations between
transcendental functions like cos(z)? + sin(z)? = 1.

e [t is sometimes necessary to run the normal command twice to get a fully
irreducible representation of an expression containing algebraic extensions.
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6.12.14 Simplifying: simplify

The simplify command simplifies an expression. It behaves like normal for
rational functions and algebraic extensions. For expressions containing transcen-
dental functions, simplify tries first to rewrite them in terms of algebraically
independent transcendental functions. For trigonometric expressions, this requires
radian mode (check radian in the cas configuration, see Section 3.5.7 p.72, or
input angle_radian:=1).

e simplify takes one argument:
expr, an expression.

e simplify (expr) returns a simplified version of expr.

Examples.
o Input:
simplify ((x-1)* (x+1))
Output:
22 -1
o Input:
simplify (3-54xsqrt (1/162))
Output:
—3v2+3
o [nput:
simplify ((sin(3*x)+sin(7+x))/sin(5xx))
Output:

2 cos (2z)

6.12.15 Automatic simplification: autosimplify

The autosimplify command determines how much simplification Xcas will
do automatically when you enter an expression. Note that autosimplify only
works with Xcas, it doesn’t work with icas or any other frontend.

By default, Xcas will apply the regroup command (see Section 6.12.12
p.208) to your input, but the autosimplify command can change this to ap-
plying another rewriting command to your input, such as simplify (see Sec-
tion 6.12.14 p.209), factor (see Section 6.12.10 p.205), or even nop for no sim-
plification. With no arguments, autosimplify will return the current rewriting
command. Otherwise:

e autosimplify command takes one argument:
cmd, a command that will be used to rewrite the results in Xcas.
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e autosimplify (ecmd) will tell Xcas to apply cmd to subsequent inputs.
To change the simplification mode during a session, the autosimplify
command should be on its own line.

Examples.
e Input:
autosimplify (nop)
then:
1 +x"2 -2
Output:
1+ 22 -2
o [nput:
autosimplify (simplify)
then:
1 +x"2 - 2
Output:
2 —1
o [nput:
autosimplify (factor)
then:
1 +x"2 -2
Output:
(x—=1)(z+1)
o [nput:
autosimplify (regroup)
then:
1 +x"2 -2
Output:
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6.12.16 Normal form for rational functions: ratnormal

The ratnormal command rewrites an expression using its irreducible represen-
tation. The expression is viewed as a multivariate rational function with coefficients
in Q (or Q[¢]). The variables are generalized identifiers which are assumed to be
algebraically independent. Unlike with normal, an algebraic extension is consid-
ered as a generalized identifier. Therefore ratnormal is faster but might miss
some simplifications if the expression contains radicals or algebraically dependent
transcendental functions.

e ratnormal takes one argument:
expr, an expression.

e ratnormal (expr) returns the irreducible representation of expr.

Examples.
o Input:
ratnormal ((x~3-1)/(x"2-1))
Output:
2+ x+1
z+1
o Input:
ratnormal ( (-2x"3+3x72+5x-6)/ (x"2-2x+1))
Output:
2224+ +6
r—1

6.12.17 Substituting a variable by a value: |

The | operator is an infixed operator that evaluates an expression after giving val-
ues to some variables. It does not evaluate the expression before the variables are
replaced by the requested values.

e | is an infixed operator, so takes two arguments:

— expr, an expression depending on one or more variables on the left hand
side.

- x1 = ay, ldots; an equality or sequence of several equalities.

® expr|x; = ay, ... returns the expression expr with x; replaced by a;, etc.

Examples.

o Input:

a2 +1 | a=2
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Output (even if a has been assigned a value):

5

e Input:
a2 + b | a=2, b=23

Output (even if a or b had been assigned a value):

7

6.12.18 Substituting a variable by a value: subst

The subst command replaces specified variables in an expression by specified
values. Unlike the | operator, the subst command evaluates the expression be-
fore replacing the variables. Since subst does not quote its argument, in a normal
evaluation process the substitution variable should be purged (see Section 5.4.8
p-104), otherwise it will be replaced by its assigned value before substitution is
done.

The subst command can specify the values of variables in two different ways.

The first way:

e subst takes two arguments.

— expr, an expression.

— egs, an equation of the form x = a, or a list of such equalities.

e subst (expr, egs) returns the expression with the variables replaced by
their values.

Examples.

o [nput (if the variable a is purged, otherwise first enter purge (a) ):
subst (a”2+1, a=2)

Output:
5

o [nput (if the variables a and b are purged, otherwise first enter purge (a, b) ):
subst (a”2+b, [a=2,b=1])

Output:

The second way:
e subst takes three arguments.

— expr, an expression.
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— vars, a variable or a list of variables.

— vals, a value or a list of values for substitution.

e subst (expr, vars, vals) returns the expression with the variables replaced
by their values.

Examples.
o Input (if the variable a is purged, otherwise first enter purge (a) ):
subst (a”2+1, a, 2)

Output:
)

o [nput (if the variables a and b are purged, otherwise first enter purge (a, b) ):
subst (a”2+b, [a,b], [2,1])

Output:
5

subst may also be used to make a change of variable in an integral. In this
case the integrate command (see Section 6.20.1 p.273) should be quoted (see
Section 6.12.4 p.201, otherwise, the integral would be computed before substitu-
tion) or the inert form Int should be used. In both cases, the name of the integra-
tion variable must be given as an argument of Int or integrate even you are
integrating with respect to x.

Examples.

o Input:
subst (' integrate (sin(x"2) *x,x,0,pi/2)’,x=sqrt (t))
or:
subst (Int (sin(x"2)*x,x,0,p1/2),x=sqrt (t))

Output:

N

™

[

subst (' integrate(sin(x"2) *x,x)’,x=sqgrt (t))

sint - \/%\/7?1 dt

N =

Input:

or:
subst (Int (sin(x"2) *x, x) , x=sqrt (t))

Output:

1 _
/2sint-\/{:\/% Yat
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6.12.19 Substituting a variable by a value: ()

Another way to substitute a variable by a value, besides with the | operator or the
subst command, is with something akin to functional notation. You can follow
an expression or expression name with equalities of the form variable = value.

Examples.
e [nput:
Expr:= x + 2%y + 3%z
then:
subst (Expr, [x=1,y=2])
or:
Expr | x=1, y=2
or:
Expr (x=1,y=2)
Output:
5+ 3z
o Input:
(hxk*t"2+h" 3%t " 3) (£t=2)
Output:

4hk + 8h3

6.12.20 Substituting a variable by a value (Maple and Mupad com-
patibility): subs

In Maple and in Mupad, you would use the subs command to substitute a vari-
able by a value in an expression. But the order of the arguments differ between
Maple and Mupad. Therefore, to achieve compatibility, in Xcas, the subs com-
mand arguments order depends on the mode (see Section 3.5.2 p.70).

In Maple mode:

e subs takes two arguments:

— eq, an equality or list of equalities of the form var=value.

— expr, an expression.

e subs (eq, expr) returns the expression with the variables replaced by their
given values.

Examples.
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e Input in Maple mode (if the variable a is purged, otherwise first enter
purge (a)):

subs (a=2,a"2+1)

Output:
5

e Input in Maple mode (if the variables a and b are purged, otherwise first
enter purge (a, b)):

subs ([a=2,b=1],a"2+b)

Output:
5

InMupad or Xcas or TI modes, subs behaves like subst (see Section 6.12.18
p.212).

e subst takes two or three arguments.

— expr, an expression.

— egs, an equality of the form var=value or a list of such equalities, or
vars,vals, a variable or list of variables followed by a value or a list of
values for substitution.

e subs (expr, egs) or subs (expr, vars, vals) returns the expression with the
variables replaced by their given values.

Examples.

e Input in Mupad or Xcas or TI modes (if the variable a is purged, otherwise
first enter purge (a)):

subs (a”2+1, a=2)
or:
subs (a”2+1, a, 2)

Output:
5

e Input in Mupad or Xcas or TI modes (if the variables a and b are purged,
otherwise first enter purge (a, b) first):

subs (a”2+b, [a=2,b=1])
or.
subs (a”"2+b, [a,b], [2,1])

Output:
5

Note that subs does not quote its argument, hence in a normal evaluation
process, the substitution variable should be purged otherwise it will be replaced by
its assigned value before substitution is done.
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6.12.21 Substituting a subexpression by another expression: algsubs

The algsubs command replaces subexpressions of an expression, rather than just
replace variables.

e algsubs takes two arguments:

— expri=expro, an equation between two expressions.

— expr, another expression.

e algsubs (expri=exprq, expr) returns the last expression expr with expr;
replaced by expras.

Examples.
o I[nput:
algsubs(x"2 = u, 1 + x"2 + x74)
Output:
u’ +u+1
o Input:
algsubs (a*b/c = d, 2xaxb”2/c)
Output:
2xbxd

o [nput:

algsubs(2a = p"2-q°2, algsubs (2c = p"2 + g~2,
c"2-a"2))

Output:

P’q’

6.12.22 Eliminating one or more variables from a list of equations:
eliminate
The eliminate command eliminates variables from a list of equations.

e eliminate takes two arguments:

— egns, a list of equations.
— vars, the variable or list of variables to eliminate. The equations can be
given as expressions, in which case they will be assumed to be 0.

e climinate (egns, vars) returns the equations with the variables vars elim-
inated or an indication that Xcas can’t eliminate them.
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Examples.
Assuming the variables used haven’t been set to any values:

o [nput:
eliminate([x = vO*xt, y = y0-gxt~2], t)
Output:
[92” + yv§ — vgyo]
o [nput:

eliminate ([xty+z+t-2, xxy*t=1,x"2+t"2=2"2], [x,2])
Output:
[26%y% — 4%y + ty® — Aty® + 4ty + 2t + 2y — 4]

If the variable(s) can’t be eliminated, then eliminate returns [1] or [—1].
If eliminate returns [ ], that means the equations determine the values of the
variables to be eliminated.

Examples.
o Input:
xX:=2;y:=-5
eliminate ([x=2*t,y=1-10%xt"2],t)
Output:

1]

since t cannot be eliminated from both equations.

o Input:

X:=2;y:=-9
eliminate ([x=2+t,y=1-10%t"2],t)

Output:
[

since the first equation gives t = 1, which satisfies the second equation.

o Input:

X:= 2; y:= =9
eliminate([x = 2xt, y = 1-10%t"2, z = x + y - t], t)

Output:
[1,2+8]

since the first equation gives t = 1, which satisfies the second equation, and
sothatleavesz = 2 - 9 — 1 = -8,0orz + 8 = 0.



216 CHAPTER 6. THE CAS FUNCTIONS

6.12.23 Evaluating a primitive at boundaries: preval

The preval command evaluates an expression from one value to another, such
as in done when evaluating a definite integral using the Fundamental Theorem of
Calculus.

e preval takes three arguments:

— F, an expression depending on the variable x.

— a and b, two expressions.
e preval (F,a,b) returns F|m:b — F|m:a.

preval is used to compute a definite integral when the primitive F' of the inte-
grand f is known. Assume, for example, that F : =int (£, x),thenpreval (F, a, b)
is equivalent to int (£, x, a, b), but does not require you to recompute F from £

if you change the values of a or b.

Example.
Input:

preval (x"2+x,2,3)

Output:

6.12.24 Sub-expression of an expression: part

The part command finds subexpressions of an expression. (See Section 4.3.2
p-89.)

e part takes two arguments:

— expr, an expression.

— n, an integer.

e part (expr,n) evaluates expr and then returns the nth sub-expression of

expr.
Examples.
o [nput:
part (x"2+x+1,2)
Output:
T
o [nput:
part (x 2+ (x+1) x (y-2)+2,2)
Output:

(z+1)(y - 2)
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o Input:
part ((x+1) * (y-2)/2,2)
Output:
y—2

6.13 Values of a sequence u,,

6.13.1 Array of values of a sequence : tablefunc

The tablefunc command fills two columns of a spreadsheet with a table of
values of a function. The spreadsheet can be opened with A1t +t (see Section 4.5
p-92).

e tablefunc takes four arguments:

f(z), a formula for a function.

x, the variable.

xg, the beginning value of x.

— inc, an increment for x.

e tablefunc (f(z),x, xo,inc) fills two columns of the spreadsheet, the
current column and the following column, starting with the chosen cell. The
current column starts with the variable x, followed by the initial value x,
then xg+inc, o9 + 2inc, .... The following column starts with the for-
mula f(x), followed by f(x) evaluated at the values in the first column.
(If the current cell is column C, row n, it will contain z, the cell below
it will contain inc, and the cell below it in row k& will contain =C'(k — 1)
+ C$(n + 1), and the corresponding cells in the next column will contain
=evalf (subst (DS$n,Csn,Ck)).)

Example.

Display the values of the sequence u,, = sin(n)
Select a cell of a spreadsheet (for example C0) and:
Input:

tablefunc(sin(n),n,0,1)

Output:

D

sin (n)

0.0
0.841470984808
0.909297426826
0.14112000806
-0.756802495308

row

WP [OIB 0

The graphic representation may be plotted with the plot func command (see
8.4.1).
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6.13.2 Values of a recurrence relation or a system: segsolve

(See also Section 6.13.3 p.221.)
The segsolve command finds the terms of a recurrence relation.

e segsolve takes three arguments:
— exprs, an expression or list of expressions that define the recurrence
relation.
— vars, a list of the variables used.
— a, the starting value.

e segsolve (exprs,vars, a) returns a formula for the nth term of the se-
quence.

For example, if a recurrence relation is defined by u,+1 = f(uyn,n) with uy = a,
the arguments to segsolve will be f(z,n), [z, n] and a. If the recurrence relation
is defined by w412 = g(Un, Un+1,n) with ug = a and u; = b, the arguments to
segsolve will be g(z,y,n), [z,y,n] and [a, b].

The recurrence relation must have a homogeneous linear part, the nonhomo-
geneous part must be a linear combination of a polynomials in n times geometric
terms in n.

Examples.

e Find u,, given that u,4+1 = 2u, + n and uy = 3.
Input:

segsolve (2x+n, [x,n], 3)

Output:
—n—1+4-2"

e Find u,, given that u,4+1 = 2u, + n3™ and uy = 3.
Input:

segsolve (2x+n*3"n, [x,n], 3)

Output:
(n—3)-3"+6-2"

e Find u,, given that u,4+1 = up + up—1, up = 0 and u; = 1.
Input:

segsolve (x+y, [x,y,n], [0,1])

Output:

() e (2F) Ve s () s () e () 5 ()]

20
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e Find u, and v,, given that u,+1 = u, + 20y, Vp+1 = Uy +n + 1 with
ug = 1,v9 = 1.
Input:

segsolve ([x+2xy,n+1+x], [x,y,n], [0,11)

Output:

—2n— (=1)"4+4-2"—3 (-=1)"+2.2"—1
2 ’ 2

6.13.3 Values of a recurrence relation or a system: rsolve

(See also Section 6.13.2 p.220.)
The rsolve command is an alternate way to find the values of a recurrence
relation. Note that rsolve is more flexible than segsolve since:

e The sequence doesn’t have to start with ug.

e The sequence can have several starting values, such as initial condition u3 =
1, which is why rsolve returns a list.

e The notation for the recurrence relation is similar to how it is written in
mathematics.

e rsolve takes three arguments:

— egns, an equation or list of equations that define the recurrence relation.
— funs, the function or list of functions (with their variables) used.

— startvals, the equation or list of equations for the starting values.

e rsolve (egns, fns, startvals) returns a list containing a formula for the nth
term of the sequence. (If there is more than one sequence, it will return a
formula for each one.)

For example, if a recurrence relation is defined by u,+1 = f(up,n) with ug = a,
the arguments to rsolve will be u(n + 1) = f(u(n),n), u(n) and u(0) = a.

The recurrence relation must either be a homogeneous linear part with a non-
homogeneous part being a linear combination of polynomials in n times geometric
terms in n (such as u,+1 = 2u, + n3™), or a linear fractional transformation (such
as Up41 = (up — 1)/ (up, — 2)).

Examples.

e Find u,, given that u,,+1 = 2u, +n and ug = 3.
Input:

rsolve(u(n+l) = 2+xu(n) + n, u(n), u(0)=3)

Output:
[-n+4-2" —1]
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e Find u,,, given that u, 11 = 2u, +n and u} = 1.

Input:
rsolve(u(n+l) = 2+xu(n) + n, u(n), u(l)’ "2 = 1)

Output:
+ 0 2" —1 + = 2" —1
_n —_ . —_ —n —_ . J—
2 ’ 2

Note that there are two formulas, since the starting formula u? = 1 gives
two possible starting values: u; = 1 and u; = 2.

Find u,,, given that u,,+1 = 2u, + n3" and ug = 3.
Input:

rsolve (u(n+l) = 2*xu(n) + n*3"n,u(n), u(0)=3)

Output:
[n-3"+6-2"—3-3"

Find u,,, given that u,+1 = (u, — 1)/(u, — 2) and ug = 4.
Input:

rsolve(u(n+l) = (u(n)-1)/(u(n)-2),u(n), u(0)=4)

Output:

(2015 +60) (¥52)" + 60v/5 — 140
10 (¥52)" + 205 - 60

Find u,, given that u, 11 = uy + up—1 wWith ug = 0, u; = 1.
Input:

rsolve(u(n+l) = u(n) + u(n-1), u((n), u(0) = 0,
u(l)y = 1)
Output:
V5 [(—vB+1)" 1 VE+1)"
[‘5 — ) 5

To find u,, and v,, given that u,4+1 = Uy + Vp, V1 = Up — UV, With
uy = O, vy = 1.

Input:
rsolve([u(n+l) = u(n) + v(n), v(n+l) = u(n) -
v(n)], [u(n),v(n)], [u(0)=1, v(0)=1])
Output:

(Va1 (V" T (VI D) 2 (Ve

n+1—1
2
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6.13.4 Table of values and graph of a recurrent sequence: tableseq

The tableseq command fills a column of a spreadsheet with a recurrence rela-
tion. The spreadsheet can be opened with A1t +t (see Section 4.5 p.92).
tableseq takes three arguments, which can be different depending on how
many terms are involved in the recurrence relation.
For a one term recurrence relation:

e tableseq takes three arguments:

- f(=x), a formula which defines the recurrence, through w,+1 = f(uy,).
— x, the variable.

— g, the initial term of the sequence.

e tableseq(f(x),x,up) fills the current column of the spreadsheet, start-
ing with the selected cell (or cell O if the entire column is selected), with
the formula f(x), the next cell with the variable x, followed by the terms
ug, U1, . . . of the sequence. (If the current cell is column C, row n, these lat-
ter cells will actually contain (if in row k) =evalf (subst (C$n, C$(n+
1), C(k—1)) ), which means if you change the value in one cell, the values
in the later cells will change accordingly.) See also plotseq, Section 8.17
p.703, for a graphic representation of a one-term recurrence sequence.

Example. Display the values of the sequence uy = 3.5, up4+1 = sin(uy,)
Select a cell of the spreadsheet (for example B0) and input in the command line:

tableseqg(sin(x),x,3.5)

Output:
row | B
0 sin(x)
1 X
2 3.5
3 -0.35078322769
4 -0.343633444925
5 -0.336910330426

More generally, for a recurrence relation where each term depends on the pre-
vious k terms:

e tableseq takes three arguments:

- f(z1,x2,...,2k), a formula which defines the recurrence, through
Ut = F(tn, -t g).
- [x1,...,xk], alist of variables.

- [ug, ..., up_1], alist of the beginning k terms.
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e tableseq (f(z1,...,2k), [T1,..., 2], [0, ..., ur—1]) fills the current col-
umn of the spreadsheet, starting with the selected cell (or cell O if the entire
column is selected), with the formula f(z1,z2,...,z)), followed by the
variables x1,...,xk, followed by the terms ug, uy, . . . of the sequence.

Example.

Display the values of the Fibonacci sequence ug = 1,u; = 1,...,upq12 = up +
Un+1

Select a cell, say BO, and:

Input:

tableseqg(x+y, [x,y],[1,1])

Output:

row | B

X+y

N Al WN—=O
D = = | %

6.14 Operators or infixed functions

An operator is an infixed function. For example, the arithmetic functions +, —, *,
/,and " are operators. (See Section 6.8.2 p.170 and Section 6.10.1 p.194.)

6.14.1 Xcas operators: $ %

e $ is the infixed version of seq (see Section 6.39.2 p.446).
Example.
Input:

(27k)$ (k=0..3)

(do not forget to put parenthesis around the arguments)
or:

seq(2°k,k=0..3)

Output:
1,2,4,8

e mod or % defines a modular number; ¢ mod n is the equivalence class of a
inZ/nZ.
Example.
Input:



6.14. OPERATORS OR INFIXED FUNCTIONS 223

5 % 7

or:

5 mod 7
Output:

(=2)% 7

e @ is used to compose functions; (f@g)(z) = f(g(x)).
Example.
Input:
(sin@exp) (%)

Output:

sin (&%)

e (@@ isused to compose a function with itself many times (like a power, replac-
ing multiplication by composition); for example, (f@@3)(z) = f(f(f(z))).
Example.

Input:

(sin@@4) (x)

Output:
sin (sin (sin (sinx)))

e minus, union and intersect return the difference, the union and the
intersection of two sets, respectively. (See Section 5.3.2 p.98).

Example.
Input:
A := set[l1,2,3,4];
B := set[3,4,5,6];
then:
A minus B
Output:
[1,2]
Input:
A union B
Output:

[1,2,3,4,5,6]

then:
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A intersect B

Output:
[3,4]
—> is used to define a function, which can be assigned a name.
Example.
Input:
(x=>x"2) (3)
Output:
9
Input:
f 1= x —> x72
then:
f(3)
Output:
9

=> is the infixed version of sto (see Section 5.4.2 p.100) and so is used to
store an expression in a variable.

Example.
Input:
2 => a
then:
a
Output:
2

: = is used to store an expression in a variable, but the variable comes first
(the argument order is switched from =>).

Example.

Input:

then:
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Output:
2

e =< to store an expression in a variable, but the storage is done by reference
if the target is a matrix element or a list element. This is faster if you modify
objects inside an existing list or matrix of large size, because no copy is
made, the change is done in place. Use with care, all objects pointing to this
matrix or list will be modified.

Example.
Input:
L := [2,3];
L2 := L;
then:
L[0] =<5
and:
L
Output:
[5, 3]
Input:
L2
Output:
[5, 3]

6.14.2 Defining an operator: user_operator

The user_operator command lets you define an operator or delete an operator
you previously defined. When you use an operator you defined, you have to make
sure that you leave spaces around the operator.

To define an operator:

e user_operator takes three arguments:

— name, a string which is the name of the operator.

— fn, a function of one or two variables with values in R or in true,
false.
— type, to specify what kind of an operator you are defining. The possible
values are:
* Binary, to define an infixed operator. In this case, fn must be a
function of two variables.

*+ Prefix (or Unary), to define a prefixed operator. In this case,
fn must be a function of one variable.
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* Postfix, to define a postfixed operator. In this case fin must be a
function of one variable.

e user_operator (name,fn,type) returns 1 if the definition was successful
and otherwise returns 0.

Examples.

o Example 1.
Let Rbedefinedon R x Rbyzx Ry=xz*xy+x +y.
To define R:
Input:

user_operator ("R", (x,y)—>x*xy+x+y,Binary)

Output:

Input:
5 R 7

(Do not forget to put spaces around R.)
Output:
47

o Example 2.
Let S be defined on N by:
for z and y integers, © S y means that = and y are not coprime.
To define S:
Input:

user_operator ("S", (x,y)—->(gcd(x,y)) !=1,Binary)

Output:

Input:
5 S 7

(Do not forget to put spaces around S.)
Output:
false

Input:
8 S 12

Do not forget to put spaces around S.
Output:
true
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o Example 3.
Let T be defined on R by Tz = 2.
To define T
Input:

user_operator ("T",x->x"2,Prefix)

Output:

Input:

(Do not forget to put a space before T.)
Output:

16

o Example 4.
Let U be defined on R by 2U = 5.
To define U:
Input:

user_operator ("U", x—>5xx,Postfix)

Output:

Input:

(Do not forget to put a space before T.)
Output:

15

To delete an operator:
e user_operator takes two arguments:

— name, a string which is the name of the operator.

— Delete

e user_operator (name,Delete) deletes the operator.
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6.15 Functions and expressions with symbolic variables

6.15.1 The difference between a function and an expression

Functions are often defined with expressions; for example, f (x) :=x"2-1 defines
a function £, whose value at x is given by 22 4 1. (The function f can also be
defined by f:=x->x"2-1.) But the function is not the same as the expression;
the variable x is only a placeholder for the function; it is not part of actual definition
of the function. Compare this with g: =x"2-1, where g is a variable which stores
the expression x ~2—1 and so the identifier x is part of the definition of g. To find
the value of f for x = 2, you can enter £ (2), but to use g to find the same value
you have to do an explicit substitution and enter subst (g, x=2) .

When a command expects a function as argument, this argument should be ei-

ther the definition of the function (e.g. x—>x"2-1) or a variable name assigned to
a function (e.g. £ previously defined by f (x) :=x"2-1).
When a command expects an expression as argument, this argument should be
either the definition of the expression (for example x“2-1), or a variable name
assigned to an expression (e.g. g previously defined by g:=x"2-1), or the eval-
uation of a function (e.g. f (x) where f is the previously defined function by
f(x):=x"2-1).

6.15.2 Transforming an expression into a function: unapply

The unapply command transforms an expression into a function.
e unapply takes two arguments:

— expr, an expression.

— z, the name of a variable or sequence of names of variables.

e unapply (expr, x) returns the function defined by the expression expr and
variable(s) x, as in x—>expr.

Examples.
e Input:
unapply (exp (x+2) , x)
Output:
T e:}c+2
o [nput:
unapply (xxy-x-y, (x,v¥))
Output:

(z,y) —ay—x—y
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Warning.

When a function being is defined, the right side of the assignment is not evaluated,
hence g:=sin (x+1); £ (x) :=g does not define the function f : x — sin(z +
1) but defines the function f : z — ¢. To define the former function, unapply
should be used, as in the following example:

Example.

Input:

g:= sin(x+1); f:=unapply (g, x)

Output:
sin(x+1),z—sin(z+1)

hence, the variable g is assigned to a symbolic expression and the variable f is
assigned to a function.

Examples.
o Input:
f:=unapply(lagrange([1,2,3],1[4,8,12]),%)
(See Section 6.27.29 p.364.) Output:

x—=4(x—-1)+4

o Input:
f:=unapply (integrate(log(t),t,1,x),x)
Output:
z—xlhnr—z+1
o Input:
f:=unapply (integrate(log(t),t,1,x),x) :;
f (x)
Output:
zlnz —z+1
Remark.

Suppose that f is a function of 2 variables f : (z,w) — f(z,w), and that g
is the function defined by g : w — h,, where h,, is the function defined by
hw(z) = f(z,w).

unapply can also be used to define g.

Example.

Input:
f(xX,W) :=2%x+wW:;
g (w) :=unapply (£ (x,w) ,x) :;
g(3)

Output:

T 2x+3
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6.15.3 Top and leaves of an expression: sommet feuille op left
right

An expression can be represented by a tree. The top of the tree is either an operator
or a function and the leaves of the tree are the arguments of the operator or function
(see also 6.39.10).

The sommet command finds the top of an expression.

e sommet takes one argument:
expr, an expression.

e sommet (expr) returns the top of expr.

Examples.
o [nput:
sommet (sin (x+2))
Output:
sin
o [nput:
sommet (x+2*y)
Output:

—+

The op command finds the list of the leaves of an expression.
feuille is a synonym for op.

e op takes one argument:
expr, an expression.

e op (expr) returns the leaves of expr.

Examples.
o Input:
op (sin(x+2))
or:
feuille (sin(x+2))
Output:

-+ 2

o Input:
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op (x+2+*y)
or:
feuille (x+2x*y)

Output:
T, 2y

If the top of an expression expr is an infixed operator, the left hand side will
be expr[1] and the right hand side will be expr[2]. The left and right
commands are alternative commands to find the sides (see Section 6.3.4 p.123,
Section 6.37.1 p.438, Section 6.38.2 p.441, Section 6.40.6 p.460, Section 6.55.4
p-604 and Section 6.55.5 p.605 for specific uses of 1left and right.)

e left and right take one argument:
expr, an expression whose top is an infixed operator.

e left (expr) returns the left side of the operator.

e right (expr) returns the right side of the operator.

Examples.
o Input:
sommet (y=x"2)
Output:
o [nput:
left (y=x"2)
Output:
Y
o Input:
right (y=x"2)
Output:
72
Remark.

If a function is defined by a program (see Section 12.1.2 p.851) then the top will
be the function ' program’ and the leaves will be a sequence consisting of the
arguments of the defined function, followed by a sequence of 0s (one for each
argument) followed by the body of the function. For example, define the pgcd
function:
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Then:
Input:

Output:

Input:

or:

Output:

Input:

or:

Output:

Input:

or:

Output:

CHAPTER 6. THE CAS FUNCTIONS

pgcd(a,b) :={local r; while (b!=0)

{r:=irem(a,b);a:=b;b:=r;} return a;}

sommet (pgcd)

program

feuille (pgcd) [0]

op (pgcd) [0]

a,b

feuille (pgcd) [1]

op (pgcd) [1]

0,0

feuille (pgcd) [2]

op (pgcd) [2]

{ local r;
while (b<>0) {
r:=irem(a,b);
a:=b;
b:=r;
Yiiog

return(a) ;
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6.16 Functions

6.16.1 Context-dependent functions.
The + operator

The + operator is infixed and ’ +' is its prefixed version. The + operator will add
numbers (see Section 6.8.2 p.170), concatenate strings (see Section 6.3.12 p.128),
and convert a number to a string if necessary. Addition makes sense for other ob-
jects, and + can flexibly deal with them; the result of using the + operator depends
on the nature of its arguments.

Examples.
o Input:
1+2+3+4
or:
"+7(1,2,3,4)
or:
(1,2)+(3,4)
or:
(1,2,3)+4)
Output:
10
(See Section 6.39.9 p.454.)
e Input:
1+1i+24+3%1
or:
"+ (1,1,2,3%1)
Output:
3+4i
o Input:

(1,2,3]1+[4,1]

or:
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(1,2,31+[4,1,0]

or:
"+ ([1,2,31,14,1])
Output:
5,3, 3]
o I[nput:
[1,21+1[3,4]
or:
"+ ([1,2],103,4])
Output:
[4,6]
o [nput:
((1,2]1,(03,411+[[1,21,[3,4]]
Output:
o
6 8
o Input:
[1,2,3]+4
or:
"+ ([1,2,31,4)
Output:

11,2,7]
(This is a polynomial; see Section 6.27.1 p.346.)

o [nput:
[1,2,31+(4,1)
or:
"+7([1,2,3]1,4,1)
Output:

11,2,8]
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o Input:
"Hel"+"1lo"
or:
"+’ ("Hel","1lo")
Output:

"Hello"

The —,* and / operators

The —, = and / operators (and their prefixed versions ' =", ’ x’ and ’ /'), like
the + operator, are flexible and operate on compound objects (such as lists and
sequences), but don’t concatenate strings.

Examples of —and "' -'.

e Input:
(1,2)-(3,4)
Output:
—4
o Input:
(1,2,3)-4
Output:
2
o Input:
[1,2,31-14,1]
or:
[1,2,31-14,1,0]
or:
=" ([1,2,31,104,11)
Output:

[—3,1,3]

o [nput:
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(1,2]1-13,4]

or:
=1 (01,2],103,41)
Output:
[—2,-2]
o [nput:
(03,41,01,211-1[1,21,[3,4]]
Output:
|5 5]
-2 -2
e Input:
[1,2,3]1-4
or:
"=r(11,2,31,4)
Output:
11,2,-1]
e Input:
[1,2,3]1-(4,1)
Output:

11,2,-2|

Examples of * and " x’.

o [nput:
(1,2)%(3,4)
or:
(1,2,3)*4
or:
1x2%x3x4

or:
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"' (1,2,3,4)

Output:
24
o Input:
1xix2%3%1
or:
"x"(1,1,2,3x1)
Output:
—6
o Input:
[10,2,31%[4,1]
or:
[10,2,31*[4,1,0]
or:
"%’ ([10,2,31,14,11)
Output:

42

These compute the scalar product.

o Input:
[1,2]1%[3,4]
or:
"1 (11,21,13,41)
Output:

11

These compute the scalar product.

e Input:

(01,21,103,4]1~ [[1,2],1[3,4]]
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Output:
[ 7 10 }
15 22
o [nput:
[1,2,3]x4
or:
"+ ([1,2,3],4)
Output:
[4,8,12]
o [nput:
[1,2,31%(4,2)
or:
"x"([1,2,3]1,4,2)
or:
[1,2,3]%8
Output:
8,16, 24]
o Input:
(1,2)+1ix(2,3)
or:
1+2+i%2%3
Output:
3+ 61

Examples of /and ' /’.

o [nput:
(10,2,31/14,1]

Output:
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o Input:
[1,2]1/13,4]
or:
"/ (01,21, 03,41)

Output:

11

372
e Input:

1/001,21,103,4]]
or:
"/, 001,21, 13,411
Output:
ey

3 1

2 2
o Input:

(01,21,13,411~1/ [[1,2],13,4]]

Output:

10

0 1
o Input:

(01,21,13,411/ [[1,2],13,4]]

Output:

i

(This is term-by-term division.)
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6.16.2 Standard functions
e The max command finds the maximum of a sequence of real numbers.

— max takes an arbitrary number of arguments:
seq, a sequence (or list) of real numbers.

— max (seq) returns the largest number in the sequence seq.

Example.
Input:

max(0,1,2,-1,-2)

Output:
2

e The min command finds the minimum of a sequence of real numbers.

— min takes an arbitrary number of arguments:
seq, a sequence (or list) of real numbers.

— min (seq) returns the smallest number in the sequence seq.

Example.
Input:

min(0,1,2,-1,-2)

Output:
-2

e The abs command finds the absolute value of a real or complex number.

— abs takes one argument:
x, a real or complex number.

— abs (x) returns the absolute value of x.

Examples.
— Input:
abs (-5)
Output:
)
— Input:
abs (3+4+1)
Output:

)

e The sign command finds the sign of a real number (+1 if it is positive, 0 if
it is zero, and -1 if it is negative).
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— sign takes one argument:
x, a real number.

— sign (z) returns the sign of x.

Examples.
— Input:
sign (-4)
Output:
-1
— Input:
sign (0)
Output:
0

e The floor command finds the floor of a real number; namely, the largest
integer less than or equal to the number.
iPart)is a synonym for floor.

— floor takes one argument:
x, a real number.

— floor (x) returns the floor of x.

Examples.
— Input:
floor(4.1)
Output:
4
— Input:
floor(-4.1)
Output:
-5

e The round command rounds a number to the nearest integer, rounding up
in the case of a half-integer.

— round takes one argument:
x, a real number.

— round () returns the nearest integer to x.

Examples.
— Input:

round (3.4)
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Output:
3
— Input:
round(-3.4)
Output:
-3
— Input:
round (3.5)
Output:
4

e The ceil command finds the ceiling of a real number; namely, the smallest
integer greater than or equal to the number.
ceilingis asynonym for ceil.

— ceil takes one argument:
x, a real number.

— ceil (x) returns the ceiling of x.

Examples.
— Input:
ceiling (4.1)
Output:
5
— Input:
ceiling(-4.1)
Output:

—4

e The frac command finds the fractional part of a number; informally, the
part of the number to the right of the decimal point with the appropriate plus
or minus sign. For a positive real number z, the fractional part is  minus
the floor of x; for a negative real number z, the fractional part is z minus the
ceiling of z.
fPart is a synonym for frac.

— frac takes one argument:
x, a real number.

— frac (x) returns the fractional part of x.

Examples.

— Input:
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frac(3.24)
Output:
0.24
— Input:
frac(-3.24)
Output:
—0.24

e The t runc command truncates a real number; namely, it removes the frac-
tional part. The truncated number added to the fractional part will equal the
original number.

— trunc takes one argument:
x, a real number.

— trunc (x) returns the truncated value of x.

Examples.
— Input:
trunc (3.24)
Output:
3
— Input:
trunc (-3.24)
Output:

-3
e The id command is the identity function.

— 1id takes one argument or a sequence of arguments:
seq, whose elements can be any type.

— 1id(seq) returns seq.

Example.

o Input:
id(a,1,"abc", [1,2,31]1)

Output:
a,1,"abc",[1,2,3]

e The sg command squares its argument.

— sq takes one argument:
x, any object that can be multiplied by itself.
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- sqg(x) returns z2.

Examples.
— Input:
sq(5)
Output:
25
— Input:
sq (x+y)
Output:
( + )
— Input:

sa(ll1,2],1[3,41])
(This is a matrix product; see Section 6.44 p.494).

Output:
7 10
15 22

sqa(l1l,2,3])

(This is the dot product of [1, 2, 3] with itself.)
Output:

— Input:

14
e The sgrt command finds the square root of its argument.

— sqgrt takes one argument:
x, any object for which the 1/2 power makes sense.

— sqrt (z) returns x1/2.

Examples.
— Input:
sqrt (9)
Output:
3
- Input:
sqrt ((x+y) ~2)
Output:

|z + |

— Input:
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simplify (sqrt ([[2,31,[3,511))

i

e The surd command finds roots of quantities.

Output:

— surd takes two arguments:
x and n, numbers.

— surd (x, n) returns the nth root of x; i.e., i/,
Example.
o Input:
surd (15.625, 3)
Output:

2.5

e The exp command computes the exponential function.

— exp takes one argument:
x, a number.

— exp (z) returns e”.

Example.
Input:

exp (1.0)

Output:
2.71828182846

e The 1og command computes the natural logarithm function.
1nis a synonym for 1og.

— log takes one argument:
x, a number.

— log (x) returns the natural logarithm of x.

Example.
Input:

log (2.0)

Output:
0.69314718056
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e The 10g10 computes the the base-10 logarithm.
— 1ogl0 takes one argument:
, a number.

— 10gl10 (zx) returns the base-10 logarithm of .

Example.
Input:

1ogl0(1000)

Output:
3

e The 1ogb computes the logarithm to a specified base.
— logb takes two arguments:
x and b, non-zero numbers.

— logb (x, b) returns the base-b logarithm of x.

Example.
Input:

logb(10.0,2)

Output:
3.32192809489

e The standard trigonometric functions:

— The sin command is the sine function.

— The cos command is the cosine function.

— The tan command is the tangent function (tan (x) = sin (x) /cos (x)).

— The cot command is the cotangent function (cot (x)= cos (x) /sin (x)).
— The sec command is the secant function (sec (x)= 1/cos (x)).

— The csc command is the cosecant function (csc (x) = 1/sin(x)).

— These commands take one argument: z, a number.
The number x will by default represent an angle measured in radians,
but you can set Xcas to use degrees (see Section 3.5.3 p.70) by setting
the variable angle_radian to O; resetting it to 1 will change the
angle measure to radians again.

— sin (x) returns the sine of z.
Examples.

* Input (with angle_radian equal to 1):

sin(pi/4)
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Output:

V2

2

* Input (with angle_radian equal to 0):
sin (30)
Output:
1
2

— cos (x) returns the cosine of .

Examples.

* Input (with angle_radian equal to 1):

cos (pi/6)

Output:

V3

2

* Input (with angle_radian equal to 0):
cos (90)
Output:
0

— tan (z) returns the tangent of x.

Examples.

* Input (with angle_radian equal to 1):

tan (pi/4)
Output:
1
* Input (with angle_radian equal to 0):
tan (60)
Output:
V3

— cot (z) returns the cotangent of x.

Examples.

* Input (with angle_radian equal to 1):

cot (pi/6)

Output:

2v/3

2

* Input (with angle_radian equal to 0):
cot (45)
Output:
1

— sec (x) returns the secant of x.

Example.

247
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* Input (with angle_radian equal to 1):
sec (pi/3)
Output:
2
x Input (with angle_radian equal to 0):
sec (30)
Output:

Sl

— csc (x) returns the cosecant of x.
Examples.
x Input (with angle_radian equal to 1):
csc(pi/4)

Output:
2

V2
x Input (with angle_radian equal to 0):
csc (30)

Output:
2

e The asin, acos, atan, acot, asec, acsc commands are the inverse
trigonometric functions. The latter are defined by:

— asec(x) = acos(1l/x),
— acsc(x) = asin(1/x),
— acot (x) = atan(l/x).

arcsinisasynonym for asin.
arccos is a synonym for acos.
arctan is a synonym for atan.

— These functions take one argument: x, a number.
They return a number which can represent an angle; by default, the
angles will be in radians, but you can set Xcas to use degrees (see
Section 3.5.3 p.70) by setting the variable angle_radian to 0; re-
setting it to 1 will change the angle measure to radians again.

— asin (x) returns the arcsine of x.
Examples.
x Input (with angle_radian equal to 1):
asin(1/2)

Output:
T

6
* Input (with angle_radian equal to 0):

asin (1)
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Output:
™
2
— acos (x) returns the arccosine of x.

Examples.

* Input (with angle_radian equal to 1):
acos (sqrt (3) /2)

Output:
1

=T

6

* Input (with angle_radian equal to 0):
acos (-1/2)
Output:
120
— atan (x) returns the arctangent of x.
Examples.

* Input (with angle_radian equal to 1):
atan (sqrt (3))

Output:
s
3
* Input (with angle_radian equal to 1):
atan (1)
Output:
45

— acot (x) returns the arccotangent of x.
Examples.
x Input (with angle_radian equal to 1):

acot (sqgrt (3))

Output:
m

6
x Input (with angle_radian equal to 0):
acot (1/sqgrt (3))
Output:
60

— asec (x) returns the arcsecant of .
Examples.

x Input (with angle_radian equal to 1):
asec (1)
Output:
0

* Input (with angle_radian equal to 0):

249



250 CHAPTER 6. THE CAS FUNCTIONS

asec (sqrt (2))
Output:
45

— acsc (z) returns the arccosecant of x.
Examples.

x Input (with angle_radian equal to 1):

acsc (1)
Output:
ﬂ
2
x Input (with angle_radian equal to 0):
acsc(2)
Output:
30

e The sinh, cosh, and tanh commands compute the hyperbolic sine, hy-
perbolic cosine, and hyperbolic tangent functions.

— These functions take one argument:
, a number.
— sinh () returns the hyperbolic sine of x.
Example.
Input:
sinh(1.0)
Output:
1.17520119364
— cosh (x) returns the hyperbolic cosine of x.
Example.
Input:
cosh (0)
Output:
1
— tanh (x) returns the hyperbolic tangent of x.
Example.
Input:
tanh(-1.0)

Output:
—0.761594155956

e The asinh, acosh, and at anh commands compute the inverse hyperbolic
functions.
arcsinh is a synonym for asinh.
arccosh is a synonym for acosh.
arctanh is a synonym for atanh.
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— These functions take one argument:
x, a number.

— asinh (x) returns the inverse hyperbolic sine of z.

Example.
Input:

asinh (2)
Output:

In (2 + \/5)

— acosh (x) returns the inverse hyperbolic cosine of x.

Example.
Input:

acosh (1)
Output:

0

— atanh (x) returns the inverse hyperbolic tangent of x.

Example.
Input:
atanh (1/2)
Output:
In (3)
2

6.16.3 Defining algebraic functions
Defining a function from R? to R?

If expr is an expression possibly involving a variable x, you can use it to define a
function f either by

f(x):=expr

or f := xz—>expr

(see Section 5.5.1 p.109).

Warning!!!

The expression after —> is not evaluated. You should use unapply (see Sec-
tion 6.15.2 p.230) if you expect the second member to be evaluated before the
function is defined.

Example.
To define f : (z) — x * sin(z),
Input:

f(x) :=x*sin (x)
or:

fi=x->x*sin (x)
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then:
f(pi/4)
Output:
V2
8
You can similarly define a function of several variables, by replacing x by a
sequence (21, ...,xp) oralist [z1,...,xp] of variables.
Example.
Input:
f(x,y):=xxsin(y)
or:
f:=(x,y)—>x*sin(y)
then:
£f(2,pi/6)

Output:

1

You can also define a function with values in R? by replacing expr by a se-
quence (expri,...,exprq) orlist [expry,...,expr,] of expressions.

Examples.

e Define the function h (x,y) — (x * cos(y), z * sin(y)).

Input:
h(x,y) :=(x*cos (y),x*sin(y))
then:
h(2,pi/4)
Output:

V2,V2

e Define the function i (z,y) — [z * cos(y), z * sin(y)].
Input:

h(x,y) :=[x*cos (y),x*sin(y)];
or.
h:=(x,y)->[xxcos(y),xxsin(y)];

or:
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h(x,y):={[xxcos (y),x*sin(y)]1};

or:

h:=(x,y) ->return[x*cos (y),x*sin(y)];
or:

h(x,y) :={return [x*cos(y),x*sin(y)]1;}
then:

h(2,pi/4)
Output:
Ve

Defining families of function from R?~! to R? using a function from R? to RY

Suppose that the function f : (z,y) — f(z,y) is defined, and you want to define
a family of functions ¢(¢) such that g(¢)(y) := f(t,y) (i.e. t is viewed as a pa-
rameter). Since the expression after —> (or :=) is not evaluated, you should not
define g(t) by g (t) :=y->f (t, y); you have to use the unapply command
(see Section 6.15.2 p.230).

For example, to define f : (z,y) — zsin(y) and g(t) : y — f(t,y):
Input:

f(x,y) :=xxsin(y);g(t) :=unapply (f(t,y),Vy)

then:
g(2)

Output:

Yy — 2siny
Input:

g(2) (1)
Output:

2sin (1)

For another example, suppose that you want to define the function  : (z,y) —
[z * cos(y), z * sin(y)] and then you want to define the family of functions k()
having t as parameter such that k(¢)(y) := h(t,y). To define the function h(z,y)
Input:

h(x,y) :=(x*cos (y),x*sin(y))
To define properly the function k(t): Input:

k(t) :=unapply (h(x,t), x)
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then:
k(2)
Output:
x +— (xzcos(2),xsin(2))
(x)—>(x*cos (2),x*sin (2))
Input:
k(2) (1)
Output:

cos (2) ,sin (2)

6.16.4 Composing functions: @

With Xcas, the composition of functions is done with the infixed operator @ (see
Section 6.14.1 p.224).

Examples.
e Input:
(sg@sin+id) (x)
Output:
sin?(x) +
e Input:
(sin@sin) (pi/2)
Output:

sin (1)

6.16.5 Repeated function composition: @@

With Xcas, the repeated composition of a function with itself » € N times is done
with the infixed operator @@ (see Section 6.14.1 p.224).

Examples.
e [nput:
(sin@E3) (x)
Output:
sin (sin (sinx))
e [nput:
(sin@@2) (pi/2)
Output:

sin (1)
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6.16.6 Defining a function with history: as_function_of

The as_function_of command creates a function defined by an expression,
even if the desired variable already has a value.

e as_function_of takes two arguments:

— x, a variable.
— exprvar, another variable containing an expression which itself may
involve z.

e as_function_of (exprvar, x) returns a function defined by the expres-
sion that exprvar contains.

Example.
Input:
a:=sin(x)
Output:
sin ()
Input:
b:=sqrt (1+a”2)
Output:
V1 +sinx
Input:
c:=as_function_of (b, a)
Output:
(a) —> { return(sqgrt(l+a”2));}
Input:
Cc(x)
Output:

V1422

Warning !!

If the variable b has been assigned several times, the first assignment of b following
the last assignment of a will be used. Moreover, the order used is the order of
validation of the commandlines, which may not be reflected by the Xcas interface
if you reused previous commandlines.

Example.
Input:

a:=2b:=2xa+l b:=3xa+2 c:=as_function_of (b, a)

Output:
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(a) -> {return(2xa+l);}
So ¢ (x) isequal to 2xx+1. But: Input:

=2

:=2xa+1l

=2

:=3%a+2
:=as_function_of (b, a)

Q O 9 O w

Output:
(a) —-> {return(3xa+2);}
So ¢ (x) isequal to 3xx+2.

Hence the line where a is defined must be reevaluated before the good definition
of b.

6.17 Getting information about functions from R to R

6.17.1 The domain of a function: domain

The domain command finds the domain of a function.
e domain takes one mandatory argument and one optional argument:

— expr, an expression involving a single variable.

— Optionally, x, the variable, which by default will be x.

e domain (expr (,x)) returns the domain of the function defined by expr.

Examples.
o [nput:
domain (1n (x+1))
Output:
z>—1
o [nput:
domain (asin (2+t), t)
Output:
t> 1 ANt < 1
-2 -2
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6.17.2 Table of variations of a function: tabvar
The table of variations of a function consists of

e The first row, for the variable, which gives the endpoints of subintervals of
the domain, as well as any critical points and inflection points.

e The second row, for the derivative, which gives the values of the derivative
at the values in the first row (or limits as the variable approaches one of the
values) and between them the sign (+ or —) of the derivative in the corre-
sponding subinterval.

e The third row, for the function, which gives the values of the function at the
values in the first row, and between them whether the function is increasing
or decreasing in the corresponding subinterval.

o The fourth row, for the second derivative, which gives the values of the sec-
ond derivative at the values in the first row, and between them whether the
second derivative is positive or negative (and hence whether the graph is
concave up or concave down) in the subinterval.

The tabvar command finds the table of variations of a function.
e tabvar takes one mandatory argument and one optional argument.

— expr, an expression of a single variable.

— Optionally, z, the variable (by default, x =x).

e tabvar (expr(,z)) returns the table of variations of the function f(z) =
expr and draws the graph on the DispG screen, accessible with the menu
Cfgp»ShowkDispG.

Examples.
o Input:
tabvar(x"2 - x - 2,Xx)
Output:

Function plot x"2-x-2, variable x

Domain x

Vertical parabolic asymptote at —-infinity
Vertical parabolic asymptote at +infinity
Variations x"2-x-2

T —00 % +00
=2z —1 -0 - 0 + 400
y=a22-2-2 +oo | —% T 4o
y” 2+ 2 +UL 2
plotfunc(x"2-x-2,x=((-0.6681472) .. 1.7222552))

Inside Xcas you can see the function with Cfg>Show>DispG.
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o [nput:
tabvar ((2xt-1)/(t-1),t)
Output:

Function plot (2%t-1)/(t-1), variable t
Domain t<>1

Vertical asymptote x=1

Horizontal asymptote y=2

Horizontal asymptote y=2

Variations (2xt-1)/(t-1)

plotfunc ((2xt-1)/(t-1),t=((-0.1681472) .. 2.2222552))
Inside Xcas you can see the function with Cfg>Show>DispG.

Note that in this case, the value 1 appears twice in the first row, so that both
one-sided limits of y can be displayed at the vertical asymptote ¢ = 1. The
values of 2 for y at —oco and oo indicate a horizontal asymptote of y = 2.

6.18 Limits: 1imit

The 1imit command computes limits, both at numbers and infinities, and in the
real case it can compute one-sided limits.

e 1limit takes three mandatory and one optional argument.

expr, an expression.

x, the name of a variable.

a, the limit point.

Optionally, side (either 0, -1 or 1), to specify which side to take a one-
sided limit (by default side=0).

e limit (exprx,a (,side)) returns the limit of expr as x approaches a.

— If side is O (the default), then the ordinary limit is returned.
— If side is -1, then the limit from the left (x < a) is returned.

— If side is 1, then the limit from the right (z > a) is returned.

Remark:
It is also possible to put x=a as argument instead of x, a; 1imit (exprvar=pt[,side])
is equivalent to 1imit (exprvanpt],side]) .

Examples.
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o Input:
limit(1/%x,x%x,0,-1)
or:
limit (1/x,x=0,-1)
Output:
—00
o Input:
limit (1/x,x,0,1)
or:
limit (1/x,x=0,1)
Output:
+00
o [nput:
limit (1/x,x,0,0)
or:
limit (1/x,x,0)
or:
limit (1/x,x=0)
Output:

o0

(Note that oo or infinity without an explicit + or - represents unsigned infin-
ity.) Hence, albbs (1/x) approaches +oo when x approaches 0.

Exercises.
e Find, for n > 2, the limit as x approaches 0 of:

ntan(z) — tan(nx)

sin(nz) — nsin(z)

Input:

limit ((n*tan(x)-tan(n*x))/ (sin(n*x)-n*sin(x)), x=0)
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Output:
2

e Find the limit as = approaches +oo of

Tz + V-V

Input:
limit (sgrt (x+sqgrt (x+sqgrt (x)))-—-sgrt (x),x=+infinity)
Output:

1

2

o Find the limit as x approaches O of

1+ 24 22/2 —exp(x/2)
(1 — cos(x)) sin(z)

Input:

limit ((sqgrt (1+x+x"2/2)-exp(x/2))/ ((l-cos(x))*sin(x)),x,0)

Output:
1

6

6.19 Derivation and applications

6.19.1 Functional derivative: function_diff

The function_diff command finds the derivatives of functions (as opposed to
expressions, see Section 6.15.1 p.230).

e function_diff takes one argument: f, a function.

e function_diff (f) returns the derivative f’ of f.

Examples.
o [nput:
function_diff (sin)
Output:
X — COSX
e [nput:

function_diff (sin) (x)
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Output:
cos T
o [nput:
f(x):=x"2+x*xcos (xX)
function_diff (f)
Output:
X — COSX — X sinx + 2x
o Input:
function_diff (f) (x)
Output:

cosx —xsinx + 2x

e To define the function g as f’:
Input:

g:=function_diff (f)
e The function_diff instruction has the same effect as using the expres-

sion derivative di f f (see Section 6.19.4 p.267) in conjunction with unapply
(see Section 6.15.2 p.230):

Input:
g:=unapply (diff (f(x),x),x)
g (x)
Output:
cosr —xsinx + 2x
Warning!!!

In Maple mode (see Section 3.5.2 p.70), for compatibility, D may be used in place
of function_diff. For this reason, it is impossible to assign a variable named
D in Maple mode (hence you can not name a geometric object D).

6.19.2 Length of an arc: arcLen

The arcLen command finds the lengths of curves in the plane, which can either
be given by an equation or a curve object.
To find the length of a curve given by an equation:

e arcLen takes four arguments:

— expr, an expression (resp. a list of two expressions [expri,expra])
involving a variable z.

— x, the name of the variable.
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— a and b, two values for the bounds of this variable.

e arclen (exprx,a,b) (resp. arcLen ( [expri,expra]x,a,b)) returns the
length of the curve defined by y = f(x) =expr (resp. by x1 =expri,xo =expra)
as x varies from a to b, using the formula

b
arcLen(f(x),x,a,b) = / V f(x)? + ldx
or

arcLen(f(z),x,a,b) = /b V! (t)? 4 y'(t)%dt

Examples.

e Compute the length of the parabola y = x? from z = 0 to x = 1.

Input:
arcLen(x"2,x,0,1)
or:
arcLen([t,t"21,t,0,1)
Output:
2v/5 —In (V5 —2)
4
e Compute the length of the curve y = cosh(z) from z = 0 to x = In(2).
Input:
arcLen(cosh(x),x,0,1log(2))
Output:
3
4
e Compute the length of the circle + = cos(t),y = sin(¢) from ¢ = 0 to
t=2x*m.
Input:
arcLen([cos(t),sin(t)],t,0,2xpi)
Output:

2T

To find the length of a curve given by a curve object:

e arcLen takes a single argument: curve, a geometric curve defined in one
of the graphics chapters (chapters 13 and 14).

e arcLen (curve) returns the length of the curve.
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Examples.
e Input:
arcLen (circle(0,1,0,pi/2))
Output:
1
—T
2
o Input:
arcLen (arc(0,1,pi/2))
Output:

1
Zﬂ-\/i

6.19.3 Maximum and minimum of an expression: fMax fMin

The fMax and £Min commands find where maxima and minima occur. They
can do this for expressions of one variable or for expressions of several variables
subject to a set of constraints, either equalities or inequalities.

The find the maximum and minimum of an expression with one variable:

e fMax and £Min take two arguments:

— expr, an expression involving one variable.

— Optionally, z, the name of the variable (by default z=x).
e fMax (expr (,x)) returns the value of x that maximizes the expression.

e fMin (expr(,z)) returns the value of x that minimizes the expression.

Examples.
o [nput:

fMax (sin (x), x)

or:
fMax (sin (x))

or:

fMax (sin(y),vy)
Output:

NN

o [nput:
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fMin (sin (xX), xX)

or:
fMin(sin(x))
or:
fMin (sin(y),vy)
Output:
E
2

The find the maximum and minimum of an expression with several variables
subject to constraints:

e fMax and £Min take four mandatory and two optional arguments:

expr, an expression with several variables.

— constr, a list of constraints (equalities and inequalities).

— vars, a list of the variables.

— init, an initial guess (which must be a list of nonzero reals representing
a feasible point).

— Optionally, €, the precision. If this isn’t given, the default epsilon value

is used (see Section 3.5.7 p.72, item 9).

Optionally, N, the maximum number of iterations.
The expression expr does not need to be differentiable.

e fMax (expr, constr ,vars ,init (,€) (, N)) returns the vector of values that
maximizes expr subject to the constraints constr.

e fMin (expr, constr ,vars ,init (,€) (,N)) returns the vector of values that
minimizes expr subject to the constraints constr.

Examples.

e [nput:

fMax ((x=2) "2+ (y-1) "2, [-.25x"2-y"2+1>=0,x-2y+1=0]1, [x,y], [.5,.75])

Output:
[—1.82287565553, —0.411437827766]

e [nput:
fMin ((x-5) "2+y~2-25, [y>=x"2], [x,vy], [1,1])

Output:
[1.2347728625,1.52466402196]

Although the initial point is required to be feasible, the algorithm will some-
times succeed even with a poor choice of initial point. Note that the initial value of
a variable must not be zero.
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6.19.4 Derivatives and partial derivatives
The diff command computes derivatives and partial derivatives of expressions.
derive is a synonym for diff.

To compute first order derivatives:
e diff takes one mandatory argument and one optional argument:

— expr, an expression or a list of expressions.

— Optionally, x, a variable (resp. a list of variable names, see several vari-
able functions in 6.21). If the only variable is x, this second argument
can be omitted.

e diff (expr(,z)) returns the derivative (resp. a vector of derivatives) of the
expression expr (or list of expressions) with respect to the variable = (resp.
with respect to each variable in the list ).

Examples.
e Compute:
O(xy?23 + zy2)
0z
Input:
diff (x+y 2%z " 3+x*xy*z, z)
Output:
3xy222 + zy
e Compute the 3 first order partial derivatives of = * y? * 23 4 x * y * 2.
Input:
diff (x*xy " 2xz"3+x*y, [X,Vy,2])
Output:
[y2z3 + vy, 2zyz> + 3:cy222]
e Compute:
B (wy?.23 + xy.2)
0yo?z
Input:
diff (x*y "2%z"3+xxy*z,Vy,2$2)
Output:

12zyz

To compute higher order derivatives:

e diff takes more than two arguments:
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— expr, an expression.

- x1,9..., the names of the derivation variables. Note that for repeated
variables, you can use the $ operator (see Section 6.39.2 p.446) fol-
lowed by the number of derivations with respect to the variable; for
example, instead of writing x, x, x you could write 2$3.

e diff (expr,xy,x2,...) returns the partial derivative of expr with respect to
the variables x1, z9,. ...

Examples.
e Compute:
0 (zy?2® + xyz)
0x0z
Input:
diff (x+y 2%z " 3+x*xy*z,X, z)
Output:
3y222 +y
e Compute:
03 (xy?23 + wyz)
0xd?z
Input:
diff (xxy 2%z " 3+xX*xy*2,X,2,2)
or:
diff(x*y " 2xz2 " 3+x*xy*z,%x,252)
Output:
6y2z
e Compute the third derivative of:
1
x2+2
Input:
normal (diff ((1)/ (x"2+2),x%x,x%x,x))
or:
normal (diff ((1)/(x"2+2),x$3))
Output:

—2423 + 48z
8 4 816 + 2424 + 3222 + 16
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Remark.

e Note the difference between diff (f,x,y) anddiff (f, [x,y]):

diff (f,x,y) returns

*(f)
0zxdy

a(f) af)
ox ' Oy

and diff (f,|x,y]) returns |

]

e Never define a derivative function with £1 (x) :=diff (£ (x), x). Indeed,
x would mean two different things Xcas is unable to deal with: on the left
hand side, x is the variable name to define the f; function, and on the right
hand side, x is the differentiation variable. The right way to define a deriva-
tive is either with function_diff or:

fl:=unapply (diff (f (x),x),x)

6.19.5 Implicit differentiation: implicitdiff

The implicitdiff command can differentiate implicitly defined functions or
expressions containing implicitly defined functions. It has three different calling

sequences.

To implicitly differentiate dependent variables:

e implicitdiff takes four arguments:

constraints, an equation or list of equations which implicitly define the
dependent variables as functions of the independent variables; these
will be of the form g;(z1, ..., Zn,Y1,...,Ym) =0fori =1,2,... m,
where z1,ldots, x,, are the independent variables and y1, ..., y., are
the dependent variables.

depvars, the list of dependent variables, where each dependent variable
can optionally be written as a function of the z; or the name written as
a function of the independent variables y;(z1, ..., z,). If there is only
one dependent variable, this can be omitted.

1y, a dependent variable or a list of dependent variables to be differenti-
ated.

diffvars, a sequence of independent variables x;,, ..., z;, with respect
to differentiate.

e implicitdiff (constraints (,depvars )] y,diffvars) returns the derivative
(or list of derivatives) of y with respect to diffvars.

Examples.

o [nput:

implicitdiff(x"2xy+y~2=1,vy, X)

Output:

2zy
2 + 2y
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o [nput:
implicitdiff ([x"2+y=z,x+y*z=1], [y (X),z(x)],V,X)

Output:
—2zy —1
Y+ =z

To find a specified derivative of an expression containing implicitly defined
functions:

e implicitdiff takes four arguments:

— expr, adifferentiable expression involving independent variables x1, za, . . .

and dependent variables 41, y2, - - - , Ym.

— constraints, an equation or list of equations which implicitly define the
dependent variables as functions of the independent variables; these
will be of the form g;(x1,...,Zn, y1,...,Ym) =0fori =1,2,... m.

— depvars, the dependent variable or list of dependent variables, where
each dependent variable can either be the variable name y; or the name
written as a function of the independent variables y;(z1, . . ., zy)).

— diffvars, a sequence of independent variables z;, , . . ., x;, with respect
to which expr is differentiated.

e implicitdiff (exprimplicitdef,depvars,diffvars) returns the expression
expr differentiated with respect to diffvars.

Example.
Input:

implicitdiff (x*y,—-2x"3+15x"2xy+11ly~3-24y=0,vy (x),x)

Output:
223 — 5y + 11y — 8y
522 + 11y%2 — 8

To find all kth order derivatives of an expression involving implicitly defined func-
tions:

e implicitdiff takes four mandatory arguments and one optional argu-
ment:

— expr, adifferentiable expression involving independent variables x1, za, . . .

and dependent variables y1, Y2, - - - , Ym.-

— constraints, an equation or list of equations which implicitly define the
dependent variables as functions of the independent variables; these
will be of the form g;(x1,...,Zn,y1,...,ym) =0fori =1,2,...,m.

- vars,alist[x1,...,Zpn, Y1, .., Ym| of the independent and dependent
variables entered as symbols in single list such that dependent variables
come last.

y Tn
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— order=k, where k is the order of the derivatives to be taken.

— Optionally, a, a point where the partial derivatives should be evaluated
at.

e implicitdiff (exprimplicitdef,vars,order=Fk (,a)) returns all partial
derivatives of order k. If £k = 1 they are returned in a single list, which
represents the gradient of expr with respect to independent variables. If k =
2 the corresponding Hessian matrix is returned (see Section 6.21.3 p.288). If
k > 2, a table with keys in form [ky, k2, . ., k], where Z?:l k; =k, is
returned. Such a key corresponds to

ok f
8var]f1 3var§2 - Ovarkn’
Examples.
o Input:
fi=x*xy*xz; g:=-2x"3+15x"2xy+11y~3-24y=0;
implicitdiff(f,qg, [x,2z,y],order=1)
Output:
2232 — 5ayz + 11y32 — Syz
, T
522 4 1152 — 8 Y
o Input:
implicitdiff(f,qg, [x,z,vy],order=2,[1,-1,0])
Output:
9 3
2
-2 0
e In the next example, the value of 247{: is computed at the point (z = 0,y =
0, z).
Input:

pd:=implicitdiff (f,q, [x,z,y],order=4,[0,z,0]);
pd[4,0]

Output:
—2z
6.19.6 Numerical differentiation: numdiff
The numdi £ £ command finds numerical approximations to derivatives.
e numdi ff takes three mandatory arguments and one optional argument.

- X =Jag,a1,...,a4), Y = [Bo, b1, - - -, Br], two lists of real numbers,
where n > 1.
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— 0, a real number.

— Optionally, m, an integer or a sequence of integers (by default 1).

e numdiff (X,Y,xg(,m)) returns an approximation of the m-th derivative
of a function f at xzg, or a sequence of derivatives of order given by the
sequence m, where f has values given by f(ax) = fr, k=0,1,...,n.

numdi f £ uses Fornberg’s algorithm described in “Generation of Finite Difference
Formulas on Arbitrarily Spaced Grids”, Mathematics of Computation, 51(184):699—
706, 1988. The complexity of this algorithm is O(n?m) in both time and space.
To avoid numerical instabilities, numdi f £ operates in exact arithmetic.

Note that g, a1, . . ., ay, do not have to be equally spaced, but they must be
mutually different and input in ascending order. There are no restrictions on the
choice of x.

Examples.
e Let f(z) =sin(x)e™™, x € [0, 1]. Sample this function at the points in
X =10,0.1,0.2,0.4,0.5,0.7,0.8, 1]

to approximate f”(1/7).
Input:

=unapply (sin (x) xexp (-x), x) :;
[0,0.1,0.2,0.4,0.5,0.7,0.8,1]:;
=apply (£, X)

f:
X:
Y: I

Now you can approximate the second derivative of f at the point zg = %
Input:

x0:=1/piz:;
d:=numdiff (X, Y,x0,2)

Output:
—1.38167652799

Finally, compute the relative error of the obtained approximation.
Input:

abs (d-f” (x0)) /abs (£” (x0) ) *100

Output:
2.82975186496 x 107°

The result is expressed in percentages.

e Use a sequence of values for the parameter m to find a list of approximations
of the respective derivatives at xg. This is faster than calling numdiff to
approximate one derivative at a time.

Specifically, approximate the zeroth, first and second derivative of the func-
tion
1

f(l‘)zl—ma r € [0,1],
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at the point g = ~, where v ~ 0.57722 is the Euler-Mascheroni constant,
by sampling f at 21 equidistant points in the segment [0, 1].
Input:

fi=unapply (1-1/(1+x"2),x) X:=[(0.05xk) $(k=0..20)]1:; Y:=apply(f,X) :; numdi
Output:
[0.249912571952, 0.649519026356, 0.000393517941567]

The correct values are f(v) = 0.249912571952, f'(v) = 0.649519026356
and f”(v) = 0.000393517946748.

numdif £ can be used for generating custom finite-difference stencils for ap-
proximation of derivatives.

Example.
Let X = [-1,0,2,4], Y = [a,b,c,d] and xyp = 1. To obtain an approximation
formula for the second derivative:
Input:
numdiff([-1,0,2,4], [a,b,c,d],1,2)
Output:
2 b d
52710

The approximation is always a linear combination of elements in Y, regardless of
X, xg and m.

Given the lists X = [ag, a1,...,a,] and Y = [Bo, b1, . .., B, the Lagrange
polynomial passing through points (g, i) where k = 0,1, ..., n can be obtained
by setting m = 0 and entering a symbol for xg.

Example.
Let X =[-2,0,1]and Y = [2,4, 1]:
Input:
expand (numdiff ([-2,0,1],[2,4,1],%,0))
Output:
4 5)

The same result is obtained by entering lagrange ([-2,0,11, [2,4,1]1,x%).

6.20 Integration

6.20.1 Antiderivative and definite integral: integrate int Int

The int and integrate commands compute a primitive or a definite integral.
A difference between the two commands is that if you input quest () just after
the evaluation of integrate, the answer is written with the | symbol.

Int is the inert form of integrate; namely, it evaluates to integrate for later
evaluation.

To find a primitive (an antiderivative):
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e int (or integrate) takes one mandatory argument and one optional ar-
gument:

— expr, an expression.

— Optionally, x, the name of a variable (by default the value is x, so if the
variable is x the second argument is unnecessary).

e int (expr(,z)) (or integrate (expr (,x))) returns a primitive of expr
with respect to x.

Examples.
o [nput:
integrate (x72)
Output:
1’3
3
o [nput:
integrate(t”2,t)
Output:

t3

To evaluate a definite integral:
e int (or integrate) takes four arguments:

— expr, an expression.
— x, the variable.

— a and b, the bounds of the definite integral.

e int (exprx,a,b) (or integrate (exprzx,a, b)) returns the exact value of
the definite integral if the computation was successful or an unevaluated in-
tegral otherwise.

Examples.

o [nput:
integrate(x"2,x%,1,2)

Output:

[SURIEN |

o Input:
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integrate (1/ (sin(x)+2),x,0,2*pi)

Output:

2
3V3

Int is the inert form of integrate, it prevents evaluation, for example to
avoid a symbolic computation that might not be successful if you just want a nu-
meric evaluation.

Example.
Input:
evalf (Int (exp(x~2),x%x,0,1))
or:
evalf (int (exp(x~2),x%x,0,1))
Output:
1.46265174591
Exercises.
1. Let 1
T T
= 1
fl@) = 5+ ()
Find a primitive of f.
Input:
int (x/ (x"2-1)+1n((x+1)/(x=-1)))
Output:
rz+1 2 9 In ‘332 — 1‘
a:ln(x_1> —i—§ln‘x _1‘_‘_#
Alternatively, define the function £,
Input:
f(x):=x/(x"2-1)+1n((x+1)/ (x-1))
then:

int (£ (x))

The output, of course, will be the same.

Warning.
For Xcas, log is the natural logarithm (like 1n); 1ogl0 is the base-10
logarithm.

2. Compute:

/ : ¢
x
20+ 2. x4 4 22

Input:



274 CHAPTER 6. THE CAS FUNCTIONS

int (2/ (x76+2xx"44x"2))

Output:
) —3z2-2 3 .
———— — —arctanx
2(x3+x) 2
3. Compute:
1
/ ; : dx
sin(z) 4 sin(2 - x)
Input:
integrate (1/ (sin(x)+sin(2*x )))
Output:

l+cosz 1+coszx

In (lfcosx> In } l—cosz 3‘
2 —
12 3

6.20.2 Primitive and definite integral: risch

The Risch algorithm is a powerful algorithm for finding an elementary primitive of
an elementary function or concluding that one doesn’t exist. The risch command
finds primitives and can use them to evaluate definite integrals.

To find a primitive:
e risch takes one mandatory argument and one optional argument:

— expr, an expression.

— Optionally x, the name of a variable (by default the variable is x).

e risch (expr(,x)) returns a primitive of expr with respect to x.

Examples.
o [nput:
risch(x"2)
Output:
;(;3
3
o [nput:
risch(t”"2,t)
Output:

o Input:
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risch(exp(-x"2))

/ e dx

meaning that exp(—22) has no primitive expressed with the usual functions.

Output:

To evaluate a definite integral:
e risch takes four arguments:

— expr, an expression expr.
— x, the variable.
— a and b, the bounds of the definite integral.

e int (expr,x,a,b) returns the exact value of the definite integral if the com-
putation was successful or an unevaluated integral otherwise.

Example.
Input:
risch(x"2,x%,0,1)
Output:
1
3

6.20.3 Discrete summation: sum

The sum command can evaluate sums, series, and find discrete antiderivatives. A
discrete antiderivative of a sum ) f(n) is an expression G such that G|,—,, 1 —

G|z—n = f(n), which means that ZTJLM f(n) =Goeni1 — Gur-

To evaluate a sum or series:
e sum takes four arguments:

— expr, an expression.
— k, the name of the variable.

— ng and ny, integers (the bounds of the sum).

e sum (expr, k,ng,n1) returns the sum ZZ;M expr.

Examples.

o Input:
sum(l, k,-2,n)

Output:
n+1+2
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Input:
normal (sum (2*«k-1,k,1,n))
Output:
n?
Input:
sum(1l/(n"2),n,1,10)
Output:
1968329
1270080
Input:
sum(1l/(n"2),n,1,+(infinity))
Output:
1
-
6
Input:
sum(l/(n"3-n),n,2,10)
Output:
27
110
Input:
sum(1/(n"3-n),n,2,+(infinity))
Output:
1
4
This result comes from the decompositionof 1/ (n”~3-n) (see Section 6.32.9
p.410).
Input:
partfrac(l/(n"3-n))
Output:
1 1 1
—— +
n 2(n-1) 2(n+1)
Hence:
A = B NZZ 11
n n+l 2 n+l N
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1Y 12 1
izn §(Zn+1) 1+3 +Zn+1
n=2 n=0 n=2

N
1 1 1 1 1
2;n+1 Q(nZ +N+N+1)

After simplification by Zn 5 » it remains:

LIS DA SO I P SRS S SRS S
2 2 NN TN T 2N(N +1)
Therefore:

- for N = 10 the sum is equal to: 1/4 — 1/220 = 27/110

- for N = 400 the sum is equal to: 1/4 because m approaches
zero when N approaches infinity.

To find a discrete antiderivative:
e sum takes two arguments:

— expr, an expression.

— k, the name of the variable.

e sum (exprx) returns a discrete antiderivative.

Example.
Input:

sum (1/ (x* (x+1)), %)

Output:

xr
6.20.4 Riemann sum: sum_riemann

Given a function f on [0, 1], the Riemann sum corresponding to dividing the inter-
val into n equal parts and using the right endpoints is

n
3 r(E)3
n’'n
k=1
The sum_riemann command determines if a sum is such a Riemann sum,
and if it is, evaluates the integral.

e sum_riemann takes two arguments:

— expr, an expression depending on two variables.

— [n, k], the list of those two variables.

e sum_riemann (expr, [n,k]) returns

n

lim E expr
n—oo
k=1
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(which, viewing the sum as a Riemann sum of a continuous function on
[0, 1], is the definite integral) orreturns "it is probably not a Riemann
sum" when the no result is found.

Exercises.

1. S Sp = —.
uppose ; 3
Compute nEI—&I—loo Sh.

Input:
sum_riemann(k~2/n"3, [n,k])
Output:
1
3
2. Suppose S, = kZ_l v
Compute lim S,.
n—-+4o0o
Input:
sum_riemann(k~3/n"4, [n,k])
Output:
1
3. C te lim ( + ! +.+ ! )
. Compute o .
P n—1>I—&I-100 n+1 n+2 n+n
Input:
sum_riemann (1/ (n+k), [n,k])
Output:

In (2)

n

32n3
4. Suppose Sn = Z m
k=1

Compute lim Tgn
n—-+4oo

Input:
sum_riemann (32xn"3/(16xn"4-k"4), [n,k])

Output:
1
2 arctan <2> +1n(3)
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6.20.5 Integration by parts

Recall the integration by parts formula:

/ w(@) (z)de = u(z)o(z) — / (@) (z)da.

If you want to integrate a function f(z) by parts, you need to specify how to write
f(z) as u(z)v'(x), which you can do by either specifying u(x) or v(z). The
result will be in the form F(z) + [ g(x)dz, where F(z) = u(z)v(z) and g(z) =
—v(z)u ().

In some cases, to finish an integral you need to integrate by parts more than
once. After one integrating by parts once and getting F'(z) + [ g(z)dz, you may
have to integrate [ g(x)dx by parts and add F(z) to the result.

Xcas has two commands for integrating by parts: ibpdv (where you specify
v(x)) and ibpu (where you specify u(z)), both of which return the result as a
list [F'(z), g(x)]. Both of these commands allow you to keep track of the function
F(z) you may need to add to the result of a subsequent integration by parts.

ibpdv

The ibpdv command is used to search the primitive of an expression written as
u(z)v'(x) by specifying v(z).

e ibpdv takes two arguments:

— uvprime, an expression which you can think of as u(z)v’(z), or
[ Fexpr,uvprime], a list of two expressions, where again you can think
of uvprime as u(z)v'(x), and Fexpr represents the function F'(x) that
you can add to the result of integrating by parts.

— vexpr, an expression you can think of as v(z). If vexpr is 0, then in-
stead of integrating by parts, the expression uvprime is integrated as a
whole (this can be useful for finishing a multi-step integration by parts
problem).

e ibpdv (uvprime,vexpr)) (or ibpdv ([Fexpr,uvprime],vexpr)) ) returns:

— If vexpr is not O:
[u(z)v(z), —v(z)u (z)] (or [F(z) +u(x)v(x), —v(z)u ()] if the first
argument is a list).

— If vexpris 0:
G(z) (or F(x) 4+ G(x), if the first argument is a list), where G(x) is a
primitive of uvprime.

Hence, ibpdv returns the terms computed in an integration by parts, with the pos-
sibility of doing several ibpdvs successively.

When the answer of ibpdv (u(x)*v’ (x),v(x)) is computed, to obtain a
primitive of u(z)v'(x), it remains to compute the integral of the second term of
this answer and then to sum this integral with the first term of this answer: to do
this, just use ibpdv command with the answer as first argument and a new v(z)
(or 0 to terminate the integration) as second argument.
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Example.
Input:
ibpdv (1n (x), x)
Output:
[zlnx,—1]
then:
ibpdv ([x*1n(x),-11,0)
or:
ibpdv(ans (), 0)
Output:
—r+zxlnzx
Remark.

When the first argument of ibpdv is a list of two elements, ibpdv works only on
the last element of this list and adds the integrated term to the first element of this
list. (therefore it is possible to do several ibpdvs successively).

Example. To evaluate [(In(z))%dz:
Input:

ibpdv ((1ln(x)) "2, x)

Output:
[:B In?z, —2In :E]

It remains to integrate — (2+1n (x) ):

Input:
ibpdv ([x*x (1ln(x)) "2,-(2*x1log(x)) ], x)
or:
ibpdv (ans (), x)
Output:

[z In?z — 2zlnz, 2]

And now it remains to integrate 2:

Input:
ibpdv ([x* (1In(x)) "2+xx (- (2+x1log(x))),2]1,0)
or:
ibpdv (ans (), 0)
Output:

rln?z —22lnz + 22
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ibpu

The ibpu command is used to search the primitive of an expression written as
u(z)v'(x) by specifying u(x).

e ibpu takes two arguments:

— uvprime, an expression which you can think of as u(z)v’(z), or
[ Fexpr,uvprime], a list of two expressions, where again you can think
of uvprime as u(x)v'(x), and Fexpr represents the function F'(x) that
you can add to the result of integrating by parts.

— uexpr, an expression you can think of as u(x). If uexpr is 0, then
instead of integrating by parts, the expression uvprime is integrated as
a whole (this can be useful for finishing a multi-step integration by
parts problem).

e ibpu (uvprime,uexpr) (or ibpu ([Fexpruvprime],uexpr) ) returns:

— If uexpr is not 0:
[u(z)v(z), —v(z)u (z)] (or [F(z) +u(x)v(z), —v(z)u (z)] if the first
argument is a list).

— If uexpris 0:
G(z) (or F(x) + G(x), if the first argument is a list), where G(x) is a
primitive of uvprime.

Hence, ibpu returns the terms computed in an integration by parts, with the pos-
sibility of doing several ibpus successively.

When the answer of 1bpu (u (x) *v’ (x),u(x)) is computed, to obtain a prim-
itive of u(z)v'(x), it remains to compute the integral of the second term of this
answer and then to sum this integral with the first term of this answer: to do this,
just use the ibpu command with the answer as first argument and a new u(x) (or
0 to terminate the integration) as second argument.

Example.
Input:
ibpu(ln(x),1n(x))

Output:

[zlnz, —1]
then:

ibpu([x*1n(x),-11,0)
or:
ibpu(ans(),0)

Output:

—x+zlnzx
Remark.

When the first argument of ibpu is a list of two elements, ibpu works only on
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the last element of this list and adds the integrated term to the first element of this
list. Therefore it is possible to do several ilbpus successively, similarly to how you
can do several 1bpdvs successively.

Example.
To evaluate [(In(z))?dx:
Input:
ibpu ((1n(x)) "2, (In(x)) "2)
Output:

[m In?z, —2In x]

It remains to integrate — (2+1n (x) ):

Input:
ibpu ([x*x (In(x)) "2,-(2*1n(x))],1n(x))
or:
ibpu(ans (), 1In(x))
Output:

[wanx—2xlnx,2]
Finally, it remains to integrate 2: Input:
ibpu ([x* (In(x)) "2+x*x (= (2*x1n(x))),2]1,0)
or:
ibpu(ans (), 0)

Output:
zln?z —2zInz + 22

6.20.6 Change of variables: subst

See the subst command in Section 6.12.18 p.212.

6.20.7 Integrals and limits

The 1imit command (see Section 6.18 p.260) can compute limits involving inte-
grals.
Examples.

e Find the limit, as a approaches +oco, of

a
1
2 X
Input (if a is assigned, first input purge (a)):

limit (integrate(1/(x"2),x,2,a),a,+(infinity))
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Output:
1

2
Since [, 1/2?dz = 1/2 — 1/a, the integral [’ 1/2%dx tends to 1/2 as a
goes to infinity.

e Find the limit, as a approaches +co, of

a T rz+1
| d
[(Emm() e

Input (if a is assigned, first input purge (a):

limit (integrate (x/ (x"2-1)+log((x+1)/(x-1)),x,2,a),a,+infinity)

Output:
“+00

Since [, #/(2? —1)dz = (1/2)(In(a*—1)—1n(3)) and [;' In((z+1)/(z —
1))dz =In(a+1)+In(a—1)+aln((a+1)/(a—1)) —31n(3), the integral
Jo @/ (x* = 1) +In((z + 1) /(z — 1))dz goes to infinity as a goes to infinity.

e For an example when the integral can’t be simply evaluated, find the limit,

as a approaches 0, of
3a
/ cos(z) de
a X

limit (int (cos (x)/x,x,a,3a),a,0)

Input:

Output:
In (3)

To find this limit yourself, you can note that 1 — 22 /2 < cos(z) < 1, and so
1/x—2/2 < cos(z)/z < 1/x,and so fja 1/x—x/2dx < fa?’a cos(z)/xdr <
faga 1/zdz, which gives you In(3) — 2a% < fja cos(z)/xzdz < In(3), and
so as a approaches 0, fja cos(z) /xdx will approach In(3).

6.21 Multivariate calculus

6.21.1 Gradient: derive deriver diff grad

The derive command finds partial derivatives of a multivariable expression.
diff and grad can be used synonymously for derive here.

e derive takes two arguments:

— expr, an expression involving n real variables.

- [z1,...,zy], a vector of the variable names.
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e derive (expr, [x1,...,x,]) returns the gradient of expr; namely, the vec-
tor of partial derivatives of expr with respect to zy, ..., Ty.
For example, in dimension n = 3, with variables [z, y, 2],

arad(F) = (5 50 5]
Example.
Find the gradient of F'(z,y, z) = 222y — x25.
Input:
derive (2«x"2%xy-x%xz2"3, [x,y,2])

or:

diff (2«x"2xy-xxz"3, [x,¥,2])
or:

grad (2«x"2xy-xxz"3, [x,y,2])
Output:

[2 <2y — 23, 2562, —3562’2]
Output after simplification with normal (ans () ):
[4xy — z3, 21‘2, —31‘2’2]

To find the critical points of F(x,y, z) = 222y — 223

Input:

solve (derive (2+«x"2*y-x%xz2"3, [x,v,2]),[x,v¥,2])

Output:
[[0, 9,0]]

6.21.2 Laplacian: laplacian

Recall, the Laplacian of a function F' of n variables x1, ..., x, is
0*’F  0°F 0’F
V3F)= — 4+ — 4 ...4
(F) ox?  Ox? L ox2

Also, the n x n discrete Laplacian matrix (also called the second difference matrix)
is the n X n tridiagonal matrix with 2s on the main diagonal, —1s just above and
below the main diagonal;
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If L is the n x n discrete Laplacian matrix and Y is an n X 1 column vector whose
kth coordinate is y; = y(a + kAx) for a twice differential function y, then the kth
coordinate of LY will be —y(a+ (k —1)Az) 4+ 2y(a+ kAz) —y(a+ (k—1)Ax)
(implicitly assuming that y(a) = y(a + (N 4+ 1)Az) = 0), which approximates
y"(a + kAz). So LY is approximately —Ax?Y”, where Y is the n x 1 column
vector whose kth coordinate is y”’(a + kdz).

The 1aplacian command can compute the Laplacian operator or the discrete
Laplacian matrix.

To compute the Laplacian operator:

e laplacian takes two arguments:

— expr, an expression involving several variables.

— vars, a list of the variable names.

e laplacian (exprvars) returns the Laplacian of the expression.

Example
Find the Laplacian of F(x,y, 2) = 222y — z2°.
Input:
laplacian (2xx"2+xy-x*xz2"3, [x,Vv,2])
Output:

—6xz + 4y

To compute the discrete Laplacian matrix:

e laplacian takes one argument:
n, an integer or floating-point integer.

e laplacian (n) returns the n x n discrete Laplacian matrix.

Examples.
o Input:
laplacian (3)
Output:
2 -1 0
-1 2 -1
0o -1 2
o Input:
laplacian(2.0)
Output:

20 -1.0
—-1.0 2.0
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6.21.3 Hessian matrix: hessian

Recall, the Hessian of a function F' of n variables x1,...,x, is the matrix of
second order derivatives:

o’r . _PF

0x? 0z10zy,

9’F . 9*F
Orn 0z, oz

The hessian command computes the Hessian of a function.
e hessian takes two arguments:

— expr, an expression involving several variables.

— vars, a list of the variable names.
e hessian (exprvars) returns the Hessian of the expression.

Examples.

e Find the Hessian matrix of F(z,y, z) = 222y — x25.

Input:
hessian (2*x"2xy-xxz"3 , [X,Vy,2])

Output:
4y  dx =322
2.-2¢ 0 0
-322 0 -2-3zz

e To get the Hessian matrix at the critical points:
Input:

solve (derive (2+xx"2+y-x%z2"3, [X,v,2]),[x,v,2])

Output (the critical points):
[[0, 9, 0]]

Input (to evaluate the Hessian at these points):

subst ([ [4*xy,4xx,—(3*%z"2)], [2x2%x,0,07,
[_(3*ZA2)IOI 6*X*Z]]r [XIYIZ]I [OIYI O])

Output:

W
OOQQ
o O O
O O O
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6.21.4 Divergence: divergence

Recall that the divergence of a vector field F = [F1, ..., F},] with variables [z1, . .., zy]
is

OF OF,

T In

The divergence command computes the divergence of a vector field.
e divergence takes two arguments:

- F, avector field given as a list [F}, . .., F},] of expressions.

— vars, a list of the variable names.

e divergence (F,vars) returns the divergence of the vector field F'.

Example.
Input:

divergence ([x*z,-y"2,2xx"y], [x,vy,2])

Output:
—2y+z

6.21.5 Rotational: curl

The curl of a three-dimensional vector field F = [F}, F, F3] with variables [z1, x2, z3]

18
0Fy O0F, 0Fy O0F3 0F, OF;

8952 B 8:(}37 8903 B 8.%'1 ’ 8x1 8902

curlF = |

The curl command computes the curl of a three dimensional vector field (note
that it must be three dimensional).

e curl takes two arguments:

— F, a three-dimensional vector field, given as a list of three expressions
depending on three variables.

— vars, a list of the three variable names.

e curl (Evars) returns the curl of the vector field.

Example.
Input:

curl ([x*xz,-y"2,2+xx"y], [x,y,2])

Output:
[2 Inz-z¥, x — 2yz¥~1, 0}
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6.21.6 Potential: potential

Recall that a vector field F is conservative if there is a scalar-valued function f such
that gradf = F. In this case, f is called a potential of F, and is only determined
up to a constant.

The potential command computes the potential of a vector field, or signals
an error if the vector field is not conservative.

e potential takes two arguments:

— F, a vector field given as a list of n expressions involving n variables.

— vars, a list of the variable names.

e potential (F,vars) returns a potential function for F if F' is conservative,
and raises an error otherwise.

Note that potential is the reciprocal function of derive.

Example.
Input:

potential ([2*«x*xy+3,x"2-4xz,-4*y], [x,y,2])

Output:
2%y + 3z — dyz

Note that in R3, a vector field F is conservative if and only if its curl is zero;
i.e., if curlF = 0. In time-independent electro-magnetism, F = E is the electric
field and f is the electric potential.

6.21.7 Conservative flux field: vpotential

A vector field F in R3 is a conservative flux field, or a solenoidal field, if there is a
vector field G such that curlG = F. Given a conservative flux vector field F, the
general solution of curlG = F is the sum of a particular solution and the gradient
of an arbitrary functions.

The vpotential command finds a particular vector field G such that curlG =
F if F is a conservative flux field, and signals an error otherwise. Specifically,
vpotential returns the solution G with zero as the first component.

e vpotential takes two arguments:
— F, a vector field in R3, given as a list of three expressions depending
on three variables.
— vars, a list of the variable names.
e vpotential (Fvars) returns a solution of curlG = F whose first coor-

dinate is zero if F' is a conservative vector field, and signals an error other-
wise.

vpotential is the reciprocal function of curl.

Example.
Input:
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vpotential ([2xxxy+3,x"2-4%z,-2%xy*z], [X,y,2])

Output:
3

0, —2zyz, —% +4xz + 3y

In R3, a vector field F is a curl if and only if its divergence is zero. In time-
independent electro-magnetism, F = B is the magnetic field and G = A is the
potential vector.

6.21.8 Determining where a function is convex: convex
The convex command determines where a function is convex.
e convex takes two mandatory arguments and one optional argument:

— expr, an expression which is at least twice differentiable, which speci-
fies a function f.

— vars, the variable or list of variables in the expression. Some variables
may depend on a common independent parameter, say ¢, when entered
as e.g. z(t) instead of =. The first derivatives of such variables, when
encountered in f, are treated as independent parameters of the function.

— Optionally, simplify=bool, where bool can be t rue or false.
e convex (exprvars (,simplify=bool)) returns:

— true, if the function is convex on the entire domain.
— false, if the function is nowhere convex.

— otherwise, the region where the function is convex is returned as in-
equalities (not necessarily independent) involving the variables.

The command operates by computing the Hessian H; of f (see Section 6.21.3

p-288) and its principal minors (in total 2" of them where n is the number of pa-

rameters) and checks their signs. If all minors are nonnegative, then H is positive

semidefinite and f is therefore convex. Simplification is by default applied when

generating convexity conditions. With a third argument of simplify=false,

only rational normalization is performed (using the ratnormal command). simplify=true
is the same as the default.

The function f is said to be concave if the function g = — f is convex.

Examples.

o [nput:
convex (3xexp (x) +5x"4-1n (x) , X)

Output:
true

e Input:

convex (x"2+y " 2+3z " 2-xxy+2x*xz+yxz, [X,V,2])
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Output:
true

o Input:

convex (x17342x1724+2xx1*x2+x2"2/2-8x1-2x2-8, [x1,x2])

Output:
[z1 > 0]

e In the example below, the function f(z,y, 2) = 22 + x 2 + ay z + 2% is not
convex regardless of the value a € R:
Input:

convex (x"2+xxzta*y*xz+z"2, [x,y,2])

Output:
false

e For the next example, find all values a € R for which the function
flz,y,2) =a® +2¢y* +az? —2xy+222—6yz

is convex on R3.
Input:

convex (x"2+2y " 2+a*xz " 2-2xxy+2xX*z2-6y*Z, [X,Y,2])

Output:
[a = 5]

Therefore f is convex for a > 5.
e Find the set S C R? on which the function f : R? — R defined by
f(x1,22) = exp(z1) + exp(z2) + x1 22

1S convex.
Input:

condition:=convex (exp (x1)texp (x2)+x1*x2, [x1,x2])

Output:
[e"le™ —1 > 0]

Input:

lin(condition)
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(See Section 6.24.4 p.321.)
Output:
[e"1472 —1 > 0]
From here you conclude that f is convex when z1 + xo > 0. The set S is
therefore the half-space defined by this inequality.

The algorithm respects the assumptions that may be set upon variables. There-
fore, the convexity of a given function can be checked on a particular domain.

Examples.
o Input:
assume (x1>0) , assume (x2>0) :;
convex (exp (x1) +texp (x2) +x1*x2, [x1,x2])
Output:
true
o Input:
assume (x>=0 and x<=pi/4):;
convex (exp (y) *xsec (x) "3-z, [x,y,2])
Output:

true

6.22 Calculus of variations

6.22.1 The Brachistochrone Problem

The Brachistochrone problem is perhaps the original problem in the calculus of
variations. The problem is to find the curve from two points in a plane such that an
object falling under its own weight will get from the first point to the second in the
shortest time.

If the points are (0,yo) and (x1,0), with yo > 0 and 21 > 0, this becomes the
problem of minimizing the objective functional

T@ZAﬁWw@d®Mﬁ

where the function L is defined by

L(t,y(x),y'(x)) = W

for y : [0,z1] — R such that y(0) = yo and y(z1) = 0 (the constant g is the
gravitational acceleration).

More generally, one type of problem in the Calculus of variations is to mini-
mize (or maximize) a functional

b
F@:/fm%wm

over all functions y € C?[a, b] with boundary conditions y(a) = A and y(b) = B,
where A, B € R. The function f is called the Lagrangian.
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6.22.2 Euler-Lagrange equation(s): euler_lagrange

The Euler-Lagrange equations for a Lagrangian function f(z,y, y’) are differential
equations which must be satisfied by extrema of the functional F'(y).

The euler_lagrange command finds the Euler-Lagrange equations for a
Lagrangian f. The function f can be given in one of two ways. For the first way:

e culer_lagrange takes one mandatory argument and two optional argu-
ments:

— expr, an expression involving an independent variable, a dependent
variable, and the dependent variable prime.
— Optionally, indvar, the independent variable (by default x).

— Optionally, depvar, the dependent variable (by default y).
If a function y € R” is required (by default n = 1), you can enter
y = (y1,%2,---,Yn) as a vector [y1,¥y2,...,Yyn). In that case, v/ =
(Y15 Y25+ - Un)-

An alternate way to specify the independent and dependent variables is by re-

placing both optional arguments by either, for example, y(z) or [y1(z), y2(x), . ..

e culer_lagrange (expr (,indvardepvar )) returns the system of differ-
ential Euler-Lagrange equations.
If n = 1, a single equation is returned:

o5 _ 4 of
9 " s oy (6.1)

In general, n equations are returned:

of _d of
Byk_dafay;g’ o

The degrees of these differential equations are kept as low as possible. If, for
example, % = 0, the equation 3—5, = K is returned, where K € R is an arbitrary

constant. Similarly, using the Hamiltonian
A 0 / /
H(z,y,y') =y afy,f(azy,y )= f(@,y,9)

.. . . . of .
the Euler-Lagrange equation is simplified in the case n = 1 and %; = 0 to:
H(z,y,y) = K, (6.2)

since it can be shown that % H(y,y',x) = 0. Therefore the Euler-Lagrange equa-
tions, which are generally of order two in y, are returned in a simpler form of order
one in the aforementioned cases. If n = 1 and % = 0, then both equations (6.1)
and (6.2) are returned, each of them being sufficient to determine y (one of the
returned equations is usually simpler than the other).

Example.
Input:

s Yn()].
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euler_lagrange (sqrt (x’ (t) "2+y’ (t) "2), [x(t),yv (L)1)

Output

= Ko, Y =K

where Ky, K1 € R are arbitrary (these constants are generated automatically).

It can be proven that if f is convex (as a function of three independent vari-
ables, see Section 6.21.8 p.291), then a solution y to the Euler-Lagrange equations
minimizes the functional F'.

Example.
Minimize the functional F for 0 < a < b and

flayy) =2y (2)° + y(x)>.

Input:
eqg:=euler_lagrange (x " 2+diff(y(x),x) "2 + vy 2)
Output:
d? B 24y (2)z+y(2)
@y (z) = 22
This can be solved by assuming y(x) = =" for some r € R.
Input:
solve (subs(eq,y(x)=x"1r),r)
Output:
VE+1 =541
2 72

Note that a pair of independent solutions is also returned by the kovacicsols
command (see Section 6.57.3 p.630):
Input:

assume (x>=0) :;
kovacicsols (y"=(y—-2x*xy")/x"2,%x,V)

Output:

{\/m\/g—l, \/x—\/g—lJ

V5 V5
You can conclude that y = Cy 2™ 5 +Cox Eie . The values of C and C5 are

determined from the boundary conditions. Finally, to prove that f is convex:
Input:

convex (x"2xdiff(y(x),x) "2 + v 2,y(x))
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Output:
true

Therefore, y minimizes F on [a, b].

Example.
Find the function y in

{y eCt B 1] Ly (;) = —\é§7y(1) = 0}

which minimizes the functional

1 / 'z
F(y) = /1/2 V1ity'(x)? der.

X

To obtain the corresponding Euler-Lagrange equation:

Input:
eq := euler_lagrange (sqgrt (1+diff (v (x),x)"2)/x)

Output:

d

—y (T

dxy( )2 — K,

x (%y(az)) +1
Input:
sol:=dsolve (eq)

Output:

K3

[_\/—Kng +1 n Co]

The sought solution is the function of the above form which satisfies the boundary
conditions.
Input:

y0:=s01[0]:;
c:=[K_3,c_0]:;
v:=solve ([subs (y0,x=1/2)=-sqrt (3) /2, subs (y0,x=1)=0],c)

Output:
[1 0]
Input:
y0:=normal (subs (y0,c,v[0])
Output:

V=22 +1

To prove that yo(x) = —v/1 — 22 is indeed a minimizer for F, you need to show
that the integrand in F'(y) is convex.
Input:
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convex (sqrt (1+y’ "2) /%,y (X))

Output:
2> 0]

You can similarly find the minimizer for

where y € C1[0, 7] and y(0) = y(7) = 0.
Input:

eqg:=euler_lagrange (2xsin (x) »y (x)+diff (v (x),x) "2)

Output:
d2
2Y (x) =sinx
Input:
dsolve (eq and y(0)=0 and y(pi)=0,x,vy)
Output:

—sinz

The above function is the sought minimizer as the integrand 2 sin(z) y(x) +v/(x)?
is convex:

Input:
convex (2xsin (x) *y (x)+diff (v (x),x) "2,y (X))
Output:
true
Example.

Minimize the functional F'(y) = fol (v/(x)*—4y(x))dz on C'[0, 1] with boundary
conditions y(0) = 1 and y(1) = 2.
First, solve the associated Euler-Lagrange equation:

Input:
eq:=euler_lagrange(y’ "4-4y,x,V)
Output:
4
[3 (£0@) +1v(0) = K (o) = —M]
Input:
dsolve (eq[l] and y(0)=1 and y(1l)=2,x,Vy)

Output:

3 s
[—4 (—z + 1.52832425067)3 + 2.32032831141]
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[-3* (-x+1.52832425067) " (4/3)/4+2.32032831141]

Next, check if the integrand in F'(y) is convex:
Input:

convex (y’' "4-4y, [x,y])

Output:
true

Hence the minimizer is

3
yo(w) = —7 (152832425067 — )43 4232032831141, 0 <z <1.

6.22.3 Solution of the Brachistochrone Problem

To solve the brachistochrone problem (see Section 6.22.1 p.293), you can first find
the Euler-Lagrange equations for the Lagrangian

L) =[5 0

You can simplify this somewhat by assuming that you are using units where 2g =
1.
Input:

assume (y>=0) :;
euler_lagrange (sqgrt ( (1+y’ "2)/y), %X, Vy)

Output:

- & ~(dhy (@)’ -1
N == KQ, -—5Y (x) =
\/(((ﬂcy(x))Q - 1) y (z) da? 2y ()

It is easier to solve the first equation for y, since it is first-order and separable.
The first equation can be rewritten as

dy_ ¢ 4

dr T
for appropriate C', which can be solved by separation of variables, getting you the
parametric equations

1
r = 56’ (20 — sin(20))
1
Y= §C (1 —cos(20))
which parameterize a cycloid. This implicitly defines a function y = y(x) as the
only stationary function for L. The problem is to prove that it minimizes 7", which

would be easy if the integrand L was convex. However, it’s not the case here:
Input:
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assume (y>=0) :;
convex (sqrt ((1+y’ ~2) /y), v (X))

2
[ 37 —1—320]

This is equivalent to |y/()| < v/3, which is certainly not satisfied by the cycloid 7
near the point x = 0.
Using the substitution y(z) = z(z)?/2, you get y/(z) = 2/(z) z(z) and

L(z,y(x),y'(2)) = P(z,2(x),2'(2)) = /2(z(2) 72 + /(2)?).

The function P is convex:

Output:

Input:
assume (z>=0) :;
convex (sqrt (2 (z" (=2)+z’ "2)),z (X))
Output:
true
Hence the function z(t) = /27(t), stationary for P (which is verified directly),

minimizes the objective functional

= /I1 P(z,2(x), 2 (v)) du.
0

From here and U(z) = T'(y) it easily follows that 7 minimizes 7" and is therefore
the brachistochrone. (For details see John L. Troutman, Variational Calculus and
Optimal Control (second edition), page 257.)

6.22.4 Jacobi equation: jacobi_equation

To determine whether a solution yg to the Euler-Lagrange equations is an extrema,
checking the convexity of the Lagrangian f doesn’t always work. Another ap-
proach is to look at the Jacobi equation, which is

d d
-5 (fyry (vo, yp, t) B') + (fyy(yo,y&t) v fyy/(yo,y(),t)> h=0. (6.3)

for unknown function h. If the Jacobi equation has a solution such that h(a) = 0,
h(c) = 0 for some ¢ € (a,b] (the interval given in the variational problem) and
h not identically zero on [a, c], then c is called a conjugate to a. If a conjugate
exists, then 39 does not minimize the functional F'. But the function gy minimizes
Fif fyry(y0,Yg, x) > 0 for all € [a, b] and there are no points conjugate to @ in
(a,b].

The jacobi_equation command computes the Jacobi equation.

e jacobi_equation takes five or six arguments:

- f(y,y', ), an expression involving an independent variable, a depen-
dent variable, and the dependent variable prime.



298 CHAPTER 6. THE CAS FUNCTIONS

depvar, the independent variable.

indvar, the dependent variable. This argument and the previous one
can be combined to a single argument depvar(indvar), which case the
call has five arguments.

expression yg representing a function in C [a, b] which is stationary for
the functional F(y) = fab fly, v, z)dx.

h, a symbol for the unknown function in the Jacobi equation.

a, a real number which is the lower bound for x.

e jacobi_equation (f(y,y,z),z,y,yo,a) returns the Jacobi equation
and possibly the solution.

If the Jacobi equation can be solved by dsolve (see Section 6.57.1 p.620), a
sequence containing the equation (6.3) and its solution is returned. Otherwise,
if (6.3) cannot be solved immediately, only the Jacobi equation is returned.

Example.
Input:
jacobi_equation (=1/2xy’ (t) "2+y(t) "2/2,t,y,sin(t),h,0)

Output:
—h(t)—h(t) =0,cosint

6.22.5 Finding conjugate points: conjugate_equation
The conjugate_equation computes conjugate points.
e conjugate_equation takes four arguments:

— %o, an expression which depends on an independent variable and two
parameters. The expression yg is assumed to represent a stationary
. o . b
function for the problem of minimizing some functional F'(y) = [ f(z,y,y’) dz.

- [, B], alist of parameters which yo depends on.
- [A, B], alist of the values of parameters « and (3, respectively.
— x, the independent variable.

— a, areal number equal to the lower or to the upper bound for x.
e conjugate_equation (yo, [, 5], [A, B],z,a) returns the expression

Ayo(t) Oyo(a) _ dyo(a) dyo(t)

Oa 0B Oa o8’ ©4)

at « = A and 8 = B, which is zero if and only if ¢ is conjugate to a.

To find any conjugate points, set the returned expression to zero and solve.

Example.
Find a minimum for the functional
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on D = {y € C*[0,7/2] : y(0) = y(r/2) = 0}.
The corresponding Euler-Lagrange equation is:
Input:

eqg:=euler_lagrange (y’ (x) "2-x*xy (x) -y (x) "2,y (x))

Output: )
S =2 —y(@
The general solution is:
Input:
y0:=dsolve (eq, x,Vy)
Output:

. x
CoCOSX + C181INT — 5

The stationary function depends on two parameters cg and c¢; which are fixed by
the boundary conditions:
Input:

c:=solve ([subs(y0,x,0)=0, subs (y0,x,pi/2)=0], [c_0,c_11)

Output:
0 1
) 47r
Input:
conjugate_equation(y0, [c_0,c_1]1,c[0],x%,0)
Output:

sinx

The above expression obviously has no zeros in (0, 77/2], hence there are no points
conjugate to 0. Since f,,, = 2 > 0, where f(y,y’, ) is the integrand in F(y)
(the strong Legendre condition), yo minimizes F' on D. To obtain yq explicitly:
Input:

subs (y0, [c_0,c_1]1,c[0])

Output:

1 . €T
—mwsing — —

4 2

6.22.6 An example: Finding the surface of revolution with minimal
area

In this section, you will find the function
yo € D ={y e C'[0,1] : y(0) = 1,y(1) = 2/3}

for which the area of the corresponding surface of revolution is minimal. The result
is not necessarily intuitive.
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The area of the surface of revolution is measured by the functional

1
F(y) :27r/0 y(z)/1+ ¢ (z)?de.

First, set f(y,y’, ) = y(x) /1 + v/'(x)? and compute the associated Euler-Lagrange
equation:
Input:

eq := euler_lagrange (y (x) xsqgrt (1+diff(y(x),x)"2))

Output:

Ao ()2
— y (@) :Ko,;;Qy (x) = (dﬂﬁy—))H

(%y(az))2 +1

You can obtain the stationary function by finding the general solution of the first
equation.
Input:

sol:=collect (simplify (dsolve(eq[0],x,V)))
(See Section 6.27.16 p.356). Output:

Ko <_ () 1>

T—cCy

2e Ko

Obviously the constant solution — K is not in D, so set yg to be the second element
of the above list. That function, which can be written as

yo(x) = —Ky cosh (m[—(()q) )

is a catenary.
Input:

y0:=sol[1l]:; p:=[K_0,c_1]:;

To find the values of K and ¢; from the boundary conditions, first plot the curves
y0(0) = 1 and yo(1) = 2 for Ko € [~1,1] and ¢; € [—1,2] to see where they
intersect each other.

Input:

eql:=subs (y0,x=0)=1:; eqg2:=subs(y0,x=1)=2/3:;
implicitplot ([eql,eq2],K _0=-1..1,c_1=-1..2)

Output:
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xcas—catenoid_intersections.png

Observe that there are exactly two catenaries satisfying the Euler-Lagrange neces-
sary conditions and the given boundary conditions: the first with Ky ~ —0.5 and
c1 =~ 0.6 and the second with Ky ~ —0.3 and ¢; =~ 0.5. You can obtain the values
of these constants more precisely by using fsolve.

Input:

pl:=fsolve([eql,eq2],p, [-0.5,0.61);
p2:=fsolve([eqgl,eq2],p, [-0.3,0.51])

Output:

[—0.56237423894, 0.662588703113], [—0.30613431407,0.567138261119]

You can check, for each catenary, whether the strong Legendre condition

fy’y’(xv ykvy;c) >0

holds for k = 1, 2.
Input:

yl:=subs(y0,p,pl):; y2:=subs(y0,p,p2):;

D2f:=diff (f,diff(y(x),x),2):;

solve ([eval (subs (D2f,y=yl,y(x)=yl))<=0,x>=0,x<=1],x);
solve ([eval (subs (D2f, y=v2,y(x)=y2))<=0,x>=0,x<=1], x)

Output:
0.1

You can conclude that the strong Legendre condition is satisfied in both cases, so
you can proceed by attempting to find the points conjugate to 0 for each catenary.
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The function ¥y depends on two parameters, SO you can use conjugate_equation
to find these points easily.
Input:

fsolve (conjugate_equation(y0,p,pl,x,0)=0,
fsolve (conjugate_equation (y0,p,p2,x,0)=0,

Output:
[0.0],]0.0,0.799514772606]

You can conclude that there are no points conjugate to 0 in (0, 1] for the catenary
Y1, so it minimizes the functional F'. However, for the other catenary there is a
conjugate point in the relevant interval, therefore y- is not a minimizer.

You can verify the above conclusions by computing the surface area for cate-
naries ¥y and y2 and comparing them.
Input:

int (yl*xsqrt (1+diff(yl,x) "2),x=0..1);
int (y2+sqrt (1+diff (yv2,x)"2),x

Il
o
[

Output:
0.81396915825, 0.826468466845

You can see that the surface formed by rotating the curve y; is indeed smaller than
the area of the surface formed by rotating the curve ys. Finally, you can visualize
both surfaces for convenience.

Input:

(see Section 8.6 p.670 for information on plot 3d)

plot3d([yl*cos(t),yl*sin(t),x],x=0..1,t=0..2%pi,
display=yellowtfilled)

Output:

xcas—catenoid_1.png
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Input:

plot3d([y2xcos(t),y2xsin(t),x],x=0..1,t=0..2%pi,
display=yellow+filled)

Output:

xcas—catenoid_2.png

6.23 Trigonometry

Xcas can evaluate the trigonometric functions in either radians or degrees (see
Section 6.16.2 p.242). It can also manipulate them algebraically.

6.23.1 Expanding a trigonometric expression: trigexpand

The t rigexpand command expands sums, differences and products by an inte-
ger inside the trigonometric functions.

e trigexpand takes one argument:
expr, an expression containing trigonometric functions.

e trigexpand (expr) returns the expression with sums, differences and in-
teger products inside the trigonometric functions expanded.

Input:
trigexpand (cos (x+y))

Output:
cosx - cosy — sinx - siny
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6.23.2 Linearizing a trigonometric expression: t1in

The t1in command linearizes products and integer powers of the trigonometric
functions (e.g. in terms of sin(n * x) and cos(n * x)).

e t1in takes one argument:
expr, an expression containing trigonometric functions.

e t1lin (expr) returns the expression with the trigonometric functions lin-
earized.

Examples.

e Linearize cos(z) * cos(y).

Input:
tlin(cos (x) xcos (y))
Output:
cos (z — y) 4 cos (x+y)
2 2
e Linearize cos(x)3.
Input:
tlin(cos (x) ~3)
Output:
o 4 O (3z)
—cosT + ——
4 4
e Linearize 4 cos(z)? — 2.
Input:
tlin(4xcos (x)"2-2)
Output:

2 cos (2x)

6.23.3 Increasing the phase by 7/2 in a trigonometric expression: shift_phase

The shift_phase command increases the phase of a trigonometric expression
by /2.

e shift_phase takes one argument:
expr, a trigonometric expression.

e shift_phase (expr) returns expr with the phase increased by /2 (after
automatic simplification).

Examples.
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o Input:
shift_phase(x + sin(x))
Output:
T+ 2%
T — COS
2
o [nput:
shift_phase(x + cos(x))
Output:
2
x + sin <7T + x)
2
o Input:
shift_phase(x + tan(x))
Output:

1

O tan (5E)

Quoting the argument will prevent the automatic simplification.

Example.
Input:

shift_phase (’sin(x + pi/2)")
Output:

(7r+2x+272r>
— COS f

With an unquoted sine, you get:
Input:

shift_phase(sin(x + pi/2))

. T+ 2%
sin
2

since sin (x+pi/2) isevaluated (in this case simplified) before shift_phase
is called, and shift_phase (cos (x)) returns sin ( (pi+2*x) /2).

Output:
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6.23.4 Putting together sine and cosine of the same angle: tcollect
tCollect

The t collect command linearizes trigonometric expressions (in terms of sin(nx*
x) and cos(n * x)) and combines sines and cosines of the same angle.
tCollect is asynonym for tcollect.

e tcollect takes one argument:
expr, an expression containing trigonometric functions.

e tcollect (expr) returns expr after first linearizing it and then combining
sines and cosines of the same angle.

Examples.
e Input:
tcollect (sin(x)+cos (x))
Output:
V2 cos <x - 1%)
4
o [nput:
tcollect (2%sin(x) *cos (x)+cos (2*Xx))
Output:

1
V2 cos <2x — 47r>

6.23.5 Simplifying: simplify

The simplify command simplifies expressions. As with all automatic simplifi-
cations, do not expect miracles; you will have to use specific rewriting rules if it
does not work.

e simplify takes one argument:
expr, an expression.

e simplify (expr) returns the simplified version of expr.

Example.
Input:

simplify ((sin (3*x)+sin (7*x))/sin (5%x))

Output:
2 cos (2x)

Warning.

simpli fy is more efficient in radian mode (which you can turn on, if it isn’t al-
ready, by checking radian in the cas configuration or inputting angle_radian:=1,
see Section 3.5.3 p.70).
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6.23.6 Simplifying trigonometric expressions: trigsimplify

The trigsimplify command simplifies trigonometric expressions by combin-

ing simplify (see Section 6.12.14 p.209), texpand (see Section 6.25.1 p.324),

t1lin (see Section 6.23.2 p.306), tcollect (see Section 6.23.4p.308), trigsin
(see Section 6.23.23 p.317), trigcos (see Section 6.23.24 p.317) and trigtan

(see Section 6.23.25 p.318) commands in a certain order.

e trigsimplify takes one argument:
expr, an argument containing trigonometric functions.

e trigsimplify (expr) returns the simplified form of expr.

Examples.

e Input:

trigsimplify ((sin (x+y)-sin(x-y))/ (cos (x+y)+cos (x-y)))

Output:
tany

o Input:
trigsimplify (1-1/4+sin(2a) " 2-sin(b) "2-cos(a) "4)

Output:

sin®a — sin%b

6.23.7 Transforming arccos into arcsin: acos2asin

The acos2asin command transforms any acoss in an expression to asins,
using the identity arccos(z) = 7/2 — arcsin(x).

e acos2asin takes one argument:
expr, an expression containing inverse trigonometric functions.

e acos2asin (expr) returns expr with any acoss replaced by the appropri-
ate asins.

Example.
Input:

acos2asin (acos (x)+asin(x))

Output (after simplification):

b 3
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6.23.8 Transforming arccos into arctan: acos2atan

The acos2atan command transforms any acoss in an expression to atans,
using the identity

i)

7r
arccos(z) = 5 arctan
e acos2atan takes one argument:
expr, an expression containing inverse trigonometric functions.

e acos2atan (expr) returns expr with any acoss replaced by the appropri-
ate atans.

Example.
Input:

acosZ2atan (acos (x))

Output:
s e ()
— —arctan | —
2 1— 22

6.23.9 Transforming arcsin into arccos: asin2acos

The asin2acos command transforms any asins in an expression to acoss,
using the identity arcsin(z) = /2 — arccos(z).

e asin2acos takes one argument:
expr, an expression containing inverse trigonometric functions.

e asin2acos (expr) returns expr with any asins replaced by the appropri-
ate acoss.

Example.
Input:

asinZacos (acos (x)+asin(x))
Output (after simplification): -
2
6.23.10 Transforming arcsin into arctan: asin2atan

The asin2atan command transforms any asins in an expression to atans,
using the identity

i)

arcsin(z) = arctan (

e asinZatan takes one argument:
expr, an expression containing inverse trigonometric functions.

e asin2atan (expr) returns expr with any asins replaced by the appropri-
ate atans.
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Example.
Input:

asinZatan(asin(x))

Output:
= (7)
arctan | ——
1— a2

6.23.11 Transforming arctan into arcsin: atan2asin

The atan2asin command transforms any atans in an expression to asins,
using the identity

T
arctan(x) = arcsin [ ———
(=) (\/ 1+ :132>

e atan2asin takes one argument:
expr, an expression containing inverse trigonometric functions.

e atan2asin (expr) returns expr with any at ans replaced by the appropri-
ate asins.

Example.
Input:

atanZasin (atan(x))

Output:
()
arcsin
1+ 22

6.23.12 Transforming arctan into arccos: atan2acos

The atan2acos command transforms any atans in an expression to acoss,
using the identity

arctan(z) T arcsi ( ’ >
rctan(z) = = — arcsin | ——
2 V14 a2

e atan2acos takes one argument:
expr, an expression containing inverse trigonometric functions.

e atan2acos (expr) returns expr with any at ans replaced by the appropri-
ate acoss.

Example.
Input:

atan2acos (atan (x))

Output:

s T
— — arcCos | —F/—=
2 <\/1+m2)
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6.23.13 Transforming complex exponentials into sin and cos: sincos
exp2trig

The sincos command uses the identity
i

€' = cos(z) + isin(x)

to rewrite complex exponentials in terms of sine and cosine.
exp2trigisasynonym for sincos.

e sincos takes one argument:
expr, an expression containing complex exponentials.

e sincos (expr) rewrites expr in terms of sin and cos.

Examples.
e Input:
sincos (exp (1*x))
Output:
cosz +isinzx
e [nput:
exp2trig(exp (—1ixx))
Output:
cosx —isinz
o [nput:

simplify (sincos (((1)*(exp ((1)*x))"2-1)/ (2 exp ((1)*x))))

or.

simplify (exp2trig (((1)*(exp ((1)*x)) " "2-1)/ (2xexp ((1)*x))))

Output:

—sinx
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6.23.14 Transforming tan(x) into sin(x)/cos(x): tan2sincos

sin(x)

cos(z)

The tan2sincos command replaces tan(z) by in an expression.

e tan2sincos takes one argument:
expr, an expression containing trigonometric functions.

e tan2sincos (expr) returns expr with anything of the form tan(x) re-

placed by sin(z) .
cos(x)
Example.
Input:
tan2sincos (tan (2xx))
Output:
sin (2z)
cos (2z)

6.23.15 Transforming sin(x) into cos(x)*tan(x): sin2costan

The sin2costan command replaces sin(x) by cos(x) tan(z) in an expression.

e sin2costan takes one argument:
expr, an expression containing trigonometric functions.

e sin2costan (expr) returns expr with anything of the form sin(z) re-
placed by cos(x) tan(z).
Example.
Input:
sin2costan(sin (2*x))

Output:
tan (2z) cos (2x)

6.23.16 Transforming cos(x) into sin(x)/tan(x): cos2sintan

n(z)

si
tan(x)

The cos2sintan command replaces cos(z) by in an expression.

e cos2sintan takes one argument:
expr, an expression containing trigonometric functions.

e cos2sintan (expr) returns expr with anything of the form cos(z) re-

placed by :;Irll((xx)) .
Example.
Input:
cos2sintan (cos (2*x))
Output:

sin (2z)
tan (2x)
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6.23.17 Rewriting tan(x) in terms of sin(2x) and cos(2x): tan2sincos2

sin(2x)

The tan2sincos2 command replaces tan(z) by T+ cos(20)
cos(2x

in an expression.

e tan2sincos? takes one argument:
expr, an expression containing trigonometric functions.

e tan2sincos?2 (expr) returns expr with anything of the form tan(x) re-

sin(2z)
laced by ———.

Praceedy 17y cos(2x)
Example.
Input:

tan2sincos2 (tan (x))
Output:
sin (2x)
1 + cos (2x)

6.23.18 Rewriting tan(x) in terms of cos(2x) and sin(2x): tan2cossin2

1 — cos(2x)

The tan2cossin2 command replaces tan(x) by —
sin(2z)

in an expression.

e tan2cossin? takes one argument:
expr, an expression containing trigonometric functions.

e tan2cossin?2 (expr) returns expr with anything of the form tan(x) re-

1 — cos(2x)
laced by —————
placec by sin(2z)
Example.
Input:
tan2cossin2 (tan (x))
Output:
1 — cos (2x)
sin (2z)

6.23.19 Rewriting sin, cos, tan in terms of tan(x/2): halftan

The hal ftan command rewrites the trigonometric functions in terms of tan(z/2)
using the identities:

. B 2tan (5)
sin(z) = p— ( )2+ ;
)
cos(z) = - (%) 1
tan(z) 2tan (2%)

1 — tan

(%)
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e halftan takes one argument:
expr, an expression containing trigonometric functions.

e halftan (expr) returns expr with any trigonometric functions replaced by
the appropriate expression of tan (z/2) .

Examples.
o Input:
halftan(sin (2+x)/ (1+cos (2xx)))
Output:
2tan (%m)
(tan2 (%1:) + 1) (1 + m)

Output (after simplification with normal (ans () )):

tanx

o Input:

halftan(sin(x) "2+cos (x) "2)

2 tan (%) ? 1 — tan? (%) ?
ETRNET

Output (after simplification with normal (ans () )):

Output:

1

6.23.20 Rewriting trigonometric functions in terms of tan(x/2) and
hyperbolic functions in terms of exp(x): halftan_hyp2exp

The halftan_hyp2exp command rewrites the trigonometric function in terms
of tan(x/2) (like halftan, see Section 6.23.19 p.314) and rewrites the hyper-
bolic functions in terms of their definitions using exponentials, namely:

T —T

e’ —e
h(z) —
sinh(z) 5
x —X
cosh(z) = %
r _ ,—T 2r 1
tanh(x) = — ¢

e te T €21

e halftan_hyp2exp takes one argument:
expr, a trigonometric and hyperbolic expression.
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e halftan_hyp2exp (expr) returns expr with any trigonometric functions
replaced by the appropriate expression in tan (x/2) and any hyperbolic
functions replaced by the appropriate exponentials.

Examples.
e [nput:
halftan_hyp2exp (tan(x) +tanh (x))
Output:
2 tan (%) e — 1
1—tan?(3) e¥+1
e Input:

halftan_hyp2exp (sin(x) "2+cos (x) "2-sinh (x) "2+cosh (x) "2)

Output (after simplification with normal (ans () )):

2

6.23.21 Transforming trigonometric functions into complex exponen-
tials : trig2exp

The trig2exp command replaces trigonometric functions by their complex ex-
ponential form.

e trig2exp takes one argument: expr, an expression containing trigonomet-
ric functions.

e trig2exp (expr) returns expr with the trigonometric functions replaced
by the appropriate complex exponentials (WITHOUT linearization).

Examples.
o Input:
trig2exp (tan(x))
Output:
() -1
i ((em)2 + 1)
o [nput:
trig2exp (sin(x))
Output:
eiz 1
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6.23.22 Transforming inverse trigonometric functions into logarithms:
atrig2ln

Just as the trigonometric functions can be written in terms of complex exponentials,
the inverse trigonometric functions can be written in terms of complex logarithms.
The at rig21n command does this rewriting.

e atrig2ln takes one argument: expr, an expression containing inverse
trigonometric functions.

e atrig2ln (expr) returns expr with any inverse trigonometric functions re-
placed by the appropriate complex logarithms.

Example.
Input:

atrig2ln(asin(x))
Output:
iln(x—i— 2 — 1) —I—%

6.23.23 Simplifying and expressing preferentially with sines: trigsin

Any trigonometric function can be written in terms of sins and coss, and with the
identity sin(z)? + cos(x)? = 1, the even powers of cos can be turned into powers
of sin. The t rigsin command performs these substitutions.

e trigsin takes one argument:
expr, an expression containing trigonometric functions.

e trigsin (expr) returns expr with the trigonometric functions rewritten in
terms of sin and cos, with as many coss as possible transformed to sins.

Example.
Input:

trigsin(sin(x) "4+cos (x) "2+1)
Output:
sin*x — sin® x +2

6.23.24 Simplifying and expressing preferentially with cosines: trigcos

Any trigonometric function can be written in terms of sins and coss, and with the
identity sin(z)? + cos(x)? = 1, the even powers of sin can be turned into powers
of cos. The t rigcos command performs these substitutions.

e trigcos takes one argument:
expr, an expression containing trigonometric functions.
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e trigsin (expr) returns expr with the trigonometric functions rewritten in
terms of sin and cos, with as many sins as possible transformed to coss.

Example.
Input:

trigcos (sin(x) "4+cos (x) "2+1)

Output:

costz — cos® x + 2

6.23.25 Simplifying and expressing preferentially with tangents: trigtan

The t ri gt an command rewrites trigonometric expressions into expressions where

as many trigonometric functions as possible are written in terms of tangents, using

the identities sim(:c)2 + Cos(x)2 — 1, tan(z) = sin(x)

cos(x)’

e trigtan takes one argument:
expr, an expression containing trigonometric functions.

e trigtan (expr) returns expr with the trigonometric functions written as
much as possible in terms of tangents.

Example.
Input:

trigtan(sin(x) "4+cos(x) "2+1)

Output:
2tan? z + 3tan?x + 2

tantx + 2tan?x + 1

6.23.26 Rewriting an expression with different options: convert convertir
=>

Xcas has many commands to convert expressions into different forms; the convert
command (or its infixed version =>) is a different way to call many of these func-
tions.

e convert takes two or more arguments:

— expr, an expression.

— option, an option specifying which rewrite rules to use. A third argu-
ment might be necessary for some options. Possible values of option
are:

* sin,to convert an expression like t rigsin (see Section 6.23.23
p.317).

* cos, to convert an expression like t rigcos (see Section 6.23.24
p.317).
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* sincos, toconvert an expression like sincos (see Section 6.23.13
p.-312).

* trig,to convert an expression like sincos (see Section 6.23.13
p-312).

* tan, to convert an expression like halftan (see Section 6.23.19
p.314).

* exp, to convert an expression like t ri g2exp (see Section 6.23.21
p.316).

* 1n, to convert an expression like t rig2exp (see Section 6.23.21
p.316).

* expln, toconvert an expression like t rig2exp (see Section 6.23.21
p.316).

* string, to convert a expression into a string.
* matrix,to convert a list of lists into a matrix.
* array, to turn a table into an array (see Section 6.46.1 p.531).

* polynom, to convert a series (see Section 6.36.2 p.432) into a
polynomial by removing the remainder (see Section 6.27.25 p.362)
or to convert a list representing a polynomial into a polynomial
in internal sparse multivariate form (see Section 6.27.2 p.346 and
Section 6.27.6 p.349).

* parfrac (or partfrac or fullparfrac), to convert a ra-
tional function into its partial fraction decomposition (see Sec-
tion 6.32.9 p.410).

* interval, to convert an expression which evaluates to a number
into an interval (see Section 6.38.8 p.445).

* 1ist (or no argument), to convert a polynomial in internal sparse
multivariate format (see Section 6.27.2 p.346) into a list.

* unit, a unit, to convert a unit object to a new compatible unit (see
Section 11.1.4 p.846).

The values of option that require a third argument:

* contfrac, to convert a number into a continued fraction. (See
Section 6.7.7 p.163.) The third argument will be the name of a
variable to store the continued fraction into (which must be quoted
the variable was assigned).

* base, to convert a number into a different base (beginning with
the units digit). If expr is a number, then the third argument will
be base to convert to (see Section 6.4.2 p.132), if expr is a list of
numbers, then the third argument will be the base to convert from
(and expr will be a list of the digits in this base, starting with the
units digit).

Finally, if expr is an expression with units (see Section 11.1.1 p.843),

then option can be new units to convert to (see Section 11.1.4 p.846).

e convert (exproption[,extraop]) returns the expression with the requested
conversions done.
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Examples.

e Input:
convert (1.2, confrac,’fc’)

Output:
[1,5]

and fc contains the continued fraction equal to 1.2.

e Input:
convert (123, base, 10)
Output:
(3,2,1]
e [nput:
convert ([3,2,1],base, 10)
Output:
123
e Input:
convert (1000_g,_kqg)
Output:

1.0 kg

6.24 Exponentials and Logarithms

6.24.1 Rewriting hyperbolic functions as exponentials: hyp2exp

The hyperbolic functions are typically defined in terms of exponential functions;
the hyp2exp command converts hyperbolic functions into their exponential forms.

e hyp2exp takes one argument:
expr, an expression.

e hyp2exp (expr) rewrites each hyperbolic function in expr with exponen-
tials (as a rational function of one exponential, i.e. WITHOUT linearization).

Example.
Input:
hyp2exp (sinh (x))
Output:
et — L
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6.24.2 Expanding exponentials: expexpand

The exponential function applied to a sum can be converted into a product of ex-

ponentials; namely,
"V = e%e?

The expexpand command does this conversion. (For expansions with other
bases, see Section 6.24.6 p.323.)

e expexpand takes one argument:
expr, an expression.

e expexpand (expr) returns the expression expr with exponentials (base e)
of sums rewritten as products of exponentials.

Example.
Input:

expexpand (exp (3*x) texp (2*x+2) )
Output:
(e:p)S + (ex)2 82
6.24.3 Expanding logarithms: 1nexpand

The logarithm applied to a product can be converted into a sum of logarithms;
namely,

log(z - y) = log(z) + log(y)

The 1nexpand command does this expansion.

e Inexpand takes one argument:
expr, an expression.

e lnexpand (expr) returns the expression expr with logarithms of products
rewritten as sums of logarithms.

Example.
Input:

Inexpand (1n (3*xx"2)+1n (2xx+2))
Output:
In(3)+2In|z|+In(2)+In(zx+1)
6.24.4 Linearizing exponentials: 1in

The 1in command will linearize expressions involving exponentials; namely, it
will replace products of exponentials by exponentials of sums. It will first replace
any hyperbolic functions by exponentials.

e 11in takes one argument:
expr, an expression.
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e 1in (expr) returns the linearized version of expr.

Examples.
e [nput:
lin(sinh(x) "2)
Output:
er 1 N e72x
2 4
e Input:
lin((exp(x)+1)"3)
Output:

e3% 4+ 362" 4 3e% + 1

6.24.5 Collecting logarithms: 1ncollect

The 1ncollect command collects the logarithm in an expression; namely, it
rewrites sums of logarithms as the logarithm of a product.

e 1ncollect takes one argument:
expr, an expression.

e Incollect (expr) returns expr with the logarithms collected.

It may be a good idea to factor the expression with factor before collecting by
lncollect).

Examples.
e [nput:
lncollect (In(x+1)+1n(x-1))
Output:
In((z+1)(z—-1))
o Input:
Incollect (exp (1ln(x+1)+1n(x-1)))
Output:
(x+1)(z—-1)
Warning!!!

For Xcas, 1og is the natural logarithm, the same as 1n; for the base 10 logarithm,
use 1oglo0.
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6.24.6 Expanding powers: powexpand

The powexpand command rewrites a power of a sum as a product of powers; it
is expexpand (see Section 6.24.2 p.321) with bases other than e.

e powexpand takes one argument:
expr, an expression.

e powexpand (expr) returns expr with powers of sums replaced by sums of
powers.

Example.
Input:

powexpand (a” (x+y) )

Output:

a®a¥

6.24.7 Rewriting a power as an exponential: pow2exp

Powers with arbitrary (positive) bases are often defined in terms of exponentials

with base e with
x z1n(a)

a*=e
The pow2exp rewrites powers to exponentials.

e pow2exp takes one argument:
expr, an exponential.

e pow2exp (expr) returns expr with any powers replaced by their correspond-
ing exponential.

Example.
Input:

pow2exp (a” (x+y))
Output:
e(w-‘,—y) Ina
6.24.8 Rewriting exp(n*In(x)) as a power: exp2pow
The exp2pow command is the inverse of pow2exp (see Section 6.24.7 p.323).

e exp2pow takes one argument:
expr, an expression.

e exp2pow (expr) rewrites any subexpressions of expr of the form exp(n *
In(z)) as "

Example.
Input:
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exp2pow (exp (nx1n(x)))

Output:

xn

Note the difference with 1ncollect:

Incollect (exp (n*ln(x))

) exp (n+xlog(x))
Incollect (exp (2*x1n(x)))

exp (2+log(x))

exp2pow (exp (2+1n (x))) x"2
but
Incollect (exp(ln(x)+1ln(x))) = x"2
exp2pow (exp (1ln (x)+1n(x))) = x~ (1+1)

6.24.9 Simplifying complex exponentials: tsimplify

The t simplify command simplifies transcendental expressions by rewriting the
expression with complex exponentials. It is a good idea to try other simplification
instructions and call t simpli fy if they do not work.

e tsimplify takes one argument:
expr, an expression.

e tsimplify (expr) returns a (possibly) simplified version of expr.

Example.
Input:

tsimplify ((sin(7+x)+sin(3*x))/sin(5*x))

Output:
(eix) 41

(e

6.25 Rewriting transcendental and trigonometric expres-
sions

6.25.1 Expanding transcendental and trigonometric expressions: texpand
tExpand

The texpand command expands exponential and trigonometric functions, like
simultaneous calling:

expexpand (see Section 6.24.2 p.321), which, for example, expands exp(nz) as
exp(z)",

lnexpand (see Section 6.24.3 p.321), which, for example, expands In(z") as
nln(z) , and

trigexpand (see Section 6.23.1 p.305), which, for example, expands sin(2z) as
2sin(x) cos(z).

tExpand is a synonym for texpand.
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e texpand takes one argument:
expr, an expression containing transcendental or trigonometric functions.

e texpand (expr) expands these functions.

Examples.

e Expand cos(z + y).
Input:

texpand (cos (xty) )

Output:
COST - cosy — sinx - siny

e Expand cos(3z).

Input:
texpand (cos (3xx))
Output:
4cos®x —3cosx
e Expand sin(3 * 1;) + sin(7 * 33)
sin(5 * )
Input:
texpand ((sin (3*x)+sin(7+x)) /sin (5%x))
Output:
B 2sinz n 28sinx - cos? x B
(16cos*z —12cos?x + 1)sinz (16 cos*z — 12cos?x + 1) sinx
80sinx - cos? x 64 sin x - cos® x

(16 cos* x — 12cos? x + 1) sinx + (16 cos* x — 12cos? x + 1) sinx
Output, after a simplification with normal (ans () ):

4cos’x — 2

e Expand exp(z + ).
Input:

texpand (exp (x+y) )

Output:

e’eY

e Expand In(z x y).
Input:
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texpand (log (x*y))

Output:
Iny+Inx
e Expand In(z").
Input:
texpand (ln(x"n))
Output:

nlnzx

e Expand In((e?) + exp(2 * In(2)) + exp(In(3) + In(2))).
Input:

texpand (log(e”2) +texp (2%1log(2) ) +texp (log (3)+1log(2)))

Output:
6+2-3
or input:
texpand (log(e”2) +texp (2x1log(2)))+
Incollect (exp (log(3)+log(2)))
Output:

12

e Expand exp(z + y) + cos(z + y) + In(3z?).
Input:

texpand (exp (x+y) +cos (x+y) +1n (3*xx"2))

Output:

cosx -cosy —sinx - siny + e”e’ +1n(3) + 21n|z|

6.25.2 Combining terms of the same type: combine
The combine command joins subexpressions of various types.
e combine takes two arguments:

— expr, an expression.

— function, the name of a function or class of functions. function can be
one of exp, 1og, 1n, sin, cos,or trig.

e combine (exprfunction) returns the expression with subexpressions corre-
sponding to the second argument combined.

The combine command can duplicate the effect of other commands.
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e combine (expr, 1n) or combine (expr, log) gives the same result as
Incollect (expr) (see Section 6.24.5 p.322).

e combine (expr,trig) or combine (expr, sin) or combine (expr,cos)
gives the same result as tcollect (expr) (see Section 6.23.4 p.308).

Examples.

o Input:

combine (exp (x) *exp (y) tsin (x) xcos (x) +1n(x) +1n(y), exp)

Output:

cosz-sinz + Inz + Iny + e* 1Y

o Input:

combine (exp (x) *exp (y) +sin (x) xcos (x) t1ln(x)+1ln(y),trig)

or:

combine (exp (x) *exp (y) +sin (x) *cos (x) +1n(x)+1n(y), sin)

or:

combine (exp (x) *exp (y) +sin (x) *cos (x) +1ln(x)+1n(y), cos)
Output:

sin (2z)

ey +Inz+Iny + 5

o Input:

combine (exp (x) *exp (y) +sin (x) xcos (x) +1n(x) +1n(y), 1n)

or:

combine (exp (x) xexp (y) tsin (x) *cos (x) +1ln(x)+1n(y), 1og)

Output:
cosz -sinz + e“e’ 4 In (vy)
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6.26 Fourier transformation

6.26.1 Fourier coefficients: fourier anand fourier bnor fourier cn

Let f be a T-periodic continuous function on R except perhaps at a finite number
of points. One can prove that if f is continuous at x, then;

a = 2mnx 2mnx
0 .
f(z) = 5 —1—;%(:05( T ) + by, sin( T )
—+00
2imTnx
= Cnp€ T
n=—oo

where the coefficients a,,, b,,n € N, (or ¢, n € Z) are the Fourier coefficients of
f. The fourier_an and fourier_bn or fourier_cn commands compute
these coefficients.

fourier an

e fourier_an takes four mandatory and one optional argument:

expr, an expression depending on a variable.
x, the name of this variable.

T, the period.

n, a non-negative integer.

Optionally, a a real number (by default a = 0).

e fourier_an (expr,x,T,n(,a)) returns the Fourier coefficient a,, of a
function f of variable z defined on [a,a + T') by f(x) =expr and such that
f is periodic with period 7:

2mnx

an = ;/{:HT f(z) cos( T )dx

To simplify the computations, you should input assume (n, integer) (see Sec-
tion 5.4.8 p.104) before calling fourier_an with an unspecified n to specify that
it is an integer.

Example.

Let the function f, with period T' = 2, be defined on [—1,1) by f(z) = 22.

Input (to have the coefficient agp):

fourier_an(x"2,x,2,0,-1)

Output:
1

3
Input (to have the coefficient a, (n # 0)):

assume (n, integer)
fourier_an(x"2,x,2,n,-1)
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Output:
4(-1)"
n2m2
fourier_bn

e fourier_bn takes four mandatory and one optional argument:

expr, and expression depending on a variable.

x, the name of this variable.

T, the period.

n, an integer.

Optionally, a a real number (by default a = 0).

e fourier_bn (expr,z,T,n(,a)) returns the Fourier coefficient b, of a
function f of variable x defined on [a,a + T') by f(x) =expr and such that
f is periodic with period T

2 a+T )
by, = T/a f(z) sin( ?x)dm

To simplify the computations, you should input assume (n, integer) (see Sec-
tion 5.4.8 p.104) before calling fourier_bn to specify that n is an integer.

Examples.

e Let the function f, with period T' = 2, defined on [-1, 1) by f(z) = 2.
Input (to get the coefficient by, (n #£ 0)):

assume (n, integer)
fourier_bn(x"2,x,2,n,-1)

Output:

e Let the function f, with period T' = 2, defined on [—1, 1) by f(z) = 3.
Input (to get the coefficient by):

fourier_bn(x"3,x,2,1,-1)

Output:
22 — 12
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fourier cn

e fourier_cn takes four mandatory and one optional argument:

expr, and expression depending on a variable.

x, the name of this variable.

T, the period.

n, an integer.

Optionally, a a real number (by default a = 0).

e fourier_cn (expr,z,T,n(,a)) returns the Fourier coefficient ¢,, of a
function f of variable x defined on [a,a + T') by f(x) =expr and such that
f is periodic with period 7":

1 a+T —2imtnx
Cn:T/a f@)e T dx

To simplify the computations, you should input assume (n, integer) (see Sec-
tion 5.4.8 p.104) before calling fourier_cn to specify that n is an integer.

Examples.

e Find the Fourier coefficients ¢, of the periodic function f of period 2 and
defined on [—1,1) by f(z) = 22.
Input (to get cg):

fourier_cn(x"2,x,2,0,-1)

Output:

Input (to get cy,):

assume (n, integer)
fourier_cn(x"2,x%x,2,n,-1)

Output:

e Find the Fourier coefficients ¢, of the periodic function f, of period 2, and
defined on [0, 2) by f(z) = 2.
Input (to have cg):

fourier_cn(x"2,x,2,0)

Output:

Lol W~

Input (to get cy,):
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assume (n, integer)
fourier_cn(x"2,x,2,n)

Output:
- 2in + 2

n2m?

e Find the Fourier coefficients c¢,, of the periodic function f of period 27 and
defined on [0, 27) by f(z) = 22.

Input:
assume (n, integer)
fourier_cn(x"2,x,2*pi,n)
Output:
- 2in+ 2
n2

You must also compute c,, for n = 0: Input:

fourier_cn(x"2,x,2*pi, 0)

Output:
"
Hence forn =0, ¢y = 43772
Remarks.

e Input purge (n) (see Section 5.4.9 p.107) to remove the hypothesis done
on n.

e Input about (n) or assume (n), to know the hypothesis done on the vari-
able n.

6.26.2 Continuous Fourier Transform: fourier ifourier addtable

The Fourier transform of a function f is defined by
+oo
F(s) = / e %7 f(z)dz, seR. (6.5)
—00
The fourier command computes the Fourier transform.

e fourier takes one mandatory argument and two optional arguments:

— expr, an expression which defines a function f(x) =expr.
— Optionally, z, the variable for f (by default x).

— Optionally, s, the variable for the Fourier transform (by default x).
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e fourier (expr(,z,s)) returns the Fourier transform F'(s). If s is not given,
then = will be used.

The inverse Fourier transform, as its name implies, takes a Fourier transform
F(x) and returns the original function f(z). It is given by:

I
flz) = P /Oo e'** F(s)ds. (6.6)
The ifourier command computes the inverse Fourier transform.

e ifourier takes one mandatory argument and two optional arguments:

— expr, an expression which defines a function F'(x) =expr.
— Optionally, x, the variable for F' (by default x).
— Optionally, X, the variable for the original function f (by default x).

e ifourier (expr(,z,X)) returns the inverse Fourier transform f(X). If
X is not given, then x will be used.

Note the similarity between the definitions of the Fourier transform (equation
(6.5)) and its inverse (equation (6.6)). To compute the inverse transformation of
F'(s), it is enough to compute the Fourier transform with function % and using
the variables s and z instead of x and s, and replacing « with —z in the result.

Arbitrary rational functions can be transformed.

Examples.

e Find the Fourier transform of f(2) = s—.730°

Input:
F:=fourler (x/(x"3-19x+30),x,s)
Output:
1 : . .
%ﬂsign (s) (16ie™ % — 21ie™ % + 5ie”'s)
Input:
ifourier (F, s, x)
Output:
x
3 — 192 + 30
e Find the transform of f(z) = i;ﬂ
Input:
F:=fourler ((x"2+1)/(x"2-1),%,s)
Output:

27 (6 (s) — sign (s) sin s)
Input:
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Output:

ifourier (F, s, x)

2 +1
x?2 -1

A range of other (generalized) functions and distributions can be transformed,
as demonstrated in the following examples. If fourier does not know how to
transform a function, it returns the unevaluated integral (6.5). In these cases you
may try to evaluate the result using eval.

Examples.

e Input:

Output:

o Input:

Output:

o Input:

Output:

o Input:

Output:

o Input:

Output:

fourier (3x"2+2x+1,x,8)

21 (6 (s) +2i6(s,1) =30 (s,2))

fourier (Dirac(x-1)+Dirac (x+1),x,s)

2cos s

fourier (exp (-2xabs (x-1)),x,s)

4e—is
s2+4

fourier (atan(1l/(2x°2)),x,s)

sl

2me” 2 sin (%)
s

2+«pi*sin(s/2)xexp(—-abs(s)/2)/s

fourier (BesselJ (3,x),x,5s)

s (4s* — 3) (—isign (s + 1) + isign (s — 1))
Y +1
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o [nput:
F:=fourier (sin(x)*sign(x),x,s)
Output:
2
s2—1
Input:
ifourier (F, s, x)
Output:
sign (x) sin
o [nput:
fourier (log(abs(x)),x,s)
Output:
T (296(s)|s| +1)
|s|
o [nput:
fourier (rect (x), x,s)
Output:
2sin (%)
S
o [nput:
fourier (exp (—abs (x))xsinc (x),x,s)
Output:
arctan (s + 1) — arctan (s — 1)
e Input:
fourier (1/sqgrt (abs (x)), x,s)
Output:
V2T
|s|
e Input:

F:=fourier (l/cosh(2x),x,s)
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Output:
s
e*iﬂ's +e%ﬂ-s
Input:
ifourier (F, s, x)
Output:
2
e*2$ + 62:):
o Input:
fourier (Airy_Ai (x/2),x,s)
Output:
231
o Input:
F:=fouriler (Gamma (1+i*x/3),x,s)
Output:
67Te_(38+e_3s)
Input:
ifourier (F, s, x)
Output:
1
I'i-iz+1
e Input:
F:=fourler (atan(x/4)/x,%x,s)
Output:
mugamma (0,4 |s|)
Input:
ifourier (F, s, x)
Output:
anﬁan(%)
x
o [nput:

assume (a>0)
fourier (exp (-axx"2+b), x,s)
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Output:
S2
Vay/me 1 +h

a

The Fourier transform behaves nicely when combined with convolutions. Re-
call the convolution (see Section 15.2.8 p.1150) of two functions f and g is

(e = [ 1ot

If F(f) represents the Fourier transform of a function f, then the convolution
theorem states

F(fxg)=F(f) F(g)

Example.
In this example, the convolution theorem will be used to compute the convolution
of f(z) = e~ 1"l with itself.

Input:
F:=fourier (exp (-abs(x)),x,s)
Output:
2
s24+1
Input:
ifourier(F"2, s, xX)

Output:

—20(—x)e® + 20 (x)e™® +e I
The above result is the desired convolution (f * f)(x) = fj;o f@) fx—1t)de.

Piecewise functions can be transformed if defined as

piecewise (z < ay, f1,T < ag, fo,..., T < ay, fn, fo)
for appropriate functions fy, ..., f, and a1, as, ..., a, are real numbers such that
a; < az < --- < an. Inequalities may be strict or non-strict.
Example.
Input:

f:=piecewise (x<=-1,exp(x+1),x<=1,1,exp (2-2x))
F:=fourier (f, x, s)

Output:
3scoss —issins +4sin s

s(s—2i)(s+1)

You can obtain the original function f from the above result by applying i fourier.
Input:

ifourier (F, s, x)
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Output:
0(—z -1 e +0(x+1)+0(x—1)e > —0(x—1)

You can verify that the above expression is equal to f(z) by plotting them.

Some algebraic transformations of a function behave predictably under the
Fourier transform. For example, if g(x) = f(z—a), then F(g)(s) = e 2™ F(f)(s).
The addtable command lets you assign a function name to the Fourier (or
Laplace, see Section 6.57.2 p.628) transform of another function name, without
specifying the either function. This allows you to alter the original function and
see the effect on the Fourier (or Laplace) transform.

e addtable takes five arguments:

— transform, which canbe fourier or laplace and indicates the type
of transform.

— f(x), where f is a symbol representing an unspecified function of the
variable .

— F(s), where F'is a symbol representing the transform of f and s is the
new variable.

— z, the variable used by f.

— s, the variable used by F.
e addtable (transform, f(z), F(s),z,s) returns 1 if F' is assigned as the
transform of f, and O otherwise. In the case that F' is assigned as the trans-

form of f, then the transform (fourier or laplace) of manipulations of
f will be returned in terms of F' and conversely.

Examples.
o [nput:
addtable (fourier,y(x),Y(s),x,s)
Output:
1
Input:
fourier (y (a*x+b), x,s)
Output:
ibs
ee Y (3)
|al
Input:
fourier (Y (x),x,s)
Output:

21y (—s)
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o [nput:
addtable (fourier,g(x,t),G(s,t),x,s)
Output:
1
Input:
fourier(g(x/2,3*t),x,s)
Output:

2G (2s, 3t)

Fourier transforms can be used for solving linear differential equations with
constant coefficients. For example, to obtain a particular solution to the equation

y(x) +4yW () = b(x),

where ¢ is the Dirac delta function, you can first transform both sides of the above
equation.
Input:

L:=fourier(y(x)+4xdiff(y(x),x,4),%x,s); R:=fourier (Dirac(x),x,s)

Output:
4s'Y (s) + Y (s),1

Then you can solve the equation L = R for Y (s). Generally, you should apply
csolve instead of solve.

Input:
sol:=csolve (L=R, Y (s)) [0]
Output:
1
4s* +1
Finally, you can apply i fourier to obtain y(z).
Input:
ifourier (sol, s, xX)

Output:

The above solution can be combined with solutions of the corresponding homoge-
neous equation to obtain the general solution.
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6.26.3 Discrete Fourier Transform and the Fast Fourier Transform

For any integer IV, the Discrete Fourier Transform (DFT) is a transformation Fiy
defined on the set of periodic sequences of period NNV; it depends on a choice of
a primitive N-th root of unity wy. For sequences with complex coefficients, we
take: .

WN = N
If x is a periodic sequence of period IV, defined by the vector x = [z¢, z1,...xN_1]
then Fiy(x) = y is a periodic sequence of period NV, defined by:

N-1
(Fn(@)p =ye = Y wjwy?,
j=0

fork=0..N — 1.
The Discrete Fourier Transform Fly is bijective with inverse
1

F&l = NFN#UN on C

i.e.:
(Filn @), = 3 3 2’
N,wn T ko N <4 TjWn

J

=

I
<)

The Fast Fourier Transform (FFT) is an efficient way to compute the discrete
Fourier transform; faster than computing each term individually. Xcas implements
the FFT algorithm to compute the discrete Fourier transform when the period of
the sequence is a power of 2.

The £ft command computes the discrete Fourier transform.

e fft takes one argument:
x, a list or sequence regarded as one period of a periodic sequence.

e fft (x) returns F(x), the discrete Fourier transform of x.
If = has length which is a power of 2, then Fiy(z) is computed with the Fast
Fourier Transform.

The ifft command computes the inverse discrete Fourier transform.

e ifft takes one argument:
x, a list or sequence regarded as one period of a periodic sequence.

e ifft (x) returns FJQI (x), the inverse discrete Fourier transform of .
If  has length which is a power of 2, then F&l (x) is computed with the Fast
Fourier Transform.

Examples.

o Input:

£fft(0,1,1,0)
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Output:
[2.0,—1.0 —1,0.0, —1.0 + i
o [nput:
ifft([2,-1-1,0,-1+1])
Output:

0.0, 1.0, 1.0, 0.0]

The properties of the Discrete Fourier Transform
Definitions. Let = and y be two periodic sequences of period V.

e The Hadamard product (notation -) is defined by:
(- Y)y = Tk

e the convolution product (notation *) is defined by:

N—

(@*y) = Y wiyhj

[y

<

Properties.
1
Fxen) = () Pv@ s Fv
Fn(zxy) = Fn(z) Fn(y)
Applications

1. Value of a polynomial
Define a polynomial P(z) = Z;V: Bl cjx? by the vector of its coefficients
¢ = [ep, 1, ..cn—1], where zeroes may be added so that N is a power of 2
(so the Fast Fourier Transform can be used).

e Compute the values of P(x) at

—2ikm
N

x:ak:w;,k:exp( ), k=0.N-1

This is just the discrete Fourier transform of ¢ since

N-1
Plag) = > ¢j(wif) = Fn(o)
§=0
Example.
Find the values of P(z + z2) atx = 1,4, —1, —i.
Input:

P(x) :=x+x"2
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Here the coefficients of P are [0,1,1,0], N = 4 and w = exp(2in/4) =
7.
Input:

£ft£([0,1,1,0])
Output:
[2.0,—-1.0 —1,0.0,—1.0 + i
Hence:
- P(1)=2,

e Compute the values of P(z) at

2k
N

x = by = wh = exp( ), k=0.N-1

This is /N times the inverse fourier transform of ¢ since

N-1

P(ar) = Y ¢j(wh) = NFy' (o)
§=0
Example.
Use this method to find the values of P(z + a:2) atx = 1,1, —1,—1.
Input:

P(xX) :=x+x"2

Again, the coefficients of P are [0,1,1,0], N = 4andw = exp(2in/4) =
7.

Input:
4xifft ([0,1,1,0])
Output:
[2.0,—1.0 +1,0.0,—1.0 — i

Hence

- P(1) =2,

- P(i) = P(w') = -1 +1,

- P(—i) = P(w?) = -1 —i.

You find of course the same values as above.

2. Trigonometric interpolation
Let f be periodic function of period 27 and let f, = f(2kn/N) for k =



340

CHAPTER 6. THE CAS FUNCTIONS

0..(V — 1). Find a trigonometric polynomial p that interpolates f at xj; =
2km /N, that is find p;, j = 0..N — 1 such that

Zp]aﬂ p(zk) = fi

Replacing zj, by its value in p(z) we get:

N-1

j2km
3 pjexp(i’ ~ ) = fr
7=0

In other words, ( fx) is the inverse DFT of (py), hence

(k) =~ Fx( ()

If the function f is real, p_; = pj,, hence depending whether N is even or
odd:

¥
p(x) = po + 2R prexp(ika)) + R(ps expli L))
k=0

if N is even and

‘2
|

p(x) =po+2R( >  prexp(ikz))

?
o

if N is odd.

. Fourier series

Let f be a periodic function of period 27 and let y;, = f(x) where xp =
for k = 0..N — 1. Suppose that the Fourier series of f converges to f
(this will be the case if for example f is continuous). If IV is large, a good
approximation of f will be given by:

Z cn exp(inx)

ﬂ§<

2km
N

N4

Hence we want a numeric approximation of

1 s
Cn = f(t)exp(—int)dt

o
The numeric value of the integral fo ™ f(t) exp(—int)dt can be computed by
the trapezoidal rule (note that the Romberg algorithm would not work here
because the Euler Mac Laurin development has its coefficients equal to zero,
since the integrated function is periodic, hence all its derivatives have the
same value at 0 and at 2m). If ¢, is the numeric value of ¢,, obtained by the
trapezoidal rule, then

1 27 Nl exp(— 2,nk:7r) N
L < Jemy o N
or N 2 IkXP N2

Cp —

<n< N
n< —
- 2

k=0
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Indeed, since x; = 2k /N and f(xp) = yx:

Fler)exp(—ina) = yrexp(~2i"\),
FO)exp(0) = Fm) exp(~2"2") = v =
Hence:
[¢o, CN_15CN 4, LCN—1) = %FN([yanl o yN-1])
since

o ifn>0,¢, =1y,
o ifn <0¢, =yYnyN

o wy =exp(3F), sowl = Wit

Properties.

e The coefficients of the trigonometric polynomial that interpolates f at
x = 2km/N are

e If f is a trigonometric polynomial of degree m < &, then

m—1

ft) = Z ck exp(2ikmt)

k=—m
the trigonometric polynomial that interpolates f is f itself, the numeric
approximation of the coefficients are in fact exact (¢,, = ¢y).

e More generally, you can compute ¢, — ¢,.
Suppose that f is equal to its Fourier series, i.e. that:

+o00 +oo
ft) = Z cm exp(2immt), Z lem| < oo
m=—o0 m=—o00
Then:
+00 N-1
2k - 1 _
f(:z:k) = f(W) =YL = Z mejk\fma Cp = N ykkan
m=—0oo k=0

If m # n (mod N), wy " is an N-th root of unity different from 1,

hence:
N—1

w](vmfn)N —1, Z w](\r[nfn)k -0
k=0



342 CHAPTER 6. THE CAS FUNCTIONS

Therefore, if m—n is a multiple of N (m = n+I-NN) then Ziv:_ol w]’i,(m_n) =
N, otherwise ) | 2501 w?v(mfn) = (. By reversing the two sums, you get
1 +o0o N-1
~ k(m—
o=y 2wy wn
m=—00 k=0
+o00o
- 2: E(n+1-N)

l=—00
= ...Chp—2.Nt+tCh—N+Cp+CnyN +Cpga N+ ...

Conclusion: if |n| < N/2, then ¢, — ¢, is a sum of ¢; with large indices
(at least N/2 in absolute value), hence is small (depending on the rate
of convergence of the Fourier series).

Example.
Input:
f(t) :=cos(t)+tcos (2*t)
x:=f (2xk+pi/8)$ (k=0..7)
Output:
2 2
g V2 | V24 V2 V2
2 2 2 2
Input:
fft (x)
Output:

[0.0,4.0,4.0,0.0,0.0,0.0,4.0, 4.0]
Dividing by N = 8, you get

Cco — 0, Cl1 — 0.5, Cy) — 0.5,03 = 0.0,
C_yq4 = 0.0, C_3 = 0.0, C_o = 0.5, =c_1=0.5

Hence b, = 0 and ay, = c_ + ¢ equals 1 for £k = 1,2 and O otherwise.

4. Convolution Product
If P(z) = Z}:& ajz’ and Q(x) = Z;”:_Ul bjx’ are given by the vectors
of their coefficients a = [ag, a1, ..a,—1] and b = [bg, b1, ..by—1], you can
compute the product of these two polynomials using the DFT. The product
of polynomials is the convolution product of the periodic sequence of their
coefficients if the period is greater or equal to (n + m). Therefore we com-
plete a (resp. b) with m + p (resp. n + p) zeros, where p is chosen such
that N = n + m + p is a power of 2. If a = [ag,a1,..ay,—1,0..0] and
b= [b(), bl, --bm—h 0..0], then:
n+m—1
P@)Q(x)= Y (axb)a!
j=0
If you know Fy(a) and Fy(b), then a * b = Fy' (Fy(a) - Fx(b)), since

Fn(z*y)=Fy(z) - Fn(y)
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6.26.4 An exercise with £ft

Given temperatures 7" at time ¢, in degrees Celcius:

t| 0 3 6 9 12 15 19 21
T|11 10 17 24 32 26 23 19

What was the temperature at 13h45 ?
Here N = 8 = 2 * m. The interpolation polynomial is

1 mkt
p(t) = §p,m(exp( 2Zﬂ) + exp( 2@— Z Dk €Xp 2@—)
k=—m+1
and
N-1
1 k
=N Z Tk exp(Qi%)
k=j
Input:
q:=1/8+«fft([11,10,17,24,32,26,23,191])
Output:
[20.257 —4.48115530061 + 1.722271824131, 0.375 + 0.875i,
— 0.768844699385 + 0.222271824132,1, 0.5,
— 0.768844699385 — 0.222271824132, i,
0.375 — 0.875i, —4.48115530061 — 1.722271824131}
hence:
® Do = 20.25

o p; = —4.48115530061 + 1.72227182413:¢ = p_q,

p3 = —0.768844699385 + 0.222271824132i = p—3,
o pi=05
Indeed
1 1
q=1q0,..qnv—1] = [po, ..pgil,pig,..,pfl] = NFN([yO, ~YN-1]) = ﬁfft(Y)

Input:

Here, p;, = pplk + 4] for k = —4...3. It remains to compute the value of the
interpolation polynomial at point t0 = 13.75 = 55/4.
Input:
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t0 () :=exp (2*«i*xpi* (13+3/4)/24%7)
TO:=1/2+pp[0]* (£0 (4)+t0(-4))+sum(ppl[i+4]1+t0(j), 3, -3,3)
evalf (re(TO0))

Output:
29.4863181684

The temperature is predicted to be equal to 29.49 degrees Celsius.

Remark.
Using the Lagrange interpolation polynomial (the polynomial is not periodic):
Input:

11:=[0,3,6,9,12,15,18,21]
12:=[11,10,17,24,32,26,23,19]

subst (lagrange (11,12,13+3/4) ,x=13+3/4)
evalf (ans ())

Output:
30.1144061688

6.27 Polynomials

6.27.1 Polynomials of a single variable: poly1l

A polynomial of one variable is represented either by a symbolic expression or by
the list of its coefficients in decreasing powers order (dense representation). In the
latter case, to avoid confusion with other kinds of lists:

e polyl[...] isused as delimiters for inputs and for text form output.
e [...]isused for Xcas output.

Note that polynomials represented as lists of coefficients are always written in de-
creasing powers order even if increasing power is checked in cas configu-
ration (see Section 3.5.7 p.72).

6.27.2 Polynomials of several variables: $%$%{ %%%}
A polynomial of several variables can be represented in different ways:
e by a symbolic expression.

e by a dense recursive 1-d representation like above.

e by a sum of monomials with non-zero coefficients (distributed sparse repre-
sentation).
A monomial with several variables is represented by a coefficient and a list of
integers (interpreted as powers of a variable list). The delimiters for mono-
mials are $%$%{ and $%%}.
For example 3z2y is represented by $%%{3, [2,1]%%%} with respect to
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the variable list [x, y]), and 223y?2—5x 2 is represented by $$% {2, [3,2,1]1%%%}
-%%%{5,11,0,1]1%%%} with respect to the variable list [x, v, z].

For a sparse representation, a single variable polynomial can be regarded as

a multivariate polynomial with one variable.

6.27.3 Apply a function to the internal sparse format of a polynomial:
map

The map command can apply a function to the coefficients of a polynomial written
in internal sparse format. (See Section 6.40.28 p.477 for other uses of map.)

e map takes two arguments:

— P, a polynomial of k variables in internal sparse format.

— f, afunction of k + 1 variables.

e map (P, f) applies f to the coefficients of P; namely, it returns a polyno-

mial which replaces each term $%%{a, [n1,...,nt] %%%}in Pby $%%{ f(a,n1,...,nk), [n1,...

0. 0 0O
$%%}

Example.
Input:

map ($%%{2, [2,1]1%%%} + %%%(3, [1,4]%%%}, (a,b,c)—>axbxc)

%%%{4, (2, 1|%%%} + %%%{12, [1, 4] % %%}

6.27.4 Converting to a symbolic polynomial: r2e poly2symb

The r2e command converts lists into symbolic polynomials.
poly2symb is a synonym for r2e here.
For one-variable polynomials:

e r2e takes one mandatory argument and one optional argument:

— L, alist of coefficients of a polynomial (in decreasing order),

— x, a symbolic variable name (by default x).

e r2e (L (,x)) returns the corresponding polynomial with the given variable.

Example:
Input:
r2e([1,0,-17,x)
or:
r2e([1,0,-17)
or:

poly2symb([1,0,-171,x)
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Output:
zx —1

For sparse multivariate polynomials:

e r2e takes two arguments:

o\°

— S, asum of monomials of the form $%% {coeff, [nl,...nk] %%

}

— vars, a vector of symbolic variables.

e r2e (S (,vars)) returns the corresponding polynomial as an expression with
the given variables

Examples:

o Input:

poly2symb (%$%%{1, [2]%%%}+%%%{-1, [0]1%%%}, [x])

or:
r2e (%%%{1, [2]1%%%}+%%%{-1, [0]1%%%}, [x])
Output
22 —1
e Input

r2e(%$%%{1, [2,0]1%%%}+%%%{-1, [1,1]1%%%}+%%%{2,[0,1]1%%%}, [x,¥])

or:

poly2symb ($%%{1, [2,0]%%%}+%%%{-1, [1,1]1%%%}+%%%{2,[0,1]1%%%},[x,v])

Output:
2 —xy + 2y

6.27.5 Converting from a symbolic polynomial: e2r symb2poly

The e2r command converts a symbolic polynomial into a list (for single variable
polynomials) or a sum of monomials.
symb2poly is a synonym for e2r.

e e2r takes two arguments:

— P, a symbolic polynomial.

— vars, the variable name (for one variable polynomials) or a list of vari-
able names (for multivariable polynomials).
For one variable polynomials, this is optional and defaults to x.
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e e2r (P {(,vars)) returns:
the representation of the polynomial as a list of coefficients written in de-
creasing order, if vars is a variable name.
a sum of monomials (sparse representation of multivariate polynomials) if
vars is a list.

Examples:
o Input:
e2r (x"2-1)
or:
symb2poly (x"2-1)
or:
symb2poly (y"2-1,v)
or:
e2r(y"2-1,y)
Output:
]1,0,—1]
o Input:
e2r (x"2-xxy+y, [x,v])
or:
symb2poly (x"2-xxy+2*y, [X,y])
Output:

$%%(1, [2,01%%%)+%%% (-1, [1,11%%%)+%%%{2, [0,1]1%5%)

6.27.6 Transforming a polynomial in internal format into a list, and
conversely: convert

The convert command does many conversions (see Section 6.23.26 p.318). Among
other things, it can convert between a polynomial in internal sparse multivariate
format and a list representing the polynomial.

To convert from a polynomial in internal sparse multivariate format to a list:

e convert takes one mandatory argument and one optional argument:

— P, apolynomial written in internal sparse multivariate format (see Sec-
tion 6.27.2 p.340).
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— Optionally, 1ist.

e convert (P (, list)) returns a list representing the polynomial.

Example.
Input:

p:= symb2poly (x"2 - xx*xy + 2y, [x,vy])
Output:

$5%{1,[2,01%%%}+%%%{-1, [1,1]1%%%}+%%%{2, [0,1]1%%%}

Input:
l:= convert (p,list)
or:
1:= convert (p)

Output:

1 [2,0]

-1 [1,1]

2 [O, 1]

which is a list of the coefficients followed by a list of the variable powers.
To convert from a list representing a polynomial to the polynomial in internal
sparse multivariate format:

e convert takes two arguments:

— L, alist representing a polynomial.

— polynom.

e convert (L,polynom) returns the polynomial in internal sparse multi-
variate format (see Section 6.27.2 p.340).

Example.
Input (1 from above):

l:=([1,(2,0]],[-1,([1,20],102,[0,1]]]

Output:
1 [2,0]
-1 [1,1]
2 [0,1]
Input:
convert (1, polynom)
Output:

$%%{1,[2,01%%%}1+%%%{-1,[1,1]1%%%}+%%%{2,[0,1]1%%%}
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6.27.7 Coefficients of a polynomial: coeff coeffs

The coeff command finds the coefficients of a specific degree of a polynomial.
coeffsisasynonym for coeff.

e coeff takes two mandatory and one optional argument:

— P, the polynomial.
— vars, the name of the variable (or the list of the names of variables).

— Optionally, n, the degree (or the list of the degrees of the variables).

e coeff (Pvars (,n)) returns the nth degree coefficient of P, or if n is not
specified, the list of the coefficients of P, including O in the univariate dense
case and excluding O in the multivariate sparse case.

Examples.
o Input:
coeff (-x"4+3xx*xy " 2+x%x,%x,1)
Output:
3y +1
o Input:
coeff (-x"4+3xxy"2+x,v,2)
Output:
3z
o Input:
coeff (-x"4+3xxy"2+x, [x,vy],[1,2])
Output:

6.27.8 Polynomial degree: degree

The degree command finds the degree of a polynomial.

e degree takes one argument:
P, a polynomial given by its symbolic representation or by the list of its

coefficients.

e degree (P) returns the degree of P (the highest degree of its non-zero
monomials).

Examples.

o Input:
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degree (x"3+x)

Output:
3
e [nput:
degree([1,0,1,0])
Output:

6.27.9 Polynomial valuation: valuation ldegree

The valuation of a polynomial is the lowest degree of its non-zero monomials. The
valuation command finds the valuation of a polynomal.
ldegree is a synonym for valuation.

e valuation takes one argument:
P, a polynomial given by a symbolic expression or by the list of its coeffi-
cients.

e valuation (P) returns the valuation of P.

Examples.
o Input:
valuation (x"3+x)
Output:
1
o Input:
valuation([1,0,1,01)
Output:

6.27.10 Leading coefficient of a polynomial: 1coeff

The 1coeff command finds the leading coefficient of a polynomial; that is, the
coefficient of the monomial of highest degree.

e lcoeff takes one mandatory argument and one optional argument:

— P, apolynomial given by a symbolic expression or by its list of coeffi-
cients.

— Optionally, x, a variable name (by default x).

e lcoeff (P (,x)) returns the leading coefficient of P.
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Examples.
o Input:
lcoeff ([2,1,-1,0])
Output:
2
o Input:
lcoeff (3*xx"2+5%x%, X)
Output:
3
o Input:
lcoeff (3xx"2+5+xxxy"2,vV)
Output:

5%

6.27.11 Trailing coefficient degree of a polynomial: tcoeff

The tcoeff command finds the trailing coefficient of a polynomial; that is, the
coefficient of the monomial of lowest degree.

e tcoeff takes one mandatory argument and one optional argument:

— P, a polynomial given by a symbolic expression or by its list of coeffi-
cients.
— Optionally z, a variable name (by default x).

e tcoeff (P (,x)) returns the trailing coefficient of P.

Examples.
o Input:
tcoeff ([2,1,-1,01)
Output:
—1
o Input:
tcoeff (3*x"2+5xx, xX)
Output:
)
o Input:
tcoeff (3*xx"2+5xx*y"2,V)
Output:

322
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6.27.12 Evaluating polynomials: peval polyEval

The peval command evaluates polynomials.
polyEval is a synonym for peval.

e peval takes two arguments:

— P, apolynomial given by the list of its coefficients.

— a, a real number.

e peval (P, a) returns the exact or numeric value of P(a), calculated using
Horner’s method.

Examples.
e [nput:
peval ([1,0,-11,sqrt(2))
Output:
V2v2 -1
then input:
normal (sqgrt (2) »sqrt (2) -1)
Output:
1
o I[nput:
peval ([1,0,-1],1.4)
Output:

0.96

6.27.13 Factoring 2" in a polynomial: factor_xn

The factor_xn command factors the largest power of the variable out of a poly-
nomial, writing it as the product of a monomial of largest degree and a rational
function having a non-zero finite limit at infinity.

e factor_xn takes one argument:
P, a polynomial.

e factor_xn (P) returns P written as the product of its monomial of largest
degree with a rational function having a non-zero finite limit at infinity.
Example.
Input:

factor_xn (—-x"4+3)

Output:
zt (—1 + 31:_4)
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6.27.14 GCD of the coefficients of a polynomial: content

The content of a polynomial is the GCD (greatest common divisor) of its coeffi-
cients. The content command computes the content of a polynomial.

e content takes one argument:
P, a polynomial given by a symbolic expression or by the list of its coeffi-

cients.

e content (P) returns the content of P.

Example.
Input:

content (6*x"2-3%x+9)
or:

content ([6,-3,9], %))
Output:

6.27.15 Primitive part of a polynomial: primpart

The primitive part of a polynomial is the polynomial divided by its content (the
greatest common divisor of its coefficients). The primpart command computes
the primitive part of a polynomial.

e primpart takes one argument:
P, a polynomial given by a symbolic expression or by the list of its coeffi-

cients.

e primpart (P) returns the primitive part of P.

Example.
Input:
primpart (6x"2-3x+9)
or:
primpart ([6,-3,9],x))
Output:

202 —x +3
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6.27.16 Factoring: collect

The collect command factors polynomials over their coefficient fields or exten-
sions of the fields.

e collect takes one mandatory and one optional argument:

— P, a polynomial or a list of polynomials.

— Optionally, o, a number, such as y/n, determining an extension field to
the field of coefficients of P.

e collect (P {,a)) returns the factored form of the polynomial (or list of
polynomials), where the factorization is done over the field of coefficients
(such as Q) or the smallest extension field containing « (e.g. Q[a]). In
complex mode (see Section 3.5.7 p.72), the field is complexified.

The factor command (see 6.12.10) will also factor polynomials over their coef-
ficient fields (or extensions of it), but will further factor each factor of degree 2 if
Sqrt is checked in the cas configuration.

Examples.

e Factor 22 — 4 over the integers, Input:
collect (x72-4)

Output (in real mode):
(x —2) (z+2)

e Factor 22 + 4 over the integers: Input:
collect (x"2+4)

Output (in real mode):
2 44

Output (in complex mode):
(x + 2i) (x — 29)
e Factor 22 — 2 over the rationals: Input:
collect (x72-2)

Output (in real mode):
22 =2

But if you input:
collect (sgrt (2) * (x72-2))

you get: Output:

\/i(x—\/i) (a:+\/§)
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e Factor 23 — 222 + 1 and x? — x over the rationals. Input:

collect ([x"3-2xx"2+1,x"2-x])

Output:
[(z-1) (2 —2—1),2(z - 1)]
but:
Input:
collect ((x73-2%x"2+1) *sqgrt (5))
Output:
—/b-1 5—1
V5 w—l—fi (x—=1)(z+ V5
2 2
or:
Input:
collect (x"3-2xx"2+1,sqgrt (5))
Output:

-5 -1 V5 -1
<m+2 >($1)<$+ 5 )

6.27.17 Square-free factorization: sqrfree

The sgrfree command provides squarefree factorizations of polynomials; that
is, it factors a polynomial as a product of powers of coprime factors, where each
factor has roots of multiplicity 1 (in other words, a factor and its derivative are
coprime).

e sgrfree takes one argument:
P, a polynomial.

e sgrfree (P) returns the squarefree factorization of P.

Examples.
o Input:
sgrfree ((x72-1) % (x—1) * (x+2))
Output:
(z* + 3z +2) (v — 1)
o Input:
sqrfree ((x"2-1) "2x (x-1) * (x+2) " 2)
Output:

(2 + 3z + 2)2 (x—1)*
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6.27.18 List of factors: factors

The factors command provides the factors of a polynomial as a list.

e factors takes one argument:
P, a polynomial or a list of polynomials.

e factors (P) returns a list containing the factors of P and their exponents,
or a list of such lists.

Examples.
o [nput:
factors (x"2+2xx+1)
Output:
[z +1,2]
o [nput:
factors (x"4-2+x"2+1)
Output:
[ —1,2,2+1,2]
o [nput:
factors ([x"3-2#x"2+1,x"2-x])
Output:
r—1 1 22—2z—-1 1
T 1 z—1 1
e Input:
factors ([x"2,x"2-11)
Output:

[[,2],[r— 1,1, + 1,1]]

6.27.19 Evaluating a polynomial: horner
The horner command uses Horner’s method to evaluate polynomials.
e horner takes two arguments:

— P, a polynomial given by its symbolic expression or by the list of its
coefficients.

— @, a number.

e horner (P, a) returns the value P(a), computed using Horner’s method.
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Example.
Input:

horner (x"2-2+x+1, 2)
or:

horner ([1,-2,1],2)
Output:

6.27.20 Rewriting in terms of the powers of (x-a): ptayl

The ptayl command finds the Taylor expansion for a polynomial (which will be
finite).

e ptayl takes two arguments:

— P, a polynomial given by a symbolic expression or by the list of its
coefficients.

— a, a number.
e ptayl (P, a) returns the polynomial 7" such that P(z) = T'(x — a).
Examples.

o Input:
ptayl (x"2+2+x+1,2)

Output, the polynomial T:
22 +6x+9

o [nput:
ptayl([1,2,1],2)

Output:
[1,6,9]

ies2?+22+1=(z—2)2+6(x—2)+9.

6.27.21 Computing with the exact root of a polynomial: rootof

The rootof command finds the value of one polynomial at a root of another.

e rootof takes two arguments:
P and @, two polynomials given by the lists of their coefficients.

e rootof (P, Q) gives the value P(«) where « is the root of ) with largest
real part (and largest imaginary part in case of equality).
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In exact computations, Xcas will rewrite rational evaluations of rootof as a
unique rootof with degree(P) <degree((). If the resulting rootof is the solution
of a second degree equation, it will be simplified.

Example.
Let o be the root with largest imaginary part of Q(x) = z* + 1022 + 1 (all roots
of () have real part equal to 0).

1
e Compute —.
Qo
Input:

normal (1/rootof ([1,0],[1,0,10,0,11))

P(x) = zisrepresented by [1,0] and a by rootof ([1,0],[1,0,10,0,11).
Output:

~i(-v2+v3)

e Compute a?.
Input:

normal (rootof ([1,01,[1,0,10,0,11)"2)

or (since P(x) = 22 is represented by [1,0,0]):
Input:

normal (rootof ([1,0,0],[1,0,10,0,11))

Output:

—2v6—5

6.27.22 Exact roots of a polynomial: roots

The roots command finds roots of polynomials with their multiplicities
e roots takes one mandatory and one optional argument:

— P, a symbolic polynomial expression.

— Optionally, x, the name of the variable (the default is x).

e roots (P (,z)) returns a 2 column matrix: each row is the list consisting
of a root of P and its multiplicity.

Examples.

e Find the roots of P(z) = 2° — 22 + 23.
Input:

roots (x"5-16xx"4+x"3)
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Output:
3WVT+8 1
-3V7+8 1
0 3

e Find the roots of 10 — 1528 + 902 — 2702 4 40522 — 243 = (2? — 3)5.
Input:

roots (x"10-15*x"84+90+xx"6-270+xx"4+405xx"2-243)

Output:
V3 5
_\/g 5
e Find the roots of t3 — 1.
Input:
roots(t"3-1,t)
Output:
1 1
1\/371 1
—iv/3-1 1

[\

6.27.23 Coefficients of a polynomial defined by its roots: pcoeff
pcoef

The pcoef f command reconstructs a polynomial from its roots.
pcoef is a synonym for pcoeff.

e pcoeff takes one argument:
roots, a list of the roots of a polynomial P.

e pcoeff (roots) returns the monic polynomial having these roots, repre-
sented as the list of its coefficients in decreasing order.

Example.
Input:

pcoef ([1,2,0,0,3])
Output:
[11_61 111_61 OI O]

ie (z—1)(x —2)(z?)(x —3) = 2% — 62* + 112 — 622
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6.27.24 Truncating to order n: truncate

The truncate command truncates a polynomial; i.e., it removes higher order
terms.

e truncate takes two arguments:

— P, a polynomial.

— n, an integer.

e truncate (P,n) returns P truncated to order n; i.e., all terms of order
greater or equal to n + 1 are removed.

truncate may be used to transform a series expansion into a polynomial or to
compute a series expansion step by step.

Examples.
e [nput:
truncate ((1l+x+x"2/2)"3,4)
Output:
924 + 1623 + 1822 + 122 + 4
4
o [nput:
truncate (series(sin(x)), 4)
Output:
—a3 + 6z
6

Note that the returned polynomial is normalized.

6.27.25 Converting a series expansion into a polynomial: convert
convertir

The convert command (see Section 6.23.26 p.318), with the option polynom,

converts a series (see Section 6.36.2 p.432) into a polynomial. It should be used

for operations like drawing the graph of the Taylor series of a function near a point.
For this purpose:

e convert takes two arguments:

— series, a Series.

— polynom, the option.

e convert (series, polynom) returns series with the order_size func-
tion replaced by O.

Examples.
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o Input:
convert (taylor (sin(x)),polynom)
Output:
23 N 0
6 120
o Input:
convert (series(sin(x),x=0,6),polynom)
Output:
23 N 20
aj‘ R — ——
6 120

6.27.26 Random polynomial: randpoly randPoly

The randpoly command finds random polynomials.
randPoly is a synonym for randpoly.

e randpoly takes two optional arguments:

— Optionally x, the name of a variable (by default x).
— Optionally n, an integer (by default 10).

The order of the arguments is not important.

e randpoly ({(z) (,n)) returns a monic polynomial in the variable = of de-
gree n, having as coefficients random integers evenly distributed on -99..+99.

Examples.
o [nput:
randpoly (t, 4)
Output (for example):
th 4+ 86t — 9712 — 82t + 7
o Input:
randpoly (4)
Output (for example):
a* — 2723 4 262% — 897 + 63
o Input:
randpoly (4, u)
Output (for example):

ut — 49u3 — 86u? — 64u — 30
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6.27.27 Changing the order of variables: reorder

The reorder command rewrites an expression, based on the priority of variables.
e reorder takes two arguments:

— expr, an expression.

— vars, a vector of variable names.

e reorder (exprvars) expands expr according to the order of variables given
in vars.

Example.
Input:

reorder (X" 2+2+x*xat+a”"2+z"2-x+*z, [a,x,2])

Output:
a2—|—2aaj—|—:p2 —acz—|—22

Warning.
The variables must be symbolic (if not, purge them (see Section 5.4.8 p.104) before
calling reorder.

6.27.28 Random lists: ranm

The ranm command finds lists of random integers.

e ranm takes one argument:
n, an integer.

e ranm (n) returns a list of n random integers (between -99 and +99). This
list can be seen as the coefficients of an univariate polynomial of degree
n—1.

(See also Section 9.3.16 p.775)

Example.
Input:

ranm(3)
Output (for example):

[70,22,42]

6.27.29 Lagrange polynomial: lagrange interp

The 1agrange command finds the Lagrange polynomial which interpolates given
data.
interp is a synonym for lagrange.

e lagrange takes two mandatory arguments and one optional argument:
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— l; and lg, two lists of the same size. These can be given as a matrix
with two rows.
The first list (resp. row) corresponds to the abscissa values xj (K =
1..n), and the second list (resp. row) corresponds to ordinate values yy,
(k=1..n).

— Optionally x, the name of a variable (by default x).

e lagrange (l1,ls (,z)) returns a polynomial expression P with respect to
x of degree n—1, such that P(x;) = y;.

Examples.
o Input:
lagrange ([[1,31,[0,111])
or:
lagrange ([1,31,10,11)
Output:
x—1
2
sincemT_1 =0forz = 1andf‘”T_1 =1 forx = 3.
o Input:
lagrange ( [11 3] 14 [Ol 11 IY)
Output:
y—1
2
Warning.

An attempted function definition such as f:=lagrange ([1,2],[3,4],v)
does not return a function but an expression with respect to y. To define f as a
function, input:

f:=unapply (lagrange ([1,21,[3,4],x),x)

Avoid f (x) :=lagrange ([1,2]1, [3,4], x) since then the Lagrange polyno-

mial would be computed each time £ is called (indeed in a function definition, the

second member of the assignment is not evaluated). Note also that g (x) :=lagrange ([1,2], [3,4])
would not work since the default argument of 1agrange would be global, hence

not the same as the local variable used for the definition of g.
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6.27.30 Trigonometric interpolation: triginterp

The triginterp command computes a trigonometric polynomial which inter-
polates given data.

e triginterp takes four arguments:

L, a list of numbers.

a, a number (the beginning of an interval).

b, a number (the end of the interval).

— x, the name of a variable.
The last three arguments can also be given as = a..b.

e triginterp(L,a,b,x) ortriginterp (L,x = a..b) returns the trigono-
metric polynomial that interpolates data given in the list L. It is assumed
that the list L contains ordinate components of the points with equidistant
abscissa components between ¢ and b such that the first element of L corre-
sponds to a and the last element to b.

Example.
For example, y may be a list of experimental measurements of some quantity taken
in regular intervals, with the first observation at time ¢ = a and the last observation
at time ¢ = b. The resulting trigonometric polynomial has period

~n(b—a)

n—1"

where n is the number of observations (n=size (y)). As a specific example,

assume that the following data is obtained by measuring the temperature every
three hours:

houroftheday | O | 3 | 6 | 9 |12 | 15| 18 | 21
temperature (deg C) | 11 | 10 | 17 | 24 | 32 | 26 | 23 | 19

Furthermore, assume that an estimate of the temperature at 13:45 is required. To
obtain a trigonometric interpolation of the data:
Input:

tp:=triginterp([11,10,17,24,32,26,23,19],x=0..21)
Output:

4 8 12
é <—11\f2 — 12) sin <1127r$> + gcos (éﬂ'm) —
Zsin <(137r:c> + % (21\/§ — 42) cos <le7rx> +

é (~11v2+12) sin (im) 4 sl5me)

g + 1 (—21\[ — 42) cos (17rx> +

2

Now a temperature at 13:45 hrs can be approximated with the value of tp for
x = 13.75.
Input:
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tp | x=13.75

Output:
29.4863181684

If one of the input parameters is inexact, the result will be inexact too. For
example:
Input:

Digits:=3:;
triginterp([11,10,17,24,32,26,23,19],%x=0..21.0)

Output:

20.2 — 8.96 cos (0.262x) — 3.44 sin (0.2622) + 0.75 cos (0.524x) —
1.75sin (0.524x) — 1.54 cos (0.785x) — 0.445sin (0.785x) + 0.5 cos (1.05z)

6.27.31 Natural splines: spline
Definition

Let 0, be a subdivision of a real interval [a, b]:
a=xy, I1, ..., Tp=2>0

The function s is a spline function of degree [ if s is a function from [a, b] to R such
that:

e s has continuous derivatives up to the order [ — 1,

e on each interval of the subdivision o,,, s is a polynomial of degree less or
equal than [.

Theorem

The set of spline functions of degree [ on o, is an R-vector space of dimension
n+1.

Proof.
Let s be a spline function of degree [ on o,.

On [a, x1], s is a polynomial A of degree less or equal to [, hence on [a, x1],
s = A(x) = ap + a1x + ... a;z' and A is a linear combination of 1, z, ... xz!.

On [z1, z2], s is a polynomial B of degree less or equal to I, hence on [z, x2],
s = B(z) = bg + biz + ... bx!. Since s has continuous derivatives up to order
-1,

VO<j<l—1, BYW(z)—AD(z)=0

therefore B(z) — A(x) = oy (z —21)!, i.e. B(z) = A(z) + oy (x — 21)!, for some
a1. Define the function:

ql(x)z{ 0 on [a,x]

(x —21)" on [x1,b]

so:
8l[ayes) = @0 + a1 + ... ar! + onqr(z)
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On [z9,x3], s is a polynomial C' of degree less or equal than [, hence on

(29, 23], s = O(x) = co + 17+ ... cat.

Since s has continuous derivatives up to order [ — 1:
VO<j<l—1, CY(xg)—BW(z3)=0
therefore C'(x) — B(x) = aa(x — x2)" or C(z) = B(x) + aa(x — x2)".

Define the function:

%() = { (x —x9)! on [x9,D]
Hence: s|(44;) = a0 + a17 + . .. azt + o01q1(x) + anga(x)

Continuing, define the functions

v1§j§n—1,q]-($):{(x_ggj) on [zj,b]

Then
8|[a,p) = @0 + @17 + . .. azt + arqi(z) + ...+ ap_1g@n-1(x)

and so s is a linear combination of n 4 independent functions 1, z, ..z!, 1, ..gn—1.
It follows that the set of all possible s is a real vector space of dimension n + .

Types of spline functions

If you want to interpolate a function f on o, by a spline function s of degree [, then
s must satisfy s(x) = yr = f(xy) forall 0 < k < n. This gives n+ 1 conditions,
leaving [ — 1 degrees of freedom. You can therefore add [ — 1 conditions, these
conditions are on the derivatives of s at a and b.

Hermite interpolation, natural interpolation and periodic interpolation are three
kinds of interpolation obtained by specifying three kinds of constraints. The unique-
ness of the solution of the interpolation problem can be proved for each kind of
constraints.

If lis odd (I = 2m — 1), there are 2m — 2 degrees of freedom. The constraints
are defined by:

e Hermite interpolation:

Vi<j<m-—1, S(j)(a) = f(J')(a% s(j)(b) — f(j)(b)

e Natural interpolation:

vm<j<2m—2, s9(a)=s9(b)=0

e periodic interpolation:

Vi<j<2m—2, s9(a)=sY(b)



6.27. POLYNOMIALS 367

If [ is even (I = 2m), there are 2m — 1 degrees of freedom. The constraints are
defined by:
e Hermite interpolation:
vi<j<m—1, s9(a) = fYa),s9(b) = fV )

and

e Natural interpolation:
Vm<j<2m—2, s9(a)=s590b)=0

and

e Periodic interpolation:

Vi<j<2m—1, s9(a)=sY(b)

6.27.32 Natural interpolation: spline
The spline command finds the natural spline.
e spline takes four arguments:

— L, alist of abscissas (in increasing order).

— L, alist of ordinates (the same length as L).

x, a variable name.

— [, an integer for the degree.

e spline (L, Ly, x,1) returns the natural spline function s of degree [, where
$(Ly ;) = Ly j for j = 0..1ength(L,), as a list of polynomials, each poly-
nomial being valid on the corresponding interval determined by L.

Examples.

o Find the natural spline of degree 3, crossing through the points g = 0, yg =
1, T = 1,y1 == 3and$2 = 2,y2 =0.

Input:
spline([0,1,2],[1,3,0],x,3)
Output:
5 3 ].3 5 3 ].5 2 LE—l
—— — ,-(x—1)"——(x—1)" — 3
4:c+433+,4(x ) 4(3: ) 5 +

Where the first polynomial, —%xg + %az + 1, is defined on the interval
[0, 1] (the first interval defined by the list [0, 1, 2]) and the second polynomial
Sx— 13— B (z— 1)%— £-1 1 3is defined on the interval [1, 2], the second
interval defined by the list [0, 1, 2].
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o Find the natural spline of degree 4, crossing through the points g = 0, yg =
Lxi=1y1=3,29 =2,y =0and x3 = 3,y3 = —1.

Input:
Spline([ol 1! 2/ 3] ’ [11 3! Or_l] r Xy 4)
Output:
62 , 304
Bl A |
21" Tt
201 248 372
—(@-1) -1 -
121 121 121
139 4 596 3 90
2 (=2 =2 =
o1 @2 =27+ g

56
(x—1)2+ﬁ(x—1)+3,
628
(x—2)* - 191 @~ 2)

Output is a list of three polynomial functions of x, defined respectively on

the intervals [0, 1], [1, 2] and [2, 3].

e Find the natural spline interpolation of cos on [0, 7/2, 37/2].

Input:

spline ([0,pi/2,3*pi/2],cos ([0,pi/2,3xpi/2]),x,3)

Output:
o T
3 3w ’
2(z-3)"  2(@-3)" 4(x-3)
373 + w2 37

6.27.33 Rational interpolation: thiele

The thiele command finds the rational interpolation.

e thiele takes two arguments:

— data, a matrix with two columns. The first column contains the x co-
ordinates and the second column contains the corresponding y coordi-

nates.

Instead of a single matrix, the data can be given as a vector of z coor-

dinates and a vector of y coordinates.

— v, an identifier, number or any symbolic expression.

e thiele (data,v) returns R(v) where R is the rational interpolant.

Instead of a single matrix data, two vectors x = (z1,x2,..
, Yrn) This method computes Thiele interpolated continued function based

(Y1, 92, - --
on the concept of reciprocal differences.

. Tp) and y =

It is not guaranteed that R is continuous, i.e. it may have singularities in the
shortest segment which contains all components of the x coordinates.

Examples.
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o Input:
thiele([[1,31,(2,41,14,5],1[5,8]11,%)
Output:
1922 — 452 — 154

18z — 78

o Input:

thiele([1,2,a],[3,4,51,3)

Output:
13a — 29
3a—17

e In the following example, data is obtained by sampling the function f(z) =
(1—at)yel="
Input:

data_x:=[-1,-0.75,-0.5,-0.25,0,
0.25,0.5,0.75,1,1.25,1.5,1.75,2];
data_y:=[0.0,2.83341735599,2.88770329586,
2.75030303645,2.71828182846,2.66568510781,
2.24894558809,1.21863761951,0.0,-0.555711613283,
-0.377871362418,-0.107135851128,-0.01367822948337];
thiele(data_x,data_y, x)

Output:

(—1.552861156592° + 5.872983875142° — 5.4439152812z" + 1.686558177082"
—2.407848683172% — 7.55954205222z + 9.40462512097) /
(2% — 1.242957189652° — 1.335262686242" + 4.036292724252°
—0.8854193212® — 277913222418z + 3.45976823393)

6.28 Arithmetic and polynomials

Polynomials are represented by expressions or by lists of coefficients in decreas-
ing power order. In the first case, for instructions requiring a main variable (like
extended gcd computations), the variable used by default is x if not specified. For
coefficients in Z/nZ, use $ n for each coefficient of the list or apply it to the entire
expression defining the polynomial.
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6.28.1 The divisors of a polynomial: divis

The divis command finds the divisors of a polynomial.

e divis takes one argument:
P, a polynomial or a list of polynomials.

e divis (P) and returns the list of the divisors of P.

Examples.
e [nput:
divis(x"4-1)
Output:
Lz-1lz+1,(z-1)(z+1),2°+1,(x—1) (2* + 1),
(z+1) (2 +1),(z -1 (z+1) (22 +1) ]
o [nput:
divis([x"2,x"2-1])
Output:

Hl,x,xQ] Jlre —Lz+1,(z—1) (x—i—l)}]

6.28.2 Euclidean quotient: quo Quo

The quo command finds the quotient of the Euclidean division of two polynomials.
e quo takes two mandatory arguments and one optional argument:

— P and @, two polynomials.

— Optionally z, the variable (by default x), if P and () are given as ex-
pressions.

e quo (P,Q (,z)) returns the Euclidean quotient of P divided by Q.

Examples.
o [nput:
quo (X" 2+2xx +1,Xx)
Output:
T+ 2
e Input:

quo (y"2+2xy +1,vy,V)
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Output:
y+2

e In list representation, to get the quotient of 22 4 2x + 4 by 2 + = + 2 you
can also input:

quo([1,2,4],[1,1,2])

Output:

that is to say, the polynomial 1.
Quo is the inert form of quo; namely, it evaluates to quo for later evaluation.
It is used when Xcas is in Maple mode (see Section 3.5.2 p.70) to compute the

euclidean quotient of the division of two polynomials with coefficients in Z/pZ
using Maple-like syntax.

Examples.

o Input (in Xcas mode):
Quo (X" 2+2xx+1, x)

Output:
quo (x2 + 2z + 1, x)

e Input (in Maple mode):
Quo (x"343xx,2+x"2+6*x+5) mod 5

Output:
—2z+4+1

This division was done using modular arithmetic, unlike with
quo (x"3+3*xx,2+x"2+6xx+5) mod 5
where the division is done in Z[X ] and reduced after to:

3xr+6

If Xcas is not in Maple mode, polynomial division in Z/pZ[X] is done e.g.
by:

quo ((x"3+3xx)% 5, (2x"2+6x+5) %5)
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6.28.3 Euclidean remainder: rem Rem

The rem command finds the remainder of the Euclidean division of two polyno-
mials.

e rem takes two mandatory arguments and one optional argument:

— P and @, two polynomials.

— Optionally z, the variable (by default x), if P and () are given as ex-
pressions.

e rem (P,Q (,z)) returns the Euclidean remainder of P divided by Q).

Examples.

e [nput:
rem(x~3-1,x"2-1)

Output:
r—1

e To have the remainder of 22 4 2z + 4 by x? + = + 2, you can also do:
Input:

rem([1,2,4],[1,1,2])

Output:
[1,2]
i.e. the polynomial = + 2.

Rem is the inert form of rem; namely, it evaluates to rem for later evaluation.
It is used when Xcas is in Maple mode (see Section 3.5.2 p.70) to compute the
euclidean remainder of the division of two polynomials with coefficients in Z/pZ
using Maple-like syntax.

Examples.

e Input (in Xcas mode):
Rem(x"3-1,x"2-1)

Output:
rem (x3 — 1,:702 — 1)

o [nput (in Maple mode):
Rem(x"3+3*x,2+*x"24+6+xx+5) mod 5

Output:
2x

This division was done using modular arithmetic, unlike with
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rem(x~3+3*x,2+*x"2+6xx+5) mod 5

where the division is done in Z[X | and reduced after to:

12x

If Xcas is not in Maple mode, polynomial division in Z/pZ[X] is entered, for
example, by:

rem((x"3+3xx)% 5, (2x72+46x+5) %5)

6.28.4 Quotient and remainder: quorem divide

The quorem command finds the quotient and remainder of the Euclidean division
of two polynomials.
divide is a synonym for quorem.

e quorem takes two mandatory arguments and one optional argument:

— P and @, two polynomials.
— Optionally z, the variable (by default x), if P and () are given as ex-
pressions.

e quorem (P, Q (,z)) returns a list consisting of the Euclidean quotient and
the Euclidean remainder of P divided by Q.

Examples.
o [nput:
quorem([1,2,41,1[1,1,21)
Output:
(110,11, 211
o Input:
quorem (x~3-1,x"2-1, x)
Output:

[,z — 1]
6.28.5 GCD of two polynomials with the Euclidean algorithm: gcd
Gecd

The gcd command computes the ged (greatest common divisor) of polynomials.
(See also 6.5.1 for GCD of integers.)

e gcd takes an unspecified number or arguments:
polys, a sequence or list of polynomials.

e gcd (polys) returns the greatest common divisor of the polynomials in polys.
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Examples.
o [nput:
gcd (x°2+2%x+1,x°2-1)
Output:
z+1
o I[nput:
gcd(x"2-2+x+1,x"3-1,x"2-1,x"2+x-2)
or:
gcd([x"2-2xx+1,x"3-1,x"2-1,x"2+x-2])
Output:

r—1

e For polynomials with modular coefficients:
Input (e.g.):

gcd ((x72+2%x+1) mod 5, (x"2-1) mod 5)

Output:
1%5)z+1%5

6.28.6 GCD of two polynomials with the Euclidean algorithm: Ged

Gcd is the inert form of gcd; namely, it evaluates to gcd for later evaluation. It is
used when Xcas is in Maple mode (see Section 3.5.2 p.70) to compute the gcd of
polynomials with coefficients in Z/pZ using Maple-like syntax.

Examples.

e [nput (in Xcas mode):
Ged(x"3-1,x"2-1)

Output:
ged (:1:3 —1,22 - 1)

o [nput (in Maple mode):
Ged (x72+42+x,xXx"2+6*x+5) mod 5

Output:
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6.28.7 Choosing the GCD algorithm of two polynomials: ezgcd heuged
modgcd psrgcd

The ezgcd, heuged, modgcd and psrgcd commands compute the ged (great-
est common divisor) of two univariate or multivariate polynomials with coefficients
in Z or Z[i] with different algorithms.

e ezgcd, heugcd, modgcd and psrgcd take two arguments:
P and @, two polynomials.

e ezgcd (P, Q) returns the ged of P and () computed with the ezged algo-
rithm.

e heugcd (P, Q) returns the gcd of P and () computed with the heuristic
algorithm.

e modgced (P, Q) returns the gcd P and () computed with the modular algo-
rithm.

e psrgcd (P, Q) returns the ged of P and () computed with the sub-resultant

algorithm.
Examples.
o Input:
ezgcd (x"2-2xx*y+y " 2-1,x-y)
or:
heugcd (x"2-2xx*y+y~2-1, x-y)
or:
modgcd (X" 2-2xx*y+y " 2-1, x—y)
or:
psrgcd (x"2-2*x*y+y " 2-1, x-y)
Output:
1
o Input:
ezgcd ((x+y-1) % (x+y+1), (x+y+1) "2)
or:

heugcd ( (x+y—1) * (x+y+1), (x+y+1) "2)

or:
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modgcd ( (x+y—=1) * (x+y+1), (x+y+1) "2)

Output:
z+y+1
o Input:
psrgcd ( (x+y-1) * (x+y+1), (x+ty+1) "2)
Output:
—r—y—1
o nput:
ezgcd ((x+1) "4-y~4, (x+1-y) "2)
Output:

"GCD not successful Error: Bad Argument Value"

But:
input:

heugcd ( (x+1) "4-y~4, (x+1-y) " 2)
or:

modgcd ( (x+1) "4-y 4, (x+1-y) " 2)
or:

psrgcd((x+1l) "4-y 4, (x+1-y) " 2)
Output:

z—y+1

6.28.8 LCM of two polynomials: 1cm

The 1cm command computes the LCM (Least Common Multiple) of polynomials.
(See 6.5.3 for LCM of integers).

e 1cm takes an unspecified number of arguments:
polys, a sequence or list of polynomials.

e lcm (polys) returns the least common multiple of the polynomials in polys.

Examples.

o Input:

lem(x™242xx+1,x72-1)
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Output:
(r+1) (332 -1)
o Input:
lem(x, x72+2+x+1,x"2-1)
or:
lem([x, X7 242+xx+1,x72-11)
Output:

(@2 +2) (o2 1)

6.28.9 Bézout’s Identity: egcd gedex

Bézout’s Identity (also known as Extended Greatest Common Divisor) states that
for two polynomials A(x), B(z) with greatest common divisor D(x), there exist
polynomials U(z) and V() such that

U(zx)x A(x) + V(x) * B(x) = D(x)

The egcd computes the greatest common divisor of two polynomials as well as
the polynomials U (z) and V' (z) in the above identity.
gcdex is a synonym for egced.

e cgcd takes two mandatory arguments and one optional argument:

— A and B, polynomials given as expressions or lists of coefficients in
decreasing order.

— Optionally, if the polynomials are expressions, x, the variable (which
defaults to x).

e egcd (A, B (,x)) returns a list [U, V, D], where D is the greatest common
divisor of A and B, and U and V" are the polynomials from Bézout’s identity.

Examples.
o Input:
egcd (x72+2xx+1,x"2-1)
Output:
[1,—1,2x + 2]
o Input:
egcd([1,2,11,1[1,0,-11)
Output:

([, [=1], [2,2]]
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o [nput:
egcd(y " 2-2xy+1,y " 2-y+2,vy)
Output:
[y —2,—y+3,4]
o [nput:
egced([1,-2,11,1[1,-1,21)
Output:

[[17 _2} ’ [_173] ’ [4“

6.28.10 Solving au+bv=c over polynomials: abcuv

A consequence of Bézout’s identity is that given polynomials A(x), B(z) and
C(z), there exist polynomials U (x) and V (z) such that

Cx)=U(z) A(z) + V(z) - B(x)

exactly when C'(x) is a multiple of the greatest common divisor of A(x) and B(x).
The abcuv command solves this polynomial equation.

e abcuv takes three mandatory and one optional argument:

- A, B and C, three polynomials given as expressions or lists of co-
efficients in decreasing order, where C' is a multiple of the greatest
common divisor of A and B.

— Optionally if the polynomials are expressions, x, the variable (which
defaults to x).

e abcuv (A, B,C (,z)) returns a list of two expressions [U, V'] such that
C=U-A+V.B.

Examples.
e [nput:
abcuv (x"2+2+x+1 ,x"2-1,x+1)
Output:
-4
27 2
e [nput:
abcuv (x"2+2+x+1 ,x"2-1,x"3+1)
Output:

—x+ 2 §
2 27
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o Input:
abcuv([(1,2,11,111,0,-11,11,0,0,11)
Output: - L1
Iy =5 abl=55 75l

6.28.11 Chinese remainders: chinrem

The Chinese Remainder Theorem states that if R(x) and Q)(x) are relatively prime
polynomials, then for any polynomials A(z) and B(x), there exists a polynomial
P(z) such that:

P(x) = A(z) (mod R)(x)
P(z) = B(z) (mod Q)(x)

The chinrem command finds the polynomial P.
e chinrem takes two mandatory arguments and one optional argument:

- [A, R] and [B, @], two lists, each consisting of two polynomials given
by expressions or lists of coefficients in decreasing order.

— Optionally, if the polynomials are expressions, x, the main variable (by
default x).

e chinrem([A, R],[B,Q](,x)) returns the list [P, S], where P and S are
polynomials such that:

S = RQ
P=A (mod R)
P=B (mod Q)

If R and @ are coprime, a solution P always exists and all the solutions are
congruent modulo S = R - ().

Examples.
e Solve:

P(z)= =z mod (2% +1)

P(z)= -1 mod (22 —1)
Input:

Chinrem( [ [11 O] 14 [11 Or 1] ] ’ [ [11_1] 14 [lr Or_l] ] )
Output:
—11—1 [1,0,0,0, —1]
2? ) 2 ) ) b b b

or:

chinrem([x,x"2+1], [x-1,x"2-11)



380 CHAPTER 6. THE CAS FUNCTIONS

Output:
2
x 1 4
- - = -1
5 +x 2,$
2
-2 1
hence P(z) = —% (mod z* — 1)
e [nput:

chinrem(([1,2],(1,0,10],0(1,1],(1,1,111)

Output:
[[_13_1a07 1] ’ [17172)171“
or:
chinrem ([y+2,y"2+1], [y+1l,y " 2+y+1]1,Vy)
Output:

" =" + Ly + v + 27 +y + 1]

6.28.12 Cyclotomic polynomial: cyclotomic

For a positive integer n, cyclotomic polynomial of index n is the monic polynomial
whose roots are exactly the primitive nth roots of unity (an nth root of unity is
primitive if the set of its powers is the set of all the nth roots of unity). Note that
this will divide ™ — 1, whose roots are all the nth roots of unity.

The cyclotomic command computes cyclotomic polynomials.

e cyclotomic takes one argument:
n, an integer.

e cyclotomic (n) returns the list of the coefficients of the cyclotomic poly-
nomial of index n.

Examples.

e Letn = 4; the fourth roots of unity are: {1, 4, —1, —i} and the primitive roots
are: {i, —i}. Hence, the cyclotomic polynomial of index 4 is (x—4)(z+1) =
x? 4 1.

Input (for verification):

cyclotomic (4)

Output:
[1,0,1]

o Input:

cyclotomic (5)
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Output:
1,1,1,1,1]

Hence, the cyclotomic polynomial of index 5 is 2* 4 2% 4 22 + 2 + 1, which
divides 2° — 1 since (x — 1) * (2* + 23 + 22 + o+ 1) =25 — 1.

o Input:
cyclotomic (10)

Output:
[1,-1,1,-1,1]

Hence, the cyclotomic polynomial of index 10 is z* — 23 + 22 — 2 + 1 and
(=D x(z+ D) s -3 +22—24+1) =201
o [nput:
cyclotomic (20)

Output:
[1,0,-1,0,1,0,—1,0,1]

Hence, the cyclotomic polynomial of index 20 is 2% — 26 + 2* — 22 + 1 and

(0 D@+ D) @® -2+t 2?2+ 1) =22 -1

6.28.13 Sturm sequences and number of sign changes of P on (a, b|:
sturm sturmseq sturmab

Given a polynomial or rational expression P(x), the Sturm sequence is the se-
quence Pj(x), Po(x),. .. given by the recurrence relation:

e Pi(x) is the opposite of the euclidean division remainder of P(z) by P'(z).
e P»(x) is the opposite of the euclidean division remainder of P’(z) by Py (z).
o ...

If P(x) is a polynomial of degree n, then this sequence has at most n terms.

If P(x) is square-free, then Sturm’s Theorem gives a way to use the sequence
to determine the number of zeros of P(x) on an interval.

The sturm command can find either the Sturm sequence (in which case it can
also be called as sturmseq) or the number of zeros in an interval (in which case
it can also be called as sturmab).

To find the Sturm sequence:

e sturm (or sturmseq) takes one mandatory argument and one optional
argument:

— P, apolynomial or rational expression.

— Optionally, x, a variable name (by default x).
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e sturm (P (,z)) (or sturmseq (P (,z))) returns the list of the Sturm se-
quences and multiplicities of the square-free factors of P.

Examples.
e [nput:
sturm(2+«x”~3+2)
or:
sturm (2xy~3+2,y)
Output:

2,][1,0,0,1],[3,0,0],—9], 1]

The first term gives the content of the numerator (here 2), then the Sturm
sequence (in list representation) [z + 1, 322, —9).

o [nput:
sturm( (2+xx"34+2) / (3*x"2+2), x)
or:
sturmseq ( (2+x"3+2) / (3xx"2+2) ,x)
Output:

2,][1,0,0,1],[3,0,0],-9],1,[[3,0,2],[6,0], —72]]

The first term gives the content of the numerator (here 2), then the Sturm
sequence of the numerator ([[1,0,0,1],[3,0,0],-9]), then the content of the de-
nominator (here 1) and the Sturm sequence of the denominator ([[3,0,2],[6,0].-
72]). As expressions, [2° + 1,322, —9] is the Sturm sequence of the numer-
ator and [322 + 2, 62, —72] is the Sturm sequence of the denominator.

o [nput:
sturm((x"3+1) "2, x)
or:
sturmseqg ((x"3+1) "2, x)
Output:
[1,1]
e [nput:

sturm(3* (3*x"3+1) / (2*xx+2), x)
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Output:
13,1[3,0,0,1],[9,0,0],—81],2,[[1,1],1]]

The first term gives the content of the numerator (here 3),

the second term gives the Sturm sequence of the numerator (here 3x~3+1,
9%x°2, -81),

the third term gives the content of the denominator (here 2),

the fourth term gives the Sturm sequence of the denominator (x+1, 1).

o [nput:
sturm (2+x”~3+2, X)
or:
sturmseq (2*x"3+2, x)
Output:
(2,][1,0,0,1],[3,0,0],—9], 1]
o Input:
sturm( (2*x"342) / (x+2), x)
or:
sturmseq ( (2+xx"34+2) / (x+2), x)
Output:

[27 [[1’ 07 07 1] ’ [37 07 0] ) _9] ) 1’ Hl, 2] ) 1]]
To compute the number of zeros in an interval:
e sturm (or sturmab) takes four arguments:

— P, a polynomial expression.
— z, a variable name.

— a and b, two real or complex numbers.

e If a and b are reals, sturm (P, x,a,b) (or sturmab (P, x,a, b)) returns
the number of sign changes of P on (a,b]; In other words, it returns the
number of zeros in [a, b) of the polynomial P/G where G = ged(P, P').

e if a or b is complex, sturm (P, z,a,b) (or sturmab (P, z,a, b)) returns
the number of complex roots of P in the rectangle having a and b as opposite
vertices.

Examples.

o Input:

sturm(x”"2#* (x~34+2),x,-2,0)
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or:
sturmab (x"2* (x"34+2),x,-2,0)
Output:
1
o Input:
sturm(x”"2* (x~34+2),x,-2,0)
or:
sturmab (x" 2+ (x"3+2),x%x,-2,0)
Output:
1
o [nput:
sturm(x~3-1,x,-2-1i, 5+31)
or:
sturmab (x~3-1,x%x,-2-1,5+31)
Output:
3
o Input:
sturm(x”~3-1,x,-1i,5+31)
Input:
sturmab (x~3-1,x, -1, 5+31)
Output:
1
Warning!!!!
The polynomial is defined by its symbolic expression.
Input:
sturm([1,0,0,171,x)
or:
sturm([1,0,0,2,0,0],x%,-2,0)
Output:

Bad argument type
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6.28.14 Sylvester matrix of two polynomials and resultant: sylvester
resultant

Given two polynomials A(z) = Zzzg a;x'and B(z) = Zzig‘ b;z', their Sylvester
matrix is a square matrix of size m—+n where m=degree(B(z)) and n=degree(A(x)).
The m first lines are made with the A(z) coefficients, so that:

811 =Qp S12 = Gp_1 - -* 81(n+l) = ap 0 . 0
s91 =0 S99 = ap R 82(n+1) =a 82(n+2) = ag .. 0
Sml = 0 Sm2 = 0 e Sm(n—i—l) = Am—-1 3m(n+2) = am-2 - ag

and the n further lines are made with the B(x) coefficients, so that:

SimaD)1 =bm  Sme1)2 =bm—1  S(ma1)(m+1) = bo o - 0

S(m+n)1 = 0 S(m+n)2 = 0 0 S(mAn)(mA41) = bp-1 bp2 -+ Dbo

The determinant of a Sylvester polynomial is the resultant of the two polyno-
mials. If A and B have integer coefficients with non-zero resultant r, then the
polynomials equation

AU+ BV =r

has a unique solution U, V such that degree(U) <degree(B) and degree(V') <degree(A),
and this solution has integer coefficients.

Remark.

The discriminant of a polynomial is the resultant of the polynomial and its deriva-

tive.

The sylvester command computes Sylvester matrices.

e sylvester takes two arguments:
P and @, two polynomials.

e sylvester (P, Q) returns the Sylvester matrix of P and Q).

The resultant command computes the resultant of two polynomials.
e resultant takes three arguments:

— P and @, two polynomials.

— x, a variable.
e resultant (P, @, x) returns the resultant of P and ().

Example.
Input:

sylvester (x"3-pxx+q, 3*x"2-p, x)
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Output:

Input:
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1 0 —p ¢ 0
01 0 —p gq
30 —p 0 O
03 0 —p O
00 3 0 -—p

det([[lr Ol_plqr O] ’ [Ol ll O/_prCI] 7 [31 O/_pr Or O] ’

Output:

Input:

Output:

[O/ 3! O/_p/ O] ’ [OI OI 3! O/_p] ])

—4p® + 274

resultant (x"3-pxx+qg, 3*x"2-p, x)

—4p3 + 2743

Examples using the resultant.

e Let F'1 and F2 be two fixed points in the plane and A be a variable point
on the circle with center F'1 and radius 2a. Find the cartesian equation of
the set of points M, intersection of the line F'1A and of the perpendicular
bisector of F'2A.

Geometric answer:

Analytic answer:

Since
MF14+ MF2=MF1+MA=F1A=2a
M is on an ellipse with focus F'1, F'2 and major axis 2a.

In the Cartesian coordinate system with center F'1 and z-axis having
the same direction as the vector F'1F'2, the coordinates of A are:

A = (2acos(d),2asin(f))

where 6 is the (Oz, OA) angle. Now choose ¢ = tan(6/2) as parame-
ter, so that the coordinates of A are rational functions with respect to ¢.
More precisely:

1— ¢t 2t
2
T T )

If F1F2 = 2c and if [ is the midpoint of AF'2, then since the coordi-
nates of F'2 are F'2 = (2¢, 0), the coordinates of I are

A= (ax,ay) = (2

I=(c+aa/Zay/2) = (c+ai—tia2l )
= (c+ax/2;a =(c+a ja
4y 112 %+

IM is orthogonal to AF'2, hence M = (z;y) satisfies the equation
eql = 0 where

eql := (z —ix) * (ax — 2% ¢) + (y — iy) * ay
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But M = (z,y) is also on F'1A, hence M satisfies the equation eq2 =
0 where
eq2 :=y/x — ay/ax

The resultant of both equations with respecttot, resultant (eql,eq2,t),
is a polynomial eq3 depending on the variables x, y, independent of ¢
which is the cartesian equation of the set of points M when ¢ varies.
Input:

ax:=2*ax* (1-t"2)/(1+t"2);ay:=2*a*2+t/ (1+t"2);

ix:=(ax+2xc)/2; 1iy:=(ay/2)

egql:=(x—-1ix) x (ax—2*c)+ (y—1y) *ay

eqg2:=y/x-ay/ax

factor (resultant (eql,eqg2,t))

Output gives as resultant:
—(64-(2%49?)-(z%-a*—2* A+ —2-x-a* c+2-x-A—a'+2-a* A +a®y* — )

The factor —64 - (22 + y?) is always different from zero, hence the
locus equation of M:

22a® — 22 + —2za’c + 2xc® — ot + 2a22 + d*y — ¢t =0

If the frame origin is O, the middle point of F'1F'2, then thﬁ> the
cartesian equation of an ellipse. To make the change of origin F'1M =
m + O—M :

Input:

normal (subst (x"2xa”"2-xX"2*xCc " 24+-2xx*a " 2*xc+2xx*c”~3—-a" 4+
2xa"2xc”2+ a"2+«y"2-c”4, [x,y]=[ctX,Y]))

Output:

X202 — X2 + Y242 — gt + a2c?
orif b2 = a?® — ¢
Input:

normal (subst (¢ 2xX"2+c " 2xa"2+X " 2xa"2-a"4+a"2+xY¥"2,c"2=a"2-b"2))
Output:
X202 +Y?a? — a?v?
that is to say, after division by a? x b, M satisfies the equation:
X2 y?

2 Tl

e Let F'1 and F2 be fixed points and A a variable point on the circle with
center F'1 and radius 2a. Find the cartesian equation of the hull of D, the
segment bisector of F2A.

The segment bisector of F'2A is tangent to the ellipse of focus F'1, F'2 and
major axis 2a.
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In the Cartesian coordinate system with center F'1 and z-axis having the
same direction as the vector F'1F'2, the coordinates of A are:

A = (2acos(); 2asin(0))

where 6 is the (Oz, O A) angle. Choose ¢ = tan(¢/2) as parameter such that
the coordinates of A are rational functions with respect to t. More precisely:

1—¢? 2t
2 ;2
Ny ie
If F1F2 = 2c and [ is the midpoint of AF'2:

A = (az;ay) = ( )

1—¢t2 2t
F2=(2¢,0), T=(ctaz/2ay/2)=(ctaqziorp)

Since D is orthogonal to AF'2, the equation of D is eql = 0 where
eql :== (z —ix) * (ax — 2% ¢) + (y — iy) *x ay

So, the hull of D is the locus of M, the intersection point of D and D’ where
D’ has equation eq2 := dif f(eql,t) = 0.
Input:

ax:=2+ax* (1-t"2)/(1+t"2);ay:=2*ax2+t/ (1+t"2);
ix:=(ax+2xc)/2; iy:=(ay/2)
egl:=normal ( (x-1x) x (ax—-2*c) +(y—1iy) xay)
eqg2:=normal (diff (eqgl, t))
factor (resultant (eql,eq2,t))

Output gives as resultant:
(—(64a?)) (22 +y?) (22a® — 22 + —2z0%c+ 22 — a* + 2022+ a*y? — )

The factor —64 - a? - (2% + y?) is always different from zero, therefore the
locus equation is:

22a? — 22® + —2za’c + 2x¢® — ot + 2a%22 + d*y? — ¢t =0

If O, the midpoint of F'1F'2, is chosen as origin, you find again the cartesian

equation of the ellipse:
X2 Y2
PR

6.29 Exact bounds for roots of a polynomial

6.29.1 Exact bounds for real roots of a polynomial: realroot
The realroot command finds bounds for the real roots of a polynomial.
e realroot takes two mandatory arguments and two optional arguments:

— P, apolynomial.
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— ¢, a postive real number.

— Optionally, a, b, two complex numbers.

e realroot (P, ¢) returns a list of vectors, where the elements of each vec-
tor are a list containing one of:

— an interval of length less than e containing a real root of the polynomial
and the multiplicity of this root.

— the value of an exact real root of the polynomial and the multiplicity of
this root.

e realroot (P, e, a,b) returns a list of vectors as above, but only for the
roots lying in the interval [a, b].

Examples.

e Find the real roots of =3 + 1.
Input:

realroot (x"3+1, 0.1)

Output:
[ -1 1]

e Find the real roots of 23 — 2 — 2z + 2.
Input:

realroot (x"3-x"2-2xx+2, 0.1)

Output:

—[1.40624999999999..1.50000000000001]
1
[1.37499999999999..1.43750000000001]

—_ = =

e Find the real roots of 3 — 22 — 2z + 2 in the interval [0; 2].
Input:

realroot (x"3-x"2-2*xx+2, 0.1,0,2)

Output:

1 1
[1.37499999999999..1.43750000000001] 1
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6.29.2 Exact bounds for complex roots of a polynomial: complexroot

The complexroot command finds bounds for the complex roots of a polyno-
mial.

e complexroot takes two mandatory arguments and two optional argu-
ments:

— P, a polynomial.
— €, a postive real number.

— Optionally, «a, 5, two complex numbers.

e complexroot (P,e) returns a list of vectors, where the elements of each
vector are one of:

— an interval (the boundaries of this interval are the opposite vertices of a
rectangle with sides parallel to the axis and containing a complex root
of the polynomial) and the multiplicity of this root.
Suppose the interval is (a1 +ib1, ag+ibs] then |a; —ag| < €,
€ and the root a + b satisfies a1 < a < ag and by < b < bs.

bl—b2’ <

— the value of an exact complex root of the polynomial and the multiplic-
ity of this root.

e complexroot (P, ¢, a, ) returns a list of vectors as above, but only for
the roots lying in the rectangle with sides parallel to the axis having «, 5 as
opposite vertices.

Examples.

e Find the roots of 23 + 1.
Input:

complexroot (x"3+1,0.1)

Output:

-1
[0.499999046325680..0.500000953674320] — [0.866024494171135..0.866026401519779] i
[0.499999046325680..0.500000953674320] + [0.866024494171135..0.866026401519779] i

Hence, for 23 + 1:

— -11is a root of multiplicity 1,

— a+ibis aroot of multiplicity 1 with 0.499999046325680 < a < 0.500000953674320
and —0.866026401519779 < b < —0.866024494171135.

— ¢ +id is a root of multiplicity 1 with 0.499999046325680 < ¢ <
0.500000953674320 and 0.866024494171135 < d < 0.866026401519779.

e Find the roots of 3 + 1 lying inside the rectangle with opposite vertices
—1,14+2x%1.
Input:
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complexroot (x"3+1,0.1,-1,1+2x1i)

Output:

-1 1
[0.499999046325680..0.500000953674320] + [0.866024494171135..0.866026401519779]1 1

6.29.3 Exact bounds for real roots of a polynomial: VAS

The VAS command uses the Vincent-Akritas-Strzebonski algorithm to find inter-
vals containing the real roots of polynomials.

e VAS takes one argument:
P, a polynomial.

e VAS (P) returns a list of intervals which contain the real roots of P, where
each interval contains exactly one root.

Examples.
o Input:
VAS (x"3 — T7xx + 7)
Output:
-4 0
L3
3
5 2
o Input:
VAS(X™5 + 2*%x74 — 6xx"3 — T7+xx"2 + T7*+x + 7)
Output:
3 3
_57_1 a_17 1,7 ) 772
o 3]
o Input:
VAS(x"3 — X2 —-2*xx + 2)
Output:

[[_3’ 0] . [17 3“
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6.29.4 Exact bounds for positive real roots of a polynomial: VAS_positive

The VAS_positive command uses the Vincent-Akritas-Strzebonski algorithm
to find intervals containing the positive real roots of polynomials.

e VAS_positive takes one argument:
P, a polynomial.

e VAS_positive (P) returns a list of intervals which contain the positive
real roots of P, where each interval contains exactly one root.

Examples.
e Input:
VAS_positive(x"3 - 7xx + 7)
Output:
3
EH

5 2

e Input:

VAS_positive(x"5 + 2xx"4 — 6xx"3 — 7*x"2 + T*x +

7)
Output:
3
5 2
o [nput:
VAS_positive(x"3 - x"2 -2+x + 2)
Output:

[1,[1,3]]
6.29.5 An upper bound for the positive real roots of a polynomial:
posubLMQ

The posubLMQ command uses the Local Max Quadratic (LMQ) Akritas-Strzebonski-
Vigklas algorithm to find upper bounds for the positive real roots of polynomials.

e posubLMQ takes one argument:
P, a polynomial.

e posubLMQ (P) returns a (non-optimal) upper bound for the positive real
roots of P.

Examples.

o Input:
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posubLMQ (x"3 - 7xx + 7)

Output:

o Input:
PosuUbLMQ (X5 + 2xx"4 — 6xx"3 — T*x"2 + T*x + 7)

Output:

o Input:
posubLMQ (x"3 - x"2 —-2xx + 2)

Output:

6.29.6 A lower bound for the positive real roots of a polynomial: pos1bdLMQ

The pos1bLMQ command uses the Local Max Quadratic (LMQ) Akritas-Strzebonski-
Vigklas algorithm to find lower bounds for the positive real roots of polynomials.

e poslbLMQ takes one argument:
P, a polynomial.

e posl1bLMQ (P) returns a (non-optimal) lower bound for the positive real

roots of P.
Examples.
o [nput:
poslbdLMQ (x"3 — 7xx + 7)
Output:
1
2
o Input:

PoslbdIMQ (x5 + 2%x74 — 6%x"3 — T7*xx"2 + Txx + 7)

Output:

o Input:
poslbdIMQ (x"3 - x"2 -2*xx + 2)

Output:

N | —
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6.29.7 Exact values of rational roots of a polynomial: rationalroot

The rationalroot command finds rational roots of polynomials.
e rationalroot takes one mandatory and two optional arguments:

— P, a polynomial.

— Optionally, a and 3, two real numbers.

e rationalroot (P) returns the list of the value of the rational roots of P
without multiplicity.

e rationalroot (P, «, ) returns the list of the rational roots of P which
are in the interval [«, f3].

Examples.

e Find the rational roots of 2 2% — 3 x 22 — 8 x x + 12:
Input:

rationalroot (2*x"3-3xx"2-8*x+12)

3
2,-2, -
|:7 72}

e Find the rational roots of 2 x 23 — 3 x 22 — 8 x z + 121in [1, 2]:
Input:

Output:

rationalroot (2*x"3-3xx"2-8*x+12,1,2)

&

e Find the rational roots of 2« 2% — 3 % 22 + 8 x 2z — 12:
Input:

Output:

rationalroot (2xx"3-3xx"2+8*x-12)

3
2
e Find the rational roots of 2« 2% — 3 % 22 + 8 x 2z — 12:
Input:

Output:

rationalroot (2+xx"3-3*x"2+8xx-12)

Output:
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e Find the rational roots of (3*x —2)?x (22 +1) = 18+ — 15%2? —d*x +4:
Input:

rationalroot (18xx"3-15%x"2-4xx+4)

=

6.29.8 Exact values of the complex rational roots of a polynomial:
crationalroot

Output:

The crationalroot command finds complex rational roots of polynomials.
e crationalroot takes one mandatory and two optional arguments:

— P, apolynomial.

— Optionally, o and 3, two complex numbers.

e crationalroot (P) returns the list of the value of the rational roots of
P without multiplicity.

e crationalroot (P, a, ) returns the list of the rational roots of P which
are in the rectangle with sides parallel to the axis having [«, ] as opposite
vertices.

Example.

Find the rational complex roots of (2% +4)* (20 —3) = 2% 23 — 3% 22 + 82z — 12:
Input:

crationalroot (2xx"3-3*x"2+8%x-12)

[21, §, —21]
2

6.30 Orthogonal polynomials

Output:

6.30.1 Legendre polynomials: legendre

The Legendre polynomial L(n,x) of degree n is a polynomial solution of the dif-
ferential equation

(% = 1)y — 22y —n(n+1)y=0

The Legendre polynomials satisfy the recurrence relation:

L(0,z) =
L(l,z) ==z
2n —1 1
L(n,z) = n :L‘L(n—l,x)—n L(n—2,z)
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These polynomials are orthogonal for the scalar product:

+1
< f,g>= 1 f(z)g(r) dx

The 1egendre command finds the Legendre polynomials.
e legendre takes one mandatory argument and one optional argument:

— n, an integer.

— Optionally, z, a variable name (by default x).

e legendre (n(,z)) returns the Legendre polynomial of degree n.

Examples.
o Input:
legendre (4)
Output:
35 4, 16 4 3
g7 T 1T T3
e [nput:
legendre (4,vy)
Output:
85, 15, 3
s T 4Y Ty

6.30.2 Hermite polynomial: hermite

The Hermite polynomials H (n, x) satisfy the recurrence relation:

H(0,z)=1
H(l,x) =2x
H(n,x) =2xH(n—-1,2) —2(n—1)H(n — 2,x)

These polynomials are orthogonal for the scalar product:

—+00 9
<fig>= / f(@)g(z)e da

—0oQ
The hermite command finds the Hermite polynomials.

e hermite takes one mandatory argument and one optional argument:

— n, an integer.

— Optionally, x, a variable name (by default x).

e hermite (n(,z)) returns the Hermite polynomial of degree n.
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Examples.
o [nput:
hermite (6)
Output:
6420 — 4802 4 7202% — 120
o Input:
hermite (6,V)
Output:

64y° — 480y* + 720y% — 120

6.30.3 Laguerre polynomials: laguerre

The Laguerre polynomial of degree n and parameter a satisfy the following recur-
rence relation:

L(0,a,x2) =1
L(l,a,x)=14+a—x
2 —1- -1
L(n,a,z) = ML(n— 1,a,2) — wL(n— 2,a,x)

n n

These polynomials are orthogonal for the scalar product

+o0
< fig>= /0 f(2)g(x)ate%dz

The laguerre command finds the Laguerre polynomials.
e laguerre takes one mandatory argument and two optional arguments:

— n, an integer.
— Optionally, z, a variable name (by default x).

— Optionally, a, a parameter name (by default a).

e laguerre (n{,z,a)) returns the Laguerre polynomial of degree n and
parameter a.

Examples.

e Input:

laguerre (2)

Output:
1 3 1
§a2—am—|—§a+§x2—2x+1
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o [nput:
laguerre(2,y)
Output:
! T
—a“ —a —a+ —y“ —
2 yraamay —
o [nput:
laguerre(2,vy,b)
Output:

%bQ—by+gb+%y2—2y+1
6.30.4 Tchebychev polynomials of the first kind: tchebyshevl
The Tchebychev polynomial of first kind 7'(n, x) is defined by
T (n,x) = cos(n arccos(x))
and satisfy the recurrence relation:
T00,z)=1, T(l,z)==z, T(n,z)=22T(n—1,2)—T(n—2,x)
The polynomials 7'(n, z) are orthogonal for the scalar product

A fagle)
1 V1—2?

The tchebyshevl command finds the Tchebychev polynomials of the first
kind.

< f,g>=

e tchebyshevl takes one mandatory argument and one optional argument:

— n, an integer.

— Optionally z, a variable name (by default x).

e tchebyshevl (n(,z)) returns the Tchebychev polynomial of first kind
of degree n.

Examples.
o [nput:
tchebyshevl (4)

Output:
8zt —8z2 41

o Input:
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tchebyshevl (4, y)

Output:
Syt — 8yt +1
Indeed
cos(4z) = Re((cos(x) + isin(z))?)

cos(x) — 6 cos(x)?(1 — cos(z)?) + ((1 — cos(z)?)?
= T(4,cos(x))

6.30.5 Tchebychev polynomial of the second kind: tchebyshev2
The Tchebychev polynomial of second kind U (n, x) is defined by:

sin((n + 1). arccos(x))

sin(arccos(x))

U(n,x) =

or equivalently:

sin((n 4+ 1)z) = sin(z) x U(n, cos(x))
These satisfy the recurrence relation:

U0,z) =1

U(l,z) =2z

U(n,z) =22U(n—1,z) —U(n — 2,z)
The polynomials U(n, ) are orthogonal for the scalar product

+1

< f,g>= f@)g(x)V1—a?dx

The tchebyshev2 command finds the Tchebychev polynomials of the first
kind.

e tchebyshev?2 takes one mandatory argument and one optional argument:

— n, an integer.

— Optionally x, a variable name (by default x).

e tchebyshev2 (n (,z)) returns the Tchebychev polynomial of second kind
of degree n.

Examples.
o Input:

tchebyshev2 (3)

Output:
823 — 4z
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o Input:
tchebyshev2 (3,y)
Output:
8y3 — 4y
Indeed:

sin(4x) = sin(z) * (8 * cos(z)® — 4 cos(z)) = sin(z) * U(3, cos(x))

6.31 Grobner basis and Grobner reduction

6.31.1 Grobner basis: gbasis

A set of polynomials {F7y, ..., Fx} generate an ideal I; namely, I is the set of
all linear combinations of the F;. Given such an ideal, a Grobner basis for [ is a
subset G = {G1,...,Gy} of I such that for any F in I, there is a G}, in G such
that the leading monomial of G, divides the leading monomial of F'. (Note that
the leading monomial depends on a fixed ordering of the monomials.)

If G is a Grobner basis for such an ideal I, then for any nonzero F in I, if you
do a Euclidean division of F' by the corresponding G, take the remainder of this
division, do again the same and so on, at some point you get a remainder of zero.

Example.
Let I be the ideal generated by {z3 — 2xy, 2%y — 2y + z} with the standard
lexicographic order on the monomials. One Grobner basis for I is

G= {gl(xvy) = .CEZ,QQ(CC,y) = ‘Ty?g?)(xvy) = 2y2 - .’E}

Consider the element F(x,y) = 222y — 322 + 6zy — 4y? + 22 of I. The leading
monomial z2y of F(z,y) is divisible by the leading monomial z2 of gy (z,y).
Dividing F'(x,y) by g1(z, y) leaves a remainder of R (x,y) = 6zy—4y*+2x. The
leading monomial of R (x,y), which is zy, is divisible by the leading monomial
of ga(z,y), which is xy. Dividing Ry (z,y) by g2(x,y) leaves a remainder of
Ro(7,y) = —4y? + 2z. Finally, the leading monomial of Rs(z, ), which is y?, is
divisible by the leading monomial of g3(z, ), which is 32. Dividing Rs(z,%) by
g3(z,y) leaves a remainder of 0.
The gbasis command computes Grobner bases.

e gbasis takes two mandatory arguments and three optional arguments:

— polys, a list of polynomials.
— vars, a list of the variable names.
— Optionally, order, which can be one of:

* plex, to order the monomials lexicographically (this is the de-
fault).

* tdeg, to order the monomials first by total degree then by lexico-
graphic order.

* revlex, to order the monomials reverse lexicographically.
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— Optionally, with_cocoa=boolean, where boolean can be true or
false. A value of t rue means to use the CoCoA library to compute
the Grobner basis, a value of false means not to use it.

A value of t rue is recommended, but requires that CoCoA support be
compiled into Xcas.

— Optionally, with_f5=boolean, where boolean canbe t rue or false.
A value of t rue means to use the F5 algorithm of the CoCoA library,
a value of false means not to use it. If this is t rue, then the poly-
nomials are homogenized and so the specified order is not used.

e gbasis (polys,vars {,orderwith_cocoa=boolean, with_f5=boolean))
returns a Grobner basis of the ideal spanned by polynomials in polys.

Note that the lexicographic order depends on the order the variables are given
in vars. For example, if vars=[x,vy, z], then x" 2%y~ 4xz"3 comes before
x" 2%y 3%z 4,butifvars=[x,z,y],thenx"2xy~4xz" 3 comes after x " 2xy "~ 3%z " 4.

Examples.
o Input:
gbasis ([2xxxy-y " 2,x"2-2+x*xy], [X,V])
Output:
[y, 2% — v, 22y — ¢
Input:

gbasis ([x1+x2+x3, x1*x2+x1*x3+x2%x3,x1*x2xx3-117,
[x1,x2,x3],tdeg,with_cocoa=false)

Output:
[:z% -1, —a:% — Toxy — $§7CC1 + x2 + xg]
6.31.2 Grobner reduction: greduce

The greduce command will find a polynomial modulo I, where [ is an ideal as
in Section 6.31.1 p.402.

e greduce takes three arguments mandatory arguments and three optional
arguments:

P, a multivariate polynomial.

gbasis, a vector made of polynomials which is supposed to be a Grob-
ner basis.

vars, and a vector of variable names.

Optionally, the same ordering options and CoCaA options as gbasis
(see Section 6.31.1 p.402).

e greduce (P,gbasis,vars (,options)) returns the reduction of P with re-
spect to the Grobner basis gbasis. It is 0 if and only if the polynomial belongs
to the ideal.
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Examples.

e Input:
greduce (xxy—-1, [x"2-y"2,2xxxy-y"2,v" 31, [x,V])

Output:
5Y

that is to say xy — 1 = %yQ — 1 mod I where I is the ideal generated by
the Grobner basis [2? — y?, 2zy — y2, y?], because 2y — 1 is the Euclidean
division remainder of zy — 1 by G = 2xy — .

o Input:

greduce (x172%xx372, [x373-1, -x2"2-x2*x3-x3"2,x1+x2+x3],
[x1,x2,x3],tdeqg)

Output:
Z2

6.31.3 Testing if a polynomial or list of polynomials belongs to an ideal
given by a Grobner basis: in_ideal

The in_ideal command determines whether or not a polynomial is in an ideal.

e in_ideal takes three mandatory arguments and one optional argument:

P, a polynomial or a list of polynomials.

gbasis, a list giving a Grobner basis.

vars, the list of polynomial variables.
If gbasis is computed with a different order from the default, then vars
must use the same order.

Optionally, an optional argument from gbasic (see Section 6.31.1
p.402), such as plex or tdeg. By default it will be plex.

e in_ideal (P,gbasis,vars (,option)) returns the value t rue (1) or false
(0), or a list of trues and falses, indicating whether or not the polyno-
mial(s) in P are in the ideal generated by gbasis using the variables in vars.

Examples.

o [nput:
in_ideal ((x+y) "2, [y 2,x"2 + 2xxxvy], [X,v])

Output:
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o Input:

in_ideal ([ (x+y) "2, x+y], [y 2,x"242xxxy], [x,¥])

Output:
[1,0]
o Input:
in_ideal (x+y, [y 2,x"2+2xx*y], [X,V])
Output:

6.31.4 Building a polynomial from its evaluation: genpoly

The genpoly command finds a polynomial which evaluates to a given polyno-
mial.

e genpoly takes three arguments:

— P, apolynomial with n — 1 variables.
— b, an integer.

— 1z, the name of a variable.

e genpoly (P,b,x) returns the polynomial ) with n variables (the n — 1
variables in P and the variable x) such that the coefficients of () are in the
interval (—b/2,b/2] and Q|,—, = P. In other words, P is written in base b
but using the convention that the Euclidean remainder belongs to (—b/2,b/2]
(this convention is also known as s-mod representation).

Examples.
e Input:
genpoly (61, 6, x)

Output:
22 — 2z 41

Indeed 61 divided by 6 is 10 with remainder 1, then 10 divided by 6 is 2 with
remainder -2 (instead of the usual quotient 1 and remainder 4 out of bounds),

61 =2%6>—2%6+1
o Input:
genpoly (5, 6, x)

Output:
x—1

Indeed: 5 =6 — 1.
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o [nput:
genpoly (7,6, x)

Output:
z+1

Indeed: 7=6+1

o [nput:
genpoly (7+xy+5, 6, x)

Output:
zy+zx+y—1

Indeed: zxy+zx+y—1=ylxz+1)+ (z—1).
e Input:
genpoly (7+y+5%xz~2, 6, x)

Output:

xy+3:22+y—z2

Indeed: zxy+axxz+y—z=y*x(x+1)+2z*(x—1).

6.32 Rational functions

6.32.1 Numerator: getNum

The get Num command finds the numerator of an unreduced rational function.

e getNum takes one argument:
rat, a rational function.

e getNum (rat) returns the numerator of rat.

Unlike numer (see Section 6.32.2 p.407), textttgetNum does not simplify the ex-
pression before extracting the numerator.

Examples.
o I[nput:
getNum( (x"2-1)/ (x-1))
Output:
22 —1
e Input:
getNum ( (x"2+2+x+1)/(x"2-1))
Output:

22 +20+1
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6.32.2 Numerator after simplification: numer

The numer command finds the numerator of a rational function, after it has been
reduced. (See also 6.7.3.)

e numer takes one argument:
rat, a rational function.

e numer (rat) returns the numerator of the irreducible representation of rat.

Examples.
o Input:
numer ((x"2-1)/ (x-1))
Output:
r+1
o Input:
numer ((x"2+2*x+1)/(x"2-1))
Output:

r+1

6.32.3 Denominator: getDenom

The getDenom command finds the denominator of an unreduced rational func-
tion.

e getDenom takes one argument:
rat, a rational function.

e getDenom (rat) returns the denominator of rat.

Unlike denom (see Section 6.32.4 p.408), textttgetDenom does not simplify the
expression before extracting the denominator.

Examples.
o [nput:
getDenom ((x"2-1)/ (x-1))
Output:
z—1
o Input:
getDenom ( (x"2+2xx+1) /(x"2-1))
Output:

22 -1
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6.32.4 Denominator after simplification: denom

The denom command finds the denominator of a rational function, after it has been
reduced. (See also 6.7.4.)

e denom takes one argument:
rat, a rational function.

e denom (rat) returns the denominator of the irreducible representation of

rat.
Examples.
e [nput:
denom ((x"2-1)/(x-1))
Output:
1
e Input:
denom ( (x"2+2*xx+1) /(x"2-1))
Output:

r—1

6.32.5 Numerator and denominator: £2nd £xnd

The £2nd command finds the numerator and denominator of rational function,
after simplification.
fxnd is a synonym for £2nd.

e f2nd takes one argument:
rat, a rational function.

e £2nd (rat) returns the list of the numerator and the denominator of the ir-
reducible representation of rat.

Examples.
e Input:
f2nd ((x"2-1)/ (x-1))
Output:
[z +1,1]
e [nput:
f2nd ((x"242xx+1)/(x"2-1))
Output:

[+ 1,z —1]
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6.32.6 Simplifying: simp2

The simp2 command removes common factors from a pair of polynomials, as
if reducing the numerator and denominator of a rational function. (See also Sec-
tion 6.7.6 p.162.)

e simp?2 takes two arguments:
P and @, two polynomials (or two integers, see Section 6.7.6 p.162).

e simp2 (P, Q) returns a list of two polynomials seen as the numerator and
denominator of the irreducible representation of the rational function P/Q.

Example.
Input:

simp2 (x°3-1,x"2-1)
Output:
[x2—|—1:+1,x+1]

6.32.7 Common denominator: comDenom

The comDenom command finds the common denominator of a sum of rational
functions and adds them.

e comDenom takes one argument:
sum, a sum of rational functions.

e comDenom (sum) returns sum with the terms combined over a common

denominator.
Example.
Input:
comDenom (x—-1/ (x-1)-1/(x"2-1))
Output:
a3 —2x —2
2 -1

6.32.8 Polynomial and fractional part: propfrac

The propfrac command rewrites a rational function as a polynomial plus a ra-
tional function whose numerator has smaller degree than the numberator; namely,

it writes gg) (after reduction), as:
Q(x) + gig where R(x) = 0 or 0 < degree(R(z)) < degree(B(z))

(See also Section 6.7.2 p.160.)

e propfrac takes one argument:
rat, a rational function.
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e propfrac (rat) returns the sum of a polynomial and rational function
which add to rat, and with the degree of the numerator of the rational func-
tion less that the degree of the denominator.

Example.
Input:
propfrac ( (5*x+3) x (x—1) / (x+2))
Output:
21
S5t — 12+ ——
T+ 2

6.32.9 Partial fraction expansion: partfrac cpartfrac

The partfrac and cpartfrac commands find the partial fraction expansion
of a rational function.

e partfrac takes one argument:
rat, a rational function.

e partfrac (rat) returns the partial fraction expansion of rat.
The partfrac command is equivalent to the convert command (see
Section 6.23.26 p.318) with parfrac (or partfrac or fullparfrac)
as option.

e cpartfrac (rat) behaves just like part frac, except that it always finds
the partial fraction expansion over C.

Example.
Find the partial fraction expansion of:
x® =223 41
x4 — 223 + 222 — 22+ 1

over the real numbers. Input (in real mode):
partfrac ((x"5-2+x"34+1)/(X"4-2xx"3+2xx"2-2%x+1))
Output:
x—3
+ 2
2(x—1)  2(x22+1)
To find the partial fraction decomposition over the complex numbers, you can ei-

ther put Xcas in complex mode (see Section 3.5.5 p.71) or use cpartfrac.
Input (in complex mode):

rT+2—

partfrac ((x"5-2+x"341)/(X"4-2xx"3+2xx"2-2%x+1))
or, in real or complex mode:

cpartfrac ((x"5-2xx"34+1) / (x"4-2+x"34+2%xx"2-2xx+1))
Output:

1 —-1-2i 2+1

Y P B OBy FoRiy S O popry
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6.33 Exact roots and poles

6.33.1 Roots and poles of a rational function: £root

The froot command finds roots and poles of a rational function.

e froot takes one argument:
rat, a rational function.

e froot (rat) returns a vector whose components are the roots and the poles
of rat, each one followed by its multiplicity.
If Xcas can not find the exact values of the roots or poles, it tries to find
approximate values if rat has numeric coefficients.

Examples.

o [nput:
froot ((x75-2%x"4+x"3)/ (x-2))

Output:
[1,2,0,3,2, —1]
5_ 9.4 3
Hence, for F(z) = roa
T —2
— 1 is aroot of multiplicity 2,
— 01is a root of multiplicity 3,

— 2is apole of order 1.

o [nput:
froot ((x"3-2*xx"2+1)/ (x-2))
Output:
1,1, \/52“,1, _\/2“,1,2,—1
Remark.

To find the complex roots and poles, put Xcas in complex mode (check Complex
in the cas configuration, red button giving the state line; see Section 3.5.5 p.71).

Example.
Input (in complex mode):

froot ((x"2+1)/(x-2))

Output:
[—i,1,i,1,2,—1]
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6.33.2 Rational function given by roots and poles: fcoeff
The fcoeff command finds a rational function given its roots and poles.

e fcoeff takes one argument:
roots, a list consisting of the roots and poles of a rational function, each one
followed by its multiplicity.

e fcoeff (roots) returns the rational function with the given roots and poles.

Example.
Input:

fcoeff ([1,2,0,3,2,-11])

Output:
(x—1)2%2(xz—2)""

6.34 Computing in Z/pZ or in Z /pZ[x]

The way to compute over Z/pZ or over Z/pZ|x] depends on the syntax mode:

e In Xcas mode, an object n over Z/pZ is written n%p.
The representation is the symmetric representation:
11%13 returns —2%13.

Examples.

- Aninteger n in Z/137Z

n:=12%13.

a vector V in Z/13Z
V:=[1,2,3]1%130rv:=[1%13,2%13,3%13].
amatrix A in Z/13Z

A:=[[1,2,31,[2,3,4]1]1%13or
A:=[[1%13,2%13,3%13],[[2%13,3%13,4%13]1].
a polynomial A in Z/13Z[z] in symbolic representation
A:=(2*xx"2+3*x-1)%13 or
A:=2%13*x"2+3%13xx-1%13.

a polynomial A in Z/13Z[z] in list representation
A:=polyl[l,2,3]%130orA:=polyl[1%13,2%13,3%13].

To recover an object o with integer coefficients instead of modular coeffi-
cients, input o % 0. For example:
0:=4%7; :

Output:
0%0 utpt

Input:
-3

Remark. Most Xcas functions that work on integers or polynomials with
integer coefficients will often work the same on Z/pZ or Z/pZ|x], with the
obvious exception that the input and output will be modular. They will be
listed in the remaining subsections. For some commands in Z/pZ or in
Z/pZ]x], p must be a prime integer.
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e In Maple mode, integers modulo p are represented like usual integers in-
stead of using specific modular integers. To avoid confusion with normal
commands, modular commands are written with a capital letter (inert form)
and followed by the mod command.

The Maple commands will be discussed in Section 6.35 p.426.

6.34.1 Expanding and reducing: normal

The normal command expands and reduces expressions in Z/pZ[x]. (See also
Section 6.12.13 p.208.)

e normal takes one argument:
expr, a modular expression.

e normal (expr) returns the expanded irreducible representation of expr.

Example.
Input:

normal ( ((2*x"2+12)*( 5*x—-4))%13)
Output:

(=3)%13) 2> + (5% 13) 2* 4+ ((—=5) % 13) z + 4 % 13

6.34.2 Addition in Z/pZ or in Z/pZ|x]: +

The + operator adds two integers in Z/pZ or two polynomials in Z/pZ|x]. (See
also Section 6.8.2 p.170.) For polynomial expressions, use the normal command
to simplify.
Examples.

e For integers in Z/pZ:

Input:
3%13+10%13
Output:
0% 13
e For polynomials with coefficients in Z/pZ:
Input:
normal ((11*x+5 )% 13+ (8*x+6)%13)
or:
normal ((11% 13*x+5%13)+ (8% 13*x+6%13))

Output:

(6%13)z + (—2) % 13
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6.34.3 Subtraction in Z/pZ or in Z /pZ|z]: -

The — operator subtracts two integers in Z/pZ or two polynomials in Z/pZ|x].
(See also Section 6.8.2 p.170.) For polynomial expressions, use the normal com-
mand to simplify.

Examples.

e For integers in Z /pZ:

Input:
31%13-10%13
Output:
(—5) % 13

e For polynomials with coefficients in Z/pZ.:

Input:

normal ((11*x+5)%13—-(8xx+6)%13)
or:
normal (11% 13%x+5%13-(8% 13xx+6%13))
Output:

(3% 13)z + (—1) % 13

6.34.4 Multiplication in Z/pZ or in Z/pZ|x]: *

The * operator multiplies two integers in Z/pZ or two polynomials in Z/pZ|x].
(See also Section 6.8.2 p.170.) For polynomial expressions, use the normal com-
mand to simplify.

Examples.

e For integers in Z /pZ:

Input:
31%13x10%13
Output:
(—2) % 13

e For polynomials with coefficients in Z/pZ:

Input:

normal ( (11+*x+5)%13% (8xx+6 )% 13)
or:
normal ((11% 13%x+5%13) % (8% 13xx+6%13))
Output:

((=3) % 13) 2% + ((—24) % 13) = + 17 % 13
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6.34.5 Euclidean quotient : quo

The quo command finds the quotient of of two polynomials (see also Section 6.28.2
p.372).

e quo takes two mandatory arguments and one optional argument:

— P and @, two polynomials with coefficients in Z/pZ.

— Optionally z, the variable (by default x), if P and () are given as ex-
pressions.

e quo (P,Q (,z)) returns the Euclidean quotient of P divided by Q.

Example.
Input:

quo ( (x"3+x"2+1) %13, (2%xx"2+4)%13)
Output:

((—=6) % 13) x4 (—6) % 13

r+1, bxr—4

5 )+ and —3*%4 = —6%2 = 1 mod 13.

Indeed 2° +2%+1 = (22 +4)(

6.34.6 Euclidean remainder: rem

The rem command finds the remainder of the Euclidean division of two polyno-
mials (see also Section 6.28.3 p.374).

e rem takes two mandatory arguments and one optional argument:

— P and @, two polynomials with coefficients in Z/pZ.

— Optionally z, the variable (by default x), if P and () are given as ex-
pressions.

e rem (P,Q (,z)) returns the remainder of the Euclidean division of P di-

vided by Q.
Example.
Input:
rem((x"3+x72+1)%13, (2xx"2+4)%13)
Output:

((—2) % 13)z + (1) % 13

r+1. bxr—4

Indeed 3 +2%+1 = (222 +4)(
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6.34.7 Euclidean quotient and euclidean remainder: quorem

The quorem command finds the quotient and remainder of the Euclidean division
of two polynomials (see also Section 6.5.10 p.142 and Section 6.28.4 p.375).

e quorem takes two mandatory arguments and one optional argument:

- P and @, two polynomials with coefficients in Z/pZ.
— Optionally z, the variable (by default x), if P and () are given as ex-
pressions.

e quorem (P, Q (,z)) returns the list of the quotient and remainder of the
Euclidean division of P and Q).

Example.
Input:

quorem ( (x"3+x72+1) %13, (2+x"2+4)%13)
Output:

[((—6) % 13) 2 + (—6) % 13, (—2) % 13)  + (—1) % 13]

1 oxr — 4
Indeedx3+m2+1:(2$2+4)(x;_ )+ x4

and —3%4 =—-6%x2=1 mod 13.

6.34.8 Division in Z/pZ or in Z/pZ[z]: /

The / operator divides two integers in Z/pZ or two polynomials A and B in
Z/pZ]z]. (See also Section 6.8.2 p.170.) Since Z/pZ is only a field if p is prime,
the quotient is only guaranteed to exist if p is prime (unless the denominator is 0
(mod p)).

e For integers in Z/pZ:
Example.
— Input:
5%13/2% 13

Since 13 is prime, you get:
Output:
(—4) % 13
— Input:
5%14/3% 14

Since 3 (mod 1)4 is invertible in Z/14Z, you get:
Output:
(—3) % 14

— Input:
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5%14/7% 14

Since 7 (mod 1)4 is not invertible in Z/147Z, you will get an error:
Output:

Not invertible Error: Bad Argument Value

e For polynomials, the result of P/() is its irreducible representation in Z/pZ[z].

Example.
Input:

(2%xx"2+5) %13/ (5*%x"2+2%x-3)%13
Output:

(6%13)x+1%13
(2%13)z + (2% 13) % 13

6.34.9 Power in Z/pZ and in Z /pZ|x]: *

The ~ operator raises modular numbers and polynomials to powers in Z/pZ. (See
also Section 6.8.2 p.170.) For polynomial expressions, use the normal command
to simplify. Xcas uses the binary power algorithm to compute this.

Examples.
o Input:
(5%13) "2
Output:
(-1) %13
o Input:
normal ( ((2*xx+1)%13)"5)
Output:

(6 % 13) 25+(2 % 13) z14+(2 % 13) 23+ (1 % 13) 2°+((—3) % 13) 2+1%13
because 10 = —3 ( mod 13), 40 =1 ( mod 13), 80 =2 ( mod 13), 32 =
6 (mod 13).

6.34.10 Computing ¢ mod p: powmod powermod

For integers a,n and p, the powmod finds a™ mod p.
powermod is a synonym for powmod.

e powmod takes three arguments:
a,n and p, integers.

e powmod (a,n,p) returns a mod pin [0,p — 1].
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Examples.
e Input:
powmod (5, 2, 13)
Output:
12
o [nput:
powmod (5,2,12)
Output:

6.34.11 Inverse in Z/pZ: inv inverse /

The inv command finds the inverse of an integer in Z/pZ.
inverse is a synonym for inv.

Since Z/pZ is only a field if p is prime, the inverse is only guaranteed to exist
if p is prime (and the integer is non-zero).

e inv takes one argument:
n%p, an element of Z /pZ.

e inv (n%p) returns the reciprocal of n%p) in Z/pZ.

Example.
Input:

inv (3%13)
Output:

(—4) % 13

Indeed 3 x —4 = —12 =1 (mod 13).
You can also find the reciprocal using division: Input:

1/(3%13)
Output:
(—4) % 13

6.34.12 Rebuilding a fraction from its value modulo p: fracmod iratrecon

Given an integer n and a modulus p, the fracmod (or iratrecon, for Maple
compatibility) command finds the rational number equal to n mod p, where both
the numerator and denominator are not greater than /p/2 in absolute value.

e fracmod (or iratrecon) takes two arguments:
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— n, an integer (representing a fraction).

— p, an integer (the modulus).

e fracmod (n,p) (or iratrecon (n,p)) returns, if possible, a fraction

a/b such that
a=nxb (modp)
VP VP
_vE < V&
2 ~1=7
0§b<g

In other words, n = a/b (mod p).

Examples.
o Input:
fracmod(3,13)
Output:
1
4

Indeed: 3 x —4 = —12 =1 (mod 13), hence 3 = —1/4%13.
Note that this means:

Input:
-1/4 % 13
Output:
3% 13
o Input:
fracmod (13,121)
Output:
4
9

Indeed: 13 x —9 = —117 = 4 (mod 121) hence 13 = —4/9%13.

6.34.13 GCDin Z/pZ[z]: ged

The gcd command finds the greatest common divisor of two polynomials with
coefficients in Z/pZ (for prime p). (See also Section 6.5.1 p.133 and Section 6.28.5
p.375.)

e gcd takes two arguments:
P and @, two polynomials with coefficients in Z/pZ (p must be prime).
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e gcd (P, Q) returns the GCD of P and ) computed in Z /pZ[z]

Example.
Input:

gcd ((2*x72+5) %13, (5xx"2+2%x-3)%13)
Output:

(1%13)z+2%13

6.34.14 Factoring over 7Z/pZ[x]: factor factoriser

The factor command factors polynomials with coefficients in Z/pZ. (See also
Section 6.12.10 p.205.)

e factor takes one argument:
P, a polynomial with coefficients in Z/pZ (p must be prime).

e factor (P) returns P in factored form.

Example.
Input:

factor ((=3*x"3+5%x"2-5xx+4)%13)
Output:

((=3) % 13) (1% 13) z + (—6) % 13) (1 % 13) 22 + 6 % 13)

6.34.15 Determinant of a matrix in Z/pZ: det

The det command can find the determinant of a matrix with elements in Z/pZ.
(See also Section 6.47.4 p.534.)

e det takes one argument:
A, a matrix with elements in Z/pZ.

e det (A) returns the determinant of A.
Computations are done in Z/pZ by Gaussian reduction.

Example.
Input:

det([[1,2,9]1%13,[3,10,0]1%13,[3,11,1]1%13])

or:
det([[1,2,9]1,13,10,0],10[3,11,1]11%13)
Output:
5% 13
5%13

Hence, in Z/13Z, the determinant of M = [[1,2,9],[3,10,0],[3,11,1]] is 5%13
(in Z, det (M) =31).
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6.34.16 Inverse of a matrix with coefficients in Z/pZ: inv inverse

The inv command can find the inverse of a matrix with elements in Z/pZ. (See
also Section 6.47.2 p.534.)
inverse is a synonym for inv.

e inv takes one argument:
A, a matrix in Z/pZ.

e inv (A) returns the inverse of the matrix A.

Example.
Input:

inv([[1,2,9]1%13,[3,10,01%13,[3,11,11%131)

or:
inverse ([[1,2,91%13,[3,10,0]1%13,[3,11,11%131])
or:
inv(I[[1,2,9],1[3,10,0]1,13,11,1]11%13)
or:
inverse([[1,2,9],13,10,0],[3,11,1]1]1%13)
Output:

2%13  (—4) %13 (=5) %13
2%13  0%13  (=5)%13
(—2)%13 (-1)%13 6%13

6.34.17 Row reduction to echelon form in Z/pZ: rref

The rref command can find the reduced row echelon form of a matrix with ele-
ments in Z/pZ. (See 6.56.3):

e rref takes one argument:
A, a matrix in Z/pZ.

e rref (A) returns the echelon form of A.

Example.
Input:

rref ([[0, 2, 91%15,[1,10,1]1%15,([2,3,41%15])

Output:
1%15 0%15 0% 15
0%15 1%15 0%15
0%15 0%15 1%15

This can be used to solve a linear system of equations with coefficients in Z /pZ

by rewriting it in matrix form
A-X=B8B
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rref can then take as argument the augmented matrix of the system (the matrix
obtained by augmenting matrix A to the right with the column vector B).

rref will returns a matrix [A;, B1| where A; has s on its principal diagonal and
zeros outside. The solutions in Z/pZ of:

A X =By
are the same as the solutions of:
AxX=B
A-X=B
Example.
Solve in Z/137Z
{ r+ 2y =9
3-z4+10-y = 0
Input:
rref([[1, 2, 9]%13,[3,10,0]%13])
or:
rref([[1, 2, 91,13,10,011)%13
Output:

1%13 0%13 3%13
0%13 1%13 3%13

hence x =3 % 13 and y = 3 % 13.

6.34.18 Construction of a Galois field: GF

A Galois field is a finite field. A Galois field will have characteristic p for some
prime number p, and the order will be p™ for some integer n. Any Galois field of
order p™ will be isomorphic to Z/pZ[X]/I, where I is the ideal generated by an
irreducible polynomial P(X) in Z/pZ[X]

The GF command creates Galois fields.

e GF takes two mandatory arguments and one optional argument:

— p, a prime number.

- n, an integer greater than 1 (or an irreducible polynomial over Z/pZ[ X]).
If n is an integer, the first two arguments can be combined and entered
as a prime power p".

— Optionally vars, either the name of a variable or a list of two or three
variables. These variables must be symbolic, so you should purge them
if necessary.

e GF (p,n (vars)) returns a Galois field of characteristic p having p™ elements.
The output will look like GF (p, P(k), [k, K, g],undef) where:

— pis the characteristic.
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P(k) is an irreducible polynomial generating an ideal I in Z/pZ[X],
the Galois field being the quotient of Z /pZ[X] by 1.

k is the name of the polynomial variable.

K is the name of the Galois field (which will be given to a free vari-
able).

g is a generator of the multiplicative group K*. You can build elements
of the field with polynomials in g.

If the optional argument vars is given:

— vars consists of a variable name, then g is that variable name.

— If vars consists of a pair of variable names, then k£ will be the first
variable and K will be the second variable.
In this case, there is no generator given and the elements of K must be
given by K (P(k)) for a polynomial P (k).

— If vars consists of three variable names, then % will be the first variable,
K will be the second variable and g will be the third variable.
The elements of the field will be 0, g, g2, ..., g"?" ~2.
Example.
Input:
GF (2, 8)
Output:
GF(2,k8 + k' + k3 + k? + 1, [k, K, g] , undef)

The field K has 2% = 256 elements and g generates the multiplicative group of this
field ({1,9,97%,...,9%*}.

The elements of this field can be written as polynomials in g or as K (P(k)) , where
P(k) is a polynomial in k. Input:
g~ 9
or: Input:
K(k"9)
or: Output:
(9°+g'+9°+9)

indeedg®* =g+ +¢>+ 1,50 =g+ g* + ¢* + ¢.

Once a Galois field is created in Xcas, you can use elements of the field to

create polynomials and matrices, and use the usual operators on them, such as +,
-, %, /,",1inv, sgrt, quo, rem, quorem, diff, factor, gcd, egcd, etc.

Examples.

e Compute the inverse of a matrix in a Galois field:
Input:

GF (3,5,b):; A:= [[1,b], [b,1]]:; inv(A)
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Output:
B +02—b)  (=b* =0 +b?)
(=b* =03 +0%) (b +b%—b)

e Factor a polynomial over a Galois field:
Input:

GF (5,3,c):; p:= x"2-c-1:; factor(p)

Output:
(1% 5)2+ (-2 +2-0)) (1%5) a0+ (2-¢ = 2-0))

There are still some limitations due to an incomplete implementation of some
algorithms, such as multivariate factorization when the polynomial is not unitary.
Example:
Input:

G(x)"255
Output should be the unit, indeed:
GF(2,Xx"8-x"6-x"4-x"3-x"2-x-1,%,1)

As one can see in these examples, the output contains many times the same in-
formation that you would prefer not to see if you work many times with the same
field. For this reason, the definition of a Galois field may have an optional argu-
ment, a variable name which will be used thereafter to represent elements of the
field. Since you will also most likely want to modify the name of the indeterminate,
the field name is grouped with the variable name in a list passed as third argument
to GF. Note that these two variable names must be quoted.

Example.
Input:
G:=GF (2,2, ['w',"G"]):; G(w"2)
Output:
Done, G(w+1)

Input:

G(w™3)
Output:

G(1)

Hence, the elements of GF (2, 2) are G(0) ,G (1) ,G(w) ,G(w"2)=G (w+1).
We may also impose the irreducible primitive polynomial that we wish to use,
by putting it as second argument (instead of n), for example:

G:=GF (2, w"8+w"6+w"3+w"2+1, ["w’','G"])
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If the polynomial is not primitive, Xcas will replace it automatically by a primitive
polynomial, for example:
Input:

G:=GF (2,w"8+w"T7+w"5+w+1, ["w',’'G"])
Output:

G:=GF (2,w"8-w"6-w"3-w"2-1, ["w’,’G"],undef)
6.34.19 Factoring a polynomial with coefficients in a Galois field: factor

The factor command can factor univariate polynomials with coefficients in a
Galois field.

e factor takes one mandatory argument and one optional argument:

— expr, an expression or a list of expressions.

— Optionally, o, to specify an extension field.

e factor (expr) returns expr factored over the field of its coefficients, with
the addition of 7 in complex mode (see Section 3.5.5 p.71). If sgrt is en-
abled in the Cas configuration (see Section 3.5.7 p.72), polynomials of order
2 are factorized in complex mode or in real mode if the discriminant is posi-
tive.
factor (expr, «) returns expr factored over F'[a], where F is the field of
coefficients of expr.

e cfactor factors like factor, except the field includes ¢ whether in real
or complex mode.

Examples.

factor can also factorize a univariate polynomial with coefficients in a Galois
field.
Input (for example to have G=Fy):

G:=GF (2,2, ['w',"G"])

Output:
GF (2,w"2+w+1, [w,G],undef)
Input (for example):
a:=G(w)
factor(a”2*«x"2+1)
Output:

(G(w+1)) * (x+G(w+1l)) "2
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6.35 Computing in Z /pZ|x| using Maple syntax

You can set Xcas to work in Maple mode rather than native Xcas mode (see
Section 3.5.2 p.70).

6.35.1 Euclidean quotient: Quo

In Xcas mode, Quo is simply the inert form of quo; namely, it returns the Eu-
clidean quotient of two polynomials without evaluation. (See section Section 6.28.2
p.372.) In Maple mode, the Quo command can additionally be used in conjunc-
tion with mod to compute the Euclidean quotient of two polynomials with coeffi-
cients in Z/pZ.

e (In Maple mode.)
Quo takes two arguments:
P and @, two polynomials with coefficients in Z/pZ.

e Quo (P, Q) returns the Euclidean quotient of P divided by Q).

Examples.

o [nput (in Xcas mode):
Quo ((x"3+x724+1) mod 13, (2+xx"2+4) mod 13)
Output:

quo (1% 13) 2 + (1% 13) 2> + 1 % 13, (2 % 13) 2* + 4 % 13)

To get the result of the division:
Input:

eval (ans ())

((—=6) % 13) x4 (—6) % 13

Input (in Map1e mode):
Quo (x"3+x"2+1,2+x"2+4) mod 13

Output:
—6x —6

o [nput (in Maple mode):
Quo (X" 2+2+*x,x"2+6*x+5) mod 5

Output:
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6.35.2 Euclidean remainder: Rem

In Xcas mode, Rem is simply the inert form of rem; namely, it returns the Eu-
clidean remainder of two polynomials without evaluation. (See section Section 6.28.3
p-374.) In Maple mode, the rem command can additionally be used in conjunc-
tion with mod to compute the Euclidean remainder of two polynomials with coef-
ficients in Z/pZ.
e (In Maple mode.)
Rem takes two arguments:
P and @, two polynomials with coefficients in Z/pZ.

e Rem (P, ()) returns the Euclidean remainder of P divided by Q.

Examples:

e [nput (in Xcas mode):
Rem ((x"3+x"24+1) mod 13, (2+*x"2+4) mod 13)

Output:
rem ((1% 13) 2° + (1% 13)2® + 1 % 13, (2 % 13) 2* + 4 % 13)

To get the result of the division:
Input:

eval (ans () )

Output:
((=2) % 13)z 4+ (—1) % 13

e Input (in Maple mode):
Rem(x"3+x"2+1,2+x"2+4) mod 13

Output:
—2x—1

o Input (in Maple mode):
Rem (x"2+2+x,x"2+6*x+5) mod 5

Output:
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6.35.3 GCDinZ/pZz]: Ged

In Xcas mode, Ged is simply the inert form of gcd; namely, it returns the great-
est common divisor of two polynomials without evaluation. (See section Sec-
tion 6.28.5 p.375.) In Maple mode, the Gcd command can additionally be used in
conjunction with mod to compute the greatest common divisor of two polynomials
with coefficients in Z/pZ.
e (In Maple mode.)
Gcd takes an unspecified number of arguments:
polys, a sequence or list of polynomials with coefficients in Z/pZ.

e Gcd (polys) returns the greatest common divisor of the polynomials in polys.

Examples.

o Input (in Xcas mode):
Gecd (2+«x"2+5%13,5+%x"2+2xx-3%13)

Output:
ged (22° + 5% 13,52° + 2z + (—3) % 13)

To get the actual greatest common divisor:
Input:

eval (ans ())

Output:
(1%13)z+2%13

Input (in Maple mode):
Gecd (2*xx"24+5,5xx"2+2%x-3) mod 13

Output:
T+ 2

e [nput (in Maple mode:
Ged (x7242+x,xXx"2+6*x+5) mod 5

Output:
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6.35.4 Factoring in Z/pZ[z]: Factor

In Xcas mode, Factor is simply the inert form of factor; namely, it factors
a polynomial without evaluation. (See section Section 6.12.10 p.205.) In Maple
mode, the Fact or command can additionally be used in conjunction with mod to
factor a polynomials with coefficients in Z/pZ, where p must be prime.

e (In Maple mode.)
Factor takes one argument:
P, a polynomial with coefficients in Z/pZ for prime p.

e Factor (P) returns the factored form of P.

Example.
Input (in Xcas mode):

Factor ((=3*x"3+5xx"2-5xx+4)%13)
Output:

factor (((—3) % 13) 2% + (5% 13) 2 + ((—5) % 13) x + 4 % 13)

To get the actual factorization:
Input:

eval (ans () )
Output:
((=3) % 13) (1 % 13) z + (—6) % 13) ((1 % 13) 2* + 6 % 13)
Input (in Maple mode):
Factor (-3*x"3+5%x"2-5%xx+4) mod 13
Output:

—3(z—6) (2> +6)

6.35.5 Determinant of a matrix with coefficients in 7 /pZ: Det

In Xcas mode, Det is simply the inert form of det; namely, it gives the deter-
minant of a matrix without evaluating it. (See section Section 6.47.4 p.534.) In
Maple mode, the Det command can additionally be used in conjunction with
mod to find the determinant of a matrix whose elements are in Z/pZ.

e (In Maple mode.)
Det takes one argument:
A, a matrix with elements in Z /pZ.

e Det (A) returns the determinant of A.

Example.
Input (in Xcas mode):
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Det ([[1,2,9] mod 13,[3,10,0] mod 13,[3,11,1] mod 131])

Output:
1%13  2%13  (-4) %13
det 3%13 (-3)%13 0%13
3%13 (-2)%13  1%13

To find the value of the determinant, you can enter:
Input:

eval (ans () )

Output:
5% 13

Hence, in Z/13Z, the determinant of A = [[1,2,9],[3,10,0],[3,11,1]] is 5%13
(in Z, det (A) =31).
Input (in Maple mode):

Det([[1,2,9],13,10,0],13,11,1]]) mod 13

Output:

6.35.6 Inverse of a matrix in Z/pZ: Inverse

In Xcas mode, Inverse is simply the inert form of inverse; namely, it gives
the inverse of a matrix without evaluating it. (See section Section 6.47.2 p.534.)
In Maple mode, the Inverse command can additionally be used in conjunction
with mod to find the inverse of a matrix whose elements are in Z/pZ.

e (In Maple mode.)
Inverse takes one argument:
A, a matrix with elements in Z/pZ.

e Det (A) returns the inverse of A.

Example.
Input (in Xcas mode):

Inverse([[1,2,9] mod 13, [3,10,0] mod 13, [3,11,1]
modl3])

Output:
1%13  2%13  (—4) %13
inverse 3%13 (=3)%13 0%13
3%13 (-2)%13  1%13

To get the actual inverse, you can enter:
Input:

eval (ans () )
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Output:
2%13  (—4)%13 (-5) %13
2%13 0%13  (=5) %13
(—2) %13 (-1)%13 6%13
which is the inverse of A = [[1,2,9],[3,10,0], [3,11, 1]] in Z/13Z.
Input (in Maple mode):

Inverse([[1,2,91,(3,10,01,([3,11,1]1]) mod 13

Output:
2 —4 -5
2 0 -5
-2 -1 6

6.35.7 Row reduction to echelon form in Z/pZ: Rref

In Xcas mode, Rref is simply the inert form of rref; namely, it returns rref
without evaluating it. (See section Section 6.56.3 p.609.) In Maple mode, the
Rref command can additionally be used in conjunction with mod to find the re-
duced row echelon form of a matrix whose elements are in Z/pZ.

e (In Maple mode.)
Rref takes one argument:
A, a matrix with elements in Z /pZ.

e Rref (A) returns the reduced row echelon form of A.

Example.
Solve in Z/13Z:

z+ 2y =9
3-z4+10-y = 0

Input (in Xcas mode):
Rref ([[1,2,9] mod 13,[3,10,0] mod 13])

Output:

(([1%18 2%13  (—4) %13
TN 3% 13 (=3)% 13 0% 13

To actually get the reduced echelon form, you can enter:
Input:
eval (ans ())

Output:

1%13 0%13 3%13
0%13 1%13 3%13

and conclude that x=3%13 and y=3%13.
Input (in Map1e mode):

Rref ([[1,2,9],[3,10,0]] mod 13)

1 0 3
013

and again conclude that x=3%13 and y=3%13.

Output:
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6.36 Taylor and asymptotic expansions

6.36.1 Dividing by increasing power order: divpc

The divpc command finds the truncated Taylor expansion of a quotient of poly-
nomials.

e divpc takes three mandatory arguments and one optional argument:

— P and Q, two polynomial expressions such that ) has a nonzero con-
stant term/

— n, an integer.

— Optionally, x, the variable name (by default x).

e divpc (P,Q,n (,x)) returns the Taylor expansion of P/Q) of order n about
xz =0.

Note that this command does not work on polynomials written as a list of coeffi-
cients.

Example.
Input:

divpc (1+x"2+x"3,1+x72,5)
Output:
5 3
-z’ +x° +1

6.36.2 Series expansion: taylor series

The taylor command finds Taylor expansions.
series is asynonym for taylor.

e taylor takes one mandatory and four optional arguments:

expr, an expression depending on a variable.

Optionally, z, the variable (by default x).

Optionally n, an integer, the order of the series expansion (by default
5).

Optionally, a, the center of the Taylor expansion (by default 0). This
can be combined with the optional = by replacing z by x = a.

dir, a direction, which can be —1 or 1, for unidirectional series expan-
sion, or O (for bidirectional series expansion) (by default 0).

e taylor (expr, x (,a,ndir)) returns the Taylor expansion of expr about a
or order n; consisting of a polynomial in z — a plus a remainder of the form
of the form:

(r—a)"n * order_size(x —a)
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where order_size is a function such that,

Vr >0, lim z"order_size(z) =0
z—0

For regular series expansion, order_size is a bounded function, but for non
regular series expansion, it might tend slowly to infinity, for example like a power
of In(z).

Example.

Input:

taylor (sin(x),x=1,2)
or:

series (sin(x),x=1,2)
or (be careful with the order of the arguments!):

taylor(sin(x),x,2,1)
or:

series(sin(x),x,2,1)

Output:
sin (1) 4+ cos (1) (x — 1) — %sin (1) (& — 1)® + (« — 1) order_size (z — 1)

Remark.
The order returned by taylor may be smaller than n if cancellations between
numerator and denominator occur, for example consider

23 + sin(z)3

x — sin(z)
Input:
taylor (x"3+sin(x) "3/ (x-sin(x)),x=0,5)
Output:
- %x2 + 23+ 174%304 + z%order_size (z)

6+-27/10%x"2+x"3xorder_size (X)

which is only a 2nd degree expansion. Indeed the numerator and denominator
valuation is 3, hence you lose 3 orders. To get order 4, you should use n = 7.
Input:

taylor (x"3+sin(x) "3/ (x-sin(x)),x=0,7)
Output:

20 5, s, TIL 4 3T
X xr —
10 14007 14000

25 + z8order_size ()
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6+-27/10%x"2+x"3+711/1400xx"4+x"5*xorder_size (x)

a fourth degree expansion.

Examples.

e Find a 4th-order expansion of cos(2z)? in the vicinity of z = Z.

Input:

taylor (cos (2*x) "2,x=pi/6, 4)
Output
1 2 8 3 8 4 5
R T O R O 4 S 4 R o

e Find a Sth-order series expansion of arctan(x) in the vicinity of z = +o0.

Input:

series (atan(x),x=+infinity, 5)
Output:

3 5 6
1 (2 1 1 1
g— - + (%) — (”"5) + (x) order_size (:c)

Note that the expansion variable and the argument of the order_size

. 1
functionis h = — =, 10 0.
x

e Find a 2nd-order expansion of (2z — 1)61%1 in the vicinity of x=+00.
Input:

series ((2xx-1)xexp (1/ (x-1)),x=+infinity, 3)

Output (only a 1st-order series expansion):

1\ 2 17 (1\*  [1)° e

2 — +1+—-—+—|(—-] +(—| order_size[ —

z r 6 \z x z
Note that this is only a 1st order expansion. To get a 2nd-order series expan-
sion in 1/x:
Input:

series ((2+xx-1)*exp (1/ (x-1)),x=+infinity,4)

Output:
1\ ! 2 17 /1\? 47 /1\* [/1\! e
2| — +14+—-—+—(—-) +—=(—-) +|—) order_size| —
T x 6 \z 12 \ zx x x

1
e Find a 2nd-order series expansion of (22 — 1)e=-T in the vicinity of x=-o00.
Input:
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series ((2xx-1)*exp (1/ (x-1)),x=—infinity,4)

Output:
N2 17/ 1N\ 4T 1P 1\* _ 1
-2 —= +l+—+—(—-—) ——=(——) +|(—— ) order_size | ——
T z 6 T 12 T T T
1
e Find a 2nd-order series expansion of (12# in the vicinity of z = 0.
Input:

series ((1+x) " (1/x)/x"3,x=0,2,1)

(Note that this is a one-sided series expansion, since dir=1.) Qutput:

g 1 _ .
ex ™3 — —ex™2 + xLorder_size ()

2

6.36.3 The inverse of a series: revert

The revert command finds the beginning of the power series of a function given
the beginning of the series of the function.

e revert takes one mandatory and one optional argument:

— series, the beginning of a power series centered at O for a function f.

— Optionally z, the name of the variable (by default z).

e revert (series (,z)) returns the beginning of the power series for the in-
verse of f; namely the beginning of the power series for g(f(0) + x) where
the function g satisfies g(f(z)) = «.

Examples.

o Input:

revert (x + x72 + x74)

Output:

x — 22 + 22° — 622

Note that if the power series of a function f begins with  + 2 + 2*, then
f(0) =0, f'(0) =1, f(0) = 2, f”(0) = 0 and f(0) = 24. The function
g with g(f(x)) = x will then satisfy g(0) = 0, ¢'(0) = 1/f'(0) = 1,
g"(0) = =2, ¢""(0) = 12 and ¢g(¥ (0) = —144. The power series for g will
then begin « — 22 + 223 — 6z

o Input:
revert (1 + x + x"2/2 + x°3/6 + x"4/24)

Note that the argument is the beginning of the power series for exp(z), so
the output is the beginning of the power series for In(1 + x). Output:

xr —
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6.36.4 The residue of an expression at a point: residue
The residue command finds the residue of an expression at a point.
e residue takes three arguments:

— expr, an expression depending on a variable.
— z, a variable name.
- a, a complex number. This can be combined with the previous argu-

ment in an equality x = a.

e residue (expr, x,a) returns the residue of expr at the point a.

Example.
Input:
residue (cos (x)/x"3,x,0)
or:
residue (cos (x) /x"3,x=0)
Output:
1
2

6.36.5 Padé expansion: pade

The pade command finds a rational expression which agrees with a function up to
a given order.

e pade takes 4 arguments

expr, an expression.

x, the variable name.

n, an integer or I?, a polynomial.

— p, an integer.

e pade (expr, z,n,p) or pade (expr, x, P, p) returns a rational function P/Q)
such that degree(P) < p and P/Q =expr (mod x"*!) (meaning that P/Q
and f have the same Taylor expansion at O up to order n) or P/Q =exprf
(mod R), respecively.

Examples.
e Input:
pade (exp (x) ,%,5, 3)

or.

pade (exp (x) ,%x,x"6,3)
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Output:
—32% — 24z — 60
z3 — 922 4 362 — 60
To verify:
Input:

taylor ((3*x"2424xx+60) / (-x"3+9+x"2-36+x+60))

Output:

2 1'3 m4 .%'5

x
1 -~ Tt T 57T 154 0 .
4+ 5 + - + 51 + 120 + x°order_size ()

which is the Sth-order series expansion of exp (x) at x = 0.

o Input:
pade ((x"15+x+1)/(x"12+1),x,12,3)
or:
pade ((x"15+x+1)/(x"12+1),x,x"13,3)
Output:
z+1
o [nput:
pade ((x"15+x+1)/(x"12+1),x,14,4)
or:
pade ((x"15+x+1)/(x"12+1),%x,x"15,4)
Output:
20% 4+ 1
ol — 10429 — a8 427 — a6 405 —at 4 a3 +22 -+ 1
To verify:
Input:
series (ans (), x=0,15)
Output:
1+ — 2% — 213 4+ 221 + 2'%rder_size (z)
Then:
Input:
series ((x"15+x+1)/(x"12+1),x=0,15)
Output:

12

14+a— 2 — 21 4 21 + 2¥%rder_size (x)

These two expressions have the same 14th-order series expansion at z = 0.
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6.37 Ranges of values

6.37.1 Definition of a range of values: . .

The . . is an infixed operator which sets a range of values; given two real numbers
a and b, the range of values between them is denoted a . . b.

Warning!

The order of the boundaries of the range is significant. For example, if you input

B:=2..3; C:=3..2,

then B and C are different; B==C returns O.

Examples.
e [nput:
1..4
Output:
1...4
e Input:
1.2..s9rt (2)
Output:

1.2.../2

Since . . is an operator, the parts of an expression can be picked out of it (see
Section 6.15.3 p.232). In particular, the 1eft and right commands can find the
left and right endpoints of a range (see Section 6.3.4 p.123, Section 6.15.3 p.232,
Section 6.38.2 p.441, Section 6.40.6 p.460, Section 6.55.4 p.604 and Section 6.55.5
p.605 for other uses of 1left and right.)

Example:
Input:

Then:
Input:

sommet (R)

Output:

Input:
left (R)

Output:

Input:
right (R)

Output:
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6.37.2 Center of a range of values: interval2center

The interval2center command finds the midpoint of a range of values.

e interval2center takes one argument:
R, arange of values interval or a list of ranges of values.

e interval2center (R) returns the center of this range or the list of cen-
ters of these ranges.

Examples.
o Input:
interval2center (3..5)
Output:
4
o Input:
interval2center([2..4,4..6,6..1071)
Output:

3,5, 8]

6.37.3 Ranges of values defined by their center: center2interval

The center2interval command finds ranges of values determined by their
centers.

e center2interval takes one mandatory argument and one optional ar-
gument:

— L, alist of real numbers.
- Optionally, ¢, a real number (by default L[0] — (L[1] — L[0])/2).

e center2interval (L (,c)) returns a list of ranges of values; the mid-
points of the elements of the lists are endpoints of the ranges; so, for exam-
ple, the second range will go from (L[0] + L[1])/2 to (L[1] + L[2])/2, etc.
By default the first and last range are centered on L[0] and L[—1]. With an
argument of ¢, however, the first range will begin at ¢

Examples.

o Input:

center2interval ([3,5,8])

Output:
2.0...4.0,4.0...6.5,6.5...9.5
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o [nput:
center2interval ([3,5,8]1,2.5)

Output:
2.5...4.0,4.0...6.5,6.5...9.5

6.38 Intervals

6.38.1 Defining intervals: i[]

An interval is a range of real numbers, whose end points will be floats with at
least 15 significant digits. The i command creates intervals, with the arguments in
square brackets.

e i takes two arguments:
a and b, two real numbers.

e 1i[a,b] returns the interval between a and b.
Ifa > b,theni[a,b] returns i [evalf (b, 15) —epsilon,evalf (a,15) +epsilon]
(see Section 3.5.7 p.72, item 9).

Examples.
o [nput:
i[1,13/11]
Output:
[1.00000000000000..1.18181818181819]
o [nput:
ilpi,sart(3)]
Output:

[1.73205080756886..3.14159265358980]

Intervals can also be created by following a decimal number with a question
mark. If the decimal number contains n digits, the interval will be centered at a
and have width 2 - 107"

Examples.
e [nput:
0.1237
Output:
[0.121999999999999..0.124000000000000]
Input:
789.1234567

Output:

[0.789123454999990e3..0.789123456999998e3]
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6.38.2 The endpoints of an interval: 1eft right

The left and right commands can find the left and right endpoints of an in-
terval. (See Section 6.15.3 p.232, Section 6.40.6 p.460, Section 6.37.1 p.438, Sec-
tion 6.55.4 p.604 and Section 6.55.5 p.605 for other uses of 1eft and right.)

e Jeft and right take one argument:
I, an interval.

e left (I) returns the left endpoint of the interval [.

e right (/) returns the right endpoint of the interval I.

Examples.
e Input:
left(i[2,5])
Output:
2.00000000000000
o Input:
right (i[2,5])
Output:

5.00000000000000

6.38.3 Interval arithmetic: + - * /

You can apply the usual arithmetic operators, such as +, —,  and /, to intervals.
The result of adding two intervals is the interval whose endpoints are the sums
of the left end points and the right end points.

Example.
Input:
i[1,4] + i[2, 3]

Output:
[3.00000000000000..7.00000000000000]

The negative of an interval is the result of taking the negative of the end points
of the interval. The new end points will have to be switched.

Example.
Input:

-i[2, 3]
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Output:
[—3.00000000000000.. — 2.00000000000000]

The product of two intervals is the interval whose endpoints are the product the
left endpoints of the two intervals and the product of the right endpoints of the two
intervals. The smallest product will be the left end point of the product interval,
and the largest product will be the right end point of the product interval.

Examples.
o [nput:
i[1,41%1i[2,3]
Output:
[2.00000000000000..0.120000000000000€2]
o Input:
i[-2,41%1[3,5]
Output:

[—0.100000000000000€2..0.200000000000000€2]

The reciprocal of an interval is the interval determined by the reciprocals of the
end points.

Examples.

o textitInput:

1/i[2,3]
Output:
[0.333333333333333..0.500000000000000]
o Input:
1/i[-6,-3]
Output:

[—0.333333333333333.. — 0.166666666666667]

If the original interval has zero as an end point, then the reciprocal interval will
have plus or minus infinity as one of the end points. If one end point is positive and
the other is negative, then the reciprocal will simply be the interval from -infinity
to infinity.

Examples.

o Input:
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1/110,2]
Output:
[0.500000000000000.. 4 0]
o Input:
Output:
[—o0.. — 1.00000000000000]
Input:
1/i[-2,3]
Output:
[—00.. + 9]

You can also, if you want, do the usual operations such as subtraction, division,
powers and roots.
6.38.4 The midpoint of an interval: midpoint
The midpoint operator finds the midpoint of an interval.

e midpoint takes one argument:
I, an interval.

e midpoint (/) returns the midpoint of I.

Example.
Input:

midpoint (i[2,3])
Output:
2.50000000000000
6.38.5 The union of intervals: union